tcp_input.c revision 1.78 1 /* $NetBSD: tcp_input.c,v 1.78 1999/04/09 22:01:07 kml Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
9 * Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by the University of
55 * California, Berkeley and its contributors.
56 * 4. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
73 */
74
75 /*
76 * TODO list for SYN cache stuff:
77 *
78 * Find room for a "state" field, which is needed to keep a
79 * compressed state for TIME_WAIT TCBs. It's been noted already
80 * that this is fairly important for very high-volume web and
81 * mail servers, which use a large number of short-lived
82 * connections.
83 */
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/malloc.h>
88 #include <sys/mbuf.h>
89 #include <sys/protosw.h>
90 #include <sys/socket.h>
91 #include <sys/socketvar.h>
92 #include <sys/errno.h>
93 #include <sys/syslog.h>
94 #include <sys/pool.h>
95
96 #include <net/if.h>
97 #include <net/route.h>
98
99 #include <netinet/in.h>
100 #include <netinet/in_systm.h>
101 #include <netinet/ip.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet/ip_var.h>
104 #include <netinet/tcp.h>
105 #include <netinet/tcp_fsm.h>
106 #include <netinet/tcp_seq.h>
107 #include <netinet/tcp_timer.h>
108 #include <netinet/tcp_var.h>
109 #include <netinet/tcpip.h>
110 #include <netinet/tcp_debug.h>
111
112 #include <machine/stdarg.h>
113
114 int tcprexmtthresh = 3;
115 struct tcpiphdr tcp_saveti;
116
117 extern u_long sb_max;
118
119 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
120
121 /* for modulo comparisons of timestamps */
122 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
123 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
124
125 /*
126 * Macro to compute ACK transmission behavior. Delay the ACK unless
127 * we have already delayed an ACK (must send an ACK every two segments).
128 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
129 * option is enabled.
130 */
131 #define TCP_SETUP_ACK(tp, ti) \
132 do { \
133 if ((tp)->t_flags & TF_DELACK || \
134 (tcp_ack_on_push && (ti)->ti_flags & TH_PUSH)) \
135 tp->t_flags |= TF_ACKNOW; \
136 else \
137 TCP_SET_DELACK(tp); \
138 } while (0)
139
140 /*
141 * Insert segment ti into reassembly queue of tcp with
142 * control block tp. Return TH_FIN if reassembly now includes
143 * a segment with FIN. The macro form does the common case inline
144 * (segment is the next to be received on an established connection,
145 * and the queue is empty), avoiding linkage into and removal
146 * from the queue and repetition of various conversions.
147 * Set DELACK for segments received in order, but ack immediately
148 * when segments are out of order (so fast retransmit can work).
149 */
150 #define TCP_REASS(tp, ti, m, so, flags) { \
151 TCP_REASS_LOCK((tp)); \
152 if ((ti)->ti_seq == (tp)->rcv_nxt && \
153 (tp)->segq.lh_first == NULL && \
154 (tp)->t_state == TCPS_ESTABLISHED) { \
155 TCP_SETUP_ACK(tp, ti); \
156 (tp)->rcv_nxt += (ti)->ti_len; \
157 flags = (ti)->ti_flags & TH_FIN; \
158 tcpstat.tcps_rcvpack++;\
159 tcpstat.tcps_rcvbyte += (ti)->ti_len;\
160 sbappend(&(so)->so_rcv, (m)); \
161 sorwakeup(so); \
162 } else { \
163 (flags) = tcp_reass((tp), (ti), (m)); \
164 tp->t_flags |= TF_ACKNOW; \
165 } \
166 TCP_REASS_UNLOCK((tp)); \
167 }
168
169 int
170 tcp_reass(tp, ti, m)
171 register struct tcpcb *tp;
172 register struct tcpiphdr *ti;
173 struct mbuf *m;
174 {
175 register struct ipqent *p, *q, *nq, *tiqe = NULL;
176 struct socket *so = tp->t_inpcb->inp_socket;
177 int pkt_flags;
178 tcp_seq pkt_seq;
179 unsigned pkt_len;
180 u_long rcvpartdupbyte = 0;
181 u_long rcvoobyte;
182
183 TCP_REASS_LOCK_CHECK(tp);
184
185 /*
186 * Call with ti==0 after become established to
187 * force pre-ESTABLISHED data up to user socket.
188 */
189 if (ti == 0)
190 goto present;
191
192 rcvoobyte = ti->ti_len;
193 /*
194 * Copy these to local variables because the tcpiphdr
195 * gets munged while we are collapsing mbufs.
196 */
197 pkt_seq = ti->ti_seq;
198 pkt_len = ti->ti_len;
199 pkt_flags = ti->ti_flags;
200 /*
201 * Find a segment which begins after this one does.
202 */
203 for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
204 nq = q->ipqe_q.le_next;
205 /*
206 * If the received segment is just right after this
207 * fragment, merge the two together and then check
208 * for further overlaps.
209 */
210 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
211 #ifdef TCPREASS_DEBUG
212 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
213 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
214 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
215 #endif
216 pkt_len += q->ipqe_len;
217 pkt_flags |= q->ipqe_flags;
218 pkt_seq = q->ipqe_seq;
219 m_cat(q->ipqe_m, m);
220 m = q->ipqe_m;
221 goto free_ipqe;
222 }
223 /*
224 * If the received segment is completely past this
225 * fragment, we need to go the next fragment.
226 */
227 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
228 p = q;
229 continue;
230 }
231 /*
232 * If the fragment is past the received segment,
233 * it (or any following) can't be concatenated.
234 */
235 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
236 break;
237 /*
238 * We've received all the data in this segment before.
239 * mark it as a duplicate and return.
240 */
241 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
242 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
243 tcpstat.tcps_rcvduppack++;
244 tcpstat.tcps_rcvdupbyte += pkt_len;
245 m_freem(m);
246 if (tiqe != NULL)
247 pool_put(&ipqent_pool, tiqe);
248 return (0);
249 }
250 /*
251 * Received segment completely overlaps this fragment
252 * so we drop the fragment (this keeps the temporal
253 * ordering of segments correct).
254 */
255 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
256 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
257 rcvpartdupbyte += q->ipqe_len;
258 m_freem(q->ipqe_m);
259 goto free_ipqe;
260 }
261 /*
262 * RX'ed segment extends past the end of the
263 * fragment. Drop the overlapping bytes. Then
264 * merge the fragment and segment then treat as
265 * a longer received packet.
266 */
267 if (SEQ_LT(q->ipqe_seq, pkt_seq)
268 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
269 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
270 #ifdef TCPREASS_DEBUG
271 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
272 tp, overlap,
273 pkt_seq, pkt_seq + pkt_len, pkt_len);
274 #endif
275 m_adj(m, overlap);
276 rcvpartdupbyte += overlap;
277 m_cat(q->ipqe_m, m);
278 m = q->ipqe_m;
279 pkt_seq = q->ipqe_seq;
280 pkt_len += q->ipqe_len - overlap;
281 rcvoobyte -= overlap;
282 goto free_ipqe;
283 }
284 /*
285 * RX'ed segment extends past the front of the
286 * fragment. Drop the overlapping bytes on the
287 * received packet. The packet will then be
288 * contatentated with this fragment a bit later.
289 */
290 if (SEQ_GT(q->ipqe_seq, pkt_seq)
291 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
292 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
293 #ifdef TCPREASS_DEBUG
294 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
295 tp, overlap,
296 pkt_seq, pkt_seq + pkt_len, pkt_len);
297 #endif
298 m_adj(m, -overlap);
299 pkt_len -= overlap;
300 rcvpartdupbyte += overlap;
301 rcvoobyte -= overlap;
302 }
303 /*
304 * If the received segment immediates precedes this
305 * fragment then tack the fragment onto this segment
306 * and reinsert the data.
307 */
308 if (q->ipqe_seq == pkt_seq + pkt_len) {
309 #ifdef TCPREASS_DEBUG
310 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
311 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
312 pkt_seq, pkt_seq + pkt_len, pkt_len);
313 #endif
314 pkt_len += q->ipqe_len;
315 pkt_flags |= q->ipqe_flags;
316 m_cat(m, q->ipqe_m);
317 LIST_REMOVE(q, ipqe_q);
318 LIST_REMOVE(q, ipqe_timeq);
319 if (tiqe == NULL) {
320 tiqe = q;
321 } else {
322 pool_put(&ipqent_pool, q);
323 }
324 break;
325 }
326 /*
327 * If the fragment is before the segment, remember it.
328 * When this loop is terminated, p will contain the
329 * pointer to fragment that is right before the received
330 * segment.
331 */
332 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
333 p = q;
334
335 continue;
336
337 /*
338 * This is a common operation. It also will allow
339 * to save doing a malloc/free in most instances.
340 */
341 free_ipqe:
342 LIST_REMOVE(q, ipqe_q);
343 LIST_REMOVE(q, ipqe_timeq);
344 if (tiqe == NULL) {
345 tiqe = q;
346 } else {
347 pool_put(&ipqent_pool, q);
348 }
349 }
350
351 /*
352 * Allocate a new queue entry since the received segment did not
353 * collapse onto any other out-of-order block; thus we are allocating
354 * a new block. If it had collapsed, tiqe would not be NULL and
355 * we would be reusing it.
356 * XXX If we can't, just drop the packet. XXX
357 */
358 if (tiqe == NULL) {
359 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
360 if (tiqe == NULL) {
361 tcpstat.tcps_rcvmemdrop++;
362 m_freem(m);
363 return (0);
364 }
365 }
366
367 /*
368 * Update the counters.
369 */
370 tcpstat.tcps_rcvoopack++;
371 tcpstat.tcps_rcvoobyte += rcvoobyte;
372 if (rcvpartdupbyte) {
373 tcpstat.tcps_rcvpartduppack++;
374 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
375 }
376
377 /*
378 * Insert the new fragment queue entry into both queues.
379 */
380 tiqe->ipqe_m = m;
381 tiqe->ipqe_seq = pkt_seq;
382 tiqe->ipqe_len = pkt_len;
383 tiqe->ipqe_flags = pkt_flags;
384 if (p == NULL) {
385 LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
386 #ifdef TCPREASS_DEBUG
387 if (tiqe->ipqe_seq != tp->rcv_nxt)
388 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
389 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
390 #endif
391 } else {
392 LIST_INSERT_AFTER(p, tiqe, ipqe_q);
393 #ifdef TCPREASS_DEBUG
394 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
395 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
396 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
397 #endif
398 }
399
400 LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
401
402 present:
403 /*
404 * Present data to user, advancing rcv_nxt through
405 * completed sequence space.
