tcp_input.c revision 1.54 1 /* $NetBSD: tcp_input.c,v 1.54 1998/04/29 20:43:29 matt Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
9 * Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by the University of
55 * California, Berkeley and its contributors.
56 * 4. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
73 */
74
75 /*
76 * TODO list for SYN cache stuff:
77 *
78 * Find room for a "state" field, which is needed to keep a
79 * compressed state for TIME_WAIT TCBs. It's been noted already
80 * that this is fairly important for very high-volume web and
81 * mail servers, which use a large number of short-lived
82 * connections.
83 */
84
85 #ifndef TUBA_INCLUDE
86 #include <sys/param.h>
87 #include <sys/systm.h>
88 #include <sys/malloc.h>
89 #include <sys/mbuf.h>
90 #include <sys/protosw.h>
91 #include <sys/socket.h>
92 #include <sys/socketvar.h>
93 #include <sys/errno.h>
94 #include <sys/syslog.h>
95
96 #include <net/if.h>
97 #include <net/route.h>
98
99 #include <netinet/in.h>
100 #include <netinet/in_systm.h>
101 #include <netinet/ip.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet/ip_var.h>
104 #include <netinet/tcp.h>
105 #include <netinet/tcp_fsm.h>
106 #include <netinet/tcp_seq.h>
107 #include <netinet/tcp_timer.h>
108 #include <netinet/tcp_var.h>
109 #include <netinet/tcpip.h>
110 #include <netinet/tcp_debug.h>
111
112 #include <machine/stdarg.h>
113
114 int tcprexmtthresh = 3;
115 struct tcpiphdr tcp_saveti;
116
117 extern u_long sb_max;
118
119 #endif /* TUBA_INCLUDE */
120 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
121
122 /* for modulo comparisons of timestamps */
123 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
124 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
125
126 /*
127 * Macro to compute ACK transmission behavior. Delay the ACK unless
128 * we have already delayed an ACK (must send an ACK every two segments).
129 */
130 #define TCP_SETUP_ACK(tp, ti) \
131 do { \
132 if ((tp)->t_flags & TF_DELACK) \
133 tp->t_flags |= TF_ACKNOW; \
134 else \
135 TCP_SET_DELACK(tp); \
136 } while (0)
137
138 /*
139 * Insert segment ti into reassembly queue of tcp with
140 * control block tp. Return TH_FIN if reassembly now includes
141 * a segment with FIN. The macro form does the common case inline
142 * (segment is the next to be received on an established connection,
143 * and the queue is empty), avoiding linkage into and removal
144 * from the queue and repetition of various conversions.
145 * Set DELACK for segments received in order, but ack immediately
146 * when segments are out of order (so fast retransmit can work).
147 */
148 #define TCP_REASS(tp, ti, m, so, flags) { \
149 if ((ti)->ti_seq == (tp)->rcv_nxt && \
150 (tp)->segq.lh_first == NULL && \
151 (tp)->t_state == TCPS_ESTABLISHED) { \
152 TCP_SETUP_ACK(tp, ti); \
153 (tp)->rcv_nxt += (ti)->ti_len; \
154 flags = (ti)->ti_flags & TH_FIN; \
155 tcpstat.tcps_rcvpack++;\
156 tcpstat.tcps_rcvbyte += (ti)->ti_len;\
157 sbappend(&(so)->so_rcv, (m)); \
158 sorwakeup(so); \
159 } else { \
160 (flags) = tcp_reass((tp), (ti), (m)); \
161 tp->t_flags |= TF_ACKNOW; \
162 } \
163 }
164 #ifndef TUBA_INCLUDE
165
166 int
167 tcp_reass(tp, ti, m)
168 register struct tcpcb *tp;
169 register struct tcpiphdr *ti;
170 struct mbuf *m;
171 {
172 register struct ipqent *p, *q, *nq, *tiqe = NULL;
173 struct socket *so = tp->t_inpcb->inp_socket;
174 int pkt_flags;
175 tcp_seq pkt_seq;
176 unsigned pkt_len;
177 u_long rcvpartdupbyte = 0;
178 u_long rcvoobyte;
179
180 /*
181 * Call with ti==0 after become established to
182 * force pre-ESTABLISHED data up to user socket.
183 */
184 if (ti == 0)
185 goto present;
186
187 rcvoobyte = ti->ti_len;
188 /*
189 * Copy these to local variables because the tcpiphdr
190 * gets munged while we are collapsing mbufs.
191 */
192 pkt_seq = ti->ti_seq;
193 pkt_len = ti->ti_len;
194 pkt_flags = ti->ti_flags;
195 /*
196 * Find a segment which begins after this one does.
197 */
198 for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
199 nq = q->ipqe_q.le_next;
200 /*
201 * If the received segment is just right after this
202 * fragment, merge the two together and then check
203 * for further overlaps.
204 */
205 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
206 #ifdef TCPREASS_DEBUG
207 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
208 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
209 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
210 #endif
211 pkt_len += q->ipqe_len;
212 pkt_flags |= q->ipqe_flags;
213 pkt_seq = q->ipqe_seq;
214 m_cat(q->ipqe_m, m);
215 m = q->ipqe_m;
216 goto free_ipqe;
217 }
218 /*
219 * If the received segment is completely past this
220 * fragment, we need to go the next fragment.
221 */
222 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
223 p = q;
224 continue;
225 }
226 /*
227 * If the fragment is past the received segment,
228 * it (or any following) can't be concatenated.
229 */
230 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
231 break;
232 /*
233 * We've received all the data in this segment before.
234 * mark it as a duplicate and return.
235 */
236 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
237 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
238 tcpstat.tcps_rcvduppack++;
239 tcpstat.tcps_rcvdupbyte += pkt_len;
240 m_freem(m);
241 if (tiqe != NULL)
242 FREE(tiqe, M_IPQ);
243 return (0);
244 }
245 /*
246 * Received segment completely overlaps this fragment
247 * so we drop the fragment (this keeps the temporal
248 * ordering of segments correct).
249 */
250 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
251 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
252 rcvpartdupbyte += q->ipqe_len;
253 m_freem(q->ipqe_m);
254 goto free_ipqe;
255 }
256 /*
257 * RX'ed segment extends past the end of the
258 * fragment. Drop the overlapping bytes. Then
259 * merge the fragment and segment then treat as
260 * a longer received packet.
261 */
262 if (SEQ_LT(q->ipqe_seq, pkt_seq)
263 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
264 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
265 #ifdef TCPREASS_DEBUG
266 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
267 tp, overlap,
268 pkt_seq, pkt_seq + pkt_len, pkt_len);
269 #endif
270 m_adj(m, overlap);
271 rcvpartdupbyte += overlap;
272 m_cat(q->ipqe_m, m);
273 m = q->ipqe_m;
274 pkt_seq = q->ipqe_seq;
275 pkt_len += q->ipqe_len - overlap;
276 rcvoobyte -= overlap;
277 goto free_ipqe;
278 }
279 /*
280 * RX'ed segment extends past the front of the
281 * fragment. Drop the overlapping bytes on the
282 * received packet. The packet will then be
283 * contatentated with this fragment a bit later.
284 */
285 if (SEQ_GT(q->ipqe_seq, pkt_seq)
286 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
287 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
288 #ifdef TCPREASS_DEBUG
289 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
290 tp, overlap,
291 pkt_seq, pkt_seq + pkt_len, pkt_len);
292 #endif
293 m_adj(m, -overlap);
294 pkt_len -= overlap;
295 rcvpartdupbyte += overlap;
296 rcvoobyte -= overlap;
297 }
298 /*
299 * If the received segment immediates precedes this
300 * fragment then tack the fragment onto this segment
301 * and reinsert the data.
302 */
303 if (q->ipqe_seq == pkt_seq + pkt_len) {
304 #ifdef TCPREASS_DEBUG
305 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
306 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
307 pkt_seq, pkt_seq + pkt_len, pkt_len);
308 #endif
309 pkt_len += q->ipqe_len;
310 pkt_flags |= q->ipqe_flags;
311 m_cat(m, q->ipqe_m);
312 LIST_REMOVE(q, ipqe_q);
313 LIST_REMOVE(q, ipqe_timeq);
314 if (tiqe == NULL) {
315 tiqe = q;
316 } else {
317 FREE(q, M_IPQ);
318 }
319 break;
320 }
321 /*
322 * If the fragment is before the segment, remember it.
323 * When this loop is terminated, p will contain the
324 * pointer to fragment that is right before the received
325 * segment.
326 */
327 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
328 p = q;
329
330 continue;
331
332 /*
333 * This is a common operation. It also will allow
334 * to save doing a malloc/free in most instances.
335 */
336 free_ipqe:
337 LIST_REMOVE(q, ipqe_q);
338 LIST_REMOVE(q, ipqe_timeq);
339 if (tiqe == NULL) {
340 tiqe = q;
341 } else {
342 FREE(q, M_IPQ);
343 }
344 }
345
346 /*
347 * Allocate a new queue entry since the received segment did not
348 * collapse onto any other out-of-order block; thus we are allocating
349 * a new block. If it had collapsed, tiqe would not be NULL and
350 * we would be reusing it.
351 * XXX If we can't, just drop the packet. XXX
352 */
353 if (tiqe == NULL) {
354 MALLOC(tiqe, struct ipqent *, sizeof (struct ipqent), M_IPQ, M_NOWAIT);
355 if (tiqe == NULL) {
356 tcpstat.tcps_rcvmemdrop++;
357 m_freem(m);
358 return (0);
359 }
360 }
361
362 /*
363 * Update the counters.
364 */
365 tcpstat.tcps_rcvoopack++;
366 tcpstat.tcps_rcvoobyte += rcvoobyte;
367 if (rcvpartdupbyte) {
368 tcpstat.tcps_rcvpartduppack++;
369 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
370 }
371
372 /*
373 * Insert the new fragment queue entry into both queues.
374 */
375 tiqe->ipqe_m = m;
376 tiqe->ipqe_seq = pkt_seq;
377 tiqe->ipqe_len = pkt_len;
378 tiqe->ipqe_flags = pkt_flags;
379 if (p == NULL) {
380 LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
381 #ifdef TCPREASS_DEBUG
382 if (tiqe->ipqe_seq != tp->rcv_nxt)
383 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
384 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
385 #endif
386 } else {
387 LIST_INSERT_AFTER(p, tiqe, ipqe_q);
388 #ifdef TCPREASS_DEBUG
389 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
390 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
391 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
392 #endif
393 }
394
395 LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
396
397 present:
398 /*
399 * Present data to user, advancing rcv_nxt through
400 * completed sequence space.
