Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.440
      1 /*	$NetBSD: tcp_input.c,v 1.440 2024/07/05 04:31:54 rin Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
     74  * 2011 The NetBSD Foundation, Inc.
     75  * All rights reserved.
     76  *
     77  * This code is derived from software contributed to The NetBSD Foundation
     78  * by Coyote Point Systems, Inc.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     81  * Facility, NASA Ames Research Center.
     82  * This code is derived from software contributed to The NetBSD Foundation
     83  * by Charles M. Hannum.
     84  * This code is derived from software contributed to The NetBSD Foundation
     85  * by Rui Paulo.
     86  *
     87  * Redistribution and use in source and binary forms, with or without
     88  * modification, are permitted provided that the following conditions
     89  * are met:
     90  * 1. Redistributions of source code must retain the above copyright
     91  *    notice, this list of conditions and the following disclaimer.
     92  * 2. Redistributions in binary form must reproduce the above copyright
     93  *    notice, this list of conditions and the following disclaimer in the
     94  *    documentation and/or other materials provided with the distribution.
     95  *
     96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    106  * POSSIBILITY OF SUCH DAMAGE.
    107  */
    108 
    109 /*
    110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    111  *	The Regents of the University of California.  All rights reserved.
    112  *
    113  * Redistribution and use in source and binary forms, with or without
    114  * modification, are permitted provided that the following conditions
    115  * are met:
    116  * 1. Redistributions of source code must retain the above copyright
    117  *    notice, this list of conditions and the following disclaimer.
    118  * 2. Redistributions in binary form must reproduce the above copyright
    119  *    notice, this list of conditions and the following disclaimer in the
    120  *    documentation and/or other materials provided with the distribution.
    121  * 3. Neither the name of the University nor the names of its contributors
    122  *    may be used to endorse or promote products derived from this software
    123  *    without specific prior written permission.
    124  *
    125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    135  * SUCH DAMAGE.
    136  *
    137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    138  */
    139 
    140 #include <sys/cdefs.h>
    141 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.440 2024/07/05 04:31:54 rin Exp $");
    142 
    143 #ifdef _KERNEL_OPT
    144 #include "opt_inet.h"
    145 #include "opt_ipsec.h"
    146 #include "opt_inet_csum.h"
    147 #include "opt_tcp_debug.h"
    148 #endif
    149 
    150 #include <sys/param.h>
    151 #include <sys/systm.h>
    152 #include <sys/malloc.h>
    153 #include <sys/mbuf.h>
    154 #include <sys/protosw.h>
    155 #include <sys/socket.h>
    156 #include <sys/socketvar.h>
    157 #include <sys/errno.h>
    158 #include <sys/syslog.h>
    159 #include <sys/pool.h>
    160 #include <sys/domain.h>
    161 #include <sys/kernel.h>
    162 #ifdef TCP_SIGNATURE
    163 #include <sys/md5.h>
    164 #endif
    165 #include <sys/lwp.h> /* for lwp0 */
    166 #include <sys/cprng.h>
    167 
    168 #include <net/if.h>
    169 #include <net/if_types.h>
    170 
    171 #include <netinet/in.h>
    172 #include <netinet/in_systm.h>
    173 #include <netinet/ip.h>
    174 #include <netinet/in_pcb.h>
    175 #include <netinet/in_var.h>
    176 #include <netinet/ip_var.h>
    177 #include <netinet/in_offload.h>
    178 
    179 #if NARP > 0
    180 #include <netinet/if_inarp.h>
    181 #endif
    182 #ifdef INET6
    183 #include <netinet/ip6.h>
    184 #include <netinet6/ip6_var.h>
    185 #include <netinet6/in6_pcb.h>
    186 #include <netinet6/ip6_var.h>
    187 #include <netinet6/in6_var.h>
    188 #include <netinet/icmp6.h>
    189 #include <netinet6/nd6.h>
    190 #ifdef TCP_SIGNATURE
    191 #include <netinet6/scope6_var.h>
    192 #endif
    193 #endif
    194 
    195 #ifndef INET6
    196 #include <netinet/ip6.h>
    197 #endif
    198 
    199 #include <netinet/tcp.h>
    200 #include <netinet/tcp_fsm.h>
    201 #include <netinet/tcp_seq.h>
    202 #include <netinet/tcp_timer.h>
    203 #include <netinet/tcp_var.h>
    204 #include <netinet/tcp_private.h>
    205 #include <netinet/tcp_congctl.h>
    206 #include <netinet/tcp_debug.h>
    207 #include <netinet/tcp_syncache.h>
    208 
    209 #ifdef INET6
    210 #include "faith.h"
    211 #if defined(NFAITH) && NFAITH > 0
    212 #include <net/if_faith.h>
    213 #endif
    214 #endif
    215 
    216 #ifdef IPSEC
    217 #include <netipsec/ipsec.h>
    218 #include <netipsec/key.h>
    219 #ifdef INET6
    220 #include <netipsec/ipsec6.h>
    221 #endif
    222 #endif	/* IPSEC*/
    223 
    224 #include <netinet/tcp_vtw.h>
    225 
    226 int	tcprexmtthresh = 3;
    227 int	tcp_log_refused;
    228 
    229 int	tcp_do_autorcvbuf = 1;
    230 int	tcp_autorcvbuf_inc = 16 * 1024;
    231 int	tcp_autorcvbuf_max = 256 * 1024;
    232 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
    233 
    234 static int tcp_rst_ppslim_count = 0;
    235 static struct timeval tcp_rst_ppslim_last;
    236 static int tcp_ackdrop_ppslim_count = 0;
    237 static struct timeval tcp_ackdrop_ppslim_last;
    238 
    239 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    240 
    241 /* for modulo comparisons of timestamps */
    242 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    243 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    244 
    245 /*
    246  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    247  */
    248 static void
    249 nd_hint(struct tcpcb *tp)
    250 {
    251 	struct route *ro = NULL;
    252 	struct rtentry *rt;
    253 
    254 	if (tp == NULL)
    255 		return;
    256 
    257 	ro = &tp->t_inpcb->inp_route;
    258 	if (ro == NULL)
    259 		return;
    260 
    261 	rt = rtcache_validate(ro);
    262 	if (rt == NULL)
    263 		return;
    264 
    265 	switch (tp->t_family) {
    266 #if NARP > 0
    267 	case AF_INET:
    268 		arp_nud_hint(rt);
    269 		break;
    270 #endif
    271 #ifdef INET6
    272 	case AF_INET6:
    273 		nd6_nud_hint(rt);
    274 		break;
    275 #endif
    276 	}
    277 
    278 	rtcache_unref(rt, ro);
    279 }
    280 
    281 /*
    282  * Compute ACK transmission behavior.  Delay the ACK unless
    283  * we have already delayed an ACK (must send an ACK every two segments).
    284  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    285  * option is enabled.
    286  */
    287 static void
    288 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
    289 {
    290 
    291 	if (tp->t_flags & TF_DELACK ||
    292 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
    293 		tp->t_flags |= TF_ACKNOW;
    294 	else
    295 		TCP_SET_DELACK(tp);
    296 }
    297 
    298 static void
    299 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
    300 {
    301 
    302 	/*
    303 	 * If we had a pending ICMP message that refers to data that have
    304 	 * just been acknowledged, disregard the recorded ICMP message.
    305 	 */
    306 	if ((tp->t_flags & TF_PMTUD_PEND) &&
    307 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
    308 		tp->t_flags &= ~TF_PMTUD_PEND;
    309 
    310 	/*
    311 	 * Keep track of the largest chunk of data
    312 	 * acknowledged since last PMTU update
    313 	 */
    314 	if (tp->t_pmtud_mss_acked < acked)
    315 		tp->t_pmtud_mss_acked = acked;
    316 }
    317 
    318 /*
    319  * Convert TCP protocol fields to host order for easier processing.
    320  */
    321 static void
    322 tcp_fields_to_host(struct tcphdr *th)
    323 {
    324 
    325 	NTOHL(th->th_seq);
    326 	NTOHL(th->th_ack);
    327 	NTOHS(th->th_win);
    328 	NTOHS(th->th_urp);
    329 }
    330 
    331 /*
    332  * ... and reverse the above.
    333  */
    334 static void
    335 tcp_fields_to_net(struct tcphdr *th)
    336 {
    337 
    338 	HTONL(th->th_seq);
    339 	HTONL(th->th_ack);
    340 	HTONS(th->th_win);
    341 	HTONS(th->th_urp);
    342 }
    343 
    344 static void
    345 tcp_urp_drop(struct tcphdr *th, int todrop, int *tiflags)
    346 {
    347 	if (th->th_urp > todrop) {
    348 		th->th_urp -= todrop;
    349 	} else {
    350 		*tiflags &= ~TH_URG;
    351 		th->th_urp = 0;
    352 	}
    353 }
    354 
    355 #ifdef TCP_CSUM_COUNTERS
    356 #include <sys/device.h>
    357 
    358 extern struct evcnt tcp_hwcsum_ok;
    359 extern struct evcnt tcp_hwcsum_bad;
    360 extern struct evcnt tcp_hwcsum_data;
    361 extern struct evcnt tcp_swcsum;
    362 #if defined(INET6)
    363 extern struct evcnt tcp6_hwcsum_ok;
    364 extern struct evcnt tcp6_hwcsum_bad;
    365 extern struct evcnt tcp6_hwcsum_data;
    366 extern struct evcnt tcp6_swcsum;
    367 #endif /* defined(INET6) */
    368 
    369 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    370 
    371 #else
    372 
    373 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    374 
    375 #endif /* TCP_CSUM_COUNTERS */
    376 
    377 #ifdef TCP_REASS_COUNTERS
    378 #include <sys/device.h>
    379 
    380 extern struct evcnt tcp_reass_;
    381 extern struct evcnt tcp_reass_empty;
    382 extern struct evcnt tcp_reass_iteration[8];
    383 extern struct evcnt tcp_reass_prependfirst;
    384 extern struct evcnt tcp_reass_prepend;
    385 extern struct evcnt tcp_reass_insert;
    386 extern struct evcnt tcp_reass_inserttail;
    387 extern struct evcnt tcp_reass_append;
    388 extern struct evcnt tcp_reass_appendtail;
    389 extern struct evcnt tcp_reass_overlaptail;
    390 extern struct evcnt tcp_reass_overlapfront;
    391 extern struct evcnt tcp_reass_segdup;
    392 extern struct evcnt tcp_reass_fragdup;
    393 
    394 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    395 
    396 #else
    397 
    398 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    399 
    400 #endif /* TCP_REASS_COUNTERS */
    401 
    402 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
    403     int);
    404 
    405 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    406 #ifdef INET6
    407 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    408 #endif
    409 
    410 #if defined(MBUFTRACE)
    411 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
    412 #endif /* defined(MBUFTRACE) */
    413 
    414 static struct pool tcpipqent_pool;
    415 
    416 void
    417 tcpipqent_init(void)
    418 {
    419 
    420 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
    421 	    NULL, IPL_VM);
    422 }
    423 
    424 struct ipqent *
    425 tcpipqent_alloc(void)
    426 {
    427 	struct ipqent *ipqe;
    428 	int s;
    429 
    430 	s = splvm();
    431 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    432 	splx(s);
    433 
    434 	return ipqe;
    435 }
    436 
    437 void
    438 tcpipqent_free(struct ipqent *ipqe)
    439 {
    440 	int s;
    441 
    442 	s = splvm();
    443 	pool_put(&tcpipqent_pool, ipqe);
    444 	splx(s);
    445 }
    446 
    447 /*
    448  * Insert segment ti into reassembly queue of tcp with
    449  * control block tp.  Return TH_FIN if reassembly now includes
    450  * a segment with FIN.
    451  */
    452 static int
    453 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int tlen)
    454 {
    455 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    456 	struct socket *so = NULL;
    457 	int pkt_flags;
    458 	tcp_seq pkt_seq;
    459 	unsigned pkt_len;
    460 	u_long rcvpartdupbyte = 0;
    461 	u_long rcvoobyte;
    462 #ifdef TCP_REASS_COUNTERS
    463 	u_int count = 0;
    464 #endif
    465 	net_stat_ref_t tcps;
    466 
    467 	so = tp->t_inpcb->inp_socket;
    468 
    469 	TCP_REASS_LOCK_CHECK(tp);
    470 
    471 	/*
    472 	 * Call with th==NULL after become established to
    473 	 * force pre-ESTABLISHED data up to user socket.
    474 	 */
    475 	if (th == NULL)
    476 		goto present;
    477 
    478 	m_claimm(m, &tcp_reass_mowner);
    479 
    480 	rcvoobyte = tlen;
    481 	/*
    482 	 * Copy these to local variables because the TCP header gets munged
    483 	 * while we are collapsing mbufs.
    484 	 */
    485 	pkt_seq = th->th_seq;
    486 	pkt_len = tlen;
    487 	pkt_flags = th->th_flags;
    488 
    489 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    490 
    491 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    492 		/*
    493 		 * When we miss a packet, the vast majority of time we get
    494 		 * packets that follow it in order.  So optimize for that.
    495 		 */
    496 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    497 			p->ipqe_len += pkt_len;
    498 			p->ipqe_flags |= pkt_flags;
    499 			m_cat(p->ipqe_m, m);
    500 			m = NULL;
    501 			tiqe = p;
    502 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    503 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    504 			goto skip_replacement;
    505 		}
    506 		/*
    507 		 * While we're here, if the pkt is completely beyond
    508 		 * anything we have, just insert it at the tail.
    509 		 */
    510 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    511 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    512 			goto insert_it;
    513 		}
    514 	}
    515 
    516 	q = TAILQ_FIRST(&tp->segq);
    517 
    518 	if (q != NULL) {
    519 		/*
    520 		 * If this segment immediately precedes the first out-of-order
    521 		 * block, simply slap the segment in front of it and (mostly)
    522 		 * skip the complicated logic.
    523 		 */
    524 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    525 			q->ipqe_seq = pkt_seq;
    526 			q->ipqe_len += pkt_len;
    527 			q->ipqe_flags |= pkt_flags;
    528 			m_cat(m, q->ipqe_m);
    529 			q->ipqe_m = m;
    530 			tiqe = q;
    531 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    532 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    533 			goto skip_replacement;
    534 		}
    535 	} else {
    536 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    537 	}
    538 
    539 	/*
    540 	 * Find a segment which begins after this one does.
    541 	 */
    542 	for (p = NULL; q != NULL; q = nq) {
    543 		nq = TAILQ_NEXT(q, ipqe_q);
    544 #ifdef TCP_REASS_COUNTERS
    545 		count++;
    546 #endif
    547 
    548 		/*
    549 		 * If the received segment is just right after this
    550 		 * fragment, merge the two together and then check
    551 		 * for further overlaps.