406 */
407 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
408 return (0);
409 q = tp->segq.lh_first;
410 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
411 return (0);
412 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
413 return (0);
414
415 tp->rcv_nxt += q->ipqe_len;
416 pkt_flags = q->ipqe_flags & TH_FIN;
417
418 LIST_REMOVE(q, ipqe_q);
419 LIST_REMOVE(q, ipqe_timeq);
420 if (so->so_state & SS_CANTRCVMORE)
421 m_freem(q->ipqe_m);
422 else
423 sbappend(&so->so_rcv, q->ipqe_m);
424 pool_put(&ipqent_pool, q);
425 sorwakeup(so);
426 return (pkt_flags);
427 }
428
429 /*
430 * TCP input routine, follows pages 65-76 of the
431 * protocol specification dated September, 1981 very closely.
432 */
433 void
434 #if __STDC__
435 tcp_input(struct mbuf *m, ...)
436 #else
437 tcp_input(m, va_alist)
438 register struct mbuf *m;
439 #endif
440 {
441 register struct tcpiphdr *ti;
442 register struct inpcb *inp;
443 caddr_t optp = NULL;
444 int optlen = 0;
445 int len, tlen, off, hdroptlen;
446 register struct tcpcb *tp = 0;
447 register int tiflags;
448 struct socket *so = NULL;
449 int todrop, acked, ourfinisacked, needoutput = 0;
450 short ostate = 0;
451 int iss = 0;
452 u_long tiwin;
453 struct tcp_opt_info opti;
454 int iphlen;
455 va_list ap;
456
457 va_start(ap, m);
458 iphlen = va_arg(ap, int);
459 va_end(ap);
460
461 tcpstat.tcps_rcvtotal++;
462
463 opti.ts_present = 0;
464 opti.maxseg = 0;
465
466 /*
467 * Get IP and TCP header together in first mbuf.
468 * Note: IP leaves IP header in first mbuf.
469 */
470 ti = mtod(m, struct tcpiphdr *);
471 if (iphlen > sizeof (struct ip))
472 ip_stripoptions(m, (struct mbuf *)0);
473 if (m->m_len < sizeof (struct tcpiphdr)) {
474 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
475 tcpstat.tcps_rcvshort++;
476 return;
477 }
478 ti = mtod(m, struct tcpiphdr *);
479 }
480
481 /*
482 * Checksum extended TCP header and data.
483 */
484 len = ((struct ip *)ti)->ip_len;
485 tlen = len - sizeof (struct ip);
486 bzero(ti->ti_x1, sizeof ti->ti_x1);
487 ti->ti_len = (u_int16_t)tlen;
488 HTONS(ti->ti_len);
489 if (in_cksum(m, len) != 0) {
490 tcpstat.tcps_rcvbadsum++;
491 goto drop;
492 }
493
494 /*
495 * Check that TCP offset makes sense,
496 * pull out TCP options and adjust length. XXX
497 */
498 off = ti->ti_off << 2;
499 if (off < sizeof (struct tcphdr) || off > tlen) {
500 tcpstat.tcps_rcvbadoff++;
501 goto drop;
502 }
503 tlen -= off;
504 ti->ti_len = tlen;
505 if (off > sizeof (struct tcphdr)) {
506 if (m->m_len < sizeof(struct ip) + off) {
507 if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
508 tcpstat.tcps_rcvshort++;
509 return;
510 }
511 ti = mtod(m, struct tcpiphdr *);
512 }
513 optlen = off - sizeof (struct tcphdr);
514 optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
515 /*
516 * Do quick retrieval of timestamp options ("options
517 * prediction?"). If timestamp is the only option and it's
518 * formatted as recommended in RFC 1323 appendix A, we
519 * quickly get the values now and not bother calling
520 * tcp_dooptions(), etc.
521 */
522 if ((optlen == TCPOLEN_TSTAMP_APPA ||
523 (optlen > TCPOLEN_TSTAMP_APPA &&
524 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
525 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
526 (ti->ti_flags & TH_SYN) == 0) {
527 opti.ts_present = 1;
528 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
529 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
530 optp = NULL; /* we've parsed the options */
531 }
532 }
533 tiflags = ti->ti_flags;
534
535 /*
536 * Convert TCP protocol specific fields to host format.
537 */
538 NTOHL(ti->ti_seq);
539 NTOHL(ti->ti_ack);
540 NTOHS(ti->ti_win);
541 NTOHS(ti->ti_urp);
542
543 /*
544 * Locate pcb for segment.
545 */
546 findpcb:
547 inp = in_pcblookup_connect(&tcbtable, ti->ti_src, ti->ti_sport,
548 ti->ti_dst, ti->ti_dport);
549 if (inp == 0) {
550 ++tcpstat.tcps_pcbhashmiss;
551 inp = in_pcblookup_bind(&tcbtable, ti->ti_dst, ti->ti_dport);
552 if (inp == 0) {
553 ++tcpstat.tcps_noport;
554 goto dropwithreset;
555 }
556 }
557
558 /*
559 * If the state is CLOSED (i.e., TCB does not exist) then
560 * all data in the incoming segment is discarded.
561 * If the TCB exists but is in CLOSED state, it is embryonic,
562 * but should either do a listen or a connect soon.
563 */
564 tp = intotcpcb(inp);
565 if (tp == 0)
566 goto dropwithreset;
567 if (tp->t_state == TCPS_CLOSED)
568 goto drop;
569
570 /* Unscale the window into a 32-bit value. */
571 if ((tiflags & TH_SYN) == 0)
572 tiwin = ti->ti_win << tp->snd_scale;
573 else
574 tiwin = ti->ti_win;
575
576 so = inp->inp_socket;
577 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
578 if (so->so_options & SO_DEBUG) {
579 ostate = tp->t_state;
580 tcp_saveti = *ti;
581 }
582 if (so->so_options & SO_ACCEPTCONN) {
583 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
584 if (tiflags & TH_RST) {
585 syn_cache_reset(ti);
586 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
587 (TH_ACK|TH_SYN)) {
588 /*
589 * Received a SYN,ACK. This should
590 * never happen while we are in
591 * LISTEN. Send an RST.
592 */
593 goto badsyn;
594 } else if (tiflags & TH_ACK) {
595 so = syn_cache_get(so, m);
596 if (so == NULL) {
597 /*
598 * We don't have a SYN for
599 * this ACK; send an RST.
600 */
601 goto badsyn;
602 } else if (so ==
603 (struct socket *)(-1)) {
604 /*
605 * We were unable to create
606 * the connection. If the
607 * 3-way handshake was
608 * completed, and RST has
609 * been sent to the peer.
610 * Since the mbuf might be
611 * in use for the reply,
612 * do not free it.
613 */
614 m = NULL;
615 } else {
616 /*
617 * We have created a
618 * full-blown connection.
619 */
620 inp = sotoinpcb(so);
621 tp = intotcpcb(inp);
622 tiwin <<= tp->snd_scale;
623 goto after_listen;
624 }
625 } else {
626 /*
627 * None of RST, SYN or ACK was set.
628 * This is an invalid packet for a
629 * TCB in LISTEN state. Send a RST.
630 */
631 goto badsyn;
632 }
633 } else {
634 /*
635 * Received a SYN.
636 */
637 if (in_hosteq(ti->ti_src, ti->ti_dst) &&
638 ti->ti_sport == ti->ti_dport) {
639 /*
640 * LISTEN socket received a SYN
641 * from itself? This can't possibly
642 * be valid; drop the packet.
643 */
644 tcpstat.tcps_badsyn++;
645 goto drop;
646 }
647 /*
648 * SYN looks ok; create compressed TCP
649 * state for it.
650 */
651 if (so->so_qlen <= so->so_qlimit &&
652 syn_cache_add(so, m, optp, optlen, &opti))
653 m = NULL;
654 }
655 goto drop;
656 }
657 }
658
659 after_listen:
660 #ifdef DIAGNOSTIC
661 /*
662 * Should not happen now that all embryonic connections
663 * are handled with compressed state.
664 */
665 if (tp->t_state == TCPS_LISTEN)
666 panic("tcp_input: TCPS_LISTEN");
667 #endif
668
669 /*
670 * Segment received on connection.
671 * Reset idle time and keep-alive timer.
672 */
673 tp->t_idle = 0;
674 if (TCPS_HAVEESTABLISHED(tp->t_state))
675 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
676
677 /*
678 * Process options.
679 */
680 if (optp)
681 tcp_dooptions(tp, optp, optlen, ti, &opti);
682
683 /*
684 * Header prediction: check for the two common cases
685 * of a uni-directional data xfer. If the packet has
686 * no control flags, is in-sequence, the window didn't
687 * change and we're not retransmitting, it's a
688 * candidate. If the length is zero and the ack moved
689 * forward, we're the sender side of the xfer. Just
690 * free the data acked & wake any higher level process
691 * that was blocked waiting for space. If the length
692 * is non-zero and the ack didn't move, we're the
693 * receiver side. If we're getting packets in-order
694 * (the reassembly queue is empty), add the data to
695 * the socket buffer and note that we need a delayed ack.
696 */
697 if (tp->t_state == TCPS_ESTABLISHED &&
698 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
699 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
700 ti->ti_seq == tp->rcv_nxt &&
701 tiwin && tiwin == tp->snd_wnd &&
702 tp->snd_nxt == tp->snd_max) {
703
704 /*
705 * If last ACK falls within this segment's sequence numbers,
706 * record the timestamp.
707 */
708 if (opti.ts_present &&
709 SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
710 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
711 tp->ts_recent_age = tcp_now;
712 tp->ts_recent = opti.ts_val;
713 }
714
715 if (ti->ti_len == 0) {
716 if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
717 SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
718 tp->snd_cwnd >= tp->snd_wnd &&
719 tp->t_dupacks < tcprexmtthresh) {
720 /*
721 * this is a pure ack for outstanding data.
722 */
723 ++tcpstat.tcps_predack;
724 if (opti.ts_present)
725 tcp_xmit_timer(tp,
726 tcp_now-opti.ts_ecr+1);
727 else if (tp->t_rtt &&
728 SEQ_GT(ti->ti_ack, tp->t_rtseq))
729 tcp_xmit_timer(tp, tp->t_rtt);
730 acked = ti->ti_ack - tp->snd_una;
731 tcpstat.tcps_rcvackpack++;
732 tcpstat.tcps_rcvackbyte += acked;
733 sbdrop(&so->so_snd, acked);
734 tp->snd_una = ti->ti_ack;
735 m_freem(m);
736
737 /*
738 * If all outstanding data are acked, stop
739 * retransmit timer, otherwise restart timer
740 * using current (possibly backed-off) value.
741 * If process is waiting for space,
742 * wakeup/selwakeup/signal. If data
743 * are ready to send, let tcp_output
744 * decide between more output or persist.
