tcp_input.c revision 1.82 1 /* $NetBSD: tcp_input.c,v 1.82 1999/05/23 20:33:50 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
9 * Facility, NASA Ames Research Center.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 * 3. All advertising materials mentioning features or use of this software
20 * must display the following acknowledgement:
21 * This product includes software developed by the NetBSD
22 * Foundation, Inc. and its contributors.
23 * 4. Neither the name of The NetBSD Foundation nor the names of its
24 * contributors may be used to endorse or promote products derived
25 * from this software without specific prior written permission.
26 *
27 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
28 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
29 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
30 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
31 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
32 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
33 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
34 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
35 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
36 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
37 * POSSIBILITY OF SUCH DAMAGE.
38 */
39
40 /*
41 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
42 * The Regents of the University of California. All rights reserved.
43 *
44 * Redistribution and use in source and binary forms, with or without
45 * modification, are permitted provided that the following conditions
46 * are met:
47 * 1. Redistributions of source code must retain the above copyright
48 * notice, this list of conditions and the following disclaimer.
49 * 2. Redistributions in binary form must reproduce the above copyright
50 * notice, this list of conditions and the following disclaimer in the
51 * documentation and/or other materials provided with the distribution.
52 * 3. All advertising materials mentioning features or use of this software
53 * must display the following acknowledgement:
54 * This product includes software developed by the University of
55 * California, Berkeley and its contributors.
56 * 4. Neither the name of the University nor the names of its contributors
57 * may be used to endorse or promote products derived from this software
58 * without specific prior written permission.
59 *
60 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
61 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
62 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
63 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
64 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
65 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
66 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
67 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
68 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
69 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
70 * SUCH DAMAGE.
71 *
72 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
73 */
74
75 /*
76 * TODO list for SYN cache stuff:
77 *
78 * Find room for a "state" field, which is needed to keep a
79 * compressed state for TIME_WAIT TCBs. It's been noted already
80 * that this is fairly important for very high-volume web and
81 * mail servers, which use a large number of short-lived
82 * connections.
83 */
84
85 #include <sys/param.h>
86 #include <sys/systm.h>
87 #include <sys/malloc.h>
88 #include <sys/mbuf.h>
89 #include <sys/protosw.h>
90 #include <sys/socket.h>
91 #include <sys/socketvar.h>
92 #include <sys/errno.h>
93 #include <sys/syslog.h>
94 #include <sys/pool.h>
95
96 #include <net/if.h>
97 #include <net/route.h>
98
99 #include <netinet/in.h>
100 #include <netinet/in_systm.h>
101 #include <netinet/ip.h>
102 #include <netinet/in_pcb.h>
103 #include <netinet/ip_var.h>
104 #include <netinet/tcp.h>
105 #include <netinet/tcp_fsm.h>
106 #include <netinet/tcp_seq.h>
107 #include <netinet/tcp_timer.h>
108 #include <netinet/tcp_var.h>
109 #include <netinet/tcpip.h>
110 #include <netinet/tcp_debug.h>
111
112 #include <machine/stdarg.h>
113
114 int tcprexmtthresh = 3;
115 int tcp_log_refused;
116 struct tcpiphdr tcp_saveti;
117
118 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
119
120 /* for modulo comparisons of timestamps */
121 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
122 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
123
124 /*
125 * Macro to compute ACK transmission behavior. Delay the ACK unless
126 * we have already delayed an ACK (must send an ACK every two segments).
127 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
128 * option is enabled.
129 */
130 #define TCP_SETUP_ACK(tp, ti) \
131 do { \
132 if ((tp)->t_flags & TF_DELACK || \
133 (tcp_ack_on_push && (ti)->ti_flags & TH_PUSH)) \
134 tp->t_flags |= TF_ACKNOW; \
135 else \
136 TCP_SET_DELACK(tp); \
137 } while (0)
138
139 /*
140 * Insert segment ti into reassembly queue of tcp with
141 * control block tp. Return TH_FIN if reassembly now includes
142 * a segment with FIN. The macro form does the common case inline
143 * (segment is the next to be received on an established connection,
144 * and the queue is empty), avoiding linkage into and removal
145 * from the queue and repetition of various conversions.
146 * Set DELACK for segments received in order, but ack immediately
147 * when segments are out of order (so fast retransmit can work).
148 */
149 #define TCP_REASS(tp, ti, m, so, flags) { \
150 TCP_REASS_LOCK((tp)); \
151 if ((ti)->ti_seq == (tp)->rcv_nxt && \
152 (tp)->segq.lh_first == NULL && \
153 (tp)->t_state == TCPS_ESTABLISHED) { \
154 TCP_SETUP_ACK(tp, ti); \
155 (tp)->rcv_nxt += (ti)->ti_len; \
156 flags = (ti)->ti_flags & TH_FIN; \
157 tcpstat.tcps_rcvpack++;\
158 tcpstat.tcps_rcvbyte += (ti)->ti_len;\
159 sbappend(&(so)->so_rcv, (m)); \
160 sorwakeup(so); \
161 } else { \
162 (flags) = tcp_reass((tp), (ti), (m)); \
163 tp->t_flags |= TF_ACKNOW; \
164 } \
165 TCP_REASS_UNLOCK((tp)); \
166 }
167
168 int
169 tcp_reass(tp, ti, m)
170 register struct tcpcb *tp;
171 register struct tcpiphdr *ti;
172 struct mbuf *m;
173 {
174 register struct ipqent *p, *q, *nq, *tiqe = NULL;
175 struct socket *so = tp->t_inpcb->inp_socket;
176 int pkt_flags;
177 tcp_seq pkt_seq;
178 unsigned pkt_len;
179 u_long rcvpartdupbyte = 0;
180 u_long rcvoobyte;
181
182 TCP_REASS_LOCK_CHECK(tp);
183
184 /*
185 * Call with ti==0 after become established to
186 * force pre-ESTABLISHED data up to user socket.
187 */
188 if (ti == 0)
189 goto present;
190
191 rcvoobyte = ti->ti_len;
192 /*
193 * Copy these to local variables because the tcpiphdr
194 * gets munged while we are collapsing mbufs.
195 */
196 pkt_seq = ti->ti_seq;
197 pkt_len = ti->ti_len;
198 pkt_flags = ti->ti_flags;
199 /*
200 * Find a segment which begins after this one does.
201 */
202 for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
203 nq = q->ipqe_q.le_next;
204 /*
205 * If the received segment is just right after this
206 * fragment, merge the two together and then check
207 * for further overlaps.
208 */
209 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
210 #ifdef TCPREASS_DEBUG
211 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
212 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
213 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
214 #endif
215 pkt_len += q->ipqe_len;
216 pkt_flags |= q->ipqe_flags;
217 pkt_seq = q->ipqe_seq;
218 m_cat(q->ipqe_m, m);
219 m = q->ipqe_m;
220 goto free_ipqe;
221 }
222 /*
223 * If the received segment is completely past this
224 * fragment, we need to go the next fragment.
225 */
226 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
227 p = q;
228 continue;
229 }
230 /*
231 * If the fragment is past the received segment,
232 * it (or any following) can't be concatenated.
233 */
234 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
235 break;
236 /*
237 * We've received all the data in this segment before.
238 * mark it as a duplicate and return.
239 */
240 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
241 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
242 tcpstat.tcps_rcvduppack++;
243 tcpstat.tcps_rcvdupbyte += pkt_len;
244 m_freem(m);
245 if (tiqe != NULL)
246 pool_put(&ipqent_pool, tiqe);
247 return (0);
248 }
249 /*
250 * Received segment completely overlaps this fragment
251 * so we drop the fragment (this keeps the temporal
252 * ordering of segments correct).
253 */
254 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
255 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
256 rcvpartdupbyte += q->ipqe_len;
257 m_freem(q->ipqe_m);
258 goto free_ipqe;
259 }
260 /*
261 * RX'ed segment extends past the end of the
262 * fragment. Drop the overlapping bytes. Then
263 * merge the fragment and segment then treat as
264 * a longer received packet.
265 */
266 if (SEQ_LT(q->ipqe_seq, pkt_seq)
267 && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
268 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
269 #ifdef TCPREASS_DEBUG
270 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
271 tp, overlap,
272 pkt_seq, pkt_seq + pkt_len, pkt_len);
273 #endif
274 m_adj(m, overlap);
275 rcvpartdupbyte += overlap;
276 m_cat(q->ipqe_m, m);
277 m = q->ipqe_m;
278 pkt_seq = q->ipqe_seq;
279 pkt_len += q->ipqe_len - overlap;
280 rcvoobyte -= overlap;
281 goto free_ipqe;
282 }
283 /*
284 * RX'ed segment extends past the front of the
285 * fragment. Drop the overlapping bytes on the
286 * received packet. The packet will then be
287 * contatentated with this fragment a bit later.