401 */
402 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
403 return (0);
404 q = tp->segq.lh_first;
405 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
406 return (0);
407 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
408 return (0);
409
410 tp->rcv_nxt += q->ipqe_len;
411 pkt_flags = q->ipqe_flags & TH_FIN;
412
413 LIST_REMOVE(q, ipqe_q);
414 LIST_REMOVE(q, ipqe_timeq);
415 if (so->so_state & SS_CANTRCVMORE)
416 m_freem(q->ipqe_m);
417 else
418 sbappend(&so->so_rcv, q->ipqe_m);
419 FREE(q, M_IPQ);
420 sorwakeup(so);
421 return (pkt_flags);
422 }
423
424 /*
425 * TCP input routine, follows pages 65-76 of the
426 * protocol specification dated September, 1981 very closely.
427 */
428 void
429 #if __STDC__
430 tcp_input(struct mbuf *m, ...)
431 #else
432 tcp_input(m, va_alist)
433 register struct mbuf *m;
434 #endif
435 {
436 register struct tcpiphdr *ti;
437 register struct inpcb *inp;
438 caddr_t optp = NULL;
439 int optlen = 0;
440 int len, tlen, off, hdroptlen;
441 register struct tcpcb *tp = 0;
442 register int tiflags;
443 struct socket *so = NULL;
444 int todrop, acked, ourfinisacked, needoutput = 0;
445 short ostate = 0;
446 int iss = 0;
447 u_long tiwin;
448 struct tcp_opt_info opti;
449 int iphlen;
450 va_list ap;
451
452 va_start(ap, m);
453 iphlen = va_arg(ap, int);
454 va_end(ap);
455
456 tcpstat.tcps_rcvtotal++;
457
458 opti.ts_present = 0;
459 opti.maxseg = 0;
460
461 /*
462 * Get IP and TCP header together in first mbuf.
463 * Note: IP leaves IP header in first mbuf.
464 */
465 ti = mtod(m, struct tcpiphdr *);
466 if (iphlen > sizeof (struct ip))
467 ip_stripoptions(m, (struct mbuf *)0);
468 if (m->m_len < sizeof (struct tcpiphdr)) {
469 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
470 tcpstat.tcps_rcvshort++;
471 return;
472 }
473 ti = mtod(m, struct tcpiphdr *);
474 }
475
476 /*
477 * Checksum extended TCP header and data.
478 */
479 tlen = ((struct ip *)ti)->ip_len;
480 len = sizeof (struct ip) + tlen;
481 bzero(ti->ti_x1, sizeof ti->ti_x1);
482 ti->ti_len = (u_int16_t)tlen;
483 HTONS(ti->ti_len);
484 if ((ti->ti_sum = in_cksum(m, len)) != 0) {
485 tcpstat.tcps_rcvbadsum++;
486 goto drop;
487 }
488 #endif /* TUBA_INCLUDE */
489
490 /*
491 * Check that TCP offset makes sense,
492 * pull out TCP options and adjust length. XXX
493 */
494 off = ti->ti_off << 2;
495 if (off < sizeof (struct tcphdr) || off > tlen) {
496 tcpstat.tcps_rcvbadoff++;
497 goto drop;
498 }
499 tlen -= off;
500 ti->ti_len = tlen;
501 if (off > sizeof (struct tcphdr)) {
502 if (m->m_len < sizeof(struct ip) + off) {
503 if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
504 tcpstat.tcps_rcvshort++;
505 return;
506 }
507 ti = mtod(m, struct tcpiphdr *);
508 }
509 optlen = off - sizeof (struct tcphdr);
510 optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
511 /*
512 * Do quick retrieval of timestamp options ("options
513 * prediction?"). If timestamp is the only option and it's
514 * formatted as recommended in RFC 1323 appendix A, we
515 * quickly get the values now and not bother calling
516 * tcp_dooptions(), etc.
517 */
518 if ((optlen == TCPOLEN_TSTAMP_APPA ||
519 (optlen > TCPOLEN_TSTAMP_APPA &&
520 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
521 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
522 (ti->ti_flags & TH_SYN) == 0) {
523 opti.ts_present = 1;
524 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
525 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
526 optp = NULL; /* we've parsed the options */
527 }
528 }
529 tiflags = ti->ti_flags;
530
531 /*
532 * Convert TCP protocol specific fields to host format.
533 */
534 NTOHL(ti->ti_seq);
535 NTOHL(ti->ti_ack);
536 NTOHS(ti->ti_win);
537 NTOHS(ti->ti_urp);
538
539 /*
540 * Locate pcb for segment.
541 */
542 findpcb:
543 inp = in_pcblookup_connect(&tcbtable, ti->ti_src, ti->ti_sport,
544 ti->ti_dst, ti->ti_dport);
545 if (inp == 0) {
546 ++tcpstat.tcps_pcbhashmiss;
547 inp = in_pcblookup_bind(&tcbtable, ti->ti_dst, ti->ti_dport);
548 if (inp == 0) {
549 ++tcpstat.tcps_noport;
550 goto dropwithreset;
551 }
552 }
553
554 /*
555 * If the state is CLOSED (i.e., TCB does not exist) then
556 * all data in the incoming segment is discarded.
557 * If the TCB exists but is in CLOSED state, it is embryonic,
558 * but should either do a listen or a connect soon.
559 */
560 tp = intotcpcb(inp);
561 if (tp == 0)
562 goto dropwithreset;
563 if (tp->t_state == TCPS_CLOSED)
564 goto drop;
565
566 /* Unscale the window into a 32-bit value. */
567 if ((tiflags & TH_SYN) == 0)
568 tiwin = ti->ti_win << tp->snd_scale;
569 else
570 tiwin = ti->ti_win;
571
572 so = inp->inp_socket;
573 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
574 if (so->so_options & SO_DEBUG) {
575 ostate = tp->t_state;
576 tcp_saveti = *ti;
577 }
578 if (so->so_options & SO_ACCEPTCONN) {
579 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
580 if (tiflags & TH_RST) {
581 syn_cache_reset(ti);
582 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
583 (TH_ACK|TH_SYN)) {
584 /*
585 * Received a SYN,ACK. This should
586 * never happen while we are in
587 * LISTEN. Send an RST.
588 */
589 goto badsyn;
590 } else if (tiflags & TH_ACK) {
591 so = syn_cache_get(so, m);
592 if (so == NULL) {
593 /*
594 * We don't have a SYN for
595 * this ACK; send an RST.
596 */
597 goto badsyn;
598 } else if (so ==
599 (struct socket *)(-1)) {
600 /*
601 * We were unable to create
602 * the connection. If the
603 * 3-way handshake was
604 * completeed, and RST has
605 * been sent to the peer.
606 * Since the mbuf might be
607 * in use for the reply,
608 * do not free it.
609 */
610 m = NULL;
611 } else {
612 /*
613 * We have created a
614 * full-blown connection.
615 */
616 inp = sotoinpcb(so);
617 tp = intotcpcb(inp);
618 tiwin <<= tp->snd_scale;
619 goto after_listen;
620 }
621 }
622 } else {
623 /*
624 * Received a SYN.
625 */
626 if (in_hosteq(ti->ti_src, ti->ti_dst) &&
627 ti->ti_sport == ti->ti_dport) {
628 /*
629 * LISTEN socket received a SYN
630 * from itself? This can't possibly
631 * be valid; drop the packet.
632 */
633 tcpstat.tcps_badsyn++;
634 goto drop;
635 }
636 /*
637 * SYN looks ok; create compressed TCP
638 * state for it.
639 */
640 if (so->so_qlen <= so->so_qlimit &&
641 syn_cache_add(so, m, optp, optlen, &opti))
642 m = NULL;
643 }
644 goto drop;
645 }
646 }
647
648 after_listen:
649 #ifdef DIAGNOSTIC
650 /*
651 * Should not happen now that all embryonic connections
652 * are handled with compressed state.
653 */
654 if (tp->t_state == TCPS_LISTEN)
655 panic("tcp_input: TCPS_LISTEN");
656 #endif
657
658 /*
659 * Segment received on connection.
660 * Reset idle time and keep-alive timer.
661 */
662 tp->t_idle = 0;
663 if (TCPS_HAVEESTABLISHED(tp->t_state))
664 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
665
666 /*
667 * Process options.
668 */
669 if (optp)
670 tcp_dooptions(tp, optp, optlen, ti, &opti);
671
672 /*
673 * Header prediction: check for the two common cases
674 * of a uni-directional data xfer. If the packet has
675 * no control flags, is in-sequence, the window didn't
676 * change and we're not retransmitting, it's a
677 * candidate. If the length is zero and the ack moved
678 * forward, we're the sender side of the xfer. Just
679 * free the data acked & wake any higher level process
680 * that was blocked waiting for space. If the length
681 * is non-zero and the ack didn't move, we're the
682 * receiver side. If we're getting packets in-order
683 * (the reassembly queue is empty), add the data to
684 * the socket buffer and note that we need a delayed ack.
685 */
686 if (tp->t_state == TCPS_ESTABLISHED &&
687 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
688 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
689 ti->ti_seq == tp->rcv_nxt &&
690 tiwin && tiwin == tp->snd_wnd &&
691 tp->snd_nxt == tp->snd_max) {
692
693 /*
694 * If last ACK falls within this segment's sequence numbers,
695 * record the timestamp.
696 */
697 if (opti.ts_present &&
698 SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
699 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
700 tp->ts_recent_age = tcp_now;
701 tp->ts_recent = opti.ts_val;
702 }
703
704 if (ti->ti_len == 0) {
705 if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
706 SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
707 tp->snd_cwnd >= tp->snd_wnd &&
708 tp->t_dupacks < tcprexmtthresh) {
709 /*
710 * this is a pure ack for outstanding data.
