tcp_input.c revision 1.47 1 /* $NetBSD: tcp_input.c,v 1.47 1998/03/31 23:44:09 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
9 * Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by the University of
55 * California, Berkeley and its contributors.
56 * 4. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
73 */
74
75 /*
76 * TODO list for SYN cache stuff:
77 *
78 * (a) The definition of "struct syn_cache" says:
79 *
80 * This structure should not exceeed 32 bytes.
81 *
82 * but it's 40 bytes on the Alpha. Can reduce memory use one
83 * of two ways:
84 *
85 * (1) Use a dynamically-sized hash table, and handle
86 * collisions by rehashing. Then sc_next is unnecessary.
87 *
88 * (2) Allocate syn_cache structures in pages (or some other
89 * large chunk). This would probably be desirable for
90 * maintaining locality of reference anyway.
91 *
92 * If you do this, you can change sc_next to a page/index
93 * value, and make it a 32-bit (or maybe even 16-bit)
94 * integer, thus partly obviating the need for the previous
95 * hack.
96 *
97 * It's also worth noting this this is necessary for IPv6, as well,
98 * where we use 32 bytes just for the IP addresses, so eliminating
99 * wastage is going to become more important. (BTW, has anyone
100 * integreated these changes with one fo the IPv6 status that are
101 * available?)
102 *
103 * (b) Find room for a "state" field, which is needed to keep a
104 * compressed state for TIME_WAIT TCBs. It's been noted already
105 * that this is fairly important for very high-volume web and
106 * mail servers, which use a large number of short-lived
107 * connections.
108 */
109
110 #ifndef TUBA_INCLUDE
111 #include <sys/param.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/protosw.h>
116 #include <sys/socket.h>
117 #include <sys/socketvar.h>
118 #include <sys/errno.h>
119
120 #include <net/if.h>
121 #include <net/route.h>
122
123 #include <netinet/in.h>
124 #include <netinet/in_systm.h>
125 #include <netinet/ip.h>
126 #include <netinet/in_pcb.h>
127 #include <netinet/ip_var.h>
128 #include <netinet/tcp.h>
129 #include <netinet/tcp_fsm.h>
130 #include <netinet/tcp_seq.h>
131 #include <netinet/tcp_timer.h>
132 #include <netinet/tcp_var.h>
133 #include <netinet/tcpip.h>
134 #include <netinet/tcp_debug.h>
135
136 #include <machine/stdarg.h>
137
138 int tcprexmtthresh = 3;
139 struct tcpiphdr tcp_saveti;
140
141 extern u_long sb_max;
142
143 #endif /* TUBA_INCLUDE */
144 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
145
146 /* for modulo comparisons of timestamps */
147 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
148 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
149
150 /*
151 * Macro to compute ACK transmission behavior. Delay the ACK unless
152 * we have already delayed an ACK (must send an ACK every two segments).
153 */
154 #define TCP_SETUP_ACK(tp, ti) \
155 do { \
156 if ((tp)->t_flags & TF_DELACK) \
157 tp->t_flags |= TF_ACKNOW; \
158 else \
159 TCP_SET_DELACK(tp); \
160 } while (0)
161
162 /*
163 * Insert segment ti into reassembly queue of tcp with
164 * control block tp. Return TH_FIN if reassembly now includes
165 * a segment with FIN. The macro form does the common case inline
166 * (segment is the next to be received on an established connection,
167 * and the queue is empty), avoiding linkage into and removal
168 * from the queue and repetition of various conversions.
169 * Set DELACK for segments received in order, but ack immediately
170 * when segments are out of order (so fast retransmit can work).
171 */
172 #define TCP_REASS(tp, ti, m, so, flags) { \
173 if ((ti)->ti_seq == (tp)->rcv_nxt && \
174 (tp)->segq.lh_first == NULL && \
175 (tp)->t_state == TCPS_ESTABLISHED) { \
176 TCP_SETUP_ACK(tp, ti); \
177 (tp)->rcv_nxt += (ti)->ti_len; \
178 flags = (ti)->ti_flags & TH_FIN; \
179 tcpstat.tcps_rcvpack++;\
180 tcpstat.tcps_rcvbyte += (ti)->ti_len;\
181 sbappend(&(so)->so_rcv, (m)); \
182 sorwakeup(so); \
183 } else { \
184 (flags) = tcp_reass((tp), (ti), (m)); \
185 tp->t_flags |= TF_ACKNOW; \
186 } \
187 }
188 #ifndef TUBA_INCLUDE
189
190 int
191 tcp_reass(tp, ti, m)
192 register struct tcpcb *tp;
193 register struct tcpiphdr *ti;
194 struct mbuf *m;
195 {
196 register struct ipqent *p, *q, *nq, *tiqe;
197 struct socket *so = tp->t_inpcb->inp_socket;
198 int flags;
199
200 /*
201 * Call with ti==0 after become established to
202 * force pre-ESTABLISHED data up to user socket.
203 */
204 if (ti == 0)
205 goto present;
206
207 /*
208 * Allocate a new queue entry, before we throw away any data.
209 * If we can't, just drop the packet. XXX
210 */
211 MALLOC(tiqe, struct ipqent *, sizeof (struct ipqent), M_IPQ, M_NOWAIT);
212 if (tiqe == NULL) {
213 tcpstat.tcps_rcvmemdrop++;
214 m_freem(m);
215 return (0);
216 }
217
218 /*
219 * Find a segment which begins after this one does.
220 */
221 for (p = NULL, q = tp->segq.lh_first; q != NULL;
222 p = q, q = q->ipqe_q.le_next)
223 if (SEQ_GT(q->ipqe_tcp->ti_seq, ti->ti_seq))
224 break;
225
226 /*
227 * If there is a preceding segment, it may provide some of
228 * our data already. If so, drop the data from the incoming
229 * segment. If it provides all of our data, drop us.
230 */
231 if (p != NULL) {
232 register struct tcpiphdr *phdr = p->ipqe_tcp;
233 register int i;
234
235 /* conversion to int (in i) handles seq wraparound */
236 i = phdr->ti_seq + phdr->ti_len - ti->ti_seq;
237 if (i > 0) {
238 if (i >= ti->ti_len) {
239 tcpstat.tcps_rcvduppack++;
240 tcpstat.tcps_rcvdupbyte += ti->ti_len;
241 m_freem(m);
242 FREE(tiqe, M_IPQ);
243 return (0);
244 }
245 m_adj(m, i);
246 ti->ti_len -= i;
247 ti->ti_seq += i;
248 }
249 }
250 tcpstat.tcps_rcvoopack++;
251 tcpstat.tcps_rcvoobyte += ti->ti_len;
252
253 /*
254 * While we overlap succeeding segments trim them or,
255 * if they are completely covered, dequeue them.
256 */
257 for (; q != NULL; q = nq) {
258 register struct tcpiphdr *qhdr = q->ipqe_tcp;
259 register int i = (ti->ti_seq + ti->ti_len) - qhdr->ti_seq;
260
261 if (i <= 0)
262 break;
263 if (i < qhdr->ti_len) {
264 qhdr->ti_seq += i;
265 qhdr->ti_len -= i;
266 m_adj(q->ipqe_m, i);
267 break;
268 }
269 nq = q->ipqe_q.le_next;
270 m_freem(q->ipqe_m);
271 LIST_REMOVE(q, ipqe_q);
272 FREE(q, M_IPQ);
273 }
274
275 /* Insert the new fragment queue entry into place. */
276 tiqe->ipqe_m = m;
277 tiqe->ipqe_tcp = ti;
278 if (p == NULL) {
279 LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
280 } else {
281 LIST_INSERT_AFTER(p, tiqe, ipqe_q);
282 }
283
284 present:
285 /*
286 * Present data to user, advancing rcv_nxt through
287 * completed sequence space.
288 */
289 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
290 return (0);
291 q = tp->segq.lh_first;
292 if (q == NULL || q->ipqe_tcp->ti_seq != tp->rcv_nxt)
293 return (0);
294 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_tcp->ti_len)
295 return (0);
296 do {
297 tp->rcv_nxt += q->ipqe_tcp->ti_len;
298 flags = q->ipqe_tcp->ti_flags & TH_FIN;
299
300 nq = q->ipqe_q.le_next;
301 LIST_REMOVE(q, ipqe_q);
302 if (so->so_state & SS_CANTRCVMORE)
303 m_freem(q->ipqe_m);
304 else
305 sbappend(&so->so_rcv, q->ipqe_m);
306 FREE(q, M_IPQ);
307 q = nq;
308 } while (q != NULL && q->ipqe_tcp->ti_seq == tp->rcv_nxt);
309 sorwakeup(so);
310 return (flags);
311 }
312
313 /*
314 * TCP input routine, follows pages 65-76 of the
315 * protocol specification dated September, 1981 very closely.
316 */
317 void
318 #if __STDC__
319 tcp_input(struct mbuf *m, ...)
320 #else
321 tcp_input(m, va_alist)
322 register struct mbuf *m;
323 #endif
324 {
325 register struct tcpiphdr *ti;
326 register struct inpcb *inp;
327 caddr_t optp = NULL;
328 int optlen = 0;
329 int len, tlen, off, hdroptlen;
330 register struct tcpcb *tp = 0;
331 register int tiflags;
332 struct socket *so = NULL;
333 int todrop, acked, ourfinisacked, needoutput = 0;
334 short ostate = 0;
335 int iss = 0;
336 u_long tiwin;
337 struct tcp_opt_info opti;
338 int iphlen;
339 va_list ap;
340
341 va_start(ap, m);
342 iphlen = va_arg(ap, int);
343 va_end(ap);
344
345 tcpstat.tcps_rcvtotal++;
346
347 opti.ts_present = 0;
348 opti.maxseg = 0;
349
350 /*
351 * Get IP and TCP header together in first mbuf.
