Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.5
      1 /*
      2  * Copyright (c) 1982, 1986, 1988, 1990 Regents of the University of California.
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  * 1. Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  * 2. Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in the
     12  *    documentation and/or other materials provided with the distribution.
     13  * 3. All advertising materials mentioning features or use of this software
     14  *    must display the following acknowledgement:
     15  *	This product includes software developed by the University of
     16  *	California, Berkeley and its contributors.
     17  * 4. Neither the name of the University nor the names of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written permission.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     31  * SUCH DAMAGE.
     32  *
     33  *	from: @(#)tcp_input.c	7.25 (Berkeley) 6/30/90
     34  *	$Id: tcp_input.c,v 1.5 1994/01/08 23:07:18 mycroft Exp $
     35  */
     36 
     37 #include <sys/param.h>
     38 #include <sys/systm.h>
     39 #include <sys/malloc.h>
     40 #include <sys/select.h>
     41 #include <sys/mbuf.h>
     42 #include <sys/protosw.h>
     43 #include <sys/socket.h>
     44 #include <sys/socketvar.h>
     45 #include <sys/errno.h>
     46 
     47 #include <net/if.h>
     48 #include <net/route.h>
     49 
     50 #include <netinet/in.h>
     51 #include <netinet/in_systm.h>
     52 #include <netinet/ip.h>
     53 #include <netinet/in_pcb.h>
     54 #include <netinet/ip_var.h>
     55 #include <netinet/tcp.h>
     56 #include <netinet/tcp_fsm.h>
     57 #include <netinet/tcp_seq.h>
     58 #include <netinet/tcp_timer.h>
     59 #include <netinet/tcp_var.h>
     60 #include <netinet/tcpip.h>
     61 #include <netinet/tcp_debug.h>
     62 
     63 int	tcprexmtthresh = 3;
     64 int	tcppredack;	/* XXX debugging: times hdr predict ok for acks */
     65 int	tcppreddat;	/* XXX # times header prediction ok for data packets */
     66 int	tcppcbcachemiss;
     67 struct	tcpiphdr tcp_saveti;
     68 struct	inpcb *tcp_last_inpcb = &tcb;
     69 
     70 struct	tcpcb *tcp_newtcpcb();
     71 
     72 /*
     73  * Insert segment ti into reassembly queue of tcp with
     74  * control block tp.  Return TH_FIN if reassembly now includes
     75  * a segment with FIN.  The macro form does the common case inline
     76  * (segment is the next to be received on an established connection,
     77  * and the queue is empty), avoiding linkage into and removal
     78  * from the queue and repetition of various conversions.
     79  * Set DELACK for segments received in order, but ack immediately
     80  * when segments are out of order (so fast retransmit can work).
     81  */
     82 #define	TCP_REASS(tp, ti, m, so, flags) { \
     83 	if ((ti)->ti_seq == (tp)->rcv_nxt && \
     84 	    (tp)->seg_next == (struct tcpiphdr *)(tp) && \
     85 	    (tp)->t_state == TCPS_ESTABLISHED) { \
     86 		tp->t_flags |= TF_DELACK; \
     87 		(tp)->rcv_nxt += (ti)->ti_len; \
     88 		flags = (ti)->ti_flags & TH_FIN; \
     89 		tcpstat.tcps_rcvpack++;\
     90 		tcpstat.tcps_rcvbyte += (ti)->ti_len;\
     91 		sbappend(&(so)->so_rcv, (m)); \
     92 		sorwakeup(so); \
     93 	} else { \
     94 		(flags) = tcp_reass((tp), (ti), (m)); \
     95 		tp->t_flags |= TF_ACKNOW; \
     96 	} \
     97 }
     98 
     99 int
    100 tcp_reass(tp, ti, m)
    101 	register struct tcpcb *tp;
    102 	register struct tcpiphdr *ti;
    103 	struct mbuf *m;
    104 {
    105 	register struct tcpiphdr *q;
    106 	struct socket *so = tp->t_inpcb->inp_socket;
    107 	int flags;
    108 
    109 	/*
    110 	 * Call with ti==0 after become established to
    111 	 * force pre-ESTABLISHED data up to user socket.
    112 	 */
    113 	if (ti == 0)
    114 		goto present;
    115 
    116 	/*
    117 	 * Find a segment which begins after this one does.
    118 	 */
    119 	for (q = tp->seg_next; q != (struct tcpiphdr *)tp;
    120 	    q = (struct tcpiphdr *)q->ti_next)
    121 		if (SEQ_GT(q->ti_seq, ti->ti_seq))
    122 			break;
    123 
    124 	/*
    125 	 * If there is a preceding segment, it may provide some of
    126 	 * our data already.  If so, drop the data from the incoming
    127 	 * segment.  If it provides all of our data, drop us.
    128 	 */
    129 	if ((struct tcpiphdr *)q->ti_prev != (struct tcpiphdr *)tp) {
    130 		register int i;
    131 		q = (struct tcpiphdr *)q->ti_prev;
    132 		/* conversion to int (in i) handles seq wraparound */
    133 		i = q->ti_seq + q->ti_len - ti->ti_seq;
    134 		if (i > 0) {
    135 			if (i >= ti->ti_len) {
    136 				tcpstat.tcps_rcvduppack++;
    137 				tcpstat.tcps_rcvdupbyte += ti->ti_len;
    138 				m_freem(m);
    139 				return (0);
    140 			}
    141 			m_adj(m, i);
    142 			ti->ti_len -= i;
    143 			ti->ti_seq += i;
    144 		}
    145 		q = (struct tcpiphdr *)(q->ti_next);
    146 	}
    147 	tcpstat.tcps_rcvoopack++;
    148 	tcpstat.tcps_rcvoobyte += ti->ti_len;
    149 	REASS_MBUF(ti) = m;		/* XXX */
    150 
    151 	/*
    152 	 * While we overlap succeeding segments trim them or,
    153 	 * if they are completely covered, dequeue them.
    154 	 */
    155 	while (q != (struct tcpiphdr *)tp) {
    156 		register int i = (ti->ti_seq + ti->ti_len) - q->ti_seq;
    157 		if (i <= 0)
    158 			break;
    159 		if (i < q->ti_len) {
    160 			q->ti_seq += i;
    161 			q->ti_len -= i;
    162 			m_adj(REASS_MBUF(q), i);
    163 			break;
    164 		}
    165 		q = (struct tcpiphdr *)q->ti_next;
    166 		m = REASS_MBUF((struct tcpiphdr *)q->ti_prev);
    167 		remque(q->ti_prev);
    168 		m_freem(m);
    169 	}
    170 
    171 	/*
    172 	 * Stick new segment in its place.
    173 	 */
    174 	insque(ti, q->ti_prev);
    175 
    176 present:
    177 	/*
    178 	 * Present data to user, advancing rcv_nxt through
    179 	 * completed sequence space.
    180 	 */
    181 	if (TCPS_HAVERCVDSYN(tp->t_state) == 0)
    182 		return (0);
    183 	ti = tp->seg_next;
    184 	if (ti == (struct tcpiphdr *)tp || ti->ti_seq != tp->rcv_nxt)
    185 		return (0);
    186 	if (tp->t_state == TCPS_SYN_RECEIVED && ti->ti_len)
    187 		return (0);
    188 	do {
    189 		tp->rcv_nxt += ti->ti_len;
    190 		flags = ti->ti_flags & TH_FIN;
    191 		remque(ti);
    192 		m = REASS_MBUF(ti);
    193 		ti = (struct tcpiphdr *)ti->ti_next;
    194 		if (so->so_state & SS_CANTRCVMORE)
    195 			m_freem(m);
    196 		else
    197 			sbappend(&so->so_rcv, m);
    198 	} while (ti != (struct tcpiphdr *)tp && ti->ti_seq == tp->rcv_nxt);
    199 	sorwakeup(so);
    200 	return (flags);
    201 }
    202 
    203 /*
    204  * TCP input routine, follows pages 65-76 of the
    205  * protocol specification dated September, 1981 very closely.