    552 		 */
    553 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    554 			pkt_len += q->ipqe_len;
    555 			pkt_flags |= q->ipqe_flags;
    556 			pkt_seq = q->ipqe_seq;
    557 			m_cat(q->ipqe_m, m);
    558 			m = q->ipqe_m;
    559 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    560 			goto free_ipqe;
    561 		}
    562 
    563 		/*
    564 		 * If the received segment is completely past this
    565 		 * fragment, we need to go to the next fragment.
    566 		 */
    567 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    568 			p = q;
    569 			continue;
    570 		}
    571 
    572 		/*
    573 		 * If the fragment is past the received segment,
    574 		 * it (or any following) can't be concatenated.
    575 		 */
    576 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    577 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    578 			break;
    579 		}
    580 
    581 		/*
    582 		 * We've received all the data in this segment before.
    583 		 * Mark it as a duplicate and return.
    584 		 */
    585 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    586 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    587 			tcps = TCP_STAT_GETREF();
    588 			_NET_STATINC_REF(tcps, TCP_STAT_RCVDUPPACK);
    589 			_NET_STATADD_REF(tcps, TCP_STAT_RCVDUPBYTE, pkt_len);
    590 			TCP_STAT_PUTREF();
    591 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    592 			m_freem(m);
    593 			if (tiqe != NULL) {
    594 				tcpipqent_free(tiqe);
    595 			}
    596 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    597 			goto out;
    598 		}
    599 
    600 		/*
    601 		 * Received segment completely overlaps this fragment
    602 		 * so we drop the fragment (this keeps the temporal
    603 		 * ordering of segments correct).
    604 		 */
    605 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    606 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    607 			rcvpartdupbyte += q->ipqe_len;
    608 			m_freem(q->ipqe_m);
    609 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    610 			goto free_ipqe;
    611 		}
    612 
    613 		/*
    614 		 * Received segment extends past the end of the fragment.
    615 		 * Drop the overlapping bytes, merge the fragment and
    616 		 * segment, and treat as a longer received packet.
    617 		 */
    618 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    619 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    620 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    621 			m_adj(m, overlap);
    622 			rcvpartdupbyte += overlap;
    623 			m_cat(q->ipqe_m, m);
    624 			m = q->ipqe_m;
    625 			pkt_seq = q->ipqe_seq;
    626 			pkt_len += q->ipqe_len - overlap;
    627 			rcvoobyte -= overlap;
    628 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    629 			goto free_ipqe;
    630 		}
    631 
    632 		/*
    633 		 * Received segment extends past the front of the fragment.
    634 		 * Drop the overlapping bytes on the received packet. The
    635 		 * packet will then be concatenated with this fragment a
    636 		 * bit later.
    637 		 */
    638 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    639 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    640 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    641 			m_adj(m, -overlap);
    642 			pkt_len -= overlap;
    643 			rcvpartdupbyte += overlap;
    644 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    645 			rcvoobyte -= overlap;
    646 		}
    647 
    648 		/*
    649 		 * If the received segment immediately precedes this
    650 		 * fragment then tack the fragment onto this segment
    651 		 * and reinsert the data.
    652 		 */
    653 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    654 			pkt_len += q->ipqe_len;
    655 			pkt_flags |= q->ipqe_flags;
    656 			m_cat(m, q->ipqe_m);
    657 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    658 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    659 			tp->t_segqlen--;
    660 			KASSERT(tp->t_segqlen >= 0);
    661 			KASSERT(tp->t_segqlen != 0 ||
    662 			    (TAILQ_EMPTY(&tp->segq) &&
    663 			    TAILQ_EMPTY(&tp->timeq)));
    664 			if (tiqe == NULL) {
    665 				tiqe = q;
    666 			} else {
    667 				tcpipqent_free(q);
    668 			}
    669 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    670 			break;
    671 		}
    672 
    673 		/*
    674 		 * If the fragment is before the segment, remember it.
    675 		 * When this loop is terminated, p will contain the
    676 		 * pointer to the fragment that is right before the
    677 		 * received segment.
    678 		 */
    679 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    680 			p = q;
    681 
    682 		continue;
    683 
    684 		/*
    685 		 * This is a common operation.  It also will allow
    686 		 * to save doing a malloc/free in most instances.
    687 		 */
    688 	  free_ipqe:
    689 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    690 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    691 		tp->t_segqlen--;
    692 		KASSERT(tp->t_segqlen >= 0);
    693 		KASSERT(tp->t_segqlen != 0 ||
    694 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    695 		if (tiqe == NULL) {
    696 			tiqe = q;
    697 		} else {
    698 			tcpipqent_free(q);
    699 		}
    700 	}
    701 
    702 #ifdef TCP_REASS_COUNTERS
    703 	if (count > 7)
    704 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    705 	else if (count > 0)
    706 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    707 #endif
    708 
    709 insert_it:
    710 	/*
    711 	 * Allocate a new queue entry (block) since the received segment
    712 	 * did not collapse onto any other out-of-order block. If it had
    713 	 * collapsed, tiqe would not be NULL and we would be reusing it.
    714 	 *
    715 	 * If the allocation fails, drop the packet.
    716 	 */
    717 	if (tiqe == NULL) {
    718 		tiqe = tcpipqent_alloc();
    719 		if (tiqe == NULL) {
    720 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
    721 			m_freem(m);
    722 			goto out;
    723 		}
    724 	}
    725 
    726 	/*
    727 	 * Update the counters.
    728 	 */
    729 	tp->t_rcvoopack++;
    730 	tcps = TCP_STAT_GETREF();
    731 	_NET_STATINC_REF(tcps, TCP_STAT_RCVOOPACK);
    732 	_NET_STATADD_REF(tcps, TCP_STAT_RCVOOBYTE, rcvoobyte);
    733 	if (rcvpartdupbyte) {
    734 		_NET_STATINC_REF(tcps, TCP_STAT_RCVPARTDUPPACK);
    735 		_NET_STATADD_REF(tcps, TCP_STAT_RCVPARTDUPBYTE,
    736 		    rcvpartdupbyte);
    737 	}
    738 	TCP_STAT_PUTREF();
    739 
    740 	/*
    741 	 * Insert the new fragment queue entry into both queues.
    742 	 */
    743 	tiqe->ipqe_m = m;
    744 	tiqe->ipqe_seq = pkt_seq;
    745 	tiqe->ipqe_len = pkt_len;
    746 	tiqe->ipqe_flags = pkt_flags;
    747 	if (p == NULL) {
    748 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    749 	} else {
    750 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    751 	}
    752 	tp->t_segqlen++;
    753 
    754 skip_replacement:
    755 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    756 
    757 present:
    758 	/*
    759 	 * Present data to user, advancing rcv_nxt through
    760 	 * completed sequence space.
    761 	 */
    762 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    763 		goto out;
    764 	q = TAILQ_FIRST(&tp->segq);
    765 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    766 		goto out;
    767 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    768 		goto out;
    769 
    770 	tp->rcv_nxt += q->ipqe_len;
    771 	pkt_flags = q->ipqe_flags & TH_FIN;
    772 	nd_hint(tp);
    773 
    774 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    775 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    776 	tp->t_segqlen--;
    777 	KASSERT(tp->t_segqlen >= 0);
    778 	KASSERT(tp->t_segqlen != 0 ||
    779 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    780 	if (so->so_state & SS_CANTRCVMORE)
    781 		m_freem(q->ipqe_m);
    782 	else
    783 		sbappendstream(&so->so_rcv, q->ipqe_m);
    784 	tcpipqent_free(q);
    785 	TCP_REASS_UNLOCK(tp);
    786 	sorwakeup(so);
    787 	return pkt_flags;
    788 
    789 out:
    790 	TCP_REASS_UNLOCK(tp);
    791 	return 0;
    792 }
    793 
    794 #ifdef INET6
    795 int
    796 tcp6_input(struct mbuf **mp, int *offp, int proto)
    797 {
    798 	struct mbuf *m = *mp;
    799 
    800 	/*
    801 	 * draft-itojun-ipv6-tcp-to-anycast
    802 	 * better place to put this in?
    803 	 */
    804 	if (m->m_flags & M_ANYCAST6) {
    805 		struct ip6_hdr *ip6;
    806 		if (m->m_len < sizeof(struct ip6_hdr)) {
    807 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    808 				TCP_STATINC(TCP_STAT_RCVSHORT);
    809 				return IPPROTO_DONE;
    810 			}
    811 		}
    812 		ip6 = mtod(m, struct ip6_hdr *);
    813 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    814 		    (char *)&ip6->ip6_dst - (char *)ip6);
    815 		return IPPROTO_DONE;
    816 	}
    817 
    818 	tcp_input(m, *offp, proto);
    819 	return IPPROTO_DONE;
    820 }
    821 #endif
    822 
    823 static void
    824 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    825 {
    826 	char src[INET_ADDRSTRLEN];
    827 	char dst[INET_ADDRSTRLEN];
    828 
    829 	if (ip) {
    830 		in_print(src, sizeof(src), &ip->ip_src);
    831 		in_print(dst, sizeof(dst), &ip->ip_dst);
    832 	} else {
    833 		strlcpy(src, "(unknown)", sizeof(src));
    834 		strlcpy(dst, "(unknown)", sizeof(dst));
    835 	}
    836 	log(LOG_INFO,
    837 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    838 	    dst, ntohs(th->th_dport),
    839 	    src, ntohs(th->th_sport));
    840 }
    841 
    842 #ifdef INET6
    843 static void
    844 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    845 {
    846 	char src[INET6_ADDRSTRLEN];
    847 	char dst[INET6_ADDRSTRLEN];
    848 
    849 	if (ip6) {
    850 		in6_print(src, sizeof(src), &ip6->ip6_src);
    851 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
    852 	} else {
    853 		strlcpy(src, "(unknown v6)", sizeof(src));
    854 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    855 	}
    856 	log(LOG_INFO,
    857 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    858 	    dst, ntohs(th->th_dport),
    859 	    src, ntohs(th->th_sport));
    860 }
    861 #endif
    862 
    863 /*
    864  * Checksum extended TCP header and data.
    865  */
    866 int
    867 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
    868     int toff, int off, int tlen)
    869 {
    870 	struct ifnet *rcvif;
    871 	int s;
    872 
    873 	/*
    874 	 * XXX it's better to record and check if this mbuf is
    875 	 * already checked.
    876 	 */
    877 
    878 	rcvif = m_get_rcvif(m, &s);
    879 	if (__predict_false(rcvif == NULL))
    880 		goto badcsum; /* XXX */
    881 
    882 	switch (af) {
    883 	case AF_INET:
    884 		switch (m->m_pkthdr.csum_flags &
    885 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    886 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    887 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    888 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    889 			goto badcsum;
    890 
    891 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    892 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    893 
    894 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    895 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    896 				const struct ip *ip =
    897 				    mtod(m, const struct ip *);
    898 
    899 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    900 				    ip->ip_dst.s_addr,
    901 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    902 			}
    903 			if ((hw_csum ^ 0xffff) != 0)
    904 				goto badcsum;
    905 			break;
    906 		}
    907 
    908 		case M_CSUM_TCPv4:
    909 			/* Checksum was okay. */
    910 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    911 			break;
    912 
    913 		default:
    914 			/*
    915 			 * Must compute it ourselves.  Maybe skip checksum
    916 			 * on loopback interfaces.
    917 			 */
    918 			if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
    919 					   tcp_do_loopback_cksum)) {
    920 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    921 				if (in4_cksum(m, IPPROTO_TCP, toff,
    922 					      tlen + off) != 0)
    923 					goto badcsum;
    924 			}
    925 			break;
    926 		}
    927 		break;
    928 
    929 #ifdef INET6
    930 	case AF_INET6:
    931 		switch (m->m_pkthdr.csum_flags &
    932 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    933 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    934 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    935 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    936 			goto badcsum;
    937 
    938 #if 0 /* notyet */
    939 		case M_CSUM_TCPv6|M_CSUM_DATA:
    940 #endif
    941 
    942 		case M_CSUM_TCPv6:
    943 			/* Checksum was okay. */
    944 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    945 			break;
    946 
    947 		default:
    948 			/*
    949 			 * Must compute it ourselves.  Maybe skip checksum
    950 			 * on loopback interfaces.
    951 			 */
    952 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    953 			    tcp_do_loopback_cksum)) {
    954 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    955 				if (in6_cksum(m, IPPROTO_TCP, toff,
    956 				    tlen + off) != 0)
    957 					goto badcsum;
    958 			}
    959 		}
    960 		break;
    961 #endif /* INET6 */
    962 	}
    963 	m_put_rcvif(rcvif, &s);
    964 
    965 	return 0;
    966 
    967 badcsum:
    968 	m_put_rcvif(rcvif, &s);
    969 	TCP_STATINC(TCP_STAT_RCVBADSUM);
    970 	return -1;
    971 }
    972 
    973 /*
    974  * When a packet arrives addressed to a vestigial tcpbp, we
    975  * nevertheless have to respond to it per the spec.
    976  *
    977  * This code is duplicated from the one in tcp_input().
    978  */
    979 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
    980     struct mbuf *m, int tlen)
    981 {
    982 	int tiflags;
    983 	int todrop;
    984 	uint32_t t_flags = 0;
    985 	net_stat_ref_t tcps;
    986 
    987 	tiflags = th->th_flags;
    988 	todrop  = vp->rcv_nxt - th->th_seq;
    989 
    990 	if (todrop > 0) {
    991 		if (tiflags & TH_SYN) {
    992 			tiflags &= ~TH_SYN;
    993 			th->th_seq++;
    994 			tcp_urp_drop(th, 1, &tiflags);
    995 			todrop--;
    996 		}
    997 		if (todrop > tlen ||
    998 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
    999 			/*
   1000 			 * Any valid FIN or RST must be to the left of the
   1001 			 * window.  At this point the FIN or RST must be a
   1002 			 * duplicate or out of sequence; drop it.
   1003 			 */
   1004 			if (tiflags & TH_RST)
   1005 				goto drop;
   1006 			tiflags &= ~(TH_FIN|TH_RST);
   1007 
   1008 			/*
   1009 			 * Send an ACK to resynchronize and drop any data.
   1010 			 * But keep on processing for RST or ACK.
   1011 			 */
   1012 			t_flags |= TF_ACKNOW;
   1013 			todrop = tlen;
   1014 			tcps = TCP_STAT_GETREF();
   1015 			_NET_STATINC_REF(tcps, TCP_STAT_RCVDUPPACK);
   1016 			_NET_STATADD_REF(tcps, TCP_STAT_RCVDUPBYTE, todrop);
   1017 			TCP_STAT_PUTREF();
   1018 		} else if ((tiflags & TH_RST) &&
   1019 		    th->th_seq != vp->rcv_nxt) {
   1020 			/*
   1021 			 * Test for reset before adjusting the sequence
   1022 			 * number for overlapping data.