288 */
289 if (SEQ_GT(q->ipqe_seq, pkt_seq)
290 && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
291 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
292 #ifdef TCPREASS_DEBUG
293 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
294 tp, overlap,
295 pkt_seq, pkt_seq + pkt_len, pkt_len);
296 #endif
297 m_adj(m, -overlap);
298 pkt_len -= overlap;
299 rcvpartdupbyte += overlap;
300 rcvoobyte -= overlap;
301 }
302 /*
303 * If the received segment immediates precedes this
304 * fragment then tack the fragment onto this segment
305 * and reinsert the data.
306 */
307 if (q->ipqe_seq == pkt_seq + pkt_len) {
308 #ifdef TCPREASS_DEBUG
309 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
310 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
311 pkt_seq, pkt_seq + pkt_len, pkt_len);
312 #endif
313 pkt_len += q->ipqe_len;
314 pkt_flags |= q->ipqe_flags;
315 m_cat(m, q->ipqe_m);
316 LIST_REMOVE(q, ipqe_q);
317 LIST_REMOVE(q, ipqe_timeq);
318 if (tiqe == NULL) {
319 tiqe = q;
320 } else {
321 pool_put(&ipqent_pool, q);
322 }
323 break;
324 }
325 /*
326 * If the fragment is before the segment, remember it.
327 * When this loop is terminated, p will contain the
328 * pointer to fragment that is right before the received
329 * segment.
330 */
331 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
332 p = q;
333
334 continue;
335
336 /*
337 * This is a common operation. It also will allow
338 * to save doing a malloc/free in most instances.
339 */
340 free_ipqe:
341 LIST_REMOVE(q, ipqe_q);
342 LIST_REMOVE(q, ipqe_timeq);
343 if (tiqe == NULL) {
344 tiqe = q;
345 } else {
346 pool_put(&ipqent_pool, q);
347 }
348 }
349
350 /*
351 * Allocate a new queue entry since the received segment did not
352 * collapse onto any other out-of-order block; thus we are allocating
353 * a new block. If it had collapsed, tiqe would not be NULL and
354 * we would be reusing it.
355 * XXX If we can't, just drop the packet. XXX
356 */
357 if (tiqe == NULL) {
358 tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
359 if (tiqe == NULL) {
360 tcpstat.tcps_rcvmemdrop++;
361 m_freem(m);
362 return (0);
363 }
364 }
365
366 /*
367 * Update the counters.
368 */
369 tcpstat.tcps_rcvoopack++;
370 tcpstat.tcps_rcvoobyte += rcvoobyte;
371 if (rcvpartdupbyte) {
372 tcpstat.tcps_rcvpartduppack++;
373 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
374 }
375
376 /*
377 * Insert the new fragment queue entry into both queues.
378 */
379 tiqe->ipqe_m = m;
380 tiqe->ipqe_seq = pkt_seq;
381 tiqe->ipqe_len = pkt_len;
382 tiqe->ipqe_flags = pkt_flags;
383 if (p == NULL) {
384 LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
385 #ifdef TCPREASS_DEBUG
386 if (tiqe->ipqe_seq != tp->rcv_nxt)
387 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
388 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
389 #endif
390 } else {
391 LIST_INSERT_AFTER(p, tiqe, ipqe_q);
392 #ifdef TCPREASS_DEBUG
393 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
394 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
395 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
396 #endif
397 }
398
399 LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
400
401 present:
402 /*
403 * Present data to user, advancing rcv_nxt through
404 * completed sequence space.
405 */
406 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
407 return (0);
408 q = tp->segq.lh_first;
409 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
410 return (0);
411 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
412 return (0);
413
414 tp->rcv_nxt += q->ipqe_len;
415 pkt_flags = q->ipqe_flags & TH_FIN;
416
417 LIST_REMOVE(q, ipqe_q);
418 LIST_REMOVE(q, ipqe_timeq);
419 if (so->so_state & SS_CANTRCVMORE)
420 m_freem(q->ipqe_m);
421 else
422 sbappend(&so->so_rcv, q->ipqe_m);
423 pool_put(&ipqent_pool, q);
424 sorwakeup(so);
425 return (pkt_flags);
426 }
427
428 /*
429 * TCP input routine, follows pages 65-76 of the
430 * protocol specification dated September, 1981 very closely.
431 */
432 void
433 #if __STDC__
434 tcp_input(struct mbuf *m, ...)
435 #else
436 tcp_input(m, va_alist)
437 register struct mbuf *m;
438 #endif
439 {
440 register struct tcpiphdr *ti;
441 register struct inpcb *inp;
442 caddr_t optp = NULL;
443 int optlen = 0;
444 int len, tlen, off, hdroptlen;
445 register struct tcpcb *tp = 0;
446 register int tiflags;
447 struct socket *so = NULL;
448 int todrop, acked, ourfinisacked, needoutput = 0;
449 short ostate = 0;
450 int iss = 0;
451 u_long tiwin;
452 struct tcp_opt_info opti;
453 int iphlen;
454 va_list ap;
455
456 va_start(ap, m);
457 iphlen = va_arg(ap, int);
458 va_end(ap);
459
460 tcpstat.tcps_rcvtotal++;
461
462 opti.ts_present = 0;
463 opti.maxseg = 0;
464
465 /*
466 * Get IP and TCP header together in first mbuf.
467 * Note: IP leaves IP header in first mbuf.
468 */
469 ti = mtod(m, struct tcpiphdr *);
470 if (iphlen > sizeof (struct ip))
471 ip_stripoptions(m, (struct mbuf *)0);
472 if (m->m_len < sizeof (struct tcpiphdr)) {
473 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
474 tcpstat.tcps_rcvshort++;
475 return;
476 }
477 ti = mtod(m, struct tcpiphdr *);
478 }
479
480 /*
481 * Checksum extended TCP header and data.
482 */
483 len = ((struct ip *)ti)->ip_len;
484 tlen = len - sizeof (struct ip);
485 bzero(ti->ti_x1, sizeof ti->ti_x1);
486 ti->ti_len = (u_int16_t)tlen;
487 HTONS(ti->ti_len);
488 if (in_cksum(m, len) != 0) {
489 tcpstat.tcps_rcvbadsum++;
490 goto drop;
491 }
492
493 /*
494 * Check that TCP offset makes sense,
495 * pull out TCP options and adjust length. XXX
496 */
497 off = ti->ti_off << 2;
498 if (off < sizeof (struct tcphdr) || off > tlen) {
499 tcpstat.tcps_rcvbadoff++;
500 goto drop;
501 }
502 tlen -= off;
503 ti->ti_len = tlen;
504 if (off > sizeof (struct tcphdr)) {
505 if (m->m_len < sizeof(struct ip) + off) {
506 if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
507 tcpstat.tcps_rcvshort++;
508 return;
509 }
510 ti = mtod(m, struct tcpiphdr *);
511 }
512 optlen = off - sizeof (struct tcphdr);
513 optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
514 /*
515 * Do quick retrieval of timestamp options ("options
516 * prediction?"). If timestamp is the only option and it's
517 * formatted as recommended in RFC 1323 appendix A, we
518 * quickly get the values now and not bother calling
519 * tcp_dooptions(), etc.
520 */
521 if ((optlen == TCPOLEN_TSTAMP_APPA ||
522 (optlen > TCPOLEN_TSTAMP_APPA &&
523 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
524 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
525 (ti->ti_flags & TH_SYN) == 0) {
526 opti.ts_present = 1;
527 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
528 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
529 optp = NULL; /* we've parsed the options */
530 }
531 }
532 tiflags = ti->ti_flags;
533
534 /*
535 * Convert TCP protocol specific fields to host format.
536 */
537 NTOHL(ti->ti_seq);
538 NTOHL(ti->ti_ack);
539 NTOHS(ti->ti_win);
540 NTOHS(ti->ti_urp);
541
542 /*
543 * Locate pcb for segment.
544 */
545 findpcb:
546 inp = in_pcblookup_connect(&tcbtable, ti->ti_src, ti->ti_sport,
547 ti->ti_dst, ti->ti_dport);
548 if (inp == 0) {
549 ++tcpstat.tcps_pcbhashmiss;
550 inp = in_pcblookup_bind(&tcbtable, ti->ti_dst, ti->ti_dport);
551 if (inp == 0) {
552 ++tcpstat.tcps_noport;
553 if (tcp_log_refused && (tiflags & TH_SYN)) {
554 char buf[4*sizeof "123"];
555 strcpy(buf, inet_ntoa(ti->ti_dst));
556 log(LOG_INFO,
557 "Connection attempt to TCP %s:%d from %s:%d\n",
558 buf, ntohs(ti->ti_dport), inet_ntoa(ti->ti_src),
559 ntohs(ti->ti_sport));
560 }
561 goto dropwithreset;
562 }
563 }
564
565 /*
566 * If the state is CLOSED (i.e., TCB does not exist) then
567 * all data in the incoming segment is discarded.
568 * If the TCB exists but is in CLOSED state, it is embryonic,
569 * but should either do a listen or a connect soon.