    206  */
    207 void
    208 tcp_input(m, iphlen)
    209 	register struct mbuf *m;
    210 	int iphlen;
    211 {
    212 	register struct tcpiphdr *ti;
    213 	register struct inpcb *inp;
    214 	struct mbuf *om = 0;
    215 	int len, tlen, off;
    216 	register struct tcpcb *tp = 0;
    217 	register int tiflags;
    218 	struct socket *so;
    219 	int todrop, acked, ourfinisacked, needoutput = 0;
    220 	short ostate;
    221 	struct in_addr laddr;
    222 	int dropsocket = 0;
    223 	int iss = 0;
    224 
    225 	tcpstat.tcps_rcvtotal++;
    226 	/*
    227 	 * Get IP and TCP header together in first mbuf.
    228 	 * Note: IP leaves IP header in first mbuf.
    229 	 */
    230 	ti = mtod(m, struct tcpiphdr *);
    231 	if (iphlen > sizeof (struct ip))
    232 		ip_stripoptions(m, (struct mbuf *)0);
    233 	if (m->m_len < sizeof (struct tcpiphdr)) {
    234 		if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
    235 			tcpstat.tcps_rcvshort++;
    236 			return;
    237 		}
    238 		ti = mtod(m, struct tcpiphdr *);
    239 	}
    240 
    241 	/*
    242 	 * Checksum extended TCP header and data.
    243 	 */
    244 	tlen = ((struct ip *)ti)->ip_len;
    245 	len = sizeof (struct ip) + tlen;
    246 	ti->ti_next = ti->ti_prev = 0;
    247 	ti->ti_x1 = 0;
    248 	ti->ti_len = (u_short)tlen;
    249 	HTONS(ti->ti_len);
    250 	if (ti->ti_sum = in_cksum(m, len)) {
    251 		tcpstat.tcps_rcvbadsum++;
    252 		goto drop;
    253 	}
    254 
    255 	/*
    256 	 * Check that TCP offset makes sense,
    257 	 * pull out TCP options and adjust length.		XXX
    258 	 */
    259 	off = ti->ti_off << 2;
    260 	if (off < sizeof (struct tcphdr) || off > tlen) {
    261 		tcpstat.tcps_rcvbadoff++;
    262 		goto drop;
    263 	}
    264 	tlen -= off;
    265 	ti->ti_len = tlen;
    266 	if (off > sizeof (struct tcphdr)) {
    267 		if (m->m_len < sizeof(struct ip) + off) {
    268 			if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
    269 				tcpstat.tcps_rcvshort++;
    270 				return;
    271 			}
    272 			ti = mtod(m, struct tcpiphdr *);
    273 		}
    274 		om = m_get(M_DONTWAIT, MT_DATA);
    275 		if (om == 0)
    276 			goto drop;
    277 		om->m_len = off - sizeof (struct tcphdr);
    278 		{ caddr_t op = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
    279 		  bcopy(op, mtod(om, caddr_t), (unsigned)om->m_len);
    280 		  m->m_len -= om->m_len;
    281 		  m->m_pkthdr.len -= om->m_len;
    282 		  bcopy(op+om->m_len, op,
    283 		   (unsigned)(m->m_len-sizeof (struct tcpiphdr)));
    284 		}
    285 	}
    286 	tiflags = ti->ti_flags;
    287 
    288 	/*
    289 	 * Convert TCP protocol specific fields to host format.
    290 	 */
    291 	NTOHL(ti->ti_seq);
    292 	NTOHL(ti->ti_ack);
    293 	NTOHS(ti->ti_win);
    294 	NTOHS(ti->ti_urp);
    295 
    296 	/*
    297 	 * Locate pcb for segment.
    298 	 */
    299 findpcb:
    300 	inp = tcp_last_inpcb;
    301 	if (inp->inp_lport != ti->ti_dport ||
    302 	    inp->inp_fport != ti->ti_sport ||
    303 	    inp->inp_faddr.s_addr != ti->ti_src.s_addr ||
    304 	    inp->inp_laddr.s_addr != ti->ti_dst.s_addr) {
    305 		inp = in_pcblookup(&tcb, ti->ti_src, ti->ti_sport,
    306 		    ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD);
    307 		if (inp)
    308 			tcp_last_inpcb = inp;
    309 		++tcppcbcachemiss;
    310 	}
    311 
    312 	/*
    313 	 * If the state is CLOSED (i.e., TCB does not exist) then
    314 	 * all data in the incoming segment is discarded.
    315 	 * If the TCB exists but is in CLOSED state, it is embryonic,
    316 	 * but should either do a listen or a connect soon.
    317 	 */
    318 	if (inp == 0)
    319 		goto dropwithreset;
    320 	tp = intotcpcb(inp);
    321 	if (tp == 0)
    322 		goto dropwithreset;
    323 	if (tp->t_state == TCPS_CLOSED)
    324 		goto drop;
    325 	so = inp->inp_socket;
    326 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
    327 		if (so->so_options & SO_DEBUG) {
    328 			ostate = tp->t_state;
    329 			tcp_saveti = *ti;
    330 		}
    331 		if (so->so_options & SO_ACCEPTCONN) {
    332 			so = sonewconn(so, 0);
    333 			if (so == 0)
    334 				goto drop;
    335 			/*
    336 			 * This is ugly, but ....
    337 			 *
    338 			 * Mark socket as temporary until we're
    339 			 * committed to keeping it.  The code at
    340 			 * ``drop'' and ``dropwithreset'' check the
    341 			 * flag dropsocket to see if the temporary
    342 			 * socket created here should be discarded.
    343 			 * We mark the socket as discardable until
    344 			 * we're committed to it below in TCPS_LISTEN.
    345 			 */
    346 			dropsocket++;
    347 			inp = (struct inpcb *)so->so_pcb;
    348 			inp->inp_laddr = ti->ti_dst;
    349 			inp->inp_lport = ti->ti_dport;
    350 #if BSD>=43
    351 			inp->inp_options = ip_srcroute();
    352 #endif
    353 			tp = intotcpcb(inp);
    354 			tp->t_state = TCPS_LISTEN;
    355 		}
    356 	}
    357 
    358 	/*
    359 	 * Segment received on connection.
    360 	 * Reset idle time and keep-alive timer.
    361 	 */
    362 	tp->t_idle = 0;
    363 	tp->t_timer[TCPT_KEEP] = tcp_keepidle;
    364 
    365 	/*
    366 	 * Process options if not in LISTEN state,
    367 	 * else do it below (after getting remote address).
    368 	 */
    369 	if (om && tp->t_state != TCPS_LISTEN) {
    370 		tcp_dooptions(tp, om, ti);
    371 		om = 0;
    372 	}
    373 	/*
    374 	 * Header prediction: check for the two common cases
    375 	 * of a uni-directional data xfer.  If the packet has
    376 	 * no control flags, is in-sequence, the window didn't
    377 	 * change and we're not retransmitting, it's a
    378 	 * candidate.  If the length is zero and the ack moved
    379 	 * forward, we're the sender side of the xfer.  Just
    380 	 * free the data acked & wake any higher level process
    381 	 * that was blocked waiting for space.  If the length
    382 	 * is non-zero and the ack didn't move, we're the
    383 	 * receiver side.  If we're getting packets in-order
    384 	 * (the reassembly queue is empty), add the data to
    385 	 * the socket buffer and note that we need a delayed ack.