   1023 			 */
   1024 			goto dropafterack_ratelim;
   1025 		} else {
   1026 			tcps = TCP_STAT_GETREF();
   1027 			_NET_STATINC_REF(tcps, TCP_STAT_RCVPARTDUPPACK);
   1028 			_NET_STATADD_REF(tcps, TCP_STAT_RCVPARTDUPBYTE,
   1029 			    todrop);
   1030 			TCP_STAT_PUTREF();
   1031 		}
   1032 
   1033 //		tcp_new_dsack(tp, th->th_seq, todrop);
   1034 //		hdroptlen += todrop;	/*drop from head afterwards*/
   1035 
   1036 		th->th_seq += todrop;
   1037 		tlen -= todrop;
   1038 		tcp_urp_drop(th, todrop, &tiflags);
   1039 	}
   1040 
   1041 	/*
   1042 	 * If new data are received on a connection after the
   1043 	 * user processes are gone, then RST the other end.
   1044 	 */
   1045 	if (tlen) {
   1046 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   1047 		goto dropwithreset;
   1048 	}
   1049 
   1050 	/*
   1051 	 * If segment ends after window, drop trailing data
   1052 	 * (and PUSH and FIN); if nothing left, just ACK.
   1053 	 */
   1054 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt + vp->rcv_wnd);
   1055 
   1056 	if (todrop > 0) {
   1057 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   1058 		if (todrop >= tlen) {
   1059 			/*
   1060 			 * The segment actually starts after the window.
   1061 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
   1062 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
   1063 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
   1064 			 */
   1065 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   1066 
   1067 			/*
   1068 			 * If a new connection request is received
   1069 			 * while in TIME_WAIT, drop the old connection
   1070 			 * and start over if the sequence numbers
   1071 			 * are above the previous ones.
   1072 			 */
   1073 			if ((tiflags & TH_SYN) &&
   1074 			    SEQ_GT(th->th_seq, vp->rcv_nxt)) {
   1075 				/*
   1076 				 * We only support this in the !NOFDREF case, which
   1077 				 * is to say: not here.
   1078 				 */
   1079 				goto dropwithreset;
   1080 			}
   1081 
   1082 			/*
   1083 			 * If window is closed can only take segments at
   1084 			 * window edge, and have to drop data and PUSH from
   1085 			 * incoming segments.  Continue processing, but
   1086 			 * remember to ack.  Otherwise, drop segment
   1087 			 * and (if not RST) ack.
   1088 			 */
   1089 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
   1090 				t_flags |= TF_ACKNOW;
   1091 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   1092 			} else {
   1093 				goto dropafterack;
   1094 			}
   1095 		} else {
   1096 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   1097 		}
   1098 		m_adj(m, -todrop);
   1099 		tlen -= todrop;
   1100 		tiflags &= ~(TH_PUSH|TH_FIN);
   1101 	}
   1102 
   1103 	if (tiflags & TH_RST) {
   1104 		if (th->th_seq != vp->rcv_nxt)
   1105 			goto dropafterack_ratelim;
   1106 
   1107 		vtw_del(vp->ctl, vp->vtw);
   1108 		goto drop;
   1109 	}
   1110 
   1111 	/*
   1112 	 * If the ACK bit is off we drop the segment and return.
   1113 	 */
   1114 	if ((tiflags & TH_ACK) == 0) {
   1115 		if (t_flags & TF_ACKNOW)
   1116 			goto dropafterack;
   1117 		goto drop;
   1118 	}
   1119 
   1120 	/*
   1121 	 * In TIME_WAIT state the only thing that should arrive
   1122 	 * is a retransmission of the remote FIN.  Acknowledge
   1123 	 * it and restart the finack timer.
   1124 	 */
   1125 	vtw_restart(vp);
   1126 	goto dropafterack;
   1127 
   1128 dropafterack:
   1129 	/*
   1130 	 * Generate an ACK dropping incoming segment if it occupies
   1131 	 * sequence space, where the ACK reflects our state.
   1132 	 */
   1133 	if (tiflags & TH_RST)
   1134 		goto drop;
   1135 	goto dropafterack2;
   1136 
   1137 dropafterack_ratelim:
   1138 	/*
   1139 	 * We may want to rate-limit ACKs against SYN/RST attack.
   1140 	 */
   1141 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   1142 	    tcp_ackdrop_ppslim) == 0) {
   1143 		/* XXX stat */
   1144 		goto drop;
   1145 	}
   1146 	/* ...fall into dropafterack2... */
   1147 
   1148 dropafterack2:
   1149 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack, TH_ACK);
   1150 	return;
   1151 
   1152 dropwithreset:
   1153 	/*
   1154 	 * Generate a RST, dropping incoming segment.
   1155 	 * Make ACK acceptable to originator of segment.
   1156 	 */
   1157 	if (tiflags & TH_RST)
   1158 		goto drop;
   1159 
   1160 	if (tiflags & TH_ACK) {
   1161 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   1162 	} else {
   1163 		if (tiflags & TH_SYN)
   1164 			++tlen;
   1165 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   1166 		    TH_RST|TH_ACK);
   1167 	}
   1168 	return;
   1169 drop:
   1170 	m_freem(m);
   1171 }
   1172 
   1173 /*
   1174  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
   1175  */
   1176 void
   1177 tcp_input(struct mbuf *m, int off, int proto)
   1178 {
   1179 	struct tcphdr *th;
   1180 	struct ip *ip;
   1181 	struct inpcb *inp;
   1182 #ifdef INET6
   1183 	struct ip6_hdr *ip6;
   1184 #endif
   1185 	u_int8_t *optp = NULL;
   1186 	int optlen = 0;
   1187 	int len, tlen, hdroptlen = 0;
   1188 	struct tcpcb *tp = NULL;
   1189 	int tiflags;
   1190 	struct socket *so = NULL;
   1191 	int todrop, acked, ourfinisacked, needoutput = 0;
   1192 	bool dupseg;
   1193 #ifdef TCP_DEBUG
   1194 	short ostate = 0;
   1195 #endif
   1196 	u_long tiwin;
   1197 	struct tcp_opt_info opti;
   1198 	int thlen, iphlen;
   1199 	int af;		/* af on the wire */
   1200 	struct mbuf *tcp_saveti = NULL;
   1201 	uint32_t ts_rtt;
   1202 	uint8_t iptos;
   1203 	net_stat_ref_t tcps;
   1204 	vestigial_inpcb_t vestige;
   1205 
   1206 	vestige.valid = 0;
   1207 
   1208 	MCLAIM(m, &tcp_rx_mowner);
   1209 
   1210 	TCP_STATINC(TCP_STAT_RCVTOTAL);
   1211 
   1212 	memset(&opti, 0, sizeof(opti));
   1213 	opti.ts_present = 0;
   1214 	opti.maxseg = 0;
   1215 
   1216 	/*
   1217 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
   1218 	 *
   1219 	 * TCP is, by definition, unicast, so we reject all
   1220 	 * multicast outright.
   1221 	 *
   1222 	 * Note, there are additional src/dst address checks in
   1223 	 * the AF-specific code below.
   1224 	 */
   1225 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1226 		/* XXX stat */
   1227 		goto drop;
   1228 	}
   1229 #ifdef INET6
   1230 	if (m->m_flags & M_ANYCAST6) {
   1231 		/* XXX stat */
   1232 		goto drop;
   1233 	}
   1234 #endif
   1235 
   1236 	M_REGION_GET(th, struct tcphdr *, m, off, sizeof(struct tcphdr));
   1237 	if (th == NULL) {
   1238 		TCP_STATINC(TCP_STAT_RCVSHORT);
   1239 		return;
   1240 	}
   1241 
   1242 	/*
   1243 	 * Enforce alignment requirements that are violated in
   1244 	 * some cases, see kern/50766 for details.
   1245 	 */
   1246 	if (ACCESSIBLE_POINTER(th, struct tcphdr) == 0) {
   1247 		m = m_copyup(m, off + sizeof(struct tcphdr), 0);
   1248 		if (m == NULL) {
   1249 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1250 			return;
   1251 		}
   1252 		th = (struct tcphdr *)(mtod(m, char *) + off);
   1253 	}
   1254 	KASSERT(ACCESSIBLE_POINTER(th, struct tcphdr));
   1255 
   1256 	/*
   1257 	 * Get IP and TCP header.
   1258 	 * Note: IP leaves IP header in first mbuf.
   1259 	 */
   1260 	ip = mtod(m, struct ip *);
   1261 #ifdef INET6
   1262 	ip6 = mtod(m, struct ip6_hdr *);
   1263 #endif
   1264 	switch (ip->ip_v) {
   1265 	case 4:
   1266 		af = AF_INET;
   1267 		iphlen = sizeof(struct ip);
   1268 
   1269 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1270 		    in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
   1271 			goto drop;
   1272 
   1273 		/* We do the checksum after PCB lookup... */
   1274 		len = ntohs(ip->ip_len);
   1275 		tlen = len - off;
   1276 		iptos = ip->ip_tos;
   1277 		break;
   1278 #ifdef INET6
   1279 	case 6:
   1280 		iphlen = sizeof(struct ip6_hdr);
   1281 		af = AF_INET6;
   1282 
   1283 		/*
   1284 		 * Be proactive about unspecified IPv6 address in source.
   1285 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1286 		 * unspecified IPv6 address can be used to confuse us.
   1287 		 *
   1288 		 * Note that packets with unspecified IPv6 destination is
   1289 		 * already dropped in ip6_input.
   1290 		 */
   1291 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1292 			/* XXX stat */
   1293 			goto drop;
   1294 		}
   1295 
   1296 		/*
   1297 		 * Make sure destination address is not multicast.
   1298 		 * Source address checked in ip6_input().
   1299 		 */
   1300 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1301 			/* XXX stat */
   1302 			goto drop;
   1303 		}
   1304 
   1305 		/* We do the checksum after PCB lookup... */
   1306 		len = m->m_pkthdr.len;
   1307 		tlen = len - off;
   1308 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
   1309 		break;
   1310 #endif
   1311 	default:
   1312 		m_freem(m);
   1313 		return;
   1314 	}
   1315 
   1316 
   1317 	/*
   1318 	 * Check that TCP offset makes sense, pull out TCP options and
   1319 	 * adjust length.
   1320 	 */
   1321 	thlen = th->th_off << 2;
   1322 	if (thlen < sizeof(struct tcphdr) || thlen > tlen) {
   1323 		TCP_STATINC(TCP_STAT_RCVBADOFF);
   1324 		goto drop;
   1325 	}
   1326 	tlen -= thlen;
   1327 
   1328 	if (thlen > sizeof(struct tcphdr)) {
   1329 		M_REGION_GET(th, struct tcphdr *, m, off, thlen);
   1330 		if (th == NULL) {
   1331 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1332 			return;
   1333 		}
   1334 		KASSERT(ACCESSIBLE_POINTER(th, struct tcphdr));
   1335 		optlen = thlen - sizeof(struct tcphdr);
   1336 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1337 
   1338 		/*
   1339 		 * Do quick retrieval of timestamp options.
   1340 		 *
   1341 		 * If timestamp is the only option and it's formatted as
   1342 		 * recommended in RFC 1323 appendix A, we quickly get the
   1343 		 * values now and don't bother calling tcp_dooptions(),
   1344 		 * etc.
   1345 		 */
   1346 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1347 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1348 		      optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1349 		    be32dec(optp) == TCPOPT_TSTAMP_HDR &&
   1350 		    (th->th_flags & TH_SYN) == 0) {
   1351 			opti.ts_present = 1;
   1352 			opti.ts_val = be32dec(optp + 4);
   1353 			opti.ts_ecr = be32dec(optp + 8);
   1354 			optp = NULL;	/* we've parsed the options */
   1355 		}
   1356 	}
   1357 	tiflags = th->th_flags;
   1358 
   1359 	/*
   1360 	 * Checksum extended TCP header and data
   1361 	 */
   1362 	if (tcp_input_checksum(af, m, th, off, thlen, tlen))
   1363 		goto badcsum;
   1364 
   1365 	/*
   1366 	 * Locate pcb for segment.
   1367 	 */
   1368 findpcb:
   1369 	inp = NULL;
   1370 	switch (af) {
   1371 	case AF_INET:
   1372 		inp = inpcb_lookup(&tcbtable, ip->ip_src, th->th_sport,
   1373 		    ip->ip_dst, th->th_dport, &vestige);
   1374 		if (inp == NULL && !vestige.valid) {
   1375 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1376 			inp = inpcb_lookup_bound(&tcbtable, ip->ip_dst,
   1377 			    th->th_dport);
   1378 		}
   1379 #ifdef INET6
   1380 		if (inp == NULL && !vestige.valid) {
   1381 			struct in6_addr s, d;
   1382 
   1383 			/* mapped addr case */
   1384 			in6_in_2_v4mapin6(&ip->ip_src, &s);
   1385 			in6_in_2_v4mapin6(&ip->ip_dst, &d);
   1386 			inp = in6pcb_lookup(&tcbtable, &s,
   1387 			    th->th_sport, &d, th->th_dport, 0, &vestige);
   1388 			if (inp == NULL && !vestige.valid) {
   1389 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1390 				inp = in6pcb_lookup_bound(&tcbtable, &d,
   1391 				    th->th_dport, 0);
   1392 			}
   1393 		}
   1394 #endif
   1395 		if (inp == NULL && !vestige.valid) {
   1396 			TCP_STATINC(TCP_STAT_NOPORT);
   1397 			if (tcp_log_refused &&
   1398 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1399 				tcp4_log_refused(ip, th);
   1400 			}
   1401 			tcp_fields_to_host(th);
   1402 			goto dropwithreset_ratelim;
   1403 		}
   1404 #if defined(IPSEC)
   1405 		if (ipsec_used) {
   1406 			if (inp && ipsec_in_reject(m, inp))
   1407 				goto drop;
   1408 		}
   1409 #endif /*IPSEC*/
   1410 		break;
   1411 #ifdef INET6
   1412 	case AF_INET6:
   1413 	    {
   1414 		int faith;
   1415 
   1416 #if defined(NFAITH) && NFAITH > 0
   1417 		faith = faithprefix(&ip6->ip6_dst);
   1418 #else
   1419 		faith = 0;
   1420 #endif
   1421 		inp = in6pcb_lookup(&tcbtable, &ip6->ip6_src,
   1422 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
   1423 		if (inp == NULL && !vestige.valid) {
   1424 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1425 			inp = in6pcb_lookup_bound(&tcbtable, &ip6->ip6_dst,
   1426 			    th->th_dport, faith);
   1427 		}
   1428 		if (inp == NULL && !vestige.valid) {
   1429 			TCP_STATINC(TCP_STAT_NOPORT);
   1430 			if (tcp_log_refused &&
   1431 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1432 				tcp6_log_refused(ip6, th);
   1433 			}
   1434 			tcp_fields_to_host(th);
   1435 			goto dropwithreset_ratelim;
   1436 		}
   1437 #if defined(IPSEC)
   1438 		if (ipsec_used && inp && ipsec_in_reject(m, inp))
   1439 			goto drop;
   1440 #endif
   1441 		break;
   1442 	    }
   1443 #endif
   1444 	}
   1445 
   1446 	tcp_fields_to_host(th);
   1447 
   1448 	/*
   1449 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1450 	 * all data in the incoming segment is discarded.