745 */
746 if (tp->snd_una == tp->snd_max)
747 TCP_TIMER_DISARM(tp, TCPT_REXMT);
748 else if (TCP_TIMER_ISARMED(tp,
749 TCPT_PERSIST) == 0)
750 TCP_TIMER_ARM(tp, TCPT_REXMT,
751 tp->t_rxtcur);
752
753 sowwakeup(so);
754 if (so->so_snd.sb_cc)
755 (void) tcp_output(tp);
756 return;
757 }
758 } else if (ti->ti_ack == tp->snd_una &&
759 tp->segq.lh_first == NULL &&
760 ti->ti_len <= sbspace(&so->so_rcv)) {
761 /*
762 * this is a pure, in-sequence data packet
763 * with nothing on the reassembly queue and
764 * we have enough buffer space to take it.
765 */
766 ++tcpstat.tcps_preddat;
767 tp->rcv_nxt += ti->ti_len;
768 tcpstat.tcps_rcvpack++;
769 tcpstat.tcps_rcvbyte += ti->ti_len;
770 /*
771 * Drop TCP, IP headers and TCP options then add data
772 * to socket buffer.
773 */
774 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
775 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
776 sbappend(&so->so_rcv, m);
777 sorwakeup(so);
778 TCP_SETUP_ACK(tp, ti);
779 if (tp->t_flags & TF_ACKNOW)
780 (void) tcp_output(tp);
781 return;
782 }
783 }
784
785 /*
786 * Drop TCP, IP headers and TCP options.
787 */
788 hdroptlen = sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr);
789 m->m_data += hdroptlen;
790 m->m_len -= hdroptlen;
791
792 /*
793 * Calculate amount of space in receive window,
794 * and then do TCP input processing.
795 * Receive window is amount of space in rcv queue,
796 * but not less than advertised window.
797 */
798 { int win;
799
800 win = sbspace(&so->so_rcv);
801 if (win < 0)
802 win = 0;
803 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
804 }
805
806 switch (tp->t_state) {
807
808 /*
809 * If the state is SYN_SENT:
810 * if seg contains an ACK, but not for our SYN, drop the input.
811 * if seg contains a RST, then drop the connection.
812 * if seg does not contain SYN, then drop it.
813 * Otherwise this is an acceptable SYN segment
814 * initialize tp->rcv_nxt and tp->irs
815 * if seg contains ack then advance tp->snd_una
816 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
817 * arrange for segment to be acked (eventually)
818 * continue processing rest of data/controls, beginning with URG
819 */
820 case TCPS_SYN_SENT:
821 if ((tiflags & TH_ACK) &&
822 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
823 SEQ_GT(ti->ti_ack, tp->snd_max)))
824 goto dropwithreset;
825 if (tiflags & TH_RST) {
826 if (tiflags & TH_ACK)
827 tp = tcp_drop(tp, ECONNREFUSED);
828 goto drop;
829 }
830 if ((tiflags & TH_SYN) == 0)
831 goto drop;
832 if (tiflags & TH_ACK) {
833 tp->snd_una = ti->ti_ack;
834 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
835 tp->snd_nxt = tp->snd_una;
836 }
837 TCP_TIMER_DISARM(tp, TCPT_REXMT);
838 tp->irs = ti->ti_seq;
839 tcp_rcvseqinit(tp);
840 tp->t_flags |= TF_ACKNOW;
841 tcp_mss_from_peer(tp, opti.maxseg);
842
843 /*
844 * Initialize the initial congestion window. If we
845 * had to retransmit the SYN, we must initialize cwnd
846 * to 1 segment (i.e. the Loss Window).
847 */
848 if (tp->t_flags & TF_SYN_REXMT)
849 tp->snd_cwnd = tp->t_peermss;
850 else
851 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
852 tp->t_peermss);
853
854 tcp_rmx_rtt(tp);
855 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
856 tcpstat.tcps_connects++;
857 soisconnected(so);
858 tcp_established(tp);
859 /* Do window scaling on this connection? */
860 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
861 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
862 tp->snd_scale = tp->requested_s_scale;
863 tp->rcv_scale = tp->request_r_scale;
864 }
865 TCP_REASS_LOCK(tp);
866 (void) tcp_reass(tp, (struct tcpiphdr *)0,
867 (struct mbuf *)0);
868 TCP_REASS_UNLOCK(tp);
869 /*
870 * if we didn't have to retransmit the SYN,
871 * use its rtt as our initial srtt & rtt var.
872 */
873 if (tp->t_rtt)
874 tcp_xmit_timer(tp, tp->t_rtt);
875 } else
876 tp->t_state = TCPS_SYN_RECEIVED;
877
878 /*
879 * Advance ti->ti_seq to correspond to first data byte.
880 * If data, trim to stay within window,
881 * dropping FIN if necessary.
882 */
883 ti->ti_seq++;
884 if (ti->ti_len > tp->rcv_wnd) {
885 todrop = ti->ti_len - tp->rcv_wnd;
886 m_adj(m, -todrop);
887 ti->ti_len = tp->rcv_wnd;
888 tiflags &= ~TH_FIN;
889 tcpstat.tcps_rcvpackafterwin++;
890 tcpstat.tcps_rcvbyteafterwin += todrop;
891 }
892 tp->snd_wl1 = ti->ti_seq - 1;
893 tp->rcv_up = ti->ti_seq;
894 goto step6;
895
896 /*
897 * If the state is SYN_RECEIVED:
898 * If seg contains an ACK, but not for our SYN, drop the input
899 * and generate an RST. See page 36, rfc793
900 */
901 case TCPS_SYN_RECEIVED:
902 if ((tiflags & TH_ACK) &&
903 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
904 SEQ_GT(ti->ti_ack, tp->snd_max)))
905 goto dropwithreset;
906 break;
907 }
908
909 /*
910 * States other than LISTEN or SYN_SENT.
911 * First check timestamp, if present.
912 * Then check that at least some bytes of segment are within
913 * receive window. If segment begins before rcv_nxt,
914 * drop leading data (and SYN); if nothing left, just ack.
915 *
916 * RFC 1323 PAWS: If we have a timestamp reply on this segment
917 * and it's less than ts_recent, drop it.
918 */
919 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
920 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
921
922 /* Check to see if ts_recent is over 24 days old. */
923 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
924 /*
925 * Invalidate ts_recent. If this segment updates
926 * ts_recent, the age will be reset later and ts_recent
927 * will get a valid value. If it does not, setting
928 * ts_recent to zero will at least satisfy the
929 * requirement that zero be placed in the timestamp
930 * echo reply when ts_recent isn't valid. The
931 * age isn't reset until we get a valid ts_recent
932 * because we don't want out-of-order segments to be
933 * dropped when ts_recent is old.
934 */
935 tp->ts_recent = 0;
936 } else {
937 tcpstat.tcps_rcvduppack++;
938 tcpstat.tcps_rcvdupbyte += ti->ti_len;
939 tcpstat.tcps_pawsdrop++;
940 goto dropafterack;
941 }
942 }
943
944 todrop = tp->rcv_nxt - ti->ti_seq;
945 if (todrop > 0) {
946 if (tiflags & TH_SYN) {
947 tiflags &= ~TH_SYN;
948 ti->ti_seq++;
949 if (ti->ti_urp > 1)
950 ti->ti_urp--;
951 else {
952 tiflags &= ~TH_URG;
953 ti->ti_urp = 0;
954 }
955 todrop--;
956 }
957 if (todrop > ti->ti_len ||
958 (todrop == ti->ti_len && (tiflags & TH_FIN) == 0)) {
959 /*
960 * Any valid FIN must be to the left of the window.
961 * At this point the FIN must be a duplicate or
962 * out of sequence; drop it.
963 */
964 tiflags &= ~TH_FIN;
965 /*
966 * Send an ACK to resynchronize and drop any data.
967 * But keep on processing for RST or ACK.
968 */
969 tp->t_flags |= TF_ACKNOW;
970 todrop = ti->ti_len;
971 tcpstat.tcps_rcvdupbyte += todrop;
972 tcpstat.tcps_rcvduppack++;
973 } else {
974 tcpstat.tcps_rcvpartduppack++;
975 tcpstat.tcps_rcvpartdupbyte += todrop;
976 }
977 m_adj(m, todrop);
978 ti->ti_seq += todrop;
979 ti->ti_len -= todrop;
980 if (ti->ti_urp > todrop)
981 ti->ti_urp -= todrop;
982 else {
983 tiflags &= ~TH_URG;
984 ti->ti_urp = 0;
985 }
986 }
987
988 /*
989 * If new data are received on a connection after the
990 * user processes are gone, then RST the other end.
991 */
992 if ((so->so_state & SS_NOFDREF) &&
993 tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
994 tp = tcp_close(tp);
995 tcpstat.tcps_rcvafterclose++;
996 goto dropwithreset;
997 }
998
999 /*
1000 * If segment ends after window, drop trailing data
1001 * (and PUSH and FIN); if nothing left, just ACK.
1002 */
1003 todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
1004 if (todrop > 0) {
1005 tcpstat.tcps_rcvpackafterwin++;
1006 if (todrop >= ti->ti_len) {
1007 tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
1008 /*
1009 * If a new connection request is received
1010 * while in TIME_WAIT, drop the old connection
1011 * and start over if the sequence numbers
1012 * are above the previous ones.
1013 */
1014 if (tiflags & TH_SYN &&
1015 tp->t_state == TCPS_TIME_WAIT &&
1016 SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
1017 iss = tcp_new_iss(tp, sizeof(struct tcpcb),
1018 tp->snd_nxt);
1019 tp = tcp_close(tp);
1020 /*
1021 * We have already advanced the mbuf
1022 * pointers past the IP+TCP headers and
1023 * options. Restore those pointers before
1024 * attempting to use the TCP header again.
1025 */
1026 m->m_data -= hdroptlen;
1027 m->m_len += hdroptlen;
1028 goto findpcb;
1029 }
1030 /*
1031 * If window is closed can only take segments at
1032 * window edge, and have to drop data and PUSH from
1033 * incoming segments. Continue processing, but
1034 * remember to ack. Otherwise, drop segment
1035 * and ack.
1036 */
1037 if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
1038 tp->t_flags |= TF_ACKNOW;
1039 tcpstat.tcps_rcvwinprobe++;
1040 } else
1041 goto dropafterack;
1042 } else
1043 tcpstat.tcps_rcvbyteafterwin += todrop;
1044 m_adj(m, -todrop);
1045 ti->ti_len -= todrop;
1046 tiflags &= ~(TH_PUSH|TH_FIN);
1047 }
1048
1049 /*
1050 * If last ACK falls within this segment's sequence numbers,
1051 * and the timestamp is newer, record it.