711 */
712 ++tcpstat.tcps_predack;
713 if (opti.ts_present)
714 tcp_xmit_timer(tp,
715 tcp_now-opti.ts_ecr+1);
716 else if (tp->t_rtt &&
717 SEQ_GT(ti->ti_ack, tp->t_rtseq))
718 tcp_xmit_timer(tp, tp->t_rtt);
719 acked = ti->ti_ack - tp->snd_una;
720 tcpstat.tcps_rcvackpack++;
721 tcpstat.tcps_rcvackbyte += acked;
722 sbdrop(&so->so_snd, acked);
723 tp->snd_una = ti->ti_ack;
724 m_freem(m);
725
726 /*
727 * If all outstanding data are acked, stop
728 * retransmit timer, otherwise restart timer
729 * using current (possibly backed-off) value.
730 * If process is waiting for space,
731 * wakeup/selwakeup/signal. If data
732 * are ready to send, let tcp_output
733 * decide between more output or persist.
734 */
735 if (tp->snd_una == tp->snd_max)
736 tp->t_timer[TCPT_REXMT] = 0;
737 else if (tp->t_timer[TCPT_PERSIST] == 0)
738 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
739
740 sowwakeup(so);
741 if (so->so_snd.sb_cc)
742 (void) tcp_output(tp);
743 return;
744 }
745 } else if (ti->ti_ack == tp->snd_una &&
746 tp->segq.lh_first == NULL &&
747 ti->ti_len <= sbspace(&so->so_rcv)) {
748 /*
749 * this is a pure, in-sequence data packet
750 * with nothing on the reassembly queue and
751 * we have enough buffer space to take it.
752 */
753 ++tcpstat.tcps_preddat;
754 tp->rcv_nxt += ti->ti_len;
755 tcpstat.tcps_rcvpack++;
756 tcpstat.tcps_rcvbyte += ti->ti_len;
757 /*
758 * Drop TCP, IP headers and TCP options then add data
759 * to socket buffer.
760 */
761 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
762 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
763 sbappend(&so->so_rcv, m);
764 sorwakeup(so);
765 TCP_SETUP_ACK(tp, ti);
766 if (tp->t_flags & TF_ACKNOW)
767 (void) tcp_output(tp);
768 return;
769 }
770 }
771
772 /*
773 * Drop TCP, IP headers and TCP options.
774 */
775 hdroptlen = sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr);
776 m->m_data += hdroptlen;
777 m->m_len -= hdroptlen;
778
779 /*
780 * Calculate amount of space in receive window,
781 * and then do TCP input processing.
782 * Receive window is amount of space in rcv queue,
783 * but not less than advertised window.
784 */
785 { int win;
786
787 win = sbspace(&so->so_rcv);
788 if (win < 0)
789 win = 0;
790 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
791 }
792
793 switch (tp->t_state) {
794
795 /*
796 * If the state is SYN_SENT:
797 * if seg contains an ACK, but not for our SYN, drop the input.
798 * if seg contains a RST, then drop the connection.
799 * if seg does not contain SYN, then drop it.
800 * Otherwise this is an acceptable SYN segment
801 * initialize tp->rcv_nxt and tp->irs
802 * if seg contains ack then advance tp->snd_una
803 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
804 * arrange for segment to be acked (eventually)
805 * continue processing rest of data/controls, beginning with URG
806 */
807 case TCPS_SYN_SENT:
808 if ((tiflags & TH_ACK) &&
809 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
810 SEQ_GT(ti->ti_ack, tp->snd_max)))
811 goto dropwithreset;
812 if (tiflags & TH_RST) {
813 if (tiflags & TH_ACK)
814 tp = tcp_drop(tp, ECONNREFUSED);
815 goto drop;
816 }
817 if ((tiflags & TH_SYN) == 0)
818 goto drop;
819 if (tiflags & TH_ACK) {
820 tp->snd_una = ti->ti_ack;
821 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
822 tp->snd_nxt = tp->snd_una;
823 }
824 tp->t_timer[TCPT_REXMT] = 0;
825 tp->irs = ti->ti_seq;
826 tcp_rcvseqinit(tp);
827 tp->t_flags |= TF_ACKNOW;
828 tcp_mss_from_peer(tp, opti.maxseg);
829
830 /*
831 * Initialize the initial congestion window. If we
832 * had to retransmit the SYN, we must initialize cwnd
833 * to 1 segment.
834 */
835 tp->snd_cwnd =
836 TCP_INITIAL_WINDOW((tp->t_flags & TF_SYN_REXMT) ? 1 :
837 tcp_init_win, tp->t_peermss);
838
839 tcp_rmx_rtt(tp);
840 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
841 tcpstat.tcps_connects++;
842 soisconnected(so);
843 tcp_established(tp);
844 /* Do window scaling on this connection? */
845 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
846 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
847 tp->snd_scale = tp->requested_s_scale;
848 tp->rcv_scale = tp->request_r_scale;
849 }
850 (void) tcp_reass(tp, (struct tcpiphdr *)0,
851 (struct mbuf *)0);
852 /*
853 * if we didn't have to retransmit the SYN,
854 * use its rtt as our initial srtt & rtt var.
855 */
856 if (tp->t_rtt)
857 tcp_xmit_timer(tp, tp->t_rtt);
858 } else
859 tp->t_state = TCPS_SYN_RECEIVED;
860
861 /*
862 * Advance ti->ti_seq to correspond to first data byte.
863 * If data, trim to stay within window,
864 * dropping FIN if necessary.
865 */
866 ti->ti_seq++;
867 if (ti->ti_len > tp->rcv_wnd) {
868 todrop = ti->ti_len - tp->rcv_wnd;
869 m_adj(m, -todrop);
870 ti->ti_len = tp->rcv_wnd;
871 tiflags &= ~TH_FIN;
872 tcpstat.tcps_rcvpackafterwin++;
873 tcpstat.tcps_rcvbyteafterwin += todrop;
874 }
875 tp->snd_wl1 = ti->ti_seq - 1;
876 tp->rcv_up = ti->ti_seq;
877 goto step6;
878
879 /*
880 * If the state is SYN_RECEIVED:
881 * If seg contains an ACK, but not for our SYN, drop the input
882 * and generate an RST. See page 36, rfc793
883 */
884 case TCPS_SYN_RECEIVED:
885 if ((tiflags & TH_ACK) &&
886 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
887 SEQ_GT(ti->ti_ack, tp->snd_max)))
888 goto dropwithreset;
889 break;
890 }
891
892 /*
893 * States other than LISTEN or SYN_SENT.
894 * First check timestamp, if present.
895 * Then check that at least some bytes of segment are within
896 * receive window. If segment begins before rcv_nxt,
897 * drop leading data (and SYN); if nothing left, just ack.
898 *
899 * RFC 1323 PAWS: If we have a timestamp reply on this segment
900 * and it's less than ts_recent, drop it.
901 */
902 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
903 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
904
905 /* Check to see if ts_recent is over 24 days old. */
906 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
907 /*
908 * Invalidate ts_recent. If this segment updates
909 * ts_recent, the age will be reset later and ts_recent
910 * will get a valid value. If it does not, setting
911 * ts_recent to zero will at least satisfy the
912 * requirement that zero be placed in the timestamp
913 * echo reply when ts_recent isn't valid. The
914 * age isn't reset until we get a valid ts_recent
915 * because we don't want out-of-order segments to be
916 * dropped when ts_recent is old.
917 */
918 tp->ts_recent = 0;
919 } else {
920 tcpstat.tcps_rcvduppack++;
921 tcpstat.tcps_rcvdupbyte += ti->ti_len;
922 tcpstat.tcps_pawsdrop++;
923 goto dropafterack;
924 }
925 }
926
927 todrop = tp->rcv_nxt - ti->ti_seq;
928 if (todrop > 0) {
929 if (tiflags & TH_SYN) {
930 tiflags &= ~TH_SYN;
931 ti->ti_seq++;
932 if (ti->ti_urp > 1)
933 ti->ti_urp--;
934 else {
935 tiflags &= ~TH_URG;
936 ti->ti_urp = 0;
937 }
938 todrop--;
939 }
940 if (todrop > ti->ti_len ||
941 (todrop == ti->ti_len && (tiflags & TH_FIN) == 0)) {
942 /*
943 * Any valid FIN must be to the left of the window.
944 * At this point the FIN must be a duplicate or
945 * out of sequence; drop it.
946 */
947 tiflags &= ~TH_FIN;
948 /*
949 * Send an ACK to resynchronize and drop any data.
950 * But keep on processing for RST or ACK.
951 */
952 tp->t_flags |= TF_ACKNOW;
953 todrop = ti->ti_len;
954 tcpstat.tcps_rcvdupbyte += todrop;
955 tcpstat.tcps_rcvduppack++;
956 } else {
957 tcpstat.tcps_rcvpartduppack++;
958 tcpstat.tcps_rcvpartdupbyte += todrop;
959 }
960 m_adj(m, todrop);
961 ti->ti_seq += todrop;
962 ti->ti_len -= todrop;
963 if (ti->ti_urp > todrop)
964 ti->ti_urp -= todrop;
965 else {
966 tiflags &= ~TH_URG;
967 ti->ti_urp = 0;
968 }
969 }
970
971 /*
972 * If new data are received on a connection after the
973 * user processes are gone, then RST the other end.
974 */
975 if ((so->so_state & SS_NOFDREF) &&
976 tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
977 tp = tcp_close(tp);
978 tcpstat.tcps_rcvafterclose++;
979 goto dropwithreset;
980 }
981
982 /*
983 * If segment ends after window, drop trailing data
984 * (and PUSH and FIN); if nothing left, just ACK.
985 */
986 todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
987 if (todrop > 0) {
988 tcpstat.tcps_rcvpackafterwin++;
989 if (todrop >= ti->ti_len) {
990 tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
991 /*
992 * If a new connection request is received
993 * while in TIME_WAIT, drop the old connection
994 * and start over if the sequence numbers
995 * are above the previous ones.
996 */
997 if (tiflags & TH_SYN &&
998 tp->t_state == TCPS_TIME_WAIT &&
999 SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
1000 iss = tcp_new_iss(tp, sizeof(struct tcpcb),
1001 tp->rcv_nxt);
1002 tp = tcp_close(tp);
1003 /*
1004 * We have already advanced the mbuf
1005 * pointers past the IP+TCP headers and
1006 * options. Restore those pointers before
1007 * attempting to use the TCP header again.