    386 	 */
    387 	if (tp->t_state == TCPS_ESTABLISHED &&
    388 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
    389 	    ti->ti_seq == tp->rcv_nxt &&
    390 	    ti->ti_win && ti->ti_win == tp->snd_wnd &&
    391 	    tp->snd_nxt == tp->snd_max) {
    392 		if (ti->ti_len == 0) {
    393 			if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
    394 			    SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
    395 			    tp->snd_cwnd >= tp->snd_wnd) {
    396 				/*
    397 				 * this is a pure ack for outstanding data.
    398 				 */
    399 				++tcppredack;
    400 				if (tp->t_rtt && SEQ_GT(ti->ti_ack,tp->t_rtseq))
    401 					tcp_xmit_timer(tp);
    402 				acked = ti->ti_ack - tp->snd_una;
    403 				tcpstat.tcps_rcvackpack++;
    404 				tcpstat.tcps_rcvackbyte += acked;
    405 				sbdrop(&so->so_snd, acked);
    406 				tp->snd_una = ti->ti_ack;
    407 				m_freem(m);
    408 
    409 				/*
    410 				 * If all outstanding data are acked, stop
    411 				 * retransmit timer, otherwise restart timer
    412 				 * using current (possibly backed-off) value.
    413 				 * If process is waiting for space,
    414 				 * wakeup/selwakeup/signal.  If data
    415 				 * are ready to send, let tcp_output
    416 				 * decide between more output or persist.
    417 				 */
    418 				if (tp->snd_una == tp->snd_max)
    419 					tp->t_timer[TCPT_REXMT] = 0;
    420 				else if (tp->t_timer[TCPT_PERSIST] == 0)
    421 					tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
    422 
    423 				if (so->so_snd.sb_flags & SB_NOTIFY)
    424 					sowwakeup(so);
    425 				if (so->so_snd.sb_cc)
    426 					(void) tcp_output(tp);
    427 				return;
    428 			}
    429 		} else if (ti->ti_ack == tp->snd_una &&
    430 		    tp->seg_next == (struct tcpiphdr *)tp &&
    431 		    ti->ti_len <= sbspace(&so->so_rcv)) {
    432 			/*
    433 			 * this is a pure, in-sequence data packet
    434 			 * with nothing on the reassembly queue and
    435 			 * we have enough buffer space to take it.
    436 			 */
    437 			++tcppreddat;
    438 			tp->rcv_nxt += ti->ti_len;
    439 			tcpstat.tcps_rcvpack++;
    440 			tcpstat.tcps_rcvbyte += ti->ti_len;
    441 			/*
    442 			 * Drop TCP and IP headers then add data
    443 			 * to socket buffer
    444 			 */
    445 			m->m_data += sizeof(struct tcpiphdr);
    446 			m->m_len -= sizeof(struct tcpiphdr);
    447 			sbappend(&so->so_rcv, m);
    448 			sorwakeup(so);
    449 			tp->t_flags |= TF_DELACK;
    450 			return;
    451 		}
    452 	}
    453 
    454 	/*
    455 	 * Drop TCP and IP headers; TCP options were dropped above.
    456 	 */
    457 	m->m_data += sizeof(struct tcpiphdr);
    458 	m->m_len -= sizeof(struct tcpiphdr);
    459 
    460 	/*
    461 	 * Calculate amount of space in receive window,
    462 	 * and then do TCP input processing.
    463 	 * Receive window is amount of space in rcv queue,
    464 	 * but not less than advertised window.
    465 	 */
    466 	{ int win;
    467 
    468 	win = sbspace(&so->so_rcv);
    469 	if (win < 0)
    470 		win = 0;
    471 	tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));
    472 	}
    473 
    474 	switch (tp->t_state) {
    475 
    476 	/*
    477 	 * If the state is LISTEN then ignore segment if it contains an RST.
    478 	 * If the segment contains an ACK then it is bad and send a RST.
    479 	 * If it does not contain a SYN then it is not interesting; drop it.
    480 	 * Don't bother responding if the destination was a broadcast.
    481 	 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
    482 	 * tp->iss, and send a segment:
    483 	 *     <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
    484 	 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
    485 	 * Fill in remote peer address fields if not previously specified.
    486 	 * Enter SYN_RECEIVED state, and process any other fields of this
    487 	 * segment in this state.
    488 	 */
    489 	case TCPS_LISTEN: {
    490 		struct mbuf *am;
    491 		register struct sockaddr_in *sin;
    492 
    493 		if (tiflags & TH_RST)
    494 			goto drop;
    495 		if (tiflags & TH_ACK)
    496 			goto dropwithreset;
    497 		if ((tiflags & TH_SYN) == 0)
    498 			goto drop;
    499 		if (m->m_flags & M_BCAST)
    500 			goto drop;
    501 		am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
    502 		if (am == NULL)
    503 			goto drop;
    504 		am->m_len = sizeof (struct sockaddr_in);
    505 		sin = mtod(am, struct sockaddr_in *);
    506 		sin->sin_family = AF_INET;
    507 		sin->sin_len = sizeof(*sin);
    508 		sin->sin_addr = ti->ti_src;
    509 		sin->sin_port = ti->ti_sport;
    510 		laddr = inp->inp_laddr;
    511 		if (inp->inp_laddr.s_addr == INADDR_ANY)
    512 			inp->inp_laddr = ti->ti_dst;
    513 		if (in_pcbconnect(inp, am)) {
    514 			inp->inp_laddr = laddr;
    515 			(void) m_free(am);
    516 			goto drop;
    517 		}
    518 		(void) m_free(am);
    519 		tp->t_template = tcp_template(tp);
    520 		if (tp->t_template == 0) {
    521 			tp = tcp_drop(tp, ENOBUFS);
    522 			dropsocket = 0;		/* socket is already gone */
    523 			goto drop;
    524 		}
    525 		if (om) {
    526 			tcp_dooptions(tp, om, ti);
    527 			om = 0;
    528 		}
    529 		if (iss)
    530 			tp->iss = iss;
    531 		else
    532 			tp->iss = tcp_iss;
    533 		tcp_iss += TCP_ISSINCR/2;
    534 		tp->irs = ti->ti_seq;
    535 		tcp_sendseqinit(tp);
    536 		tcp_rcvseqinit(tp);
    537 		tp->t_flags |= TF_ACKNOW;
    538 		tp->t_state = TCPS_SYN_RECEIVED;
    539 		tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
    540 		dropsocket = 0;		/* committed to socket */
    541 		tcpstat.tcps_accepts++;
    542 		goto trimthenstep6;
    543 		}
    544 
    545 	/*
    546 	 * If the state is SYN_SENT:
    547 	 *	if seg contains an ACK, but not for our SYN, drop the input.
    548 	 *	if seg contains a RST, then drop the connection.
    549 	 *	if seg does not contain SYN, then drop it.