   1451 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1452 	 * but should either do a listen or a connect soon.
   1453 	 */
   1454 	tp = NULL;
   1455 	so = NULL;
   1456 	if (inp) {
   1457 		/* Check the minimum TTL for socket. */
   1458 		if (inp->inp_af == AF_INET && ip->ip_ttl < in4p_ip_minttl(inp))
   1459 			goto drop;
   1460 
   1461 		tp = intotcpcb(inp);
   1462 		so = inp->inp_socket;
   1463 	} else if (vestige.valid) {
   1464 		/* We do not support the resurrection of vtw tcpcps. */
   1465 		tcp_vtw_input(th, &vestige, m, tlen);
   1466 		m = NULL;
   1467 		goto drop;
   1468 	}
   1469 
   1470 	if (tp == NULL)
   1471 		goto dropwithreset_ratelim;
   1472 	if (tp->t_state == TCPS_CLOSED)
   1473 		goto drop;
   1474 
   1475 	KASSERT(so->so_lock == softnet_lock);
   1476 	KASSERT(solocked(so));
   1477 
   1478 	/* Unscale the window into a 32-bit value. */
   1479 	if ((tiflags & TH_SYN) == 0)
   1480 		tiwin = th->th_win << tp->snd_scale;
   1481 	else
   1482 		tiwin = th->th_win;
   1483 
   1484 #ifdef INET6
   1485 	/* save packet options if user wanted */
   1486 	if (inp->inp_af == AF_INET6 && (inp->inp_flags & IN6P_CONTROLOPTS)) {
   1487 		m_freem(inp->inp_options);
   1488 		inp->inp_options = NULL;
   1489 		ip6_savecontrol(inp, &inp->inp_options, ip6, m);
   1490 	}
   1491 #endif
   1492 
   1493 	if (so->so_options & SO_DEBUG) {
   1494 #ifdef TCP_DEBUG
   1495 		ostate = tp->t_state;
   1496 #endif
   1497 
   1498 		tcp_saveti = NULL;
   1499 		if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1500 			goto nosave;
   1501 
   1502 		if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1503 			tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1504 			if (tcp_saveti == NULL)
   1505 				goto nosave;
   1506 		} else {
   1507 			MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1508 			if (tcp_saveti == NULL)
   1509 				goto nosave;
   1510 			MCLAIM(m, &tcp_mowner);
   1511 			tcp_saveti->m_len = iphlen;
   1512 			m_copydata(m, 0, iphlen,
   1513 			    mtod(tcp_saveti, void *));
   1514 		}
   1515 
   1516 		if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1517 			m_freem(tcp_saveti);
   1518 			tcp_saveti = NULL;
   1519 		} else {
   1520 			tcp_saveti->m_len += sizeof(struct tcphdr);
   1521 			memcpy(mtod(tcp_saveti, char *) + iphlen, th,
   1522 			    sizeof(struct tcphdr));
   1523 		}
   1524 nosave:;
   1525 	}
   1526 
   1527 	if (so->so_options & SO_ACCEPTCONN) {
   1528 		union syn_cache_sa src;
   1529 		union syn_cache_sa dst;
   1530 
   1531 		KASSERT(tp->t_state == TCPS_LISTEN);
   1532 
   1533 		memset(&src, 0, sizeof(src));
   1534 		memset(&dst, 0, sizeof(dst));
   1535 		switch (af) {
   1536 		case AF_INET:
   1537 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1538 			src.sin.sin_family = AF_INET;
   1539 			src.sin.sin_addr = ip->ip_src;
   1540 			src.sin.sin_port = th->th_sport;
   1541 
   1542 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1543 			dst.sin.sin_family = AF_INET;
   1544 			dst.sin.sin_addr = ip->ip_dst;
   1545 			dst.sin.sin_port = th->th_dport;
   1546 			break;
   1547 #ifdef INET6
   1548 		case AF_INET6:
   1549 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1550 			src.sin6.sin6_family = AF_INET6;
   1551 			src.sin6.sin6_addr = ip6->ip6_src;
   1552 			src.sin6.sin6_port = th->th_sport;
   1553 
   1554 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1555 			dst.sin6.sin6_family = AF_INET6;
   1556 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1557 			dst.sin6.sin6_port = th->th_dport;
   1558 			break;
   1559 #endif
   1560 		}
   1561 
   1562 		if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1563 			if (tiflags & TH_RST) {
   1564 				syn_cache_reset(&src.sa, &dst.sa, th);
   1565 			} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1566 			    (TH_ACK|TH_SYN)) {
   1567 				/*
   1568 				 * Received a SYN,ACK. This should never
   1569 				 * happen while we are in LISTEN. Send an RST.
   1570 				 */
   1571 				goto badsyn;
   1572 			} else if (tiflags & TH_ACK) {
   1573 				so = syn_cache_get(&src.sa, &dst.sa, th, so, m);
   1574 				if (so == NULL) {
   1575 					/*
   1576 					 * We don't have a SYN for this ACK;
   1577 					 * send an RST.
   1578 					 */
   1579 					goto badsyn;
   1580 				} else if (so == (struct socket *)(-1)) {
   1581 					/*
   1582 					 * We were unable to create the
   1583 					 * connection. If the 3-way handshake
   1584 					 * was completed, and RST has been
   1585 					 * sent to the peer. Since the mbuf
   1586 					 * might be in use for the reply, do
   1587 					 * not free it.
   1588 					 */
   1589 					m = NULL;
   1590 				} else {
   1591 					/*
   1592 					 * We have created a full-blown
   1593 					 * connection.
   1594 					 */
   1595 					inp = sotoinpcb(so);
   1596 					tp = intotcpcb(inp);
   1597 					if (tp == NULL)
   1598 						goto badsyn;	/*XXX*/
   1599 					tiwin <<= tp->snd_scale;
   1600 					goto after_listen;
   1601 				}
   1602 			} else {
   1603 				/*
   1604 				 * None of RST, SYN or ACK was set.
   1605 				 * This is an invalid packet for a
   1606 				 * TCB in LISTEN state.  Send a RST.
   1607 				 */
   1608 				goto badsyn;
   1609 			}
   1610 		} else {
   1611 			/*
   1612 			 * Received a SYN.
   1613 			 */
   1614 
   1615 #ifdef INET6
   1616 			/*
   1617 			 * If deprecated address is forbidden, we do
   1618 			 * not accept SYN to deprecated interface
   1619 			 * address to prevent any new inbound
   1620 			 * connection from getting established.
   1621 			 * When we do not accept SYN, we send a TCP
   1622 			 * RST, with deprecated source address (instead
   1623 			 * of dropping it).  We compromise it as it is
   1624 			 * much better for peer to send a RST, and
   1625 			 * RST will be the final packet for the
   1626 			 * exchange.
   1627 			 *
   1628 			 * If we do not forbid deprecated addresses, we
   1629 			 * accept the SYN packet.  RFC2462 does not
   1630 			 * suggest dropping SYN in this case.
   1631 			 * If we decipher RFC2462 5.5.4, it says like
   1632 			 * this:
   1633 			 * 1. use of deprecated addr with existing
   1634 			 *    communication is okay - "SHOULD continue
   1635 			 *    to be used"
   1636 			 * 2. use of it with new communication:
   1637 			 *   (2a) "SHOULD NOT be used if alternate
   1638 			 *        address with sufficient scope is
   1639 			 *        available"
   1640 			 *   (2b) nothing mentioned otherwise.
   1641 			 * Here we fall into (2b) case as we have no
   1642 			 * choice in our source address selection - we
   1643 			 * must obey the peer.
   1644 			 *
   1645 			 * The wording in RFC2462 is confusing, and
   1646 			 * there are multiple description text for
   1647 			 * deprecated address handling - worse, they
   1648 			 * are not exactly the same.  I believe 5.5.4
   1649 			 * is the best one, so we follow 5.5.4.
   1650 			 */
   1651 			if (af == AF_INET6 && !ip6_use_deprecated) {
   1652 				struct in6_ifaddr *ia6;
   1653 				int s;
   1654 				struct ifnet *rcvif = m_get_rcvif(m, &s);
   1655 				if (rcvif == NULL)
   1656 					goto dropwithreset; /* XXX */
   1657 				if ((ia6 = in6ifa_ifpwithaddr(rcvif,
   1658 				    &ip6->ip6_dst)) &&
   1659 				    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1660 					tp = NULL;
   1661 					m_put_rcvif(rcvif, &s);
   1662 					goto dropwithreset;
   1663 				}
   1664 				m_put_rcvif(rcvif, &s);
   1665 			}
   1666 #endif
   1667 
   1668 			/*
   1669 			 * LISTEN socket received a SYN from itself? This
   1670 			 * can't possibly be valid; drop the packet.
   1671 			 */
   1672 			if (th->th_sport == th->th_dport) {
   1673 				int eq = 0;
   1674 
   1675 				switch (af) {
   1676 				case AF_INET:
   1677 					eq = in_hosteq(ip->ip_src, ip->ip_dst);
   1678 					break;
   1679 #ifdef INET6
   1680 				case AF_INET6:
   1681 					eq = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
   1682 					    &ip6->ip6_dst);
   1683 					break;
   1684 #endif
   1685 				}
   1686 				if (eq) {
   1687 					TCP_STATINC(TCP_STAT_BADSYN);
   1688 					goto drop;
   1689 				}
   1690 			}
   1691 
   1692 			/*
   1693 			 * SYN looks ok; create compressed TCP
   1694 			 * state for it.
   1695 			 */
   1696 			if (so->so_qlen <= so->so_qlimit &&
   1697 			    syn_cache_add(&src.sa, &dst.sa, th, off,
   1698 			    so, m, optp, optlen, &opti))
   1699 				m = NULL;
   1700 		}
   1701 
   1702 		goto drop;
   1703 	}
   1704 
   1705 after_listen:
   1706 	/*
   1707 	 * From here on, we're dealing with !LISTEN.
   1708 	 */
   1709 	KASSERT(tp->t_state != TCPS_LISTEN);
   1710 
   1711 	/*
   1712 	 * Segment received on connection.
   1713 	 * Reset idle time and keep-alive timer.
   1714 	 */
   1715 	tp->t_rcvtime = tcp_now;
   1716 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1717 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   1718 
   1719 	/*
   1720 	 * Process options.
   1721 	 */
   1722 #ifdef TCP_SIGNATURE
   1723 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1724 #else
   1725 	if (optp)
   1726 #endif
   1727 		if (tcp_dooptions(tp, optp, optlen, th, m, off, &opti) < 0)
   1728 			goto drop;
   1729 
   1730 	if (TCP_SACK_ENABLED(tp)) {
   1731 		tcp_del_sackholes(tp, th);
   1732 	}
   1733 
   1734 	if (TCP_ECN_ALLOWED(tp)) {
   1735 		if (tiflags & TH_CWR) {
   1736 			tp->t_flags &= ~TF_ECN_SND_ECE;
   1737 		}
   1738 		switch (iptos & IPTOS_ECN_MASK) {
   1739 		case IPTOS_ECN_CE:
   1740 			tp->t_flags |= TF_ECN_SND_ECE;
   1741 			TCP_STATINC(TCP_STAT_ECN_CE);
   1742 			break;
   1743 		case IPTOS_ECN_ECT0:
   1744 			TCP_STATINC(TCP_STAT_ECN_ECT);
   1745 			break;
   1746 		case IPTOS_ECN_ECT1:
   1747 			/* XXX: ignore for now -- rpaulo */
   1748 			break;
   1749 		}
   1750 		/*
   1751 		 * Congestion experienced.
   1752 		 * Ignore if we are already trying to recover.
   1753 		 */
   1754 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
   1755 			tp->t_congctl->cong_exp(tp);
   1756 	}
   1757 
   1758 	if (opti.ts_present && opti.ts_ecr) {
   1759 		/*
   1760 		 * Calculate the RTT from the returned time stamp and the
   1761 		 * connection's time base.  If the time stamp is later than
   1762 		 * the current time, or is extremely old, fall back to non-1323
   1763 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
   1764 		 * at the same time.
   1765 		 *
   1766 		 * Note that ts_rtt is in units of slow ticks (500
   1767 		 * ms).  Since most earthbound RTTs are < 500 ms,
   1768 		 * observed values will have large quantization noise.
   1769 		 * Our smoothed RTT is then the fraction of observed
   1770 		 * samples that are 1 tick instead of 0 (times 500
   1771 		 * ms).
   1772 		 *
   1773 		 * ts_rtt is increased by 1 to denote a valid sample,
   1774 		 * with 0 indicating an invalid measurement.  This
   1775 		 * extra 1 must be removed when ts_rtt is used, or
   1776 		 * else an erroneous extra 500 ms will result.
   1777 		 */
   1778 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1779 		if (ts_rtt > TCP_PAWS_IDLE)
   1780 			ts_rtt = 0;
   1781 	} else {
   1782 		ts_rtt = 0;
   1783 	}
   1784 
   1785 	/*
   1786 	 * Fast path: check for the two common cases of a uni-directional
   1787 	 * data transfer. If:
   1788 	 *    o We are in the ESTABLISHED state, and
   1789 	 *    o The packet has no control flags, and
   1790 	 *    o The packet is in-sequence, and
   1791 	 *    o The window didn't change, and
   1792 	 *    o We are not retransmitting
   1793 	 * It's a candidate.
   1794 	 *
   1795 	 * If the length (tlen) is zero and the ack moved forward, we're
   1796 	 * the sender side of the transfer. Just free the data acked and
   1797 	 * wake any higher level process that was blocked waiting for
   1798 	 * space.
   1799 	 *
   1800 	 * If the length is non-zero and the ack didn't move, we're the
   1801 	 * receiver side. If we're getting packets in-order (the reassembly
   1802 	 * queue is empty), add the data to the socket buffer and note
   1803 	 * that we need a delayed ack.
   1804 	 */
   1805 	if (tp->t_state == TCPS_ESTABLISHED &&
   1806 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
   1807 	        == TH_ACK &&
   1808 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1809 	    th->th_seq == tp->rcv_nxt &&
   1810 	    tiwin && tiwin == tp->snd_wnd &&
   1811 	    tp->snd_nxt == tp->snd_max) {
   1812 
   1813 		/*
   1814 		 * If last ACK falls within this segment's sequence numbers,
   1815 		 * record the timestamp.
   1816 		 * NOTE that the test is modified according to the latest
   1817 		 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   1818 		 *
   1819 		 * note that we already know
   1820 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
   1821 		 */
   1822 		if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
   1823 			tp->ts_recent_age = tcp_now;
   1824 			tp->ts_recent = opti.ts_val;
   1825 		}
   1826 
   1827 		if (tlen == 0) {
   1828 			/* Ack prediction. */
   1829 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1830 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1831 			    tp->snd_cwnd >= tp->snd_wnd &&
   1832 			    tp->t_partialacks < 0) {
   1833 				/*
   1834 				 * this is a pure ack for outstanding data.