352 * Note: IP leaves IP header in first mbuf.
353 */
354 ti = mtod(m, struct tcpiphdr *);
355 if (iphlen > sizeof (struct ip))
356 ip_stripoptions(m, (struct mbuf *)0);
357 if (m->m_len < sizeof (struct tcpiphdr)) {
358 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
359 tcpstat.tcps_rcvshort++;
360 return;
361 }
362 ti = mtod(m, struct tcpiphdr *);
363 }
364
365 /*
366 * Checksum extended TCP header and data.
367 */
368 tlen = ((struct ip *)ti)->ip_len;
369 len = sizeof (struct ip) + tlen;
370 bzero(ti->ti_x1, sizeof ti->ti_x1);
371 ti->ti_len = (u_int16_t)tlen;
372 HTONS(ti->ti_len);
373 if ((ti->ti_sum = in_cksum(m, len)) != 0) {
374 tcpstat.tcps_rcvbadsum++;
375 goto drop;
376 }
377 #endif /* TUBA_INCLUDE */
378
379 /*
380 * Check that TCP offset makes sense,
381 * pull out TCP options and adjust length. XXX
382 */
383 off = ti->ti_off << 2;
384 if (off < sizeof (struct tcphdr) || off > tlen) {
385 tcpstat.tcps_rcvbadoff++;
386 goto drop;
387 }
388 tlen -= off;
389 ti->ti_len = tlen;
390 if (off > sizeof (struct tcphdr)) {
391 if (m->m_len < sizeof(struct ip) + off) {
392 if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
393 tcpstat.tcps_rcvshort++;
394 return;
395 }
396 ti = mtod(m, struct tcpiphdr *);
397 }
398 optlen = off - sizeof (struct tcphdr);
399 optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
400 /*
401 * Do quick retrieval of timestamp options ("options
402 * prediction?"). If timestamp is the only option and it's
403 * formatted as recommended in RFC 1323 appendix A, we
404 * quickly get the values now and not bother calling
405 * tcp_dooptions(), etc.
406 */
407 if ((optlen == TCPOLEN_TSTAMP_APPA ||
408 (optlen > TCPOLEN_TSTAMP_APPA &&
409 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
410 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
411 (ti->ti_flags & TH_SYN) == 0) {
412 opti.ts_present = 1;
413 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
414 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
415 optp = NULL; /* we've parsed the options */
416 }
417 }
418 tiflags = ti->ti_flags;
419
420 /*
421 * Convert TCP protocol specific fields to host format.
422 */
423 NTOHL(ti->ti_seq);
424 NTOHL(ti->ti_ack);
425 NTOHS(ti->ti_win);
426 NTOHS(ti->ti_urp);
427
428 /*
429 * Locate pcb for segment.
430 */
431 findpcb:
432 inp = in_pcblookup_connect(&tcbtable, ti->ti_src, ti->ti_sport,
433 ti->ti_dst, ti->ti_dport);
434 if (inp == 0) {
435 ++tcpstat.tcps_pcbhashmiss;
436 inp = in_pcblookup_bind(&tcbtable, ti->ti_dst, ti->ti_dport);
437 if (inp == 0) {
438 ++tcpstat.tcps_noport;
439 goto dropwithreset;
440 }
441 }
442
443 /*
444 * If the state is CLOSED (i.e., TCB does not exist) then
445 * all data in the incoming segment is discarded.
446 * If the TCB exists but is in CLOSED state, it is embryonic,
447 * but should either do a listen or a connect soon.
448 */
449 tp = intotcpcb(inp);
450 if (tp == 0)
451 goto dropwithreset;
452 if (tp->t_state == TCPS_CLOSED)
453 goto drop;
454
455 /* Unscale the window into a 32-bit value. */
456 if ((tiflags & TH_SYN) == 0)
457 tiwin = ti->ti_win << tp->snd_scale;
458 else
459 tiwin = ti->ti_win;
460
461 so = inp->inp_socket;
462 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
463 if (so->so_options & SO_DEBUG) {
464 ostate = tp->t_state;
465 tcp_saveti = *ti;
466 }
467 if (so->so_options & SO_ACCEPTCONN) {
468 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
469 if (tiflags & TH_RST) {
470 syn_cache_reset(ti);
471 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
472 (TH_ACK|TH_SYN)) {
473 /*
474 * Received a SYN,ACK. This should
475 * never happen while we are in
476 * LISTEN. Send an RST.
477 */
478 goto badsyn;
479 } else if (tiflags & TH_ACK) {
480 so = syn_cache_get(so, m);
481 if (so == NULL) {
482 /*
483 * We don't have a SYN for
484 * this ACK; send an RST.
485 */
486 goto badsyn;
487 } else if (so ==
488 (struct socket *)(-1)) {
489 /*
490 * We were unable to create
491 * the connection. If the
492 * 3-way handshake was
493 * completeed, and RST has
494 * been sent to the peer.
495 * Since the mbuf might be
496 * in use for the reply,
497 * do not free it.
498 */
499 m = NULL;
500 } else {
501 /*
502 * We have created a
503 * full-blown connection.
504 */
505 inp = sotoinpcb(so);
506 tp = intotcpcb(inp);
507 tiwin <<= tp->snd_scale;
508 goto after_listen;
509 }
510 }
511 } else {
512 /*
513 * Received a SYN.
514 */
515 if (in_hosteq(ti->ti_src, ti->ti_dst) &&
516 ti->ti_sport == ti->ti_dport) {
517 /*
518 * LISTEN socket received a SYN
519 * from itself? This can't possibly
520 * be valid; drop the packet.
521 */
522 tcpstat.tcps_badsyn++;
523 goto drop;
524 }
525 /*
526 * SYN looks ok; create compressed TCP
527 * state for it.
528 */
529 if (so->so_qlen <= so->so_qlimit &&
530 syn_cache_add(so, m, optp, optlen, &opti))
531 m = NULL;
532 }
533 goto drop;
534 }
535 }
536
537 after_listen:
538 #ifdef DIAGNOSTIC
539 /*
540 * Should not happen now that all embryonic connections
541 * are handled with compressed state.
542 */
543 if (tp->t_state == TCPS_LISTEN)
544 panic("tcp_input: TCPS_LISTEN");
545 #endif
546
547 /*
548 * Segment received on connection.
549 * Reset idle time and keep-alive timer.
550 */
551 tp->t_idle = 0;
552 if (TCPS_HAVEESTABLISHED(tp->t_state))
553 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
554
555 /*
556 * Process options.
557 */
558 if (optp)
559 tcp_dooptions(tp, optp, optlen, ti, &opti);
560
561 /*
562 * Header prediction: check for the two common cases
563 * of a uni-directional data xfer. If the packet has
564 * no control flags, is in-sequence, the window didn't
565 * change and we're not retransmitting, it's a
566 * candidate. If the length is zero and the ack moved
567 * forward, we're the sender side of the xfer. Just
568 * free the data acked & wake any higher level process
569 * that was blocked waiting for space. If the length
570 * is non-zero and the ack didn't move, we're the
571 * receiver side. If we're getting packets in-order
572 * (the reassembly queue is empty), add the data to
573 * the socket buffer and note that we need a delayed ack.
574 */
575 if (tp->t_state == TCPS_ESTABLISHED &&
576 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
577 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
578 ti->ti_seq == tp->rcv_nxt &&
579 tiwin && tiwin == tp->snd_wnd &&
580 tp->snd_nxt == tp->snd_max) {
581
582 /*
583 * If last ACK falls within this segment's sequence numbers,
584 * record the timestamp.
585 */
586 if (opti.ts_present &&
587 SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
588 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
589 tp->ts_recent_age = tcp_now;
590 tp->ts_recent = opti.ts_val;
591 }
592
593 if (ti->ti_len == 0) {
594 if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
595 SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
596 tp->snd_cwnd >= tp->snd_wnd &&
597 tp->t_dupacks < tcprexmtthresh) {
598 /*
599 * this is a pure ack for outstanding data.
600 */
601 ++tcpstat.tcps_predack;
602 if (opti.ts_present)
603 tcp_xmit_timer(tp,
604 tcp_now-opti.ts_ecr+1);
605 else if (tp->t_rtt &&
606 SEQ_GT(ti->ti_ack, tp->t_rtseq))
607 tcp_xmit_timer(tp, tp->t_rtt);
608 acked = ti->ti_ack - tp->snd_una;
609 tcpstat.tcps_rcvackpack++;
610 tcpstat.tcps_rcvackbyte += acked;
611 sbdrop(&so->so_snd, acked);
612 tp->snd_una = ti->ti_ack;
613 m_freem(m);
614
615 /*
616 * If all outstanding data are acked, stop
617 * retransmit timer, otherwise restart timer
618 * using current (possibly backed-off) value.
619 * If process is waiting for space,
620 * wakeup/selwakeup/signal. If data
621 * are ready to send, let tcp_output
622 * decide between more output or persist.
623 */
624 if (tp->snd_una == tp->snd_max)
625 tp->t_timer[TCPT_REXMT] = 0;
626 else if (tp->t_timer[TCPT_PERSIST] == 0)
627 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
628
629 if (sb_notify(&so->so_snd))
630 sowwakeup(so);
631 if (so->so_snd.sb_cc)
632 (void) tcp_output(tp);
633 return;
634 }
635 } else if (ti->ti_ack == tp->snd_una &&
636 tp->segq.lh_first == NULL &&
637 ti->ti_len <= sbspace(&so->so_rcv)) {
638 /*
639 * this is a pure, in-sequence data packet
640 * with nothing on the reassembly queue and
641 * we have enough buffer space to take it.