    550 	 * Otherwise this is an acceptable SYN segment
    551 	 *	initialize tp->rcv_nxt and tp->irs
    552 	 *	if seg contains ack then advance tp->snd_una
    553 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
    554 	 *	arrange for segment to be acked (eventually)
    555 	 *	continue processing rest of data/controls, beginning with URG
    556 	 */
    557 	case TCPS_SYN_SENT:
    558 		if ((tiflags & TH_ACK) &&
    559 		    (SEQ_LEQ(ti->ti_ack, tp->iss) ||
    560 		     SEQ_GT(ti->ti_ack, tp->snd_max)))
    561 			goto dropwithreset;
    562 		if (tiflags & TH_RST) {
    563 			if (tiflags & TH_ACK)
    564 				tp = tcp_drop(tp, ECONNREFUSED);
    565 			goto drop;
    566 		}
    567 		if ((tiflags & TH_SYN) == 0)
    568 			goto drop;
    569 		if (tiflags & TH_ACK) {
    570 			tp->snd_una = ti->ti_ack;
    571 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
    572 				tp->snd_nxt = tp->snd_una;
    573 		}
    574 		tp->t_timer[TCPT_REXMT] = 0;
    575 		tp->irs = ti->ti_seq;
    576 		tcp_rcvseqinit(tp);
    577 		tp->t_flags |= TF_ACKNOW;
    578 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
    579 			tcpstat.tcps_connects++;
    580 			soisconnected(so);
    581 			tp->t_state = TCPS_ESTABLISHED;
    582 			(void) tcp_reass(tp, (struct tcpiphdr *)0,
    583 				(struct mbuf *)0);
    584 			/*
    585 			 * if we didn't have to retransmit the SYN,
    586 			 * use its rtt as our initial srtt & rtt var.
    587 			 */
    588 			if (tp->t_rtt)
    589 				tcp_xmit_timer(tp);
    590 		} else
    591 			tp->t_state = TCPS_SYN_RECEIVED;
    592 
    593 trimthenstep6:
    594 		/*
    595 		 * Advance ti->ti_seq to correspond to first data byte.
    596 		 * If data, trim to stay within window,
    597 		 * dropping FIN if necessary.
    598 		 */
    599 		ti->ti_seq++;
    600 		if (ti->ti_len > tp->rcv_wnd) {
    601 			todrop = ti->ti_len - tp->rcv_wnd;
    602 			m_adj(m, -todrop);
    603 			ti->ti_len = tp->rcv_wnd;
    604 			tiflags &= ~TH_FIN;
    605 			tcpstat.tcps_rcvpackafterwin++;
    606 			tcpstat.tcps_rcvbyteafterwin += todrop;
    607 		}
    608 		tp->snd_wl1 = ti->ti_seq - 1;
    609 		tp->rcv_up = ti->ti_seq;
    610 		goto step6;
    611 	}
    612 
    613 	/*
    614 	 * States other than LISTEN or SYN_SENT.
    615 	 * First check that at least some bytes of segment are within
    616 	 * receive window.  If segment begins before rcv_nxt,
    617 	 * drop leading data (and SYN); if nothing left, just ack.
    618 	 */
    619 	todrop = tp->rcv_nxt - ti->ti_seq;
    620 	if (todrop > 0) {
    621 		if (tiflags & TH_SYN) {
    622 			tiflags &= ~TH_SYN;
    623 			ti->ti_seq++;
    624 			if (ti->ti_urp > 1)
    625 				ti->ti_urp--;
    626 			else
    627 				tiflags &= ~TH_URG;
    628 			todrop--;
    629 		}
    630 		if (todrop > ti->ti_len ||
    631 		    todrop == ti->ti_len && (tiflags&TH_FIN) == 0) {
    632 			tcpstat.tcps_rcvduppack++;
    633 			tcpstat.tcps_rcvdupbyte += ti->ti_len;
    634 			/*
    635 			 * If segment is just one to the left of the window,
    636 			 * check two special cases:
    637 			 * 1. Don't toss RST in response to 4.2-style keepalive.
    638 			 * 2. If the only thing to drop is a FIN, we can drop
    639 			 *    it, but check the ACK or we will get into FIN
    640 			 *    wars if our FINs crossed (both CLOSING).
    641 			 * In either case, send ACK to resynchronize,
    642 			 * but keep on processing for RST or ACK.
    643 			 */
    644 			if ((tiflags & TH_FIN && todrop == ti->ti_len + 1)
    645 #ifdef TCP_COMPAT_42
    646 			  || (tiflags & TH_RST && ti->ti_seq == tp->rcv_nxt - 1)
    647 #endif
    648 			   ) {
    649 				todrop = ti->ti_len;
    650 				tiflags &= ~TH_FIN;
    651 				tp->t_flags |= TF_ACKNOW;
    652 			} else {
    653 				/*
    654 				 * Handle the case when a bound socket connects
    655 				 * to itself. Allow packets with a SYN and
    656 				 * an ACK to continue with the processing.
    657 				 */
    658 				if (todrop != 0 || (tiflags & TH_ACK) == 0)
    659 					goto dropafterack;
    660 			}
    661 		} else {
    662 			tcpstat.tcps_rcvpartduppack++;
    663 			tcpstat.tcps_rcvpartdupbyte += todrop;
    664 		}
    665 		m_adj(m, todrop);
    666 		ti->ti_seq += todrop;
    667 		ti->ti_len -= todrop;
    668 		if (ti->ti_urp > todrop)
    669 			ti->ti_urp -= todrop;
    670 		else {
    671 			tiflags &= ~TH_URG;
    672 			ti->ti_urp = 0;
    673 		}
    674 	}
    675 
    676 	/*
    677 	 * If new data are received on a connection after the
    678 	 * user processes are gone, then RST the other end.
    679 	 */
    680 	if ((so->so_state & SS_NOFDREF) &&
    681 	    tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
    682 		tp = tcp_close(tp);
    683 		tcpstat.tcps_rcvafterclose++;
    684 		goto dropwithreset;
    685 	}
    686 
    687 	/*
    688 	 * If segment ends after window, drop trailing data
    689 	 * (and PUSH and FIN); if nothing left, just ACK.
    690 	 */
    691 	todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
    692 	if (todrop > 0) {
    693 		tcpstat.tcps_rcvpackafterwin++;
    694 		if (todrop >= ti->ti_len) {
    695 			tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
    696 			/*
    697 			 * If a new connection request is received
    698 			 * while in TIME_WAIT, drop the old connection
    699 			 * and start over if the sequence numbers
    700 			 * are above the previous ones.
    701 			 */
    702 			if (tiflags & TH_SYN &&
    703 			    tp->t_state == TCPS_TIME_WAIT &&
    704 			    SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
    705 				iss = tp->rcv_nxt + TCP_ISSINCR;
    706 				tp = tcp_close(tp);
    707 				goto findpcb;
    708 			}
    709 			/*
    710 			 * If window is closed can only take segments at
    711 			 * window edge, and have to drop data and PUSH from
    712 			 * incoming segments.  Continue processing, but
    713 			 * remember to ack.  Otherwise, drop segment
    714 			 * and ack.
    715 			 */
    716 			if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
    717 				tp->t_flags |= TF_ACKNOW;
    718 				tcpstat.tcps_rcvwinprobe++;
    719 			} else
    720 				goto dropafterack;
    721 		} else
    722 			tcpstat.tcps_rcvbyteafterwin += todrop;
    723 		m_adj(m, -todrop);
    724 		ti->ti_len -= todrop;
    725 		tiflags &= ~(TH_PUSH|TH_FIN);
    726 	}
    727 
    728 	/*
    729 	 * If the RST bit is set examine the state:
    730 	 *    SYN_RECEIVED STATE:
    731 	 *	If passive open, return to LISTEN state.
    732 	 *	If active open, inform user that connection was refused.
    733 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
    734 	 *	Inform user that connection was reset, and close tcb.
    735 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
    736 	 *	Close the tcb.
