tcp_input.c revision 1.440 1 /* $NetBSD: tcp_input.c,v 1.440 2024/07/05 04:31:54 rin Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74 * 2011 The NetBSD Foundation, Inc.
75 * All rights reserved.
76 *
77 * This code is derived from software contributed to The NetBSD Foundation
78 * by Coyote Point Systems, Inc.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81 * Facility, NASA Ames Research Center.
82 * This code is derived from software contributed to The NetBSD Foundation
83 * by Charles M. Hannum.
84 * This code is derived from software contributed to The NetBSD Foundation
85 * by Rui Paulo.
86 *
87 * Redistribution and use in source and binary forms, with or without
88 * modification, are permitted provided that the following conditions
89 * are met:
90 * 1. Redistributions of source code must retain the above copyright
91 * notice, this list of conditions and the following disclaimer.
92 * 2. Redistributions in binary form must reproduce the above copyright
93 * notice, this list of conditions and the following disclaimer in the
94 * documentation and/or other materials provided with the distribution.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.440 2024/07/05 04:31:54 rin Exp $");
142
143 #ifdef _KERNEL_OPT
144 #include "opt_inet.h"
145 #include "opt_ipsec.h"
146 #include "opt_inet_csum.h"
147 #include "opt_tcp_debug.h"
148 #endif
149
150 #include <sys/param.h>
151 #include <sys/systm.h>
152 #include <sys/malloc.h>
153 #include <sys/mbuf.h>
154 #include <sys/protosw.h>
155 #include <sys/socket.h>
156 #include <sys/socketvar.h>
157 #include <sys/errno.h>
158 #include <sys/syslog.h>
159 #include <sys/pool.h>
160 #include <sys/domain.h>
161 #include <sys/kernel.h>
162 #ifdef TCP_SIGNATURE
163 #include <sys/md5.h>
164 #endif
165 #include <sys/lwp.h> /* for lwp0 */
166 #include <sys/cprng.h>
167
168 #include <net/if.h>
169 #include <net/if_types.h>
170
171 #include <netinet/in.h>
172 #include <netinet/in_systm.h>
173 #include <netinet/ip.h>
174 #include <netinet/in_pcb.h>
175 #include <netinet/in_var.h>
176 #include <netinet/ip_var.h>
177 #include <netinet/in_offload.h>
178
179 #if NARP > 0
180 #include <netinet/if_inarp.h>
181 #endif
182 #ifdef INET6
183 #include <netinet/ip6.h>
184 #include <netinet6/ip6_var.h>
185 #include <netinet6/in6_pcb.h>
186 #include <netinet6/ip6_var.h>
187 #include <netinet6/in6_var.h>
188 #include <netinet/icmp6.h>
189 #include <netinet6/nd6.h>
190 #ifdef TCP_SIGNATURE
191 #include <netinet6/scope6_var.h>
192 #endif
193 #endif
194
195 #ifndef INET6
196 #include <netinet/ip6.h>
197 #endif
198
199 #include <netinet/tcp.h>
200 #include <netinet/tcp_fsm.h>
201 #include <netinet/tcp_seq.h>
202 #include <netinet/tcp_timer.h>
203 #include <netinet/tcp_var.h>
204 #include <netinet/tcp_private.h>
205 #include <netinet/tcp_congctl.h>
206 #include <netinet/tcp_debug.h>
207 #include <netinet/tcp_syncache.h>
208
209 #ifdef INET6
210 #include "faith.h"
211 #if defined(NFAITH) && NFAITH > 0
212 #include <net/if_faith.h>
213 #endif
214 #endif
215
216 #ifdef IPSEC
217 #include <netipsec/ipsec.h>
218 #include <netipsec/key.h>
219 #ifdef INET6
220 #include <netipsec/ipsec6.h>
221 #endif
222 #endif /* IPSEC*/
223
224 #include <netinet/tcp_vtw.h>
225
226 int tcprexmtthresh = 3;
227 int tcp_log_refused;
228
229 int tcp_do_autorcvbuf = 1;
230 int tcp_autorcvbuf_inc = 16 * 1024;
231 int tcp_autorcvbuf_max = 256 * 1024;
232 int tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
233
234 static int tcp_rst_ppslim_count = 0;
235 static struct timeval tcp_rst_ppslim_last;
236 static int tcp_ackdrop_ppslim_count = 0;
237 static struct timeval tcp_ackdrop_ppslim_last;
238
239 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
240
241 /* for modulo comparisons of timestamps */
242 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
243 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
244
245 /*
246 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
247 */
248 static void
249 nd_hint(struct tcpcb *tp)
250 {
251 struct route *ro = NULL;
252 struct rtentry *rt;
253
254 if (tp == NULL)
255 return;
256
257 ro = &tp->t_inpcb->inp_route;
258 if (ro == NULL)
259 return;
260
261 rt = rtcache_validate(ro);
262 if (rt == NULL)
263 return;
264
265 switch (tp->t_family) {
266 #if NARP > 0
267 case AF_INET:
268 arp_nud_hint(rt);
269 break;
270 #endif
271 #ifdef INET6
272 case AF_INET6:
273 nd6_nud_hint(rt);
274 break;
275 #endif
276 }
277
278 rtcache_unref(rt, ro);
279 }
280
281 /*
282 * Compute ACK transmission behavior. Delay the ACK unless
283 * we have already delayed an ACK (must send an ACK every two segments).
284 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
285 * option is enabled.
286 */
287 static void
288 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
289 {
290
291 if (tp->t_flags & TF_DELACK ||
292 (tcp_ack_on_push && th->th_flags & TH_PUSH))
293 tp->t_flags |= TF_ACKNOW;
294 else
295 TCP_SET_DELACK(tp);
296 }
297
298 static void
299 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
300 {
301
302 /*
303 * If we had a pending ICMP message that refers to data that have
304 * just been acknowledged, disregard the recorded ICMP message.
305 */
306 if ((tp->t_flags & TF_PMTUD_PEND) &&
307 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
308 tp->t_flags &= ~TF_PMTUD_PEND;
309
310 /*
311 * Keep track of the largest chunk of data
312 * acknowledged since last PMTU update
313 */
314 if (tp->t_pmtud_mss_acked < acked)
315 tp->t_pmtud_mss_acked = acked;
316 }
317
318 /*
319 * Convert TCP protocol fields to host order for easier processing.
320 */
321 static void
322 tcp_fields_to_host(struct tcphdr *th)
323 {
324
325 NTOHL(th->th_seq);
326 NTOHL(th->th_ack);
327 NTOHS(th->th_win);
328 NTOHS(th->th_urp);
329 }
330
331 /*
332 * ... and reverse the above.
333 */
334 static void
335 tcp_fields_to_net(struct tcphdr *th)
336 {
337
338 HTONL(th->th_seq);
339 HTONL(th->th_ack);
340 HTONS(th->th_win);
341 HTONS(th->th_urp);
342 }
343
344 static void
345 tcp_urp_drop(struct tcphdr *th, int todrop, int *tiflags)
346 {
347 if (th->th_urp > todrop) {
348 th->th_urp -= todrop;
349 } else {
350 *tiflags &= ~TH_URG;
351 th->th_urp = 0;
352 }
353 }
354
355 #ifdef TCP_CSUM_COUNTERS
356 #include <sys/device.h>
357
358 extern struct evcnt tcp_hwcsum_ok;
359 extern struct evcnt tcp_hwcsum_bad;
360 extern struct evcnt tcp_hwcsum_data;
361 extern struct evcnt tcp_swcsum;
362 #if defined(INET6)
363 extern struct evcnt tcp6_hwcsum_ok;
364 extern struct evcnt tcp6_hwcsum_bad;
365 extern struct evcnt tcp6_hwcsum_data;
366 extern struct evcnt tcp6_swcsum;
367 #endif /* defined(INET6) */
368
369 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
370
371 #else
372
373 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
374
375 #endif /* TCP_CSUM_COUNTERS */
376
377 #ifdef TCP_REASS_COUNTERS
378 #include <sys/device.h>
379
380 extern struct evcnt tcp_reass_;
381 extern struct evcnt tcp_reass_empty;
382 extern struct evcnt tcp_reass_iteration[8];
383 extern struct evcnt tcp_reass_prependfirst;
384 extern struct evcnt tcp_reass_prepend;
385 extern struct evcnt tcp_reass_insert;
386 extern struct evcnt tcp_reass_inserttail;
387 extern struct evcnt tcp_reass_append;
388 extern struct evcnt tcp_reass_appendtail;
389 extern struct evcnt tcp_reass_overlaptail;
390 extern struct evcnt tcp_reass_overlapfront;
391 extern struct evcnt tcp_reass_segdup;
392 extern struct evcnt tcp_reass_fragdup;
393
394 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
395
396 #else
397
398 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
399
400 #endif /* TCP_REASS_COUNTERS */
401
402 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
403 int);
404
405 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
406 #ifdef INET6
407 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
408 #endif
409
410 #if defined(MBUFTRACE)
411 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
412 #endif /* defined(MBUFTRACE) */
413
414 static struct pool tcpipqent_pool;
415
416 void
417 tcpipqent_init(void)
418 {
419
420 pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
421 NULL, IPL_VM);
422 }
423
424 struct ipqent *
425 tcpipqent_alloc(void)
426 {
427 struct ipqent *ipqe;
428 int s;
429
430 s = splvm();
431 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
432 splx(s);
433
434 return ipqe;
435 }
436
437 void
438 tcpipqent_free(struct ipqent *ipqe)
439 {
440 int s;
441
442 s = splvm();
443 pool_put(&tcpipqent_pool, ipqe);
444 splx(s);
445 }
446
447 /*
448 * Insert segment ti into reassembly queue of tcp with
449 * control block tp. Return TH_FIN if reassembly now includes
450 * a segment with FIN.
451 */
452 static int
453 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int tlen)
454 {
455 struct ipqent *p, *q, *nq, *tiqe = NULL;
456 struct socket *so = NULL;
457 int pkt_flags;
458 tcp_seq pkt_seq;
459 unsigned pkt_len;
460 u_long rcvpartdupbyte = 0;
461 u_long rcvoobyte;
462 #ifdef TCP_REASS_COUNTERS
463 u_int count = 0;
464 #endif
465 net_stat_ref_t tcps;
466
467 so = tp->t_inpcb->inp_socket;
468
469 TCP_REASS_LOCK_CHECK(tp);
470
471 /*
472 * Call with th==NULL after become established to
473 * force pre-ESTABLISHED data up to user socket.
474 */
475 if (th == NULL)
476 goto present;
477
478 m_claimm(m, &tcp_reass_mowner);
479
480 rcvoobyte = tlen;
481 /*
482 * Copy these to local variables because the TCP header gets munged
483 * while we are collapsing mbufs.
484 */
485 pkt_seq = th->th_seq;
486 pkt_len = tlen;
487 pkt_flags = th->th_flags;
488
489 TCP_REASS_COUNTER_INCR(&tcp_reass_);
490
491 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
492 /*
493 * When we miss a packet, the vast majority of time we get
494 * packets that follow it in order. So optimize for that.
495 */
496 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
497 p->ipqe_len += pkt_len;
498 p->ipqe_flags |= pkt_flags;
499 m_cat(p->ipqe_m, m);
500 m = NULL;
501 tiqe = p;
502 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
503 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
504 goto skip_replacement;
505 }
506 /*
507 * While we're here, if the pkt is completely beyond
508 * anything we have, just insert it at the tail.
509 */
510 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
511 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
512 goto insert_it;
513 }
514 }
515
516 q = TAILQ_FIRST(&tp->segq);
517
518 if (q != NULL) {
519 /*
520 * If this segment immediately precedes the first out-of-order
521 * block, simply slap the segment in front of it and (mostly)
522 * skip the complicated logic.
523 */
524 if (pkt_seq + pkt_len == q->ipqe_seq) {
525 q->ipqe_seq = pkt_seq;
526 q->ipqe_len += pkt_len;
527 q->ipqe_flags |= pkt_flags;
528 m_cat(m, q->ipqe_m);
529 q->ipqe_m = m;
530 tiqe = q;
531 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
532 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
533 goto skip_replacement;
534 }
535 } else {
536 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
537 }
538
539 /*
540 * Find a segment which begins after this one does.
541 */
542 for (p = NULL; q != NULL; q = nq) {
543 nq = TAILQ_NEXT(q, ipqe_q);
544 #ifdef TCP_REASS_COUNTERS
545 count++;
546 #endif
547
548 /*
549 * If the received segment is just right after this
550 * fragment, merge the two together and then check
551 * for further overlaps.
552 */
553 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
554 pkt_len += q->ipqe_len;
555 pkt_flags |= q->ipqe_flags;
556 pkt_seq = q->ipqe_seq;
557 m_cat(q->ipqe_m, m);
558 m = q->ipqe_m;
559 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
560 goto free_ipqe;
561 }
562
563 /*
564 * If the received segment is completely past this
565 * fragment, we need to go to the next fragment.
566 */
567 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
568 p = q;
569 continue;
570 }
571
572 /*
573 * If the fragment is past the received segment,
574 * it (or any following) can't be concatenated.
575 */
576 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
577 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
578 break;
579 }
580
581 /*
582 * We've received all the data in this segment before.
583 * Mark it as a duplicate and return.