1052 */
1053 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1054 SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
1055 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
1056 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1057 tp->ts_recent_age = tcp_now;
1058 tp->ts_recent = opti.ts_val;
1059 }
1060
1061 /*
1062 * If the RST bit is set examine the state:
1063 * SYN_RECEIVED STATE:
1064 * If passive open, return to LISTEN state.
1065 * If active open, inform user that connection was refused.
1066 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1067 * Inform user that connection was reset, and close tcb.
1068 * CLOSING, LAST_ACK, TIME_WAIT STATES
1069 * Close the tcb.
1070 */
1071 if (tiflags&TH_RST) switch (tp->t_state) {
1072
1073 case TCPS_SYN_RECEIVED:
1074 so->so_error = ECONNREFUSED;
1075 goto close;
1076
1077 case TCPS_ESTABLISHED:
1078 case TCPS_FIN_WAIT_1:
1079 case TCPS_FIN_WAIT_2:
1080 case TCPS_CLOSE_WAIT:
1081 so->so_error = ECONNRESET;
1082 close:
1083 tp->t_state = TCPS_CLOSED;
1084 tcpstat.tcps_drops++;
1085 tp = tcp_close(tp);
1086 goto drop;
1087
1088 case TCPS_CLOSING:
1089 case TCPS_LAST_ACK:
1090 case TCPS_TIME_WAIT:
1091 tp = tcp_close(tp);
1092 goto drop;
1093 }
1094
1095 /*
1096 * If a SYN is in the window, then this is an
1097 * error and we send an RST and drop the connection.
1098 */
1099 if (tiflags & TH_SYN) {
1100 tp = tcp_drop(tp, ECONNRESET);
1101 goto dropwithreset;
1102 }
1103
1104 /*
1105 * If the ACK bit is off we drop the segment and return.
1106 */
1107 if ((tiflags & TH_ACK) == 0) {
1108 if (tp->t_flags & TF_ACKNOW)
1109 goto dropafterack;
1110 else
1111 goto drop;
1112 }
1113
1114 /*
1115 * Ack processing.
1116 */
1117 switch (tp->t_state) {
1118
1119 /*
1120 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1121 * ESTABLISHED state and continue processing, otherwise
1122 * send an RST.
1123 */
1124 case TCPS_SYN_RECEIVED:
1125 if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
1126 SEQ_GT(ti->ti_ack, tp->snd_max))
1127 goto dropwithreset;
1128 tcpstat.tcps_connects++;
1129 soisconnected(so);
1130 tcp_established(tp);
1131 /* Do window scaling? */
1132 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1133 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1134 tp->snd_scale = tp->requested_s_scale;
1135 tp->rcv_scale = tp->request_r_scale;
1136 }
1137 TCP_REASS_LOCK(tp);
1138 (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
1139 TCP_REASS_UNLOCK(tp);
1140 tp->snd_wl1 = ti->ti_seq - 1;
1141 /* fall into ... */
1142
1143 /*
1144 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1145 * ACKs. If the ack is in the range
1146 * tp->snd_una < ti->ti_ack <= tp->snd_max
1147 * then advance tp->snd_una to ti->ti_ack and drop
1148 * data from the retransmission queue. If this ACK reflects
1149 * more up to date window information we update our window information.
1150 */
1151 case TCPS_ESTABLISHED:
1152 case TCPS_FIN_WAIT_1:
1153 case TCPS_FIN_WAIT_2:
1154 case TCPS_CLOSE_WAIT:
1155 case TCPS_CLOSING:
1156 case TCPS_LAST_ACK:
1157 case TCPS_TIME_WAIT:
1158
1159 if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
1160 if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
1161 tcpstat.tcps_rcvdupack++;
1162 /*
1163 * If we have outstanding data (other than
1164 * a window probe), this is a completely
1165 * duplicate ack (ie, window info didn't
1166 * change), the ack is the biggest we've
1167 * seen and we've seen exactly our rexmt
1168 * threshhold of them, assume a packet
1169 * has been dropped and retransmit it.
1170 * Kludge snd_nxt & the congestion
1171 * window so we send only this one
1172 * packet.
1173 *
1174 * We know we're losing at the current
1175 * window size so do congestion avoidance
1176 * (set ssthresh to half the current window
1177 * and pull our congestion window back to
1178 * the new ssthresh).
1179 *
1180 * Dup acks mean that packets have left the
1181 * network (they're now cached at the receiver)
1182 * so bump cwnd by the amount in the receiver
1183 * to keep a constant cwnd packets in the
1184 * network.
1185 */
1186 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1187 ti->ti_ack != tp->snd_una)
1188 tp->t_dupacks = 0;
1189 else if (++tp->t_dupacks == tcprexmtthresh) {
1190 tcp_seq onxt = tp->snd_nxt;
1191 u_int win =
1192 min(tp->snd_wnd, tp->snd_cwnd) /
1193 2 / tp->t_segsz;
1194 if (SEQ_LT(ti->ti_ack, tp->snd_recover)) {
1195 /*
1196 * False fast retransmit after
1197 * timeout. Do not cut window.
1198 */
1199 tp->snd_cwnd += tp->t_segsz;
1200 tp->t_dupacks = 0;
1201 (void) tcp_output(tp);
1202 goto drop;
1203 }
1204
1205 if (win < 2)
1206 win = 2;
1207 tp->snd_ssthresh = win * tp->t_segsz;
1208 tp->snd_recover = tp->snd_max;
1209 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1210 tp->t_rtt = 0;
1211 tp->snd_nxt = ti->ti_ack;
1212 tp->snd_cwnd = tp->t_segsz;
1213 (void) tcp_output(tp);
1214 tp->snd_cwnd = tp->snd_ssthresh +
1215 tp->t_segsz * tp->t_dupacks;
1216 if (SEQ_GT(onxt, tp->snd_nxt))
1217 tp->snd_nxt = onxt;
1218 goto drop;
1219 } else if (tp->t_dupacks > tcprexmtthresh) {
1220 tp->snd_cwnd += tp->t_segsz;
1221 (void) tcp_output(tp);
1222 goto drop;
1223 }
1224 } else
1225 tp->t_dupacks = 0;
1226 break;
1227 }
1228 /*
1229 * If the congestion window was inflated to account
1230 * for the other side's cached packets, retract it.
1231 */
1232 if (!tcp_do_newreno) {
1233 if (tp->t_dupacks >= tcprexmtthresh &&
1234 tp->snd_cwnd > tp->snd_ssthresh)
1235 tp->snd_cwnd = tp->snd_ssthresh;
1236 tp->t_dupacks = 0;
1237 } else if (tp->t_dupacks >= tcprexmtthresh
1238 && !tcp_newreno(tp, ti)) {
1239 tp->snd_cwnd = tp->snd_ssthresh;
1240 /*
1241 * Window inflation should have left us with approx.
1242 * snd_ssthresh outstanding data. But in case we
1243 * would be inclined to send a burst, better to do
1244 * it via the slow start mechanism.
1245 */
1246 if (SEQ_SUB(tp->snd_max, ti->ti_ack) < tp->snd_ssthresh)
1247 tp->snd_cwnd = SEQ_SUB(tp->snd_max, ti->ti_ack)
1248 + tp->t_segsz;
1249 tp->t_dupacks = 0;
1250 }
1251 if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
1252 tcpstat.tcps_rcvacktoomuch++;
1253 goto dropafterack;
1254 }
1255 acked = ti->ti_ack - tp->snd_una;
1256 tcpstat.tcps_rcvackpack++;
1257 tcpstat.tcps_rcvackbyte += acked;
1258
1259 /*
1260 * If we have a timestamp reply, update smoothed
1261 * round trip time. If no timestamp is present but
1262 * transmit timer is running and timed sequence
1263 * number was acked, update smoothed round trip time.
1264 * Since we now have an rtt measurement, cancel the
1265 * timer backoff (cf., Phil Karn's retransmit alg.).
1266 * Recompute the initial retransmit timer.
1267 */
1268 if (opti.ts_present)
1269 tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
1270 else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
1271 tcp_xmit_timer(tp,tp->t_rtt);
1272
1273 /*
1274 * If all outstanding data is acked, stop retransmit
1275 * timer and remember to restart (more output or persist).
1276 * If there is more data to be acked, restart retransmit
1277 * timer, using current (possibly backed-off) value.
1278 */
1279 if (ti->ti_ack == tp->snd_max) {
1280 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1281 needoutput = 1;
1282 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1283 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1284 /*
1285 * When new data is acked, open the congestion window.
1286 * If the window gives us less than ssthresh packets
1287 * in flight, open exponentially (segsz per packet).
1288 * Otherwise open linearly: segsz per window
1289 * (segsz^2 / cwnd per packet), plus a constant
1290 * fraction of a packet (segsz/8) to help larger windows
1291 * open quickly enough.
1292 */
1293 {
1294 register u_int cw = tp->snd_cwnd;
1295 register u_int incr = tp->t_segsz;
1296
1297 if (cw > tp->snd_ssthresh)
1298 incr = incr * incr / cw;
1299 if (!tcp_do_newreno || SEQ_GEQ(ti->ti_ack, tp->snd_recover))
1300 tp->snd_cwnd = min(cw + incr,TCP_MAXWIN<<tp->snd_scale);
1301 }
1302 if (acked > so->so_snd.sb_cc) {
1303 tp->snd_wnd -= so->so_snd.sb_cc;
1304 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1305 ourfinisacked = 1;
1306 } else {
1307 sbdrop(&so->so_snd, acked);
1308 tp->snd_wnd -= acked;
1309 ourfinisacked = 0;
1310 }
1311 sowwakeup(so);
1312 tp->snd_una = ti->ti_ack;
1313 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1314 tp->snd_nxt = tp->snd_una;
1315
1316 switch (tp->t_state) {
1317
1318 /*
1319 * In FIN_WAIT_1 STATE in addition to the processing
1320 * for the ESTABLISHED state if our FIN is now acknowledged
1321 * then enter FIN_WAIT_2.
1322 */
1323 case TCPS_FIN_WAIT_1:
1324 if (ourfinisacked) {
1325 /*
1326 * If we can't receive any more
1327 * data, then closing user can proceed.
1328 * Starting the timer is contrary to the
1329 * specification, but if we don't get a FIN
1330 * we'll hang forever.
1331 */
1332 if (so->so_state & SS_CANTRCVMORE) {
1333 soisdisconnected(so);
1334 if (tcp_maxidle > 0)
1335 TCP_TIMER_ARM(tp, TCPT_2MSL,
1336 tcp_maxidle);
1337 }
1338 tp->t_state = TCPS_FIN_WAIT_2;
1339 }
1340 break;
1341
1342 /*
1343 * In CLOSING STATE in addition to the processing for
1344 * the ESTABLISHED state if the ACK acknowledges our FIN
1345 * then enter the TIME-WAIT state, otherwise ignore
1346 * the segment.