    737 	 */
    738 	if (tiflags&TH_RST) switch (tp->t_state) {
    739 
    740 	case TCPS_SYN_RECEIVED:
    741 		so->so_error = ECONNREFUSED;
    742 		goto close;
    743 
    744 	case TCPS_ESTABLISHED:
    745 	case TCPS_FIN_WAIT_1:
    746 	case TCPS_FIN_WAIT_2:
    747 	case TCPS_CLOSE_WAIT:
    748 		so->so_error = ECONNRESET;
    749 	close:
    750 		tp->t_state = TCPS_CLOSED;
    751 		tcpstat.tcps_drops++;
    752 		tp = tcp_close(tp);
    753 		goto drop;
    754 
    755 	case TCPS_CLOSING:
    756 	case TCPS_LAST_ACK:
    757 	case TCPS_TIME_WAIT:
    758 		tp = tcp_close(tp);
    759 		goto drop;
    760 	}
    761 
    762 	/*
    763 	 * If a SYN is in the window, then this is an
    764 	 * error and we send an RST and drop the connection.
    765 	 */
    766 	if (tiflags & TH_SYN) {
    767 		tp = tcp_drop(tp, ECONNRESET);
    768 		goto dropwithreset;
    769 	}
    770 
    771 	/*
    772 	 * If the ACK bit is off we drop the segment and return.
    773 	 */
    774 	if ((tiflags & TH_ACK) == 0)
    775 		goto drop;
    776 
    777 	/*
    778 	 * Ack processing.
    779 	 */
    780 	switch (tp->t_state) {
    781 
    782 	/*
    783 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
    784 	 * ESTABLISHED state and continue processing, otherwise
    785 	 * send an RST.
    786 	 */
    787 	case TCPS_SYN_RECEIVED:
    788 		if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
    789 		    SEQ_GT(ti->ti_ack, tp->snd_max))
    790 			goto dropwithreset;
    791 		tcpstat.tcps_connects++;
    792 		soisconnected(so);
    793 		tp->t_state = TCPS_ESTABLISHED;
    794 		(void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
    795 		tp->snd_wl1 = ti->ti_seq - 1;
    796 		/* fall into ... */
    797 
    798 	/*
    799 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
    800 	 * ACKs.  If the ack is in the range
    801 	 *	tp->snd_una < ti->ti_ack <= tp->snd_max
    802 	 * then advance tp->snd_una to ti->ti_ack and drop
    803 	 * data from the retransmission queue.  If this ACK reflects
    804 	 * more up to date window information we update our window information.
    805 	 */
    806 	case TCPS_ESTABLISHED:
    807 	case TCPS_FIN_WAIT_1:
    808 	case TCPS_FIN_WAIT_2:
    809 	case TCPS_CLOSE_WAIT:
    810 	case TCPS_CLOSING:
    811 	case TCPS_LAST_ACK:
    812 	case TCPS_TIME_WAIT:
    813 
    814 		if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
    815 			if (ti->ti_len == 0 && ti->ti_win == tp->snd_wnd) {
    816 				tcpstat.tcps_rcvdupack++;
    817 				/*
    818 				 * If we have outstanding data (other than
    819 				 * a window probe), this is a completely
    820 				 * duplicate ack (ie, window info didn't
    821 				 * change), the ack is the biggest we've
    822 				 * seen and we've seen exactly our rexmt
    823 				 * threshhold of them, assume a packet
    824 				 * has been dropped and retransmit it.
    825 				 * Kludge snd_nxt & the congestion
    826 				 * window so we send only this one
    827 				 * packet.
    828 				 *
    829 				 * We know we're losing at the current
    830 				 * window size so do congestion avoidance
    831 				 * (set ssthresh to half the current window
    832 				 * and pull our congestion window back to
    833 				 * the new ssthresh).
    834 				 *
    835 				 * Dup acks mean that packets have left the
    836 				 * network (they're now cached at the receiver)
    837 				 * so bump cwnd by the amount in the receiver
    838 				 * to keep a constant cwnd packets in the
    839 				 * network.
    840 				 */
    841 				if (tp->t_timer[TCPT_REXMT] == 0 ||
    842 				    ti->ti_ack != tp->snd_una)
    843 					tp->t_dupacks = 0;
    844 				else if (++tp->t_dupacks == tcprexmtthresh) {
    845 					tcp_seq onxt = tp->snd_nxt;
    846 					u_int win =
    847 					    min(tp->snd_wnd, tp->snd_cwnd) / 2 /
    848 						tp->t_maxseg;
    849 
    850 					if (win < 2)
    851 						win = 2;
    852 					tp->snd_ssthresh = win * tp->t_maxseg;
    853 					tp->t_timer[TCPT_REXMT] = 0;
    854 					tp->t_rtt = 0;
    855 					tp->snd_nxt = ti->ti_ack;
    856 					tp->snd_cwnd = tp->t_maxseg;
    857 					(void) tcp_output(tp);
    858 					tp->snd_cwnd = tp->snd_ssthresh +
    859 					       tp->t_maxseg * tp->t_dupacks;
    860 					if (SEQ_GT(onxt, tp->snd_nxt))
    861 						tp->snd_nxt = onxt;
    862 					goto drop;
    863 				} else if (tp->t_dupacks > tcprexmtthresh) {
    864 					tp->snd_cwnd += tp->t_maxseg;
    865 					(void) tcp_output(tp);
    866 					goto drop;
    867 				}
    868 			} else
    869 				tp->t_dupacks = 0;
    870 			break;
    871 		}
    872 		/*
    873 		 * If the congestion window was inflated to account
    874 		 * for the other side's cached packets, retract it.
    875 		 */
    876 		if (tp->t_dupacks > tcprexmtthresh &&
    877 		    tp->snd_cwnd > tp->snd_ssthresh)
    878 			tp->snd_cwnd = tp->snd_ssthresh;
    879 		tp->t_dupacks = 0;
    880 		if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
    881 			tcpstat.tcps_rcvacktoomuch++;
    882 			goto dropafterack;
    883 		}
    884 		acked = ti->ti_ack - tp->snd_una;
    885 		tcpstat.tcps_rcvackpack++;
    886 		tcpstat.tcps_rcvackbyte += acked;
    887 
    888 		/*
    889 		 * If transmit timer is running and timed sequence
    890 		 * number was acked, update smoothed round trip time.
    891 		 * Since we now have an rtt measurement, cancel the
    892 		 * timer backoff (cf., Phil Karn's retransmit alg.).
    893 		 * Recompute the initial retransmit timer.
    894 		 */
    895 		if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
    896 			tcp_xmit_timer(tp);
    897 
    898 		/*
    899 		 * If all outstanding data is acked, stop retransmit
    900 		 * timer and remember to restart (more output or persist).
    901 		 * If there is more data to be acked, restart retransmit
    902 		 * timer, using current (possibly backed-off) value.
    903 		 */
    904 		if (ti->ti_ack == tp->snd_max) {
    905 			tp->t_timer[TCPT_REXMT] = 0;
    906 			needoutput = 1;
    907 		} else if (tp->t_timer[TCPT_PERSIST] == 0)
    908 			tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
    909 		/*
    910 		 * When new data is acked, open the congestion window.
    911 		 * If the window gives us less than ssthresh packets
    912 		 * in flight, open exponentially (maxseg per packet).
    913 		 * Otherwise open linearly: maxseg per window
    914 		 * (maxseg^2 / cwnd per packet), plus a constant
    915 		 * fraction of a packet (maxseg/8) to help larger windows
    916 		 * open quickly enough.