642 */
643 ++tcpstat.tcps_preddat;
644 tp->rcv_nxt += ti->ti_len;
645 tcpstat.tcps_rcvpack++;
646 tcpstat.tcps_rcvbyte += ti->ti_len;
647 /*
648 * Drop TCP, IP headers and TCP options then add data
649 * to socket buffer.
650 */
651 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
652 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
653 sbappend(&so->so_rcv, m);
654 sorwakeup(so);
655 TCP_SETUP_ACK(tp, ti);
656 if (tp->t_flags & TF_ACKNOW)
657 (void) tcp_output(tp);
658 return;
659 }
660 }
661
662 /*
663 * Drop TCP, IP headers and TCP options.
664 */
665 hdroptlen = sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr);
666 m->m_data += hdroptlen;
667 m->m_len -= hdroptlen;
668
669 /*
670 * Calculate amount of space in receive window,
671 * and then do TCP input processing.
672 * Receive window is amount of space in rcv queue,
673 * but not less than advertised window.
674 */
675 { int win;
676
677 win = sbspace(&so->so_rcv);
678 if (win < 0)
679 win = 0;
680 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
681 }
682
683 switch (tp->t_state) {
684
685 /*
686 * If the state is SYN_SENT:
687 * if seg contains an ACK, but not for our SYN, drop the input.
688 * if seg contains a RST, then drop the connection.
689 * if seg does not contain SYN, then drop it.
690 * Otherwise this is an acceptable SYN segment
691 * initialize tp->rcv_nxt and tp->irs
692 * if seg contains ack then advance tp->snd_una
693 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
694 * arrange for segment to be acked (eventually)
695 * continue processing rest of data/controls, beginning with URG
696 */
697 case TCPS_SYN_SENT:
698 if ((tiflags & TH_ACK) &&
699 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
700 SEQ_GT(ti->ti_ack, tp->snd_max)))
701 goto dropwithreset;
702 if (tiflags & TH_RST) {
703 if (tiflags & TH_ACK)
704 tp = tcp_drop(tp, ECONNREFUSED);
705 goto drop;
706 }
707 if ((tiflags & TH_SYN) == 0)
708 goto drop;
709 if (tiflags & TH_ACK) {
710 tp->snd_una = ti->ti_ack;
711 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
712 tp->snd_nxt = tp->snd_una;
713 }
714 tp->t_timer[TCPT_REXMT] = 0;
715 tp->irs = ti->ti_seq;
716 tcp_rcvseqinit(tp);
717 tp->t_flags |= TF_ACKNOW;
718 tcp_mss_from_peer(tp, opti.maxseg);
719
720 /*
721 * Initialize the initial congestion window. If we
722 * had to retransmit the SYN, we must initialize cwnd
723 * to 1 segment.
724 */
725 tp->snd_cwnd =
726 TCP_INITIAL_WINDOW((tp->t_flags & TF_SYN_REXMT) ? 1 :
727 tcp_init_win, tp->t_peermss);
728
729 tcp_rmx_rtt(tp);
730 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
731 tcpstat.tcps_connects++;
732 soisconnected(so);
733 tcp_established(tp);
734 /* Do window scaling on this connection? */
735 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
736 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
737 tp->snd_scale = tp->requested_s_scale;
738 tp->rcv_scale = tp->request_r_scale;
739 }
740 (void) tcp_reass(tp, (struct tcpiphdr *)0,
741 (struct mbuf *)0);
742 /*
743 * if we didn't have to retransmit the SYN,
744 * use its rtt as our initial srtt & rtt var.
745 */
746 if (tp->t_rtt)
747 tcp_xmit_timer(tp, tp->t_rtt);
748 } else
749 tp->t_state = TCPS_SYN_RECEIVED;
750
751 /*
752 * Advance ti->ti_seq to correspond to first data byte.
753 * If data, trim to stay within window,
754 * dropping FIN if necessary.
755 */
756 ti->ti_seq++;
757 if (ti->ti_len > tp->rcv_wnd) {
758 todrop = ti->ti_len - tp->rcv_wnd;
759 m_adj(m, -todrop);
760 ti->ti_len = tp->rcv_wnd;
761 tiflags &= ~TH_FIN;
762 tcpstat.tcps_rcvpackafterwin++;
763 tcpstat.tcps_rcvbyteafterwin += todrop;
764 }
765 tp->snd_wl1 = ti->ti_seq - 1;
766 tp->rcv_up = ti->ti_seq;
767 goto step6;
768
769 /*
770 * If the state is SYN_RECEIVED:
771 * If seg contains an ACK, but not for our SYN, drop the input
772 * and generate an RST. See page 36, rfc793
773 */
774 case TCPS_SYN_RECEIVED:
775 if ((tiflags & TH_ACK) &&
776 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
777 SEQ_GT(ti->ti_ack, tp->snd_max)))
778 goto dropwithreset;
779 break;
780 }
781
782 /*
783 * States other than LISTEN or SYN_SENT.
784 * First check timestamp, if present.
785 * Then check that at least some bytes of segment are within
786 * receive window. If segment begins before rcv_nxt,
787 * drop leading data (and SYN); if nothing left, just ack.
788 *
789 * RFC 1323 PAWS: If we have a timestamp reply on this segment
790 * and it's less than ts_recent, drop it.
791 */
792 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
793 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
794
795 /* Check to see if ts_recent is over 24 days old. */
796 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
797 /*
798 * Invalidate ts_recent. If this segment updates
799 * ts_recent, the age will be reset later and ts_recent
800 * will get a valid value. If it does not, setting
801 * ts_recent to zero will at least satisfy the
802 * requirement that zero be placed in the timestamp
803 * echo reply when ts_recent isn't valid. The
804 * age isn't reset until we get a valid ts_recent
805 * because we don't want out-of-order segments to be
806 * dropped when ts_recent is old.
807 */
808 tp->ts_recent = 0;
809 } else {
810 tcpstat.tcps_rcvduppack++;
811 tcpstat.tcps_rcvdupbyte += ti->ti_len;
812 tcpstat.tcps_pawsdrop++;
813 goto dropafterack;
814 }
815 }
816
817 todrop = tp->rcv_nxt - ti->ti_seq;
818 if (todrop > 0) {
819 if (tiflags & TH_SYN) {
820 tiflags &= ~TH_SYN;
821 ti->ti_seq++;
822 if (ti->ti_urp > 1)
823 ti->ti_urp--;
824 else {
825 tiflags &= ~TH_URG;
826 ti->ti_urp = 0;
827 }
828 todrop--;
829 }
830 if (todrop > ti->ti_len ||
831 (todrop == ti->ti_len && (tiflags & TH_FIN) == 0)) {
832 /*
833 * Any valid FIN must be to the left of the window.
834 * At this point the FIN must be a duplicate or
835 * out of sequence; drop it.
836 */
837 tiflags &= ~TH_FIN;
838 /*
839 * Send an ACK to resynchronize and drop any data.
840 * But keep on processing for RST or ACK.
841 */
842 tp->t_flags |= TF_ACKNOW;
843 todrop = ti->ti_len;
844 tcpstat.tcps_rcvdupbyte += todrop;
845 tcpstat.tcps_rcvduppack++;
846 } else {
847 tcpstat.tcps_rcvpartduppack++;
848 tcpstat.tcps_rcvpartdupbyte += todrop;
849 }
850 m_adj(m, todrop);
851 ti->ti_seq += todrop;
852 ti->ti_len -= todrop;
853 if (ti->ti_urp > todrop)
854 ti->ti_urp -= todrop;
855 else {
856 tiflags &= ~TH_URG;
857 ti->ti_urp = 0;
858 }
859 }
860
861 /*
862 * If new data are received on a connection after the
863 * user processes are gone, then RST the other end.
864 */
865 if ((so->so_state & SS_NOFDREF) &&
866 tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
867 tp = tcp_close(tp);
868 tcpstat.tcps_rcvafterclose++;
869 goto dropwithreset;
870 }
871
872 /*
873 * If segment ends after window, drop trailing data
874 * (and PUSH and FIN); if nothing left, just ACK.
875 */
876 todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
877 if (todrop > 0) {
878 tcpstat.tcps_rcvpackafterwin++;
879 if (todrop >= ti->ti_len) {
880 tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
881 /*
882 * If a new connection request is received
883 * while in TIME_WAIT, drop the old connection
884 * and start over if the sequence numbers
885 * are above the previous ones.
886 */
887 if (tiflags & TH_SYN &&
888 tp->t_state == TCPS_TIME_WAIT &&
889 SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
890 iss = tcp_new_iss(tp, sizeof(struct tcpcb),
891 tp->rcv_nxt);
892 tp = tcp_close(tp);
893 /*
894 * We have already advanced the mbuf
895 * pointers past the IP+TCP headers and
896 * options. Restore those pointers before
897 * attempting to use the TCP header again.
898 */
899 m->m_data -= hdroptlen;
900 m->m_len += hdroptlen;
901 goto findpcb;
902 }
903 /*
904 * If window is closed can only take segments at
905 * window edge, and have to drop data and PUSH from
906 * incoming segments. Continue processing, but
907 * remember to ack. Otherwise, drop segment
908 * and ack.