1347 */
1348 case TCPS_CLOSING:
1349 if (ourfinisacked) {
1350 tp->t_state = TCPS_TIME_WAIT;
1351 tcp_canceltimers(tp);
1352 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1353 soisdisconnected(so);
1354 }
1355 break;
1356
1357 /*
1358 * In LAST_ACK, we may still be waiting for data to drain
1359 * and/or to be acked, as well as for the ack of our FIN.
1360 * If our FIN is now acknowledged, delete the TCB,
1361 * enter the closed state and return.
1362 */
1363 case TCPS_LAST_ACK:
1364 if (ourfinisacked) {
1365 tp = tcp_close(tp);
1366 goto drop;
1367 }
1368 break;
1369
1370 /*
1371 * In TIME_WAIT state the only thing that should arrive
1372 * is a retransmission of the remote FIN. Acknowledge
1373 * it and restart the finack timer.
1374 */
1375 case TCPS_TIME_WAIT:
1376 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1377 goto dropafterack;
1378 }
1379 }
1380
1381 step6:
1382 /*
1383 * Update window information.
1384 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1385 */
1386 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, ti->ti_seq) ||
1387 (tp->snd_wl1 == ti->ti_seq && SEQ_LT(tp->snd_wl2, ti->ti_ack)) ||
1388 (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))) {
1389 /* keep track of pure window updates */
1390 if (ti->ti_len == 0 &&
1391 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
1392 tcpstat.tcps_rcvwinupd++;
1393 tp->snd_wnd = tiwin;
1394 tp->snd_wl1 = ti->ti_seq;
1395 tp->snd_wl2 = ti->ti_ack;
1396 if (tp->snd_wnd > tp->max_sndwnd)
1397 tp->max_sndwnd = tp->snd_wnd;
1398 needoutput = 1;
1399 }
1400
1401 /*
1402 * Process segments with URG.
1403 */
1404 if ((tiflags & TH_URG) && ti->ti_urp &&
1405 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1406 /*
1407 * This is a kludge, but if we receive and accept
1408 * random urgent pointers, we'll crash in
1409 * soreceive. It's hard to imagine someone
1410 * actually wanting to send this much urgent data.
1411 */
1412 if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
1413 ti->ti_urp = 0; /* XXX */
1414 tiflags &= ~TH_URG; /* XXX */
1415 goto dodata; /* XXX */
1416 }
1417 /*
1418 * If this segment advances the known urgent pointer,
1419 * then mark the data stream. This should not happen
1420 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1421 * a FIN has been received from the remote side.
1422 * In these states we ignore the URG.
1423 *
1424 * According to RFC961 (Assigned Protocols),
1425 * the urgent pointer points to the last octet
1426 * of urgent data. We continue, however,
1427 * to consider it to indicate the first octet
1428 * of data past the urgent section as the original
1429 * spec states (in one of two places).
1430 */
1431 if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1432 tp->rcv_up = ti->ti_seq + ti->ti_urp;
1433 so->so_oobmark = so->so_rcv.sb_cc +
1434 (tp->rcv_up - tp->rcv_nxt) - 1;
1435 if (so->so_oobmark == 0)
1436 so->so_state |= SS_RCVATMARK;
1437 sohasoutofband(so);
1438 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1439 }
1440 /*
1441 * Remove out of band data so doesn't get presented to user.
1442 * This can happen independent of advancing the URG pointer,
1443 * but if two URG's are pending at once, some out-of-band
1444 * data may creep in... ick.
1445 */
1446 if (ti->ti_urp <= (u_int16_t) ti->ti_len
1447 #ifdef SO_OOBINLINE
1448 && (so->so_options & SO_OOBINLINE) == 0
1449 #endif
1450 )
1451 tcp_pulloutofband(so, ti, m);
1452 } else
1453 /*
1454 * If no out of band data is expected,
1455 * pull receive urgent pointer along
1456 * with the receive window.
1457 */
1458 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1459 tp->rcv_up = tp->rcv_nxt;
1460 dodata: /* XXX */
1461
1462 /*
1463 * Process the segment text, merging it into the TCP sequencing queue,
1464 * and arranging for acknowledgment of receipt if necessary.
1465 * This process logically involves adjusting tp->rcv_wnd as data
1466 * is presented to the user (this happens in tcp_usrreq.c,
1467 * case PRU_RCVD). If a FIN has already been received on this
1468 * connection then we just ignore the text.
1469 */
1470 if ((ti->ti_len || (tiflags & TH_FIN)) &&
1471 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1472 TCP_REASS(tp, ti, m, so, tiflags);
1473 /*
1474 * Note the amount of data that peer has sent into
1475 * our window, in order to estimate the sender's
1476 * buffer size.
1477 */
1478 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1479 } else {
1480 m_freem(m);
1481 tiflags &= ~TH_FIN;
1482 }
1483
1484 /*
1485 * If FIN is received ACK the FIN and let the user know
1486 * that the connection is closing. Ignore a FIN received before
1487 * the connection is fully established.
1488 */
1489 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
1490 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1491 socantrcvmore(so);
1492 tp->t_flags |= TF_ACKNOW;
1493 tp->rcv_nxt++;
1494 }
1495 switch (tp->t_state) {
1496
1497 /*
1498 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
1499 */
1500 case TCPS_ESTABLISHED:
1501 tp->t_state = TCPS_CLOSE_WAIT;
1502 break;
1503
1504 /*
1505 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1506 * enter the CLOSING state.
1507 */
1508 case TCPS_FIN_WAIT_1:
1509 tp->t_state = TCPS_CLOSING;
1510 break;
1511
1512 /*
1513 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1514 * starting the time-wait timer, turning off the other
1515 * standard timers.
1516 */
1517 case TCPS_FIN_WAIT_2:
1518 tp->t_state = TCPS_TIME_WAIT;
1519 tcp_canceltimers(tp);
1520 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1521 soisdisconnected(so);
1522 break;
1523
1524 /*
1525 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1526 */
1527 case TCPS_TIME_WAIT:
1528 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1529 break;
1530 }
1531 }
1532 if (so->so_options & SO_DEBUG)
1533 tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1534
1535 /*
1536 * Return any desired output.
1537 */
1538 if (needoutput || (tp->t_flags & TF_ACKNOW))
1539 (void) tcp_output(tp);
1540 return;
1541
1542 badsyn:
1543 /*
1544 * Received a bad SYN. Increment counters and dropwithreset.
1545 */
1546 tcpstat.tcps_badsyn++;
1547 tp = NULL;
1548 goto dropwithreset;
1549
1550 dropafterack:
1551 /*
1552 * Generate an ACK dropping incoming segment if it occupies
1553 * sequence space, where the ACK reflects our state.
1554 */
1555 if (tiflags & TH_RST)
1556 goto drop;
1557 m_freem(m);
1558 tp->t_flags |= TF_ACKNOW;
1559 (void) tcp_output(tp);
1560 return;
1561
1562 dropwithreset:
1563 /*
1564 * Generate a RST, dropping incoming segment.
1565 * Make ACK acceptable to originator of segment.
1566 * Don't bother to respond if destination was broadcast/multicast.
1567 */
1568 if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) ||
1569 IN_MULTICAST(ti->ti_dst.s_addr))
1570 goto drop;
1571 if (tiflags & TH_ACK)
1572 (void)tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1573 else {
1574 if (tiflags & TH_SYN)
1575 ti->ti_len++;
1576 (void)tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1577 TH_RST|TH_ACK);
1578 }
1579 return;
1580
1581 drop:
1582 /*
1583 * Drop space held by incoming segment and return.
1584 */
1585 if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1586 tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1587 m_freem(m);
1588 return;
1589 }
1590
1591 void
1592 tcp_dooptions(tp, cp, cnt, ti, oi)
1593 struct tcpcb *tp;
1594 u_char *cp;
1595 int cnt;
1596 struct tcpiphdr *ti;
1597 struct tcp_opt_info *oi;
1598 {
1599 u_int16_t mss;
1600 int opt, optlen;
1601
1602 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1603 opt = cp[0];
1604 if (opt == TCPOPT_EOL)
1605 break;
1606 if (opt == TCPOPT_NOP)
1607 optlen = 1;
1608 else {
1609 optlen = cp[1];
1610 if (optlen <= 0)
1611 break;
1612 }
1613 switch (opt) {
1614
1615 default:
1616 continue;
1617
1618 case TCPOPT_MAXSEG:
1619 if (optlen != TCPOLEN_MAXSEG)
1620 continue;
1621 if (!(ti->ti_flags & TH_SYN))
1622 continue;
1623 bcopy(cp + 2, &mss, sizeof(mss));
1624 oi->maxseg = ntohs(mss);
1625 break;
1626
1627 case TCPOPT_WINDOW:
1628 if (optlen != TCPOLEN_WINDOW)
1629 continue;
1630 if (!(ti->ti_flags & TH_SYN))
1631 continue;
1632 tp->t_flags |= TF_RCVD_SCALE;
1633 tp->requested_s_scale = cp[2];
1634 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
1635 log(LOG_ERR, "TCP: invalid wscale %d from "
1636 "0x%08x, assuming %d\n",
1637 tp->requested_s_scale,
1638 ntohl(ti->ti_src.s_addr),
1639 TCP_MAX_WINSHIFT);
1640 tp->requested_s_scale = TCP_MAX_WINSHIFT;
1641 }
1642 break;
1643
1644 case TCPOPT_TIMESTAMP:
1645 if (optlen != TCPOLEN_TIMESTAMP)
1646 continue;
1647 oi->ts_present = 1;
1648 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
1649 NTOHL(oi->ts_val);
1650 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
1651 NTOHL(oi->ts_ecr);
1652
1653 /*
1654 * A timestamp received in a SYN makes
1655 * it ok to send timestamp requests and replies.
1656 */
1657 if (ti->ti_flags & TH_SYN) {
1658 tp->t_flags |= TF_RCVD_TSTMP;
1659 tp->ts_recent = oi->ts_val;
1660 tp->ts_recent_age = tcp_now;
1661 }
1662 break;
1663 case TCPOPT_SACK_PERMITTED:
1664 if (optlen != TCPOLEN_SACK_PERMITTED)
1665 continue;
1666 if (!(ti->ti_flags & TH_SYN))
1667 continue;
1668 tp->t_flags &= ~TF_CANT_TXSACK;
1669 break;
1670
1671 case TCPOPT_SACK:
1672 if (tp->t_flags & TF_IGNR_RXSACK)
1673 continue;
1674 if (optlen % 8 != 2 || optlen < 10)
1675 continue;
1676 cp += 2;
1677 optlen -= 2;
1678 for (; optlen > 0; cp -= 8, optlen -= 8) {
1679 tcp_seq lwe, rwe;
1680 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
1681 NTOHL(lwe);
1682 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
1683 NTOHL(rwe);
1684 /* tcp_mark_sacked(tp, lwe, rwe); */
1685 }
1686 break;
1687 }
1688 }
1689 }
1690
1691 /*
1692 * Pull out of band byte out of a segment so
1693 * it doesn't appear in the user's data queue.
