Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.44
      1 /*	$NetBSD: tcp_input.c,v 1.44 1998/02/19 02:36:42 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
      9  * Facility, NASA Ames Research Center.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  * 3. All advertising materials mentioning features or use of this software
     20  *    must display the following acknowledgement:
     21  *	This product includes software developed by the NetBSD
     22  *	Foundation, Inc. and its contributors.
     23  * 4. Neither the name of The NetBSD Foundation nor the names of its
     24  *    contributors may be used to endorse or promote products derived
     25  *    from this software without specific prior written permission.
     26  *
     27  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     28  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     29  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     30  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     31  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     32  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     33  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     34  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     35  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     36  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     37  * POSSIBILITY OF SUCH DAMAGE.
     38  */
     39 
     40 /*
     41  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
     42  *	The Regents of the University of California.  All rights reserved.
     43  *
     44  * Redistribution and use in source and binary forms, with or without
     45  * modification, are permitted provided that the following conditions
     46  * are met:
     47  * 1. Redistributions of source code must retain the above copyright
     48  *    notice, this list of conditions and the following disclaimer.
     49  * 2. Redistributions in binary form must reproduce the above copyright
     50  *    notice, this list of conditions and the following disclaimer in the
     51  *    documentation and/or other materials provided with the distribution.
     52  * 3. All advertising materials mentioning features or use of this software
     53  *    must display the following acknowledgement:
     54  *	This product includes software developed by the University of
     55  *	California, Berkeley and its contributors.
     56  * 4. Neither the name of the University nor the names of its contributors
     57  *    may be used to endorse or promote products derived from this software
     58  *    without specific prior written permission.
     59  *
     60  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     61  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     62  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     63  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     64  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     65  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     66  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     67  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     68  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     69  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     70  * SUCH DAMAGE.
     71  *
     72  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
     73  */
     74 
     75 /*
     76  *	TODO list for SYN cache stuff:
     77  *
     78  *	(a) The definition of "struct syn_cache" says:
     79  *
     80  *		This structure should not exceeed 32 bytes.
     81  *
     82  *	    but it's 40 bytes on the Alpha.  Can reduce memory use one
     83  *	    of two ways:
     84  *
     85  *		(1) Use a dynamically-sized hash table, and handle
     86  *		    collisions by rehashing.  Then sc_next is unnecessary.
     87  *
     88  *		(2) Allocate syn_cache structures in pages (or some other
     89  *		    large chunk).  This would probably be desirable for
     90  *		    maintaining locality of reference anyway.
     91  *
     92  *		    If you do this, you can change sc_next to a page/index
     93  *		    value, and make it a 32-bit (or maybe even 16-bit)
     94  *		    integer, thus partly obviating the need for the previous
     95  *		    hack.
     96  *
     97  *	    It's also worth noting this this is necessary for IPv6, as well,
     98  *	    where we use 32 bytes just for the IP addresses, so eliminating
     99  *	    wastage is going to become more important.  (BTW, has anyone
    100  *	    integreated these changes with one fo the IPv6 status that are
    101  *	    available?)
    102  *
    103  *	(b) Find room for a "state" field, which is needed to keep a
    104  *	    compressed state for TIME_WAIT TCBs.  It's been noted already
    105  *	    that this is fairly important for very high-volume web and
    106  *	    mail servers, which use a large number of short-lived
    107  *	    connections.
    108  */
    109 
    110 #ifndef TUBA_INCLUDE
    111 #include <sys/param.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/protosw.h>
    116 #include <sys/socket.h>
    117 #include <sys/socketvar.h>
    118 #include <sys/errno.h>
    119 
    120 #include <net/if.h>
    121 #include <net/route.h>
    122 
    123 #include <netinet/in.h>
    124 #include <netinet/in_systm.h>
    125 #include <netinet/ip.h>
    126 #include <netinet/in_pcb.h>
    127 #include <netinet/ip_var.h>
    128 #include <netinet/tcp.h>
    129 #include <netinet/tcp_fsm.h>
    130 #include <netinet/tcp_seq.h>
    131 #include <netinet/tcp_timer.h>
    132 #include <netinet/tcp_var.h>
    133 #include <netinet/tcpip.h>
    134 #include <netinet/tcp_debug.h>
    135 
    136 #include <machine/stdarg.h>
    137 
    138 int	tcprexmtthresh = 3;
    139 struct	tcpiphdr tcp_saveti;
    140 
    141 extern u_long sb_max;
    142 
    143 #endif /* TUBA_INCLUDE */
    144 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
    145 
    146 /* for modulo comparisons of timestamps */
    147 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    148 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    149 
    150 /*
    151  * Macro to compute ACK transmission behavior.  Delay the ACK unless
    152  * the other side PUSH'd or we have already delayed an ACK (must send
    153  * an ACK every two segments).
    154  */
    155 #define	TCP_SETUP_ACK(tp, ti) \
    156 do { \
    157 	if ((ti)->ti_flags & TH_PUSH || \
    158 	    (tp)->t_flags & TF_DELACK) \
    159 		tp->t_flags |= TF_ACKNOW; \
    160 	else \
    161 		TCP_SET_DELACK(tp); \
    162 } while (0)
    163 
    164 /*
    165  * Insert segment ti into reassembly queue of tcp with
    166  * control block tp.  Return TH_FIN if reassembly now includes
    167  * a segment with FIN.  The macro form does the common case inline
    168  * (segment is the next to be received on an established connection,
    169  * and the queue is empty), avoiding linkage into and removal
    170  * from the queue and repetition of various conversions.
    171  * Set DELACK for segments received in order, but ack immediately
    172  * when segments are out of order (so fast retransmit can work).
    173  */
    174 #define	TCP_REASS(tp, ti, m, so, flags) { \
    175 	if ((ti)->ti_seq == (tp)->rcv_nxt && \
    176 	    (tp)->segq.lh_first == NULL && \
    177 	    (tp)->t_state == TCPS_ESTABLISHED) { \
    178 		TCP_SETUP_ACK(tp, ti); \
    179 		(tp)->rcv_nxt += (ti)->ti_len; \
    180 		flags = (ti)->ti_flags & TH_FIN; \
    181 		tcpstat.tcps_rcvpack++;\
    182 		tcpstat.tcps_rcvbyte += (ti)->ti_len;\
    183 		sbappend(&(so)->so_rcv, (m)); \
    184 		sorwakeup(so); \
    185 	} else { \
    186 		(flags) = tcp_reass((tp), (ti), (m)); \
    187 		tp->t_flags |= TF_ACKNOW; \
    188 	} \
    189 }
    190 #ifndef TUBA_INCLUDE
    191 
    192 int
    193 tcp_reass(tp, ti, m)
    194 	register struct tcpcb *tp;
    195 	register struct tcpiphdr *ti;
    196 	struct mbuf *m;
    197 {
    198 	register struct ipqent *p, *q, *nq, *tiqe;
    199 	struct socket *so = tp->t_inpcb->inp_socket;
    200 	int flags;
    201 
    202 	/*
    203 	 * Call with ti==0 after become established to
    204 	 * force pre-ESTABLISHED data up to user socket.
    205 	 */
    206 	if (ti == 0)
    207 		goto present;
    208 
    209 	/*
    210 	 * Allocate a new queue entry, before we throw away any data.
    211 	 * If we can't, just drop the packet.  XXX
    212 	 */
    213 	MALLOC(tiqe, struct ipqent *, sizeof (struct ipqent), M_IPQ, M_NOWAIT);
    214 	if (tiqe == NULL) {
    215 		tcpstat.tcps_rcvmemdrop++;
    216 		m_freem(m);
    217 		return (0);
    218 	}
    219 
    220 	/*
    221 	 * Find a segment which begins after this one does.
    222 	 */
    223 	for (p = NULL, q = tp->segq.lh_first; q != NULL;
    224 	    p = q, q = q->ipqe_q.le_next)
    225 		if (SEQ_GT(q->ipqe_tcp->ti_seq, ti->ti_seq))
    226 			break;
    227 
    228 	/*
    229 	 * If there is a preceding segment, it may provide some of
    230 	 * our data already.  If so, drop the data from the incoming
    231 	 * segment.  If it provides all of our data, drop us.
    232 	 */
    233 	if (p != NULL) {
    234 		register struct tcpiphdr *phdr = p->ipqe_tcp;
    235 		register int i;
    236 
    237 		/* conversion to int (in i) handles seq wraparound */
    238 		i = phdr->ti_seq + phdr->ti_len - ti->ti_seq;
    239 		if (i > 0) {
    240 			if (i >= ti->ti_len) {
    241 				tcpstat.tcps_rcvduppack++;
    242 				tcpstat.tcps_rcvdupbyte += ti->ti_len;
    243 				m_freem(m);
    244 				FREE(tiqe, M_IPQ);
    245 				return (0);
    246 			}
    247 			m_adj(m, i);
    248 			ti->ti_len -= i;
    249 			ti->ti_seq += i;
    250 		}
    251 	}
    252 	tcpstat.tcps_rcvoopack++;
    253 	tcpstat.tcps_rcvoobyte += ti->ti_len;
    254 
    255 	/*
    256 	 * While we overlap succeeding segments trim them or,
    257 	 * if they are completely covered, dequeue them.
    258 	 */
    259 	for (; q != NULL; q = nq) {
    260 		register struct tcpiphdr *qhdr = q->ipqe_tcp;
    261 		register int i = (ti->ti_seq + ti->ti_len) - qhdr->ti_seq;
    262 
    263 		if (i <= 0)
    264 			break;
    265 		if (i < qhdr->ti_len) {
    266 			qhdr->ti_seq += i;
    267 			qhdr->ti_len -= i;
    268 			m_adj(q->ipqe_m, i);
    269 			break;
    270 		}
    271 		nq = q->ipqe_q.le_next;
    272 		m_freem(q->ipqe_m);
    273 		LIST_REMOVE(q, ipqe_q);
    274 		FREE(q, M_IPQ);
    275 	}
    276 
    277 	/* Insert the new fragment queue entry into place. */
    278 	tiqe->ipqe_m = m;
    279 	tiqe->ipqe_tcp = ti;
    280 	if (p == NULL) {
    281 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    282 	} else {
    283 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
    284 	}
    285 
    286 present:
    287 	/*
    288 	 * Present data to user, advancing rcv_nxt through
    289 	 * completed sequence space.
    290 	 */
    291 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    292 		return (0);
    293 	q = tp->segq.lh_first;
    294 	if (q == NULL || q->ipqe_tcp->ti_seq != tp->rcv_nxt)
    295 		return (0);
    296 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_tcp->ti_len)
    297 		return (0);
    298 	do {
    299 		tp->rcv_nxt += q->ipqe_tcp->ti_len;
    300 		flags = q->ipqe_tcp->ti_flags & TH_FIN;
    301 
    302 		nq = q->ipqe_q.le_next;
    303 		LIST_REMOVE(q, ipqe_q);
    304 		if (so->so_state & SS_CANTRCVMORE)
    305 			m_freem(q->ipqe_m);
    306 		else
    307 			sbappend(&so->so_rcv, q->ipqe_m);
    308 		FREE(q, M_IPQ);
    309 		q = nq;
    310 	} while (q != NULL && q->ipqe_tcp->ti_seq == tp->rcv_nxt);
    311 	sorwakeup(so);
    312 	return (flags);
    313 }
    314 
    315 /*
    316  * TCP input routine, follows pages 65-76 of the
    317  * protocol specification dated September, 1981 very closely.