909 */
910 if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
911 tp->t_flags |= TF_ACKNOW;
912 tcpstat.tcps_rcvwinprobe++;
913 } else
914 goto dropafterack;
915 } else
916 tcpstat.tcps_rcvbyteafterwin += todrop;
917 m_adj(m, -todrop);
918 ti->ti_len -= todrop;
919 tiflags &= ~(TH_PUSH|TH_FIN);
920 }
921
922 /*
923 * If last ACK falls within this segment's sequence numbers,
924 * record its timestamp.
925 */
926 if (opti.ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
927 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
928 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
929 tp->ts_recent_age = tcp_now;
930 tp->ts_recent = opti.ts_val;
931 }
932
933 /*
934 * If the RST bit is set examine the state:
935 * SYN_RECEIVED STATE:
936 * If passive open, return to LISTEN state.
937 * If active open, inform user that connection was refused.
938 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
939 * Inform user that connection was reset, and close tcb.
940 * CLOSING, LAST_ACK, TIME_WAIT STATES
941 * Close the tcb.
942 */
943 if (tiflags&TH_RST) switch (tp->t_state) {
944
945 case TCPS_SYN_RECEIVED:
946 so->so_error = ECONNREFUSED;
947 goto close;
948
949 case TCPS_ESTABLISHED:
950 case TCPS_FIN_WAIT_1:
951 case TCPS_FIN_WAIT_2:
952 case TCPS_CLOSE_WAIT:
953 so->so_error = ECONNRESET;
954 close:
955 tp->t_state = TCPS_CLOSED;
956 tcpstat.tcps_drops++;
957 tp = tcp_close(tp);
958 goto drop;
959
960 case TCPS_CLOSING:
961 case TCPS_LAST_ACK:
962 case TCPS_TIME_WAIT:
963 tp = tcp_close(tp);
964 goto drop;
965 }
966
967 /*
968 * If a SYN is in the window, then this is an
969 * error and we send an RST and drop the connection.
970 */
971 if (tiflags & TH_SYN) {
972 tp = tcp_drop(tp, ECONNRESET);
973 goto dropwithreset;
974 }
975
976 /*
977 * If the ACK bit is off we drop the segment and return.
978 */
979 if ((tiflags & TH_ACK) == 0)
980 goto drop;
981
982 /*
983 * Ack processing.
984 */
985 switch (tp->t_state) {
986
987 /*
988 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
989 * ESTABLISHED state and continue processing, otherwise
990 * send an RST.
991 */
992 case TCPS_SYN_RECEIVED:
993 if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
994 SEQ_GT(ti->ti_ack, tp->snd_max))
995 goto dropwithreset;
996 tcpstat.tcps_connects++;
997 soisconnected(so);
998 tcp_established(tp);
999 /* Do window scaling? */
1000 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1001 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1002 tp->snd_scale = tp->requested_s_scale;
1003 tp->rcv_scale = tp->request_r_scale;
1004 }
1005 (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
1006 tp->snd_wl1 = ti->ti_seq - 1;
1007 /* fall into ... */
1008
1009 /*
1010 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1011 * ACKs. If the ack is in the range
1012 * tp->snd_una < ti->ti_ack <= tp->snd_max
1013 * then advance tp->snd_una to ti->ti_ack and drop
1014 * data from the retransmission queue. If this ACK reflects
1015 * more up to date window information we update our window information.
1016 */
1017 case TCPS_ESTABLISHED:
1018 case TCPS_FIN_WAIT_1:
1019 case TCPS_FIN_WAIT_2:
1020 case TCPS_CLOSE_WAIT:
1021 case TCPS_CLOSING:
1022 case TCPS_LAST_ACK:
1023 case TCPS_TIME_WAIT:
1024
1025 if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
1026 if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
1027 tcpstat.tcps_rcvdupack++;
1028 /*
1029 * If we have outstanding data (other than
1030 * a window probe), this is a completely
1031 * duplicate ack (ie, window info didn't
1032 * change), the ack is the biggest we've
1033 * seen and we've seen exactly our rexmt
1034 * threshhold of them, assume a packet
1035 * has been dropped and retransmit it.
1036 * Kludge snd_nxt & the congestion
1037 * window so we send only this one
1038 * packet.
1039 *
1040 * We know we're losing at the current
1041 * window size so do congestion avoidance
1042 * (set ssthresh to half the current window
1043 * and pull our congestion window back to
1044 * the new ssthresh).
1045 *
1046 * Dup acks mean that packets have left the
1047 * network (they're now cached at the receiver)
1048 * so bump cwnd by the amount in the receiver
1049 * to keep a constant cwnd packets in the
1050 * network.
1051 */
1052 if (tp->t_timer[TCPT_REXMT] == 0 ||
1053 ti->ti_ack != tp->snd_una)
1054 tp->t_dupacks = 0;
1055 else if (++tp->t_dupacks == tcprexmtthresh) {
1056 tcp_seq onxt = tp->snd_nxt;
1057 u_int win =
1058 min(tp->snd_wnd, tp->snd_cwnd) /
1059 2 / tp->t_segsz;
1060
1061 if (win < 2)
1062 win = 2;
1063 tp->snd_ssthresh = win * tp->t_segsz;
1064 tp->t_timer[TCPT_REXMT] = 0;
1065 tp->t_rtt = 0;
1066 tp->snd_nxt = ti->ti_ack;
1067 tp->snd_cwnd = tp->t_segsz;
1068 (void) tcp_output(tp);
1069 tp->snd_cwnd = tp->snd_ssthresh +
1070 tp->t_segsz * tp->t_dupacks;
1071 if (SEQ_GT(onxt, tp->snd_nxt))
1072 tp->snd_nxt = onxt;
1073 goto drop;
1074 } else if (tp->t_dupacks > tcprexmtthresh) {
1075 tp->snd_cwnd += tp->t_segsz;
1076 (void) tcp_output(tp);
1077 goto drop;
1078 }
1079 } else
1080 tp->t_dupacks = 0;
1081 break;
1082 }
1083 /*
1084 * If the congestion window was inflated to account
1085 * for the other side's cached packets, retract it.
1086 */
1087 if (tp->t_dupacks >= tcprexmtthresh &&
1088 tp->snd_cwnd > tp->snd_ssthresh)
1089 tp->snd_cwnd = tp->snd_ssthresh;
1090 tp->t_dupacks = 0;
1091 if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
1092 tcpstat.tcps_rcvacktoomuch++;
1093 goto dropafterack;
1094 }
1095 acked = ti->ti_ack - tp->snd_una;
1096 tcpstat.tcps_rcvackpack++;
1097 tcpstat.tcps_rcvackbyte += acked;
1098
1099 /*
1100 * If we have a timestamp reply, update smoothed
1101 * round trip time. If no timestamp is present but
1102 * transmit timer is running and timed sequence
1103 * number was acked, update smoothed round trip time.
1104 * Since we now have an rtt measurement, cancel the
1105 * timer backoff (cf., Phil Karn's retransmit alg.).
1106 * Recompute the initial retransmit timer.
1107 */
1108 if (opti.ts_present)
1109 tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
1110 else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
1111 tcp_xmit_timer(tp,tp->t_rtt);
1112
1113 /*
1114 * If all outstanding data is acked, stop retransmit
1115 * timer and remember to restart (more output or persist).
1116 * If there is more data to be acked, restart retransmit
1117 * timer, using current (possibly backed-off) value.
1118 */
1119 if (ti->ti_ack == tp->snd_max) {
1120 tp->t_timer[TCPT_REXMT] = 0;
1121 needoutput = 1;
1122 } else if (tp->t_timer[TCPT_PERSIST] == 0)
1123 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1124 /*
1125 * When new data is acked, open the congestion window.
1126 * If the window gives us less than ssthresh packets
1127 * in flight, open exponentially (segsz per packet).
1128 * Otherwise open linearly: segsz per window
1129 * (segsz^2 / cwnd per packet), plus a constant
1130 * fraction of a packet (segsz/8) to help larger windows
1131 * open quickly enough.
1132 */
1133 {
1134 register u_int cw = tp->snd_cwnd;
1135 register u_int incr = tp->t_segsz;
1136
1137 if (cw > tp->snd_ssthresh)
1138 incr = incr * incr / cw;
1139 tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1140 }
1141 if (acked > so->so_snd.sb_cc) {
1142 tp->snd_wnd -= so->so_snd.sb_cc;
1143 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1144 ourfinisacked = 1;
1145 } else {
1146 sbdrop(&so->so_snd, acked);
1147 tp->snd_wnd -= acked;
1148 ourfinisacked = 0;
1149 }
1150 if (sb_notify(&so->so_snd))
1151 sowwakeup(so);
1152 tp->snd_una = ti->ti_ack;
1153 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1154 tp->snd_nxt = tp->snd_una;
1155
1156 switch (tp->t_state) {
1157
1158 /*
1159 * In FIN_WAIT_1 STATE in addition to the processing
1160 * for the ESTABLISHED state if our FIN is now acknowledged
1161 * then enter FIN_WAIT_2.
1162 */
1163 case TCPS_FIN_WAIT_1:
1164 if (ourfinisacked) {
1165 /*
1166 * If we can't receive any more
1167 * data, then closing user can proceed.
1168 * Starting the timer is contrary to the
1169 * specification, but if we don't get a FIN
1170 * we'll hang forever.
1171 */
1172 if (so->so_state & SS_CANTRCVMORE) {
1173 soisdisconnected(so);
1174 tp->t_timer[TCPT_2MSL] = tcp_maxidle;
1175 }
1176 tp->t_state = TCPS_FIN_WAIT_2;
1177 }
1178 break;
1179
1180 /*
1181 * In CLOSING STATE in addition to the processing for
1182 * the ESTABLISHED state if the ACK acknowledges our FIN
1183 * then enter the TIME-WAIT state, otherwise ignore
1184 * the segment.