570 */
571 tp = intotcpcb(inp);
572 if (tp == 0)
573 goto dropwithreset;
574 if (tp->t_state == TCPS_CLOSED)
575 goto drop;
576
577 /* Unscale the window into a 32-bit value. */
578 if ((tiflags & TH_SYN) == 0)
579 tiwin = ti->ti_win << tp->snd_scale;
580 else
581 tiwin = ti->ti_win;
582
583 so = inp->inp_socket;
584 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
585 if (so->so_options & SO_DEBUG) {
586 ostate = tp->t_state;
587 tcp_saveti = *ti;
588 }
589 if (so->so_options & SO_ACCEPTCONN) {
590 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
591 if (tiflags & TH_RST) {
592 syn_cache_reset(ti);
593 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
594 (TH_ACK|TH_SYN)) {
595 /*
596 * Received a SYN,ACK. This should
597 * never happen while we are in
598 * LISTEN. Send an RST.
599 */
600 goto badsyn;
601 } else if (tiflags & TH_ACK) {
602 so = syn_cache_get(so, m);
603 if (so == NULL) {
604 /*
605 * We don't have a SYN for
606 * this ACK; send an RST.
607 */
608 goto badsyn;
609 } else if (so ==
610 (struct socket *)(-1)) {
611 /*
612 * We were unable to create
613 * the connection. If the
614 * 3-way handshake was
615 * completed, and RST has
616 * been sent to the peer.
617 * Since the mbuf might be
618 * in use for the reply,
619 * do not free it.
620 */
621 m = NULL;
622 } else {
623 /*
624 * We have created a
625 * full-blown connection.
626 */
627 inp = sotoinpcb(so);
628 tp = intotcpcb(inp);
629 tiwin <<= tp->snd_scale;
630 goto after_listen;
631 }
632 } else {
633 /*
634 * None of RST, SYN or ACK was set.
635 * This is an invalid packet for a
636 * TCB in LISTEN state. Send a RST.
637 */
638 goto badsyn;
639 }
640 } else {
641 /*
642 * Received a SYN.
643 */
644 if (in_hosteq(ti->ti_src, ti->ti_dst) &&
645 ti->ti_sport == ti->ti_dport) {
646 /*
647 * LISTEN socket received a SYN
648 * from itself? This can't possibly
649 * be valid; drop the packet.
650 */
651 tcpstat.tcps_badsyn++;
652 goto drop;
653 }
654 /*
655 * SYN looks ok; create compressed TCP
656 * state for it.
657 */
658 if (so->so_qlen <= so->so_qlimit &&
659 syn_cache_add(so, m, optp, optlen, &opti))
660 m = NULL;
661 }
662 goto drop;
663 }
664 }
665
666 after_listen:
667 #ifdef DIAGNOSTIC
668 /*
669 * Should not happen now that all embryonic connections
670 * are handled with compressed state.
671 */
672 if (tp->t_state == TCPS_LISTEN)
673 panic("tcp_input: TCPS_LISTEN");
674 #endif
675
676 /*
677 * Segment received on connection.
678 * Reset idle time and keep-alive timer.
679 */
680 tp->t_idle = 0;
681 if (TCPS_HAVEESTABLISHED(tp->t_state))
682 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
683
684 /*
685 * Process options.
686 */
687 if (optp)
688 tcp_dooptions(tp, optp, optlen, ti, &opti);
689
690 /*
691 * Header prediction: check for the two common cases
692 * of a uni-directional data xfer. If the packet has
693 * no control flags, is in-sequence, the window didn't
694 * change and we're not retransmitting, it's a
695 * candidate. If the length is zero and the ack moved
696 * forward, we're the sender side of the xfer. Just
697 * free the data acked & wake any higher level process
698 * that was blocked waiting for space. If the length
699 * is non-zero and the ack didn't move, we're the
700 * receiver side. If we're getting packets in-order
701 * (the reassembly queue is empty), add the data to
702 * the socket buffer and note that we need a delayed ack.
703 */
704 if (tp->t_state == TCPS_ESTABLISHED &&
705 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
706 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
707 ti->ti_seq == tp->rcv_nxt &&
708 tiwin && tiwin == tp->snd_wnd &&
709 tp->snd_nxt == tp->snd_max) {
710
711 /*
712 * If last ACK falls within this segment's sequence numbers,
713 * record the timestamp.
714 */
715 if (opti.ts_present &&
716 SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
717 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
718 tp->ts_recent_age = tcp_now;
719 tp->ts_recent = opti.ts_val;
720 }
721
722 if (ti->ti_len == 0) {
723 if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
724 SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
725 tp->snd_cwnd >= tp->snd_wnd &&
726 tp->t_dupacks < tcprexmtthresh) {
727 /*
728 * this is a pure ack for outstanding data.
729 */
730 ++tcpstat.tcps_predack;
731 if (opti.ts_present)
732 tcp_xmit_timer(tp,
733 tcp_now-opti.ts_ecr+1);
734 else if (tp->t_rtt &&
735 SEQ_GT(ti->ti_ack, tp->t_rtseq))
736 tcp_xmit_timer(tp, tp->t_rtt);
737 acked = ti->ti_ack - tp->snd_una;
738 tcpstat.tcps_rcvackpack++;
739 tcpstat.tcps_rcvackbyte += acked;
740 sbdrop(&so->so_snd, acked);
741 tp->snd_una = ti->ti_ack;
742 m_freem(m);
743
744 /*
745 * If all outstanding data are acked, stop
746 * retransmit timer, otherwise restart timer
747 * using current (possibly backed-off) value.
748 * If process is waiting for space,
749 * wakeup/selwakeup/signal. If data
750 * are ready to send, let tcp_output
751 * decide between more output or persist.
752 */
753 if (tp->snd_una == tp->snd_max)
754 TCP_TIMER_DISARM(tp, TCPT_REXMT);
755 else if (TCP_TIMER_ISARMED(tp,
756 TCPT_PERSIST) == 0)
757 TCP_TIMER_ARM(tp, TCPT_REXMT,
758 tp->t_rxtcur);
759
760 sowwakeup(so);
761 if (so->so_snd.sb_cc)
762 (void) tcp_output(tp);
763 return;
764 }
765 } else if (ti->ti_ack == tp->snd_una &&
766 tp->segq.lh_first == NULL &&
767 ti->ti_len <= sbspace(&so->so_rcv)) {
768 /*
769 * this is a pure, in-sequence data packet
770 * with nothing on the reassembly queue and
771 * we have enough buffer space to take it.
772 */
773 ++tcpstat.tcps_preddat;
774 tp->rcv_nxt += ti->ti_len;
775 tcpstat.tcps_rcvpack++;
776 tcpstat.tcps_rcvbyte += ti->ti_len;
777 /*
778 * Drop TCP, IP headers and TCP options then add data
779 * to socket buffer.
780 */
781 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
782 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
783 sbappend(&so->so_rcv, m);
784 sorwakeup(so);
785 TCP_SETUP_ACK(tp, ti);
786 if (tp->t_flags & TF_ACKNOW)
787 (void) tcp_output(tp);
788 return;
789 }
790 }
791
792 /*
793 * Drop TCP, IP headers and TCP options.
794 */
795 hdroptlen = sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr);
796 m->m_data += hdroptlen;
797 m->m_len -= hdroptlen;
798
799 /*
800 * Calculate amount of space in receive window,
801 * and then do TCP input processing.
802 * Receive window is amount of space in rcv queue,
803 * but not less than advertised window.
804 */
805 { int win;
806
807 win = sbspace(&so->so_rcv);
808 if (win < 0)
809 win = 0;
810 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
811 }
812
813 switch (tp->t_state) {
814
815 /*
816 * If the state is SYN_SENT:
817 * if seg contains an ACK, but not for our SYN, drop the input.
818 * if seg contains a RST, then drop the connection.
819 * if seg does not contain SYN, then drop it.
820 * Otherwise this is an acceptable SYN segment
821 * initialize tp->rcv_nxt and tp->irs
822 * if seg contains ack then advance tp->snd_una
823 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
824 * arrange for segment to be acked (eventually)
825 * continue processing rest of data/controls, beginning with URG
826 */
827 case TCPS_SYN_SENT:
828 if ((tiflags & TH_ACK) &&
829 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
830 SEQ_GT(ti->ti_ack, tp->snd_max)))
831 goto dropwithreset;
832 if (tiflags & TH_RST) {
833 if (tiflags & TH_ACK)
834 tp = tcp_drop(tp, ECONNREFUSED);
835 goto drop;
836 }
837 if ((tiflags & TH_SYN) == 0)
838 goto drop;
839 if (tiflags & TH_ACK) {
840 tp->snd_una = ti->ti_ack;
841 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
842 tp->snd_nxt = tp->snd_una;
843 }
844 TCP_TIMER_DISARM(tp, TCPT_REXMT);
845 tp->irs = ti->ti_seq;
846 tcp_rcvseqinit(tp);
847 tp->t_flags |= TF_ACKNOW;
848 tcp_mss_from_peer(tp, opti.maxseg);
849
850 /*
851 * Initialize the initial congestion window. If we
852 * had to retransmit the SYN, we must initialize cwnd
853 * to 1 segment (i.e. the Loss Window).