1008 */
1009 m->m_data -= hdroptlen;
1010 m->m_len += hdroptlen;
1011 goto findpcb;
1012 }
1013 /*
1014 * If window is closed can only take segments at
1015 * window edge, and have to drop data and PUSH from
1016 * incoming segments. Continue processing, but
1017 * remember to ack. Otherwise, drop segment
1018 * and ack.
1019 */
1020 if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
1021 tp->t_flags |= TF_ACKNOW;
1022 tcpstat.tcps_rcvwinprobe++;
1023 } else
1024 goto dropafterack;
1025 } else
1026 tcpstat.tcps_rcvbyteafterwin += todrop;
1027 m_adj(m, -todrop);
1028 ti->ti_len -= todrop;
1029 tiflags &= ~(TH_PUSH|TH_FIN);
1030 }
1031
1032 /*
1033 * If last ACK falls within this segment's sequence numbers,
1034 * and the timestamp is newer, record it.
1035 */
1036 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1037 SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
1038 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
1039 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1040 tp->ts_recent_age = tcp_now;
1041 tp->ts_recent = opti.ts_val;
1042 }
1043
1044 /*
1045 * If the RST bit is set examine the state:
1046 * SYN_RECEIVED STATE:
1047 * If passive open, return to LISTEN state.
1048 * If active open, inform user that connection was refused.
1049 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1050 * Inform user that connection was reset, and close tcb.
1051 * CLOSING, LAST_ACK, TIME_WAIT STATES
1052 * Close the tcb.
1053 */
1054 if (tiflags&TH_RST) switch (tp->t_state) {
1055
1056 case TCPS_SYN_RECEIVED:
1057 so->so_error = ECONNREFUSED;
1058 goto close;
1059
1060 case TCPS_ESTABLISHED:
1061 case TCPS_FIN_WAIT_1:
1062 case TCPS_FIN_WAIT_2:
1063 case TCPS_CLOSE_WAIT:
1064 so->so_error = ECONNRESET;
1065 close:
1066 tp->t_state = TCPS_CLOSED;
1067 tcpstat.tcps_drops++;
1068 tp = tcp_close(tp);
1069 goto drop;
1070
1071 case TCPS_CLOSING:
1072 case TCPS_LAST_ACK:
1073 case TCPS_TIME_WAIT:
1074 tp = tcp_close(tp);
1075 goto drop;
1076 }
1077
1078 /*
1079 * If a SYN is in the window, then this is an
1080 * error and we send an RST and drop the connection.
1081 */
1082 if (tiflags & TH_SYN) {
1083 tp = tcp_drop(tp, ECONNRESET);
1084 goto dropwithreset;
1085 }
1086
1087 /*
1088 * If the ACK bit is off we drop the segment and return.
1089 */
1090 if ((tiflags & TH_ACK) == 0)
1091 goto drop;
1092
1093 /*
1094 * Ack processing.
1095 */
1096 switch (tp->t_state) {
1097
1098 /*
1099 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1100 * ESTABLISHED state and continue processing, otherwise
1101 * send an RST.
1102 */
1103 case TCPS_SYN_RECEIVED:
1104 if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
1105 SEQ_GT(ti->ti_ack, tp->snd_max))
1106 goto dropwithreset;
1107 tcpstat.tcps_connects++;
1108 soisconnected(so);
1109 tcp_established(tp);
1110 /* Do window scaling? */
1111 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1112 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1113 tp->snd_scale = tp->requested_s_scale;
1114 tp->rcv_scale = tp->request_r_scale;
1115 }
1116 (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
1117 tp->snd_wl1 = ti->ti_seq - 1;
1118 /* fall into ... */
1119
1120 /*
1121 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1122 * ACKs. If the ack is in the range
1123 * tp->snd_una < ti->ti_ack <= tp->snd_max
1124 * then advance tp->snd_una to ti->ti_ack and drop
1125 * data from the retransmission queue. If this ACK reflects
1126 * more up to date window information we update our window information.
1127 */
1128 case TCPS_ESTABLISHED:
1129 case TCPS_FIN_WAIT_1:
1130 case TCPS_FIN_WAIT_2:
1131 case TCPS_CLOSE_WAIT:
1132 case TCPS_CLOSING:
1133 case TCPS_LAST_ACK:
1134 case TCPS_TIME_WAIT:
1135
1136 if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
1137 if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
1138 tcpstat.tcps_rcvdupack++;
1139 /*
1140 * If we have outstanding data (other than
1141 * a window probe), this is a completely
1142 * duplicate ack (ie, window info didn't
1143 * change), the ack is the biggest we've
1144 * seen and we've seen exactly our rexmt
1145 * threshhold of them, assume a packet
1146 * has been dropped and retransmit it.
1147 * Kludge snd_nxt & the congestion
1148 * window so we send only this one
1149 * packet.
1150 *
1151 * We know we're losing at the current
1152 * window size so do congestion avoidance
1153 * (set ssthresh to half the current window
1154 * and pull our congestion window back to
1155 * the new ssthresh).
1156 *
1157 * Dup acks mean that packets have left the
1158 * network (they're now cached at the receiver)
1159 * so bump cwnd by the amount in the receiver
1160 * to keep a constant cwnd packets in the
1161 * network.
1162 */
1163 if (tp->t_timer[TCPT_REXMT] == 0 ||
1164 ti->ti_ack != tp->snd_una)
1165 tp->t_dupacks = 0;
1166 else if (++tp->t_dupacks == tcprexmtthresh) {
1167 tcp_seq onxt = tp->snd_nxt;
1168 u_int win =
1169 min(tp->snd_wnd, tp->snd_cwnd) /
1170 2 / tp->t_segsz;
1171
1172 if (win < 2)
1173 win = 2;
1174 tp->snd_ssthresh = win * tp->t_segsz;
1175 tp->t_timer[TCPT_REXMT] = 0;
1176 tp->t_rtt = 0;
1177 tp->snd_nxt = ti->ti_ack;
1178 tp->snd_cwnd = tp->t_segsz;
1179 (void) tcp_output(tp);
1180 tp->snd_cwnd = tp->snd_ssthresh +
1181 tp->t_segsz * tp->t_dupacks;
1182 if (SEQ_GT(onxt, tp->snd_nxt))
1183 tp->snd_nxt = onxt;
1184 goto drop;
1185 } else if (tp->t_dupacks > tcprexmtthresh) {
1186 tp->snd_cwnd += tp->t_segsz;
1187 (void) tcp_output(tp);
1188 goto drop;
1189 }
1190 } else
1191 tp->t_dupacks = 0;
1192 break;
1193 }
1194 /*
1195 * If the congestion window was inflated to account
1196 * for the other side's cached packets, retract it.
1197 */
1198 if (tp->t_dupacks >= tcprexmtthresh &&
1199 tp->snd_cwnd > tp->snd_ssthresh)
1200 tp->snd_cwnd = tp->snd_ssthresh;
1201 tp->t_dupacks = 0;
1202 if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
1203 tcpstat.tcps_rcvacktoomuch++;
1204 goto dropafterack;
1205 }
1206 acked = ti->ti_ack - tp->snd_una;
1207 tcpstat.tcps_rcvackpack++;
1208 tcpstat.tcps_rcvackbyte += acked;
1209
1210 /*
1211 * If we have a timestamp reply, update smoothed
1212 * round trip time. If no timestamp is present but
1213 * transmit timer is running and timed sequence
1214 * number was acked, update smoothed round trip time.
1215 * Since we now have an rtt measurement, cancel the
1216 * timer backoff (cf., Phil Karn's retransmit alg.).
1217 * Recompute the initial retransmit timer.
1218 */
1219 if (opti.ts_present)
1220 tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
1221 else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
1222 tcp_xmit_timer(tp,tp->t_rtt);
1223
1224 /*
1225 * If all outstanding data is acked, stop retransmit
1226 * timer and remember to restart (more output or persist).
1227 * If there is more data to be acked, restart retransmit
1228 * timer, using current (possibly backed-off) value.
1229 */
1230 if (ti->ti_ack == tp->snd_max) {
1231 tp->t_timer[TCPT_REXMT] = 0;
1232 needoutput = 1;
1233 } else if (tp->t_timer[TCPT_PERSIST] == 0)
1234 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1235 /*
1236 * When new data is acked, open the congestion window.
1237 * If the window gives us less than ssthresh packets
1238 * in flight, open exponentially (segsz per packet).
1239 * Otherwise open linearly: segsz per window
1240 * (segsz^2 / cwnd per packet), plus a constant
1241 * fraction of a packet (segsz/8) to help larger windows
1242 * open quickly enough.
1243 */
1244 {
1245 register u_int cw = tp->snd_cwnd;
1246 register u_int incr = tp->t_segsz;
1247
1248 if (cw > tp->snd_ssthresh)
1249 incr = incr * incr / cw;
1250 tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1251 }
1252 if (acked > so->so_snd.sb_cc) {
1253 tp->snd_wnd -= so->so_snd.sb_cc;
1254 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1255 ourfinisacked = 1;
1256 } else {
1257 sbdrop(&so->so_snd, acked);
1258 tp->snd_wnd -= acked;
1259 ourfinisacked = 0;
1260 }
1261 sowwakeup(so);
1262 tp->snd_una = ti->ti_ack;
1263 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1264 tp->snd_nxt = tp->snd_una;
1265
1266 switch (tp->t_state) {
1267
1268 /*
1269 * In FIN_WAIT_1 STATE in addition to the processing
1270 * for the ESTABLISHED state if our FIN is now acknowledged
1271 * then enter FIN_WAIT_2.
1272 */
1273 case TCPS_FIN_WAIT_1:
1274 if (ourfinisacked) {
1275 /*
1276 * If we can't receive any more
1277 * data, then closing user can proceed.
1278 * Starting the timer is contrary to the
1279 * specification, but if we don't get a FIN
1280 * we'll hang forever.
1281 */
1282 if (so->so_state & SS_CANTRCVMORE) {
1283 soisdisconnected(so);
1284 tp->t_timer[TCPT_2MSL] = tcp_maxidle;
1285 }
1286 tp->t_state = TCPS_FIN_WAIT_2;
1287 }
1288 break;
1289
1290 /*
1291 * In CLOSING STATE in addition to the processing for
1292 * the ESTABLISHED state if the ACK acknowledges our FIN
1293 * then enter the TIME-WAIT state, otherwise ignore
1294 * the segment.