    917 		 */
    918 		{
    919 		register u_int cw = tp->snd_cwnd;
    920 		register u_int incr = tp->t_maxseg;
    921 
    922 		if (cw > tp->snd_ssthresh)
    923 			incr = incr * incr / cw + incr / 8;
    924 		tp->snd_cwnd = min(cw + incr, TCP_MAXWIN);
    925 		}
    926 		if (acked > so->so_snd.sb_cc) {
    927 			tp->snd_wnd -= so->so_snd.sb_cc;
    928 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
    929 			ourfinisacked = 1;
    930 		} else {
    931 			sbdrop(&so->so_snd, acked);
    932 			tp->snd_wnd -= acked;
    933 			ourfinisacked = 0;
    934 		}
    935 		if (so->so_snd.sb_flags & SB_NOTIFY)
    936 			sowwakeup(so);
    937 		tp->snd_una = ti->ti_ack;
    938 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
    939 			tp->snd_nxt = tp->snd_una;
    940 
    941 		switch (tp->t_state) {
    942 
    943 		/*
    944 		 * In FIN_WAIT_1 STATE in addition to the processing
    945 		 * for the ESTABLISHED state if our FIN is now acknowledged
    946 		 * then enter FIN_WAIT_2.
    947 		 */
    948 		case TCPS_FIN_WAIT_1:
    949 			if (ourfinisacked) {
    950 				/*
    951 				 * If we can't receive any more
    952 				 * data, then closing user can proceed.
    953 				 * Starting the timer is contrary to the
    954 				 * specification, but if we don't get a FIN
    955 				 * we'll hang forever.
    956 				 */
    957 				if (so->so_state & SS_CANTRCVMORE) {
    958 					soisdisconnected(so);
    959 					tp->t_timer[TCPT_2MSL] = tcp_maxidle;
    960 				}
    961 				tp->t_state = TCPS_FIN_WAIT_2;
    962 			}
    963 			break;
    964 
    965 	 	/*
    966 		 * In CLOSING STATE in addition to the processing for
    967 		 * the ESTABLISHED state if the ACK acknowledges our FIN
    968 		 * then enter the TIME-WAIT state, otherwise ignore
    969 		 * the segment.
    970 		 */
    971 		case TCPS_CLOSING:
    972 			if (ourfinisacked) {
    973 				tp->t_state = TCPS_TIME_WAIT;
    974 				tcp_canceltimers(tp);
    975 				tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
    976 				soisdisconnected(so);
    977 			}
    978 			break;
    979 
    980 		/*
    981 		 * In LAST_ACK, we may still be waiting for data to drain
    982 		 * and/or to be acked, as well as for the ack of our FIN.
    983 		 * If our FIN is now acknowledged, delete the TCB,
    984 		 * enter the closed state and return.
    985 		 */
    986 		case TCPS_LAST_ACK:
    987 			if (ourfinisacked) {
    988 				tp = tcp_close(tp);
    989 				goto drop;
    990 			}
    991 			break;
    992 
    993 		/*
    994 		 * In TIME_WAIT state the only thing that should arrive
    995 		 * is a retransmission of the remote FIN.  Acknowledge
    996 		 * it and restart the finack timer.
    997 		 */
    998 		case TCPS_TIME_WAIT:
    999 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
   1000 			goto dropafterack;
   1001 		}
   1002 	}
   1003 
   1004 step6:
   1005 	/*
   1006 	 * Update window information.
   1007 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   1008 	 */
   1009 	if ((tiflags & TH_ACK) &&
   1010 	    (SEQ_LT(tp->snd_wl1, ti->ti_seq) || tp->snd_wl1 == ti->ti_seq &&
   1011 	    (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
   1012 	     tp->snd_wl2 == ti->ti_ack && ti->ti_win > tp->snd_wnd))) {
   1013 		/* keep track of pure window updates */
   1014 		if (ti->ti_len == 0 &&
   1015 		    tp->snd_wl2 == ti->ti_ack && ti->ti_win > tp->snd_wnd)
   1016 			tcpstat.tcps_rcvwinupd++;
   1017 		tp->snd_wnd = ti->ti_win;
   1018 		tp->snd_wl1 = ti->ti_seq;
   1019 		tp->snd_wl2 = ti->ti_ack;
   1020 		if (tp->snd_wnd > tp->max_sndwnd)
   1021 			tp->max_sndwnd = tp->snd_wnd;
   1022 		needoutput = 1;
   1023 	}
   1024 
   1025 	/*
   1026 	 * Process segments with URG.
   1027 	 */
   1028 	if ((tiflags & TH_URG) && ti->ti_urp &&
   1029 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1030 		/*
   1031 		 * This is a kludge, but if we receive and accept
   1032 		 * random urgent pointers, we'll crash in
   1033 		 * soreceive.  It's hard to imagine someone
   1034 		 * actually wanting to send this much urgent data.
   1035 		 */
   1036 		if (ti->ti_urp + so->so_rcv.sb_cc > SB_MAX) {
   1037 			ti->ti_urp = 0;			/* XXX */
   1038 			tiflags &= ~TH_URG;		/* XXX */
   1039 			goto dodata;			/* XXX */
   1040 		}
   1041 		/*
   1042 		 * If this segment advances the known urgent pointer,
   1043 		 * then mark the data stream.  This should not happen
   1044 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   1045 		 * a FIN has been received from the remote side.
   1046 		 * In these states we ignore the URG.
   1047 		 *
   1048 		 * According to RFC961 (Assigned Protocols),
   1049 		 * the urgent pointer points to the last octet
   1050 		 * of urgent data.  We continue, however,
   1051 		 * to consider it to indicate the first octet
   1052 		 * of data past the urgent section as the original
   1053 		 * spec states (in one of two places).
   1054 		 */
   1055 		if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
   1056 			tp->rcv_up = ti->ti_seq + ti->ti_urp;
   1057 			so->so_oobmark = so->so_rcv.sb_cc +
   1058 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   1059 			if (so->so_oobmark == 0)
   1060 				so->so_state |= SS_RCVATMARK;
   1061 			sohasoutofband(so);
   1062 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   1063 		}
   1064 		/*
   1065 		 * Remove out of band data so doesn't get presented to user.
   1066 		 * This can happen independent of advancing the URG pointer,
   1067 		 * but if two URG's are pending at once, some out-of-band
   1068 		 * data may creep in... ick.
   1069 		 */
   1070 		if (ti->ti_urp <= ti->ti_len
   1071 #ifdef SO_OOBINLINE
   1072 		     && (so->so_options & SO_OOBINLINE) == 0
   1073 #endif
   1074 		     )
   1075 			tcp_pulloutofband(so, ti, m);
   1076 	} else
   1077 		/*
   1078 		 * If no out of band data is expected,
   1079 		 * pull receive urgent pointer along
   1080 		 * with the receive window.
   1081 		 */
   1082 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   1083 			tp->rcv_up = tp->rcv_nxt;
   1084 dodata:							/* XXX */
   1085 
   1086 	/*
   1087 	 * Process the segment text, merging it into the TCP sequencing queue,
   1088 	 * and arranging for acknowledgment of receipt if necessary.
   1089 	 * This process logically involves adjusting tp->rcv_wnd as data
   1090 	 * is presented to the user (this happens in tcp_usrreq.c,
   1091 	 * case PRU_RCVD).  If a FIN has already been received on this
   1092 	 * connection then we just ignore the text.
   1093 	 */
   1094 	if ((ti->ti_len || (tiflags&TH_FIN)) &&
   1095 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1096 		TCP_REASS(tp, ti, m, so, tiflags);
   1097 		/*
   1098 		 * Note the amount of data that peer has sent into
   1099 		 * our window, in order to estimate the sender's
   1100 		 * buffer size.
   1101 		 */
   1102 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   1103 	} else {
   1104 		m_freem(m);
   1105 		tiflags &= ~TH_FIN;
   1106 	}
   1107 
   1108 	/*
   1109 	 * If FIN is received ACK the FIN and let the user know
   1110 	 * that the connection is closing.