584 */
585 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
586 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
587 tcps = TCP_STAT_GETREF();
588 _NET_STATINC_REF(tcps, TCP_STAT_RCVDUPPACK);
589 _NET_STATADD_REF(tcps, TCP_STAT_RCVDUPBYTE, pkt_len);
590 TCP_STAT_PUTREF();
591 tcp_new_dsack(tp, pkt_seq, pkt_len);
592 m_freem(m);
593 if (tiqe != NULL) {
594 tcpipqent_free(tiqe);
595 }
596 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
597 goto out;
598 }
599
600 /*
601 * Received segment completely overlaps this fragment
602 * so we drop the fragment (this keeps the temporal
603 * ordering of segments correct).
604 */
605 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
606 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
607 rcvpartdupbyte += q->ipqe_len;
608 m_freem(q->ipqe_m);
609 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
610 goto free_ipqe;
611 }
612
613 /*
614 * Received segment extends past the end of the fragment.
615 * Drop the overlapping bytes, merge the fragment and
616 * segment, and treat as a longer received packet.
617 */
618 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
619 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
620 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
621 m_adj(m, overlap);
622 rcvpartdupbyte += overlap;
623 m_cat(q->ipqe_m, m);
624 m = q->ipqe_m;
625 pkt_seq = q->ipqe_seq;
626 pkt_len += q->ipqe_len - overlap;
627 rcvoobyte -= overlap;
628 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
629 goto free_ipqe;
630 }
631
632 /*
633 * Received segment extends past the front of the fragment.
634 * Drop the overlapping bytes on the received packet. The
635 * packet will then be concatenated with this fragment a
636 * bit later.
637 */
638 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
639 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
640 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
641 m_adj(m, -overlap);
642 pkt_len -= overlap;
643 rcvpartdupbyte += overlap;
644 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
645 rcvoobyte -= overlap;
646 }
647
648 /*
649 * If the received segment immediately precedes this
650 * fragment then tack the fragment onto this segment
651 * and reinsert the data.
652 */
653 if (q->ipqe_seq == pkt_seq + pkt_len) {
654 pkt_len += q->ipqe_len;
655 pkt_flags |= q->ipqe_flags;
656 m_cat(m, q->ipqe_m);
657 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
658 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
659 tp->t_segqlen--;
660 KASSERT(tp->t_segqlen >= 0);
661 KASSERT(tp->t_segqlen != 0 ||
662 (TAILQ_EMPTY(&tp->segq) &&
663 TAILQ_EMPTY(&tp->timeq)));
664 if (tiqe == NULL) {
665 tiqe = q;
666 } else {
667 tcpipqent_free(q);
668 }
669 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
670 break;
671 }
672
673 /*
674 * If the fragment is before the segment, remember it.
675 * When this loop is terminated, p will contain the
676 * pointer to the fragment that is right before the
677 * received segment.
678 */
679 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
680 p = q;
681
682 continue;
683
684 /*
685 * This is a common operation. It also will allow
686 * to save doing a malloc/free in most instances.
687 */
688 free_ipqe:
689 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
690 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
691 tp->t_segqlen--;
692 KASSERT(tp->t_segqlen >= 0);
693 KASSERT(tp->t_segqlen != 0 ||
694 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
695 if (tiqe == NULL) {
696 tiqe = q;
697 } else {
698 tcpipqent_free(q);
699 }
700 }
701
702 #ifdef TCP_REASS_COUNTERS
703 if (count > 7)
704 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
705 else if (count > 0)
706 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
707 #endif
708
709 insert_it:
710 /*
711 * Allocate a new queue entry (block) since the received segment
712 * did not collapse onto any other out-of-order block. If it had
713 * collapsed, tiqe would not be NULL and we would be reusing it.
714 *
715 * If the allocation fails, drop the packet.
716 */
717 if (tiqe == NULL) {
718 tiqe = tcpipqent_alloc();
719 if (tiqe == NULL) {
720 TCP_STATINC(TCP_STAT_RCVMEMDROP);
721 m_freem(m);
722 goto out;
723 }
724 }
725
726 /*
727 * Update the counters.
728 */
729 tp->t_rcvoopack++;
730 tcps = TCP_STAT_GETREF();
731 _NET_STATINC_REF(tcps, TCP_STAT_RCVOOPACK);
732 _NET_STATADD_REF(tcps, TCP_STAT_RCVOOBYTE, rcvoobyte);
733 if (rcvpartdupbyte) {
734 _NET_STATINC_REF(tcps, TCP_STAT_RCVPARTDUPPACK);
735 _NET_STATADD_REF(tcps, TCP_STAT_RCVPARTDUPBYTE,
736 rcvpartdupbyte);
737 }
738 TCP_STAT_PUTREF();
739
740 /*
741 * Insert the new fragment queue entry into both queues.
742 */
743 tiqe->ipqe_m = m;
744 tiqe->ipqe_seq = pkt_seq;
745 tiqe->ipqe_len = pkt_len;
746 tiqe->ipqe_flags = pkt_flags;
747 if (p == NULL) {
748 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
749 } else {
750 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
751 }
752 tp->t_segqlen++;
753
754 skip_replacement:
755 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
756
757 present:
758 /*
759 * Present data to user, advancing rcv_nxt through
760 * completed sequence space.
761 */
762 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
763 goto out;
764 q = TAILQ_FIRST(&tp->segq);
765 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
766 goto out;
767 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
768 goto out;
769
770 tp->rcv_nxt += q->ipqe_len;
771 pkt_flags = q->ipqe_flags & TH_FIN;
772 nd_hint(tp);
773
774 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
775 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
776 tp->t_segqlen--;
777 KASSERT(tp->t_segqlen >= 0);
778 KASSERT(tp->t_segqlen != 0 ||
779 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
780 if (so->so_state & SS_CANTRCVMORE)
781 m_freem(q->ipqe_m);
782 else
783 sbappendstream(&so->so_rcv, q->ipqe_m);
784 tcpipqent_free(q);
785 TCP_REASS_UNLOCK(tp);
786 sorwakeup(so);
787 return pkt_flags;
788
789 out:
790 TCP_REASS_UNLOCK(tp);
791 return 0;
792 }
793
794 #ifdef INET6
795 int
796 tcp6_input(struct mbuf **mp, int *offp, int proto)
797 {
798 struct mbuf *m = *mp;
799
800 /*
801 * draft-itojun-ipv6-tcp-to-anycast
802 * better place to put this in?
803 */
804 if (m->m_flags & M_ANYCAST6) {
805 struct ip6_hdr *ip6;
806 if (m->m_len < sizeof(struct ip6_hdr)) {
807 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
808 TCP_STATINC(TCP_STAT_RCVSHORT);
809 return IPPROTO_DONE;
810 }
811 }
812 ip6 = mtod(m, struct ip6_hdr *);
813 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
814 (char *)&ip6->ip6_dst - (char *)ip6);
815 return IPPROTO_DONE;
816 }
817
818 tcp_input(m, *offp, proto);
819 return IPPROTO_DONE;
820 }
821 #endif
822
823 static void
824 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
825 {
826 char src[INET_ADDRSTRLEN];
827 char dst[INET_ADDRSTRLEN];
828
829 if (ip) {
830 in_print(src, sizeof(src), &ip->ip_src);
831 in_print(dst, sizeof(dst), &ip->ip_dst);
832 } else {
833 strlcpy(src, "(unknown)", sizeof(src));
834 strlcpy(dst, "(unknown)", sizeof(dst));
835 }
836 log(LOG_INFO,
837 "Connection attempt to TCP %s:%d from %s:%d\n",
838 dst, ntohs(th->th_dport),
839 src, ntohs(th->th_sport));
840 }
841
842 #ifdef INET6
843 static void
844 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
845 {
846 char src[INET6_ADDRSTRLEN];
847 char dst[INET6_ADDRSTRLEN];
848
849 if (ip6) {
850 in6_print(src, sizeof(src), &ip6->ip6_src);
851 in6_print(dst, sizeof(dst), &ip6->ip6_dst);
852 } else {
853 strlcpy(src, "(unknown v6)", sizeof(src));
854 strlcpy(dst, "(unknown v6)", sizeof(dst));
855 }
856 log(LOG_INFO,
857 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
858 dst, ntohs(th->th_dport),
859 src, ntohs(th->th_sport));
860 }
861 #endif
862
863 /*
864 * Checksum extended TCP header and data.
865 */
866 int
867 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
868 int toff, int off, int tlen)
869 {
870 struct ifnet *rcvif;
871 int s;
872
873 /*
874 * XXX it's better to record and check if this mbuf is
875 * already checked.
876 */
877
878 rcvif = m_get_rcvif(m, &s);
879 if (__predict_false(rcvif == NULL))
880 goto badcsum; /* XXX */
881
882 switch (af) {
883 case AF_INET:
884 switch (m->m_pkthdr.csum_flags &
885 ((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
886 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
887 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
888 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
889 goto badcsum;
890
891 case M_CSUM_TCPv4|M_CSUM_DATA: {
892 u_int32_t hw_csum = m->m_pkthdr.csum_data;
893
894 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
895 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
896 const struct ip *ip =
897 mtod(m, const struct ip *);
898
899 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
900 ip->ip_dst.s_addr,
901 htons(hw_csum + tlen + off + IPPROTO_TCP));
902 }
903 if ((hw_csum ^ 0xffff) != 0)
904 goto badcsum;
905 break;
906 }
907
908 case M_CSUM_TCPv4:
909 /* Checksum was okay. */
910 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
911 break;
912
913 default:
914 /*
915 * Must compute it ourselves. Maybe skip checksum
916 * on loopback interfaces.
917 */
918 if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
919 tcp_do_loopback_cksum)) {
920 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
921 if (in4_cksum(m, IPPROTO_TCP, toff,
922 tlen + off) != 0)
923 goto badcsum;
924 }
925 break;
926 }
927 break;
928
929 #ifdef INET6
930 case AF_INET6:
931 switch (m->m_pkthdr.csum_flags &
932 ((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
933 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
934 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
935 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
936 goto badcsum;
937
938 #if 0 /* notyet */
939 case M_CSUM_TCPv6|M_CSUM_DATA:
940 #endif
941
942 case M_CSUM_TCPv6:
943 /* Checksum was okay. */
944 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
945 break;
946
947 default:
948 /*
949 * Must compute it ourselves. Maybe skip checksum
950 * on loopback interfaces.
951 */
952 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
953 tcp_do_loopback_cksum)) {
954 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
955 if (in6_cksum(m, IPPROTO_TCP, toff,
956 tlen + off) != 0)
957 goto badcsum;
958 }
959 }
960 break;
961 #endif /* INET6 */
962 }
963 m_put_rcvif(rcvif, &s);
964
965 return 0;
966
967 badcsum:
968 m_put_rcvif(rcvif, &s);
969 TCP_STATINC(TCP_STAT_RCVBADSUM);
970 return -1;
971 }
972
973 /*
974 * When a packet arrives addressed to a vestigial tcpbp, we
975 * nevertheless have to respond to it per the spec.
976 *
977 * This code is duplicated from the one in tcp_input().
978 */
979 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
980 struct mbuf *m, int tlen)
981 {
982 int tiflags;
983 int todrop;
984 uint32_t t_flags = 0;
985 net_stat_ref_t tcps;
986
987 tiflags = th->th_flags;
988 todrop = vp->rcv_nxt - th->th_seq;
989
990 if (todrop > 0) {
991 if (tiflags & TH_SYN) {
992 tiflags &= ~TH_SYN;
993 th->th_seq++;
994 tcp_urp_drop(th, 1, &tiflags);
995 todrop--;
996 }
997 if (todrop > tlen ||
998 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
999 /*
1000 * Any valid FIN or RST must be to the left of the
1001 * window. At this point the FIN or RST must be a
1002 * duplicate or out of sequence; drop it.
1003 */
1004 if (tiflags & TH_RST)
1005 goto drop;
1006 tiflags &= ~(TH_FIN|TH_RST);
1007
1008 /*
1009 * Send an ACK to resynchronize and drop any data.
1010 * But keep on processing for RST or ACK.
1011 */
1012 t_flags |= TF_ACKNOW;
1013 todrop = tlen;
1014 tcps = TCP_STAT_GETREF();
1015 _NET_STATINC_REF(tcps, TCP_STAT_RCVDUPPACK);
1016 _NET_STATADD_REF(tcps, TCP_STAT_RCVDUPBYTE, todrop);
1017 TCP_STAT_PUTREF();
1018 } else if ((tiflags & TH_RST) &&
1019 th->th_seq != vp->rcv_nxt) {
1020 /*
1021 * Test for reset before adjusting the sequence
1022 * number for overlapping data.
1023 */
1024 goto dropafterack_ratelim;
1025 } else {
1026 tcps = TCP_STAT_GETREF();
1027 _NET_STATINC_REF(tcps, TCP_STAT_RCVPARTDUPPACK);
1028 _NET_STATADD_REF(tcps, TCP_STAT_RCVPARTDUPBYTE,
1029 todrop);
1030 TCP_STAT_PUTREF();
1031 }
1032
1033 // tcp_new_dsack(tp, th->th_seq, todrop);
1034 // hdroptlen += todrop; /*drop from head afterwards*/
1035
1036 th->th_seq += todrop;
1037 tlen -= todrop;
1038 tcp_urp_drop(th, todrop, &tiflags);
1039 }
1040
1041 /*
1042 * If new data are received on a connection after the
1043 * user processes are gone, then RST the other end.