1295 */
1296 case TCPS_CLOSING:
1297 if (ourfinisacked) {
1298 tp->t_state = TCPS_TIME_WAIT;
1299 tcp_canceltimers(tp);
1300 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1301 soisdisconnected(so);
1302 }
1303 break;
1304
1305 /*
1306 * In LAST_ACK, we may still be waiting for data to drain
1307 * and/or to be acked, as well as for the ack of our FIN.
1308 * If our FIN is now acknowledged, delete the TCB,
1309 * enter the closed state and return.
1310 */
1311 case TCPS_LAST_ACK:
1312 if (ourfinisacked) {
1313 tp = tcp_close(tp);
1314 goto drop;
1315 }
1316 break;
1317
1318 /*
1319 * In TIME_WAIT state the only thing that should arrive
1320 * is a retransmission of the remote FIN. Acknowledge
1321 * it and restart the finack timer.
1322 */
1323 case TCPS_TIME_WAIT:
1324 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1325 goto dropafterack;
1326 }
1327 }
1328
1329 step6:
1330 /*
1331 * Update window information.
1332 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1333 */
1334 if (((tiflags & TH_ACK) && SEQ_LT(tp->snd_wl1, ti->ti_seq)) ||
1335 (tp->snd_wl1 == ti->ti_seq && SEQ_LT(tp->snd_wl2, ti->ti_ack)) ||
1336 (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)) {
1337 /* keep track of pure window updates */
1338 if (ti->ti_len == 0 &&
1339 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
1340 tcpstat.tcps_rcvwinupd++;
1341 tp->snd_wnd = tiwin;
1342 tp->snd_wl1 = ti->ti_seq;
1343 tp->snd_wl2 = ti->ti_ack;
1344 if (tp->snd_wnd > tp->max_sndwnd)
1345 tp->max_sndwnd = tp->snd_wnd;
1346 needoutput = 1;
1347 }
1348
1349 /*
1350 * Process segments with URG.
1351 */
1352 if ((tiflags & TH_URG) && ti->ti_urp &&
1353 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1354 /*
1355 * This is a kludge, but if we receive and accept
1356 * random urgent pointers, we'll crash in
1357 * soreceive. It's hard to imagine someone
1358 * actually wanting to send this much urgent data.
1359 */
1360 if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
1361 ti->ti_urp = 0; /* XXX */
1362 tiflags &= ~TH_URG; /* XXX */
1363 goto dodata; /* XXX */
1364 }
1365 /*
1366 * If this segment advances the known urgent pointer,
1367 * then mark the data stream. This should not happen
1368 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1369 * a FIN has been received from the remote side.
1370 * In these states we ignore the URG.
1371 *
1372 * According to RFC961 (Assigned Protocols),
1373 * the urgent pointer points to the last octet
1374 * of urgent data. We continue, however,
1375 * to consider it to indicate the first octet
1376 * of data past the urgent section as the original
1377 * spec states (in one of two places).
1378 */
1379 if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1380 tp->rcv_up = ti->ti_seq + ti->ti_urp;
1381 so->so_oobmark = so->so_rcv.sb_cc +
1382 (tp->rcv_up - tp->rcv_nxt) - 1;
1383 if (so->so_oobmark == 0)
1384 so->so_state |= SS_RCVATMARK;
1385 sohasoutofband(so);
1386 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1387 }
1388 /*
1389 * Remove out of band data so doesn't get presented to user.
1390 * This can happen independent of advancing the URG pointer,
1391 * but if two URG's are pending at once, some out-of-band
1392 * data may creep in... ick.
1393 */
1394 if (ti->ti_urp <= (u_int16_t) ti->ti_len
1395 #ifdef SO_OOBINLINE
1396 && (so->so_options & SO_OOBINLINE) == 0
1397 #endif
1398 )
1399 tcp_pulloutofband(so, ti, m);
1400 } else
1401 /*
1402 * If no out of band data is expected,
1403 * pull receive urgent pointer along
1404 * with the receive window.
1405 */
1406 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1407 tp->rcv_up = tp->rcv_nxt;
1408 dodata: /* XXX */
1409
1410 /*
1411 * Process the segment text, merging it into the TCP sequencing queue,
1412 * and arranging for acknowledgment of receipt if necessary.
1413 * This process logically involves adjusting tp->rcv_wnd as data
1414 * is presented to the user (this happens in tcp_usrreq.c,
1415 * case PRU_RCVD). If a FIN has already been received on this
1416 * connection then we just ignore the text.
1417 */
1418 if ((ti->ti_len || (tiflags & TH_FIN)) &&
1419 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1420 TCP_REASS(tp, ti, m, so, tiflags);
1421 /*
1422 * Note the amount of data that peer has sent into
1423 * our window, in order to estimate the sender's
1424 * buffer size.
1425 */
1426 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1427 } else {
1428 m_freem(m);
1429 tiflags &= ~TH_FIN;
1430 }
1431
1432 /*
1433 * If FIN is received ACK the FIN and let the user know
1434 * that the connection is closing. Ignore a FIN received before
1435 * the connection is fully established.
1436 */
1437 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
1438 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1439 socantrcvmore(so);
1440 tp->t_flags |= TF_ACKNOW;
1441 tp->rcv_nxt++;
1442 }
1443 switch (tp->t_state) {
1444
1445 /*
1446 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
1447 */
1448 case TCPS_ESTABLISHED:
1449 tp->t_state = TCPS_CLOSE_WAIT;
1450 break;
1451
1452 /*
1453 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1454 * enter the CLOSING state.
1455 */
1456 case TCPS_FIN_WAIT_1:
1457 tp->t_state = TCPS_CLOSING;
1458 break;
1459
1460 /*
1461 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1462 * starting the time-wait timer, turning off the other
1463 * standard timers.
1464 */
1465 case TCPS_FIN_WAIT_2:
1466 tp->t_state = TCPS_TIME_WAIT;
1467 tcp_canceltimers(tp);
1468 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1469 soisdisconnected(so);
1470 break;
1471
1472 /*
1473 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1474 */
1475 case TCPS_TIME_WAIT:
1476 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1477 break;
1478 }
1479 }
1480 if (so->so_options & SO_DEBUG)
1481 tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1482
1483 /*
1484 * Return any desired output.
1485 */
1486 if (needoutput || (tp->t_flags & TF_ACKNOW))
1487 (void) tcp_output(tp);
1488 return;
1489
1490 badsyn:
1491 /*
1492 * Received a bad SYN. Increment counters and dropwithreset.
1493 */
1494 tcpstat.tcps_badsyn++;
1495 tp = NULL;
1496 goto dropwithreset;
1497
1498 dropafterack:
1499 /*
1500 * Generate an ACK dropping incoming segment if it occupies
1501 * sequence space, where the ACK reflects our state.
1502 */
1503 if (tiflags & TH_RST)
1504 goto drop;
1505 m_freem(m);
1506 tp->t_flags |= TF_ACKNOW;
1507 (void) tcp_output(tp);
1508 return;
1509
1510 dropwithreset:
1511 /*
1512 * Generate a RST, dropping incoming segment.
1513 * Make ACK acceptable to originator of segment.
1514 * Don't bother to respond if destination was broadcast/multicast.
1515 */
1516 if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) ||
1517 IN_MULTICAST(ti->ti_dst.s_addr))
1518 goto drop;
1519 if (tiflags & TH_ACK)
1520 (void)tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1521 else {
1522 if (tiflags & TH_SYN)
1523 ti->ti_len++;
1524 (void)tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1525 TH_RST|TH_ACK);
1526 }
1527 return;
1528
1529 drop:
1530 /*
1531 * Drop space held by incoming segment and return.
1532 */
1533 if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1534 tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1535 m_freem(m);
1536 return;
1537 #ifndef TUBA_INCLUDE
1538 }
1539
1540 void
1541 tcp_dooptions(tp, cp, cnt, ti, oi)
1542 struct tcpcb *tp;
1543 u_char *cp;
1544 int cnt;
1545 struct tcpiphdr *ti;
1546 struct tcp_opt_info *oi;
1547 {
1548 u_int16_t mss;
1549 int opt, optlen;
1550
1551 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1552 opt = cp[0];
1553 if (opt == TCPOPT_EOL)
1554 break;
1555 if (opt == TCPOPT_NOP)
1556 optlen = 1;
1557 else {
1558 optlen = cp[1];
1559 if (optlen <= 0)
1560 break;
1561 }
1562 switch (opt) {
1563
1564 default:
1565 continue;
1566
1567 case TCPOPT_MAXSEG:
1568 if (optlen != TCPOLEN_MAXSEG)
1569 continue;
1570 if (!(ti->ti_flags & TH_SYN))
1571 continue;
1572 bcopy(cp + 2, &mss, sizeof(mss));
1573 oi->maxseg = ntohs(mss);
1574 break;
1575
1576 case TCPOPT_WINDOW:
1577 if (optlen != TCPOLEN_WINDOW)
1578 continue;
1579 if (!(ti->ti_flags & TH_SYN))
1580 continue;
1581 tp->t_flags |= TF_RCVD_SCALE;
1582 tp->requested_s_scale = cp[2];
1583 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
1584 log(LOG_ERR, "TCP: invalid wscale %d from "
1585 "0x%08x, assuming %d\n",
1586 tp->requested_s_scale,
1587 ntohl(ti->ti_src.s_addr),
1588 TCP_MAX_WINSHIFT);
1589 tp->requested_s_scale = TCP_MAX_WINSHIFT;
1590 }
1591 break;
1592
1593 case TCPOPT_TIMESTAMP:
1594 if (optlen != TCPOLEN_TIMESTAMP)
1595 continue;
1596 oi->ts_present = 1;
1597 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
1598 NTOHL(oi->ts_val);
1599 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
1600 NTOHL(oi->ts_ecr);
1601
1602 /*
1603 * A timestamp received in a SYN makes
1604 * it ok to send timestamp requests and replies.