1694 * It is still reflected in the segment length for
1695 * sequencing purposes.
1696 */
1697 void
1698 tcp_pulloutofband(so, ti, m)
1699 struct socket *so;
1700 struct tcpiphdr *ti;
1701 register struct mbuf *m;
1702 {
1703 int cnt = ti->ti_urp - 1;
1704
1705 while (cnt >= 0) {
1706 if (m->m_len > cnt) {
1707 char *cp = mtod(m, caddr_t) + cnt;
1708 struct tcpcb *tp = sototcpcb(so);
1709
1710 tp->t_iobc = *cp;
1711 tp->t_oobflags |= TCPOOB_HAVEDATA;
1712 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1713 m->m_len--;
1714 return;
1715 }
1716 cnt -= m->m_len;
1717 m = m->m_next;
1718 if (m == 0)
1719 break;
1720 }
1721 panic("tcp_pulloutofband");
1722 }
1723
1724 /*
1725 * Collect new round-trip time estimate
1726 * and update averages and current timeout.
1727 */
1728 void
1729 tcp_xmit_timer(tp, rtt)
1730 register struct tcpcb *tp;
1731 short rtt;
1732 {
1733 register short delta;
1734 short rttmin;
1735
1736 tcpstat.tcps_rttupdated++;
1737 --rtt;
1738 if (tp->t_srtt != 0) {
1739 /*
1740 * srtt is stored as fixed point with 3 bits after the
1741 * binary point (i.e., scaled by 8). The following magic
1742 * is equivalent to the smoothing algorithm in rfc793 with
1743 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1744 * point). Adjust rtt to origin 0.
1745 */
1746 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
1747 if ((tp->t_srtt += delta) <= 0)
1748 tp->t_srtt = 1 << 2;
1749 /*
1750 * We accumulate a smoothed rtt variance (actually, a
1751 * smoothed mean difference), then set the retransmit
1752 * timer to smoothed rtt + 4 times the smoothed variance.
1753 * rttvar is stored as fixed point with 2 bits after the
1754 * binary point (scaled by 4). The following is
1755 * equivalent to rfc793 smoothing with an alpha of .75
1756 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
1757 * rfc793's wired-in beta.
1758 */
1759 if (delta < 0)
1760 delta = -delta;
1761 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1762 if ((tp->t_rttvar += delta) <= 0)
1763 tp->t_rttvar = 1 << 2;
1764 } else {
1765 /*
1766 * No rtt measurement yet - use the unsmoothed rtt.
1767 * Set the variance to half the rtt (so our first
1768 * retransmit happens at 3*rtt).
1769 */
1770 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
1771 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
1772 }
1773 tp->t_rtt = 0;
1774 tp->t_rxtshift = 0;
1775
1776 /*
1777 * the retransmit should happen at rtt + 4 * rttvar.
1778 * Because of the way we do the smoothing, srtt and rttvar
1779 * will each average +1/2 tick of bias. When we compute
1780 * the retransmit timer, we want 1/2 tick of rounding and
1781 * 1 extra tick because of +-1/2 tick uncertainty in the
1782 * firing of the timer. The bias will give us exactly the
1783 * 1.5 tick we need. But, because the bias is
1784 * statistical, we have to test that we don't drop below
1785 * the minimum feasible timer (which is 2 ticks).
1786 */
1787 if (tp->t_rttmin > rtt + 2)
1788 rttmin = tp->t_rttmin;
1789 else
1790 rttmin = rtt + 2;
1791 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
1792
1793 /*
1794 * We received an ack for a packet that wasn't retransmitted;
1795 * it is probably safe to discard any error indications we've
1796 * received recently. This isn't quite right, but close enough
1797 * for now (a route might have failed after we sent a segment,
1798 * and the return path might not be symmetrical).
1799 */
1800 tp->t_softerror = 0;
1801 }
1802
1803 /*
1804 * Checks for partial ack. If partial ack arrives, force the retransmission
1805 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
1806 * 1. By setting snd_nxt to ti_ack, this forces retransmission timer to
1807 * be started again. If the ack advances at least to tp->snd_recover, return 0.
1808 */
1809 int
1810 tcp_newreno(tp, ti)
1811 struct tcpcb *tp;
1812 struct tcpiphdr *ti;
1813 {
1814 if (SEQ_LT(ti->ti_ack, tp->snd_recover)) {
1815 tcp_seq onxt = tp->snd_nxt;
1816 tcp_seq ouna = tp->snd_una; /* Haven't updated snd_una yet*/
1817 u_long ocwnd = tp->snd_cwnd;
1818 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1819 tp->t_rtt = 0;
1820 tp->snd_nxt = ti->ti_ack;
1821 tp->snd_cwnd = tp->t_segsz;
1822 tp->snd_una = ti->ti_ack;
1823 (void) tcp_output(tp);
1824 tp->snd_cwnd = ocwnd;
1825 tp->snd_una = ouna;
1826 if (SEQ_GT(onxt, tp->snd_nxt))
1827 tp->snd_nxt = onxt;
1828 /*
1829 * Partial window deflation. Relies on fact that tp->snd_una
1830 * not updated yet.
1831 */
1832 tp->snd_cwnd -= (ti->ti_ack - tp->snd_una - tp->t_segsz);
1833 return 1;
1834 }
1835 return 0;
1836 }
1837
1838
1839 /*
1840 * TCP compressed state engine. Currently used to hold compressed
1841 * state for SYN_RECEIVED.
1842 */
1843
1844 u_long syn_cache_count;
1845 u_int32_t syn_hash1, syn_hash2;
1846
1847 #define SYN_HASH(sa, sp, dp) \
1848 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
1849 ((u_int32_t)(sp)))^syn_hash2)))
1850
1851 LIST_HEAD(, syn_cache_head) tcp_syn_cache_queue;
1852
1853 #define SYN_CACHE_RM(sc, scp) \
1854 do { \
1855 TAILQ_REMOVE(&(scp)->sch_queue, (sc), sc_queue); \
1856 if (--(scp)->sch_length == 0) \
1857 LIST_REMOVE((scp), sch_headq); \
1858 syn_cache_count--; \
1859 } while (0)
1860
1861 #define SYN_CACHE_PUT(sc) \
1862 do { \
1863 if ((sc)->sc_ipopts) \
1864 (void) m_free((sc)->sc_ipopts); \
1865 if ((sc)->sc_route.ro_rt != NULL) \
1866 RTFREE((sc)->sc_route.ro_rt); \
1867 pool_put(&syn_cache_pool, (sc)); \
1868 } while (0)
1869
1870 struct pool syn_cache_pool;
1871
1872 void
1873 syn_cache_init()
1874 {
1875 int i;
1876
1877 /* Initialize the hash bucket queues. */
1878 for (i = 0; i < tcp_syn_cache_size; i++)
1879 TAILQ_INIT(&tcp_syn_cache[i].sch_queue);
1880
1881 /* Initialize the active hash bucket cache. */
1882 LIST_INIT(&tcp_syn_cache_queue);
1883
1884 /* Initialize the syn cache pool. */
1885 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
1886 "synpl", 0, NULL, NULL, M_PCB);
1887 }
1888
1889 void
1890 syn_cache_insert(sc)
1891 struct syn_cache *sc;
1892 {
1893 struct syn_cache_head *scp, *scp2, *sce;
1894 struct syn_cache *sc2;
1895 int s;
1896
1897 /*
1898 * If there are no entries in the hash table, reinitialize
1899 * the hash secrets.
1900 */
1901 if (syn_cache_count == 0) {
1902 struct timeval tv;
1903 microtime(&tv);
1904 syn_hash1 = random() ^ (u_long)≻
1905 syn_hash2 = random() ^ tv.tv_usec;
1906 }
1907
1908 sc->sc_hash = SYN_HASH(&sc->sc_src, sc->sc_sport, sc->sc_dport);
1909 scp = &tcp_syn_cache[sc->sc_hash % tcp_syn_cache_size];
1910
1911 /*
1912 * Make sure that we don't overflow the per-bucket
1913 * limit or the total cache size limit.
1914 */
1915 s = splsoftnet();
1916 if (scp->sch_length >= tcp_syn_bucket_limit) {
1917 tcpstat.tcps_sc_bucketoverflow++;
1918 /*
1919 * The bucket is full. Toss the first (i.e. oldest)
1920 * element in this bucket.
1921 */
1922 sc2 = TAILQ_FIRST(&scp->sch_queue);
1923 SYN_CACHE_RM(sc2, scp);
1924 SYN_CACHE_PUT(sc2);
1925 } else if (syn_cache_count >= tcp_syn_cache_limit) {
1926 tcpstat.tcps_sc_overflowed++;
1927 /*
1928 * The cache is full. Toss the first (i.e. oldest)
1929 * element in the first non-empty bucket we can find.
1930 */
1931 scp2 = scp;
1932 if (TAILQ_FIRST(&scp2->sch_queue) == NULL) {
1933 sce = &tcp_syn_cache[tcp_syn_cache_size];
1934 for (++scp2; scp2 != scp; scp2++) {
1935 if (scp2 >= sce)
1936 scp2 = &tcp_syn_cache[0];
1937 if (TAILQ_FIRST(&scp2->sch_queue) != NULL)
1938 break;
1939 }
1940 }
1941 sc2 = TAILQ_FIRST(&scp2->sch_queue);
1942 if (sc2 == NULL) {
1943 SYN_CACHE_PUT(sc);
1944 return;
1945 }
1946 SYN_CACHE_RM(sc2, scp2);
1947 SYN_CACHE_PUT(sc2);
1948 }
1949
1950 /* Set entry's timer. */
1951 PRT_SLOW_ARM(sc->sc_timer, tcp_syn_cache_timeo);
1952
1953 /* Put it into the bucket. */
1954 TAILQ_INSERT_TAIL(&scp->sch_queue, sc, sc_queue);
1955 if (++scp->sch_length == 1)
1956 LIST_INSERT_HEAD(&tcp_syn_cache_queue, scp, sch_headq);
1957 syn_cache_count++;
1958
1959 tcpstat.tcps_sc_added++;
1960 splx(s);
1961 }
1962
1963 /*
1964 * Walk down the cache list, looking for expired entries in each bucket.