1044 */
1045 if (tlen) {
1046 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1047 goto dropwithreset;
1048 }
1049
1050 /*
1051 * If segment ends after window, drop trailing data
1052 * (and PUSH and FIN); if nothing left, just ACK.
1053 */
1054 todrop = (th->th_seq + tlen) - (vp->rcv_nxt + vp->rcv_wnd);
1055
1056 if (todrop > 0) {
1057 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1058 if (todrop >= tlen) {
1059 /*
1060 * The segment actually starts after the window.
1061 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1062 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1063 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1064 */
1065 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1066
1067 /*
1068 * If a new connection request is received
1069 * while in TIME_WAIT, drop the old connection
1070 * and start over if the sequence numbers
1071 * are above the previous ones.
1072 */
1073 if ((tiflags & TH_SYN) &&
1074 SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1075 /*
1076 * We only support this in the !NOFDREF case, which
1077 * is to say: not here.
1078 */
1079 goto dropwithreset;
1080 }
1081
1082 /*
1083 * If window is closed can only take segments at
1084 * window edge, and have to drop data and PUSH from
1085 * incoming segments. Continue processing, but
1086 * remember to ack. Otherwise, drop segment
1087 * and (if not RST) ack.
1088 */
1089 if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1090 t_flags |= TF_ACKNOW;
1091 TCP_STATINC(TCP_STAT_RCVWINPROBE);
1092 } else {
1093 goto dropafterack;
1094 }
1095 } else {
1096 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1097 }
1098 m_adj(m, -todrop);
1099 tlen -= todrop;
1100 tiflags &= ~(TH_PUSH|TH_FIN);
1101 }
1102
1103 if (tiflags & TH_RST) {
1104 if (th->th_seq != vp->rcv_nxt)
1105 goto dropafterack_ratelim;
1106
1107 vtw_del(vp->ctl, vp->vtw);
1108 goto drop;
1109 }
1110
1111 /*
1112 * If the ACK bit is off we drop the segment and return.
1113 */
1114 if ((tiflags & TH_ACK) == 0) {
1115 if (t_flags & TF_ACKNOW)
1116 goto dropafterack;
1117 goto drop;
1118 }
1119
1120 /*
1121 * In TIME_WAIT state the only thing that should arrive
1122 * is a retransmission of the remote FIN. Acknowledge
1123 * it and restart the finack timer.
1124 */
1125 vtw_restart(vp);
1126 goto dropafterack;
1127
1128 dropafterack:
1129 /*
1130 * Generate an ACK dropping incoming segment if it occupies
1131 * sequence space, where the ACK reflects our state.
1132 */
1133 if (tiflags & TH_RST)
1134 goto drop;
1135 goto dropafterack2;
1136
1137 dropafterack_ratelim:
1138 /*
1139 * We may want to rate-limit ACKs against SYN/RST attack.
1140 */
1141 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1142 tcp_ackdrop_ppslim) == 0) {
1143 /* XXX stat */
1144 goto drop;
1145 }
1146 /* ...fall into dropafterack2... */
1147
1148 dropafterack2:
1149 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack, TH_ACK);
1150 return;
1151
1152 dropwithreset:
1153 /*
1154 * Generate a RST, dropping incoming segment.
1155 * Make ACK acceptable to originator of segment.
1156 */
1157 if (tiflags & TH_RST)
1158 goto drop;
1159
1160 if (tiflags & TH_ACK) {
1161 tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1162 } else {
1163 if (tiflags & TH_SYN)
1164 ++tlen;
1165 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1166 TH_RST|TH_ACK);
1167 }
1168 return;
1169 drop:
1170 m_freem(m);
1171 }
1172
1173 /*
1174 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1175 */
1176 void
1177 tcp_input(struct mbuf *m, int off, int proto)
1178 {
1179 struct tcphdr *th;
1180 struct ip *ip;
1181 struct inpcb *inp;
1182 #ifdef INET6
1183 struct ip6_hdr *ip6;
1184 #endif
1185 u_int8_t *optp = NULL;
1186 int optlen = 0;
1187 int len, tlen, hdroptlen = 0;
1188 struct tcpcb *tp = NULL;
1189 int tiflags;
1190 struct socket *so = NULL;
1191 int todrop, acked, ourfinisacked, needoutput = 0;
1192 bool dupseg;
1193 #ifdef TCP_DEBUG
1194 short ostate = 0;
1195 #endif
1196 u_long tiwin;
1197 struct tcp_opt_info opti;
1198 int thlen, iphlen;
1199 int af; /* af on the wire */
1200 struct mbuf *tcp_saveti = NULL;
1201 uint32_t ts_rtt;
1202 uint8_t iptos;
1203 net_stat_ref_t tcps;
1204 vestigial_inpcb_t vestige;
1205
1206 vestige.valid = 0;
1207
1208 MCLAIM(m, &tcp_rx_mowner);
1209
1210 TCP_STATINC(TCP_STAT_RCVTOTAL);
1211
1212 memset(&opti, 0, sizeof(opti));
1213 opti.ts_present = 0;
1214 opti.maxseg = 0;
1215
1216 /*
1217 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1218 *
1219 * TCP is, by definition, unicast, so we reject all
1220 * multicast outright.
1221 *
1222 * Note, there are additional src/dst address checks in
1223 * the AF-specific code below.
1224 */
1225 if (m->m_flags & (M_BCAST|M_MCAST)) {
1226 /* XXX stat */
1227 goto drop;
1228 }
1229 #ifdef INET6
1230 if (m->m_flags & M_ANYCAST6) {
1231 /* XXX stat */
1232 goto drop;
1233 }
1234 #endif
1235
1236 M_REGION_GET(th, struct tcphdr *, m, off, sizeof(struct tcphdr));
1237 if (th == NULL) {
1238 TCP_STATINC(TCP_STAT_RCVSHORT);
1239 return;
1240 }
1241
1242 /*
1243 * Enforce alignment requirements that are violated in
1244 * some cases, see kern/50766 for details.
1245 */
1246 if (ACCESSIBLE_POINTER(th, struct tcphdr) == 0) {
1247 m = m_copyup(m, off + sizeof(struct tcphdr), 0);
1248 if (m == NULL) {
1249 TCP_STATINC(TCP_STAT_RCVSHORT);
1250 return;
1251 }
1252 th = (struct tcphdr *)(mtod(m, char *) + off);
1253 }
1254 KASSERT(ACCESSIBLE_POINTER(th, struct tcphdr));
1255
1256 /*
1257 * Get IP and TCP header.
1258 * Note: IP leaves IP header in first mbuf.
1259 */
1260 ip = mtod(m, struct ip *);
1261 #ifdef INET6
1262 ip6 = mtod(m, struct ip6_hdr *);
1263 #endif
1264 switch (ip->ip_v) {
1265 case 4:
1266 af = AF_INET;
1267 iphlen = sizeof(struct ip);
1268
1269 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1270 in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
1271 goto drop;
1272
1273 /* We do the checksum after PCB lookup... */
1274 len = ntohs(ip->ip_len);
1275 tlen = len - off;
1276 iptos = ip->ip_tos;
1277 break;
1278 #ifdef INET6
1279 case 6:
1280 iphlen = sizeof(struct ip6_hdr);
1281 af = AF_INET6;
1282
1283 /*
1284 * Be proactive about unspecified IPv6 address in source.
1285 * As we use all-zero to indicate unbounded/unconnected pcb,
1286 * unspecified IPv6 address can be used to confuse us.
1287 *
1288 * Note that packets with unspecified IPv6 destination is
1289 * already dropped in ip6_input.
1290 */
1291 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1292 /* XXX stat */
1293 goto drop;
1294 }
1295
1296 /*
1297 * Make sure destination address is not multicast.
1298 * Source address checked in ip6_input().
1299 */
1300 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1301 /* XXX stat */
1302 goto drop;
1303 }
1304
1305 /* We do the checksum after PCB lookup... */
1306 len = m->m_pkthdr.len;
1307 tlen = len - off;
1308 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1309 break;
1310 #endif
1311 default:
1312 m_freem(m);
1313 return;
1314 }
1315
1316
1317 /*
1318 * Check that TCP offset makes sense, pull out TCP options and
1319 * adjust length.
1320 */
1321 thlen = th->th_off << 2;
1322 if (thlen < sizeof(struct tcphdr) || thlen > tlen) {
1323 TCP_STATINC(TCP_STAT_RCVBADOFF);
1324 goto drop;
1325 }
1326 tlen -= thlen;
1327
1328 if (thlen > sizeof(struct tcphdr)) {
1329 M_REGION_GET(th, struct tcphdr *, m, off, thlen);
1330 if (th == NULL) {
1331 TCP_STATINC(TCP_STAT_RCVSHORT);
1332 return;
1333 }
1334 KASSERT(ACCESSIBLE_POINTER(th, struct tcphdr));
1335 optlen = thlen - sizeof(struct tcphdr);
1336 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1337
1338 /*
1339 * Do quick retrieval of timestamp options.
1340 *
1341 * If timestamp is the only option and it's formatted as
1342 * recommended in RFC 1323 appendix A, we quickly get the
1343 * values now and don't bother calling tcp_dooptions(),
1344 * etc.
1345 */
1346 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1347 (optlen > TCPOLEN_TSTAMP_APPA &&
1348 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1349 be32dec(optp) == TCPOPT_TSTAMP_HDR &&
1350 (th->th_flags & TH_SYN) == 0) {
1351 opti.ts_present = 1;
1352 opti.ts_val = be32dec(optp + 4);
1353 opti.ts_ecr = be32dec(optp + 8);
1354 optp = NULL; /* we've parsed the options */
1355 }
1356 }
1357 tiflags = th->th_flags;
1358
1359 /*
1360 * Checksum extended TCP header and data
1361 */
1362 if (tcp_input_checksum(af, m, th, off, thlen, tlen))
1363 goto badcsum;
1364
1365 /*
1366 * Locate pcb for segment.
1367 */
1368 findpcb:
1369 inp = NULL;
1370 switch (af) {
1371 case AF_INET:
1372 inp = inpcb_lookup(&tcbtable, ip->ip_src, th->th_sport,
1373 ip->ip_dst, th->th_dport, &vestige);
1374 if (inp == NULL && !vestige.valid) {
1375 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1376 inp = inpcb_lookup_bound(&tcbtable, ip->ip_dst,
1377 th->th_dport);
1378 }
1379 #ifdef INET6
1380 if (inp == NULL && !vestige.valid) {
1381 struct in6_addr s, d;
1382
1383 /* mapped addr case */
1384 in6_in_2_v4mapin6(&ip->ip_src, &s);
1385 in6_in_2_v4mapin6(&ip->ip_dst, &d);
1386 inp = in6pcb_lookup(&tcbtable, &s,
1387 th->th_sport, &d, th->th_dport, 0, &vestige);
1388 if (inp == NULL && !vestige.valid) {
1389 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1390 inp = in6pcb_lookup_bound(&tcbtable, &d,
1391 th->th_dport, 0);
1392 }
1393 }
1394 #endif
1395 if (inp == NULL && !vestige.valid) {
1396 TCP_STATINC(TCP_STAT_NOPORT);
1397 if (tcp_log_refused &&
1398 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1399 tcp4_log_refused(ip, th);
1400 }
1401 tcp_fields_to_host(th);
1402 goto dropwithreset_ratelim;
1403 }
1404 #if defined(IPSEC)
1405 if (ipsec_used) {
1406 if (inp && ipsec_in_reject(m, inp))
1407 goto drop;
1408 }
1409 #endif /*IPSEC*/
1410 break;
1411 #ifdef INET6
1412 case AF_INET6:
1413 {
1414 int faith;
1415
1416 #if defined(NFAITH) && NFAITH > 0
1417 faith = faithprefix(&ip6->ip6_dst);
1418 #else
1419 faith = 0;
1420 #endif
1421 inp = in6pcb_lookup(&tcbtable, &ip6->ip6_src,
1422 th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1423 if (inp == NULL && !vestige.valid) {
1424 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1425 inp = in6pcb_lookup_bound(&tcbtable, &ip6->ip6_dst,
1426 th->th_dport, faith);
1427 }
1428 if (inp == NULL && !vestige.valid) {
1429 TCP_STATINC(TCP_STAT_NOPORT);
1430 if (tcp_log_refused &&
1431 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1432 tcp6_log_refused(ip6, th);
1433 }
1434 tcp_fields_to_host(th);
1435 goto dropwithreset_ratelim;
1436 }
1437 #if defined(IPSEC)
1438 if (ipsec_used && inp && ipsec_in_reject(m, inp))
1439 goto drop;
1440 #endif
1441 break;
1442 }
1443 #endif
1444 }
1445
1446 tcp_fields_to_host(th);
1447
1448 /*
1449 * If the state is CLOSED (i.e., TCB does not exist) then
1450 * all data in the incoming segment is discarded.
1451 * If the TCB exists but is in CLOSED state, it is embryonic,
1452 * but should either do a listen or a connect soon.