1605 */
1606 if (ti->ti_flags & TH_SYN) {
1607 tp->t_flags |= TF_RCVD_TSTMP;
1608 tp->ts_recent = oi->ts_val;
1609 tp->ts_recent_age = tcp_now;
1610 }
1611 break;
1612 case TCPOPT_SACK_PERMITTED:
1613 if (optlen != TCPOLEN_SACK_PERMITTED)
1614 continue;
1615 if (!(ti->ti_flags & TH_SYN))
1616 continue;
1617 tp->t_flags &= ~TF_CANT_TXSACK;
1618 break;
1619
1620 case TCPOPT_SACK:
1621 if (tp->t_flags & TF_IGNR_RXSACK)
1622 continue;
1623 if (optlen % 8 != 2 || optlen < 10)
1624 continue;
1625 cp += 2;
1626 optlen -= 2;
1627 for (; optlen > 0; cp -= 8, optlen -= 8) {
1628 tcp_seq lwe, rwe;
1629 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
1630 NTOHL(lwe);
1631 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
1632 NTOHL(rwe);
1633 /* tcp_mark_sacked(tp, lwe, rwe); */
1634 }
1635 break;
1636 }
1637 }
1638 }
1639
1640 /*
1641 * Pull out of band byte out of a segment so
1642 * it doesn't appear in the user's data queue.
1643 * It is still reflected in the segment length for
1644 * sequencing purposes.
1645 */
1646 void
1647 tcp_pulloutofband(so, ti, m)
1648 struct socket *so;
1649 struct tcpiphdr *ti;
1650 register struct mbuf *m;
1651 {
1652 int cnt = ti->ti_urp - 1;
1653
1654 while (cnt >= 0) {
1655 if (m->m_len > cnt) {
1656 char *cp = mtod(m, caddr_t) + cnt;
1657 struct tcpcb *tp = sototcpcb(so);
1658
1659 tp->t_iobc = *cp;
1660 tp->t_oobflags |= TCPOOB_HAVEDATA;
1661 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1662 m->m_len--;
1663 return;
1664 }
1665 cnt -= m->m_len;
1666 m = m->m_next;
1667 if (m == 0)
1668 break;
1669 }
1670 panic("tcp_pulloutofband");
1671 }
1672
1673 /*
1674 * Collect new round-trip time estimate
1675 * and update averages and current timeout.
1676 */
1677 void
1678 tcp_xmit_timer(tp, rtt)
1679 register struct tcpcb *tp;
1680 short rtt;
1681 {
1682 register short delta;
1683 short rttmin;
1684
1685 tcpstat.tcps_rttupdated++;
1686 --rtt;
1687 if (tp->t_srtt != 0) {
1688 /*
1689 * srtt is stored as fixed point with 3 bits after the
1690 * binary point (i.e., scaled by 8). The following magic
1691 * is equivalent to the smoothing algorithm in rfc793 with
1692 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1693 * point). Adjust rtt to origin 0.
1694 */
1695 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
1696 if ((tp->t_srtt += delta) <= 0)
1697 tp->t_srtt = 1 << 2;
1698 /*
1699 * We accumulate a smoothed rtt variance (actually, a
1700 * smoothed mean difference), then set the retransmit
1701 * timer to smoothed rtt + 4 times the smoothed variance.
1702 * rttvar is stored as fixed point with 2 bits after the
1703 * binary point (scaled by 4). The following is
1704 * equivalent to rfc793 smoothing with an alpha of .75
1705 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
1706 * rfc793's wired-in beta.
1707 */
1708 if (delta < 0)
1709 delta = -delta;
1710 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1711 if ((tp->t_rttvar += delta) <= 0)
1712 tp->t_rttvar = 1 << 2;
1713 } else {
1714 /*
1715 * No rtt measurement yet - use the unsmoothed rtt.
1716 * Set the variance to half the rtt (so our first
1717 * retransmit happens at 3*rtt).
1718 */
1719 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
1720 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
1721 }
1722 tp->t_rtt = 0;
1723 tp->t_rxtshift = 0;
1724
1725 /*
1726 * the retransmit should happen at rtt + 4 * rttvar.
1727 * Because of the way we do the smoothing, srtt and rttvar
1728 * will each average +1/2 tick of bias. When we compute
1729 * the retransmit timer, we want 1/2 tick of rounding and
1730 * 1 extra tick because of +-1/2 tick uncertainty in the
1731 * firing of the timer. The bias will give us exactly the
1732 * 1.5 tick we need. But, because the bias is
1733 * statistical, we have to test that we don't drop below
1734 * the minimum feasible timer (which is 2 ticks).
1735 */
1736 if (tp->t_rttmin > rtt + 2)
1737 rttmin = tp->t_rttmin;
1738 else
1739 rttmin = rtt + 2;
1740 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
1741
1742 /*
1743 * We received an ack for a packet that wasn't retransmitted;
1744 * it is probably safe to discard any error indications we've
1745 * received recently. This isn't quite right, but close enough
1746 * for now (a route might have failed after we sent a segment,
1747 * and the return path might not be symmetrical).
1748 */
1749 tp->t_softerror = 0;
1750 }
1751
1752 /*
1753 * TCP compressed state engine. Currently used to hold compressed
1754 * state for SYN_RECEIVED.
1755 */
1756
1757 u_long syn_cache_count;
1758 u_int32_t syn_hash1, syn_hash2;
1759
1760 #define SYN_HASH(sa, sp, dp) \
1761 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
1762 ((u_int32_t)(sp)))^syn_hash2)))
1763
1764 #define eptosp(ep, e, s) ((struct s *)((char *)(ep) - \
1765 ((char *)(&((struct s *)0)->e) - (char *)0)))
1766
1767 #define SYN_CACHE_RM(sc, p, scp) { \
1768 *(p) = (sc)->sc_next; \
1769 if ((sc)->sc_next) \
1770 (sc)->sc_next->sc_timer += (sc)->sc_timer; \
1771 else { \
1772 (scp)->sch_timer_sum -= (sc)->sc_timer; \
1773 if ((scp)->sch_timer_sum <= 0) \
1774 (scp)->sch_timer_sum = -1; \
1775 /* If need be, fix up the last pointer */ \
1776 if ((scp)->sch_first) \
1777 (scp)->sch_last = eptosp(p, sc_next, syn_cache); \
1778 } \
1779 (scp)->sch_length--; \
1780 syn_cache_count--; \
1781 }
1782
1783 void
1784 syn_cache_insert(sc, prevp, headp)
1785 struct syn_cache *sc;
1786 struct syn_cache ***prevp;
1787 struct syn_cache_head **headp;
1788 {
1789 struct syn_cache_head *scp, *scp2, *sce;
1790 struct syn_cache *sc2;
1791 static u_int timeo_val;
1792 int s;
1793
1794 /* Initialize the hash secrets when adding the first entry */
1795 if (syn_cache_count == 0) {
1796 struct timeval tv;
1797 microtime(&tv);
1798 syn_hash1 = random() ^ (u_long)≻
1799 syn_hash2 = random() ^ tv.tv_usec;
1800 }
1801
1802 sc->sc_hash = SYN_HASH(&sc->sc_src, sc->sc_sport, sc->sc_dport);
1803 sc->sc_next = NULL;
1804 scp = &tcp_syn_cache[sc->sc_hash % tcp_syn_cache_size];
1805 *headp = scp;
1806
1807 /*
1808 * Make sure that we don't overflow the per-bucket
1809 * limit or the total cache size limit.
1810 */
1811 s = splsoftnet();
1812 if (scp->sch_length >= tcp_syn_bucket_limit) {
1813 tcpstat.tcps_sc_bucketoverflow++;
1814 sc2 = scp->sch_first;
1815 scp->sch_first = sc2->sc_next;
1816 if (sc2->sc_ipopts)
1817 (void) m_free(sc2->sc_ipopts);
1818 FREE(sc2, M_PCB);
1819 } else if (syn_cache_count >= tcp_syn_cache_limit) {
1820 tcpstat.tcps_sc_overflowed++;
1821 /*
1822 * The cache is full. Toss the first (i.e, oldest)
1823 * element in this bucket.
1824 */
1825 scp2 = scp;
1826 if (scp2->sch_first == NULL) {
1827 sce = &tcp_syn_cache[tcp_syn_cache_size];
1828 for (++scp2; scp2 != scp; scp2++) {
1829 if (scp2 >= sce)
1830 scp2 = &tcp_syn_cache[0];
1831 if (scp2->sch_first)
1832 break;
1833 }
1834 }
1835 sc2 = scp2->sch_first;
1836 if (sc2 == NULL) {
1837 if (sc->sc_ipopts)
1838 (void) m_free(sc->sc_ipopts);
1839 FREE(sc, M_PCB);
1840 return;
1841 }
1842 if ((scp2->sch_first = sc2->sc_next) == NULL)
1843 scp2->sch_last = NULL;
1844 else
1845 sc2->sc_next->sc_timer += sc2->sc_timer;
1846 if (sc2->sc_ipopts)
1847 (void) m_free(sc2->sc_ipopts);
1848 FREE(sc2, M_PCB);
1849 } else {
1850 scp->sch_length++;
1851 syn_cache_count++;
1852 }
1853 tcpstat.tcps_sc_added++;
1854
1855 /*
1856 * Put it into the bucket.
1857 */
1858 if (scp->sch_first == NULL)
1859 *prevp = &scp->sch_first;
1860 else {
1861 *prevp = &scp->sch_last->sc_next;
1862 tcpstat.tcps_sc_collisions++;
1863 }
1864 **prevp = sc;
1865 scp->sch_last = sc;
1866
1867 /*
1868 * If the timeout value has changed
1869 * 1) force it to fit in a u_char
1870 * 2) Run the timer routine to truncate all
1871 * existing entries to the new timeout value.
1872 */
1873 if (timeo_val != tcp_syn_cache_timeo) {
1874 tcp_syn_cache_timeo = min(tcp_syn_cache_timeo, UCHAR_MAX);
1875 if (timeo_val > tcp_syn_cache_timeo)
1876 syn_cache_timer(timeo_val - tcp_syn_cache_timeo);
1877 timeo_val = tcp_syn_cache_timeo;
1878 }
1879 if (scp->sch_timer_sum > 0)
1880 sc->sc_timer = tcp_syn_cache_timeo - scp->sch_timer_sum;
1881 else {
1882 if (scp->sch_timer_sum == 0) {
1883 /*
1884 * When the bucket timer is 0, it is not in the
1885 * cache queue.