1965 */
1966 void
1967 syn_cache_timer()
1968 {
1969 struct syn_cache_head *scp, *nscp;
1970 struct syn_cache *sc, *nsc;
1971 int s;
1972
1973 s = splsoftnet();
1974 for (scp = LIST_FIRST(&tcp_syn_cache_queue); scp != NULL; scp = nscp) {
1975 #ifdef DIAGNOSTIC
1976 if (TAILQ_FIRST(&scp->sch_queue) == NULL)
1977 panic("syn_cache_timer: queue inconsistency");
1978 #endif
1979 nscp = LIST_NEXT(scp, sch_headq);
1980 for (sc = TAILQ_FIRST(&scp->sch_queue);
1981 sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_timer);
1982 sc = nsc) {
1983 nsc = TAILQ_NEXT(sc, sc_queue);
1984 tcpstat.tcps_sc_timed_out++;
1985 SYN_CACHE_RM(sc, scp);
1986 SYN_CACHE_PUT(sc);
1987 }
1988 }
1989 splx(s);
1990 }
1991
1992 /*
1993 * Find an entry in the syn cache.
1994 */
1995 struct syn_cache *
1996 syn_cache_lookup(ti, headp)
1997 struct tcpiphdr *ti;
1998 struct syn_cache_head **headp;
1999 {
2000 struct syn_cache *sc;
2001 struct syn_cache_head *scp;
2002 u_int32_t hash;
2003 int s;
2004
2005 hash = SYN_HASH(&ti->ti_src, ti->ti_sport, ti->ti_dport);
2006
2007 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2008 *headp = scp;
2009 s = splsoftnet();
2010 for (sc = TAILQ_FIRST(&scp->sch_queue); sc != NULL;
2011 sc = TAILQ_NEXT(sc, sc_queue)) {
2012 if (sc->sc_hash != hash)
2013 continue;
2014 if (sc->sc_src.s_addr == ti->ti_src.s_addr &&
2015 sc->sc_sport == ti->ti_sport &&
2016 sc->sc_dport == ti->ti_dport &&
2017 sc->sc_dst.s_addr == ti->ti_dst.s_addr) {
2018 splx(s);
2019 return (sc);
2020 }
2021 }
2022 splx(s);
2023 return (NULL);
2024 }
2025
2026 /*
2027 * This function gets called when we receive an ACK for a
2028 * socket in the LISTEN state. We look up the connection
2029 * in the syn cache, and if its there, we pull it out of
2030 * the cache and turn it into a full-blown connection in
2031 * the SYN-RECEIVED state.
2032 *
2033 * The return values may not be immediately obvious, and their effects
2034 * can be subtle, so here they are:
2035 *
2036 * NULL SYN was not found in cache; caller should drop the
2037 * packet and send an RST.
2038 *
2039 * -1 We were unable to create the new connection, and are
2040 * aborting it. An ACK,RST is being sent to the peer
2041 * (unless we got screwey sequence numbners; see below),
2042 * because the 3-way handshake has been completed. Caller
2043 * should not free the mbuf, since we may be using it. If
2044 * we are not, we will free it.
2045 *
2046 * Otherwise, the return value is a pointer to the new socket
2047 * associated with the connection.
2048 */
2049 struct socket *
2050 syn_cache_get(so, m)
2051 struct socket *so;
2052 struct mbuf *m;
2053 {
2054 struct syn_cache *sc;
2055 struct syn_cache_head *scp;
2056 register struct inpcb *inp;
2057 register struct tcpcb *tp = 0;
2058 register struct tcpiphdr *ti;
2059 struct sockaddr_in *sin;
2060 struct mbuf *am;
2061 long win;
2062 int s;
2063
2064 ti = mtod(m, struct tcpiphdr *);
2065 s = splsoftnet();
2066 if ((sc = syn_cache_lookup(ti, &scp)) == NULL) {
2067 splx(s);
2068 return (NULL);
2069 }
2070
2071 win = sbspace(&so->so_rcv);
2072 if (win > TCP_MAXWIN)
2073 win = TCP_MAXWIN;
2074
2075 /*
2076 * Verify the sequence and ack numbers. Try getting the correct
2077 * response again.
2078 */
2079 if ((ti->ti_ack != sc->sc_iss + 1) ||
2080 SEQ_LEQ(ti->ti_seq, sc->sc_irs) ||
2081 SEQ_GT(ti->ti_seq, sc->sc_irs + 1 + win)) {
2082 (void) syn_cache_respond(sc, m, win, 0);
2083 splx(s);
2084 return ((struct socket *)(-1));
2085 }
2086
2087 /* Remove this cache entry */
2088 SYN_CACHE_RM(sc, scp);
2089 splx(s);
2090
2091 /*
2092 * Ok, create the full blown connection, and set things up
2093 * as they would have been set up if we had created the
2094 * connection when the SYN arrived. If we can't create
2095 * the connection, abort it.
2096 */
2097 so = sonewconn(so, SS_ISCONNECTED);
2098 if (so == NULL)
2099 goto resetandabort;
2100
2101 inp = sotoinpcb(so);
2102 inp->inp_laddr = sc->sc_dst;
2103 inp->inp_lport = sc->sc_dport;
2104 in_pcbstate(inp, INP_BOUND);
2105 inp->inp_options = ip_srcroute();
2106 if (inp->inp_options == NULL) {
2107 inp->inp_options = sc->sc_ipopts;
2108 sc->sc_ipopts = NULL;
2109 }
2110
2111 /*
2112 * Give the new socket our cached route reference.
2113 */
2114 inp->inp_route = sc->sc_route; /* struct assignment */
2115 sc->sc_route.ro_rt = NULL;
2116
2117 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
2118 if (am == NULL)
2119 goto resetandabort;
2120 am->m_len = sizeof(struct sockaddr_in);
2121 sin = mtod(am, struct sockaddr_in *);
2122 sin->sin_family = AF_INET;
2123 sin->sin_len = sizeof(*sin);
2124 sin->sin_addr = sc->sc_src;
2125 sin->sin_port = sc->sc_sport;
2126 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
2127 if (in_pcbconnect(inp, am)) {
2128 (void) m_free(am);
2129 goto resetandabort;
2130 }
2131 (void) m_free(am);
2132
2133 tp = intotcpcb(inp);
2134 if (sc->sc_request_r_scale != 15) {
2135 tp->requested_s_scale = sc->sc_requested_s_scale;
2136 tp->request_r_scale = sc->sc_request_r_scale;
2137 tp->snd_scale = sc->sc_requested_s_scale;
2138 tp->rcv_scale = sc->sc_request_r_scale;
2139 tp->t_flags |= TF_RCVD_SCALE;
2140 }
2141 if (sc->sc_flags & SCF_TIMESTAMP)
2142 tp->t_flags |= TF_RCVD_TSTMP;
2143
2144 tp->t_template = tcp_template(tp);
2145 if (tp->t_template == 0) {
2146 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
2147 so = NULL;
2148 m_freem(m);
2149 goto abort;
2150 }
2151
2152 tp->iss = sc->sc_iss;
2153 tp->irs = sc->sc_irs;
2154 tcp_sendseqinit(tp);
2155 tcp_rcvseqinit(tp);
2156 tp->t_state = TCPS_SYN_RECEIVED;
2157 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
2158 tcpstat.tcps_accepts++;
2159
2160 /* Initialize tp->t_ourmss before we deal with the peer's! */
2161 tp->t_ourmss = sc->sc_ourmaxseg;
2162 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
2163
2164 /*
2165 * Initialize the initial congestion window. If we
2166 * had to retransmit the SYN,ACK, we must initialize cwnd
2167 * to 1 segment (i.e. the Loss Window).
2168 */
2169 if (sc->sc_rexmt_count)
2170 tp->snd_cwnd = tp->t_peermss;
2171 else
2172 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
2173
2174 tcp_rmx_rtt(tp);
2175 tp->snd_wl1 = sc->sc_irs;
2176 tp->rcv_up = sc->sc_irs + 1;
2177
2178 /*
2179 * This is what whould have happened in tcp_ouput() when
2180 * the SYN,ACK was sent.
2181 */
2182 tp->snd_up = tp->snd_una;
2183 tp->snd_max = tp->snd_nxt = tp->iss+1;
2184 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2185 if (win > 0 && SEQ_GT(tp->rcv_nxt+win, tp->rcv_adv))
2186 tp->rcv_adv = tp->rcv_nxt + win;
2187 tp->last_ack_sent = tp->rcv_nxt;
2188
2189 tcpstat.tcps_sc_completed++;
2190 SYN_CACHE_PUT(sc);
2191 return (so);
2192
2193 resetandabort:
2194 (void) tcp_respond(NULL, ti, m, ti->ti_seq+ti->ti_len,
2195 (tcp_seq)0, TH_RST|TH_ACK);
2196 abort:
2197 if (so != NULL)
2198 (void) soabort(so);
2199 SYN_CACHE_PUT(sc);
2200 tcpstat.tcps_sc_aborted++;
2201 return ((struct socket *)(-1));
2202 }
2203
2204 /*
2205 * This function is called when we get a RST for a
2206 * non-existant connection, so that we can see if the
2207 * connection is in the syn cache. If it is, zap it.
2208 */
2209
2210 void
2211 syn_cache_reset(ti)
2212 register struct tcpiphdr *ti;
2213 {
2214 struct syn_cache *sc;
2215 struct syn_cache_head *scp;
2216 int s = splsoftnet();
2217
2218 if ((sc = syn_cache_lookup(ti, &scp)) == NULL) {
2219 splx(s);
2220 return;
2221 }
2222 if (SEQ_LT(ti->ti_seq,sc->sc_irs) ||
2223 SEQ_GT(ti->ti_seq, sc->sc_irs+1)) {
2224 splx(s);
2225 return;
2226 }
2227 SYN_CACHE_RM(sc, scp);
2228 splx(s);
2229 tcpstat.tcps_sc_reset++;
2230 SYN_CACHE_PUT(sc);
2231 }
2232
2233 void
2234 syn_cache_unreach(ip, th)
2235 struct ip *ip;
2236 struct tcphdr *th;
2237 {
2238 struct syn_cache *sc;
2239 struct syn_cache_head *scp;
2240 struct tcpiphdr ti2;
2241 int s;
2242
2243 ti2.ti_src.s_addr = ip->ip_dst.s_addr;
2244 ti2.ti_dst.s_addr = ip->ip_src.s_addr;
2245 ti2.ti_sport = th->th_dport;
2246 ti2.ti_dport = th->th_sport;
2247
2248 s = splsoftnet();
2249 if ((sc = syn_cache_lookup(&ti2, &scp)) == NULL) {
2250 splx(s);
2251 return;
2252 }
2253 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
2254 if (ntohl (th->th_seq) != sc->sc_iss) {
2255 splx(s);
2256 return;
2257 }
2258
2259 /*
2260 * If we've rertransmitted 3 times and this is our second error,
2261 * we remove the entry. Otherwise, we allow it to continue on.