1453 */
1454 tp = NULL;
1455 so = NULL;
1456 if (inp) {
1457 /* Check the minimum TTL for socket. */
1458 if (inp->inp_af == AF_INET && ip->ip_ttl < in4p_ip_minttl(inp))
1459 goto drop;
1460
1461 tp = intotcpcb(inp);
1462 so = inp->inp_socket;
1463 } else if (vestige.valid) {
1464 /* We do not support the resurrection of vtw tcpcps. */
1465 tcp_vtw_input(th, &vestige, m, tlen);
1466 m = NULL;
1467 goto drop;
1468 }
1469
1470 if (tp == NULL)
1471 goto dropwithreset_ratelim;
1472 if (tp->t_state == TCPS_CLOSED)
1473 goto drop;
1474
1475 KASSERT(so->so_lock == softnet_lock);
1476 KASSERT(solocked(so));
1477
1478 /* Unscale the window into a 32-bit value. */
1479 if ((tiflags & TH_SYN) == 0)
1480 tiwin = th->th_win << tp->snd_scale;
1481 else
1482 tiwin = th->th_win;
1483
1484 #ifdef INET6
1485 /* save packet options if user wanted */
1486 if (inp->inp_af == AF_INET6 && (inp->inp_flags & IN6P_CONTROLOPTS)) {
1487 m_freem(inp->inp_options);
1488 inp->inp_options = NULL;
1489 ip6_savecontrol(inp, &inp->inp_options, ip6, m);
1490 }
1491 #endif
1492
1493 if (so->so_options & SO_DEBUG) {
1494 #ifdef TCP_DEBUG
1495 ostate = tp->t_state;
1496 #endif
1497
1498 tcp_saveti = NULL;
1499 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1500 goto nosave;
1501
1502 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1503 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1504 if (tcp_saveti == NULL)
1505 goto nosave;
1506 } else {
1507 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1508 if (tcp_saveti == NULL)
1509 goto nosave;
1510 MCLAIM(m, &tcp_mowner);
1511 tcp_saveti->m_len = iphlen;
1512 m_copydata(m, 0, iphlen,
1513 mtod(tcp_saveti, void *));
1514 }
1515
1516 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1517 m_freem(tcp_saveti);
1518 tcp_saveti = NULL;
1519 } else {
1520 tcp_saveti->m_len += sizeof(struct tcphdr);
1521 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1522 sizeof(struct tcphdr));
1523 }
1524 nosave:;
1525 }
1526
1527 if (so->so_options & SO_ACCEPTCONN) {
1528 union syn_cache_sa src;
1529 union syn_cache_sa dst;
1530
1531 KASSERT(tp->t_state == TCPS_LISTEN);
1532
1533 memset(&src, 0, sizeof(src));
1534 memset(&dst, 0, sizeof(dst));
1535 switch (af) {
1536 case AF_INET:
1537 src.sin.sin_len = sizeof(struct sockaddr_in);
1538 src.sin.sin_family = AF_INET;
1539 src.sin.sin_addr = ip->ip_src;
1540 src.sin.sin_port = th->th_sport;
1541
1542 dst.sin.sin_len = sizeof(struct sockaddr_in);
1543 dst.sin.sin_family = AF_INET;
1544 dst.sin.sin_addr = ip->ip_dst;
1545 dst.sin.sin_port = th->th_dport;
1546 break;
1547 #ifdef INET6
1548 case AF_INET6:
1549 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1550 src.sin6.sin6_family = AF_INET6;
1551 src.sin6.sin6_addr = ip6->ip6_src;
1552 src.sin6.sin6_port = th->th_sport;
1553
1554 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1555 dst.sin6.sin6_family = AF_INET6;
1556 dst.sin6.sin6_addr = ip6->ip6_dst;
1557 dst.sin6.sin6_port = th->th_dport;
1558 break;
1559 #endif
1560 }
1561
1562 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1563 if (tiflags & TH_RST) {
1564 syn_cache_reset(&src.sa, &dst.sa, th);
1565 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1566 (TH_ACK|TH_SYN)) {
1567 /*
1568 * Received a SYN,ACK. This should never
1569 * happen while we are in LISTEN. Send an RST.
1570 */
1571 goto badsyn;
1572 } else if (tiflags & TH_ACK) {
1573 so = syn_cache_get(&src.sa, &dst.sa, th, so, m);
1574 if (so == NULL) {
1575 /*
1576 * We don't have a SYN for this ACK;
1577 * send an RST.
1578 */
1579 goto badsyn;
1580 } else if (so == (struct socket *)(-1)) {
1581 /*
1582 * We were unable to create the
1583 * connection. If the 3-way handshake
1584 * was completed, and RST has been
1585 * sent to the peer. Since the mbuf
1586 * might be in use for the reply, do
1587 * not free it.
1588 */
1589 m = NULL;
1590 } else {
1591 /*
1592 * We have created a full-blown
1593 * connection.
1594 */
1595 inp = sotoinpcb(so);
1596 tp = intotcpcb(inp);
1597 if (tp == NULL)
1598 goto badsyn; /*XXX*/
1599 tiwin <<= tp->snd_scale;
1600 goto after_listen;
1601 }
1602 } else {
1603 /*
1604 * None of RST, SYN or ACK was set.
1605 * This is an invalid packet for a
1606 * TCB in LISTEN state. Send a RST.
1607 */
1608 goto badsyn;
1609 }
1610 } else {
1611 /*
1612 * Received a SYN.
1613 */
1614
1615 #ifdef INET6
1616 /*
1617 * If deprecated address is forbidden, we do
1618 * not accept SYN to deprecated interface
1619 * address to prevent any new inbound
1620 * connection from getting established.
1621 * When we do not accept SYN, we send a TCP
1622 * RST, with deprecated source address (instead
1623 * of dropping it). We compromise it as it is
1624 * much better for peer to send a RST, and
1625 * RST will be the final packet for the
1626 * exchange.
1627 *
1628 * If we do not forbid deprecated addresses, we
1629 * accept the SYN packet. RFC2462 does not
1630 * suggest dropping SYN in this case.
1631 * If we decipher RFC2462 5.5.4, it says like
1632 * this:
1633 * 1. use of deprecated addr with existing
1634 * communication is okay - "SHOULD continue
1635 * to be used"
1636 * 2. use of it with new communication:
1637 * (2a) "SHOULD NOT be used if alternate
1638 * address with sufficient scope is
1639 * available"
1640 * (2b) nothing mentioned otherwise.
1641 * Here we fall into (2b) case as we have no
1642 * choice in our source address selection - we
1643 * must obey the peer.
1644 *
1645 * The wording in RFC2462 is confusing, and
1646 * there are multiple description text for
1647 * deprecated address handling - worse, they
1648 * are not exactly the same. I believe 5.5.4
1649 * is the best one, so we follow 5.5.4.
1650 */
1651 if (af == AF_INET6 && !ip6_use_deprecated) {
1652 struct in6_ifaddr *ia6;
1653 int s;
1654 struct ifnet *rcvif = m_get_rcvif(m, &s);
1655 if (rcvif == NULL)
1656 goto dropwithreset; /* XXX */
1657 if ((ia6 = in6ifa_ifpwithaddr(rcvif,
1658 &ip6->ip6_dst)) &&
1659 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1660 tp = NULL;
1661 m_put_rcvif(rcvif, &s);
1662 goto dropwithreset;
1663 }
1664 m_put_rcvif(rcvif, &s);
1665 }
1666 #endif
1667
1668 /*
1669 * LISTEN socket received a SYN from itself? This
1670 * can't possibly be valid; drop the packet.
1671 */
1672 if (th->th_sport == th->th_dport) {
1673 int eq = 0;
1674
1675 switch (af) {
1676 case AF_INET:
1677 eq = in_hosteq(ip->ip_src, ip->ip_dst);
1678 break;
1679 #ifdef INET6
1680 case AF_INET6:
1681 eq = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
1682 &ip6->ip6_dst);
1683 break;
1684 #endif
1685 }
1686 if (eq) {
1687 TCP_STATINC(TCP_STAT_BADSYN);
1688 goto drop;
1689 }
1690 }
1691
1692 /*
1693 * SYN looks ok; create compressed TCP
1694 * state for it.
1695 */
1696 if (so->so_qlen <= so->so_qlimit &&
1697 syn_cache_add(&src.sa, &dst.sa, th, off,
1698 so, m, optp, optlen, &opti))
1699 m = NULL;
1700 }
1701
1702 goto drop;
1703 }
1704
1705 after_listen:
1706 /*
1707 * From here on, we're dealing with !LISTEN.
1708 */
1709 KASSERT(tp->t_state != TCPS_LISTEN);
1710
1711 /*
1712 * Segment received on connection.
1713 * Reset idle time and keep-alive timer.
1714 */
1715 tp->t_rcvtime = tcp_now;
1716 if (TCPS_HAVEESTABLISHED(tp->t_state))
1717 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1718
1719 /*
1720 * Process options.
1721 */
1722 #ifdef TCP_SIGNATURE
1723 if (optp || (tp->t_flags & TF_SIGNATURE))
1724 #else
1725 if (optp)
1726 #endif
1727 if (tcp_dooptions(tp, optp, optlen, th, m, off, &opti) < 0)
1728 goto drop;
1729
1730 if (TCP_SACK_ENABLED(tp)) {
1731 tcp_del_sackholes(tp, th);
1732 }
1733
1734 if (TCP_ECN_ALLOWED(tp)) {
1735 if (tiflags & TH_CWR) {
1736 tp->t_flags &= ~TF_ECN_SND_ECE;
1737 }
1738 switch (iptos & IPTOS_ECN_MASK) {
1739 case IPTOS_ECN_CE:
1740 tp->t_flags |= TF_ECN_SND_ECE;
1741 TCP_STATINC(TCP_STAT_ECN_CE);
1742 break;
1743 case IPTOS_ECN_ECT0:
1744 TCP_STATINC(TCP_STAT_ECN_ECT);
1745 break;
1746 case IPTOS_ECN_ECT1:
1747 /* XXX: ignore for now -- rpaulo */
1748 break;
1749 }
1750 /*
1751 * Congestion experienced.
1752 * Ignore if we are already trying to recover.
1753 */
1754 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1755 tp->t_congctl->cong_exp(tp);
1756 }
1757
1758 if (opti.ts_present && opti.ts_ecr) {
1759 /*
1760 * Calculate the RTT from the returned time stamp and the
1761 * connection's time base. If the time stamp is later than
1762 * the current time, or is extremely old, fall back to non-1323
1763 * RTT calculation. Since ts_rtt is unsigned, we can test both
1764 * at the same time.
1765 *
1766 * Note that ts_rtt is in units of slow ticks (500
1767 * ms). Since most earthbound RTTs are < 500 ms,
1768 * observed values will have large quantization noise.
1769 * Our smoothed RTT is then the fraction of observed
1770 * samples that are 1 tick instead of 0 (times 500
1771 * ms).
1772 *
1773 * ts_rtt is increased by 1 to denote a valid sample,
1774 * with 0 indicating an invalid measurement. This
1775 * extra 1 must be removed when ts_rtt is used, or
1776 * else an erroneous extra 500 ms will result.
1777 */
1778 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1779 if (ts_rtt > TCP_PAWS_IDLE)
1780 ts_rtt = 0;
1781 } else {
1782 ts_rtt = 0;
1783 }
1784
1785 /*
1786 * Fast path: check for the two common cases of a uni-directional
1787 * data transfer. If:
1788 * o We are in the ESTABLISHED state, and
1789 * o The packet has no control flags, and
1790 * o The packet is in-sequence, and
1791 * o The window didn't change, and
1792 * o We are not retransmitting
1793 * It's a candidate.
1794 *
1795 * If the length (tlen) is zero and the ack moved forward, we're
1796 * the sender side of the transfer. Just free the data acked and
1797 * wake any higher level process that was blocked waiting for
1798 * space.
1799 *
1800 * If the length is non-zero and the ack didn't move, we're the
1801 * receiver side. If we're getting packets in-order (the reassembly
1802 * queue is empty), add the data to the socket buffer and note
1803 * that we need a delayed ack.
1804 */
1805 if (tp->t_state == TCPS_ESTABLISHED &&
1806 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1807 == TH_ACK &&
1808 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1809 th->th_seq == tp->rcv_nxt &&
1810 tiwin && tiwin == tp->snd_wnd &&
1811 tp->snd_nxt == tp->snd_max) {
1812
1813 /*
1814 * If last ACK falls within this segment's sequence numbers,
1815 * record the timestamp.
1816 * NOTE that the test is modified according to the latest
1817 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1818 *
1819 * note that we already know
1820 * TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1821 */
1822 if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1823 tp->ts_recent_age = tcp_now;
1824 tp->ts_recent = opti.ts_val;
1825 }
1826
1827 if (tlen == 0) {
1828 /* Ack prediction. */
1829 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1830 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1831 tp->snd_cwnd >= tp->snd_wnd &&
1832 tp->t_partialacks < 0) {
1833 /*
1834 * this is a pure ack for outstanding data.
1835 */
1836 if (ts_rtt)
1837 tcp_xmit_timer(tp, ts_rtt - 1);
1838 else if (tp->t_rtttime &&
1839 SEQ_GT(th->th_ack, tp->t_rtseq))
1840 tcp_xmit_timer(tp,
1841 tcp_now - tp->t_rtttime);
1842 acked = th->th_ack - tp->snd_una;
1843 tcps = TCP_STAT_GETREF();
1844 _NET_STATINC_REF(tcps, TCP_STAT_PREDACK);
1845 _NET_STATINC_REF(tcps, TCP_STAT_RCVACKPACK);
1846 _NET_STATADD_REF(tcps, TCP_STAT_RCVACKBYTE,
1847 acked);
1848 TCP_STAT_PUTREF();
1849 nd_hint(tp);
1850
1851 if (acked > (tp->t_lastoff - tp->t_inoff))
1852 tp->t_lastm = NULL;
1853 sbdrop(&so->so_snd, acked);
1854 tp->t_lastoff -= acked;
1855
1856 icmp_check(tp, th, acked);
1857
1858 tp->snd_una = th->th_ack;
1859 tp->snd_fack = tp->snd_una;
1860 if (SEQ_LT(tp->snd_high, tp->snd_una))
1861 tp->snd_high = tp->snd_una;
1862 /*
1863 * drag snd_wl2 along so only newer
1864 * ACKs can update the window size.