1886 */
1887 scp->sch_headq = tcp_syn_cache_first;
1888 tcp_syn_cache_first = scp;
1889 }
1890 sc->sc_timer = tcp_syn_cache_timeo;
1891 }
1892 scp->sch_timer_sum = tcp_syn_cache_timeo;
1893 splx(s);
1894 }
1895
1896 /*
1897 * Walk down the cache list, decrementing the timer of
1898 * the first element on each entry. If the timer goes
1899 * to zero, remove it and all successive entries with
1900 * a zero timer.
1901 */
1902 void
1903 syn_cache_timer(interval)
1904 int interval;
1905 {
1906 struct syn_cache_head *scp, **pscp;
1907 struct syn_cache *sc, *scn;
1908 int n, s;
1909
1910 pscp = &tcp_syn_cache_first;
1911 scp = tcp_syn_cache_first;
1912 s = splsoftnet();
1913 while (scp) {
1914 /*
1915 * Remove any empty hash buckets
1916 * from the cache queue.
1917 */
1918 if ((sc = scp->sch_first) == NULL) {
1919 *pscp = scp->sch_headq;
1920 scp->sch_headq = NULL;
1921 scp->sch_timer_sum = 0;
1922 scp->sch_first = scp->sch_last = NULL;
1923 scp->sch_length = 0;
1924 scp = *pscp;
1925 continue;
1926 }
1927
1928 scp->sch_timer_sum -= interval;
1929 if (scp->sch_timer_sum <= 0)
1930 scp->sch_timer_sum = -1;
1931 n = interval;
1932 while (sc->sc_timer <= n) {
1933 n -= sc->sc_timer;
1934 scn = sc->sc_next;
1935 tcpstat.tcps_sc_timed_out++;
1936 syn_cache_count--;
1937 if (sc->sc_ipopts)
1938 (void) m_free(sc->sc_ipopts);
1939 FREE(sc, M_PCB);
1940 scp->sch_length--;
1941 if ((sc = scn) == NULL)
1942 break;
1943 }
1944 if ((scp->sch_first = sc) != NULL) {
1945 sc->sc_timer -= n;
1946 pscp = &scp->sch_headq;
1947 scp = scp->sch_headq;
1948 }
1949 }
1950 splx(s);
1951 }
1952
1953 /*
1954 * Find an entry in the syn cache.
1955 */
1956 struct syn_cache *
1957 syn_cache_lookup(ti, prevp, headp)
1958 struct tcpiphdr *ti;
1959 struct syn_cache ***prevp;
1960 struct syn_cache_head **headp;
1961 {
1962 struct syn_cache *sc, **prev;
1963 struct syn_cache_head *head;
1964 u_int32_t hash;
1965 int s;
1966
1967 hash = SYN_HASH(&ti->ti_src, ti->ti_sport, ti->ti_dport);
1968
1969 head = &tcp_syn_cache[hash % tcp_syn_cache_size];
1970 *headp = head;
1971 prev = &head->sch_first;
1972 s = splsoftnet();
1973 for (sc = head->sch_first; sc; prev = &sc->sc_next, sc = sc->sc_next) {
1974 if (sc->sc_hash != hash)
1975 continue;
1976 if (sc->sc_src.s_addr == ti->ti_src.s_addr &&
1977 sc->sc_sport == ti->ti_sport &&
1978 sc->sc_dport == ti->ti_dport &&
1979 sc->sc_dst.s_addr == ti->ti_dst.s_addr) {
1980 *prevp = prev;
1981 splx(s);
1982 return (sc);
1983 }
1984 }
1985 splx(s);
1986 return (NULL);
1987 }
1988
1989 /*
1990 * This function gets called when we receive an ACK for a
1991 * socket in the LISTEN state. We look up the connection
1992 * in the syn cache, and if its there, we pull it out of
1993 * the cache and turn it into a full-blown connection in
1994 * the SYN-RECEIVED state.
1995 *
1996 * The return values may not be immediately obvious, and their effects
1997 * can be subtle, so here they are:
1998 *
1999 * NULL SYN was not found in cache; caller should drop the
2000 * packet and send an RST.
2001 *
2002 * -1 We were unable to create the new connection, and are
2003 * aborting it. An ACK,RST is being sent to the peer
2004 * (unless we got screwey sequence numbners; see below),
2005 * because the 3-way handshake has been completed. Caller
2006 * should not free the mbuf, since we may be using it. If
2007 * we are not, we will free it.
2008 *
2009 * Otherwise, the return value is a pointer to the new socket
2010 * associated with the connection.
2011 */
2012 struct socket *
2013 syn_cache_get(so, m)
2014 struct socket *so;
2015 struct mbuf *m;
2016 {
2017 struct syn_cache *sc, **sc_prev;
2018 struct syn_cache_head *head;
2019 register struct inpcb *inp;
2020 register struct tcpcb *tp = 0;
2021 register struct tcpiphdr *ti;
2022 struct sockaddr_in *sin;
2023 struct mbuf *am;
2024 long win;
2025 int s;
2026
2027 ti = mtod(m, struct tcpiphdr *);
2028 s = splsoftnet();
2029 if ((sc = syn_cache_lookup(ti, &sc_prev, &head)) == NULL) {
2030 splx(s);
2031 return (NULL);
2032 }
2033
2034 win = sbspace(&so->so_rcv);
2035 if (win > TCP_MAXWIN)
2036 win = TCP_MAXWIN;
2037
2038 /*
2039 * Verify the sequence and ack numbers.
2040 */
2041 if ((ti->ti_ack != sc->sc_iss + 1) ||
2042 SEQ_LEQ(ti->ti_seq, sc->sc_irs) ||
2043 SEQ_GT(ti->ti_seq, sc->sc_irs + 1 + win)) {
2044 (void) syn_cache_respond(sc, m, ti, win, 0);
2045 splx(s);
2046 return ((struct socket *)(-1));
2047 }
2048
2049 /* Remove this cache entry */
2050 SYN_CACHE_RM(sc, sc_prev, head);
2051 splx(s);
2052
2053 /*
2054 * Ok, create the full blown connection, and set things up
2055 * as they would have been set up if we had created the
2056 * connection when the SYN arrived. If we can't create
2057 * the connection, abort it.
2058 */
2059 so = sonewconn(so, SS_ISCONNECTED);
2060 if (so == NULL)
2061 goto resetandabort;
2062
2063 inp = sotoinpcb(so);
2064 inp->inp_laddr = sc->sc_dst;
2065 inp->inp_lport = sc->sc_dport;
2066 in_pcbstate(inp, INP_BOUND);
2067 inp->inp_options = ip_srcroute();
2068 if (inp->inp_options == NULL) {
2069 inp->inp_options = sc->sc_ipopts;
2070 sc->sc_ipopts = NULL;
2071 }
2072
2073 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
2074 if (am == NULL)
2075 goto resetandabort;
2076 am->m_len = sizeof(struct sockaddr_in);
2077 sin = mtod(am, struct sockaddr_in *);
2078 sin->sin_family = AF_INET;
2079 sin->sin_len = sizeof(*sin);
2080 sin->sin_addr = sc->sc_src;
2081 sin->sin_port = sc->sc_sport;
2082 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
2083 if (in_pcbconnect(inp, am)) {
2084 (void) m_free(am);
2085 goto resetandabort;
2086 }
2087 (void) m_free(am);
2088
2089 tp = intotcpcb(inp);
2090 if (sc->sc_request_r_scale != 15) {
2091 tp->requested_s_scale = sc->sc_requested_s_scale;
2092 tp->request_r_scale = sc->sc_request_r_scale;
2093 tp->snd_scale = sc->sc_requested_s_scale;
2094 tp->rcv_scale = sc->sc_request_r_scale;
2095 tp->t_flags |= TF_RCVD_SCALE;
2096 }
2097 if (sc->sc_flags & SCF_TIMESTAMP)
2098 tp->t_flags |= TF_RCVD_TSTMP;
2099
2100 tp->t_template = tcp_template(tp);
2101 if (tp->t_template == 0) {
2102 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
2103 so = NULL;
2104 m_freem(m);
2105 goto abort;
2106 }
2107
2108 tp->iss = sc->sc_iss;
2109 tp->irs = sc->sc_irs;
2110 tcp_sendseqinit(tp);
2111 tcp_rcvseqinit(tp);
2112 tp->t_state = TCPS_SYN_RECEIVED;
2113 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
2114 tcpstat.tcps_accepts++;
2115
2116 /* Initialize tp->t_ourmss before we deal with the peer's! */
2117 tp->t_ourmss = sc->sc_ourmaxseg;
2118 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
2119
2120 /*
2121 * Initialize the initial congestion window. If we
2122 * had to retransmit the SYN,ACK, we must initialize cwnd
2123 * to 1 segment.
2124 */
2125 tp->snd_cwnd =
2126 TCP_INITIAL_WINDOW((sc->sc_flags & SCF_SYNACK_REXMT) ? 1 :
2127 tcp_init_win, tp->t_peermss);
2128
2129 tcp_rmx_rtt(tp);
2130 tp->snd_wl1 = sc->sc_irs;
2131 tp->rcv_up = sc->sc_irs + 1;
2132
2133 /*
2134 * This is what whould have happened in tcp_ouput() when
2135 * the SYN,ACK was sent.
2136 */
2137 tp->snd_up = tp->snd_una;
2138 tp->snd_max = tp->snd_nxt = tp->iss+1;
2139 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
2140 if (win > 0 && SEQ_GT(tp->rcv_nxt+win, tp->rcv_adv))
2141 tp->rcv_adv = tp->rcv_nxt + win;
2142 tp->last_ack_sent = tp->rcv_nxt;
2143
2144 tcpstat.tcps_sc_completed++;
2145 if (sc->sc_ipopts)
2146 (void) m_free(sc->sc_ipopts);
2147 FREE(sc, M_PCB);
2148 return (so);
2149
2150 resetandabort:
2151 (void) tcp_respond(NULL, ti, m, ti->ti_seq+ti->ti_len,
2152 (tcp_seq)0, TH_RST|TH_ACK);
2153 abort:
2154 if (so != NULL)
2155 (void) soabort(so);
2156 if (sc->sc_ipopts)
2157 (void) m_free(sc->sc_ipopts);
2158 FREE(sc, M_PCB);
2159 tcpstat.tcps_sc_aborted++;
2160 return ((struct socket *)(-1));
2161 }
2162
2163 /*
2164 * This function is called when we get a RST for a
2165 * non-existant connection, so that we can see if the
2166 * connection is in the syn cache. If it is, zap it.