2262 * This prevents us from incorrectly nuking an entry during a
2263 * spurious network outage.
2264 *
2265 * See tcp_notify().
2266 */
2267 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rexmt_count < 3) {
2268 sc->sc_flags |= SCF_UNREACH;
2269 splx(s);
2270 return;
2271 }
2272
2273 SYN_CACHE_RM(sc, scp);
2274 splx(s);
2275 tcpstat.tcps_sc_unreach++;
2276 SYN_CACHE_PUT(sc);
2277 }
2278
2279 /*
2280 * Given a LISTEN socket and an inbound SYN request, add
2281 * this to the syn cache, and send back a segment:
2282 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
2283 * to the source.
2284 *
2285 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
2286 * Doing so would require that we hold onto the data and deliver it
2287 * to the application. However, if we are the target of a SYN-flood
2288 * DoS attack, an attacker could send data which would eventually
2289 * consume all available buffer space if it were ACKed. By not ACKing
2290 * the data, we avoid this DoS scenario.
2291 */
2292
2293 int
2294 syn_cache_add(so, m, optp, optlen, oi)
2295 struct socket *so;
2296 struct mbuf *m;
2297 u_char *optp;
2298 int optlen;
2299 struct tcp_opt_info *oi;
2300 {
2301 register struct tcpiphdr *ti;
2302 struct tcpcb tb, *tp;
2303 long win;
2304 struct syn_cache *sc;
2305 struct syn_cache_head *scp;
2306 struct mbuf *ipopts;
2307
2308 tp = sototcpcb(so);
2309 ti = mtod(m, struct tcpiphdr *);
2310
2311 /*
2312 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
2313 * in_broadcast() should never return true on a received
2314 * packet with M_BCAST not set.
2315 */
2316 if (m->m_flags & (M_BCAST|M_MCAST) ||
2317 IN_MULTICAST(ti->ti_src.s_addr) ||
2318 IN_MULTICAST(ti->ti_dst.s_addr))
2319 return (0);
2320
2321 /*
2322 * Initialize some local state.
2323 */
2324 win = sbspace(&so->so_rcv);
2325 if (win > TCP_MAXWIN)
2326 win = TCP_MAXWIN;
2327
2328 /*
2329 * Remember the IP options, if any.
2330 */
2331 ipopts = ip_srcroute();
2332
2333 if (optp) {
2334 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
2335 tcp_dooptions(&tb, optp, optlen, ti, oi);
2336 } else
2337 tb.t_flags = 0;
2338
2339 /*
2340 * See if we already have an entry for this connection.
2341 * If we do, resend the SYN,ACK, and remember since the
2342 * initial congestion window must be initialized to 1
2343 * segment when the connection completes.
2344 */
2345 if ((sc = syn_cache_lookup(ti, &scp)) != NULL) {
2346 tcpstat.tcps_sc_dupesyn++;
2347 sc->sc_rexmt_count++;
2348 if (sc->sc_rexmt_count == 0) {
2349 /*
2350 * Eeek! We rolled the counter. Just set it
2351 * to the max value. This shouldn't ever happen,
2352 * but there's no real reason to panic here, since
2353 * the count doesn't have to be very precise.
2354 */
2355 sc->sc_rexmt_count = USHRT_MAX;
2356 }
2357
2358 if (ipopts) {
2359 /*
2360 * If we were remembering a previous source route,
2361 * forget it and use the new one we've been given.
2362 */
2363 if (sc->sc_ipopts)
2364 (void) m_free(sc->sc_ipopts);
2365 sc->sc_ipopts = ipopts;
2366 }
2367
2368 if (syn_cache_respond(sc, m, win, tb.ts_recent) == 0) {
2369 tcpstat.tcps_sndacks++;
2370 tcpstat.tcps_sndtotal++;
2371 }
2372 return (1);
2373 }
2374
2375 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
2376 if (sc == NULL) {
2377 if (ipopts)
2378 (void) m_free(ipopts);
2379 return (0);
2380 }
2381
2382 /*
2383 * Fill in the cache, and put the necessary IP and TCP
2384 * options into the reply.
2385 */
2386 memset(&sc->sc_route, 0, sizeof(sc->sc_route));
2387 sc->sc_src.s_addr = ti->ti_src.s_addr;
2388 sc->sc_dst.s_addr = ti->ti_dst.s_addr;
2389 sc->sc_sport = ti->ti_sport;
2390 sc->sc_dport = ti->ti_dport;
2391 sc->sc_flags = 0;
2392 sc->sc_ipopts = ipopts;
2393 sc->sc_irs = ti->ti_seq;
2394 sc->sc_iss = tcp_new_iss(sc, sizeof(struct syn_cache), 0);
2395 sc->sc_peermaxseg = oi->maxseg;
2396 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
2397 m->m_pkthdr.rcvif : NULL);
2398 if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
2399 sc->sc_flags |= SCF_TIMESTAMP;
2400 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2401 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2402 sc->sc_requested_s_scale = tb.requested_s_scale;
2403 sc->sc_request_r_scale = 0;
2404 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
2405 TCP_MAXWIN << sc->sc_request_r_scale <
2406 so->so_rcv.sb_hiwat)
2407 sc->sc_request_r_scale++;
2408 } else {
2409 sc->sc_requested_s_scale = 15;
2410 sc->sc_request_r_scale = 15;
2411 }
2412 if (syn_cache_respond(sc, m, win, tb.ts_recent) == 0) {
2413 syn_cache_insert(sc);
2414 tcpstat.tcps_sndacks++;
2415 tcpstat.tcps_sndtotal++;
2416 } else {
2417 SYN_CACHE_PUT(sc);
2418 tcpstat.tcps_sc_dropped++;
2419 }
2420 return (1);
2421 }
2422
2423 int
2424 syn_cache_respond(sc, m, win, ts)
2425 struct syn_cache *sc;
2426 struct mbuf *m;
2427 long win;
2428 u_long ts;
2429 {
2430 struct route *ro = &sc->sc_route;
2431 struct rtentry *rt;
2432 struct sockaddr_in *dst;
2433 struct tcpiphdr *ti;
2434 u_int8_t *optp;
2435 int optlen, error;
2436 u_int16_t tlen;
2437
2438 /* Compute the size of the TCP options. */
2439 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
2440 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
2441
2442 tlen = sizeof(struct tcpiphdr) + optlen;
2443
2444 /*
2445 * Create the IP+TCP header from scratch. Reuse the received mbuf
2446 * if possible.
2447 */
2448 if (m != NULL) {
2449 m_freem(m->m_next);
2450 m->m_next = NULL;
2451 MRESETDATA(m);
2452 } else {
2453 MGETHDR(m, M_DONTWAIT, MT_DATA);
2454 if (m == NULL)
2455 return (ENOBUFS);
2456 }
2457
2458 /* Fixup the mbuf. */
2459 m->m_data += max_linkhdr;
2460 m->m_len = m->m_pkthdr.len = tlen;
2461 m->m_pkthdr.rcvif = NULL;
2462
2463 ti = mtod(m, struct tcpiphdr *);
2464 memset(ti, 0, tlen);
2465
2466 ti->ti_dst = sc->sc_src;
2467 ti->ti_src = sc->sc_dst;
2468 ti->ti_sport = sc->sc_dport;
2469 ti->ti_dport = sc->sc_sport;
2470 ti->ti_pr = IPPROTO_TCP;
2471 ti->ti_len = htons(tlen - sizeof(struct ip));
2472 /* ti_x1 already 0'd */
2473 ti->ti_seq = htonl(sc->sc_iss);
2474 ti->ti_ack = htonl(sc->sc_irs + 1);
2475 /* ti_x2 already 0 */
2476 ti->ti_off = (sizeof(struct tcphdr) + optlen) >> 2;
2477 ti->ti_flags = TH_SYN|TH_ACK;
2478 ti->ti_win = htons(win);
2479 /* ti_sum already 0 */
2480 /* ti_urp already 0 */
2481
2482 /* Tack on the TCP options. */
2483 optp = (u_int8_t *)(ti + 1);
2484 *optp++ = TCPOPT_MAXSEG;
2485 *optp++ = 4;
2486 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
2487 *optp++ = sc->sc_ourmaxseg & 0xff;
2488
2489 if (sc->sc_request_r_scale != 15) {
2490 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
2491 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
2492 sc->sc_request_r_scale);
2493 optp += 4;
2494 }
2495
2496 if (sc->sc_flags & SCF_TIMESTAMP) {
2497 u_int32_t *lp = (u_int32_t *)(optp);
2498 /* Form timestamp option as shown in appendix A of RFC 1323. */
2499 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
2500 *lp++ = htonl(tcp_now);
2501 *lp = htonl(ts);
2502 optp += TCPOLEN_TSTAMP_APPA;
2503 }
2504
2505 /* Compute the packet's checksum. */
2506 ti->ti_sum = in_cksum(m, tlen);
2507
2508 /*
2509 * Fill in some straggling IP bits. Note the stack expects
2510 * ip_len to be in host order, for convenience.
2511 */
2512 ((struct ip *)ti)->ip_len = tlen;
2513 ((struct ip *)ti)->ip_ttl = ip_defttl;
2514 /* XXX tos? */
2515
2516 /*
2517 * If we're doing Path MTU discovery, we need to set DF unless
2518 * the route's MTU is locked. If we don't yet know the route,
2519 * look it up now. We will copy this reference to the inpcb
2520 * when we finish creating the connection.
2521 */
2522 if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
2523 if (ro->ro_rt != NULL) {
2524 RTFREE(ro->ro_rt);
2525 ro->ro_rt = NULL;
2526 }
2527 dst = satosin(&ro->ro_dst);
2528 dst->sin_family = AF_INET;
2529 dst->sin_len = sizeof(*dst);
2530 dst->sin_addr = ti->ti_dst;
2531 rtalloc(ro);
2532 if ((rt = ro->ro_rt) == NULL) {
2533 m_freem(m);
2534 ipstat.ips_noroute++;
2535 return (EHOSTUNREACH);
2536 }
2537 }
2538 if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
2539 ((struct ip *)ti)->ip_off |= IP_DF;
2540
2541 /* ...and send it off! */
2542 error = ip_output(m, sc->sc_ipopts, ro, 0, NULL);
2543
2544 return (error);
2545 }
2546