854 */
855 if (tp->t_flags & TF_SYN_REXMT)
856 tp->snd_cwnd = tp->t_peermss;
857 else
858 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
859 tp->t_peermss);
860
861 tcp_rmx_rtt(tp);
862 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
863 tcpstat.tcps_connects++;
864 soisconnected(so);
865 tcp_established(tp);
866 /* Do window scaling on this connection? */
867 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
868 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
869 tp->snd_scale = tp->requested_s_scale;
870 tp->rcv_scale = tp->request_r_scale;
871 }
872 TCP_REASS_LOCK(tp);
873 (void) tcp_reass(tp, (struct tcpiphdr *)0,
874 (struct mbuf *)0);
875 TCP_REASS_UNLOCK(tp);
876 /*
877 * if we didn't have to retransmit the SYN,
878 * use its rtt as our initial srtt & rtt var.
879 */
880 if (tp->t_rtt)
881 tcp_xmit_timer(tp, tp->t_rtt);
882 } else
883 tp->t_state = TCPS_SYN_RECEIVED;
884
885 /*
886 * Advance ti->ti_seq to correspond to first data byte.
887 * If data, trim to stay within window,
888 * dropping FIN if necessary.
889 */
890 ti->ti_seq++;
891 if (ti->ti_len > tp->rcv_wnd) {
892 todrop = ti->ti_len - tp->rcv_wnd;
893 m_adj(m, -todrop);
894 ti->ti_len = tp->rcv_wnd;
895 tiflags &= ~TH_FIN;
896 tcpstat.tcps_rcvpackafterwin++;
897 tcpstat.tcps_rcvbyteafterwin += todrop;
898 }
899 tp->snd_wl1 = ti->ti_seq - 1;
900 tp->rcv_up = ti->ti_seq;
901 goto step6;
902
903 /*
904 * If the state is SYN_RECEIVED:
905 * If seg contains an ACK, but not for our SYN, drop the input
906 * and generate an RST. See page 36, rfc793
907 */
908 case TCPS_SYN_RECEIVED:
909 if ((tiflags & TH_ACK) &&
910 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
911 SEQ_GT(ti->ti_ack, tp->snd_max)))
912 goto dropwithreset;
913 break;
914 }
915
916 /*
917 * States other than LISTEN or SYN_SENT.
918 * First check timestamp, if present.
919 * Then check that at least some bytes of segment are within
920 * receive window. If segment begins before rcv_nxt,
921 * drop leading data (and SYN); if nothing left, just ack.
922 *
923 * RFC 1323 PAWS: If we have a timestamp reply on this segment
924 * and it's less than ts_recent, drop it.
925 */
926 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
927 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
928
929 /* Check to see if ts_recent is over 24 days old. */
930 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
931 /*
932 * Invalidate ts_recent. If this segment updates
933 * ts_recent, the age will be reset later and ts_recent
934 * will get a valid value. If it does not, setting
935 * ts_recent to zero will at least satisfy the
936 * requirement that zero be placed in the timestamp
937 * echo reply when ts_recent isn't valid. The
938 * age isn't reset until we get a valid ts_recent
939 * because we don't want out-of-order segments to be
940 * dropped when ts_recent is old.
941 */
942 tp->ts_recent = 0;
943 } else {
944 tcpstat.tcps_rcvduppack++;
945 tcpstat.tcps_rcvdupbyte += ti->ti_len;
946 tcpstat.tcps_pawsdrop++;
947 goto dropafterack;
948 }
949 }
950
951 todrop = tp->rcv_nxt - ti->ti_seq;
952 if (todrop > 0) {
953 if (tiflags & TH_SYN) {
954 tiflags &= ~TH_SYN;
955 ti->ti_seq++;
956 if (ti->ti_urp > 1)
957 ti->ti_urp--;
958 else {
959 tiflags &= ~TH_URG;
960 ti->ti_urp = 0;
961 }
962 todrop--;
963 }
964 if (todrop > ti->ti_len ||
965 (todrop == ti->ti_len && (tiflags & TH_FIN) == 0)) {
966 /*
967 * Any valid FIN must be to the left of the window.
968 * At this point the FIN must be a duplicate or
969 * out of sequence; drop it.
970 */
971 tiflags &= ~TH_FIN;
972 /*
973 * Send an ACK to resynchronize and drop any data.
974 * But keep on processing for RST or ACK.
975 */
976 tp->t_flags |= TF_ACKNOW;
977 todrop = ti->ti_len;
978 tcpstat.tcps_rcvdupbyte += todrop;
979 tcpstat.tcps_rcvduppack++;
980 } else {
981 tcpstat.tcps_rcvpartduppack++;
982 tcpstat.tcps_rcvpartdupbyte += todrop;
983 }
984 m_adj(m, todrop);
985 ti->ti_seq += todrop;
986 ti->ti_len -= todrop;
987 if (ti->ti_urp > todrop)
988 ti->ti_urp -= todrop;
989 else {
990 tiflags &= ~TH_URG;
991 ti->ti_urp = 0;
992 }
993 }
994
995 /*
996 * If new data are received on a connection after the
997 * user processes are gone, then RST the other end.
998 */
999 if ((so->so_state & SS_NOFDREF) &&
1000 tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
1001 tp = tcp_close(tp);
1002 tcpstat.tcps_rcvafterclose++;
1003 goto dropwithreset;
1004 }
1005
1006 /*
1007 * If segment ends after window, drop trailing data
1008 * (and PUSH and FIN); if nothing left, just ACK.
1009 */
1010 todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
1011 if (todrop > 0) {
1012 tcpstat.tcps_rcvpackafterwin++;
1013 if (todrop >= ti->ti_len) {
1014 tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
1015 /*
1016 * If a new connection request is received
1017 * while in TIME_WAIT, drop the old connection
1018 * and start over if the sequence numbers
1019 * are above the previous ones.
1020 */
1021 if (tiflags & TH_SYN &&
1022 tp->t_state == TCPS_TIME_WAIT &&
1023 SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
1024 iss = tcp_new_iss(tp, sizeof(struct tcpcb),
1025 tp->snd_nxt);
1026 tp = tcp_close(tp);
1027 /*
1028 * We have already advanced the mbuf
1029 * pointers past the IP+TCP headers and
1030 * options. Restore those pointers before
1031 * attempting to use the TCP header again.
1032 */
1033 m->m_data -= hdroptlen;
1034 m->m_len += hdroptlen;
1035 goto findpcb;
1036 }
1037 /*
1038 * If window is closed can only take segments at
1039 * window edge, and have to drop data and PUSH from
1040 * incoming segments. Continue processing, but
1041 * remember to ack. Otherwise, drop segment
1042 * and ack.
1043 */
1044 if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
1045 tp->t_flags |= TF_ACKNOW;
1046 tcpstat.tcps_rcvwinprobe++;
1047 } else
1048 goto dropafterack;
1049 } else
1050 tcpstat.tcps_rcvbyteafterwin += todrop;
1051 m_adj(m, -todrop);
1052 ti->ti_len -= todrop;
1053 tiflags &= ~(TH_PUSH|TH_FIN);
1054 }
1055
1056 /*
1057 * If last ACK falls within this segment's sequence numbers,
1058 * and the timestamp is newer, record it.
1059 */
1060 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1061 SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
1062 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
1063 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1064 tp->ts_recent_age = tcp_now;
1065 tp->ts_recent = opti.ts_val;
1066 }
1067
1068 /*
1069 * If the RST bit is set examine the state:
1070 * SYN_RECEIVED STATE:
1071 * If passive open, return to LISTEN state.
1072 * If active open, inform user that connection was refused.
1073 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1074 * Inform user that connection was reset, and close tcb.
1075 * CLOSING, LAST_ACK, TIME_WAIT STATES
1076 * Close the tcb.
1077 */
1078 if (tiflags&TH_RST) switch (tp->t_state) {
1079
1080 case TCPS_SYN_RECEIVED:
1081 so->so_error = ECONNREFUSED;
1082 goto close;
1083
1084 case TCPS_ESTABLISHED:
1085 case TCPS_FIN_WAIT_1:
1086 case TCPS_FIN_WAIT_2:
1087 case TCPS_CLOSE_WAIT:
1088 so->so_error = ECONNRESET;
1089 close:
1090 tp->t_state = TCPS_CLOSED;
1091 tcpstat.tcps_drops++;
1092 tp = tcp_close(tp);
1093 goto drop;
1094
1095 case TCPS_CLOSING:
1096 case TCPS_LAST_ACK:
1097 case TCPS_TIME_WAIT:
1098 tp = tcp_close(tp);
1099 goto drop;
1100 }
1101
1102 /*
1103 * If a SYN is in the window, then this is an
1104 * error and we send an RST and drop the connection.
1105 */
1106 if (tiflags & TH_SYN) {
1107 tp = tcp_drop(tp, ECONNRESET);
1108 goto dropwithreset;
1109 }
1110
1111 /*
1112 * If the ACK bit is off we drop the segment and return.