    318  */
    319 void
    320 #if __STDC__
    321 tcp_input(struct mbuf *m, ...)
    322 #else
    323 tcp_input(m, va_alist)
    324 	register struct mbuf *m;
    325 #endif
    326 {
    327 	register struct tcpiphdr *ti;
    328 	register struct inpcb *inp;
    329 	caddr_t optp = NULL;
    330 	int optlen = 0;
    331 	int len, tlen, off, hdroptlen;
    332 	register struct tcpcb *tp = 0;
    333 	register int tiflags;
    334 	struct socket *so = NULL;
    335 	int todrop, acked, ourfinisacked, needoutput = 0;
    336 	short ostate = 0;
    337 	int iss = 0;
    338 	u_long tiwin;
    339 	struct tcp_opt_info opti;
    340 	int iphlen;
    341 	va_list ap;
    342 
    343 	va_start(ap, m);
    344 	iphlen = va_arg(ap, int);
    345 	va_end(ap);
    346 
    347 	tcpstat.tcps_rcvtotal++;
    348 
    349 	opti.ts_present = 0;
    350 	opti.maxseg = 0;
    351 
    352 	/*
    353 	 * Get IP and TCP header together in first mbuf.
    354 	 * Note: IP leaves IP header in first mbuf.
    355 	 */
    356 	ti = mtod(m, struct tcpiphdr *);
    357 	if (iphlen > sizeof (struct ip))
    358 		ip_stripoptions(m, (struct mbuf *)0);
    359 	if (m->m_len < sizeof (struct tcpiphdr)) {
    360 		if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
    361 			tcpstat.tcps_rcvshort++;
    362 			return;
    363 		}
    364 		ti = mtod(m, struct tcpiphdr *);
    365 	}
    366 
    367 	/*
    368 	 * Checksum extended TCP header and data.
    369 	 */
    370 	tlen = ((struct ip *)ti)->ip_len;
    371 	len = sizeof (struct ip) + tlen;
    372 	bzero(ti->ti_x1, sizeof ti->ti_x1);
    373 	ti->ti_len = (u_int16_t)tlen;
    374 	HTONS(ti->ti_len);
    375 	if ((ti->ti_sum = in_cksum(m, len)) != 0) {
    376 		tcpstat.tcps_rcvbadsum++;
    377 		goto drop;
    378 	}
    379 #endif /* TUBA_INCLUDE */
    380 
    381 	/*
    382 	 * Check that TCP offset makes sense,
    383 	 * pull out TCP options and adjust length.		XXX
    384 	 */
    385 	off = ti->ti_off << 2;
    386 	if (off < sizeof (struct tcphdr) || off > tlen) {
    387 		tcpstat.tcps_rcvbadoff++;
    388 		goto drop;
    389 	}
    390 	tlen -= off;
    391 	ti->ti_len = tlen;
    392 	if (off > sizeof (struct tcphdr)) {
    393 		if (m->m_len < sizeof(struct ip) + off) {
    394 			if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
    395 				tcpstat.tcps_rcvshort++;
    396 				return;
    397 			}
    398 			ti = mtod(m, struct tcpiphdr *);
    399 		}
    400 		optlen = off - sizeof (struct tcphdr);
    401 		optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
    402 		/*
    403 		 * Do quick retrieval of timestamp options ("options
    404 		 * prediction?").  If timestamp is the only option and it's
    405 		 * formatted as recommended in RFC 1323 appendix A, we
    406 		 * quickly get the values now and not bother calling
    407 		 * tcp_dooptions(), etc.
    408 		 */
    409 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
    410 		     (optlen > TCPOLEN_TSTAMP_APPA &&
    411 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
    412 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
    413 		     (ti->ti_flags & TH_SYN) == 0) {
    414 			opti.ts_present = 1;
    415 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
    416 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
    417 			optp = NULL;	/* we've parsed the options */
    418 		}
    419 	}
    420 	tiflags = ti->ti_flags;
    421 
    422 	/*
    423 	 * Convert TCP protocol specific fields to host format.
    424 	 */
    425 	NTOHL(ti->ti_seq);
    426 	NTOHL(ti->ti_ack);
    427 	NTOHS(ti->ti_win);
    428 	NTOHS(ti->ti_urp);
    429 
    430 	/*
    431 	 * Locate pcb for segment.
    432 	 */
    433 findpcb:
    434 	inp = in_pcblookup_connect(&tcbtable, ti->ti_src, ti->ti_sport,
    435 	    ti->ti_dst, ti->ti_dport);
    436 	if (inp == 0) {
    437 		++tcpstat.tcps_pcbhashmiss;
    438 		inp = in_pcblookup_bind(&tcbtable, ti->ti_dst, ti->ti_dport);
    439 		if (inp == 0) {
    440 			++tcpstat.tcps_noport;
    441 			goto dropwithreset;
    442 		}
    443 	}
    444 
    445 	/*
    446 	 * If the state is CLOSED (i.e., TCB does not exist) then
    447 	 * all data in the incoming segment is discarded.
    448 	 * If the TCB exists but is in CLOSED state, it is embryonic,
    449 	 * but should either do a listen or a connect soon.
    450 	 */
    451 	tp = intotcpcb(inp);
    452 	if (tp == 0)
    453 		goto dropwithreset;
    454 	if (tp->t_state == TCPS_CLOSED)
    455 		goto drop;
    456 
    457 	/* Unscale the window into a 32-bit value. */
    458 	if ((tiflags & TH_SYN) == 0)
    459 		tiwin = ti->ti_win << tp->snd_scale;
    460 	else
    461 		tiwin = ti->ti_win;
    462 
    463 	so = inp->inp_socket;
    464 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
    465 		if (so->so_options & SO_DEBUG) {
    466 			ostate = tp->t_state;
    467 			tcp_saveti = *ti;
    468 		}
    469 		if (so->so_options & SO_ACCEPTCONN) {
    470   			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
    471 				if (tiflags & TH_RST) {
    472 					syn_cache_reset(ti);
    473 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
    474 				    (TH_ACK|TH_SYN)) {
    475 					/*
    476 					 * Received a SYN,ACK.  This should
    477 					 * never happen while we are in
    478 					 * LISTEN.  Send an RST.
    479 					 */
    480 					goto badsyn;
    481 				} else if (tiflags & TH_ACK) {
    482 					so = syn_cache_get(so, m);
    483 					if (so == NULL) {
    484 						/*
    485 						 * We don't have a SYN for
    486 						 * this ACK; send an RST.
    487 						 */
    488 						goto badsyn;
    489 					} else if (so ==
    490 					    (struct socket *)(-1)) {
    491 						/*
    492 						 * We were unable to create
    493 						 * the connection.  If the
    494 						 * 3-way handshake was
    495 						 * completeed, and RST has
    496 						 * been sent to the peer.
    497 						 * Since the mbuf might be
    498 						 * in use for the reply,
    499 						 * do not free it.
    500 						 */
    501 						m = NULL;
    502 					} else {
    503 						/*
    504 						 * We have created a
    505 						 * full-blown connection.
    506 						 */
    507 						inp = sotoinpcb(so);
    508 						tp = intotcpcb(inp);
    509 						tiwin <<= tp->snd_scale;
    510 						goto after_listen;
    511 					}
    512   				}
    513   			} else {
    514 				/*
    515 				 * Received a SYN.
    516 				 */
    517 				if (in_hosteq(ti->ti_src, ti->ti_dst) &&
    518 				    ti->ti_sport == ti->ti_dport) {
    519 					/*
    520 					 * LISTEN socket received a SYN
    521 					 * from itself?  This can't possibly
    522 					 * be valid; drop the packet.
    523 					 */
    524 					tcpstat.tcps_badsyn++;
    525 					goto drop;
    526 				}
    527 				/*
    528 				 * SYN looks ok; create compressed TCP
    529 				 * state for it.
    530 				 */
    531 				if (so->so_qlen <= so->so_qlimit &&
    532 				    syn_cache_add(so, m, optp, optlen, &opti))
    533 					m = NULL;
    534 			}
    535 			goto drop;
    536 		}
    537 	}
    538 
    539 after_listen:
    540 #ifdef DIAGNOSTIC
    541 	/*
    542 	 * Should not happen now that all embryonic connections
    543 	 * are handled with compressed state.
    544 	 */
    545 	if (tp->t_state == TCPS_LISTEN)
    546 		panic("tcp_input: TCPS_LISTEN");
    547 #endif
    548 
    549 	/*
    550 	 * Segment received on connection.
    551 	 * Reset idle time and keep-alive timer.
    552 	 */
    553 	tp->t_idle = 0;
    554 	if (TCPS_HAVEESTABLISHED(tp->t_state))
    555 		tp->t_timer[TCPT_KEEP] = tcp_keepidle;
    556 
    557 	/*
    558 	 * Process options.
    559 	 */
    560 	if (optp)
    561 		tcp_dooptions(tp, optp, optlen, ti, &opti);
    562 
    563 	/*
    564 	 * Header prediction: check for the two common cases
    565 	 * of a uni-directional data xfer.  If the packet has
    566 	 * no control flags, is in-sequence, the window didn't
    567 	 * change and we're not retransmitting, it's a
    568 	 * candidate.  If the length is zero and the ack moved
    569 	 * forward, we're the sender side of the xfer.  Just
    570 	 * free the data acked & wake any higher level process
    571 	 * that was blocked waiting for space.  If the length
    572 	 * is non-zero and the ack didn't move, we're the
    573 	 * receiver side.  If we're getting packets in-order
    574 	 * (the reassembly queue is empty), add the data to
    575 	 * the socket buffer and note that we need a delayed ack.
    576 	 */
    577 	if (tp->t_state == TCPS_ESTABLISHED &&
    578 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
    579 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
    580 	    ti->ti_seq == tp->rcv_nxt &&
    581 	    tiwin && tiwin == tp->snd_wnd &&
    582 	    tp->snd_nxt == tp->snd_max) {
    583 
    584 		/*
    585 		 * If last ACK falls within this segment's sequence numbers,
    586 		 *  record the timestamp.
    587 		 */
    588 		if (opti.ts_present &&
    589 		    SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
    590 		    SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
    591 			tp->ts_recent_age = tcp_now;
    592 			tp->ts_recent = opti.ts_val;
    593 		}
    594 
    595 		if (ti->ti_len == 0) {
    596 			if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
    597 			    SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
    598 			    tp->snd_cwnd >= tp->snd_wnd &&
    599 			    tp->t_dupacks < tcprexmtthresh) {
    600 				/*
    601 				 * this is a pure ack for outstanding data.