   1835 				 */
   1836 				if (ts_rtt)
   1837 					tcp_xmit_timer(tp, ts_rtt - 1);
   1838 				else if (tp->t_rtttime &&
   1839 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1840 					tcp_xmit_timer(tp,
   1841 					  tcp_now - tp->t_rtttime);
   1842 				acked = th->th_ack - tp->snd_una;
   1843 				tcps = TCP_STAT_GETREF();
   1844 				_NET_STATINC_REF(tcps, TCP_STAT_PREDACK);
   1845 				_NET_STATINC_REF(tcps, TCP_STAT_RCVACKPACK);
   1846 				_NET_STATADD_REF(tcps, TCP_STAT_RCVACKBYTE,
   1847 				    acked);
   1848 				TCP_STAT_PUTREF();
   1849 				nd_hint(tp);
   1850 
   1851 				if (acked > (tp->t_lastoff - tp->t_inoff))
   1852 					tp->t_lastm = NULL;
   1853 				sbdrop(&so->so_snd, acked);
   1854 				tp->t_lastoff -= acked;
   1855 
   1856 				icmp_check(tp, th, acked);
   1857 
   1858 				tp->snd_una = th->th_ack;
   1859 				tp->snd_fack = tp->snd_una;
   1860 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   1861 					tp->snd_high = tp->snd_una;
   1862 				/*
   1863 				 * drag snd_wl2 along so only newer
   1864 				 * ACKs can update the window size.
   1865 				 * also avoids the state where snd_wl2
   1866 				 * is eventually larger than th_ack and thus
   1867 				 * blocking the window update mechanism and
   1868 				 * the connection gets stuck for a loooong
   1869 				 * time in the zero sized send window state.
   1870 				 *
   1871 				 * see PR/kern 55567
   1872 				 */
   1873 				tp->snd_wl2 = tp->snd_una;
   1874 
   1875 				m_freem(m);
   1876 
   1877 				/*
   1878 				 * If all outstanding data are acked, stop
   1879 				 * retransmit timer, otherwise restart timer
   1880 				 * using current (possibly backed-off) value.
   1881 				 * If process is waiting for space,
   1882 				 * wakeup/selnotify/signal.  If data
   1883 				 * are ready to send, let tcp_output
   1884 				 * decide between more output or persist.
   1885 				 */
   1886 				if (tp->snd_una == tp->snd_max)
   1887 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1888 				else if (TCP_TIMER_ISARMED(tp,
   1889 				    TCPT_PERSIST) == 0)
   1890 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1891 					    tp->t_rxtcur);
   1892 
   1893 				sowwakeup(so);
   1894 				if (so->so_snd.sb_cc) {
   1895 					KERNEL_LOCK(1, NULL);
   1896 					(void)tcp_output(tp);
   1897 					KERNEL_UNLOCK_ONE(NULL);
   1898 				}
   1899 				m_freem(tcp_saveti);
   1900 				return;
   1901 			}
   1902 		} else if (th->th_ack == tp->snd_una &&
   1903 		    TAILQ_FIRST(&tp->segq) == NULL &&
   1904 		    tlen <= sbspace(&so->so_rcv)) {
   1905 			int newsize = 0;
   1906 
   1907 			/*
   1908 			 * this is a pure, in-sequence data packet
   1909 			 * with nothing on the reassembly queue and
   1910 			 * we have enough buffer space to take it.
   1911 			 */
   1912 			tp->rcv_nxt += tlen;
   1913 
   1914 			/*
   1915 			 * Pull rcv_up up to prevent seq wrap relative to
   1916 			 * rcv_nxt.
   1917 			 */
   1918 			tp->rcv_up = tp->rcv_nxt;
   1919 
   1920 			/*
   1921 			 * Pull snd_wl1 up to prevent seq wrap relative to
   1922 			 * th_seq.
   1923 			 */
   1924 			tp->snd_wl1 = th->th_seq;
   1925 
   1926 			tcps = TCP_STAT_GETREF();
   1927 			_NET_STATINC_REF(tcps, TCP_STAT_PREDDAT);
   1928 			_NET_STATINC_REF(tcps, TCP_STAT_RCVPACK);
   1929 			_NET_STATADD_REF(tcps, TCP_STAT_RCVBYTE, tlen);
   1930 			TCP_STAT_PUTREF();
   1931 			nd_hint(tp);
   1932 		/*
   1933 		 * Automatic sizing enables the performance of large buffers
   1934 		 * and most of the efficiency of small ones by only allocating
   1935 		 * space when it is needed.
   1936 		 *
   1937 		 * On the receive side the socket buffer memory is only rarely
   1938 		 * used to any significant extent.  This allows us to be much
   1939 		 * more aggressive in scaling the receive socket buffer.  For
   1940 		 * the case that the buffer space is actually used to a large
   1941 		 * extent and we run out of kernel memory we can simply drop
   1942 		 * the new segments; TCP on the sender will just retransmit it
   1943 		 * later.  Setting the buffer size too big may only consume too
   1944 		 * much kernel memory if the application doesn't read() from
   1945 		 * the socket or packet loss or reordering makes use of the
   1946 		 * reassembly queue.
   1947 		 *
   1948 		 * The criteria to step up the receive buffer one notch are:
   1949 		 *  1. the number of bytes received during the time it takes
   1950 		 *     one timestamp to be reflected back to us (the RTT);
   1951 		 *  2. received bytes per RTT is within seven eighth of the
   1952 		 *     current socket buffer size;
   1953 		 *  3. receive buffer size has not hit maximal automatic size;
   1954 		 *
   1955 		 * This algorithm does one step per RTT at most and only if
   1956 		 * we receive a bulk stream w/o packet losses or reorderings.
   1957 		 * Shrinking the buffer during idle times is not necessary as
   1958 		 * it doesn't consume any memory when idle.
   1959 		 *
   1960 		 * TODO: Only step up if the application is actually serving
   1961 		 * the buffer to better manage the socket buffer resources.
   1962 		 */
   1963 			if (tcp_do_autorcvbuf &&
   1964 			    opti.ts_ecr &&
   1965 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
   1966 				if (opti.ts_ecr > tp->rfbuf_ts &&
   1967 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
   1968 					if (tp->rfbuf_cnt >
   1969 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
   1970 					    so->so_rcv.sb_hiwat <
   1971 					    tcp_autorcvbuf_max) {
   1972 						newsize =
   1973 						    uimin(so->so_rcv.sb_hiwat +
   1974 						    tcp_autorcvbuf_inc,
   1975 						    tcp_autorcvbuf_max);
   1976 					}
   1977 					/* Start over with next RTT. */
   1978 					tp->rfbuf_ts = 0;
   1979 					tp->rfbuf_cnt = 0;
   1980 				} else
   1981 					tp->rfbuf_cnt += tlen;	/* add up */
   1982 			}
   1983 
   1984 			/*
   1985 			 * Drop TCP, IP headers and TCP options then add data
   1986 			 * to socket buffer.
   1987 			 */
   1988 			if (so->so_state & SS_CANTRCVMORE) {
   1989 				m_freem(m);
   1990 			} else {
   1991 				/*
   1992 				 * Set new socket buffer size.
   1993 				 * Give up when limit is reached.
   1994 				 */
   1995 				if (newsize)
   1996 					if (!sbreserve(&so->so_rcv,
   1997 					    newsize, so))
   1998 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1999 				m_adj(m, off + thlen);
   2000 				sbappendstream(&so->so_rcv, m);
   2001 			}
   2002 			sorwakeup(so);
   2003 			tcp_setup_ack(tp, th);
   2004 			if (tp->t_flags & TF_ACKNOW) {
   2005 				KERNEL_LOCK(1, NULL);
   2006 				(void)tcp_output(tp);
   2007 				KERNEL_UNLOCK_ONE(NULL);
   2008 			}
   2009 			m_freem(tcp_saveti);
   2010 			return;
   2011 		}
   2012 	}
   2013 
   2014 	/*
   2015 	 * Compute mbuf offset to TCP data segment.
   2016 	 */
   2017 	hdroptlen = off + thlen;
   2018 
   2019 	/*
   2020 	 * Calculate amount of space in receive window. Receive window is
   2021 	 * amount of space in rcv queue, but not less than advertised
   2022 	 * window.
   2023 	 */
   2024 	{
   2025 		int win;
   2026 		win = sbspace(&so->so_rcv);
   2027 		if (win < 0)
   2028 			win = 0;
   2029 		tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   2030 	}
   2031 
   2032 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
   2033 	tp->rfbuf_ts = 0;
   2034 	tp->rfbuf_cnt = 0;
   2035 
   2036 	switch (tp->t_state) {
   2037 	/*
   2038 	 * If the state is SYN_SENT:
   2039 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   2040 	 *	if seg contains a RST, then drop the connection.
   2041 	 *	if seg does not contain SYN, then drop it.
   2042 	 * Otherwise this is an acceptable SYN segment
   2043 	 *	initialize tp->rcv_nxt and tp->irs
   2044 	 *	if seg contains ack then advance tp->snd_una
   2045 	 *	if seg contains a ECE and ECN support is enabled, the stream
   2046 	 *	    is ECN capable.
   2047 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   2048 	 *	arrange for segment to be acked (eventually)
   2049 	 *	continue processing rest of data/controls, beginning with URG
   2050 	 */
   2051 	case TCPS_SYN_SENT:
   2052 		if ((tiflags & TH_ACK) &&
   2053 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2054 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2055 			goto dropwithreset;
   2056 		if (tiflags & TH_RST) {
   2057 			if (tiflags & TH_ACK)
   2058 				tp = tcp_drop(tp, ECONNREFUSED);
   2059 			goto drop;
   2060 		}
   2061 		if ((tiflags & TH_SYN) == 0)
   2062 			goto drop;
   2063 		if (tiflags & TH_ACK) {
   2064 			tp->snd_una = th->th_ack;
   2065 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2066 				tp->snd_nxt = tp->snd_una;
   2067 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   2068 				tp->snd_high = tp->snd_una;
   2069 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2070 
   2071 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
   2072 				tp->t_flags |= TF_ECN_PERMIT;
   2073 				TCP_STATINC(TCP_STAT_ECN_SHS);
   2074 			}
   2075 		}
   2076 		tp->irs = th->th_seq;
   2077 		tcp_rcvseqinit(tp);
   2078 		tp->t_flags |= TF_ACKNOW;
   2079 		tcp_mss_from_peer(tp, opti.maxseg);
   2080 
   2081 		/*
   2082 		 * Initialize the initial congestion window.  If we
   2083 		 * had to retransmit the SYN, we must initialize cwnd
   2084 		 * to 1 segment (i.e. the Loss Window).
   2085 		 */
   2086 		if (tp->t_flags & TF_SYN_REXMT)
   2087 			tp->snd_cwnd = tp->t_peermss;
   2088 		else {
   2089 			int ss = tcp_init_win;
   2090 			if (inp->inp_af == AF_INET && in_localaddr(in4p_faddr(inp)))
   2091 				ss = tcp_init_win_local;
   2092 #ifdef INET6
   2093 			else if (inp->inp_af == AF_INET6 && in6_localaddr(&in6p_faddr(inp)))
   2094 				ss = tcp_init_win_local;
   2095 #endif
   2096 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   2097 		}
   2098 
   2099 		tcp_rmx_rtt(tp);
   2100 		if (tiflags & TH_ACK) {
   2101 			TCP_STATINC(TCP_STAT_CONNECTS);
   2102 			/*
   2103 			 * move tcp_established before soisconnected
   2104 			 * because upcall handler can drive tcp_output
   2105 			 * functionality.
   2106 			 * XXX we might call soisconnected at the end of
   2107 			 * all processing
   2108 			 */
   2109 			tcp_established(tp);
   2110 			soisconnected(so);
   2111 			/* Do window scaling on this connection? */
   2112 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2113 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2114 				tp->snd_scale = tp->requested_s_scale;
   2115 				tp->rcv_scale = tp->request_r_scale;
   2116 			}
   2117 			TCP_REASS_LOCK(tp);
   2118 			(void)tcp_reass(tp, NULL, NULL, tlen);
   2119 			/*
   2120 			 * if we didn't have to retransmit the SYN,
   2121 			 * use its rtt as our initial srtt & rtt var.
   2122 			 */
   2123 			if (tp->t_rtttime)
   2124 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2125 		} else {
   2126 			tp->t_state = TCPS_SYN_RECEIVED;
   2127 		}
   2128 
   2129 		/*
   2130 		 * Advance th->th_seq to correspond to first data byte.
   2131 		 * If data, trim to stay within window,
   2132 		 * dropping FIN if necessary.
   2133 		 */
   2134 		th->th_seq++;
   2135 		if (tlen > tp->rcv_wnd) {
   2136 			todrop = tlen - tp->rcv_wnd;
   2137 			m_adj(m, -todrop);
   2138 			tlen = tp->rcv_wnd;
   2139 			tiflags &= ~TH_FIN;
   2140 			tcps = TCP_STAT_GETREF();
   2141 			_NET_STATINC_REF(tcps, TCP_STAT_RCVPACKAFTERWIN);
   2142 			_NET_STATADD_REF(tcps, TCP_STAT_RCVBYTEAFTERWIN,
   2143 			    todrop);
   2144 			TCP_STAT_PUTREF();
   2145 		}
   2146 		tp->snd_wl1 = th->th_seq - 1;
   2147 		tp->rcv_up = th->th_seq;
   2148 		goto step6;
   2149 
   2150 	/*
   2151 	 * If the state is SYN_RECEIVED:
   2152 	 *	If seg contains an ACK, but not for our SYN, drop the input
   2153 	 *	and generate an RST.  See page 36, rfc793
   2154 	 */
   2155 	case TCPS_SYN_RECEIVED:
   2156 		if ((tiflags & TH_ACK) &&
   2157 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2158 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2159 			goto dropwithreset;
   2160 		break;
   2161 	}
   2162 
   2163 	/*
   2164 	 * From here on, we're dealing with !LISTEN and !SYN_SENT.
   2165 	 */
   2166 	KASSERT(tp->t_state != TCPS_LISTEN &&
   2167 	    tp->t_state != TCPS_SYN_SENT);
   2168 
   2169 	/*
   2170 	 * RFC1323 PAWS: if we have a timestamp reply on this segment and
   2171 	 * it's less than ts_recent, drop it.
   2172 	 */
   2173 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   2174 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   2175 		/* Check to see if ts_recent is over 24 days old.  */
   2176 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   2177 			/*
   2178 			 * Invalidate ts_recent.  If this segment updates
   2179 			 * ts_recent, the age will be reset later and ts_recent
   2180 			 * will get a valid value.  If it does not, setting
   2181 			 * ts_recent to zero will at least satisfy the
   2182 			 * requirement that zero be placed in the timestamp
   2183 			 * echo reply when ts_recent isn't valid.  The
   2184 			 * age isn't reset until we get a valid ts_recent
   2185 			 * because we don't want out-of-order segments to be
   2186 			 * dropped when ts_recent is old.