1113 */
1114 if ((tiflags & TH_ACK) == 0) {
1115 if (tp->t_flags & TF_ACKNOW)
1116 goto dropafterack;
1117 else
1118 goto drop;
1119 }
1120
1121 /*
1122 * Ack processing.
1123 */
1124 switch (tp->t_state) {
1125
1126 /*
1127 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
1128 * ESTABLISHED state and continue processing, otherwise
1129 * send an RST.
1130 */
1131 case TCPS_SYN_RECEIVED:
1132 if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
1133 SEQ_GT(ti->ti_ack, tp->snd_max))
1134 goto dropwithreset;
1135 tcpstat.tcps_connects++;
1136 soisconnected(so);
1137 tcp_established(tp);
1138 /* Do window scaling? */
1139 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1140 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1141 tp->snd_scale = tp->requested_s_scale;
1142 tp->rcv_scale = tp->request_r_scale;
1143 }
1144 TCP_REASS_LOCK(tp);
1145 (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
1146 TCP_REASS_UNLOCK(tp);
1147 tp->snd_wl1 = ti->ti_seq - 1;
1148 /* fall into ... */
1149
1150 /*
1151 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
1152 * ACKs. If the ack is in the range
1153 * tp->snd_una < ti->ti_ack <= tp->snd_max
1154 * then advance tp->snd_una to ti->ti_ack and drop
1155 * data from the retransmission queue. If this ACK reflects
1156 * more up to date window information we update our window information.
1157 */
1158 case TCPS_ESTABLISHED:
1159 case TCPS_FIN_WAIT_1:
1160 case TCPS_FIN_WAIT_2:
1161 case TCPS_CLOSE_WAIT:
1162 case TCPS_CLOSING:
1163 case TCPS_LAST_ACK:
1164 case TCPS_TIME_WAIT:
1165
1166 if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
1167 if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
1168 tcpstat.tcps_rcvdupack++;
1169 /*
1170 * If we have outstanding data (other than
1171 * a window probe), this is a completely
1172 * duplicate ack (ie, window info didn't
1173 * change), the ack is the biggest we've
1174 * seen and we've seen exactly our rexmt
1175 * threshhold of them, assume a packet
1176 * has been dropped and retransmit it.
1177 * Kludge snd_nxt & the congestion
1178 * window so we send only this one
1179 * packet.
1180 *
1181 * We know we're losing at the current
1182 * window size so do congestion avoidance
1183 * (set ssthresh to half the current window
1184 * and pull our congestion window back to
1185 * the new ssthresh).
1186 *
1187 * Dup acks mean that packets have left the
1188 * network (they're now cached at the receiver)
1189 * so bump cwnd by the amount in the receiver
1190 * to keep a constant cwnd packets in the
1191 * network.
1192 */
1193 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
1194 ti->ti_ack != tp->snd_una)
1195 tp->t_dupacks = 0;
1196 else if (++tp->t_dupacks == tcprexmtthresh) {
1197 tcp_seq onxt = tp->snd_nxt;
1198 u_int win =
1199 min(tp->snd_wnd, tp->snd_cwnd) /
1200 2 / tp->t_segsz;
1201 if (SEQ_LT(ti->ti_ack, tp->snd_recover)) {
1202 /*
1203 * False fast retransmit after
1204 * timeout. Do not cut window.
1205 */
1206 tp->snd_cwnd += tp->t_segsz;
1207 tp->t_dupacks = 0;
1208 (void) tcp_output(tp);
1209 goto drop;
1210 }
1211
1212 if (win < 2)
1213 win = 2;
1214 tp->snd_ssthresh = win * tp->t_segsz;
1215 tp->snd_recover = tp->snd_max;
1216 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1217 tp->t_rtt = 0;
1218 tp->snd_nxt = ti->ti_ack;
1219 tp->snd_cwnd = tp->t_segsz;
1220 (void) tcp_output(tp);
1221 tp->snd_cwnd = tp->snd_ssthresh +
1222 tp->t_segsz * tp->t_dupacks;
1223 if (SEQ_GT(onxt, tp->snd_nxt))
1224 tp->snd_nxt = onxt;
1225 goto drop;
1226 } else if (tp->t_dupacks > tcprexmtthresh) {
1227 tp->snd_cwnd += tp->t_segsz;
1228 (void) tcp_output(tp);
1229 goto drop;
1230 }
1231 } else
1232 tp->t_dupacks = 0;
1233 break;
1234 }
1235 /*
1236 * If the congestion window was inflated to account
1237 * for the other side's cached packets, retract it.
1238 */
1239 if (!tcp_do_newreno) {
1240 if (tp->t_dupacks >= tcprexmtthresh &&
1241 tp->snd_cwnd > tp->snd_ssthresh)
1242 tp->snd_cwnd = tp->snd_ssthresh;
1243 tp->t_dupacks = 0;
1244 } else if (tp->t_dupacks >= tcprexmtthresh
1245 && !tcp_newreno(tp, ti)) {
1246 tp->snd_cwnd = tp->snd_ssthresh;
1247 /*
1248 * Window inflation should have left us with approx.
1249 * snd_ssthresh outstanding data. But in case we
1250 * would be inclined to send a burst, better to do
1251 * it via the slow start mechanism.
1252 */
1253 if (SEQ_SUB(tp->snd_max, ti->ti_ack) < tp->snd_ssthresh)
1254 tp->snd_cwnd = SEQ_SUB(tp->snd_max, ti->ti_ack)
1255 + tp->t_segsz;
1256 tp->t_dupacks = 0;
1257 }
1258 if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
1259 tcpstat.tcps_rcvacktoomuch++;
1260 goto dropafterack;
1261 }
1262 acked = ti->ti_ack - tp->snd_una;
1263 tcpstat.tcps_rcvackpack++;
1264 tcpstat.tcps_rcvackbyte += acked;
1265
1266 /*
1267 * If we have a timestamp reply, update smoothed
1268 * round trip time. If no timestamp is present but
1269 * transmit timer is running and timed sequence
1270 * number was acked, update smoothed round trip time.
1271 * Since we now have an rtt measurement, cancel the
1272 * timer backoff (cf., Phil Karn's retransmit alg.).
1273 * Recompute the initial retransmit timer.
1274 */
1275 if (opti.ts_present)
1276 tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
1277 else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
1278 tcp_xmit_timer(tp,tp->t_rtt);
1279
1280 /*
1281 * If all outstanding data is acked, stop retransmit
1282 * timer and remember to restart (more output or persist).
1283 * If there is more data to be acked, restart retransmit
1284 * timer, using current (possibly backed-off) value.
1285 */
1286 if (ti->ti_ack == tp->snd_max) {
1287 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1288 needoutput = 1;
1289 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
1290 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
1291 /*
1292 * When new data is acked, open the congestion window.
1293 * If the window gives us less than ssthresh packets
1294 * in flight, open exponentially (segsz per packet).
1295 * Otherwise open linearly: segsz per window
1296 * (segsz^2 / cwnd per packet), plus a constant
1297 * fraction of a packet (segsz/8) to help larger windows
1298 * open quickly enough.
1299 */
1300 {
1301 register u_int cw = tp->snd_cwnd;
1302 register u_int incr = tp->t_segsz;
1303
1304 if (cw > tp->snd_ssthresh)
1305 incr = incr * incr / cw;
1306 if (!tcp_do_newreno || SEQ_GEQ(ti->ti_ack, tp->snd_recover))
1307 tp->snd_cwnd = min(cw + incr,TCP_MAXWIN<<tp->snd_scale);
1308 }
1309 if (acked > so->so_snd.sb_cc) {
1310 tp->snd_wnd -= so->so_snd.sb_cc;
1311 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1312 ourfinisacked = 1;
1313 } else {
1314 sbdrop(&so->so_snd, acked);
1315 tp->snd_wnd -= acked;
1316 ourfinisacked = 0;
1317 }
1318 sowwakeup(so);
1319 tp->snd_una = ti->ti_ack;
1320 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1321 tp->snd_nxt = tp->snd_una;
1322
1323 switch (tp->t_state) {
1324
1325 /*
1326 * In FIN_WAIT_1 STATE in addition to the processing
1327 * for the ESTABLISHED state if our FIN is now acknowledged
1328 * then enter FIN_WAIT_2.
1329 */
1330 case TCPS_FIN_WAIT_1:
1331 if (ourfinisacked) {
1332 /*
1333 * If we can't receive any more
1334 * data, then closing user can proceed.
1335 * Starting the timer is contrary to the
1336 * specification, but if we don't get a FIN
1337 * we'll hang forever.
1338 */
1339 if (so->so_state & SS_CANTRCVMORE) {
1340 soisdisconnected(so);
1341 if (tcp_maxidle > 0)
1342 TCP_TIMER_ARM(tp, TCPT_2MSL,
1343 tcp_maxidle);
1344 }
1345 tp->t_state = TCPS_FIN_WAIT_2;
1346 }
1347 break;
1348
1349 /*
1350 * In CLOSING STATE in addition to the processing for
1351 * the ESTABLISHED state if the ACK acknowledges our FIN
1352 * then enter the TIME-WAIT state, otherwise ignore
1353 * the segment.