1865 * also avoids the state where snd_wl2
1866 * is eventually larger than th_ack and thus
1867 * blocking the window update mechanism and
1868 * the connection gets stuck for a loooong
1869 * time in the zero sized send window state.
1870 *
1871 * see PR/kern 55567
1872 */
1873 tp->snd_wl2 = tp->snd_una;
1874
1875 m_freem(m);
1876
1877 /*
1878 * If all outstanding data are acked, stop
1879 * retransmit timer, otherwise restart timer
1880 * using current (possibly backed-off) value.
1881 * If process is waiting for space,
1882 * wakeup/selnotify/signal. If data
1883 * are ready to send, let tcp_output
1884 * decide between more output or persist.
1885 */
1886 if (tp->snd_una == tp->snd_max)
1887 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1888 else if (TCP_TIMER_ISARMED(tp,
1889 TCPT_PERSIST) == 0)
1890 TCP_TIMER_ARM(tp, TCPT_REXMT,
1891 tp->t_rxtcur);
1892
1893 sowwakeup(so);
1894 if (so->so_snd.sb_cc) {
1895 KERNEL_LOCK(1, NULL);
1896 (void)tcp_output(tp);
1897 KERNEL_UNLOCK_ONE(NULL);
1898 }
1899 m_freem(tcp_saveti);
1900 return;
1901 }
1902 } else if (th->th_ack == tp->snd_una &&
1903 TAILQ_FIRST(&tp->segq) == NULL &&
1904 tlen <= sbspace(&so->so_rcv)) {
1905 int newsize = 0;
1906
1907 /*
1908 * this is a pure, in-sequence data packet
1909 * with nothing on the reassembly queue and
1910 * we have enough buffer space to take it.
1911 */
1912 tp->rcv_nxt += tlen;
1913
1914 /*
1915 * Pull rcv_up up to prevent seq wrap relative to
1916 * rcv_nxt.
1917 */
1918 tp->rcv_up = tp->rcv_nxt;
1919
1920 /*
1921 * Pull snd_wl1 up to prevent seq wrap relative to
1922 * th_seq.
1923 */
1924 tp->snd_wl1 = th->th_seq;
1925
1926 tcps = TCP_STAT_GETREF();
1927 _NET_STATINC_REF(tcps, TCP_STAT_PREDDAT);
1928 _NET_STATINC_REF(tcps, TCP_STAT_RCVPACK);
1929 _NET_STATADD_REF(tcps, TCP_STAT_RCVBYTE, tlen);
1930 TCP_STAT_PUTREF();
1931 nd_hint(tp);
1932 /*
1933 * Automatic sizing enables the performance of large buffers
1934 * and most of the efficiency of small ones by only allocating
1935 * space when it is needed.
1936 *
1937 * On the receive side the socket buffer memory is only rarely
1938 * used to any significant extent. This allows us to be much
1939 * more aggressive in scaling the receive socket buffer. For
1940 * the case that the buffer space is actually used to a large
1941 * extent and we run out of kernel memory we can simply drop
1942 * the new segments; TCP on the sender will just retransmit it
1943 * later. Setting the buffer size too big may only consume too
1944 * much kernel memory if the application doesn't read() from
1945 * the socket or packet loss or reordering makes use of the
1946 * reassembly queue.
1947 *
1948 * The criteria to step up the receive buffer one notch are:
1949 * 1. the number of bytes received during the time it takes
1950 * one timestamp to be reflected back to us (the RTT);
1951 * 2. received bytes per RTT is within seven eighth of the
1952 * current socket buffer size;
1953 * 3. receive buffer size has not hit maximal automatic size;
1954 *
1955 * This algorithm does one step per RTT at most and only if
1956 * we receive a bulk stream w/o packet losses or reorderings.
1957 * Shrinking the buffer during idle times is not necessary as
1958 * it doesn't consume any memory when idle.
1959 *
1960 * TODO: Only step up if the application is actually serving
1961 * the buffer to better manage the socket buffer resources.
1962 */
1963 if (tcp_do_autorcvbuf &&
1964 opti.ts_ecr &&
1965 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1966 if (opti.ts_ecr > tp->rfbuf_ts &&
1967 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1968 if (tp->rfbuf_cnt >
1969 (so->so_rcv.sb_hiwat / 8 * 7) &&
1970 so->so_rcv.sb_hiwat <
1971 tcp_autorcvbuf_max) {
1972 newsize =
1973 uimin(so->so_rcv.sb_hiwat +
1974 tcp_autorcvbuf_inc,
1975 tcp_autorcvbuf_max);
1976 }
1977 /* Start over with next RTT. */
1978 tp->rfbuf_ts = 0;
1979 tp->rfbuf_cnt = 0;
1980 } else
1981 tp->rfbuf_cnt += tlen; /* add up */
1982 }
1983
1984 /*
1985 * Drop TCP, IP headers and TCP options then add data
1986 * to socket buffer.
1987 */
1988 if (so->so_state & SS_CANTRCVMORE) {
1989 m_freem(m);
1990 } else {
1991 /*
1992 * Set new socket buffer size.
1993 * Give up when limit is reached.
1994 */
1995 if (newsize)
1996 if (!sbreserve(&so->so_rcv,
1997 newsize, so))
1998 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1999 m_adj(m, off + thlen);
2000 sbappendstream(&so->so_rcv, m);
2001 }
2002 sorwakeup(so);
2003 tcp_setup_ack(tp, th);
2004 if (tp->t_flags & TF_ACKNOW) {
2005 KERNEL_LOCK(1, NULL);
2006 (void)tcp_output(tp);
2007 KERNEL_UNLOCK_ONE(NULL);
2008 }
2009 m_freem(tcp_saveti);
2010 return;
2011 }
2012 }
2013
2014 /*
2015 * Compute mbuf offset to TCP data segment.
2016 */
2017 hdroptlen = off + thlen;
2018
2019 /*
2020 * Calculate amount of space in receive window. Receive window is
2021 * amount of space in rcv queue, but not less than advertised
2022 * window.
2023 */
2024 {
2025 int win;
2026 win = sbspace(&so->so_rcv);
2027 if (win < 0)
2028 win = 0;
2029 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2030 }
2031
2032 /* Reset receive buffer auto scaling when not in bulk receive mode. */
2033 tp->rfbuf_ts = 0;
2034 tp->rfbuf_cnt = 0;
2035
2036 switch (tp->t_state) {
2037 /*
2038 * If the state is SYN_SENT:
2039 * if seg contains an ACK, but not for our SYN, drop the input.
2040 * if seg contains a RST, then drop the connection.
2041 * if seg does not contain SYN, then drop it.
2042 * Otherwise this is an acceptable SYN segment
2043 * initialize tp->rcv_nxt and tp->irs
2044 * if seg contains ack then advance tp->snd_una
2045 * if seg contains a ECE and ECN support is enabled, the stream
2046 * is ECN capable.
2047 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2048 * arrange for segment to be acked (eventually)
2049 * continue processing rest of data/controls, beginning with URG
2050 */
2051 case TCPS_SYN_SENT:
2052 if ((tiflags & TH_ACK) &&
2053 (SEQ_LEQ(th->th_ack, tp->iss) ||
2054 SEQ_GT(th->th_ack, tp->snd_max)))
2055 goto dropwithreset;
2056 if (tiflags & TH_RST) {
2057 if (tiflags & TH_ACK)
2058 tp = tcp_drop(tp, ECONNREFUSED);
2059 goto drop;
2060 }
2061 if ((tiflags & TH_SYN) == 0)
2062 goto drop;
2063 if (tiflags & TH_ACK) {
2064 tp->snd_una = th->th_ack;
2065 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2066 tp->snd_nxt = tp->snd_una;
2067 if (SEQ_LT(tp->snd_high, tp->snd_una))
2068 tp->snd_high = tp->snd_una;
2069 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2070
2071 if ((tiflags & TH_ECE) && tcp_do_ecn) {
2072 tp->t_flags |= TF_ECN_PERMIT;
2073 TCP_STATINC(TCP_STAT_ECN_SHS);
2074 }
2075 }
2076 tp->irs = th->th_seq;
2077 tcp_rcvseqinit(tp);
2078 tp->t_flags |= TF_ACKNOW;
2079 tcp_mss_from_peer(tp, opti.maxseg);
2080
2081 /*
2082 * Initialize the initial congestion window. If we
2083 * had to retransmit the SYN, we must initialize cwnd
2084 * to 1 segment (i.e. the Loss Window).
2085 */
2086 if (tp->t_flags & TF_SYN_REXMT)
2087 tp->snd_cwnd = tp->t_peermss;
2088 else {
2089 int ss = tcp_init_win;
2090 if (inp->inp_af == AF_INET && in_localaddr(in4p_faddr(inp)))
2091 ss = tcp_init_win_local;
2092 #ifdef INET6
2093 else if (inp->inp_af == AF_INET6 && in6_localaddr(&in6p_faddr(inp)))
2094 ss = tcp_init_win_local;
2095 #endif
2096 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2097 }
2098
2099 tcp_rmx_rtt(tp);
2100 if (tiflags & TH_ACK) {
2101 TCP_STATINC(TCP_STAT_CONNECTS);
2102 /*
2103 * move tcp_established before soisconnected
2104 * because upcall handler can drive tcp_output
2105 * functionality.
2106 * XXX we might call soisconnected at the end of
2107 * all processing
2108 */
2109 tcp_established(tp);
2110 soisconnected(so);
2111 /* Do window scaling on this connection? */
2112 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2113 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2114 tp->snd_scale = tp->requested_s_scale;
2115 tp->rcv_scale = tp->request_r_scale;
2116 }
2117 TCP_REASS_LOCK(tp);
2118 (void)tcp_reass(tp, NULL, NULL, tlen);
2119 /*
2120 * if we didn't have to retransmit the SYN,
2121 * use its rtt as our initial srtt & rtt var.
2122 */
2123 if (tp->t_rtttime)
2124 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2125 } else {
2126 tp->t_state = TCPS_SYN_RECEIVED;
2127 }
2128
2129 /*
2130 * Advance th->th_seq to correspond to first data byte.
2131 * If data, trim to stay within window,
2132 * dropping FIN if necessary.
2133 */
2134 th->th_seq++;
2135 if (tlen > tp->rcv_wnd) {
2136 todrop = tlen - tp->rcv_wnd;
2137 m_adj(m, -todrop);
2138 tlen = tp->rcv_wnd;
2139 tiflags &= ~TH_FIN;
2140 tcps = TCP_STAT_GETREF();
2141 _NET_STATINC_REF(tcps, TCP_STAT_RCVPACKAFTERWIN);
2142 _NET_STATADD_REF(tcps, TCP_STAT_RCVBYTEAFTERWIN,
2143 todrop);
2144 TCP_STAT_PUTREF();
2145 }
2146 tp->snd_wl1 = th->th_seq - 1;
2147 tp->rcv_up = th->th_seq;
2148 goto step6;
2149
2150 /*
2151 * If the state is SYN_RECEIVED:
2152 * If seg contains an ACK, but not for our SYN, drop the input
2153 * and generate an RST. See page 36, rfc793
2154 */
2155 case TCPS_SYN_RECEIVED:
2156 if ((tiflags & TH_ACK) &&
2157 (SEQ_LEQ(th->th_ack, tp->iss) ||
2158 SEQ_GT(th->th_ack, tp->snd_max)))
2159 goto dropwithreset;
2160 break;
2161 }
2162
2163 /*
2164 * From here on, we're dealing with !LISTEN and !SYN_SENT.
2165 */
2166 KASSERT(tp->t_state != TCPS_LISTEN &&
2167 tp->t_state != TCPS_SYN_SENT);
2168
2169 /*
2170 * RFC1323 PAWS: if we have a timestamp reply on this segment and
2171 * it's less than ts_recent, drop it.
2172 */
2173 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2174 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2175 /* Check to see if ts_recent is over 24 days old. */
2176 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2177 /*
2178 * Invalidate ts_recent. If this segment updates
2179 * ts_recent, the age will be reset later and ts_recent
2180 * will get a valid value. If it does not, setting
2181 * ts_recent to zero will at least satisfy the
2182 * requirement that zero be placed in the timestamp
2183 * echo reply when ts_recent isn't valid. The
2184 * age isn't reset until we get a valid ts_recent
2185 * because we don't want out-of-order segments to be
2186 * dropped when ts_recent is old.