   1111 	 */
   1112 	if (tiflags & TH_FIN) {
   1113 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1114 			socantrcvmore(so);
   1115 			tp->t_flags |= TF_ACKNOW;
   1116 			tp->rcv_nxt++;
   1117 		}
   1118 		switch (tp->t_state) {
   1119 
   1120 	 	/*
   1121 		 * In SYN_RECEIVED and ESTABLISHED STATES
   1122 		 * enter the CLOSE_WAIT state.
   1123 		 */
   1124 		case TCPS_SYN_RECEIVED:
   1125 		case TCPS_ESTABLISHED:
   1126 			tp->t_state = TCPS_CLOSE_WAIT;
   1127 			break;
   1128 
   1129 	 	/*
   1130 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   1131 		 * enter the CLOSING state.
   1132 		 */
   1133 		case TCPS_FIN_WAIT_1:
   1134 			tp->t_state = TCPS_CLOSING;
   1135 			break;
   1136 
   1137 	 	/*
   1138 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   1139 		 * starting the time-wait timer, turning off the other
   1140 		 * standard timers.
   1141 		 */
   1142 		case TCPS_FIN_WAIT_2:
   1143 			tp->t_state = TCPS_TIME_WAIT;
   1144 			tcp_canceltimers(tp);
   1145 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
   1146 			soisdisconnected(so);
   1147 			break;
   1148 
   1149 		/*
   1150 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   1151 		 */
   1152 		case TCPS_TIME_WAIT:
   1153 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
   1154 			break;
   1155 		}
   1156 	}
   1157 	if (so->so_options & SO_DEBUG)
   1158 		tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
   1159 
   1160 	/*
   1161 	 * Return any desired output.
   1162 	 */
   1163 	if (needoutput || (tp->t_flags & TF_ACKNOW))
   1164 		(void) tcp_output(tp);
   1165 	return;
   1166 
   1167 dropafterack:
   1168 	/*
   1169 	 * Generate an ACK dropping incoming segment if it occupies
   1170 	 * sequence space, where the ACK reflects our state.
   1171 	 */
   1172 	if (tiflags & TH_RST)
   1173 		goto drop;
   1174 	m_freem(m);
   1175 	tp->t_flags |= TF_ACKNOW;
   1176 	(void) tcp_output(tp);
   1177 	return;
   1178 
   1179 dropwithreset:
   1180 	if (om) {
   1181 		(void) m_free(om);
   1182 		om = 0;
   1183 	}
   1184 	/*
   1185 	 * Generate a RST, dropping incoming segment.
   1186 	 * Make ACK acceptable to originator of segment.
   1187 	 * Don't bother to respond if destination was broadcast.
   1188 	 */
   1189 	if ((tiflags & TH_RST) || m->m_flags & M_BCAST)
   1190 		goto drop;
   1191 	if (tiflags & TH_ACK)
   1192 		tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
   1193 	else {
   1194 		if (tiflags & TH_SYN)
   1195 			ti->ti_len++;
   1196 		tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
   1197 		    TH_RST|TH_ACK);
   1198 	}
   1199 	/* destroy temporarily created socket */
   1200 	if (dropsocket)
   1201 		(void) soabort(so);
   1202 	return;
   1203 
   1204 drop:
   1205 	if (om)
   1206 		(void) m_free(om);
   1207 	/*
   1208 	 * Drop space held by incoming segment and return.
   1209 	 */
   1210 	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
   1211 		tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
   1212 	m_freem(m);
   1213 	/* destroy temporarily created socket */
   1214 	if (dropsocket)
   1215 		(void) soabort(so);
   1216 	return;
   1217 }
   1218 
   1219 void
   1220 tcp_dooptions(tp, om, ti)
   1221 	struct tcpcb *tp;
   1222 	struct mbuf *om;
   1223 	struct tcpiphdr *ti;
   1224 {
   1225 	register u_char *cp;
   1226 	u_short mss;
   1227 	int opt, optlen, cnt;
   1228 
   1229 	cp = mtod(om, u_char *);
   1230 	cnt = om->m_len;
   1231 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1232 		opt = cp[0];
   1233 		if (opt == TCPOPT_EOL)
   1234 			break;
   1235 		if (opt == TCPOPT_NOP)
   1236 			optlen = 1;
   1237 		else {
   1238 			optlen = cp[1];
   1239 			if (optlen <= 0)
   1240 				break;
   1241 		}
   1242 		switch (opt) {
   1243 
   1244 		default:
   1245 			continue;
   1246 
   1247 		case TCPOPT_MAXSEG:
   1248 			if (optlen != 4)
   1249 				continue;
   1250 			if (!(ti->ti_flags & TH_SYN))
   1251 				continue;
   1252 			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
   1253 			NTOHS(mss);
   1254 			(void) tcp_mss(tp, mss);	/* sets t_maxseg */
   1255 			break;
   1256 		}
   1257 	}
   1258 	(void) m_free(om);
   1259 }
   1260 
   1261 /*
   1262  * Pull out of band byte out of a segment so
   1263  * it doesn't appear in the user's data queue.
   1264  * It is still reflected in the segment length for
   1265  * sequencing purposes.
   1266  */
   1267 void
   1268 tcp_pulloutofband(so, ti, m)
   1269 	struct socket *so;
   1270 	struct tcpiphdr *ti;
   1271 	register struct mbuf *m;
   1272 {
   1273 	int cnt = ti->ti_urp - 1;
   1274 
   1275 	while (cnt >= 0) {
   1276 		if (m->m_len > cnt) {
   1277 			char *cp = mtod(m, caddr_t) + cnt;
   1278 			struct tcpcb *tp = sototcpcb(so);
   1279 
   1280 			tp->t_iobc = *cp;
   1281 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   1282 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   1283 			m->m_len--;
   1284 			return;
   1285 		}
   1286 		cnt -= m->m_len;
   1287 		m = m->m_next;
   1288 		if (m == 0)
   1289 			break;
   1290 	}
   1291 	panic("tcp_pulloutofband");
   1292 }
   1293 
   1294 /*
   1295  * Collect new round-trip time estimate
   1296  * and update averages and current timeout.
   1297  */
   1298 void
   1299 tcp_xmit_timer(tp)
   1300 	register struct tcpcb *tp;
   1301 {
   1302 	register short delta;
   1303 
   1304 	tcpstat.tcps_rttupdated++;
   1305 	if (tp->t_srtt != 0) {
   1306 		/*
   1307 		 * srtt is stored as fixed point with 3 bits after the
   1308 		 * binary point (i.e., scaled by 8).  The following magic
   1309 		 * is equivalent to the smoothing algorithm in rfc793 with
   1310 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
   1311 		 * point).  Adjust t_rtt to origin 0.
   1312 		 */
   1313 		delta = tp->t_rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT);
   1314 		if ((tp->t_srtt += delta) <= 0)
   1315 			tp->t_srtt = 1;
   1316 		/*
   1317 		 * We accumulate a smoothed rtt variance (actually, a
   1318 		 * smoothed mean difference), then set the retransmit
   1319 		 * timer to smoothed rtt + 4 times the smoothed variance.
   1320 		 * rttvar is stored as fixed point with 2 bits after the
   1321 		 * binary point (scaled by 4).  The following is
   1322 		 * equivalent to rfc793 smoothing with an alpha of .75
   1323 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
   1324 		 * rfc793's wired-in beta.
   1325 		 */
   1326 		if (delta < 0)
   1327 			delta = -delta;
   1328 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   1329 		if ((tp->t_rttvar += delta) <= 0)
   1330 			tp->t_rttvar = 1;
   1331 	} else {
   1332 		/*
   1333 		 * No rtt measurement yet - use the unsmoothed rtt.