1185 */
1186 case TCPS_CLOSING:
1187 if (ourfinisacked) {
1188 tp->t_state = TCPS_TIME_WAIT;
1189 tcp_canceltimers(tp);
1190 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1191 soisdisconnected(so);
1192 }
1193 break;
1194
1195 /*
1196 * In LAST_ACK, we may still be waiting for data to drain
1197 * and/or to be acked, as well as for the ack of our FIN.
1198 * If our FIN is now acknowledged, delete the TCB,
1199 * enter the closed state and return.
1200 */
1201 case TCPS_LAST_ACK:
1202 if (ourfinisacked) {
1203 tp = tcp_close(tp);
1204 goto drop;
1205 }
1206 break;
1207
1208 /*
1209 * In TIME_WAIT state the only thing that should arrive
1210 * is a retransmission of the remote FIN. Acknowledge
1211 * it and restart the finack timer.
1212 */
1213 case TCPS_TIME_WAIT:
1214 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1215 goto dropafterack;
1216 }
1217 }
1218
1219 step6:
1220 /*
1221 * Update window information.
1222 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1223 */
1224 if (((tiflags & TH_ACK) && SEQ_LT(tp->snd_wl1, ti->ti_seq)) ||
1225 (tp->snd_wl1 == ti->ti_seq && SEQ_LT(tp->snd_wl2, ti->ti_ack)) ||
1226 (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)) {
1227 /* keep track of pure window updates */
1228 if (ti->ti_len == 0 &&
1229 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
1230 tcpstat.tcps_rcvwinupd++;
1231 tp->snd_wnd = tiwin;
1232 tp->snd_wl1 = ti->ti_seq;
1233 tp->snd_wl2 = ti->ti_ack;
1234 if (tp->snd_wnd > tp->max_sndwnd)
1235 tp->max_sndwnd = tp->snd_wnd;
1236 needoutput = 1;
1237 }
1238
1239 /*
1240 * Process segments with URG.
1241 */
1242 if ((tiflags & TH_URG) && ti->ti_urp &&
1243 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1244 /*
1245 * This is a kludge, but if we receive and accept
1246 * random urgent pointers, we'll crash in
1247 * soreceive. It's hard to imagine someone
1248 * actually wanting to send this much urgent data.
1249 */
1250 if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
1251 ti->ti_urp = 0; /* XXX */
1252 tiflags &= ~TH_URG; /* XXX */
1253 goto dodata; /* XXX */
1254 }
1255 /*
1256 * If this segment advances the known urgent pointer,
1257 * then mark the data stream. This should not happen
1258 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1259 * a FIN has been received from the remote side.
1260 * In these states we ignore the URG.
1261 *
1262 * According to RFC961 (Assigned Protocols),
1263 * the urgent pointer points to the last octet
1264 * of urgent data. We continue, however,
1265 * to consider it to indicate the first octet
1266 * of data past the urgent section as the original
1267 * spec states (in one of two places).
1268 */
1269 if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1270 tp->rcv_up = ti->ti_seq + ti->ti_urp;
1271 so->so_oobmark = so->so_rcv.sb_cc +
1272 (tp->rcv_up - tp->rcv_nxt) - 1;
1273 if (so->so_oobmark == 0)
1274 so->so_state |= SS_RCVATMARK;
1275 sohasoutofband(so);
1276 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1277 }
1278 /*
1279 * Remove out of band data so doesn't get presented to user.
1280 * This can happen independent of advancing the URG pointer,
1281 * but if two URG's are pending at once, some out-of-band
1282 * data may creep in... ick.
1283 */
1284 if (ti->ti_urp <= (u_int16_t) ti->ti_len
1285 #ifdef SO_OOBINLINE
1286 && (so->so_options & SO_OOBINLINE) == 0
1287 #endif
1288 )
1289 tcp_pulloutofband(so, ti, m);
1290 } else
1291 /*
1292 * If no out of band data is expected,
1293 * pull receive urgent pointer along
1294 * with the receive window.
1295 */
1296 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1297 tp->rcv_up = tp->rcv_nxt;
1298 dodata: /* XXX */
1299
1300 /*
1301 * Process the segment text, merging it into the TCP sequencing queue,
1302 * and arranging for acknowledgment of receipt if necessary.
1303 * This process logically involves adjusting tp->rcv_wnd as data
1304 * is presented to the user (this happens in tcp_usrreq.c,
1305 * case PRU_RCVD). If a FIN has already been received on this
1306 * connection then we just ignore the text.
1307 */
1308 if ((ti->ti_len || (tiflags & TH_FIN)) &&
1309 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1310 TCP_REASS(tp, ti, m, so, tiflags);
1311 /*
1312 * Note the amount of data that peer has sent into
1313 * our window, in order to estimate the sender's
1314 * buffer size.
1315 */
1316 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1317 } else {
1318 m_freem(m);
1319 tiflags &= ~TH_FIN;
1320 }
1321
1322 /*
1323 * If FIN is received ACK the FIN and let the user know
1324 * that the connection is closing. Ignore a FIN received before
1325 * the connection is fully established.
1326 */
1327 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
1328 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1329 socantrcvmore(so);
1330 tp->t_flags |= TF_ACKNOW;
1331 tp->rcv_nxt++;
1332 }
1333 switch (tp->t_state) {
1334
1335 /*
1336 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
1337 */
1338 case TCPS_ESTABLISHED:
1339 tp->t_state = TCPS_CLOSE_WAIT;
1340 break;
1341
1342 /*
1343 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1344 * enter the CLOSING state.
1345 */
1346 case TCPS_FIN_WAIT_1:
1347 tp->t_state = TCPS_CLOSING;
1348 break;
1349
1350 /*
1351 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1352 * starting the time-wait timer, turning off the other
1353 * standard timers.
1354 */
1355 case TCPS_FIN_WAIT_2:
1356 tp->t_state = TCPS_TIME_WAIT;
1357 tcp_canceltimers(tp);
1358 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1359 soisdisconnected(so);
1360 break;
1361
1362 /*
1363 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1364 */
1365 case TCPS_TIME_WAIT:
1366 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1367 break;
1368 }
1369 }
1370 if (so->so_options & SO_DEBUG)
1371 tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1372
1373 /*
1374 * Return any desired output.
1375 */
1376 if (needoutput || (tp->t_flags & TF_ACKNOW))
1377 (void) tcp_output(tp);
1378 return;
1379
1380 badsyn:
1381 /*
1382 * Received a bad SYN. Increment counters and dropwithreset.
1383 */
1384 tcpstat.tcps_badsyn++;
1385 tp = NULL;
1386 goto dropwithreset;
1387
1388 dropafterack:
1389 /*
1390 * Generate an ACK dropping incoming segment if it occupies
1391 * sequence space, where the ACK reflects our state.
1392 */
1393 if (tiflags & TH_RST)
1394 goto drop;
1395 m_freem(m);
1396 tp->t_flags |= TF_ACKNOW;
1397 (void) tcp_output(tp);
1398 return;
1399
1400 dropwithreset:
1401 /*
1402 * Generate a RST, dropping incoming segment.
1403 * Make ACK acceptable to originator of segment.
1404 * Don't bother to respond if destination was broadcast/multicast.
1405 */
1406 if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) ||
1407 IN_MULTICAST(ti->ti_dst.s_addr))
1408 goto drop;
1409 if (tiflags & TH_ACK)
1410 (void)tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1411 else {
1412 if (tiflags & TH_SYN)
1413 ti->ti_len++;
1414 (void)tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1415 TH_RST|TH_ACK);
1416 }
1417 return;
1418
1419 drop:
1420 /*
1421 * Drop space held by incoming segment and return.
1422 */
1423 if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1424 tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1425 m_freem(m);
1426 return;
1427 #ifndef TUBA_INCLUDE
1428 }
1429
1430 void
1431 tcp_dooptions(tp, cp, cnt, ti, oi)
1432 struct tcpcb *tp;
1433 u_char *cp;
1434 int cnt;
1435 struct tcpiphdr *ti;
1436 struct tcp_opt_info *oi;
1437 {
1438 u_int16_t mss;
1439 int opt, optlen;
1440
1441 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1442 opt = cp[0];
1443 if (opt == TCPOPT_EOL)
1444 break;
1445 if (opt == TCPOPT_NOP)
1446 optlen = 1;
1447 else {
1448 optlen = cp[1];
1449 if (optlen <= 0)
1450 break;
1451 }
1452 switch (opt) {
1453
1454 default:
1455 continue;
1456
1457 case TCPOPT_MAXSEG:
1458 if (optlen != TCPOLEN_MAXSEG)
1459 continue;
1460 if (!(ti->ti_flags & TH_SYN))
1461 continue;
1462 bcopy(cp + 2, &mss, sizeof(mss));
1463 oi->maxseg = ntohs(mss);
1464 break;
1465
1466 case TCPOPT_WINDOW:
1467 if (optlen != TCPOLEN_WINDOW)
1468 continue;
1469 if (!(ti->ti_flags & TH_SYN))
1470 continue;
1471 tp->t_flags |= TF_RCVD_SCALE;
1472 tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
1473 break;
1474
1475 case TCPOPT_TIMESTAMP:
1476 if (optlen != TCPOLEN_TIMESTAMP)
1477 continue;
1478 oi->ts_present = 1;
1479 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
1480 NTOHL(oi->ts_val);
1481 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
1482 NTOHL(oi->ts_ecr);
1483
1484 /*
1485 * A timestamp received in a SYN makes
1486 * it ok to send timestamp requests and replies.