1354 */
1355 case TCPS_CLOSING:
1356 if (ourfinisacked) {
1357 tp->t_state = TCPS_TIME_WAIT;
1358 tcp_canceltimers(tp);
1359 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1360 soisdisconnected(so);
1361 }
1362 break;
1363
1364 /*
1365 * In LAST_ACK, we may still be waiting for data to drain
1366 * and/or to be acked, as well as for the ack of our FIN.
1367 * If our FIN is now acknowledged, delete the TCB,
1368 * enter the closed state and return.
1369 */
1370 case TCPS_LAST_ACK:
1371 if (ourfinisacked) {
1372 tp = tcp_close(tp);
1373 goto drop;
1374 }
1375 break;
1376
1377 /*
1378 * In TIME_WAIT state the only thing that should arrive
1379 * is a retransmission of the remote FIN. Acknowledge
1380 * it and restart the finack timer.
1381 */
1382 case TCPS_TIME_WAIT:
1383 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1384 goto dropafterack;
1385 }
1386 }
1387
1388 step6:
1389 /*
1390 * Update window information.
1391 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1392 */
1393 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, ti->ti_seq) ||
1394 (tp->snd_wl1 == ti->ti_seq && SEQ_LT(tp->snd_wl2, ti->ti_ack)) ||
1395 (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))) {
1396 /* keep track of pure window updates */
1397 if (ti->ti_len == 0 &&
1398 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
1399 tcpstat.tcps_rcvwinupd++;
1400 tp->snd_wnd = tiwin;
1401 tp->snd_wl1 = ti->ti_seq;
1402 tp->snd_wl2 = ti->ti_ack;
1403 if (tp->snd_wnd > tp->max_sndwnd)
1404 tp->max_sndwnd = tp->snd_wnd;
1405 needoutput = 1;
1406 }
1407
1408 /*
1409 * Process segments with URG.
1410 */
1411 if ((tiflags & TH_URG) && ti->ti_urp &&
1412 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1413 /*
1414 * This is a kludge, but if we receive and accept
1415 * random urgent pointers, we'll crash in
1416 * soreceive. It's hard to imagine someone
1417 * actually wanting to send this much urgent data.
1418 */
1419 if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
1420 ti->ti_urp = 0; /* XXX */
1421 tiflags &= ~TH_URG; /* XXX */
1422 goto dodata; /* XXX */
1423 }
1424 /*
1425 * If this segment advances the known urgent pointer,
1426 * then mark the data stream. This should not happen
1427 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1428 * a FIN has been received from the remote side.
1429 * In these states we ignore the URG.
1430 *
1431 * According to RFC961 (Assigned Protocols),
1432 * the urgent pointer points to the last octet
1433 * of urgent data. We continue, however,
1434 * to consider it to indicate the first octet
1435 * of data past the urgent section as the original
1436 * spec states (in one of two places).
1437 */
1438 if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1439 tp->rcv_up = ti->ti_seq + ti->ti_urp;
1440 so->so_oobmark = so->so_rcv.sb_cc +
1441 (tp->rcv_up - tp->rcv_nxt) - 1;
1442 if (so->so_oobmark == 0)
1443 so->so_state |= SS_RCVATMARK;
1444 sohasoutofband(so);
1445 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1446 }
1447 /*
1448 * Remove out of band data so doesn't get presented to user.
1449 * This can happen independent of advancing the URG pointer,
1450 * but if two URG's are pending at once, some out-of-band
1451 * data may creep in... ick.
1452 */
1453 if (ti->ti_urp <= (u_int16_t) ti->ti_len
1454 #ifdef SO_OOBINLINE
1455 && (so->so_options & SO_OOBINLINE) == 0
1456 #endif
1457 )
1458 tcp_pulloutofband(so, ti, m);
1459 } else
1460 /*
1461 * If no out of band data is expected,
1462 * pull receive urgent pointer along
1463 * with the receive window.
1464 */
1465 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1466 tp->rcv_up = tp->rcv_nxt;
1467 dodata: /* XXX */
1468
1469 /*
1470 * Process the segment text, merging it into the TCP sequencing queue,
1471 * and arranging for acknowledgment of receipt if necessary.
1472 * This process logically involves adjusting tp->rcv_wnd as data
1473 * is presented to the user (this happens in tcp_usrreq.c,
1474 * case PRU_RCVD). If a FIN has already been received on this
1475 * connection then we just ignore the text.
1476 */
1477 if ((ti->ti_len || (tiflags & TH_FIN)) &&
1478 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1479 TCP_REASS(tp, ti, m, so, tiflags);
1480 /*
1481 * Note the amount of data that peer has sent into
1482 * our window, in order to estimate the sender's
1483 * buffer size.
1484 */
1485 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1486 } else {
1487 m_freem(m);
1488 tiflags &= ~TH_FIN;
1489 }
1490
1491 /*
1492 * If FIN is received ACK the FIN and let the user know
1493 * that the connection is closing. Ignore a FIN received before
1494 * the connection is fully established.
1495 */
1496 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
1497 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1498 socantrcvmore(so);
1499 tp->t_flags |= TF_ACKNOW;
1500 tp->rcv_nxt++;
1501 }
1502 switch (tp->t_state) {
1503
1504 /*
1505 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
1506 */
1507 case TCPS_ESTABLISHED:
1508 tp->t_state = TCPS_CLOSE_WAIT;
1509 break;
1510
1511 /*
1512 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1513 * enter the CLOSING state.
1514 */
1515 case TCPS_FIN_WAIT_1:
1516 tp->t_state = TCPS_CLOSING;
1517 break;
1518
1519 /*
1520 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1521 * starting the time-wait timer, turning off the other
1522 * standard timers.
1523 */
1524 case TCPS_FIN_WAIT_2:
1525 tp->t_state = TCPS_TIME_WAIT;
1526 tcp_canceltimers(tp);
1527 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1528 soisdisconnected(so);
1529 break;
1530
1531 /*
1532 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1533 */
1534 case TCPS_TIME_WAIT:
1535 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
1536 break;
1537 }
1538 }
1539 if (so->so_options & SO_DEBUG)
1540 tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1541
1542 /*
1543 * Return any desired output.
1544 */
1545 if (needoutput || (tp->t_flags & TF_ACKNOW))
1546 (void) tcp_output(tp);
1547 return;
1548
1549 badsyn:
1550 /*
1551 * Received a bad SYN. Increment counters and dropwithreset.
1552 */
1553 tcpstat.tcps_badsyn++;
1554 tp = NULL;
1555 goto dropwithreset;
1556
1557 dropafterack:
1558 /*
1559 * Generate an ACK dropping incoming segment if it occupies
1560 * sequence space, where the ACK reflects our state.
1561 */
1562 if (tiflags & TH_RST)
1563 goto drop;
1564 m_freem(m);
1565 tp->t_flags |= TF_ACKNOW;
1566 (void) tcp_output(tp);
1567 return;
1568
1569 dropwithreset:
1570 /*
1571 * Generate a RST, dropping incoming segment.
1572 * Make ACK acceptable to originator of segment.
1573 * Don't bother to respond if destination was broadcast/multicast.
1574 */
1575 if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) ||
1576 IN_MULTICAST(ti->ti_dst.s_addr))
1577 goto drop;
1578 if (tiflags & TH_ACK)
1579 (void)tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1580 else {
1581 if (tiflags & TH_SYN)
1582 ti->ti_len++;
1583 (void)tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1584 TH_RST|TH_ACK);
1585 }
1586 return;
1587
1588 drop:
1589 /*
1590 * Drop space held by incoming segment and return.
1591 */
1592 if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1593 tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1594 m_freem(m);
1595 return;
1596 }
1597
1598 void
1599 tcp_dooptions(tp, cp, cnt, ti, oi)
1600 struct tcpcb *tp;
1601 u_char *cp;
1602 int cnt;
1603 struct tcpiphdr *ti;
1604 struct tcp_opt_info *oi;
1605 {
1606 u_int16_t mss;
1607 int opt, optlen;
1608
1609 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1610 opt = cp[0];
1611 if (opt == TCPOPT_EOL)
1612 break;
1613 if (opt == TCPOPT_NOP)
1614 optlen = 1;
1615 else {
1616 optlen = cp[1];
1617 if (optlen <= 0)
1618 break;
1619 }
1620 switch (opt) {
1621
1622 default:
1623 continue;
1624
1625 case TCPOPT_MAXSEG:
1626 if (optlen != TCPOLEN_MAXSEG)
1627 continue;
1628 if (!(ti->ti_flags & TH_SYN))
1629 continue;
1630 bcopy(cp + 2, &mss, sizeof(mss));
1631 oi->maxseg = ntohs(mss);
1632 break;
1633
1634 case TCPOPT_WINDOW:
1635 if (optlen != TCPOLEN_WINDOW)
1636 continue;
1637 if (!(ti->ti_flags & TH_SYN))
1638 continue;
1639 tp->t_flags |= TF_RCVD_SCALE;
1640 tp->requested_s_scale = cp[2];
1641 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
1642 log(LOG_ERR, "TCP: invalid wscale %d from "
1643 "0x%08x, assuming %d\n",
1644 tp->requested_s_scale,
1645 ntohl(ti->ti_src.s_addr),
1646 TCP_MAX_WINSHIFT);
1647 tp->requested_s_scale = TCP_MAX_WINSHIFT;
1648 }
1649 break;
1650
1651 case TCPOPT_TIMESTAMP:
1652 if (optlen != TCPOLEN_TIMESTAMP)
1653 continue;
1654 oi->ts_present = 1;
1655 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
1656 NTOHL(oi->ts_val);
1657 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
1658 NTOHL(oi->ts_ecr);
1659
1660 /*
1661 * A timestamp received in a SYN makes
1662 * it ok to send timestamp requests and replies.