2187 */
2188 tp->ts_recent = 0;
2189 } else {
2190 tcps = TCP_STAT_GETREF();
2191 _NET_STATINC_REF(tcps, TCP_STAT_RCVDUPPACK);
2192 _NET_STATADD_REF(tcps, TCP_STAT_RCVDUPBYTE, tlen);
2193 _NET_STATINC_REF(tcps, TCP_STAT_PAWSDROP);
2194 TCP_STAT_PUTREF();
2195 tcp_new_dsack(tp, th->th_seq, tlen);
2196 goto dropafterack;
2197 }
2198 }
2199
2200 /*
2201 * Check that at least some bytes of the segment are within the
2202 * receive window. If segment begins before rcv_nxt, drop leading
2203 * data (and SYN); if nothing left, just ack.
2204 */
2205 todrop = tp->rcv_nxt - th->th_seq;
2206 dupseg = false;
2207 if (todrop > 0) {
2208 if (tiflags & TH_SYN) {
2209 tiflags &= ~TH_SYN;
2210 th->th_seq++;
2211 tcp_urp_drop(th, 1, &tiflags);
2212 todrop--;
2213 }
2214 if (todrop > tlen ||
2215 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2216 /*
2217 * Any valid FIN or RST must be to the left of the
2218 * window. At this point the FIN or RST must be a
2219 * duplicate or out of sequence; drop it.
2220 */
2221 if (tiflags & TH_RST)
2222 goto drop;
2223 tiflags &= ~(TH_FIN|TH_RST);
2224
2225 /*
2226 * Send an ACK to resynchronize and drop any data.
2227 * But keep on processing for RST or ACK.
2228 */
2229 tp->t_flags |= TF_ACKNOW;
2230 todrop = tlen;
2231 dupseg = true;
2232 tcps = TCP_STAT_GETREF();
2233 _NET_STATINC_REF(tcps, TCP_STAT_RCVDUPPACK);
2234 _NET_STATADD_REF(tcps, TCP_STAT_RCVDUPBYTE, todrop);
2235 TCP_STAT_PUTREF();
2236 } else if ((tiflags & TH_RST) && th->th_seq != tp->rcv_nxt) {
2237 /*
2238 * Test for reset before adjusting the sequence
2239 * number for overlapping data.
2240 */
2241 goto dropafterack_ratelim;
2242 } else {
2243 tcps = TCP_STAT_GETREF();
2244 _NET_STATINC_REF(tcps, TCP_STAT_RCVPARTDUPPACK);
2245 _NET_STATADD_REF(tcps, TCP_STAT_RCVPARTDUPBYTE,
2246 todrop);
2247 TCP_STAT_PUTREF();
2248 }
2249 tcp_new_dsack(tp, th->th_seq, todrop);
2250 hdroptlen += todrop; /* drop from head afterwards (m_adj) */
2251 th->th_seq += todrop;
2252 tlen -= todrop;
2253 tcp_urp_drop(th, todrop, &tiflags);
2254 }
2255
2256 /*
2257 * If new data is received on a connection after the user processes
2258 * are gone, then RST the other end.
2259 */
2260 if ((so->so_state & SS_NOFDREF) &&
2261 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2262 tp = tcp_close(tp);
2263 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2264 goto dropwithreset;
2265 }
2266
2267 /*
2268 * If the segment ends after the window, drop trailing data (and
2269 * PUSH and FIN); if nothing left, just ACK.
2270 */
2271 todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2272 if (todrop > 0) {
2273 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2274 if (todrop >= tlen) {
2275 /*
2276 * The segment actually starts after the window.
2277 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2278 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2279 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2280 */
2281 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2282
2283 /*
2284 * If a new connection request is received while in
2285 * TIME_WAIT, drop the old connection and start over
2286 * if the sequence numbers are above the previous
2287 * ones.
2288 *
2289 * NOTE: We need to put the header fields back into
2290 * network order.
2291 */
2292 if ((tiflags & TH_SYN) &&
2293 tp->t_state == TCPS_TIME_WAIT &&
2294 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2295 tp = tcp_close(tp);
2296 tcp_fields_to_net(th);
2297 m_freem(tcp_saveti);
2298 tcp_saveti = NULL;
2299 goto findpcb;
2300 }
2301
2302 /*
2303 * If window is closed can only take segments at
2304 * window edge, and have to drop data and PUSH from
2305 * incoming segments. Continue processing, but
2306 * remember to ack. Otherwise, drop segment
2307 * and (if not RST) ack.
2308 */
2309 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2310 KASSERT(todrop == tlen);
2311 tp->t_flags |= TF_ACKNOW;
2312 TCP_STATINC(TCP_STAT_RCVWINPROBE);
2313 } else {
2314 goto dropafterack;
2315 }
2316 } else {
2317 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2318 }
2319 m_adj(m, -todrop);
2320 tlen -= todrop;
2321 tiflags &= ~(TH_PUSH|TH_FIN);
2322 }
2323
2324 /*
2325 * If last ACK falls within this segment's sequence numbers,
2326 * record the timestamp.
2327 * NOTE:
2328 * 1) That the test incorporates suggestions from the latest
2329 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2330 * 2) That updating only on newer timestamps interferes with
2331 * our earlier PAWS tests, so this check should be solely
2332 * predicated on the sequence space of this segment.
2333 * 3) That we modify the segment boundary check to be
2334 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2335 * instead of RFC1323's
2336 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2337 * This modified check allows us to overcome RFC1323's
2338 * limitations as described in Stevens TCP/IP Illustrated
2339 * Vol. 2 p.869. In such cases, we can still calculate the
2340 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2341 */
2342 if (opti.ts_present &&
2343 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2344 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2345 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2346 tp->ts_recent_age = tcp_now;
2347 tp->ts_recent = opti.ts_val;
2348 }
2349
2350 /*
2351 * If the RST bit is set examine the state:
2352 * RECEIVED state:
2353 * If passive open, return to LISTEN state.
2354 * If active open, inform user that connection was refused.
2355 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT states:
2356 * Inform user that connection was reset, and close tcb.
2357 * CLOSING, LAST_ACK, TIME_WAIT states:
2358 * Close the tcb.
2359 */
2360 if (tiflags & TH_RST) {
2361 if (th->th_seq != tp->rcv_nxt)
2362 goto dropafterack_ratelim;
2363
2364 switch (tp->t_state) {
2365 case TCPS_SYN_RECEIVED:
2366 so->so_error = ECONNREFUSED;
2367 goto close;
2368
2369 case TCPS_ESTABLISHED:
2370 case TCPS_FIN_WAIT_1:
2371 case TCPS_FIN_WAIT_2:
2372 case TCPS_CLOSE_WAIT:
2373 so->so_error = ECONNRESET;
2374 close:
2375 tp->t_state = TCPS_CLOSED;
2376 TCP_STATINC(TCP_STAT_DROPS);
2377 tp = tcp_close(tp);
2378 goto drop;
2379
2380 case TCPS_CLOSING:
2381 case TCPS_LAST_ACK:
2382 case TCPS_TIME_WAIT:
2383 tp = tcp_close(tp);
2384 goto drop;
2385 }
2386 }
2387
2388 /*
2389 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2390 * we must be in a synchronized state. RFC793 states (under Reset
2391 * Generation) that any unacceptable segment (an out-of-order SYN
2392 * qualifies) received in a synchronized state must elicit only an
2393 * empty acknowledgment segment ... and the connection remains in
2394 * the same state.
2395 */
2396 if (tiflags & TH_SYN) {
2397 if (tp->rcv_nxt == th->th_seq) {
2398 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2399 TH_ACK);
2400 m_freem(tcp_saveti);
2401 return;
2402 }
2403
2404 goto dropafterack_ratelim;
2405 }
2406
2407 /*
2408 * If the ACK bit is off we drop the segment and return.
2409 */
2410 if ((tiflags & TH_ACK) == 0) {
2411 if (tp->t_flags & TF_ACKNOW)
2412 goto dropafterack;
2413 goto drop;
2414 }
2415
2416 /*
2417 * From here on, we're doing ACK processing.
2418 */
2419
2420 switch (tp->t_state) {
2421 /*
2422 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2423 * ESTABLISHED state and continue processing, otherwise
2424 * send an RST.
2425 */
2426 case TCPS_SYN_RECEIVED:
2427 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2428 SEQ_GT(th->th_ack, tp->snd_max))
2429 goto dropwithreset;
2430 TCP_STATINC(TCP_STAT_CONNECTS);
2431 soisconnected(so);
2432 tcp_established(tp);
2433 /* Do window scaling? */
2434 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2435 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2436 tp->snd_scale = tp->requested_s_scale;
2437 tp->rcv_scale = tp->request_r_scale;
2438 }
2439 TCP_REASS_LOCK(tp);
2440 (void)tcp_reass(tp, NULL, NULL, tlen);
2441 tp->snd_wl1 = th->th_seq - 1;
2442 /* FALLTHROUGH */
2443
2444 /*
2445 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2446 * ACKs. If the ack is in the range
2447 * tp->snd_una < th->th_ack <= tp->snd_max
2448 * then advance tp->snd_una to th->th_ack and drop
2449 * data from the retransmission queue. If this ACK reflects
2450 * more up to date window information we update our window information.
2451 */
2452 case TCPS_ESTABLISHED:
2453 case TCPS_FIN_WAIT_1:
2454 case TCPS_FIN_WAIT_2:
2455 case TCPS_CLOSE_WAIT:
2456 case TCPS_CLOSING:
2457 case TCPS_LAST_ACK:
2458 case TCPS_TIME_WAIT:
2459 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2460 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2461 TCP_STATINC(TCP_STAT_RCVDUPACK);
2462 /*
2463 * If we have outstanding data (other than
2464 * a window probe), this is a completely
2465 * duplicate ack (ie, window info didn't
2466 * change), the ack is the biggest we've
2467 * seen and we've seen exactly our rexmt
2468 * threshold of them, assume a packet
2469 * has been dropped and retransmit it.
2470 * Kludge snd_nxt & the congestion
2471 * window so we send only this one
2472 * packet.
2473 */
2474 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2475 th->th_ack != tp->snd_una)
2476 tp->t_dupacks = 0;
2477 else if (tp->t_partialacks < 0 &&
2478 (++tp->t_dupacks == tcprexmtthresh ||
2479 TCP_FACK_FASTRECOV(tp))) {
2480 /*
2481 * Do the fast retransmit, and adjust
2482 * congestion control parameters.
2483 */
2484 if (tp->t_congctl->fast_retransmit(tp, th)) {
2485 /* False fast retransmit */
2486 break;
2487 }
2488 goto drop;
2489 } else if (tp->t_dupacks > tcprexmtthresh) {
2490 tp->snd_cwnd += tp->t_segsz;
2491 KERNEL_LOCK(1, NULL);
2492 (void)tcp_output(tp);
2493 KERNEL_UNLOCK_ONE(NULL);
2494 goto drop;
2495 }
2496 } else {
2497 /*
2498 * If the ack appears to be very old, only
2499 * allow data that is in-sequence. This
2500 * makes it somewhat more difficult to insert
2501 * forged data by guessing sequence numbers.
2502 * Sent an ack to try to update the send
2503 * sequence number on the other side.
2504 */
2505 if (tlen && th->th_seq != tp->rcv_nxt &&
2506 SEQ_LT(th->th_ack,
2507 tp->snd_una - tp->max_sndwnd))
2508 goto dropafterack;
2509 }
2510 break;
2511 }
2512 /*
2513 * If the congestion window was inflated to account
2514 * for the other side's cached packets, retract it.
2515 */
2516 tp->t_congctl->fast_retransmit_newack(tp, th);
2517
2518 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2519 TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2520 goto dropafterack;
2521 }
2522 acked = th->th_ack - tp->snd_una;
2523 tcps = TCP_STAT_GETREF();
2524 _NET_STATINC_REF(tcps, TCP_STAT_RCVACKPACK);
2525 _NET_STATADD_REF(tcps, TCP_STAT_RCVACKBYTE, acked);
2526 TCP_STAT_PUTREF();
2527
2528 /*
2529 * If we have a timestamp reply, update smoothed
2530 * round trip time. If no timestamp is present but
2531 * transmit timer is running and timed sequence
2532 * number was acked, update smoothed round trip time.
2533 * Since we now have an rtt measurement, cancel the
2534 * timer backoff (cf., Phil Karn's retransmit alg.).
2535 * Recompute the initial retransmit timer.
2536 */
2537 if (ts_rtt)
2538 tcp_xmit_timer(tp, ts_rtt - 1);
2539 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2540 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2541
2542 /*
2543 * If all outstanding data is acked, stop retransmit
2544 * timer and remember to restart (more output or persist).
2545 * If there is more data to be acked, restart retransmit
2546 * timer, using current (possibly backed-off) value.
2547 */
2548 if (th->th_ack == tp->snd_max) {
2549 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2550 needoutput = 1;
2551 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2552 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2553
2554 /*
2555 * New data has been acked, adjust the congestion window.
2556 */
2557 tp->t_congctl->newack(tp, th);
2558
2559 nd_hint(tp);
2560 if (acked > so->so_snd.sb_cc) {
2561 tp->snd_wnd -= so->so_snd.sb_cc;
2562 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2563 ourfinisacked = 1;
2564 } else {
2565 if (acked > (tp->t_lastoff - tp->t_inoff))
2566 tp->t_lastm = NULL;
2567 sbdrop(&so->so_snd, acked);
2568 tp->t_lastoff -= acked;
2569 if (tp->snd_wnd > acked)
2570 tp->snd_wnd -= acked;
2571 else
2572 tp->snd_wnd = 0;
2573 ourfinisacked = 0;
2574 }
2575 sowwakeup(so);
2576
2577 icmp_check(tp, th, acked);
2578
2579 tp->snd_una = th->th_ack;
2580 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2581 tp->snd_fack = tp->snd_una;
2582 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2583 tp->snd_nxt = tp->snd_una;
2584 if (SEQ_LT(tp->snd_high, tp->snd_una))
2585 tp->snd_high = tp->snd_una;
2586
2587 switch (tp->t_state) {
2588
2589 /*
2590 * In FIN_WAIT_1 STATE in addition to the processing
2591 * for the ESTABLISHED state if our FIN is now acknowledged
2592 * then enter FIN_WAIT_2.