    602 				 */
    603 				++tcpstat.tcps_predack;
    604 				if (opti.ts_present)
    605 					tcp_xmit_timer(tp,
    606 					    tcp_now-opti.ts_ecr+1);
    607 				else if (tp->t_rtt &&
    608 				    SEQ_GT(ti->ti_ack, tp->t_rtseq))
    609 					tcp_xmit_timer(tp, tp->t_rtt);
    610 				acked = ti->ti_ack - tp->snd_una;
    611 				tcpstat.tcps_rcvackpack++;
    612 				tcpstat.tcps_rcvackbyte += acked;
    613 				sbdrop(&so->so_snd, acked);
    614 				tp->snd_una = ti->ti_ack;
    615 				m_freem(m);
    616 
    617 				/*
    618 				 * If all outstanding data are acked, stop
    619 				 * retransmit timer, otherwise restart timer
    620 				 * using current (possibly backed-off) value.
    621 				 * If process is waiting for space,
    622 				 * wakeup/selwakeup/signal.  If data
    623 				 * are ready to send, let tcp_output
    624 				 * decide between more output or persist.
    625 				 */
    626 				if (tp->snd_una == tp->snd_max)
    627 					tp->t_timer[TCPT_REXMT] = 0;
    628 				else if (tp->t_timer[TCPT_PERSIST] == 0)
    629 					tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
    630 
    631 				if (sb_notify(&so->so_snd))
    632 					sowwakeup(so);
    633 				if (so->so_snd.sb_cc)
    634 					(void) tcp_output(tp);
    635 				return;
    636 			}
    637 		} else if (ti->ti_ack == tp->snd_una &&
    638 		    tp->segq.lh_first == NULL &&
    639 		    ti->ti_len <= sbspace(&so->so_rcv)) {
    640 			/*
    641 			 * this is a pure, in-sequence data packet
    642 			 * with nothing on the reassembly queue and
    643 			 * we have enough buffer space to take it.
    644 			 */
    645 			++tcpstat.tcps_preddat;
    646 			tp->rcv_nxt += ti->ti_len;
    647 			tcpstat.tcps_rcvpack++;
    648 			tcpstat.tcps_rcvbyte += ti->ti_len;
    649 			/*
    650 			 * Drop TCP, IP headers and TCP options then add data
    651 			 * to socket buffer.
    652 			 */
    653 			m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
    654 			m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
    655 			sbappend(&so->so_rcv, m);
    656 			sorwakeup(so);
    657 			TCP_SETUP_ACK(tp, ti);
    658 			if (tp->t_flags & TF_ACKNOW)
    659 				(void) tcp_output(tp);
    660 			return;
    661 		}
    662 	}
    663 
    664 	/*
    665 	 * Drop TCP, IP headers and TCP options.
    666 	 */
    667 	hdroptlen  = sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr);
    668 	m->m_data += hdroptlen;
    669 	m->m_len  -= hdroptlen;
    670 
    671 	/*
    672 	 * Calculate amount of space in receive window,
    673 	 * and then do TCP input processing.
    674 	 * Receive window is amount of space in rcv queue,
    675 	 * but not less than advertised window.
    676 	 */
    677 	{ int win;
    678 
    679 	win = sbspace(&so->so_rcv);
    680 	if (win < 0)
    681 		win = 0;
    682 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
    683 	}
    684 
    685 	switch (tp->t_state) {
    686 
    687 	/*
    688 	 * If the state is SYN_SENT:
    689 	 *	if seg contains an ACK, but not for our SYN, drop the input.
    690 	 *	if seg contains a RST, then drop the connection.
    691 	 *	if seg does not contain SYN, then drop it.
    692 	 * Otherwise this is an acceptable SYN segment
    693 	 *	initialize tp->rcv_nxt and tp->irs
    694 	 *	if seg contains ack then advance tp->snd_una
    695 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
    696 	 *	arrange for segment to be acked (eventually)
    697 	 *	continue processing rest of data/controls, beginning with URG
    698 	 */
    699 	case TCPS_SYN_SENT:
    700 		if ((tiflags & TH_ACK) &&
    701 		    (SEQ_LEQ(ti->ti_ack, tp->iss) ||
    702 		     SEQ_GT(ti->ti_ack, tp->snd_max)))
    703 			goto dropwithreset;
    704 		if (tiflags & TH_RST) {
    705 			if (tiflags & TH_ACK)
    706 				tp = tcp_drop(tp, ECONNREFUSED);
    707 			goto drop;
    708 		}
    709 		if ((tiflags & TH_SYN) == 0)
    710 			goto drop;
    711 		if (tiflags & TH_ACK) {
    712 			tp->snd_una = ti->ti_ack;
    713 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
    714 				tp->snd_nxt = tp->snd_una;
    715 		}
    716 		tp->t_timer[TCPT_REXMT] = 0;
    717 		tp->irs = ti->ti_seq;
    718 		tcp_rcvseqinit(tp);
    719 		tp->t_flags |= TF_ACKNOW;
    720 		tcp_mss_from_peer(tp, opti.maxseg);
    721 		tcp_rmx_rtt(tp);
    722 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
    723 			tcpstat.tcps_connects++;
    724 			soisconnected(so);
    725 			tcp_established(tp);
    726 			/* Do window scaling on this connection? */
    727 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
    728 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
    729 				tp->snd_scale = tp->requested_s_scale;
    730 				tp->rcv_scale = tp->request_r_scale;
    731 			}
    732 			(void) tcp_reass(tp, (struct tcpiphdr *)0,
    733 				(struct mbuf *)0);
    734 			/*
    735 			 * if we didn't have to retransmit the SYN,
    736 			 * use its rtt as our initial srtt & rtt var.
    737 			 */
    738 			if (tp->t_rtt)
    739 				tcp_xmit_timer(tp, tp->t_rtt);
    740 		} else
    741 			tp->t_state = TCPS_SYN_RECEIVED;
    742 
    743 		/*
    744 		 * Advance ti->ti_seq to correspond to first data byte.
    745 		 * If data, trim to stay within window,
    746 		 * dropping FIN if necessary.
    747 		 */
    748 		ti->ti_seq++;
    749 		if (ti->ti_len > tp->rcv_wnd) {
    750 			todrop = ti->ti_len - tp->rcv_wnd;
    751 			m_adj(m, -todrop);
    752 			ti->ti_len = tp->rcv_wnd;
    753 			tiflags &= ~TH_FIN;
    754 			tcpstat.tcps_rcvpackafterwin++;
    755 			tcpstat.tcps_rcvbyteafterwin += todrop;
    756 		}
    757 		tp->snd_wl1 = ti->ti_seq - 1;
    758 		tp->rcv_up = ti->ti_seq;
    759 		goto step6;
    760 
    761 	/*
    762 	 * If the state is SYN_RECEIVED:
    763 	 *	If seg contains an ACK, but not for our SYN, drop the input
    764 	 *	and generate an RST.  See page 36, rfc793
    765 	 */
    766 	case TCPS_SYN_RECEIVED:
    767 		if ((tiflags & TH_ACK) &&
    768 		    (SEQ_LEQ(ti->ti_ack, tp->iss) ||
    769 		     SEQ_GT(ti->ti_ack, tp->snd_max)))
    770 			goto dropwithreset;
    771 		break;
    772 	}
    773 
    774 	/*
    775 	 * States other than LISTEN or SYN_SENT.
    776 	 * First check timestamp, if present.
    777 	 * Then check that at least some bytes of segment are within
    778 	 * receive window.  If segment begins before rcv_nxt,
    779 	 * drop leading data (and SYN); if nothing left, just ack.
    780 	 *
    781 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
    782 	 * and it's less than ts_recent, drop it.
    783 	 */
    784 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
    785 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
    786 
    787 		/* Check to see if ts_recent is over 24 days old.  */
    788 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
    789 			/*
    790 			 * Invalidate ts_recent.  If this segment updates
    791 			 * ts_recent, the age will be reset later and ts_recent
    792 			 * will get a valid value.  If it does not, setting
    793 			 * ts_recent to zero will at least satisfy the
    794 			 * requirement that zero be placed in the timestamp
    795 			 * echo reply when ts_recent isn't valid.  The
    796 			 * age isn't reset until we get a valid ts_recent
    797 			 * because we don't want out-of-order segments to be
    798 			 * dropped when ts_recent is old.
    799 			 */
    800 			tp->ts_recent = 0;
    801 		} else {
    802 			tcpstat.tcps_rcvduppack++;
    803 			tcpstat.tcps_rcvdupbyte += ti->ti_len;
    804 			tcpstat.tcps_pawsdrop++;
    805 			goto dropafterack;
    806 		}
    807 	}
    808 
    809 	todrop = tp->rcv_nxt - ti->ti_seq;
    810 	if (todrop > 0) {
    811 		if (tiflags & TH_SYN) {
    812 			tiflags &= ~TH_SYN;
    813 			ti->ti_seq++;
    814 			if (ti->ti_urp > 1)
    815 				ti->ti_urp--;
    816 			else {
    817 				tiflags &= ~TH_URG;
    818 				ti->ti_urp = 0;
    819 			}
    820 			todrop--;
    821 		}
    822 		if (todrop > ti->ti_len ||
    823 		    (todrop == ti->ti_len && (tiflags & TH_FIN) == 0)) {
    824 			/*
    825 			 * Any valid FIN must be to the left of the window.
    826 			 * At this point the FIN must be a duplicate or
    827 			 * out of sequence; drop it.
    828 			 */
    829 			tiflags &= ~TH_FIN;
    830 			/*
    831 			 * Send an ACK to resynchronize and drop any data.
    832 			 * But keep on processing for RST or ACK.
    833 			 */
    834 			tp->t_flags |= TF_ACKNOW;
    835 			todrop = ti->ti_len;
    836 			tcpstat.tcps_rcvdupbyte += todrop;
    837 			tcpstat.tcps_rcvduppack++;
    838 		} else {
    839 			tcpstat.tcps_rcvpartduppack++;
    840 			tcpstat.tcps_rcvpartdupbyte += todrop;
    841 		}
    842 		m_adj(m, todrop);
    843 		ti->ti_seq += todrop;
    844 		ti->ti_len -= todrop;
    845 		if (ti->ti_urp > todrop)
    846 			ti->ti_urp -= todrop;
    847 		else {
    848 			tiflags &= ~TH_URG;
    849 			ti->ti_urp = 0;
    850 		}
    851 	}
    852 
    853 	/*
    854 	 * If new data are received on a connection after the
    855 	 * user processes are gone, then RST the other end.
    856 	 */
    857 	if ((so->so_state & SS_NOFDREF) &&
    858 	    tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
    859 		tp = tcp_close(tp);
    860 		tcpstat.tcps_rcvafterclose++;
    861 		goto dropwithreset;
    862 	}
    863 
    864 	/*
    865 	 * If segment ends after window, drop trailing data
    866 	 * (and PUSH and FIN); if nothing left, just ACK.