   2187 			 */
   2188 			tp->ts_recent = 0;
   2189 		} else {
   2190 			tcps = TCP_STAT_GETREF();
   2191 			_NET_STATINC_REF(tcps, TCP_STAT_RCVDUPPACK);
   2192 			_NET_STATADD_REF(tcps, TCP_STAT_RCVDUPBYTE, tlen);
   2193 			_NET_STATINC_REF(tcps, TCP_STAT_PAWSDROP);
   2194 			TCP_STAT_PUTREF();
   2195 			tcp_new_dsack(tp, th->th_seq, tlen);
   2196 			goto dropafterack;
   2197 		}
   2198 	}
   2199 
   2200 	/*
   2201 	 * Check that at least some bytes of the segment are within the
   2202 	 * receive window. If segment begins before rcv_nxt, drop leading
   2203 	 * data (and SYN); if nothing left, just ack.
   2204 	 */
   2205 	todrop = tp->rcv_nxt - th->th_seq;
   2206 	dupseg = false;
   2207 	if (todrop > 0) {
   2208 		if (tiflags & TH_SYN) {
   2209 			tiflags &= ~TH_SYN;
   2210 			th->th_seq++;
   2211 			tcp_urp_drop(th, 1, &tiflags);
   2212 			todrop--;
   2213 		}
   2214 		if (todrop > tlen ||
   2215 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   2216 			/*
   2217 			 * Any valid FIN or RST must be to the left of the
   2218 			 * window.  At this point the FIN or RST must be a
   2219 			 * duplicate or out of sequence; drop it.
   2220 			 */
   2221 			if (tiflags & TH_RST)
   2222 				goto drop;
   2223 			tiflags &= ~(TH_FIN|TH_RST);
   2224 
   2225 			/*
   2226 			 * Send an ACK to resynchronize and drop any data.
   2227 			 * But keep on processing for RST or ACK.
   2228 			 */
   2229 			tp->t_flags |= TF_ACKNOW;
   2230 			todrop = tlen;
   2231 			dupseg = true;
   2232 			tcps = TCP_STAT_GETREF();
   2233 			_NET_STATINC_REF(tcps, TCP_STAT_RCVDUPPACK);
   2234 			_NET_STATADD_REF(tcps, TCP_STAT_RCVDUPBYTE, todrop);
   2235 			TCP_STAT_PUTREF();
   2236 		} else if ((tiflags & TH_RST) && th->th_seq != tp->rcv_nxt) {
   2237 			/*
   2238 			 * Test for reset before adjusting the sequence
   2239 			 * number for overlapping data.
   2240 			 */
   2241 			goto dropafterack_ratelim;
   2242 		} else {
   2243 			tcps = TCP_STAT_GETREF();
   2244 			_NET_STATINC_REF(tcps, TCP_STAT_RCVPARTDUPPACK);
   2245 			_NET_STATADD_REF(tcps, TCP_STAT_RCVPARTDUPBYTE,
   2246 			    todrop);
   2247 			TCP_STAT_PUTREF();
   2248 		}
   2249 		tcp_new_dsack(tp, th->th_seq, todrop);
   2250 		hdroptlen += todrop;	/* drop from head afterwards (m_adj) */
   2251 		th->th_seq += todrop;
   2252 		tlen -= todrop;
   2253 		tcp_urp_drop(th, todrop, &tiflags);
   2254 	}
   2255 
   2256 	/*
   2257 	 * If new data is received on a connection after the user processes
   2258 	 * are gone, then RST the other end.
   2259 	 */
   2260 	if ((so->so_state & SS_NOFDREF) &&
   2261 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   2262 		tp = tcp_close(tp);
   2263 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   2264 		goto dropwithreset;
   2265 	}
   2266 
   2267 	/*
   2268 	 * If the segment ends after the window, drop trailing data (and
   2269 	 * PUSH and FIN); if nothing left, just ACK.
   2270 	 */
   2271 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
   2272 	if (todrop > 0) {
   2273 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   2274 		if (todrop >= tlen) {
   2275 			/*
   2276 			 * The segment actually starts after the window.
   2277 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2278 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2279 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2280 			 */
   2281 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   2282 
   2283 			/*
   2284 			 * If a new connection request is received while in
   2285 			 * TIME_WAIT, drop the old connection and start over
   2286 			 * if the sequence numbers are above the previous
   2287 			 * ones.
   2288 			 *
   2289 			 * NOTE: We need to put the header fields back into
   2290 			 * network order.
   2291 			 */
   2292 			if ((tiflags & TH_SYN) &&
   2293 			    tp->t_state == TCPS_TIME_WAIT &&
   2294 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2295 				tp = tcp_close(tp);
   2296 				tcp_fields_to_net(th);
   2297 				m_freem(tcp_saveti);
   2298 				tcp_saveti = NULL;
   2299 				goto findpcb;
   2300 			}
   2301 
   2302 			/*
   2303 			 * If window is closed can only take segments at
   2304 			 * window edge, and have to drop data and PUSH from
   2305 			 * incoming segments.  Continue processing, but
   2306 			 * remember to ack.  Otherwise, drop segment
   2307 			 * and (if not RST) ack.
   2308 			 */
   2309 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2310 				KASSERT(todrop == tlen);
   2311 				tp->t_flags |= TF_ACKNOW;
   2312 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   2313 			} else {
   2314 				goto dropafterack;
   2315 			}
   2316 		} else {
   2317 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   2318 		}
   2319 		m_adj(m, -todrop);
   2320 		tlen -= todrop;
   2321 		tiflags &= ~(TH_PUSH|TH_FIN);
   2322 	}
   2323 
   2324 	/*
   2325 	 * If last ACK falls within this segment's sequence numbers,
   2326 	 *  record the timestamp.
   2327 	 * NOTE:
   2328 	 * 1) That the test incorporates suggestions from the latest
   2329 	 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   2330 	 * 2) That updating only on newer timestamps interferes with
   2331 	 *    our earlier PAWS tests, so this check should be solely
   2332 	 *    predicated on the sequence space of this segment.
   2333 	 * 3) That we modify the segment boundary check to be
   2334 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   2335 	 *    instead of RFC1323's
   2336 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   2337 	 *    This modified check allows us to overcome RFC1323's
   2338 	 *    limitations as described in Stevens TCP/IP Illustrated
   2339 	 *    Vol. 2 p.869. In such cases, we can still calculate the
   2340 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   2341 	 */
   2342 	if (opti.ts_present &&
   2343 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2344 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   2345 	         ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2346 		tp->ts_recent_age = tcp_now;
   2347 		tp->ts_recent = opti.ts_val;
   2348 	}
   2349 
   2350 	/*
   2351 	 * If the RST bit is set examine the state:
   2352 	 *    RECEIVED state:
   2353 	 *        If passive open, return to LISTEN state.
   2354 	 *        If active open, inform user that connection was refused.
   2355 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT states:
   2356 	 *        Inform user that connection was reset, and close tcb.
   2357 	 *    CLOSING, LAST_ACK, TIME_WAIT states:
   2358 	 *        Close the tcb.
   2359 	 */
   2360 	if (tiflags & TH_RST) {
   2361 		if (th->th_seq != tp->rcv_nxt)
   2362 			goto dropafterack_ratelim;
   2363 
   2364 		switch (tp->t_state) {
   2365 		case TCPS_SYN_RECEIVED:
   2366 			so->so_error = ECONNREFUSED;
   2367 			goto close;
   2368 
   2369 		case TCPS_ESTABLISHED:
   2370 		case TCPS_FIN_WAIT_1:
   2371 		case TCPS_FIN_WAIT_2:
   2372 		case TCPS_CLOSE_WAIT:
   2373 			so->so_error = ECONNRESET;
   2374 		close:
   2375 			tp->t_state = TCPS_CLOSED;
   2376 			TCP_STATINC(TCP_STAT_DROPS);
   2377 			tp = tcp_close(tp);
   2378 			goto drop;
   2379 
   2380 		case TCPS_CLOSING:
   2381 		case TCPS_LAST_ACK:
   2382 		case TCPS_TIME_WAIT:
   2383 			tp = tcp_close(tp);
   2384 			goto drop;
   2385 		}
   2386 	}
   2387 
   2388 	/*
   2389 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2390 	 * we must be in a synchronized state.  RFC793 states (under Reset
   2391 	 * Generation) that any unacceptable segment (an out-of-order SYN
   2392 	 * qualifies) received in a synchronized state must elicit only an
   2393 	 * empty acknowledgment segment ... and the connection remains in
   2394 	 * the same state.
   2395 	 */
   2396 	if (tiflags & TH_SYN) {
   2397 		if (tp->rcv_nxt == th->th_seq) {
   2398 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2399 			    TH_ACK);
   2400 			m_freem(tcp_saveti);
   2401 			return;
   2402 		}
   2403 
   2404 		goto dropafterack_ratelim;
   2405 	}
   2406 
   2407 	/*
   2408 	 * If the ACK bit is off we drop the segment and return.
   2409 	 */
   2410 	if ((tiflags & TH_ACK) == 0) {
   2411 		if (tp->t_flags & TF_ACKNOW)
   2412 			goto dropafterack;
   2413 		goto drop;
   2414 	}
   2415 
   2416 	/*
   2417 	 * From here on, we're doing ACK processing.
   2418 	 */
   2419 
   2420 	switch (tp->t_state) {
   2421 	/*
   2422 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2423 	 * ESTABLISHED state and continue processing, otherwise
   2424 	 * send an RST.
   2425 	 */
   2426 	case TCPS_SYN_RECEIVED:
   2427 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2428 		    SEQ_GT(th->th_ack, tp->snd_max))
   2429 			goto dropwithreset;
   2430 		TCP_STATINC(TCP_STAT_CONNECTS);
   2431 		soisconnected(so);
   2432 		tcp_established(tp);
   2433 		/* Do window scaling? */
   2434 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2435 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2436 			tp->snd_scale = tp->requested_s_scale;
   2437 			tp->rcv_scale = tp->request_r_scale;
   2438 		}
   2439 		TCP_REASS_LOCK(tp);
   2440 		(void)tcp_reass(tp, NULL, NULL, tlen);
   2441 		tp->snd_wl1 = th->th_seq - 1;
   2442 		/* FALLTHROUGH */
   2443 
   2444 	/*
   2445 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2446 	 * ACKs.  If the ack is in the range
   2447 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2448 	 * then advance tp->snd_una to th->th_ack and drop
   2449 	 * data from the retransmission queue.  If this ACK reflects
   2450 	 * more up to date window information we update our window information.
   2451 	 */
   2452 	case TCPS_ESTABLISHED:
   2453 	case TCPS_FIN_WAIT_1:
   2454 	case TCPS_FIN_WAIT_2:
   2455 	case TCPS_CLOSE_WAIT:
   2456 	case TCPS_CLOSING:
   2457 	case TCPS_LAST_ACK:
   2458 	case TCPS_TIME_WAIT:
   2459 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2460 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2461 				TCP_STATINC(TCP_STAT_RCVDUPACK);
   2462 				/*
   2463 				 * If we have outstanding data (other than
   2464 				 * a window probe), this is a completely
   2465 				 * duplicate ack (ie, window info didn't
   2466 				 * change), the ack is the biggest we've
   2467 				 * seen and we've seen exactly our rexmt
   2468 				 * threshold of them, assume a packet
   2469 				 * has been dropped and retransmit it.
   2470 				 * Kludge snd_nxt & the congestion
   2471 				 * window so we send only this one
   2472 				 * packet.
   2473 				 */
   2474 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2475 				    th->th_ack != tp->snd_una)
   2476 					tp->t_dupacks = 0;
   2477 				else if (tp->t_partialacks < 0 &&
   2478 				    (++tp->t_dupacks == tcprexmtthresh ||
   2479 				     TCP_FACK_FASTRECOV(tp))) {
   2480 					/*
   2481 					 * Do the fast retransmit, and adjust
   2482 					 * congestion control parameters.
   2483 					 */
   2484 					if (tp->t_congctl->fast_retransmit(tp, th)) {
   2485 						/* False fast retransmit */
   2486 						break;
   2487 					}
   2488 					goto drop;
   2489 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2490 					tp->snd_cwnd += tp->t_segsz;
   2491 					KERNEL_LOCK(1, NULL);
   2492 					(void)tcp_output(tp);
   2493 					KERNEL_UNLOCK_ONE(NULL);
   2494 					goto drop;
   2495 				}
   2496 			} else {
   2497 				/*
   2498 				 * If the ack appears to be very old, only
   2499 				 * allow data that is in-sequence.  This
   2500 				 * makes it somewhat more difficult to insert
   2501 				 * forged data by guessing sequence numbers.
   2502 				 * Sent an ack to try to update the send
   2503 				 * sequence number on the other side.
   2504 				 */
   2505 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2506 				    SEQ_LT(th->th_ack,
   2507 				    tp->snd_una - tp->max_sndwnd))
   2508 					goto dropafterack;
   2509 			}
   2510 			break;
   2511 		}
   2512 		/*
   2513 		 * If the congestion window was inflated to account
   2514 		 * for the other side's cached packets, retract it.
   2515 		 */
   2516 		tp->t_congctl->fast_retransmit_newack(tp, th);
   2517 
   2518 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2519 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
   2520 			goto dropafterack;
   2521 		}
   2522 		acked = th->th_ack - tp->snd_una;
   2523 		tcps = TCP_STAT_GETREF();
   2524 		_NET_STATINC_REF(tcps, TCP_STAT_RCVACKPACK);
   2525 		_NET_STATADD_REF(tcps, TCP_STAT_RCVACKBYTE, acked);
   2526 		TCP_STAT_PUTREF();
   2527 
   2528 		/*
   2529 		 * If we have a timestamp reply, update smoothed
   2530 		 * round trip time.  If no timestamp is present but
   2531 		 * transmit timer is running and timed sequence
   2532 		 * number was acked, update smoothed round trip time.
   2533 		 * Since we now have an rtt measurement, cancel the
   2534 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2535 		 * Recompute the initial retransmit timer.
   2536 		 */
   2537 		if (ts_rtt)
   2538 			tcp_xmit_timer(tp, ts_rtt - 1);
   2539 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2540 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2541 
   2542 		/*
   2543 		 * If all outstanding data is acked, stop retransmit
   2544 		 * timer and remember to restart (more output or persist).
   2545 		 * If there is more data to be acked, restart retransmit
   2546 		 * timer, using current (possibly backed-off) value.
   2547 		 */
   2548 		if (th->th_ack == tp->snd_max) {
   2549 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2550 			needoutput = 1;
   2551 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2552 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2553 
   2554 		/*
   2555 		 * New data has been acked, adjust the congestion window.