1663 */
1664 if (ti->ti_flags & TH_SYN) {
1665 tp->t_flags |= TF_RCVD_TSTMP;
1666 tp->ts_recent = oi->ts_val;
1667 tp->ts_recent_age = tcp_now;
1668 }
1669 break;
1670 case TCPOPT_SACK_PERMITTED:
1671 if (optlen != TCPOLEN_SACK_PERMITTED)
1672 continue;
1673 if (!(ti->ti_flags & TH_SYN))
1674 continue;
1675 tp->t_flags &= ~TF_CANT_TXSACK;
1676 break;
1677
1678 case TCPOPT_SACK:
1679 if (tp->t_flags & TF_IGNR_RXSACK)
1680 continue;
1681 if (optlen % 8 != 2 || optlen < 10)
1682 continue;
1683 cp += 2;
1684 optlen -= 2;
1685 for (; optlen > 0; cp -= 8, optlen -= 8) {
1686 tcp_seq lwe, rwe;
1687 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
1688 NTOHL(lwe);
1689 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
1690 NTOHL(rwe);
1691 /* tcp_mark_sacked(tp, lwe, rwe); */
1692 }
1693 break;
1694 }
1695 }
1696 }
1697
1698 /*
1699 * Pull out of band byte out of a segment so
1700 * it doesn't appear in the user's data queue.
1701 * It is still reflected in the segment length for
1702 * sequencing purposes.
1703 */
1704 void
1705 tcp_pulloutofband(so, ti, m)
1706 struct socket *so;
1707 struct tcpiphdr *ti;
1708 register struct mbuf *m;
1709 {
1710 int cnt = ti->ti_urp - 1;
1711
1712 while (cnt >= 0) {
1713 if (m->m_len > cnt) {
1714 char *cp = mtod(m, caddr_t) + cnt;
1715 struct tcpcb *tp = sototcpcb(so);
1716
1717 tp->t_iobc = *cp;
1718 tp->t_oobflags |= TCPOOB_HAVEDATA;
1719 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1720 m->m_len--;
1721 return;
1722 }
1723 cnt -= m->m_len;
1724 m = m->m_next;
1725 if (m == 0)
1726 break;
1727 }
1728 panic("tcp_pulloutofband");
1729 }
1730
1731 /*
1732 * Collect new round-trip time estimate
1733 * and update averages and current timeout.
1734 */
1735 void
1736 tcp_xmit_timer(tp, rtt)
1737 register struct tcpcb *tp;
1738 short rtt;
1739 {
1740 register short delta;
1741 short rttmin;
1742
1743 tcpstat.tcps_rttupdated++;
1744 --rtt;
1745 if (tp->t_srtt != 0) {
1746 /*
1747 * srtt is stored as fixed point with 3 bits after the
1748 * binary point (i.e., scaled by 8). The following magic
1749 * is equivalent to the smoothing algorithm in rfc793 with
1750 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1751 * point). Adjust rtt to origin 0.
1752 */
1753 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
1754 if ((tp->t_srtt += delta) <= 0)
1755 tp->t_srtt = 1 << 2;
1756 /*
1757 * We accumulate a smoothed rtt variance (actually, a
1758 * smoothed mean difference), then set the retransmit
1759 * timer to smoothed rtt + 4 times the smoothed variance.
1760 * rttvar is stored as fixed point with 2 bits after the
1761 * binary point (scaled by 4). The following is
1762 * equivalent to rfc793 smoothing with an alpha of .75
1763 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
1764 * rfc793's wired-in beta.
1765 */
1766 if (delta < 0)
1767 delta = -delta;
1768 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1769 if ((tp->t_rttvar += delta) <= 0)
1770 tp->t_rttvar = 1 << 2;
1771 } else {
1772 /*
1773 * No rtt measurement yet - use the unsmoothed rtt.
1774 * Set the variance to half the rtt (so our first
1775 * retransmit happens at 3*rtt).
1776 */
1777 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
1778 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
1779 }
1780 tp->t_rtt = 0;
1781 tp->t_rxtshift = 0;
1782
1783 /*
1784 * the retransmit should happen at rtt + 4 * rttvar.
1785 * Because of the way we do the smoothing, srtt and rttvar
1786 * will each average +1/2 tick of bias. When we compute
1787 * the retransmit timer, we want 1/2 tick of rounding and
1788 * 1 extra tick because of +-1/2 tick uncertainty in the
1789 * firing of the timer. The bias will give us exactly the
1790 * 1.5 tick we need. But, because the bias is
1791 * statistical, we have to test that we don't drop below
1792 * the minimum feasible timer (which is 2 ticks).
1793 */
1794 if (tp->t_rttmin > rtt + 2)
1795 rttmin = tp->t_rttmin;
1796 else
1797 rttmin = rtt + 2;
1798 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
1799
1800 /*
1801 * We received an ack for a packet that wasn't retransmitted;
1802 * it is probably safe to discard any error indications we've
1803 * received recently. This isn't quite right, but close enough
1804 * for now (a route might have failed after we sent a segment,
1805 * and the return path might not be symmetrical).
1806 */
1807 tp->t_softerror = 0;
1808 }
1809
1810 /*
1811 * Checks for partial ack. If partial ack arrives, force the retransmission
1812 * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
1813 * 1. By setting snd_nxt to ti_ack, this forces retransmission timer to
1814 * be started again. If the ack advances at least to tp->snd_recover, return 0.
1815 */
1816 int
1817 tcp_newreno(tp, ti)
1818 struct tcpcb *tp;
1819 struct tcpiphdr *ti;
1820 {
1821 if (SEQ_LT(ti->ti_ack, tp->snd_recover)) {
1822 tcp_seq onxt = tp->snd_nxt;
1823 tcp_seq ouna = tp->snd_una; /* Haven't updated snd_una yet*/
1824 u_long ocwnd = tp->snd_cwnd;
1825 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1826 tp->t_rtt = 0;
1827 tp->snd_nxt = ti->ti_ack;
1828 tp->snd_cwnd = tp->t_segsz;
1829 tp->snd_una = ti->ti_ack;
1830 (void) tcp_output(tp);
1831 tp->snd_cwnd = ocwnd;
1832 tp->snd_una = ouna;
1833 if (SEQ_GT(onxt, tp->snd_nxt))
1834 tp->snd_nxt = onxt;
1835 /*
1836 * Partial window deflation. Relies on fact that tp->snd_una
1837 * not updated yet.
1838 */
1839 tp->snd_cwnd -= (ti->ti_ack - tp->snd_una - tp->t_segsz);
1840 return 1;
1841 }
1842 return 0;
1843 }
1844
1845
1846 /*
1847 * TCP compressed state engine. Currently used to hold compressed
1848 * state for SYN_RECEIVED.
1849 */
1850
1851 u_long syn_cache_count;
1852 u_int32_t syn_hash1, syn_hash2;
1853
1854 #define SYN_HASH(sa, sp, dp) \
1855 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
1856 ((u_int32_t)(sp)))^syn_hash2)))
1857
1858 #define SYN_CACHE_RM(sc) \
1859 do { \
1860 LIST_REMOVE((sc), sc_bucketq); \
1861 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
1862 TAILQ_REMOVE(&tcp_syn_cache_timeq[(sc)->sc_rxtshift], (sc), sc_timeq); \
1863 syn_cache_count--; \
1864 } while (0)
1865
1866 #define SYN_CACHE_PUT(sc) \
1867 do { \
1868 if ((sc)->sc_ipopts) \
1869 (void) m_free((sc)->sc_ipopts); \
1870 if ((sc)->sc_route.ro_rt != NULL) \
1871 RTFREE((sc)->sc_route.ro_rt); \
1872 pool_put(&syn_cache_pool, (sc)); \
1873 } while (0)
1874
1875 struct pool syn_cache_pool;
1876
1877 /*
1878 * We don't estimate RTT with SYNs, so each packet starts with the default
1879 * RTT and each timer queue has a fixed timeout value. This allows us to
1880 * optimize the timer queues somewhat.