1487 */
1488 if (ti->ti_flags & TH_SYN) {
1489 tp->t_flags |= TF_RCVD_TSTMP;
1490 tp->ts_recent = oi->ts_val;
1491 tp->ts_recent_age = tcp_now;
1492 }
1493 break;
1494 }
1495 }
1496 }
1497
1498 /*
1499 * Pull out of band byte out of a segment so
1500 * it doesn't appear in the user's data queue.
1501 * It is still reflected in the segment length for
1502 * sequencing purposes.
1503 */
1504 void
1505 tcp_pulloutofband(so, ti, m)
1506 struct socket *so;
1507 struct tcpiphdr *ti;
1508 register struct mbuf *m;
1509 {
1510 int cnt = ti->ti_urp - 1;
1511
1512 while (cnt >= 0) {
1513 if (m->m_len > cnt) {
1514 char *cp = mtod(m, caddr_t) + cnt;
1515 struct tcpcb *tp = sototcpcb(so);
1516
1517 tp->t_iobc = *cp;
1518 tp->t_oobflags |= TCPOOB_HAVEDATA;
1519 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1520 m->m_len--;
1521 return;
1522 }
1523 cnt -= m->m_len;
1524 m = m->m_next;
1525 if (m == 0)
1526 break;
1527 }
1528 panic("tcp_pulloutofband");
1529 }
1530
1531 /*
1532 * Collect new round-trip time estimate
1533 * and update averages and current timeout.
1534 */
1535 void
1536 tcp_xmit_timer(tp, rtt)
1537 register struct tcpcb *tp;
1538 short rtt;
1539 {
1540 register short delta;
1541 short rttmin;
1542
1543 tcpstat.tcps_rttupdated++;
1544 --rtt;
1545 if (tp->t_srtt != 0) {
1546 /*
1547 * srtt is stored as fixed point with 3 bits after the
1548 * binary point (i.e., scaled by 8). The following magic
1549 * is equivalent to the smoothing algorithm in rfc793 with
1550 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1551 * point). Adjust rtt to origin 0.
1552 */
1553 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
1554 if ((tp->t_srtt += delta) <= 0)
1555 tp->t_srtt = 1 << 2;
1556 /*
1557 * We accumulate a smoothed rtt variance (actually, a
1558 * smoothed mean difference), then set the retransmit
1559 * timer to smoothed rtt + 4 times the smoothed variance.
1560 * rttvar is stored as fixed point with 2 bits after the
1561 * binary point (scaled by 4). The following is
1562 * equivalent to rfc793 smoothing with an alpha of .75
1563 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
1564 * rfc793's wired-in beta.
1565 */
1566 if (delta < 0)
1567 delta = -delta;
1568 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1569 if ((tp->t_rttvar += delta) <= 0)
1570 tp->t_rttvar = 1 << 2;
1571 } else {
1572 /*
1573 * No rtt measurement yet - use the unsmoothed rtt.
1574 * Set the variance to half the rtt (so our first
1575 * retransmit happens at 3*rtt).
1576 */
1577 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
1578 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
1579 }
1580 tp->t_rtt = 0;
1581 tp->t_rxtshift = 0;
1582
1583 /*
1584 * the retransmit should happen at rtt + 4 * rttvar.
1585 * Because of the way we do the smoothing, srtt and rttvar
1586 * will each average +1/2 tick of bias. When we compute
1587 * the retransmit timer, we want 1/2 tick of rounding and
1588 * 1 extra tick because of +-1/2 tick uncertainty in the
1589 * firing of the timer. The bias will give us exactly the
1590 * 1.5 tick we need. But, because the bias is
1591 * statistical, we have to test that we don't drop below
1592 * the minimum feasible timer (which is 2 ticks).
1593 */
1594 if (tp->t_rttmin > rtt + 2)
1595 rttmin = tp->t_rttmin;
1596 else
1597 rttmin = rtt + 2;
1598 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
1599
1600 /*
1601 * We received an ack for a packet that wasn't retransmitted;
1602 * it is probably safe to discard any error indications we've
1603 * received recently. This isn't quite right, but close enough
1604 * for now (a route might have failed after we sent a segment,
1605 * and the return path might not be symmetrical).
1606 */
1607 tp->t_softerror = 0;
1608 }
1609
1610 /*
1611 * TCP compressed state engine. Currently used to hold compressed
1612 * state for SYN_RECEIVED.
1613 */
1614
1615 u_long syn_cache_count;
1616 u_int32_t syn_hash1, syn_hash2;
1617
1618 #define SYN_HASH(sa, sp, dp) \
1619 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
1620 ((u_int32_t)(sp)))^syn_hash2)) \
1621 & 0x7fffffff)
1622
1623 #define eptosp(ep, e, s) ((struct s *)((char *)(ep) - \
1624 ((char *)(&((struct s *)0)->e) - (char *)0)))
1625
1626 #define SYN_CACHE_RM(sc, p, scp) { \
1627 *(p) = (sc)->sc_next; \
1628 if ((sc)->sc_next) \
1629 (sc)->sc_next->sc_timer += (sc)->sc_timer; \
1630 else { \
1631 (scp)->sch_timer_sum -= (sc)->sc_timer; \
1632 if ((scp)->sch_timer_sum <= 0) \
1633 (scp)->sch_timer_sum = -1; \
1634 /* If need be, fix up the last pointer */ \
1635 if ((scp)->sch_first) \
1636 (scp)->sch_last = eptosp(p, sc_next, syn_cache); \
1637 } \
1638 (scp)->sch_length--; \
1639 syn_cache_count--; \
1640 }
1641
1642 void
1643 syn_cache_insert(sc, prevp, headp)
1644 struct syn_cache *sc;
1645 struct syn_cache ***prevp;
1646 struct syn_cache_head **headp;
1647 {
1648 struct syn_cache_head *scp, *scp2, *sce;
1649 struct syn_cache *sc2;
1650 static u_int timeo_val;
1651 int s;
1652
1653 /* Initialize the hash secrets when adding the first entry */
1654 if (syn_cache_count == 0) {
1655 struct timeval tv;
1656 microtime(&tv);
1657 syn_hash1 = random() ^ (u_long)≻
1658 syn_hash2 = random() ^ tv.tv_usec;
1659 }
1660
1661 sc->sc_hash = SYN_HASH(&sc->sc_src, sc->sc_sport, sc->sc_dport);
1662 sc->sc_next = NULL;
1663 scp = &tcp_syn_cache[sc->sc_hash % tcp_syn_cache_size];
1664 *headp = scp;
1665
1666 /*
1667 * Make sure that we don't overflow the per-bucket
1668 * limit or the total cache size limit.
1669 */
1670 s = splsoftnet();
1671 if (scp->sch_length >= tcp_syn_bucket_limit) {
1672 tcpstat.tcps_sc_bucketoverflow++;
1673 sc2 = scp->sch_first;
1674 scp->sch_first = sc2->sc_next;
1675 FREE(sc2, M_PCB);
1676 } else if (syn_cache_count >= tcp_syn_cache_limit) {
1677 tcpstat.tcps_sc_overflowed++;
1678 /*
1679 * The cache is full. Toss the first (i.e, oldest)
1680 * element in this bucket.
1681 */
1682 scp2 = scp;
1683 if (scp2->sch_first == NULL) {
1684 sce = &tcp_syn_cache[tcp_syn_cache_size];
1685 for (++scp2; scp2 != scp; scp2++) {
1686 if (scp2 >= sce)
1687 scp2 = &tcp_syn_cache[0];
1688 if (scp2->sch_first)
1689 break;
1690 }
1691 }
1692 sc2 = scp2->sch_first;
1693 if (sc2 == NULL) {
1694 FREE(sc, M_PCB);
1695 return;
1696 }
1697 if ((scp2->sch_first = sc2->sc_next) == NULL)
1698 scp2->sch_last = NULL;
1699 else
1700 sc2->sc_next->sc_timer += sc2->sc_timer;
1701 FREE(sc2, M_PCB);
1702 } else {
1703 scp->sch_length++;
1704 syn_cache_count++;
1705 }
1706 tcpstat.tcps_sc_added++;
1707
1708 /*
1709 * Put it into the bucket.
1710 */
1711 if (scp->sch_first == NULL)
1712 *prevp = &scp->sch_first;
1713 else {
1714 *prevp = &scp->sch_last->sc_next;
1715 tcpstat.tcps_sc_collisions++;
1716 }
1717 **prevp = sc;
1718 scp->sch_last = sc;
1719
1720 /*
1721 * If the timeout value has changed
1722 * 1) force it to fit in a u_char
1723 * 2) Run the timer routine to truncate all
1724 * existing entries to the new timeout value.
1725 */
1726 if (timeo_val != tcp_syn_cache_timeo) {
1727 tcp_syn_cache_timeo = min(tcp_syn_cache_timeo, UCHAR_MAX);
1728 if (timeo_val > tcp_syn_cache_timeo)
1729 syn_cache_timer(timeo_val - tcp_syn_cache_timeo);
1730 timeo_val = tcp_syn_cache_timeo;
1731 }
1732 if (scp->sch_timer_sum > 0)
1733 sc->sc_timer = tcp_syn_cache_timeo - scp->sch_timer_sum;
1734 else {
1735 if (scp->sch_timer_sum == 0) {
1736 /*
1737 * When the bucket timer is 0, it is not in the
1738 * cache queue.