    867 	 */
    868 	todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
    869 	if (todrop > 0) {
    870 		tcpstat.tcps_rcvpackafterwin++;
    871 		if (todrop >= ti->ti_len) {
    872 			tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
    873 			/*
    874 			 * If a new connection request is received
    875 			 * while in TIME_WAIT, drop the old connection
    876 			 * and start over if the sequence numbers
    877 			 * are above the previous ones.
    878 			 */
    879 			if (tiflags & TH_SYN &&
    880 			    tp->t_state == TCPS_TIME_WAIT &&
    881 			    SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
    882 				iss = tcp_new_iss(tp, sizeof(struct tcpcb),
    883 						  tp->rcv_nxt);
    884 				tp = tcp_close(tp);
    885 				/*
    886 				 * We have already advanced the mbuf
    887 				 * pointers past the IP+TCP headers and
    888 				 * options.  Restore those pointers before
    889 				 * attempting to use the TCP header again.
    890 				 */
    891 				m->m_data -= hdroptlen;
    892 				m->m_len  += hdroptlen;
    893 				goto findpcb;
    894 			}
    895 			/*
    896 			 * If window is closed can only take segments at
    897 			 * window edge, and have to drop data and PUSH from
    898 			 * incoming segments.  Continue processing, but
    899 			 * remember to ack.  Otherwise, drop segment
    900 			 * and ack.
    901 			 */
    902 			if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
    903 				tp->t_flags |= TF_ACKNOW;
    904 				tcpstat.tcps_rcvwinprobe++;
    905 			} else
    906 				goto dropafterack;
    907 		} else
    908 			tcpstat.tcps_rcvbyteafterwin += todrop;
    909 		m_adj(m, -todrop);
    910 		ti->ti_len -= todrop;
    911 		tiflags &= ~(TH_PUSH|TH_FIN);
    912 	}
    913 
    914 	/*
    915 	 * If last ACK falls within this segment's sequence numbers,
    916 	 * record its timestamp.
    917 	 */
    918 	if (opti.ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
    919 	    SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
    920 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
    921 		tp->ts_recent_age = tcp_now;
    922 		tp->ts_recent = opti.ts_val;
    923 	}
    924 
    925 	/*
    926 	 * If the RST bit is set examine the state:
    927 	 *    SYN_RECEIVED STATE:
    928 	 *	If passive open, return to LISTEN state.
    929 	 *	If active open, inform user that connection was refused.
    930 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
    931 	 *	Inform user that connection was reset, and close tcb.
    932 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
    933 	 *	Close the tcb.
    934 	 */
    935 	if (tiflags&TH_RST) switch (tp->t_state) {
    936 
    937 	case TCPS_SYN_RECEIVED:
    938 		so->so_error = ECONNREFUSED;
    939 		goto close;
    940 
    941 	case TCPS_ESTABLISHED:
    942 	case TCPS_FIN_WAIT_1:
    943 	case TCPS_FIN_WAIT_2:
    944 	case TCPS_CLOSE_WAIT:
    945 		so->so_error = ECONNRESET;
    946 	close:
    947 		tp->t_state = TCPS_CLOSED;
    948 		tcpstat.tcps_drops++;
    949 		tp = tcp_close(tp);
    950 		goto drop;
    951 
    952 	case TCPS_CLOSING:
    953 	case TCPS_LAST_ACK:
    954 	case TCPS_TIME_WAIT:
    955 		tp = tcp_close(tp);
    956 		goto drop;
    957 	}
    958 
    959 	/*
    960 	 * If a SYN is in the window, then this is an
    961 	 * error and we send an RST and drop the connection.
    962 	 */
    963 	if (tiflags & TH_SYN) {
    964 		tp = tcp_drop(tp, ECONNRESET);
    965 		goto dropwithreset;
    966 	}
    967 
    968 	/*
    969 	 * If the ACK bit is off we drop the segment and return.
    970 	 */
    971 	if ((tiflags & TH_ACK) == 0)
    972 		goto drop;
    973 
    974 	/*
    975 	 * Ack processing.
    976 	 */
    977 	switch (tp->t_state) {
    978 
    979 	/*
    980 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
    981 	 * ESTABLISHED state and continue processing, otherwise
    982 	 * send an RST.
    983 	 */
    984 	case TCPS_SYN_RECEIVED:
    985 		if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
    986 		    SEQ_GT(ti->ti_ack, tp->snd_max))
    987 			goto dropwithreset;
    988 		tcpstat.tcps_connects++;
    989 		soisconnected(so);
    990 		tcp_established(tp);
    991 		/* Do window scaling? */
    992 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
    993 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
    994 			tp->snd_scale = tp->requested_s_scale;
    995 			tp->rcv_scale = tp->request_r_scale;
    996 		}
    997 		(void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
    998 		tp->snd_wl1 = ti->ti_seq - 1;
    999 		/* fall into ... */
   1000 
   1001 	/*
   1002 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   1003 	 * ACKs.  If the ack is in the range
   1004 	 *	tp->snd_una < ti->ti_ack <= tp->snd_max
   1005 	 * then advance tp->snd_una to ti->ti_ack and drop
   1006 	 * data from the retransmission queue.  If this ACK reflects
   1007 	 * more up to date window information we update our window information.
   1008 	 */
   1009 	case TCPS_ESTABLISHED:
   1010 	case TCPS_FIN_WAIT_1:
   1011 	case TCPS_FIN_WAIT_2:
   1012 	case TCPS_CLOSE_WAIT:
   1013 	case TCPS_CLOSING:
   1014 	case TCPS_LAST_ACK:
   1015 	case TCPS_TIME_WAIT:
   1016 
   1017 		if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
   1018 			if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
   1019 				tcpstat.tcps_rcvdupack++;
   1020 				/*
   1021 				 * If we have outstanding data (other than
   1022 				 * a window probe), this is a completely
   1023 				 * duplicate ack (ie, window info didn't
   1024 				 * change), the ack is the biggest we've
   1025 				 * seen and we've seen exactly our rexmt
   1026 				 * threshhold of them, assume a packet
   1027 				 * has been dropped and retransmit it.
   1028 				 * Kludge snd_nxt & the congestion
   1029 				 * window so we send only this one
   1030 				 * packet.
   1031 				 *
   1032 				 * We know we're losing at the current
   1033 				 * window size so do congestion avoidance
   1034 				 * (set ssthresh to half the current window
   1035 				 * and pull our congestion window back to
   1036 				 * the new ssthresh).
   1037 				 *
   1038 				 * Dup acks mean that packets have left the
   1039 				 * network (they're now cached at the receiver)
   1040 				 * so bump cwnd by the amount in the receiver
   1041 				 * to keep a constant cwnd packets in the
   1042 				 * network.
   1043 				 */
   1044 				if (tp->t_timer[TCPT_REXMT] == 0 ||
   1045 				    ti->ti_ack != tp->snd_una)
   1046 					tp->t_dupacks = 0;
   1047 				else if (++tp->t_dupacks == tcprexmtthresh) {
   1048 					tcp_seq onxt = tp->snd_nxt;
   1049 					u_int win =
   1050 					    min(tp->snd_wnd, tp->snd_cwnd) /
   1051 					    2 /	tp->t_segsz;
   1052 
   1053 					if (win < 2)
   1054 						win = 2;
   1055 					tp->snd_ssthresh = win * tp->t_segsz;
   1056 					tp->t_timer[TCPT_REXMT] = 0;
   1057 					tp->t_rtt = 0;
   1058 					tp->snd_nxt = ti->ti_ack;
   1059 					tp->snd_cwnd = tp->t_segsz;
   1060 					(void) tcp_output(tp);
   1061 					tp->snd_cwnd = tp->snd_ssthresh +
   1062 					       tp->t_segsz * tp->t_dupacks;
   1063 					if (SEQ_GT(onxt, tp->snd_nxt))
   1064 						tp->snd_nxt = onxt;
   1065 					goto drop;
   1066 				} else if (tp->t_dupacks > tcprexmtthresh) {
   1067 					tp->snd_cwnd += tp->t_segsz;
   1068 					(void) tcp_output(tp);
   1069 					goto drop;
   1070 				}
   1071 			} else
   1072 				tp->t_dupacks = 0;
   1073 			break;
   1074 		}
   1075 		/*
   1076 		 * If the congestion window was inflated to account
   1077 		 * for the other side's cached packets, retract it.
   1078 		 */
   1079 		if (tp->t_dupacks >= tcprexmtthresh &&
   1080 		    tp->snd_cwnd > tp->snd_ssthresh)
   1081 			tp->snd_cwnd = tp->snd_ssthresh;
   1082 		tp->t_dupacks = 0;
   1083 		if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
   1084 			tcpstat.tcps_rcvacktoomuch++;
   1085 			goto dropafterack;
   1086 		}
   1087 		acked = ti->ti_ack - tp->snd_una;
   1088 		tcpstat.tcps_rcvackpack++;
   1089 		tcpstat.tcps_rcvackbyte += acked;
   1090 
   1091 		/*
   1092 		 * If we have a timestamp reply, update smoothed
   1093 		 * round trip time.  If no timestamp is present but
   1094 		 * transmit timer is running and timed sequence
   1095 		 * number was acked, update smoothed round trip time.
   1096 		 * Since we now have an rtt measurement, cancel the
   1097 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   1098 		 * Recompute the initial retransmit timer.
   1099 		 */
   1100 		if (opti.ts_present)
   1101 			tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
   1102 		else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
   1103 			tcp_xmit_timer(tp,tp->t_rtt);
   1104 
   1105 		/*
   1106 		 * If all outstanding data is acked, stop retransmit
   1107 		 * timer and remember to restart (more output or persist).
   1108 		 * If there is more data to be acked, restart retransmit
   1109 		 * timer, using current (possibly backed-off) value.
   1110 		 */
   1111 		if (ti->ti_ack == tp->snd_max) {
   1112 			tp->t_timer[TCPT_REXMT] = 0;
   1113 			needoutput = 1;
   1114 		} else if (tp->t_timer[TCPT_PERSIST] == 0)
   1115 			tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
   1116 		/*
   1117 		 * When new data is acked, open the congestion window.
   1118 		 * If the window gives us less than ssthresh packets
   1119 		 * in flight, open exponentially (segsz per packet).
   1120 		 * Otherwise open linearly: segsz per window
   1121 		 * (segsz^2 / cwnd per packet), plus a constant
   1122 		 * fraction of a packet (segsz/8) to help larger windows
   1123 		 * open quickly enough.