2593 */
2594 case TCPS_FIN_WAIT_1:
2595 if (ourfinisacked) {
2596 /*
2597 * If we can't receive any more
2598 * data, then closing user can proceed.
2599 * Starting the timer is contrary to the
2600 * specification, but if we don't get a FIN
2601 * we'll hang forever.
2602 */
2603 if (so->so_state & SS_CANTRCVMORE) {
2604 soisdisconnected(so);
2605 if (tp->t_maxidle > 0)
2606 TCP_TIMER_ARM(tp, TCPT_2MSL,
2607 tp->t_maxidle);
2608 }
2609 tp->t_state = TCPS_FIN_WAIT_2;
2610 }
2611 break;
2612
2613 /*
2614 * In CLOSING STATE in addition to the processing for
2615 * the ESTABLISHED state if the ACK acknowledges our FIN
2616 * then enter the TIME-WAIT state, otherwise ignore
2617 * the segment.
2618 */
2619 case TCPS_CLOSING:
2620 if (ourfinisacked) {
2621 tp->t_state = TCPS_TIME_WAIT;
2622 tcp_canceltimers(tp);
2623 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2624 soisdisconnected(so);
2625 }
2626 break;
2627
2628 /*
2629 * In LAST_ACK, we may still be waiting for data to drain
2630 * and/or to be acked, as well as for the ack of our FIN.
2631 * If our FIN is now acknowledged, delete the TCB,
2632 * enter the closed state and return.
2633 */
2634 case TCPS_LAST_ACK:
2635 if (ourfinisacked) {
2636 tp = tcp_close(tp);
2637 goto drop;
2638 }
2639 break;
2640
2641 /*
2642 * In TIME_WAIT state the only thing that should arrive
2643 * is a retransmission of the remote FIN. Acknowledge
2644 * it and restart the finack timer.
2645 */
2646 case TCPS_TIME_WAIT:
2647 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2648 goto dropafterack;
2649 }
2650 }
2651
2652 step6:
2653 /*
2654 * Update window information.
2655 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2656 */
2657 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2658 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2659 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2660 /* keep track of pure window updates */
2661 if (tlen == 0 &&
2662 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2663 TCP_STATINC(TCP_STAT_RCVWINUPD);
2664 tp->snd_wnd = tiwin;
2665 tp->snd_wl1 = th->th_seq;
2666 tp->snd_wl2 = th->th_ack;
2667 if (tp->snd_wnd > tp->max_sndwnd)
2668 tp->max_sndwnd = tp->snd_wnd;
2669 needoutput = 1;
2670 }
2671
2672 /*
2673 * Process segments with URG.
2674 */
2675 if ((tiflags & TH_URG) && th->th_urp &&
2676 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2677 /*
2678 * This is a kludge, but if we receive and accept
2679 * random urgent pointers, we'll crash in
2680 * soreceive. It's hard to imagine someone
2681 * actually wanting to send this much urgent data.
2682 */
2683 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2684 th->th_urp = 0; /* XXX */
2685 tiflags &= ~TH_URG; /* XXX */
2686 goto dodata; /* XXX */
2687 }
2688
2689 /*
2690 * If this segment advances the known urgent pointer,
2691 * then mark the data stream. This should not happen
2692 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2693 * a FIN has been received from the remote side.
2694 * In these states we ignore the URG.
2695 *
2696 * According to RFC961 (Assigned Protocols),
2697 * the urgent pointer points to the last octet
2698 * of urgent data. We continue, however,
2699 * to consider it to indicate the first octet
2700 * of data past the urgent section as the original
2701 * spec states (in one of two places).
2702 */
2703 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2704 tp->rcv_up = th->th_seq + th->th_urp;
2705 so->so_oobmark = so->so_rcv.sb_cc +
2706 (tp->rcv_up - tp->rcv_nxt) - 1;
2707 if (so->so_oobmark == 0)
2708 so->so_state |= SS_RCVATMARK;
2709 sohasoutofband(so);
2710 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2711 }
2712
2713 /*
2714 * Remove out of band data so doesn't get presented to user.
2715 * This can happen independent of advancing the URG pointer,
2716 * but if two URG's are pending at once, some out-of-band
2717 * data may creep in... ick.
2718 */
2719 if (th->th_urp <= (u_int16_t)tlen &&
2720 (so->so_options & SO_OOBINLINE) == 0)
2721 tcp_pulloutofband(so, th, m, hdroptlen);
2722 } else {
2723 /*
2724 * If no out of band data is expected,
2725 * pull receive urgent pointer along
2726 * with the receive window.
2727 */
2728 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2729 tp->rcv_up = tp->rcv_nxt;
2730 }
2731 dodata:
2732
2733 /*
2734 * Process the segment text, merging it into the TCP sequencing queue,
2735 * and arranging for acknowledgement of receipt if necessary.
2736 * This process logically involves adjusting tp->rcv_wnd as data
2737 * is presented to the user (this happens in tcp_usrreq.c,
2738 * tcp_rcvd()). If a FIN has already been received on this
2739 * connection then we just ignore the text.
2740 */
2741 if ((tlen || (tiflags & TH_FIN)) &&
2742 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2743 /*
2744 * Handle the common case:
2745 * o Segment is the next to be received, and
2746 * o The queue is empty, and
2747 * o The connection is established
2748 * In this case, we avoid calling tcp_reass.
2749 *
2750 * tcp_setup_ack: set DELACK for segments received in order,
2751 * but ack immediately when segments are out of order (so that
2752 * fast retransmit can work).
2753 */
2754 TCP_REASS_LOCK(tp);
2755 if (th->th_seq == tp->rcv_nxt &&
2756 TAILQ_FIRST(&tp->segq) == NULL &&
2757 tp->t_state == TCPS_ESTABLISHED) {
2758 tcp_setup_ack(tp, th);
2759 tp->rcv_nxt += tlen;
2760 tiflags = th->th_flags & TH_FIN;
2761 tcps = TCP_STAT_GETREF();
2762 _NET_STATINC_REF(tcps, TCP_STAT_RCVPACK);
2763 _NET_STATADD_REF(tcps, TCP_STAT_RCVBYTE, tlen);
2764 TCP_STAT_PUTREF();
2765 nd_hint(tp);
2766 if (so->so_state & SS_CANTRCVMORE) {
2767 m_freem(m);
2768 } else {
2769 m_adj(m, hdroptlen);
2770 sbappendstream(&(so)->so_rcv, m);
2771 }
2772 TCP_REASS_UNLOCK(tp);
2773 sorwakeup(so);
2774 } else {
2775 m_adj(m, hdroptlen);
2776 tiflags = tcp_reass(tp, th, m, tlen);
2777 tp->t_flags |= TF_ACKNOW;
2778 }
2779
2780 /*
2781 * Note the amount of data that peer has sent into
2782 * our window, in order to estimate the sender's
2783 * buffer size.
2784 */
2785 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2786 } else {
2787 m_freem(m);
2788 m = NULL;
2789 tiflags &= ~TH_FIN;
2790 }
2791
2792 /*
2793 * If FIN is received ACK the FIN and let the user know
2794 * that the connection is closing. Ignore a FIN received before
2795 * the connection is fully established.
2796 */
2797 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2798 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2799 socantrcvmore(so);
2800 tp->t_flags |= TF_ACKNOW;
2801 tp->rcv_nxt++;
2802 }
2803 switch (tp->t_state) {
2804
2805 /*
2806 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2807 */
2808 case TCPS_ESTABLISHED:
2809 tp->t_state = TCPS_CLOSE_WAIT;
2810 break;
2811
2812 /*
2813 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2814 * enter the CLOSING state.
2815 */
2816 case TCPS_FIN_WAIT_1:
2817 tp->t_state = TCPS_CLOSING;
2818 break;
2819
2820 /*
2821 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2822 * starting the time-wait timer, turning off the other
2823 * standard timers.
2824 */
2825 case TCPS_FIN_WAIT_2:
2826 tp->t_state = TCPS_TIME_WAIT;
2827 tcp_canceltimers(tp);
2828 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2829 soisdisconnected(so);
2830 break;
2831
2832 /*
2833 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2834 */
2835 case TCPS_TIME_WAIT:
2836 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2837 break;
2838 }
2839 }
2840 #ifdef TCP_DEBUG
2841 if (so->so_options & SO_DEBUG)
2842 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2843 #endif
2844
2845 /*
2846 * Return any desired output.
2847 */
2848 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2849 KERNEL_LOCK(1, NULL);
2850 (void)tcp_output(tp);
2851 KERNEL_UNLOCK_ONE(NULL);
2852 }
2853 m_freem(tcp_saveti);
2854
2855 if (tp->t_state == TCPS_TIME_WAIT
2856 && (so->so_state & SS_NOFDREF)
2857 && (tp->t_inpcb || af != AF_INET || af != AF_INET6)
2858 && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
2859 && TAILQ_EMPTY(&tp->segq)
2860 && vtw_add(af, tp)) {
2861 ;
2862 }
2863 return;
2864
2865 badsyn:
2866 /*
2867 * Received a bad SYN. Increment counters and dropwithreset.
2868 */
2869 TCP_STATINC(TCP_STAT_BADSYN);
2870 tp = NULL;
2871 goto dropwithreset;
2872
2873 dropafterack:
2874 /*
2875 * Generate an ACK dropping incoming segment if it occupies
2876 * sequence space, where the ACK reflects our state.
2877 */
2878 if (tiflags & TH_RST)
2879 goto drop;
2880 goto dropafterack2;
2881
2882 dropafterack_ratelim:
2883 /*
2884 * We may want to rate-limit ACKs against SYN/RST attack.
2885 */
2886 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2887 tcp_ackdrop_ppslim) == 0) {
2888 /* XXX stat */
2889 goto drop;
2890 }
2891
2892 dropafterack2:
2893 m_freem(m);
2894 tp->t_flags |= TF_ACKNOW;
2895 KERNEL_LOCK(1, NULL);
2896 (void)tcp_output(tp);
2897 KERNEL_UNLOCK_ONE(NULL);
2898 m_freem(tcp_saveti);
2899 return;
2900
2901 dropwithreset_ratelim:
2902 /*
2903 * We may want to rate-limit RSTs in certain situations,
2904 * particularly if we are sending an RST in response to
2905 * an attempt to connect to or otherwise communicate with
2906 * a port for which we have no socket.
2907 */
2908 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2909 tcp_rst_ppslim) == 0) {
2910 /* XXX stat */
2911 goto drop;
2912 }
2913
2914 dropwithreset:
2915 /*
2916 * Generate a RST, dropping incoming segment.
2917 * Make ACK acceptable to originator of segment.
2918 */
2919 if (tiflags & TH_RST)
2920 goto drop;
2921 if (tiflags & TH_ACK) {
2922 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2923 } else {
2924 if (tiflags & TH_SYN)
2925 tlen++;
2926 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2927 TH_RST|TH_ACK);
2928 }
2929 m_freem(tcp_saveti);
2930 return;
2931
2932 badcsum:
2933 drop:
2934 /*
2935 * Drop space held by incoming segment and return.
2936 */
2937 if (tp) {
2938 so = tp->t_inpcb->inp_socket;
2939 #ifdef TCP_DEBUG
2940 if (so && (so->so_options & SO_DEBUG) != 0)
2941 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2942 #endif
2943 }
2944 m_freem(tcp_saveti);
2945 m_freem(m);
2946 return;
2947 }
2948
2949 #ifdef TCP_SIGNATURE
2950 int
2951 tcp_signature_apply(void *fstate, void *data, u_int len)
2952 {
2953
2954 MD5Update(fstate, (u_char *)data, len);
2955 return (0);
2956 }
2957
2958 struct secasvar *
2959 tcp_signature_getsav(struct mbuf *m)
2960 {
2961 struct ip *ip;
2962 struct ip6_hdr *ip6;
2963
2964 ip = mtod(m, struct ip *);
2965 switch (ip->ip_v) {
2966 case 4:
2967 ip = mtod(m, struct ip *);
2968 ip6 = NULL;
2969 break;
2970 case 6:
2971 ip = NULL;
2972 ip6 = mtod(m, struct ip6_hdr *);
2973 break;
2974 default:
2975 return (NULL);
2976 }
2977
2978 #ifdef IPSEC
2979 union sockaddr_union dst;
2980
2981 /* Extract the destination from the IP header in the mbuf. */
2982 memset(&dst, 0, sizeof(union sockaddr_union));
2983 if (ip != NULL) {
2984 dst.sa.sa_len = sizeof(struct sockaddr_in);
2985 dst.sa.sa_family = AF_INET;
2986 dst.sin.sin_addr = ip->ip_dst;
2987 } else {
2988 dst.sa.sa_len = sizeof(struct sockaddr_in6);
2989 dst.sa.sa_family = AF_INET6;
2990 dst.sin6.sin6_addr = ip6->ip6_dst;
2991 }
2992
2993 /*
2994 * Look up an SADB entry which matches the address of the peer.