2167 */
2168
2169 void
2170 syn_cache_reset(ti)
2171 register struct tcpiphdr *ti;
2172 {
2173 struct syn_cache *sc, **sc_prev;
2174 struct syn_cache_head *head;
2175 int s = splsoftnet();
2176
2177 if ((sc = syn_cache_lookup(ti, &sc_prev, &head)) == NULL) {
2178 splx(s);
2179 return;
2180 }
2181 if (SEQ_LT(ti->ti_seq,sc->sc_irs) ||
2182 SEQ_GT(ti->ti_seq, sc->sc_irs+1)) {
2183 splx(s);
2184 return;
2185 }
2186 SYN_CACHE_RM(sc, sc_prev, head);
2187 splx(s);
2188 tcpstat.tcps_sc_reset++;
2189 if (sc->sc_ipopts)
2190 (void) m_free(sc->sc_ipopts);
2191 FREE(sc, M_PCB);
2192 }
2193
2194 void
2195 syn_cache_unreach(ip, th)
2196 struct ip *ip;
2197 struct tcphdr *th;
2198 {
2199 struct syn_cache *sc, **sc_prev;
2200 struct syn_cache_head *head;
2201 struct tcpiphdr ti2;
2202 int s;
2203
2204 ti2.ti_src.s_addr = ip->ip_dst.s_addr;
2205 ti2.ti_dst.s_addr = ip->ip_src.s_addr;
2206 ti2.ti_sport = th->th_dport;
2207 ti2.ti_dport = th->th_sport;
2208
2209 s = splsoftnet();
2210 if ((sc = syn_cache_lookup(&ti2, &sc_prev, &head)) == NULL) {
2211 splx(s);
2212 return;
2213 }
2214 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
2215 if (ntohl (th->th_seq) != sc->sc_iss) {
2216 splx(s);
2217 return;
2218 }
2219 SYN_CACHE_RM(sc, sc_prev, head);
2220 splx(s);
2221 tcpstat.tcps_sc_unreach++;
2222 if (sc->sc_ipopts)
2223 (void) m_free(sc->sc_ipopts);
2224 FREE(sc, M_PCB);
2225 }
2226
2227 /*
2228 * Given a LISTEN socket and an inbound SYN request, add
2229 * this to the syn cache, and send back a segment:
2230 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
2231 * to the source.
2232 *
2233 * XXX We don't properly handle SYN-with-data!
2234 */
2235
2236 int
2237 syn_cache_add(so, m, optp, optlen, oi)
2238 struct socket *so;
2239 struct mbuf *m;
2240 u_char *optp;
2241 int optlen;
2242 struct tcp_opt_info *oi;
2243 {
2244 register struct tcpiphdr *ti;
2245 struct tcpcb tb, *tp;
2246 long win;
2247 struct syn_cache *sc, **sc_prev;
2248 struct syn_cache_head *scp;
2249 struct mbuf *ipopts;
2250 extern int tcp_do_rfc1323;
2251
2252 tp = sototcpcb(so);
2253 ti = mtod(m, struct tcpiphdr *);
2254
2255 /*
2256 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
2257 * in_broadcast() should never return true on a received
2258 * packet with M_BCAST not set.
2259 */
2260 if (m->m_flags & (M_BCAST|M_MCAST) ||
2261 IN_MULTICAST(ti->ti_src.s_addr) ||
2262 IN_MULTICAST(ti->ti_dst.s_addr))
2263 return (0);
2264
2265 /*
2266 * Initialize some local state.
2267 */
2268 win = sbspace(&so->so_rcv);
2269 if (win > TCP_MAXWIN)
2270 win = TCP_MAXWIN;
2271
2272 /*
2273 * Remember the IP options, if any.
2274 */
2275 ipopts = ip_srcroute();
2276
2277 if (optp) {
2278 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
2279 tcp_dooptions(&tb, optp, optlen, ti, oi);
2280 } else
2281 tb.t_flags = 0;
2282
2283 /*
2284 * See if we already have an entry for this connection.
2285 * If we do, resend the SYN,ACK, and remember since the
2286 * initial congestion window must be initialized to 1
2287 * segment when the connection completes.
2288 */
2289 if ((sc = syn_cache_lookup(ti, &sc_prev, &scp)) != NULL) {
2290 tcpstat.tcps_sc_dupesyn++;
2291 sc->sc_flags |= SCF_SYNACK_REXMT;
2292
2293 if (ipopts) {
2294 /*
2295 * If we were remembering a previous source route,
2296 * forget it and use the new one we've been given.
2297 */
2298 if (sc->sc_ipopts)
2299 (void) m_free(sc->sc_ipopts);
2300 sc->sc_ipopts = ipopts;
2301 }
2302
2303 if (syn_cache_respond(sc, m, ti, win, tb.ts_recent) == 0) {
2304 tcpstat.tcps_sndacks++;
2305 tcpstat.tcps_sndtotal++;
2306 }
2307 return (1);
2308 }
2309
2310 MALLOC(sc, struct syn_cache *, sizeof(*sc), M_PCB, M_NOWAIT);
2311 if (sc == NULL) {
2312 if (ipopts)
2313 (void) m_free(ipopts);
2314 return (0);
2315 }
2316
2317 /*
2318 * Fill in the cache, and put the necessary IP and TCP
2319 * options into the reply.
2320 */
2321 sc->sc_src.s_addr = ti->ti_src.s_addr;
2322 sc->sc_dst.s_addr = ti->ti_dst.s_addr;
2323 sc->sc_sport = ti->ti_sport;
2324 sc->sc_dport = ti->ti_dport;
2325 sc->sc_flags = 0;
2326 sc->sc_ipopts = ipopts;
2327 sc->sc_irs = ti->ti_seq;
2328 sc->sc_iss = tcp_new_iss(sc, sizeof(struct syn_cache), 0);
2329 sc->sc_peermaxseg = oi->maxseg;
2330 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
2331 m->m_pkthdr.rcvif : NULL);
2332 if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
2333 sc->sc_flags |= SCF_TIMESTAMP;
2334 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2335 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2336 sc->sc_requested_s_scale = tb.requested_s_scale;
2337 sc->sc_request_r_scale = 0;
2338 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
2339 TCP_MAXWIN << sc->sc_request_r_scale <
2340 so->so_rcv.sb_hiwat)
2341 sc->sc_request_r_scale++;
2342 } else {
2343 sc->sc_requested_s_scale = 15;
2344 sc->sc_request_r_scale = 15;
2345 }
2346 if (syn_cache_respond(sc, m, ti, win, tb.ts_recent) == 0) {
2347 syn_cache_insert(sc, &sc_prev, &scp);
2348 tcpstat.tcps_sndacks++;
2349 tcpstat.tcps_sndtotal++;
2350 } else {
2351 if (sc->sc_ipopts)
2352 (void) m_free(sc->sc_ipopts);
2353 FREE(sc, M_PCB);
2354 tcpstat.tcps_sc_dropped++;
2355 }
2356 return (1);
2357 }
2358
2359 int
2360 syn_cache_respond(sc, m, ti, win, ts)
2361 struct syn_cache *sc;
2362 struct mbuf *m;
2363 register struct tcpiphdr *ti;
2364 long win;
2365 u_long ts;
2366 {
2367 u_int8_t *optp;
2368 int optlen;
2369
2370 /*
2371 * Tack on the TCP options. If there isn't enough trailing
2372 * space for them, move up the fixed header to make space.
2373 */
2374 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
2375 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
2376 if (optlen > M_TRAILINGSPACE(m)) {
2377 if (M_LEADINGSPACE(m) >= optlen) {
2378 m->m_data -= optlen;
2379 m->m_len += optlen;
2380 } else {
2381 struct mbuf *m0 = m;
2382 if ((m = m_gethdr(M_DONTWAIT, MT_HEADER)) == NULL) {
2383 m_freem(m0);
2384 return (ENOBUFS);
2385 }
2386 MH_ALIGN(m, sizeof(*ti) + optlen);
2387 m->m_next = m0; /* this gets freed below */
2388 }
2389 bcopy((caddr_t)ti, mtod(m, caddr_t), sizeof(*ti));
2390 ti = mtod(m, struct tcpiphdr *);
2391 }
2392
2393 optp = (u_int8_t *)(ti + 1);
2394 optp[0] = TCPOPT_MAXSEG;
2395 optp[1] = 4;
2396 optp[2] = (sc->sc_ourmaxseg >> 8) & 0xff;
2397 optp[3] = sc->sc_ourmaxseg & 0xff;
2398 optlen = 4;
2399
2400 if (sc->sc_request_r_scale != 15) {
2401 *((u_int32_t *)(optp + optlen)) = htonl(TCPOPT_NOP << 24 |
2402 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
2403 sc->sc_request_r_scale);
2404 optlen += 4;
2405 }
2406
2407 if (sc->sc_flags & SCF_TIMESTAMP) {
2408 u_int32_t *lp = (u_int32_t *)(optp + optlen);
2409 /* Form timestamp option as shown in appendix A of RFC 1323. */
2410 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
2411 *lp++ = htonl(tcp_now);
2412 *lp = htonl(ts);
2413 optlen += TCPOLEN_TSTAMP_APPA;
2414 }
2415
2416 /*
2417 * Toss any trailing mbufs. No need to worry about
2418 * m_len and m_pkthdr.len, since tcp_respond() will
2419 * unconditionally set them.
2420 */
2421 if (m->m_next) {
2422 m_freem(m->m_next);
2423 m->m_next = NULL;
2424 }
2425
2426 /*
2427 * Fill in the fields that tcp_respond() will not touch, and
2428 * then send the response.
2429 */
2430 ti->ti_off = (sizeof(struct tcphdr) + optlen) >> 2;
2431 ti->ti_win = htons(win);
2432 return (tcp_respond(NULL, ti, m, sc->sc_irs + 1, sc->sc_iss,
2433 TH_SYN|TH_ACK));
2434 }
2435 #endif /* TUBA_INCLUDE */
2436