   1124 		 */
   1125 		{
   1126 		register u_int cw = tp->snd_cwnd;
   1127 		register u_int incr = tp->t_segsz;
   1128 
   1129 		if (cw > tp->snd_ssthresh)
   1130 			incr = incr * incr / cw;
   1131 		tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
   1132 		}
   1133 		if (acked > so->so_snd.sb_cc) {
   1134 			tp->snd_wnd -= so->so_snd.sb_cc;
   1135 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   1136 			ourfinisacked = 1;
   1137 		} else {
   1138 			sbdrop(&so->so_snd, acked);
   1139 			tp->snd_wnd -= acked;
   1140 			ourfinisacked = 0;
   1141 		}
   1142 		if (sb_notify(&so->so_snd))
   1143 			sowwakeup(so);
   1144 		tp->snd_una = ti->ti_ack;
   1145 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1146 			tp->snd_nxt = tp->snd_una;
   1147 
   1148 		switch (tp->t_state) {
   1149 
   1150 		/*
   1151 		 * In FIN_WAIT_1 STATE in addition to the processing
   1152 		 * for the ESTABLISHED state if our FIN is now acknowledged
   1153 		 * then enter FIN_WAIT_2.
   1154 		 */
   1155 		case TCPS_FIN_WAIT_1:
   1156 			if (ourfinisacked) {
   1157 				/*
   1158 				 * If we can't receive any more
   1159 				 * data, then closing user can proceed.
   1160 				 * Starting the timer is contrary to the
   1161 				 * specification, but if we don't get a FIN
   1162 				 * we'll hang forever.
   1163 				 */
   1164 				if (so->so_state & SS_CANTRCVMORE) {
   1165 					soisdisconnected(so);
   1166 					tp->t_timer[TCPT_2MSL] = tcp_maxidle;
   1167 				}
   1168 				tp->t_state = TCPS_FIN_WAIT_2;
   1169 			}
   1170 			break;
   1171 
   1172 	 	/*
   1173 		 * In CLOSING STATE in addition to the processing for
   1174 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   1175 		 * then enter the TIME-WAIT state, otherwise ignore
   1176 		 * the segment.
   1177 		 */
   1178 		case TCPS_CLOSING:
   1179 			if (ourfinisacked) {
   1180 				tp->t_state = TCPS_TIME_WAIT;
   1181 				tcp_canceltimers(tp);
   1182 				tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
   1183 				soisdisconnected(so);
   1184 			}
   1185 			break;
   1186 
   1187 		/*
   1188 		 * In LAST_ACK, we may still be waiting for data to drain
   1189 		 * and/or to be acked, as well as for the ack of our FIN.
   1190 		 * If our FIN is now acknowledged, delete the TCB,
   1191 		 * enter the closed state and return.
   1192 		 */
   1193 		case TCPS_LAST_ACK:
   1194 			if (ourfinisacked) {
   1195 				tp = tcp_close(tp);
   1196 				goto drop;
   1197 			}
   1198 			break;
   1199 
   1200 		/*
   1201 		 * In TIME_WAIT state the only thing that should arrive
   1202 		 * is a retransmission of the remote FIN.  Acknowledge
   1203 		 * it and restart the finack timer.
   1204 		 */
   1205 		case TCPS_TIME_WAIT:
   1206 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
   1207 			goto dropafterack;
   1208 		}
   1209 	}
   1210 
   1211 step6:
   1212 	/*
   1213 	 * Update window information.
   1214 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   1215 	 */
   1216 	if (((tiflags & TH_ACK) && SEQ_LT(tp->snd_wl1, ti->ti_seq)) ||
   1217 	    (tp->snd_wl1 == ti->ti_seq && SEQ_LT(tp->snd_wl2, ti->ti_ack)) ||
   1218 	    (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)) {
   1219 		/* keep track of pure window updates */
   1220 		if (ti->ti_len == 0 &&
   1221 		    tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
   1222 			tcpstat.tcps_rcvwinupd++;
   1223 		tp->snd_wnd = tiwin;
   1224 		tp->snd_wl1 = ti->ti_seq;
   1225 		tp->snd_wl2 = ti->ti_ack;
   1226 		if (tp->snd_wnd > tp->max_sndwnd)
   1227 			tp->max_sndwnd = tp->snd_wnd;
   1228 		needoutput = 1;
   1229 	}
   1230 
   1231 	/*
   1232 	 * Process segments with URG.
   1233 	 */
   1234 	if ((tiflags & TH_URG) && ti->ti_urp &&
   1235 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1236 		/*
   1237 		 * This is a kludge, but if we receive and accept
   1238 		 * random urgent pointers, we'll crash in
   1239 		 * soreceive.  It's hard to imagine someone
   1240 		 * actually wanting to send this much urgent data.
   1241 		 */
   1242 		if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
   1243 			ti->ti_urp = 0;			/* XXX */
   1244 			tiflags &= ~TH_URG;		/* XXX */
   1245 			goto dodata;			/* XXX */
   1246 		}
   1247 		/*
   1248 		 * If this segment advances the known urgent pointer,
   1249 		 * then mark the data stream.  This should not happen
   1250 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   1251 		 * a FIN has been received from the remote side.
   1252 		 * In these states we ignore the URG.
   1253 		 *
   1254 		 * According to RFC961 (Assigned Protocols),
   1255 		 * the urgent pointer points to the last octet
   1256 		 * of urgent data.  We continue, however,
   1257 		 * to consider it to indicate the first octet
   1258 		 * of data past the urgent section as the original
   1259 		 * spec states (in one of two places).
   1260 		 */
   1261 		if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
   1262 			tp->rcv_up = ti->ti_seq + ti->ti_urp;
   1263 			so->so_oobmark = so->so_rcv.sb_cc +
   1264 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   1265 			if (so->so_oobmark == 0)
   1266 				so->so_state |= SS_RCVATMARK;
   1267 			sohasoutofband(so);
   1268 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   1269 		}
   1270 		/*
   1271 		 * Remove out of band data so doesn't get presented to user.
   1272 		 * This can happen independent of advancing the URG pointer,
   1273 		 * but if two URG's are pending at once, some out-of-band
   1274 		 * data may creep in... ick.
   1275 		 */
   1276 		if (ti->ti_urp <= (u_int16_t) ti->ti_len
   1277 #ifdef SO_OOBINLINE
   1278 		     && (so->so_options & SO_OOBINLINE) == 0
   1279 #endif
   1280 		     )
   1281 			tcp_pulloutofband(so, ti, m);
   1282 	} else
   1283 		/*
   1284 		 * If no out of band data is expected,
   1285 		 * pull receive urgent pointer along
   1286 		 * with the receive window.
   1287 		 */
   1288 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   1289 			tp->rcv_up = tp->rcv_nxt;
   1290 dodata:							/* XXX */
   1291 
   1292 	/*
   1293 	 * Process the segment text, merging it into the TCP sequencing queue,
   1294 	 * and arranging for acknowledgment of receipt if necessary.
   1295 	 * This process logically involves adjusting tp->rcv_wnd as data
   1296 	 * is presented to the user (this happens in tcp_usrreq.c,
   1297 	 * case PRU_RCVD).  If a FIN has already been received on this
   1298 	 * connection then we just ignore the text.
   1299 	 */
   1300 	if ((ti->ti_len || (tiflags & TH_FIN)) &&
   1301 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1302 		TCP_REASS(tp, ti, m, so, tiflags);
   1303 		/*
   1304 		 * Note the amount of data that peer has sent into
   1305 		 * our window, in order to estimate the sender's
   1306 		 * buffer size.
   1307 		 */
   1308 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   1309 	} else {
   1310 		m_freem(m);
   1311 		tiflags &= ~TH_FIN;
   1312 	}
   1313 
   1314 	/*
   1315 	 * If FIN is received ACK the FIN and let the user know
   1316 	 * that the connection is closing.  Ignore a FIN received before
   1317 	 * the connection is fully established.
   1318 	 */
   1319 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   1320 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1321 			socantrcvmore(so);
   1322 			tp->t_flags |= TF_ACKNOW;
   1323 			tp->rcv_nxt++;
   1324 		}
   1325 		switch (tp->t_state) {
   1326 
   1327 	 	/*
   1328 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   1329 		 */
   1330 		case TCPS_ESTABLISHED:
   1331 			tp->t_state = TCPS_CLOSE_WAIT;
   1332 			break;
   1333 
   1334 	 	/*
   1335 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   1336 		 * enter the CLOSING state.
   1337 		 */
   1338 		case TCPS_FIN_WAIT_1:
   1339 			tp->t_state = TCPS_CLOSING;
   1340 			break;
   1341 
   1342 	 	/*
   1343 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   1344 		 * starting the time-wait timer, turning off the other
   1345 		 * standard timers.
   1346 		 */
   1347 		case TCPS_FIN_WAIT_2:
   1348 			tp->t_state = TCPS_TIME_WAIT;
   1349 			tcp_canceltimers(tp);
   1350 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
   1351 			soisdisconnected(so);
   1352 			break;
   1353 
   1354 		/*
   1355 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   1356 		 */
   1357 		case TCPS_TIME_WAIT:
   1358 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
   1359 			break;
   1360 		}
   1361 	}
   1362 	if (so->so_options & SO_DEBUG)
   1363 		tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
   1364 
   1365 	/*
   1366 	 * Return any desired output.
   1367 	 */
   1368 	if (needoutput || (tp->t_flags & TF_ACKNOW))
   1369 		(void) tcp_output(tp);
   1370 	return;
   1371 
   1372 badsyn:
   1373 	/*
   1374 	 * Received a bad SYN.  Increment counters and dropwithreset.
   1375 	 */
   1376 	tcpstat.tcps_badsyn++;
   1377 	tp = NULL;
   1378 	goto dropwithreset;
   1379 
   1380 dropafterack:
   1381 	/*
   1382 	 * Generate an ACK dropping incoming segment if it occupies
   1383 	 * sequence space, where the ACK reflects our state.
   1384 	 */
   1385 	if (tiflags & TH_RST)
   1386 		goto drop;
   1387 	m_freem(m);
   1388 	tp->t_flags |= TF_ACKNOW;
   1389 	(void) tcp_output(tp);
   1390 	return;
   1391 
   1392 dropwithreset:
   1393 	/*
   1394 	 * Generate a RST, dropping incoming segment.
   1395 	 * Make ACK acceptable to originator of segment.
   1396 	 * Don't bother to respond if destination was broadcast/multicast.
   1397 	 */
   1398 	if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) ||
   1399 	    IN_MULTICAST(ti->ti_dst.s_addr))
   1400 		goto drop;
   1401 	if (tiflags & TH_ACK)
   1402 		(void)tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
   1403 	else {
   1404 		if (tiflags & TH_SYN)
   1405 			ti->ti_len++;
   1406 		(void)tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
   1407 		    TH_RST|TH_ACK);
   1408 	}
   1409 	return;
   1410 
   1411 drop:
   1412 	/*
   1413 	 * Drop space held by incoming segment and return.