2995 */
2996 return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
2997 #else
2998 return NULL;
2999 #endif
3000 }
3001
3002 int
3003 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3004 struct secasvar *sav, char *sig)
3005 {
3006 MD5_CTX ctx;
3007 struct ip *ip;
3008 struct ipovly *ipovly;
3009 #ifdef INET6
3010 struct ip6_hdr *ip6;
3011 struct ip6_hdr_pseudo ip6pseudo;
3012 #endif
3013 struct ippseudo ippseudo;
3014 struct tcphdr th0;
3015 int l, tcphdrlen;
3016
3017 if (sav == NULL)
3018 return (-1);
3019
3020 tcphdrlen = th->th_off * 4;
3021
3022 switch (mtod(m, struct ip *)->ip_v) {
3023 case 4:
3024 MD5Init(&ctx);
3025 ip = mtod(m, struct ip *);
3026 memset(&ippseudo, 0, sizeof(ippseudo));
3027 ipovly = (struct ipovly *)ip;
3028 ippseudo.ippseudo_src = ipovly->ih_src;
3029 ippseudo.ippseudo_dst = ipovly->ih_dst;
3030 ippseudo.ippseudo_pad = 0;
3031 ippseudo.ippseudo_p = IPPROTO_TCP;
3032 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3033 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3034 break;
3035 #if INET6
3036 case 6:
3037 MD5Init(&ctx);
3038 ip6 = mtod(m, struct ip6_hdr *);
3039 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3040 ip6pseudo.ip6ph_src = ip6->ip6_src;
3041 in6_clearscope(&ip6pseudo.ip6ph_src);
3042 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3043 in6_clearscope(&ip6pseudo.ip6ph_dst);
3044 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3045 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3046 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3047 break;
3048 #endif
3049 default:
3050 return (-1);
3051 }
3052
3053 th0 = *th;
3054 th0.th_sum = 0;
3055 MD5Update(&ctx, (char *)&th0, sizeof(th0));
3056
3057 l = m->m_pkthdr.len - thoff - tcphdrlen;
3058 if (l > 0)
3059 m_apply(m, thoff + tcphdrlen,
3060 m->m_pkthdr.len - thoff - tcphdrlen,
3061 tcp_signature_apply, &ctx);
3062
3063 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3064 MD5Final(sig, &ctx);
3065
3066 return (0);
3067 }
3068 #endif
3069
3070 /*
3071 * Parse and process tcp options.
3072 *
3073 * Returns -1 if this segment should be dropped. (eg. wrong signature)
3074 * Otherwise returns 0.
3075 */
3076 int
3077 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt, struct tcphdr *th,
3078 struct mbuf *m, int toff, struct tcp_opt_info *oi)
3079 {
3080 u_int16_t mss;
3081 int opt, optlen = 0;
3082 #ifdef TCP_SIGNATURE
3083 void *sigp = NULL;
3084 char sigbuf[TCP_SIGLEN];
3085 struct secasvar *sav = NULL;
3086 #endif
3087
3088 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3089 opt = cp[0];
3090 if (opt == TCPOPT_EOL)
3091 break;
3092 if (opt == TCPOPT_NOP)
3093 optlen = 1;
3094 else {
3095 if (cnt < 2)
3096 break;
3097 optlen = cp[1];
3098 if (optlen < 2 || optlen > cnt)
3099 break;
3100 }
3101 switch (opt) {
3102
3103 default:
3104 continue;
3105
3106 case TCPOPT_MAXSEG:
3107 if (optlen != TCPOLEN_MAXSEG)
3108 continue;
3109 if (!(th->th_flags & TH_SYN))
3110 continue;
3111 if (TCPS_HAVERCVDSYN(tp->t_state))
3112 continue;
3113 memcpy(&mss, cp + 2, sizeof(mss));
3114 oi->maxseg = ntohs(mss);
3115 break;
3116
3117 case TCPOPT_WINDOW:
3118 if (optlen != TCPOLEN_WINDOW)
3119 continue;
3120 if (!(th->th_flags & TH_SYN))
3121 continue;
3122 if (TCPS_HAVERCVDSYN(tp->t_state))
3123 continue;
3124 tp->t_flags |= TF_RCVD_SCALE;
3125 tp->requested_s_scale = cp[2];
3126 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3127 char buf[INET6_ADDRSTRLEN];
3128 struct ip *ip = mtod(m, struct ip *);
3129 #ifdef INET6
3130 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3131 #endif
3132
3133 switch (ip->ip_v) {
3134 case 4:
3135 in_print(buf, sizeof(buf),
3136 &ip->ip_src);
3137 break;
3138 #ifdef INET6
3139 case 6:
3140 in6_print(buf, sizeof(buf),
3141 &ip6->ip6_src);
3142 break;
3143 #endif
3144 default:
3145 strlcpy(buf, "(unknown)", sizeof(buf));
3146 break;
3147 }
3148
3149 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3150 "assuming %d\n",
3151 tp->requested_s_scale, buf,
3152 TCP_MAX_WINSHIFT);
3153 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3154 }
3155 break;
3156
3157 case TCPOPT_TIMESTAMP:
3158 if (optlen != TCPOLEN_TIMESTAMP)
3159 continue;
3160 oi->ts_present = 1;
3161 memcpy(&oi->ts_val, cp + 2, sizeof(oi->ts_val));
3162 NTOHL(oi->ts_val);
3163 memcpy(&oi->ts_ecr, cp + 6, sizeof(oi->ts_ecr));
3164 NTOHL(oi->ts_ecr);
3165
3166 if (!(th->th_flags & TH_SYN))
3167 continue;
3168 if (TCPS_HAVERCVDSYN(tp->t_state))
3169 continue;
3170 /*
3171 * A timestamp received in a SYN makes
3172 * it ok to send timestamp requests and replies.
3173 */
3174 tp->t_flags |= TF_RCVD_TSTMP;
3175 tp->ts_recent = oi->ts_val;
3176 tp->ts_recent_age = tcp_now;
3177 break;
3178
3179 case TCPOPT_SACK_PERMITTED:
3180 if (optlen != TCPOLEN_SACK_PERMITTED)
3181 continue;
3182 if (!(th->th_flags & TH_SYN))
3183 continue;
3184 if (TCPS_HAVERCVDSYN(tp->t_state))
3185 continue;
3186 if (tcp_do_sack) {
3187 tp->t_flags |= TF_SACK_PERMIT;
3188 tp->t_flags |= TF_WILL_SACK;
3189 }
3190 break;
3191
3192 case TCPOPT_SACK:
3193 tcp_sack_option(tp, th, cp, optlen);
3194 break;
3195 #ifdef TCP_SIGNATURE
3196 case TCPOPT_SIGNATURE:
3197 if (optlen != TCPOLEN_SIGNATURE)
3198 continue;
3199 if (sigp &&
3200 !consttime_memequal(sigp, cp + 2, TCP_SIGLEN))
3201 return (-1);
3202
3203 sigp = sigbuf;
3204 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3205 tp->t_flags |= TF_SIGNATURE;
3206 break;
3207 #endif
3208 }
3209 }
3210
3211 #ifndef TCP_SIGNATURE
3212 return 0;
3213 #else
3214 if (tp->t_flags & TF_SIGNATURE) {
3215 sav = tcp_signature_getsav(m);
3216 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3217 return (-1);
3218 }
3219
3220 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3221 goto out;
3222
3223 if (sigp) {
3224 char sig[TCP_SIGLEN];
3225
3226 tcp_fields_to_net(th);
3227 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3228 tcp_fields_to_host(th);
3229 goto out;
3230 }
3231 tcp_fields_to_host(th);
3232
3233 if (!consttime_memequal(sig, sigp, TCP_SIGLEN)) {
3234 TCP_STATINC(TCP_STAT_BADSIG);
3235 goto out;
3236 } else
3237 TCP_STATINC(TCP_STAT_GOODSIG);
3238
3239 key_sa_recordxfer(sav, m);
3240 KEY_SA_UNREF(&sav);
3241 }
3242 return 0;
3243 out:
3244 if (sav != NULL)
3245 KEY_SA_UNREF(&sav);
3246 return -1;
3247 #endif
3248 }
3249
3250 /*
3251 * Pull out of band byte out of a segment so
3252 * it doesn't appear in the user's data queue.
3253 * It is still reflected in the segment length for
3254 * sequencing purposes.
3255 */
3256 void
3257 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3258 struct mbuf *m, int off)
3259 {
3260 int cnt = off + th->th_urp - 1;
3261
3262 while (cnt >= 0) {
3263 if (m->m_len > cnt) {
3264 char *cp = mtod(m, char *) + cnt;
3265 struct tcpcb *tp = sototcpcb(so);
3266
3267 tp->t_iobc = *cp;
3268 tp->t_oobflags |= TCPOOB_HAVEDATA;
3269 memmove(cp, cp + 1, (unsigned)(m->m_len - cnt - 1));
3270 m->m_len--;
3271 return;
3272 }
3273 cnt -= m->m_len;
3274 m = m->m_next;
3275 if (m == NULL)
3276 break;
3277 }
3278 panic("tcp_pulloutofband");
3279 }
3280
3281 /*
3282 * Collect new round-trip time estimate
3283 * and update averages and current timeout.
3284 *
3285 * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3286 * difference of two timestamps.
3287 */
3288 void
3289 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3290 {
3291 int32_t delta;
3292
3293 TCP_STATINC(TCP_STAT_RTTUPDATED);
3294 if (tp->t_srtt != 0) {
3295 /*
3296 * Compute the amount to add to srtt for smoothing,
3297 * *alpha, or 2^(-TCP_RTT_SHIFT). Because
3298 * srtt is stored in 1/32 slow ticks, we conceptually
3299 * shift left 5 bits, subtract srtt to get the
3300 * difference, and then shift right by TCP_RTT_SHIFT
3301 * (3) to obtain 1/8 of the difference.
3302 */
3303 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3304 /*
3305 * This can never happen, because delta's lowest
3306 * possible value is 1/8 of t_srtt. But if it does,
3307 * set srtt to some reasonable value, here chosen
3308 * as 1/8 tick.
3309 */
3310 if ((tp->t_srtt += delta) <= 0)
3311 tp->t_srtt = 1 << 2;
3312 /*
3313 * RFC2988 requires that rttvar be updated first.
3314 * This code is compliant because "delta" is the old
3315 * srtt minus the new observation (scaled).
3316 *
3317 * RFC2988 says:
3318 * rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3319 *
3320 * delta is in units of 1/32 ticks, and has then been
3321 * divided by 8. This is equivalent to being in 1/16s
3322 * units and divided by 4. Subtract from it 1/4 of
3323 * the existing rttvar to form the (signed) amount to
3324 * adjust.
3325 */
3326 if (delta < 0)
3327 delta = -delta;
3328 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3329 /*
3330 * As with srtt, this should never happen. There is
3331 * no support in RFC2988 for this operation. But 1/4s
3332 * as rttvar when faced with something arguably wrong
3333 * is ok.
3334 */
3335 if ((tp->t_rttvar += delta) <= 0)
3336 tp->t_rttvar = 1 << 2;
3337
3338 /*
3339 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3340 * Problem is: it doesn't work. Disabled by defaulting
3341 * tcp_rttlocal to 0; see corresponding code in
3342 * tcp_subr that selects local vs remote in a different way.
3343 *
3344 * The static branch prediction hint here should be removed
3345 * when the rtt estimator is fixed and the rtt_enable code
3346 * is turned back on.
3347 */
3348 if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3349 && tp->t_srtt > tcp_msl_remote_threshold
3350 && tp->t_msl < tcp_msl_remote) {
3351 tp->t_msl = MIN(tcp_msl_remote, TCP_MAXMSL);
3352 }
3353 } else {
3354 /*
3355 * This is the first measurement. Per RFC2988, 2.2,
3356 * set rtt=R and srtt=R/2.
3357 * For srtt, storage representation is 1/32 ticks,
3358 * so shift left by 5.
3359 * For rttvar, storage representation is 1/16 ticks,
3360 * So shift left by 4, but then right by 1 to halve.
3361 */
3362 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3363 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3364 }
3365 tp->t_rtttime = 0;
3366 tp->t_rxtshift = 0;
3367
3368 /*
3369 * the retransmit should happen at rtt + 4 * rttvar.
3370 * Because of the way we do the smoothing, srtt and rttvar
3371 * will each average +1/2 tick of bias. When we compute
3372 * the retransmit timer, we want 1/2 tick of rounding and
3373 * 1 extra tick because of +-1/2 tick uncertainty in the
3374 * firing of the timer. The bias will give us exactly the
3375 * 1.5 tick we need. But, because the bias is
3376 * statistical, we have to test that we don't drop below
3377 * the minimum feasible timer (which is 2 ticks).
3378 */
3379 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3380 uimax(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3381
3382 /*
3383 * We received an ack for a packet that wasn't retransmitted;
3384 * it is probably safe to discard any error indications we've
3385 * received recently. This isn't quite right, but close enough
3386 * for now (a route might have failed after we sent a segment,
3387 * and the return path might not be symmetrical).
3388 */
3389 tp->t_softerror = 0;
3390 }
3391