   2556 		 */
   2557 		tp->t_congctl->newack(tp, th);
   2558 
   2559 		nd_hint(tp);
   2560 		if (acked > so->so_snd.sb_cc) {
   2561 			tp->snd_wnd -= so->so_snd.sb_cc;
   2562 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2563 			ourfinisacked = 1;
   2564 		} else {
   2565 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2566 				tp->t_lastm = NULL;
   2567 			sbdrop(&so->so_snd, acked);
   2568 			tp->t_lastoff -= acked;
   2569 			if (tp->snd_wnd > acked)
   2570 				tp->snd_wnd -= acked;
   2571 			else
   2572 				tp->snd_wnd = 0;
   2573 			ourfinisacked = 0;
   2574 		}
   2575 		sowwakeup(so);
   2576 
   2577 		icmp_check(tp, th, acked);
   2578 
   2579 		tp->snd_una = th->th_ack;
   2580 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2581 			tp->snd_fack = tp->snd_una;
   2582 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2583 			tp->snd_nxt = tp->snd_una;
   2584 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2585 			tp->snd_high = tp->snd_una;
   2586 
   2587 		switch (tp->t_state) {
   2588 
   2589 		/*
   2590 		 * In FIN_WAIT_1 STATE in addition to the processing
   2591 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2592 		 * then enter FIN_WAIT_2.
   2593 		 */
   2594 		case TCPS_FIN_WAIT_1:
   2595 			if (ourfinisacked) {
   2596 				/*
   2597 				 * If we can't receive any more
   2598 				 * data, then closing user can proceed.
   2599 				 * Starting the timer is contrary to the
   2600 				 * specification, but if we don't get a FIN
   2601 				 * we'll hang forever.
   2602 				 */
   2603 				if (so->so_state & SS_CANTRCVMORE) {
   2604 					soisdisconnected(so);
   2605 					if (tp->t_maxidle > 0)
   2606 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2607 						    tp->t_maxidle);
   2608 				}
   2609 				tp->t_state = TCPS_FIN_WAIT_2;
   2610 			}
   2611 			break;
   2612 
   2613 	 	/*
   2614 		 * In CLOSING STATE in addition to the processing for
   2615 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2616 		 * then enter the TIME-WAIT state, otherwise ignore
   2617 		 * the segment.
   2618 		 */
   2619 		case TCPS_CLOSING:
   2620 			if (ourfinisacked) {
   2621 				tp->t_state = TCPS_TIME_WAIT;
   2622 				tcp_canceltimers(tp);
   2623 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2624 				soisdisconnected(so);
   2625 			}
   2626 			break;
   2627 
   2628 		/*
   2629 		 * In LAST_ACK, we may still be waiting for data to drain
   2630 		 * and/or to be acked, as well as for the ack of our FIN.
   2631 		 * If our FIN is now acknowledged, delete the TCB,
   2632 		 * enter the closed state and return.
   2633 		 */
   2634 		case TCPS_LAST_ACK:
   2635 			if (ourfinisacked) {
   2636 				tp = tcp_close(tp);
   2637 				goto drop;
   2638 			}
   2639 			break;
   2640 
   2641 		/*
   2642 		 * In TIME_WAIT state the only thing that should arrive
   2643 		 * is a retransmission of the remote FIN.  Acknowledge
   2644 		 * it and restart the finack timer.
   2645 		 */
   2646 		case TCPS_TIME_WAIT:
   2647 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2648 			goto dropafterack;
   2649 		}
   2650 	}
   2651 
   2652 step6:
   2653 	/*
   2654 	 * Update window information.
   2655 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2656 	 */
   2657 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2658 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
   2659 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
   2660 		/* keep track of pure window updates */
   2661 		if (tlen == 0 &&
   2662 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2663 			TCP_STATINC(TCP_STAT_RCVWINUPD);
   2664 		tp->snd_wnd = tiwin;
   2665 		tp->snd_wl1 = th->th_seq;
   2666 		tp->snd_wl2 = th->th_ack;
   2667 		if (tp->snd_wnd > tp->max_sndwnd)
   2668 			tp->max_sndwnd = tp->snd_wnd;
   2669 		needoutput = 1;
   2670 	}
   2671 
   2672 	/*
   2673 	 * Process segments with URG.
   2674 	 */
   2675 	if ((tiflags & TH_URG) && th->th_urp &&
   2676 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2677 		/*
   2678 		 * This is a kludge, but if we receive and accept
   2679 		 * random urgent pointers, we'll crash in
   2680 		 * soreceive.  It's hard to imagine someone
   2681 		 * actually wanting to send this much urgent data.
   2682 		 */
   2683 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2684 			th->th_urp = 0;			/* XXX */
   2685 			tiflags &= ~TH_URG;		/* XXX */
   2686 			goto dodata;			/* XXX */
   2687 		}
   2688 
   2689 		/*
   2690 		 * If this segment advances the known urgent pointer,
   2691 		 * then mark the data stream.  This should not happen
   2692 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2693 		 * a FIN has been received from the remote side.
   2694 		 * In these states we ignore the URG.
   2695 		 *
   2696 		 * According to RFC961 (Assigned Protocols),
   2697 		 * the urgent pointer points to the last octet
   2698 		 * of urgent data.  We continue, however,
   2699 		 * to consider it to indicate the first octet
   2700 		 * of data past the urgent section as the original
   2701 		 * spec states (in one of two places).
   2702 		 */
   2703 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2704 			tp->rcv_up = th->th_seq + th->th_urp;
   2705 			so->so_oobmark = so->so_rcv.sb_cc +
   2706 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2707 			if (so->so_oobmark == 0)
   2708 				so->so_state |= SS_RCVATMARK;
   2709 			sohasoutofband(so);
   2710 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2711 		}
   2712 
   2713 		/*
   2714 		 * Remove out of band data so doesn't get presented to user.
   2715 		 * This can happen independent of advancing the URG pointer,
   2716 		 * but if two URG's are pending at once, some out-of-band
   2717 		 * data may creep in... ick.
   2718 		 */
   2719 		if (th->th_urp <= (u_int16_t)tlen &&
   2720 		    (so->so_options & SO_OOBINLINE) == 0)
   2721 			tcp_pulloutofband(so, th, m, hdroptlen);
   2722 	} else {
   2723 		/*
   2724 		 * If no out of band data is expected,
   2725 		 * pull receive urgent pointer along
   2726 		 * with the receive window.
   2727 		 */
   2728 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2729 			tp->rcv_up = tp->rcv_nxt;
   2730 	}
   2731 dodata:
   2732 
   2733 	/*
   2734 	 * Process the segment text, merging it into the TCP sequencing queue,
   2735 	 * and arranging for acknowledgement of receipt if necessary.
   2736 	 * This process logically involves adjusting tp->rcv_wnd as data
   2737 	 * is presented to the user (this happens in tcp_usrreq.c,
   2738 	 * tcp_rcvd()).  If a FIN has already been received on this
   2739 	 * connection then we just ignore the text.
   2740 	 */
   2741 	if ((tlen || (tiflags & TH_FIN)) &&
   2742 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2743 		/*
   2744 		 * Handle the common case:
   2745 		 *  o Segment is the next to be received, and
   2746 		 *  o The queue is empty, and
   2747 		 *  o The connection is established
   2748 		 * In this case, we avoid calling tcp_reass.
   2749 		 *
   2750 		 * tcp_setup_ack: set DELACK for segments received in order,
   2751 		 * but ack immediately when segments are out of order (so that
   2752 		 * fast retransmit can work).
   2753 		 */
   2754 		TCP_REASS_LOCK(tp);
   2755 		if (th->th_seq == tp->rcv_nxt &&
   2756 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2757 		    tp->t_state == TCPS_ESTABLISHED) {
   2758 			tcp_setup_ack(tp, th);
   2759 			tp->rcv_nxt += tlen;
   2760 			tiflags = th->th_flags & TH_FIN;
   2761 			tcps = TCP_STAT_GETREF();
   2762 			_NET_STATINC_REF(tcps, TCP_STAT_RCVPACK);
   2763 			_NET_STATADD_REF(tcps, TCP_STAT_RCVBYTE, tlen);
   2764 			TCP_STAT_PUTREF();
   2765 			nd_hint(tp);
   2766 			if (so->so_state & SS_CANTRCVMORE) {
   2767 				m_freem(m);
   2768 			} else {
   2769 				m_adj(m, hdroptlen);
   2770 				sbappendstream(&(so)->so_rcv, m);
   2771 			}
   2772 			TCP_REASS_UNLOCK(tp);
   2773 			sorwakeup(so);
   2774 		} else {
   2775 			m_adj(m, hdroptlen);
   2776 			tiflags = tcp_reass(tp, th, m, tlen);
   2777 			tp->t_flags |= TF_ACKNOW;
   2778 		}
   2779 
   2780 		/*
   2781 		 * Note the amount of data that peer has sent into
   2782 		 * our window, in order to estimate the sender's
   2783 		 * buffer size.
   2784 		 */
   2785 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2786 	} else {
   2787 		m_freem(m);
   2788 		m = NULL;
   2789 		tiflags &= ~TH_FIN;
   2790 	}
   2791 
   2792 	/*
   2793 	 * If FIN is received ACK the FIN and let the user know
   2794 	 * that the connection is closing.  Ignore a FIN received before
   2795 	 * the connection is fully established.
   2796 	 */
   2797 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2798 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2799 			socantrcvmore(so);
   2800 			tp->t_flags |= TF_ACKNOW;
   2801 			tp->rcv_nxt++;
   2802 		}
   2803 		switch (tp->t_state) {
   2804 
   2805 	 	/*
   2806 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2807 		 */
   2808 		case TCPS_ESTABLISHED:
   2809 			tp->t_state = TCPS_CLOSE_WAIT;
   2810 			break;
   2811 
   2812 	 	/*
   2813 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2814 		 * enter the CLOSING state.
   2815 		 */
   2816 		case TCPS_FIN_WAIT_1:
   2817 			tp->t_state = TCPS_CLOSING;
   2818 			break;
   2819 
   2820 	 	/*
   2821 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2822 		 * starting the time-wait timer, turning off the other
   2823 		 * standard timers.
   2824 		 */
   2825 		case TCPS_FIN_WAIT_2:
   2826 			tp->t_state = TCPS_TIME_WAIT;
   2827 			tcp_canceltimers(tp);
   2828 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2829 			soisdisconnected(so);
   2830 			break;
   2831 
   2832 		/*
   2833 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2834 		 */
   2835 		case TCPS_TIME_WAIT:
   2836 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2837 			break;
   2838 		}
   2839 	}
   2840 #ifdef TCP_DEBUG
   2841 	if (so->so_options & SO_DEBUG)
   2842 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2843 #endif
   2844 
   2845 	/*
   2846 	 * Return any desired output.
   2847 	 */
   2848 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   2849 		KERNEL_LOCK(1, NULL);
   2850 		(void)tcp_output(tp);
   2851 		KERNEL_UNLOCK_ONE(NULL);
   2852 	}
   2853 	m_freem(tcp_saveti);
   2854 
   2855 	if (tp->t_state == TCPS_TIME_WAIT
   2856 	    && (so->so_state & SS_NOFDREF)
   2857 	    && (tp->t_inpcb || af != AF_INET || af != AF_INET6)
   2858 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
   2859 	    && TAILQ_EMPTY(&tp->segq)
   2860 	    && vtw_add(af, tp)) {
   2861 		;
   2862 	}
   2863 	return;
   2864 
   2865 badsyn:
   2866 	/*
   2867 	 * Received a bad SYN.  Increment counters and dropwithreset.
   2868 	 */
   2869 	TCP_STATINC(TCP_STAT_BADSYN);
   2870 	tp = NULL;
   2871 	goto dropwithreset;
   2872 
   2873 dropafterack:
   2874 	/*
   2875 	 * Generate an ACK dropping incoming segment if it occupies
   2876 	 * sequence space, where the ACK reflects our state.
   2877 	 */
   2878 	if (tiflags & TH_RST)
   2879 		goto drop;
   2880 	goto dropafterack2;
   2881 
   2882 dropafterack_ratelim:
   2883 	/*
   2884 	 * We may want to rate-limit ACKs against SYN/RST attack.
   2885 	 */
   2886 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   2887 	    tcp_ackdrop_ppslim) == 0) {
   2888 		/* XXX stat */
   2889 		goto drop;
   2890 	}
   2891 
   2892 dropafterack2:
   2893 	m_freem(m);
   2894 	tp->t_flags |= TF_ACKNOW;
   2895 	KERNEL_LOCK(1, NULL);
   2896 	(void)tcp_output(tp);
   2897 	KERNEL_UNLOCK_ONE(NULL);
   2898 	m_freem(tcp_saveti);
   2899 	return;
   2900 
   2901 dropwithreset_ratelim:
   2902 	/*
   2903 	 * We may want to rate-limit RSTs in certain situations,
   2904 	 * particularly if we are sending an RST in response to
   2905 	 * an attempt to connect to or otherwise communicate with
   2906 	 * a port for which we have no socket.
   2907 	 */
   2908 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   2909 	    tcp_rst_ppslim) == 0) {
   2910 		/* XXX stat */
   2911 		goto drop;
   2912 	}
   2913 
   2914 dropwithreset:
   2915 	/*
   2916 	 * Generate a RST, dropping incoming segment.
   2917 	 * Make ACK acceptable to originator of segment.
   2918 	 */
   2919 	if (tiflags & TH_RST)
   2920 		goto drop;
   2921 	if (tiflags & TH_ACK) {
   2922 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2923 	} else {
   2924 		if (tiflags & TH_SYN)
   2925 			tlen++;
   2926 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2927 		    TH_RST|TH_ACK);
   2928 	}
   2929 	m_freem(tcp_saveti);
   2930 	return;
   2931 
   2932 badcsum:
   2933 drop:
   2934 	/*
   2935 	 * Drop space held by incoming segment and return.
   2936 	 */
   2937 	if (tp) {
   2938 		so = tp->t_inpcb->inp_socket;
   2939 #ifdef TCP_DEBUG
   2940 		if (so && (so->so_options & SO_DEBUG) != 0)
   2941 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   2942 #endif
   2943 	}
   2944 	m_freem(tcp_saveti);
   2945 	m_freem(m);
   2946 	return;
   2947 }
   2948 
   2949 #ifdef TCP_SIGNATURE
   2950 int
   2951 tcp_signature_apply(void *fstate, void *data, u_int len)
   2952 {
   2953 
   2954 	MD5Update(fstate, (u_char *)data, len);
   2955 	return (0);
   2956 }
   2957 
   2958 struct secasvar *
   2959 tcp_signature_getsav(struct mbuf *m)
   2960 {
   2961 	struct ip *ip;
   2962 	struct ip6_hdr *ip6;
   2963 
   2964 	ip = mtod(m, struct ip *);
   2965 	switch (ip->ip_v) {
   2966 	case 4:
   2967 		ip = mtod(m, struct ip *);
   2968 		ip6 = NULL;
   2969 		break;
   2970 	case 6:
   2971 		ip = NULL;
   2972 		ip6 = mtod(m, struct ip6_hdr *);
   2973 		break;
   2974 	default:
   2975 		return (NULL);
   2976 	}
   2977 
   2978 #ifdef IPSEC
   2979 	union sockaddr_union dst;
   2980 
   2981 	/* Extract the destination from the IP header in the mbuf. */
   2982 	memset(&dst, 0, sizeof(union sockaddr_union));
   2983 	if (ip != NULL) {
   2984 		dst.sa.sa_len = sizeof(struct sockaddr_in);
   2985 		dst.sa.sa_family = AF_INET;
   2986 		dst.sin.sin_addr = ip->ip_dst;
   2987 	} else {
   2988 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
   2989 		dst.sa.sa_family = AF_INET6;
   2990 		dst.sin6.sin6_addr = ip6->ip6_dst;
   2991 	}
   2992 
   2993 	/*
   2994 	 * Look up an SADB entry which matches the address of the peer.