   1414 	 */
   1415 	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
   1416 		tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
   1417 	m_freem(m);
   1418 	return;
   1419 #ifndef TUBA_INCLUDE
   1420 }
   1421 
   1422 void
   1423 tcp_dooptions(tp, cp, cnt, ti, oi)
   1424 	struct tcpcb *tp;
   1425 	u_char *cp;
   1426 	int cnt;
   1427 	struct tcpiphdr *ti;
   1428 	struct tcp_opt_info *oi;
   1429 {
   1430 	u_int16_t mss;
   1431 	int opt, optlen;
   1432 
   1433 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1434 		opt = cp[0];
   1435 		if (opt == TCPOPT_EOL)
   1436 			break;
   1437 		if (opt == TCPOPT_NOP)
   1438 			optlen = 1;
   1439 		else {
   1440 			optlen = cp[1];
   1441 			if (optlen <= 0)
   1442 				break;
   1443 		}
   1444 		switch (opt) {
   1445 
   1446 		default:
   1447 			continue;
   1448 
   1449 		case TCPOPT_MAXSEG:
   1450 			if (optlen != TCPOLEN_MAXSEG)
   1451 				continue;
   1452 			if (!(ti->ti_flags & TH_SYN))
   1453 				continue;
   1454 			bcopy(cp + 2, &mss, sizeof(mss));
   1455 			oi->maxseg = ntohs(mss);
   1456 			break;
   1457 
   1458 		case TCPOPT_WINDOW:
   1459 			if (optlen != TCPOLEN_WINDOW)
   1460 				continue;
   1461 			if (!(ti->ti_flags & TH_SYN))
   1462 				continue;
   1463 			tp->t_flags |= TF_RCVD_SCALE;
   1464 			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
   1465 			break;
   1466 
   1467 		case TCPOPT_TIMESTAMP:
   1468 			if (optlen != TCPOLEN_TIMESTAMP)
   1469 				continue;
   1470 			oi->ts_present = 1;
   1471 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   1472 			NTOHL(oi->ts_val);
   1473 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   1474 			NTOHL(oi->ts_ecr);
   1475 
   1476 			/*
   1477 			 * A timestamp received in a SYN makes
   1478 			 * it ok to send timestamp requests and replies.
   1479 			 */
   1480 			if (ti->ti_flags & TH_SYN) {
   1481 				tp->t_flags |= TF_RCVD_TSTMP;
   1482 				tp->ts_recent = oi->ts_val;
   1483 				tp->ts_recent_age = tcp_now;
   1484 			}
   1485 			break;
   1486 		}
   1487 	}
   1488 }
   1489 
   1490 /*
   1491  * Pull out of band byte out of a segment so
   1492  * it doesn't appear in the user's data queue.
   1493  * It is still reflected in the segment length for
   1494  * sequencing purposes.
   1495  */
   1496 void
   1497 tcp_pulloutofband(so, ti, m)
   1498 	struct socket *so;
   1499 	struct tcpiphdr *ti;
   1500 	register struct mbuf *m;
   1501 {
   1502 	int cnt = ti->ti_urp - 1;
   1503 
   1504 	while (cnt >= 0) {
   1505 		if (m->m_len > cnt) {
   1506 			char *cp = mtod(m, caddr_t) + cnt;
   1507 			struct tcpcb *tp = sototcpcb(so);
   1508 
   1509 			tp->t_iobc = *cp;
   1510 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   1511 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   1512 			m->m_len--;
   1513 			return;
   1514 		}
   1515 		cnt -= m->m_len;
   1516 		m = m->m_next;
   1517 		if (m == 0)
   1518 			break;
   1519 	}
   1520 	panic("tcp_pulloutofband");
   1521 }
   1522 
   1523 /*
   1524  * Collect new round-trip time estimate
   1525  * and update averages and current timeout.
   1526  */
   1527 void
   1528 tcp_xmit_timer(tp, rtt)
   1529 	register struct tcpcb *tp;
   1530 	short rtt;
   1531 {
   1532 	register short delta;
   1533 
   1534 	tcpstat.tcps_rttupdated++;
   1535 	--rtt;
   1536 	if (tp->t_srtt != 0) {
   1537 		/*
   1538 		 * srtt is stored as fixed point with 3 bits after the
   1539 		 * binary point (i.e., scaled by 8).  The following magic
   1540 		 * is equivalent to the smoothing algorithm in rfc793 with
   1541 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
   1542 		 * point).  Adjust rtt to origin 0.
   1543 		 */
   1544 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   1545 		if ((tp->t_srtt += delta) <= 0)
   1546 			tp->t_srtt = 1 << 2;
   1547 		/*
   1548 		 * We accumulate a smoothed rtt variance (actually, a
   1549 		 * smoothed mean difference), then set the retransmit
   1550 		 * timer to smoothed rtt + 4 times the smoothed variance.
   1551 		 * rttvar is stored as fixed point with 2 bits after the
   1552 		 * binary point (scaled by 4).  The following is
   1553 		 * equivalent to rfc793 smoothing with an alpha of .75
   1554 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
   1555 		 * rfc793's wired-in beta.
   1556 		 */
   1557 		if (delta < 0)
   1558 			delta = -delta;
   1559 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   1560 		if ((tp->t_rttvar += delta) <= 0)
   1561 			tp->t_rttvar = 1 << 2;
   1562 	} else {
   1563 		/*
   1564 		 * No rtt measurement yet - use the unsmoothed rtt.
   1565 		 * Set the variance to half the rtt (so our first
   1566 		 * retransmit happens at 3*rtt).
   1567 		 */
   1568 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   1569 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   1570 	}
   1571 	tp->t_rtt = 0;
   1572 	tp->t_rxtshift = 0;
   1573 
   1574 	/*
   1575 	 * the retransmit should happen at rtt + 4 * rttvar.
   1576 	 * Because of the way we do the smoothing, srtt and rttvar
   1577 	 * will each average +1/2 tick of bias.  When we compute
   1578 	 * the retransmit timer, we want 1/2 tick of rounding and
   1579 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   1580 	 * firing of the timer.  The bias will give us exactly the
   1581 	 * 1.5 tick we need.  But, because the bias is
   1582 	 * statistical, we have to test that we don't drop below
   1583 	 * the minimum feasible timer (which is 2 ticks).
   1584 	 */
   1585 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   1586 	    rtt + 2, TCPTV_REXMTMAX);
   1587 
   1588 	/*
   1589 	 * We received an ack for a packet that wasn't retransmitted;
   1590 	 * it is probably safe to discard any error indications we've
   1591 	 * received recently.  This isn't quite right, but close enough
   1592 	 * for now (a route might have failed after we sent a segment,
   1593 	 * and the return path might not be symmetrical).
   1594 	 */
   1595 	tp->t_softerror = 0;
   1596 }
   1597 
   1598 /*
   1599  * TCP compressed state engine.  Currently used to hold compressed
   1600  * state for SYN_RECEIVED.
   1601  */
   1602 
   1603 u_long	syn_cache_count;
   1604 u_int32_t syn_hash1, syn_hash2;
   1605 
   1606 #define SYN_HASH(sa, sp, dp) \
   1607 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   1608 				     ((u_int32_t)(sp)))^syn_hash2)) \
   1609 	 & 0x7fffffff)
   1610 
   1611 #define	eptosp(ep, e, s)	((struct s *)((char *)(ep) - \
   1612 			    ((char *)(&((struct s *)0)->e) - (char *)0)))
   1613 
   1614 #define	SYN_CACHE_RM(sc, p, scp) {					\
   1615 	*(p) = (sc)->sc_next;						\
   1616 	if ((sc)->sc_next)						\
   1617 		(sc)->sc_next->sc_timer += (sc)->sc_timer;		\
   1618 	else {								\
   1619 		(scp)->sch_timer_sum -= (sc)->sc_timer;			\
   1620 		if ((scp)->sch_timer_sum <= 0)				\
   1621 			(scp)->sch_timer_sum = -1;			\
   1622 		/* If need be, fix up the last pointer */		\
   1623 		if ((scp)->sch_first)					\
   1624 			(scp)->sch_last = eptosp(p, sc_next, syn_cache); \
   1625 	}								\
   1626 	(scp)->sch_length--;						\
   1627 	syn_cache_count--;						\
   1628 }
   1629 
   1630 void
   1631 syn_cache_insert(sc, prevp, headp)
   1632 	struct syn_cache *sc;
   1633 	struct syn_cache ***prevp;
   1634 	struct syn_cache_head **headp;
   1635 {
   1636 	struct syn_cache_head *scp, *scp2, *sce;
   1637 	struct syn_cache *sc2;
   1638 	static u_int timeo_val;
   1639 	int s;
   1640 
   1641 	/* Initialize the hash secrets when adding the first entry */
   1642 	if (syn_cache_count == 0) {
   1643 		struct timeval tv;
   1644 		microtime(&tv);
   1645 		syn_hash1 = random() ^ (u_long)&sc;
   1646 		syn_hash2 = random() ^ tv.tv_usec;
   1647 	}
   1648 
   1649 	sc->sc_hash = SYN_HASH(&sc->sc_src, sc->sc_sport, sc->sc_dport);
   1650 	sc->sc_next = NULL;
   1651 	scp = &tcp_syn_cache[sc->sc_hash % tcp_syn_cache_size];
   1652 	*headp = scp;
   1653 
   1654 	/*
   1655 	 * Make sure that we don't overflow the per-bucket
   1656 	 * limit or the total cache size limit.
   1657 	 */
   1658 	s = splsoftnet();
   1659 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   1660 		tcpstat.tcps_sc_bucketoverflow++;
   1661 		sc2 = scp->sch_first;
   1662 		scp->sch_first = sc2->sc_next;
   1663 		FREE(sc2, M_PCB);
   1664 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   1665 		tcpstat.tcps_sc_overflowed++;
   1666 		/*
   1667 		 * The cache is full.  Toss the first (i.e, oldest)
   1668 		 * element in this bucket.
   1669 		 */
   1670 		scp2 = scp;
   1671 		if (scp2->sch_first == NULL) {
   1672 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   1673 			for (++scp2; scp2 != scp; scp2++) {
   1674 				if (scp2 >= sce)
   1675 					scp2 = &tcp_syn_cache[0];
   1676 				if (scp2->sch_first)
   1677 					break;
   1678 			}
   1679 		}
   1680 		sc2 = scp2->sch_first;
   1681 		if (sc2 == NULL) {
   1682 			FREE(sc, M_PCB);
   1683 			return;
   1684 		}
   1685 		if ((scp2->sch_first = sc2->sc_next) == NULL)
   1686 			scp2->sch_last = NULL;
   1687 		else
   1688 			sc2->sc_next->sc_timer += sc2->sc_timer;
   1689 		FREE(sc2, M_PCB);
   1690 	} else {
   1691 		scp->sch_length++;
   1692 		syn_cache_count++;
   1693 	}
   1694 	tcpstat.tcps_sc_added++;
   1695 
   1696 	/*
   1697 	 * Put it into the bucket.