1739 */
1740 scp->sch_headq = tcp_syn_cache_first;
1741 tcp_syn_cache_first = scp;
1742 }
1743 sc->sc_timer = tcp_syn_cache_timeo;
1744 }
1745 scp->sch_timer_sum = tcp_syn_cache_timeo;
1746 splx(s);
1747 }
1748
1749 /*
1750 * Walk down the cache list, decrementing the timer of
1751 * the first element on each entry. If the timer goes
1752 * to zero, remove it and all successive entries with
1753 * a zero timer.
1754 */
1755 void
1756 syn_cache_timer(interval)
1757 int interval;
1758 {
1759 struct syn_cache_head *scp, **pscp;
1760 struct syn_cache *sc, *scn;
1761 int n, s;
1762
1763 pscp = &tcp_syn_cache_first;
1764 scp = tcp_syn_cache_first;
1765 s = splsoftnet();
1766 while (scp) {
1767 /*
1768 * Remove any empty hash buckets
1769 * from the cache queue.
1770 */
1771 if ((sc = scp->sch_first) == NULL) {
1772 *pscp = scp->sch_headq;
1773 scp->sch_headq = NULL;
1774 scp->sch_timer_sum = 0;
1775 scp->sch_first = scp->sch_last = NULL;
1776 scp->sch_length = 0;
1777 scp = *pscp;
1778 continue;
1779 }
1780
1781 scp->sch_timer_sum -= interval;
1782 if (scp->sch_timer_sum <= 0)
1783 scp->sch_timer_sum = -1;
1784 n = interval;
1785 while (sc->sc_timer <= n) {
1786 n -= sc->sc_timer;
1787 scn = sc->sc_next;
1788 tcpstat.tcps_sc_timed_out++;
1789 syn_cache_count--;
1790 FREE(sc, M_PCB);
1791 scp->sch_length--;
1792 if ((sc = scn) == NULL)
1793 break;
1794 }
1795 if ((scp->sch_first = sc) != NULL) {
1796 sc->sc_timer -= n;
1797 pscp = &scp->sch_headq;
1798 scp = scp->sch_headq;
1799 }
1800 }
1801 splx(s);
1802 }
1803
1804 /*
1805 * Find an entry in the syn cache.
1806 */
1807 struct syn_cache *
1808 syn_cache_lookup(ti, prevp, headp)
1809 struct tcpiphdr *ti;
1810 struct syn_cache ***prevp;
1811 struct syn_cache_head **headp;
1812 {
1813 struct syn_cache *sc, **prev;
1814 struct syn_cache_head *head;
1815 u_int32_t hash;
1816 int s;
1817
1818 hash = SYN_HASH(&ti->ti_src, ti->ti_sport, ti->ti_dport);
1819
1820 head = &tcp_syn_cache[hash % tcp_syn_cache_size];
1821 *headp = head;
1822 prev = &head->sch_first;
1823 s = splsoftnet();
1824 for (sc = head->sch_first; sc; prev = &sc->sc_next, sc = sc->sc_next) {
1825 if (sc->sc_hash != hash)
1826 continue;
1827 if (sc->sc_src.s_addr == ti->ti_src.s_addr &&
1828 sc->sc_sport == ti->ti_sport &&
1829 sc->sc_dport == ti->ti_dport &&
1830 sc->sc_dst.s_addr == ti->ti_dst.s_addr) {
1831 *prevp = prev;
1832 splx(s);
1833 return (sc);
1834 }
1835 }
1836 splx(s);
1837 return (NULL);
1838 }
1839
1840 /*
1841 * This function gets called when we receive an ACK for a
1842 * socket in the LISTEN state. We look up the connection
1843 * in the syn cache, and if its there, we pull it out of
1844 * the cache and turn it into a full-blown connection in
1845 * the SYN-RECEIVED state.
1846 *
1847 * The return values may not be immediately obvious, and their effects
1848 * can be subtle, so here they are:
1849 *
1850 * NULL SYN was not found in cache; caller should drop the
1851 * packet and send an RST.
1852 *
1853 * -1 We were unable to create the new connection, and are
1854 * aborting it. An ACK,RST is being sent to the peer
1855 * (unless we got screwey sequence numbners; see below),
1856 * because the 3-way handshake has been completed. Caller
1857 * should not free the mbuf, since we may be using it. If
1858 * we are not, we will free it.
1859 *
1860 * Otherwise, the return value is a pointer to the new socket
1861 * associated with the connection.
1862 */
1863 struct socket *
1864 syn_cache_get(so, m)
1865 struct socket *so;
1866 struct mbuf *m;
1867 {
1868 struct syn_cache *sc, **sc_prev;
1869 struct syn_cache_head *head;
1870 register struct inpcb *inp;
1871 register struct tcpcb *tp = 0;
1872 register struct tcpiphdr *ti;
1873 struct sockaddr_in *sin;
1874 struct mbuf *am;
1875 long win;
1876 int s;
1877
1878 ti = mtod(m, struct tcpiphdr *);
1879 s = splsoftnet();
1880 if ((sc = syn_cache_lookup(ti, &sc_prev, &head)) == NULL) {
1881 splx(s);
1882 return (NULL);
1883 }
1884
1885 win = sbspace(&so->so_rcv);
1886 if (win > TCP_MAXWIN)
1887 win = TCP_MAXWIN;
1888
1889 /*
1890 * Verify the sequence and ack numbers.
1891 */
1892 if ((ti->ti_ack != sc->sc_iss + 1) ||
1893 SEQ_LEQ(ti->ti_seq, sc->sc_irs) ||
1894 SEQ_GT(ti->ti_seq, sc->sc_irs + 1 + win)) {
1895 (void) syn_cache_respond(sc, m, ti, win, 0);
1896 splx(s);
1897 return ((struct socket *)(-1));
1898 }
1899
1900 /* Remove this cache entry */
1901 SYN_CACHE_RM(sc, sc_prev, head);
1902 splx(s);
1903
1904 /*
1905 * Ok, create the full blown connection, and set things up
1906 * as they would have been set up if we had created the
1907 * connection when the SYN arrived. If we can't create
1908 * the connection, abort it.
1909 */
1910 so = sonewconn(so, SS_ISCONNECTED);
1911 if (so == NULL)
1912 goto resetandabort;
1913
1914 inp = sotoinpcb(so);
1915 inp->inp_laddr = sc->sc_dst;
1916 inp->inp_lport = sc->sc_dport;
1917 in_pcbstate(inp, INP_BOUND);
1918 #if BSD>=43
1919 inp->inp_options = ip_srcroute();
1920 #endif
1921
1922 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
1923 if (am == NULL)
1924 goto resetandabort;
1925 am->m_len = sizeof(struct sockaddr_in);
1926 sin = mtod(am, struct sockaddr_in *);
1927 sin->sin_family = AF_INET;
1928 sin->sin_len = sizeof(*sin);
1929 sin->sin_addr = sc->sc_src;
1930 sin->sin_port = sc->sc_sport;
1931 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
1932 if (in_pcbconnect(inp, am)) {
1933 (void) m_free(am);
1934 goto resetandabort;
1935 }
1936 (void) m_free(am);
1937
1938 tp = intotcpcb(inp);
1939 if (sc->sc_request_r_scale != 15) {
1940 tp->requested_s_scale = sc->sc_requested_s_scale;
1941 tp->request_r_scale = sc->sc_request_r_scale;
1942 tp->snd_scale = sc->sc_requested_s_scale;
1943 tp->rcv_scale = sc->sc_request_r_scale;
1944 tp->t_flags |= TF_RCVD_SCALE;
1945 }
1946 if (sc->sc_tstmp)
1947 tp->t_flags |= TF_RCVD_TSTMP;
1948
1949 tp->t_template = tcp_template(tp);
1950 if (tp->t_template == 0) {
1951 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
1952 so = NULL;
1953 m_freem(m);
1954 goto abort;
1955 }
1956
1957 tp->iss = sc->sc_iss;
1958 tp->irs = sc->sc_irs;
1959 tcp_sendseqinit(tp);
1960 tcp_rcvseqinit(tp);
1961 tp->t_state = TCPS_SYN_RECEIVED;
1962 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
1963 tcpstat.tcps_accepts++;
1964
1965 /* Initialize tp->t_ourmss before we deal with the peer's! */
1966 tp->t_ourmss = sc->sc_ourmaxseg;
1967 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
1968
1969 /*
1970 * Initialize the initial congestion window. If we
1971 * had to retransmit the SYN,ACK, we must initialize cwnd
1972 * to 1 segment.
1973 */
1974 tp->snd_cwnd =
1975 TCP_INITIAL_WINDOW((sc->sc_flags & SCF_SYNACK_REXMT) ? 1 :
1976 tcp_init_win, tp->t_peermss);
1977
1978 tcp_rmx_rtt(tp);
1979 tp->snd_wl1 = sc->sc_irs;
1980 tp->rcv_up = sc->sc_irs + 1;
1981
1982 /*
1983 * This is what whould have happened in tcp_ouput() when
1984 * the SYN,ACK was sent.
1985 */
1986 tp->snd_up = tp->snd_una;
1987 tp->snd_max = tp->snd_nxt = tp->iss+1;
1988 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1989 if (win > 0 && SEQ_GT(tp->rcv_nxt+win, tp->rcv_adv))
1990 tp->rcv_adv = tp->rcv_nxt + win;
1991 tp->last_ack_sent = tp->rcv_nxt;
1992
1993 tcpstat.tcps_sc_completed++;
1994 FREE(sc, M_PCB);
1995 return (so);
1996
1997 resetandabort:
1998 (void) tcp_respond(NULL, ti, m, ti->ti_seq+ti->ti_len,
1999 (tcp_seq)0, TH_RST|TH_ACK);
2000 abort:
2001 if (so != NULL)
2002 (void) soabort(so);
2003 FREE(sc, M_PCB);
2004 tcpstat.tcps_sc_aborted++;
2005 return ((struct socket *)(-1));
2006 }
2007
2008 /*
2009 * This function is called when we get a RST for a
2010 * non-existant connection, so that we can see if the
2011 * connection is in the syn cache. If it is, zap it.