   1334 		 * Set the variance to half the rtt (so our first
   1335 		 * retransmit happens at 2*rtt)
   1336 		 */
   1337 		tp->t_srtt = tp->t_rtt << TCP_RTT_SHIFT;
   1338 		tp->t_rttvar = tp->t_rtt << (TCP_RTTVAR_SHIFT - 1);
   1339 	}
   1340 	tp->t_rtt = 0;
   1341 	tp->t_rxtshift = 0;
   1342 
   1343 	/*
   1344 	 * the retransmit should happen at rtt + 4 * rttvar.
   1345 	 * Because of the way we do the smoothing, srtt and rttvar
   1346 	 * will each average +1/2 tick of bias.  When we compute
   1347 	 * the retransmit timer, we want 1/2 tick of rounding and
   1348 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   1349 	 * firing of the timer.  The bias will give us exactly the
   1350 	 * 1.5 tick we need.  But, because the bias is
   1351 	 * statistical, we have to test that we don't drop below
   1352 	 * the minimum feasible timer (which is 2 ticks).
   1353 	 */
   1354 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   1355 	    tp->t_rttmin, TCPTV_REXMTMAX);
   1356 
   1357 	/*
   1358 	 * We received an ack for a packet that wasn't retransmitted;
   1359 	 * it is probably safe to discard any error indications we've
   1360 	 * received recently.  This isn't quite right, but close enough
   1361 	 * for now (a route might have failed after we sent a segment,
   1362 	 * and the return path might not be symmetrical).
   1363 	 */
   1364 	tp->t_softerror = 0;
   1365 }
   1366 
   1367 /*
   1368  * Determine a reasonable value for maxseg size.
   1369  * If the route is known, check route for mtu.
   1370  * If none, use an mss that can be handled on the outgoing
   1371  * interface without forcing IP to fragment; if bigger than
   1372  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
   1373  * to utilize large mbufs.  If no route is found, route has no mtu,
   1374  * or the destination isn't local, use a default, hopefully conservative
   1375  * size (usually 512 or the default IP max size, but no more than the mtu
   1376  * of the interface), as we can't discover anything about intervening
   1377  * gateways or networks.  We also initialize the congestion/slow start
   1378  * window to be a single segment if the destination isn't local.
   1379  * While looking at the routing entry, we also initialize other path-dependent
   1380  * parameters from pre-set or cached values in the routing entry.
   1381  */
   1382 int
   1383 tcp_mss(tp, offer)
   1384 	register struct tcpcb *tp;
   1385 	u_short offer;
   1386 {
   1387 	struct route *ro;
   1388 	register struct rtentry *rt;
   1389 	struct ifnet *ifp;
   1390 	register int rtt, mss;
   1391 	u_long bufsize;
   1392 	struct inpcb *inp;
   1393 	struct socket *so;
   1394 	extern int tcp_mssdflt, tcp_rttdflt;
   1395 
   1396 	inp = tp->t_inpcb;
   1397 	ro = &inp->inp_route;
   1398 
   1399 	if ((rt = ro->ro_rt) == (struct rtentry *)0) {
   1400 		/* No route yet, so try to acquire one */
   1401 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
   1402 			ro->ro_dst.sa_family = AF_INET;
   1403 			ro->ro_dst.sa_len = sizeof(ro->ro_dst);
   1404 			((struct sockaddr_in *) &ro->ro_dst)->sin_addr =
   1405 				inp->inp_faddr;
   1406 			rtalloc(ro);
   1407 		}
   1408 		if ((rt = ro->ro_rt) == (struct rtentry *)0)
   1409 			return (tcp_mssdflt);
   1410 	}
   1411 	ifp = rt->rt_ifp;
   1412 	so = inp->inp_socket;
   1413 
   1414 #ifdef RTV_MTU	/* if route characteristics exist ... */
   1415 	/*
   1416 	 * While we're here, check if there's an initial rtt
   1417 	 * or rttvar.  Convert from the route-table units
   1418 	 * to scaled multiples of the slow timeout timer.
   1419 	 */
   1420 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   1421 		if (rt->rt_rmx.rmx_locks & RTV_MTU)
   1422 			tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ);
   1423 		tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
   1424 		if (rt->rt_rmx.rmx_rttvar)
   1425 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   1426 			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
   1427 		else
   1428 			/* default variation is +- 1 rtt */
   1429 			tp->t_rttvar =
   1430 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
   1431 		TCPT_RANGESET(tp->t_rxtcur,
   1432 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
   1433 		    tp->t_rttmin, TCPTV_REXMTMAX);
   1434 	}
   1435 	/*
   1436 	 * if there's an mtu associated with the route, use it
   1437 	 */
   1438 	if (rt->rt_rmx.rmx_mtu)
   1439 		mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
   1440 	else
   1441 #endif /* RTV_MTU */
   1442 	{
   1443 		mss = ifp->if_mtu - sizeof(struct tcpiphdr);
   1444 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
   1445 		if (mss > MCLBYTES)
   1446 			mss &= ~(MCLBYTES-1);
   1447 #else
   1448 		if (mss > MCLBYTES)
   1449 			mss = mss / MCLBYTES * MCLBYTES;
   1450 #endif
   1451 		if (!in_localaddr(inp->inp_faddr))
   1452 			mss = min(mss, tcp_mssdflt);
   1453 	}
   1454 	/*
   1455 	 * The current mss, t_maxseg, is initialized to the default value.
   1456 	 * If we compute a smaller value, reduce the current mss.
   1457 	 * If we compute a larger value, return it for use in sending
   1458 	 * a max seg size option, but don't store it for use
   1459 	 * unless we received an offer at least that large from peer.
   1460 	 * However, do not accept offers under 32 bytes.
   1461 	 */
   1462 	if (offer)
   1463 		mss = min(mss, offer);
   1464 	mss = max(mss, 32);		/* sanity */
   1465 	if (mss < tp->t_maxseg || offer != 0) {
   1466 		/*
   1467 		 * If there's a pipesize, change the socket buffer
   1468 		 * to that size.  Make the socket buffers an integral
   1469 		 * number of mss units; if the mss is larger than
   1470 		 * the socket buffer, decrease the mss.
   1471 		 */
   1472 #ifdef RTV_SPIPE
   1473 		if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
   1474 #endif
   1475 			bufsize = so->so_snd.sb_hiwat;
   1476 		if (bufsize < mss)
   1477 			mss = bufsize;
   1478 		else {
   1479 			bufsize = min(bufsize, SB_MAX) / mss * mss;
   1480 			(void) sbreserve(&so->so_snd, bufsize);
   1481 		}
   1482 		tp->t_maxseg = mss;
   1483 
   1484 #ifdef RTV_RPIPE
   1485 		if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
   1486 #endif
   1487 			bufsize = so->so_rcv.sb_hiwat;
   1488 		if (bufsize > mss) {
   1489 			bufsize = min(bufsize, SB_MAX) / mss * mss;
   1490 			(void) sbreserve(&so->so_rcv, bufsize);
   1491 		}
   1492 	}
   1493 	tp->snd_cwnd = mss;
   1494 
   1495 #ifdef RTV_SSTHRESH
   1496 	if (rt->rt_rmx.rmx_ssthresh) {
   1497 		/*
   1498 		 * There's some sort of gateway or interface
   1499 		 * buffer limit on the path.  Use this to set
   1500 		 * the slow start threshhold, but set the
   1501 		 * threshold to no less than 2*mss.
   1502 		 */
   1503 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1504 	}
   1505 #endif /* RTV_MTU */
   1506 	return (mss);
   1507 }
   1508