   1698 	 */
   1699 	if (scp->sch_first == NULL)
   1700 		*prevp = &scp->sch_first;
   1701 	else {
   1702 		*prevp = &scp->sch_last->sc_next;
   1703 		tcpstat.tcps_sc_collisions++;
   1704 	}
   1705 	**prevp = sc;
   1706 	scp->sch_last = sc;
   1707 
   1708 	/*
   1709 	 * If the timeout value has changed
   1710 	 *   1) force it to fit in a u_char
   1711 	 *   2) Run the timer routine to truncate all
   1712 	 *	existing entries to the new timeout value.
   1713 	 */
   1714 	if (timeo_val != tcp_syn_cache_timeo) {
   1715 		tcp_syn_cache_timeo = min(tcp_syn_cache_timeo, UCHAR_MAX);
   1716 		if (timeo_val > tcp_syn_cache_timeo)
   1717 			syn_cache_timer(timeo_val - tcp_syn_cache_timeo);
   1718 		timeo_val = tcp_syn_cache_timeo;
   1719 	}
   1720 	if (scp->sch_timer_sum > 0)
   1721 		sc->sc_timer = tcp_syn_cache_timeo - scp->sch_timer_sum;
   1722 	else {
   1723 		if (scp->sch_timer_sum == 0) {
   1724 			/*
   1725 			 * When the bucket timer is 0, it is not in the
   1726 			 * cache queue.
   1727 			 */
   1728 			scp->sch_headq = tcp_syn_cache_first;
   1729 			tcp_syn_cache_first = scp;
   1730 		}
   1731 		sc->sc_timer = tcp_syn_cache_timeo;
   1732 	}
   1733 	scp->sch_timer_sum = tcp_syn_cache_timeo;
   1734 	splx(s);
   1735 }
   1736 
   1737 /*
   1738  * Walk down the cache list, decrementing the timer of
   1739  * the first element on each entry.  If the timer goes
   1740  * to zero, remove it and all successive entries with
   1741  * a zero timer.
   1742  */
   1743 void
   1744 syn_cache_timer(interval)
   1745 	int interval;
   1746 {
   1747 	struct syn_cache_head *scp, **pscp;
   1748 	struct syn_cache *sc, *scn;
   1749 	int n, s;
   1750 
   1751 	pscp = &tcp_syn_cache_first;
   1752 	scp = tcp_syn_cache_first;
   1753 	s = splsoftnet();
   1754 	while (scp) {
   1755 		/*
   1756 		 * Remove any empty hash buckets
   1757 		 * from the cache queue.
   1758 		 */
   1759 		if ((sc = scp->sch_first) == NULL) {
   1760 			*pscp = scp->sch_headq;
   1761 			scp->sch_headq = NULL;
   1762 			scp->sch_timer_sum = 0;
   1763 			scp->sch_first = scp->sch_last = NULL;
   1764 			scp->sch_length = 0;
   1765 			scp = *pscp;
   1766 			continue;
   1767 		}
   1768 
   1769 		scp->sch_timer_sum -= interval;
   1770 		if (scp->sch_timer_sum <= 0)
   1771 			scp->sch_timer_sum = -1;
   1772 		n = interval;
   1773 		while (sc->sc_timer <= n) {
   1774 			n -= sc->sc_timer;
   1775 			scn = sc->sc_next;
   1776 			tcpstat.tcps_sc_timed_out++;
   1777 			syn_cache_count--;
   1778 			FREE(sc, M_PCB);
   1779 			scp->sch_length--;
   1780 			if ((sc = scn) == NULL)
   1781 				break;
   1782 		}
   1783 		if ((scp->sch_first = sc) != NULL) {
   1784 			sc->sc_timer -= n;
   1785 			pscp = &scp->sch_headq;
   1786 			scp = scp->sch_headq;
   1787 		}
   1788 	}
   1789 	splx(s);
   1790 }
   1791 
   1792 /*
   1793  * Find an entry in the syn cache.
   1794  */
   1795 struct syn_cache *
   1796 syn_cache_lookup(ti, prevp, headp)
   1797 	struct tcpiphdr *ti;
   1798 	struct syn_cache ***prevp;
   1799 	struct syn_cache_head **headp;
   1800 {
   1801 	struct syn_cache *sc, **prev;
   1802 	struct syn_cache_head *head;
   1803 	u_int32_t hash;
   1804 	int s;
   1805 
   1806 	hash = SYN_HASH(&ti->ti_src, ti->ti_sport, ti->ti_dport);
   1807 
   1808 	head = &tcp_syn_cache[hash % tcp_syn_cache_size];
   1809 	*headp = head;
   1810 	prev = &head->sch_first;
   1811 	s = splsoftnet();
   1812 	for (sc = head->sch_first; sc; prev = &sc->sc_next, sc = sc->sc_next) {
   1813 		if (sc->sc_hash != hash)
   1814 			continue;
   1815 		if (sc->sc_src.s_addr == ti->ti_src.s_addr &&
   1816 		    sc->sc_sport == ti->ti_sport &&
   1817 		    sc->sc_dport == ti->ti_dport &&
   1818 		    sc->sc_dst.s_addr == ti->ti_dst.s_addr) {
   1819 			*prevp = prev;
   1820 			splx(s);
   1821 			return (sc);
   1822 		}
   1823 	}
   1824 	splx(s);
   1825 	return (NULL);
   1826 }
   1827 
   1828 /*
   1829  * This function gets called when we receive an ACK for a
   1830  * socket in the LISTEN state.  We look up the connection
   1831  * in the syn cache, and if its there, we pull it out of
   1832  * the cache and turn it into a full-blown connection in
   1833  * the SYN-RECEIVED state.
   1834  *
   1835  * The return values may not be immediately obvious, and their effects
   1836  * can be subtle, so here they are:
   1837  *
   1838  *	NULL	SYN was not found in cache; caller should drop the
   1839  *		packet and send an RST.
   1840  *
   1841  *	-1	We were unable to create the new connection, and are
   1842  *		aborting it.  An ACK,RST is being sent to the peer
   1843  *		(unless we got screwey sequence numbners; see below),
   1844  *		because the 3-way handshake has been completed.  Caller
   1845  *		should not free the mbuf, since we may be using it.  If
   1846  *		we are not, we will free it.
   1847  *
   1848  *	Otherwise, the return value is a pointer to the new socket
   1849  *	associated with the connection.
   1850  */
   1851 struct socket *
   1852 syn_cache_get(so, m)
   1853 	struct socket *so;
   1854 	struct mbuf *m;
   1855 {
   1856 	struct syn_cache *sc, **sc_prev;
   1857 	struct syn_cache_head *head;
   1858 	register struct inpcb *inp;
   1859 	register struct tcpcb *tp = 0;
   1860 	register struct tcpiphdr *ti;
   1861 	struct sockaddr_in *sin;
   1862 	struct mbuf *am;
   1863 	long win;
   1864 	int s;
   1865 
   1866 	ti = mtod(m, struct tcpiphdr *);
   1867 	s = splsoftnet();
   1868 	if ((sc = syn_cache_lookup(ti, &sc_prev, &head)) == NULL) {
   1869 		splx(s);
   1870 		return (NULL);
   1871 	}
   1872 
   1873 	win = sbspace(&so->so_rcv);
   1874 	if (win > TCP_MAXWIN)
   1875 		win = TCP_MAXWIN;
   1876 
   1877 	/*
   1878 	 * Verify the sequence and ack numbers.
   1879 	 */
   1880 	if ((ti->ti_ack != sc->sc_iss + 1) ||
   1881 	    SEQ_LEQ(ti->ti_seq, sc->sc_irs) ||
   1882 	    SEQ_GT(ti->ti_seq, sc->sc_irs + 1 + win)) {
   1883 		(void) syn_cache_respond(sc, m, ti, win, 0);
   1884 		splx(s);
   1885 		return ((struct socket *)(-1));
   1886 	}
   1887 
   1888 	/* Remove this cache entry */
   1889 	SYN_CACHE_RM(sc, sc_prev, head);
   1890 	splx(s);
   1891 
   1892 	/*
   1893 	 * Ok, create the full blown connection, and set things up
   1894 	 * as they would have been set up if we had created the
   1895 	 * connection when the SYN arrived.  If we can't create
   1896 	 * the connection, abort it.
   1897 	 */
   1898 	so = sonewconn(so, SS_ISCONNECTED);
   1899 	if (so == NULL)
   1900 		goto resetandabort;
   1901 
   1902 	inp = sotoinpcb(so);
   1903 	inp->inp_laddr = sc->sc_dst;
   1904 	inp->inp_lport = sc->sc_dport;
   1905 	in_pcbstate(inp, INP_BOUND);
   1906 #if BSD>=43
   1907 	inp->inp_options = ip_srcroute();
   1908 #endif
   1909 
   1910 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   1911 	if (am == NULL)
   1912 		goto resetandabort;
   1913 	am->m_len = sizeof(struct sockaddr_in);
   1914 	sin = mtod(am, struct sockaddr_in *);
   1915 	sin->sin_family = AF_INET;
   1916 	sin->sin_len = sizeof(*sin);
   1917 	sin->sin_addr = sc->sc_src;
   1918 	sin->sin_port = sc->sc_sport;
   1919 	bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
   1920 	if (in_pcbconnect(inp, am)) {
   1921 		(void) m_free(am);
   1922 		goto resetandabort;
   1923 	}
   1924 	(void) m_free(am);
   1925 
   1926 	tp = intotcpcb(inp);
   1927 	if (sc->sc_request_r_scale != 15) {
   1928 		tp->requested_s_scale = sc->sc_requested_s_scale;
   1929 		tp->request_r_scale = sc->sc_request_r_scale;
   1930 		tp->snd_scale = sc->sc_requested_s_scale;
   1931 		tp->rcv_scale = sc->sc_request_r_scale;
   1932 		tp->t_flags |= TF_RCVD_SCALE;
   1933 	}
   1934 	if (sc->sc_tstmp)
   1935 		tp->t_flags |= TF_RCVD_TSTMP;
   1936 
   1937 	tp->t_template = tcp_template(tp);
   1938 	if (tp->t_template == 0) {
   1939 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   1940 		so = NULL;
   1941 		m_freem(m);
   1942 		goto abort;
   1943 	}
   1944 
   1945 	tp->iss = sc->sc_iss;
   1946 	tp->irs = sc->sc_irs;
   1947 	tcp_sendseqinit(tp);
   1948 	tcp_rcvseqinit(tp);
   1949 	tp->t_state = TCPS_SYN_RECEIVED;
   1950 	tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
   1951 	tcpstat.tcps_accepts++;
   1952 
   1953 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   1954 	tp->t_ourmss = sc->sc_ourmaxseg;
   1955 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   1956 	tcp_rmx_rtt(tp);
   1957 	tp->snd_wl1 = sc->sc_irs;
   1958 	tp->rcv_up = sc->sc_irs + 1;
   1959 
   1960 	/*
   1961 	 * This is what whould have happened in tcp_ouput() when
   1962 	 * the SYN,ACK was sent.