2012 */
2013
2014 void
2015 syn_cache_reset(ti)
2016 register struct tcpiphdr *ti;
2017 {
2018 struct syn_cache *sc, **sc_prev;
2019 struct syn_cache_head *head;
2020 int s = splsoftnet();
2021
2022 if ((sc = syn_cache_lookup(ti, &sc_prev, &head)) == NULL) {
2023 splx(s);
2024 return;
2025 }
2026 if (SEQ_LT(ti->ti_seq,sc->sc_irs) ||
2027 SEQ_GT(ti->ti_seq, sc->sc_irs+1)) {
2028 splx(s);
2029 return;
2030 }
2031 SYN_CACHE_RM(sc, sc_prev, head);
2032 splx(s);
2033 tcpstat.tcps_sc_reset++;
2034 FREE(sc, M_PCB);
2035 }
2036
2037 void
2038 syn_cache_unreach(ip, th)
2039 struct ip *ip;
2040 struct tcphdr *th;
2041 {
2042 struct syn_cache *sc, **sc_prev;
2043 struct syn_cache_head *head;
2044 struct tcpiphdr ti2;
2045 int s;
2046
2047 ti2.ti_src.s_addr = ip->ip_dst.s_addr;
2048 ti2.ti_dst.s_addr = ip->ip_src.s_addr;
2049 ti2.ti_sport = th->th_dport;
2050 ti2.ti_dport = th->th_sport;
2051
2052 s = splsoftnet();
2053 if ((sc = syn_cache_lookup(&ti2, &sc_prev, &head)) == NULL) {
2054 splx(s);
2055 return;
2056 }
2057 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
2058 if (ntohl (th->th_seq) != sc->sc_iss) {
2059 splx(s);
2060 return;
2061 }
2062 SYN_CACHE_RM(sc, sc_prev, head);
2063 splx(s);
2064 tcpstat.tcps_sc_unreach++;
2065 FREE(sc, M_PCB);
2066 }
2067
2068 /*
2069 * Given a LISTEN socket and an inbound SYN request, add
2070 * this to the syn cache, and send back a segment:
2071 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
2072 * to the source.
2073 *
2074 * XXX We don't properly handle SYN-with-data!
2075 */
2076
2077 int
2078 syn_cache_add(so, m, optp, optlen, oi)
2079 struct socket *so;
2080 struct mbuf *m;
2081 u_char *optp;
2082 int optlen;
2083 struct tcp_opt_info *oi;
2084 {
2085 register struct tcpiphdr *ti;
2086 struct tcpcb tb, *tp;
2087 long win;
2088 struct syn_cache *sc, **sc_prev;
2089 struct syn_cache_head *scp;
2090 extern int tcp_do_rfc1323;
2091
2092 tp = sototcpcb(so);
2093 ti = mtod(m, struct tcpiphdr *);
2094
2095 /*
2096 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
2097 * in_broadcast() should never return true on a received
2098 * packet with M_BCAST not set.
2099 */
2100 if (m->m_flags & (M_BCAST|M_MCAST) ||
2101 IN_MULTICAST(ti->ti_src.s_addr) ||
2102 IN_MULTICAST(ti->ti_dst.s_addr))
2103 return (0);
2104
2105 /*
2106 * Initialize some local state.
2107 */
2108 win = sbspace(&so->so_rcv);
2109 if (win > TCP_MAXWIN)
2110 win = TCP_MAXWIN;
2111
2112 if (optp) {
2113 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
2114 tcp_dooptions(&tb, optp, optlen, ti, oi);
2115 } else
2116 tb.t_flags = 0;
2117
2118 /*
2119 * See if we already have an entry for this connection.
2120 * If we do, resend the SYN,ACK, and remember since the
2121 * initial congestion window must be initialized to 1
2122 * segment when the connection completes.
2123 */
2124 if ((sc = syn_cache_lookup(ti, &sc_prev, &scp)) != NULL) {
2125 tcpstat.tcps_sc_dupesyn++;
2126 sc->sc_flags |= SCF_SYNACK_REXMT;
2127 if (syn_cache_respond(sc, m, ti, win, tb.ts_recent) == 0) {
2128 tcpstat.tcps_sndacks++;
2129 tcpstat.tcps_sndtotal++;
2130 }
2131 return (1);
2132 }
2133
2134 MALLOC(sc, struct syn_cache *, sizeof(*sc), M_PCB, M_NOWAIT);
2135 if (sc == NULL)
2136 return (0);
2137 /*
2138 * Fill in the cache, and put the necessary TCP
2139 * options into the reply.
2140 */
2141 sc->sc_src.s_addr = ti->ti_src.s_addr;
2142 sc->sc_dst.s_addr = ti->ti_dst.s_addr;
2143 sc->sc_sport = ti->ti_sport;
2144 sc->sc_dport = ti->ti_dport;
2145 sc->sc_flags = 0;
2146 sc->sc_irs = ti->ti_seq;
2147 sc->sc_iss = tcp_new_iss(sc, sizeof(struct syn_cache), 0);
2148 sc->sc_peermaxseg = oi->maxseg;
2149 sc->sc_ourmaxseg = tcp_mss_to_advertise(tp);
2150 sc->sc_tstmp = (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP)) ? 1 : 0;
2151 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2152 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2153 sc->sc_requested_s_scale = tb.requested_s_scale;
2154 sc->sc_request_r_scale = 0;
2155 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
2156 TCP_MAXWIN << sc->sc_request_r_scale <
2157 so->so_rcv.sb_hiwat)
2158 sc->sc_request_r_scale++;
2159 } else {
2160 sc->sc_requested_s_scale = 15;
2161 sc->sc_request_r_scale = 15;
2162 }
2163 if (syn_cache_respond(sc, m, ti, win, tb.ts_recent) == 0) {
2164 syn_cache_insert(sc, &sc_prev, &scp);
2165 tcpstat.tcps_sndacks++;
2166 tcpstat.tcps_sndtotal++;
2167 } else {
2168 FREE(sc, M_PCB);
2169 tcpstat.tcps_sc_dropped++;
2170 }
2171 return (1);
2172 }
2173
2174 int
2175 syn_cache_respond(sc, m, ti, win, ts)
2176 struct syn_cache *sc;
2177 struct mbuf *m;
2178 register struct tcpiphdr *ti;
2179 long win;
2180 u_long ts;
2181 {
2182 u_int8_t *optp;
2183 int optlen;
2184
2185 /*
2186 * Tack on the TCP options. If there isn't enough trailing
2187 * space for them, move up the fixed header to make space.
2188 */
2189 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
2190 (sc->sc_tstmp ? TCPOLEN_TSTAMP_APPA : 0);
2191 if (optlen > M_TRAILINGSPACE(m)) {
2192 if (M_LEADINGSPACE(m) >= optlen) {
2193 m->m_data -= optlen;
2194 m->m_len += optlen;
2195 } else {
2196 struct mbuf *m0 = m;
2197 if ((m = m_gethdr(M_DONTWAIT, MT_HEADER)) == NULL) {
2198 m_freem(m0);
2199 return (ENOBUFS);
2200 }
2201 MH_ALIGN(m, sizeof(*ti) + optlen);
2202 m->m_next = m0; /* this gets freed below */
2203 }
2204 ovbcopy((caddr_t)ti, mtod(m, caddr_t), sizeof(*ti));
2205 ti = mtod(m, struct tcpiphdr *);
2206 }
2207
2208 optp = (u_int8_t *)(ti + 1);
2209 optp[0] = TCPOPT_MAXSEG;
2210 optp[1] = 4;
2211 optp[2] = (sc->sc_ourmaxseg >> 8) & 0xff;
2212 optp[3] = sc->sc_ourmaxseg & 0xff;
2213 optlen = 4;
2214
2215 if (sc->sc_request_r_scale != 15) {
2216 *((u_int32_t *)(optp + optlen)) = htonl(TCPOPT_NOP << 24 |
2217 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
2218 sc->sc_request_r_scale);
2219 optlen += 4;
2220 }
2221
2222 if (sc->sc_tstmp) {
2223 u_int32_t *lp = (u_int32_t *)(optp + optlen);
2224 /* Form timestamp option as shown in appendix A of RFC 1323. */
2225 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
2226 *lp++ = htonl(tcp_now);
2227 *lp = htonl(ts);
2228 optlen += TCPOLEN_TSTAMP_APPA;
2229 }
2230
2231 /*
2232 * Toss any trailing mbufs. No need to worry about
2233 * m_len and m_pkthdr.len, since tcp_respond() will
2234 * unconditionally set them.
2235 */
2236 if (m->m_next) {
2237 m_freem(m->m_next);
2238 m->m_next = NULL;
2239 }
2240
2241 /*
2242 * Fill in the fields that tcp_respond() will not touch, and
2243 * then send the response.
2244 */
2245 ti->ti_off = (sizeof(struct tcphdr) + optlen) >> 2;
2246 ti->ti_win = htons(win);
2247 return (tcp_respond(NULL, ti, m, sc->sc_irs + 1, sc->sc_iss,
2248 TH_SYN|TH_ACK));
2249 }
2250 #endif /* TUBA_INCLUDE */
2251