   2995 	 */
   2996 	return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
   2997 #else
   2998 	return NULL;
   2999 #endif
   3000 }
   3001 
   3002 int
   3003 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   3004     struct secasvar *sav, char *sig)
   3005 {
   3006 	MD5_CTX ctx;
   3007 	struct ip *ip;
   3008 	struct ipovly *ipovly;
   3009 #ifdef INET6
   3010 	struct ip6_hdr *ip6;
   3011 	struct ip6_hdr_pseudo ip6pseudo;
   3012 #endif
   3013 	struct ippseudo ippseudo;
   3014 	struct tcphdr th0;
   3015 	int l, tcphdrlen;
   3016 
   3017 	if (sav == NULL)
   3018 		return (-1);
   3019 
   3020 	tcphdrlen = th->th_off * 4;
   3021 
   3022 	switch (mtod(m, struct ip *)->ip_v) {
   3023 	case 4:
   3024 		MD5Init(&ctx);
   3025 		ip = mtod(m, struct ip *);
   3026 		memset(&ippseudo, 0, sizeof(ippseudo));
   3027 		ipovly = (struct ipovly *)ip;
   3028 		ippseudo.ippseudo_src = ipovly->ih_src;
   3029 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   3030 		ippseudo.ippseudo_pad = 0;
   3031 		ippseudo.ippseudo_p = IPPROTO_TCP;
   3032 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   3033 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   3034 		break;
   3035 #if INET6
   3036 	case 6:
   3037 		MD5Init(&ctx);
   3038 		ip6 = mtod(m, struct ip6_hdr *);
   3039 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   3040 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   3041 		in6_clearscope(&ip6pseudo.ip6ph_src);
   3042 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   3043 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   3044 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   3045 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   3046 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   3047 		break;
   3048 #endif
   3049 	default:
   3050 		return (-1);
   3051 	}
   3052 
   3053 	th0 = *th;
   3054 	th0.th_sum = 0;
   3055 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   3056 
   3057 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   3058 	if (l > 0)
   3059 		m_apply(m, thoff + tcphdrlen,
   3060 		    m->m_pkthdr.len - thoff - tcphdrlen,
   3061 		    tcp_signature_apply, &ctx);
   3062 
   3063 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   3064 	MD5Final(sig, &ctx);
   3065 
   3066 	return (0);
   3067 }
   3068 #endif
   3069 
   3070 /*
   3071  * Parse and process tcp options.
   3072  *
   3073  * Returns -1 if this segment should be dropped.  (eg. wrong signature)
   3074  * Otherwise returns 0.
   3075  */
   3076 int
   3077 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt, struct tcphdr *th,
   3078     struct mbuf *m, int toff, struct tcp_opt_info *oi)
   3079 {
   3080 	u_int16_t mss;
   3081 	int opt, optlen = 0;
   3082 #ifdef TCP_SIGNATURE
   3083 	void *sigp = NULL;
   3084 	char sigbuf[TCP_SIGLEN];
   3085 	struct secasvar *sav = NULL;
   3086 #endif
   3087 
   3088 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   3089 		opt = cp[0];
   3090 		if (opt == TCPOPT_EOL)
   3091 			break;
   3092 		if (opt == TCPOPT_NOP)
   3093 			optlen = 1;
   3094 		else {
   3095 			if (cnt < 2)
   3096 				break;
   3097 			optlen = cp[1];
   3098 			if (optlen < 2 || optlen > cnt)
   3099 				break;
   3100 		}
   3101 		switch (opt) {
   3102 
   3103 		default:
   3104 			continue;
   3105 
   3106 		case TCPOPT_MAXSEG:
   3107 			if (optlen != TCPOLEN_MAXSEG)
   3108 				continue;
   3109 			if (!(th->th_flags & TH_SYN))
   3110 				continue;
   3111 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3112 				continue;
   3113 			memcpy(&mss, cp + 2, sizeof(mss));
   3114 			oi->maxseg = ntohs(mss);
   3115 			break;
   3116 
   3117 		case TCPOPT_WINDOW:
   3118 			if (optlen != TCPOLEN_WINDOW)
   3119 				continue;
   3120 			if (!(th->th_flags & TH_SYN))
   3121 				continue;
   3122 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3123 				continue;
   3124 			tp->t_flags |= TF_RCVD_SCALE;
   3125 			tp->requested_s_scale = cp[2];
   3126 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   3127 				char buf[INET6_ADDRSTRLEN];
   3128 				struct ip *ip = mtod(m, struct ip *);
   3129 #ifdef INET6
   3130 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
   3131 #endif
   3132 
   3133 				switch (ip->ip_v) {
   3134 				case 4:
   3135 					in_print(buf, sizeof(buf),
   3136 					    &ip->ip_src);
   3137 					break;
   3138 #ifdef INET6
   3139 				case 6:
   3140 					in6_print(buf, sizeof(buf),
   3141 					    &ip6->ip6_src);
   3142 					break;
   3143 #endif
   3144 				default:
   3145 					strlcpy(buf, "(unknown)", sizeof(buf));
   3146 					break;
   3147 				}
   3148 
   3149 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   3150 				    "assuming %d\n",
   3151 				    tp->requested_s_scale, buf,
   3152 				    TCP_MAX_WINSHIFT);
   3153 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   3154 			}
   3155 			break;
   3156 
   3157 		case TCPOPT_TIMESTAMP:
   3158 			if (optlen != TCPOLEN_TIMESTAMP)
   3159 				continue;
   3160 			oi->ts_present = 1;
   3161 			memcpy(&oi->ts_val, cp + 2, sizeof(oi->ts_val));
   3162 			NTOHL(oi->ts_val);
   3163 			memcpy(&oi->ts_ecr, cp + 6, sizeof(oi->ts_ecr));
   3164 			NTOHL(oi->ts_ecr);
   3165 
   3166 			if (!(th->th_flags & TH_SYN))
   3167 				continue;
   3168 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3169 				continue;
   3170 			/*
   3171 			 * A timestamp received in a SYN makes
   3172 			 * it ok to send timestamp requests and replies.
   3173 			 */
   3174 			tp->t_flags |= TF_RCVD_TSTMP;
   3175 			tp->ts_recent = oi->ts_val;
   3176 			tp->ts_recent_age = tcp_now;
   3177                         break;
   3178 
   3179 		case TCPOPT_SACK_PERMITTED:
   3180 			if (optlen != TCPOLEN_SACK_PERMITTED)
   3181 				continue;
   3182 			if (!(th->th_flags & TH_SYN))
   3183 				continue;
   3184 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3185 				continue;
   3186 			if (tcp_do_sack) {
   3187 				tp->t_flags |= TF_SACK_PERMIT;
   3188 				tp->t_flags |= TF_WILL_SACK;
   3189 			}
   3190 			break;
   3191 
   3192 		case TCPOPT_SACK:
   3193 			tcp_sack_option(tp, th, cp, optlen);
   3194 			break;
   3195 #ifdef TCP_SIGNATURE
   3196 		case TCPOPT_SIGNATURE:
   3197 			if (optlen != TCPOLEN_SIGNATURE)
   3198 				continue;
   3199 			if (sigp &&
   3200 			    !consttime_memequal(sigp, cp + 2, TCP_SIGLEN))
   3201 				return (-1);
   3202 
   3203 			sigp = sigbuf;
   3204 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   3205 			tp->t_flags |= TF_SIGNATURE;
   3206 			break;
   3207 #endif
   3208 		}
   3209 	}
   3210 
   3211 #ifndef TCP_SIGNATURE
   3212 	return 0;
   3213 #else
   3214 	if (tp->t_flags & TF_SIGNATURE) {
   3215 		sav = tcp_signature_getsav(m);
   3216 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   3217 			return (-1);
   3218 	}
   3219 
   3220 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
   3221 		goto out;
   3222 
   3223 	if (sigp) {
   3224 		char sig[TCP_SIGLEN];
   3225 
   3226 		tcp_fields_to_net(th);
   3227 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3228 			tcp_fields_to_host(th);
   3229 			goto out;
   3230 		}
   3231 		tcp_fields_to_host(th);
   3232 
   3233 		if (!consttime_memequal(sig, sigp, TCP_SIGLEN)) {
   3234 			TCP_STATINC(TCP_STAT_BADSIG);
   3235 			goto out;
   3236 		} else
   3237 			TCP_STATINC(TCP_STAT_GOODSIG);
   3238 
   3239 		key_sa_recordxfer(sav, m);
   3240 		KEY_SA_UNREF(&sav);
   3241 	}
   3242 	return 0;
   3243 out:
   3244 	if (sav != NULL)
   3245 		KEY_SA_UNREF(&sav);
   3246 	return -1;
   3247 #endif
   3248 }
   3249 
   3250 /*
   3251  * Pull out of band byte out of a segment so
   3252  * it doesn't appear in the user's data queue.
   3253  * It is still reflected in the segment length for
   3254  * sequencing purposes.
   3255  */
   3256 void
   3257 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3258     struct mbuf *m, int off)
   3259 {
   3260 	int cnt = off + th->th_urp - 1;
   3261 
   3262 	while (cnt >= 0) {
   3263 		if (m->m_len > cnt) {
   3264 			char *cp = mtod(m, char *) + cnt;
   3265 			struct tcpcb *tp = sototcpcb(so);
   3266 
   3267 			tp->t_iobc = *cp;
   3268 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3269 			memmove(cp, cp + 1, (unsigned)(m->m_len - cnt - 1));
   3270 			m->m_len--;
   3271 			return;
   3272 		}
   3273 		cnt -= m->m_len;
   3274 		m = m->m_next;
   3275 		if (m == NULL)
   3276 			break;
   3277 	}
   3278 	panic("tcp_pulloutofband");
   3279 }
   3280 
   3281 /*
   3282  * Collect new round-trip time estimate
   3283  * and update averages and current timeout.
   3284  *
   3285  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
   3286  * difference of two timestamps.
   3287  */
   3288 void
   3289 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3290 {
   3291 	int32_t delta;
   3292 
   3293 	TCP_STATINC(TCP_STAT_RTTUPDATED);
   3294 	if (tp->t_srtt != 0) {
   3295 		/*
   3296 		 * Compute the amount to add to srtt for smoothing,
   3297 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
   3298 		 * srtt is stored in 1/32 slow ticks, we conceptually
   3299 		 * shift left 5 bits, subtract srtt to get the
   3300 		 * difference, and then shift right by TCP_RTT_SHIFT
   3301 		 * (3) to obtain 1/8 of the difference.
   3302 		 */
   3303 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3304 		/*
   3305 		 * This can never happen, because delta's lowest
   3306 		 * possible value is 1/8 of t_srtt.  But if it does,
   3307 		 * set srtt to some reasonable value, here chosen
   3308 		 * as 1/8 tick.
   3309 		 */
   3310 		if ((tp->t_srtt += delta) <= 0)
   3311 			tp->t_srtt = 1 << 2;
   3312 		/*
   3313 		 * RFC2988 requires that rttvar be updated first.
   3314 		 * This code is compliant because "delta" is the old
   3315 		 * srtt minus the new observation (scaled).
   3316 		 *
   3317 		 * RFC2988 says:
   3318 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
   3319 		 *
   3320 		 * delta is in units of 1/32 ticks, and has then been
   3321 		 * divided by 8.  This is equivalent to being in 1/16s
   3322 		 * units and divided by 4.  Subtract from it 1/4 of
   3323 		 * the existing rttvar to form the (signed) amount to
   3324 		 * adjust.
   3325 		 */
   3326 		if (delta < 0)
   3327 			delta = -delta;
   3328 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3329 		/*
   3330 		 * As with srtt, this should never happen.  There is
   3331 		 * no support in RFC2988 for this operation.  But 1/4s
   3332 		 * as rttvar when faced with something arguably wrong
   3333 		 * is ok.
   3334 		 */
   3335 		if ((tp->t_rttvar += delta) <= 0)
   3336 			tp->t_rttvar = 1 << 2;
   3337 
   3338 		/*
   3339 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
   3340 		 * Problem is: it doesn't work.  Disabled by defaulting
   3341 		 * tcp_rttlocal to 0; see corresponding code in
   3342 		 * tcp_subr that selects local vs remote in a different way.
   3343 		 *
   3344 		 * The static branch prediction hint here should be removed
   3345 		 * when the rtt estimator is fixed and the rtt_enable code
   3346 		 * is turned back on.
   3347 		 */
   3348 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
   3349 		    && tp->t_srtt > tcp_msl_remote_threshold
   3350 		    && tp->t_msl  < tcp_msl_remote) {
   3351 			tp->t_msl = MIN(tcp_msl_remote, TCP_MAXMSL);
   3352 		}
   3353 	} else {
   3354 		/*
   3355 		 * This is the first measurement.  Per RFC2988, 2.2,
   3356 		 * set rtt=R and srtt=R/2.
   3357 		 * For srtt, storage representation is 1/32 ticks,
   3358 		 * so shift left by 5.
   3359 		 * For rttvar, storage representation is 1/16 ticks,
   3360 		 * So shift left by 4, but then right by 1 to halve.
   3361 		 */
   3362 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3363 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3364 	}
   3365 	tp->t_rtttime = 0;
   3366 	tp->t_rxtshift = 0;
   3367 
   3368 	/*
   3369 	 * the retransmit should happen at rtt + 4 * rttvar.
   3370 	 * Because of the way we do the smoothing, srtt and rttvar
   3371 	 * will each average +1/2 tick of bias.  When we compute
   3372 	 * the retransmit timer, we want 1/2 tick of rounding and
   3373 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3374 	 * firing of the timer.  The bias will give us exactly the
   3375 	 * 1.5 tick we need.  But, because the bias is
   3376 	 * statistical, we have to test that we don't drop below
   3377 	 * the minimum feasible timer (which is 2 ticks).
   3378 	 */
   3379 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3380 	    uimax(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3381 
   3382 	/*
   3383 	 * We received an ack for a packet that wasn't retransmitted;
   3384 	 * it is probably safe to discard any error indications we've
   3385 	 * received recently.  This isn't quite right, but close enough
   3386 	 * for now (a route might have failed after we sent a segment,
   3387 	 * and the return path might not be symmetrical).
   3388 	 */
   3389 	tp->t_softerror = 0;
   3390 }
   3391