   1963 	 */
   1964 	tp->snd_up = tp->snd_una;
   1965 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   1966 	tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
   1967 	if (win > 0 && SEQ_GT(tp->rcv_nxt+win, tp->rcv_adv))
   1968 		tp->rcv_adv = tp->rcv_nxt + win;
   1969 	tp->last_ack_sent = tp->rcv_nxt;
   1970 
   1971 	tcpstat.tcps_sc_completed++;
   1972 	FREE(sc, M_PCB);
   1973 	return (so);
   1974 
   1975 resetandabort:
   1976 	(void) tcp_respond(NULL, ti, m, ti->ti_seq+ti->ti_len,
   1977 	    (tcp_seq)0, TH_RST|TH_ACK);
   1978 abort:
   1979 	if (so != NULL)
   1980 		(void) soabort(so);
   1981 	FREE(sc, M_PCB);
   1982 	tcpstat.tcps_sc_aborted++;
   1983 	return ((struct socket *)(-1));
   1984 }
   1985 
   1986 /*
   1987  * This function is called when we get a RST for a
   1988  * non-existant connection, so that we can see if the
   1989  * connection is in the syn cache.  If it is, zap it.
   1990  */
   1991 
   1992 void
   1993 syn_cache_reset(ti)
   1994 	register struct tcpiphdr *ti;
   1995 {
   1996 	struct syn_cache *sc, **sc_prev;
   1997 	struct syn_cache_head *head;
   1998 	int s = splsoftnet();
   1999 
   2000 	if ((sc = syn_cache_lookup(ti, &sc_prev, &head)) == NULL) {
   2001 		splx(s);
   2002 		return;
   2003 	}
   2004 	if (SEQ_LT(ti->ti_seq,sc->sc_irs) ||
   2005 	    SEQ_GT(ti->ti_seq, sc->sc_irs+1)) {
   2006 		splx(s);
   2007 		return;
   2008 	}
   2009 	SYN_CACHE_RM(sc, sc_prev, head);
   2010 	splx(s);
   2011 	tcpstat.tcps_sc_reset++;
   2012 	FREE(sc, M_PCB);
   2013 }
   2014 
   2015 void
   2016 syn_cache_unreach(ip, th)
   2017 	struct ip *ip;
   2018 	struct tcphdr *th;
   2019 {
   2020 	struct syn_cache *sc, **sc_prev;
   2021 	struct syn_cache_head *head;
   2022 	struct tcpiphdr ti2;
   2023 	int s;
   2024 
   2025 	ti2.ti_src.s_addr = ip->ip_dst.s_addr;
   2026 	ti2.ti_dst.s_addr = ip->ip_src.s_addr;
   2027 	ti2.ti_sport = th->th_dport;
   2028 	ti2.ti_dport = th->th_sport;
   2029 
   2030 	s = splsoftnet();
   2031 	if ((sc = syn_cache_lookup(&ti2, &sc_prev, &head)) == NULL) {
   2032 		splx(s);
   2033 		return;
   2034 	}
   2035 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   2036 	if (ntohl (th->th_seq) != sc->sc_iss) {
   2037 		splx(s);
   2038 		return;
   2039 	}
   2040 	SYN_CACHE_RM(sc, sc_prev, head);
   2041 	splx(s);
   2042 	tcpstat.tcps_sc_unreach++;
   2043 	FREE(sc, M_PCB);
   2044 }
   2045 
   2046 /*
   2047  * Given a LISTEN socket and an inbound SYN request, add
   2048  * this to the syn cache, and send back a segment:
   2049  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   2050  * to the source.
   2051  *
   2052  * XXX We don't properly handle SYN-with-data!
   2053  */
   2054 
   2055 int
   2056 syn_cache_add(so, m, optp, optlen, oi)
   2057 	struct socket *so;
   2058 	struct mbuf *m;
   2059 	u_char *optp;
   2060 	int optlen;
   2061 	struct tcp_opt_info *oi;
   2062 {
   2063 	register struct tcpiphdr *ti;
   2064 	struct tcpcb tb, *tp;
   2065 	long win;
   2066 	struct syn_cache *sc, **sc_prev;
   2067 	struct syn_cache_head *scp;
   2068 	extern int tcp_do_rfc1323;
   2069 
   2070 	tp = sototcpcb(so);
   2071 	ti = mtod(m, struct tcpiphdr *);
   2072 
   2073 	/*
   2074 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   2075 	 * in_broadcast() should never return true on a received
   2076 	 * packet with M_BCAST not set.
   2077 	 */
   2078 	if (m->m_flags & (M_BCAST|M_MCAST) ||
   2079 	    IN_MULTICAST(ti->ti_src.s_addr) ||
   2080 	    IN_MULTICAST(ti->ti_dst.s_addr))
   2081 		return (0);
   2082 
   2083 	/*
   2084 	 * Initialize some local state.
   2085 	 */
   2086 	win = sbspace(&so->so_rcv);
   2087 	if (win > TCP_MAXWIN)
   2088 		win = TCP_MAXWIN;
   2089 
   2090 	if (optp) {
   2091 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   2092 		tcp_dooptions(&tb, optp, optlen, ti, oi);
   2093 	} else
   2094 		tb.t_flags = 0;
   2095 
   2096 	/*
   2097 	 * See if we already have an entry for this connection.
   2098 	 */
   2099 	if ((sc = syn_cache_lookup(ti, &sc_prev, &scp)) != NULL) {
   2100 		tcpstat.tcps_sc_dupesyn++;
   2101 		if (syn_cache_respond(sc, m, ti, win, tb.ts_recent) == 0) {
   2102 			tcpstat.tcps_sndacks++;
   2103 			tcpstat.tcps_sndtotal++;
   2104 		}
   2105 		return (1);
   2106 	}
   2107 
   2108 	MALLOC(sc, struct syn_cache *, sizeof(*sc), M_PCB, M_NOWAIT);
   2109 	if (sc == NULL)
   2110 		return (0);
   2111 	/*
   2112 	 * Fill in the cache, and put the necessary TCP
   2113 	 * options into the reply.
   2114 	 */
   2115 	sc->sc_src.s_addr = ti->ti_src.s_addr;
   2116 	sc->sc_dst.s_addr = ti->ti_dst.s_addr;
   2117 	sc->sc_sport = ti->ti_sport;
   2118 	sc->sc_dport = ti->ti_dport;
   2119 	sc->sc_irs = ti->ti_seq;
   2120 	sc->sc_iss = tcp_new_iss(sc, sizeof(struct syn_cache), 0);
   2121 	sc->sc_peermaxseg = oi->maxseg;
   2122 	sc->sc_ourmaxseg = tcp_mss_to_advertise(tp);
   2123 	sc->sc_tstmp = (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP)) ? 1 : 0;
   2124 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2125 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2126 		sc->sc_requested_s_scale = tb.requested_s_scale;
   2127 		sc->sc_request_r_scale = 0;
   2128 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   2129 		    TCP_MAXWIN << sc->sc_request_r_scale <
   2130 		    so->so_rcv.sb_hiwat)
   2131 			sc->sc_request_r_scale++;
   2132 	} else {
   2133 		sc->sc_requested_s_scale = 15;
   2134 		sc->sc_request_r_scale = 15;
   2135 	}
   2136 	if (syn_cache_respond(sc, m, ti, win, tb.ts_recent) == 0) {
   2137 		syn_cache_insert(sc, &sc_prev, &scp);
   2138 		tcpstat.tcps_sndacks++;
   2139 		tcpstat.tcps_sndtotal++;
   2140 	} else {
   2141 		FREE(sc, M_PCB);
   2142 		tcpstat.tcps_sc_dropped++;
   2143 	}
   2144 	return (1);
   2145 }
   2146 
   2147 int
   2148 syn_cache_respond(sc, m, ti, win, ts)
   2149 	struct syn_cache *sc;
   2150 	struct mbuf *m;
   2151 	register struct tcpiphdr *ti;
   2152 	long win;
   2153 	u_long ts;
   2154 {
   2155 	u_int8_t *optp;
   2156 	int optlen;
   2157 
   2158 	/*
   2159 	 * Tack on the TCP options.  If there isn't enough trailing
   2160 	 * space for them, move up the fixed header to make space.
   2161 	 */
   2162 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   2163 	    (sc->sc_tstmp ? TCPOLEN_TSTAMP_APPA : 0);
   2164 	if (optlen > M_TRAILINGSPACE(m)) {
   2165 		if (M_LEADINGSPACE(m) >= optlen) {
   2166 			m->m_data -= optlen;
   2167 			m->m_len += optlen;
   2168 		} else {
   2169 			struct mbuf *m0 = m;
   2170 			if ((m = m_gethdr(M_DONTWAIT, MT_HEADER)) == NULL) {
   2171 				m_freem(m0);
   2172 				return (ENOBUFS);
   2173 			}
   2174 			MH_ALIGN(m, sizeof(*ti) + optlen);
   2175 			m->m_next = m0; /* this gets freed below */
   2176 		}
   2177 		ovbcopy((caddr_t)ti, mtod(m, caddr_t), sizeof(*ti));
   2178 		ti = mtod(m, struct tcpiphdr *);
   2179 	}
   2180 
   2181 	optp = (u_int8_t *)(ti + 1);
   2182 	optp[0] = TCPOPT_MAXSEG;
   2183 	optp[1] = 4;
   2184 	optp[2] = (sc->sc_ourmaxseg >> 8) & 0xff;
   2185 	optp[3] = sc->sc_ourmaxseg & 0xff;
   2186 	optlen = 4;
   2187 
   2188 	if (sc->sc_request_r_scale != 15) {
   2189 		*((u_int32_t *)(optp + optlen)) = htonl(TCPOPT_NOP << 24 |
   2190 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   2191 		    sc->sc_request_r_scale);
   2192 		optlen += 4;
   2193 	}
   2194 
   2195 	if (sc->sc_tstmp) {
   2196 		u_int32_t *lp = (u_int32_t *)(optp + optlen);
   2197 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   2198 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   2199 		*lp++ = htonl(tcp_now);
   2200 		*lp   = htonl(ts);
   2201 		optlen += TCPOLEN_TSTAMP_APPA;
   2202 	}
   2203 
   2204 	/*
   2205 	 * Toss any trailing mbufs.  No need to worry about
   2206 	 * m_len and m_pkthdr.len, since tcp_respond() will
   2207 	 * unconditionally set them.
   2208 	 */
   2209 	if (m->m_next) {
   2210 		m_freem(m->m_next);
   2211 		m->m_next = NULL;
   2212   	}
   2213 
   2214 	/*
   2215 	 * Fill in the fields that tcp_respond() will not touch, and
   2216 	 * then send the response.
   2217 	 */
   2218 	ti->ti_off = (sizeof(struct tcphdr) + optlen) >> 2;
   2219 	ti->ti_win = htons(win);
   2220 	return (tcp_respond(NULL, ti, m, sc->sc_irs + 1, sc->sc_iss,
   2221 	    TH_SYN|TH_ACK));
   2222 }
   2223 #endif /* TUBA_INCLUDE */
   2224