1881 */
1882 #define SYN_CACHE_TIMER_ARM(sc) \
1883 do { \
1884 TCPT_RANGESET((sc)->sc_rxtcur, \
1885 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
1886 TCPTV_REXMTMAX); \
1887 PRT_SLOW_ARM((sc)->sc_rexmt, (sc)->sc_rxtcur); \
1888 } while (0)
1889
1890 TAILQ_HEAD(, syn_cache) tcp_syn_cache_timeq[TCP_MAXRXTSHIFT + 1];
1891
1892 void
1893 syn_cache_init()
1894 {
1895 int i;
1896
1897 /* Initialize the hash buckets. */
1898 for (i = 0; i < tcp_syn_cache_size; i++)
1899 LIST_INIT(&tcp_syn_cache[i].sch_bucket);
1900
1901 /* Initialize the timer queues. */
1902 for (i = 0; i <= TCP_MAXRXTSHIFT; i++)
1903 TAILQ_INIT(&tcp_syn_cache_timeq[i]);
1904
1905 /* Initialize the syn cache pool. */
1906 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
1907 "synpl", 0, NULL, NULL, M_PCB);
1908 }
1909
1910 void
1911 syn_cache_insert(sc)
1912 struct syn_cache *sc;
1913 {
1914 struct syn_cache_head *scp;
1915 struct syn_cache *sc2;
1916 int s, i;
1917
1918 /*
1919 * If there are no entries in the hash table, reinitialize
1920 * the hash secrets.
1921 */
1922 if (syn_cache_count == 0) {
1923 struct timeval tv;
1924 microtime(&tv);
1925 syn_hash1 = random() ^ (u_long)≻
1926 syn_hash2 = random() ^ tv.tv_usec;
1927 }
1928
1929 sc->sc_hash = SYN_HASH(&sc->sc_src, sc->sc_sport, sc->sc_dport);
1930 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
1931 scp = &tcp_syn_cache[sc->sc_bucketidx];
1932
1933 /*
1934 * Make sure that we don't overflow the per-bucket
1935 * limit or the total cache size limit.
1936 */
1937 s = splsoftnet();
1938 if (scp->sch_length >= tcp_syn_bucket_limit) {
1939 tcpstat.tcps_sc_bucketoverflow++;
1940 /*
1941 * The bucket is full. Toss the oldest element in the
1942 * bucket. This will be the entry with our bucket
1943 * index closest to the front of the timer queue with
1944 * the largest timeout value.
1945 *
1946 * Note: This timer queue traversal may be expensive, so
1947 * we hope that this doesn't happen very often. It is
1948 * much more likely that we'll overflow the entire
1949 * cache, which is much easier to handle; see below.
1950 */
1951 for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
1952 for (sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
1953 sc2 != NULL;
1954 sc2 = TAILQ_NEXT(sc2, sc_timeq)) {
1955 if (sc2->sc_bucketidx == sc->sc_bucketidx) {
1956 SYN_CACHE_RM(sc2);
1957 SYN_CACHE_PUT(sc2);
1958 goto insert; /* 2 level break */
1959 }
1960 }
1961 }
1962 #ifdef DIAGNOSTIC
1963 /*
1964 * This should never happen; we should always find an
1965 * entry in our bucket.
1966 */
1967 panic("syn_cache_insert: bucketoverflow: impossible");
1968 #endif
1969 } else if (syn_cache_count >= tcp_syn_cache_limit) {
1970 tcpstat.tcps_sc_overflowed++;
1971 /*
1972 * The cache is full. Toss the oldest entry in the
1973 * entire cache. This is the front entry in the
1974 * first non-empty timer queue with the largest
1975 * timeout value.
1976 */
1977 for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
1978 sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
1979 if (sc2 == NULL)
1980 continue;
1981 SYN_CACHE_RM(sc2);
1982 SYN_CACHE_PUT(sc2);
1983 goto insert; /* symmetry with above */
1984 }
1985 #ifdef DIAGNOSTIC
1986 /*
1987 * This should never happen; we should always find an
1988 * entry in the cache.
1989 */
1990 panic("syn_cache_insert: cache overflow: impossible");
1991 #endif
1992 }
1993
1994 insert:
1995 /*
1996 * Initialize the entry's timer.
1997 */
1998 sc->sc_rxttot = 0;
1999 sc->sc_rxtshift = 0;
2000 SYN_CACHE_TIMER_ARM(sc);
2001 TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift], sc, sc_timeq);
2002
2003 /* Put it into the bucket. */
2004 LIST_INSERT_HEAD(&scp->sch_bucket, sc, sc_bucketq);
2005 scp->sch_length++;
2006 syn_cache_count++;
2007
2008 tcpstat.tcps_sc_added++;
2009 splx(s);
2010 }
2011
2012 /*
2013 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
2014 * If we have retransmitted an entry the maximum number of times, expire
2015 * that entry.
2016 */
2017 void
2018 syn_cache_timer()
2019 {
2020 struct syn_cache *sc, *nsc;
2021 int i, s;
2022
2023 s = splsoftnet();
2024
2025 /*
2026 * First, get all the entries that need to be retransmitted, or
2027 * must be expired due to exceeding the initial keepalive time.
2028 */
2029 for (i = 0; i < TCP_MAXRXTSHIFT; i++) {
2030 for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
2031 sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2032 sc = nsc) {
2033 nsc = TAILQ_NEXT(sc, sc_timeq);
2034
2035 /*
2036 * Compute the total amount of time this entry has
2037 * been on a queue. If this entry has been on longer
2038 * than the keep alive timer would allow, expire it.
2039 */
2040 sc->sc_rxttot += sc->sc_rxtcur;
2041 if (sc->sc_rxttot >= TCPTV_KEEP_INIT) {
2042 tcpstat.tcps_sc_timed_out++;
2043 SYN_CACHE_RM(sc);
2044 SYN_CACHE_PUT(sc);
2045 continue;
2046 }
2047
2048 tcpstat.tcps_sc_retransmitted++;
2049 (void) syn_cache_respond(sc, NULL);
2050
2051 /* Advance this entry onto the next timer queue. */
2052 TAILQ_REMOVE(&tcp_syn_cache_timeq[i], sc, sc_timeq);
2053 sc->sc_rxtshift = i + 1;
2054 SYN_CACHE_TIMER_ARM(sc);
2055 TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift],
2056 sc, sc_timeq);
2057 }
2058 }
2059
2060 /*
2061 * Now get all the entries that are expired due to too many
2062 * retransmissions.
2063 */
2064 for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[TCP_MAXRXTSHIFT]);
2065 sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
2066 sc = nsc) {
2067 nsc = TAILQ_NEXT(sc, sc_timeq);
2068 tcpstat.tcps_sc_timed_out++;
2069 SYN_CACHE_RM(sc);
2070 SYN_CACHE_PUT(sc);
2071 }
2072 splx(s);
2073 }
2074
2075 /*
2076 * Find an entry in the syn cache.
2077 */
2078 struct syn_cache *
2079 syn_cache_lookup(ti, headp)
2080 struct tcpiphdr *ti;
2081 struct syn_cache_head **headp;
2082 {
2083 struct syn_cache *sc;
2084 struct syn_cache_head *scp;
2085 u_int32_t hash;
2086 int s;
2087
2088 hash = SYN_HASH(&ti->ti_src, ti->ti_sport, ti->ti_dport);
2089
2090 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
2091 *headp = scp;
2092 s = splsoftnet();
2093 for (sc = LIST_FIRST(&scp->sch_bucket); sc != NULL;
2094 sc = LIST_NEXT(sc, sc_bucketq)) {
2095 if (sc->sc_hash != hash)
2096 continue;
2097 if (sc->sc_src.s_addr == ti->ti_src.s_addr &&
2098 sc->sc_sport == ti->ti_sport &&
2099 sc->sc_dport == ti->ti_dport &&
2100 sc->sc_dst.s_addr == ti->ti_dst.s_addr) {
2101 splx(s);
2102 return (sc);
2103 }
2104 }
2105 splx(s);
2106 return (NULL);
2107 }
2108
2109 /*
2110 * This function gets called when we receive an ACK for a
2111 * socket in the LISTEN state. We look up the connection
2112 * in the syn cache, and if its there, we pull it out of
2113 * the cache and turn it into a full-blown connection in
2114 * the SYN-RECEIVED state.
2115 *
2116 * The return values may not be immediately obvious, and their effects
2117 * can be subtle, so here they are:
2118 *
2119 * NULL SYN was not found in cache; caller should drop the
2120 * packet and send an RST.
2121 *
2122 * -1 We were unable to create the new connection, and are
2123 * aborting it. An ACK,RST is being sent to the peer
2124 * (unless we got screwey sequence numbners; see below),
2125 * because the 3-way handshake has been completed. Caller
2126 * should not free the mbuf, since we may be using it. If
2127 * we are not, we will free it.
2128 *
2129 * Otherwise, the return value is a pointer to the new socket
2130 * associated with the connection.
2131 */
2132 struct socket *
2133 syn_cache_get(so, m)
2134 struct socket *so;
2135 struct mbuf *m;
2136 {
2137 struct syn_cache *sc;
2138 struct syn_cache_head *scp;
2139 register struct inpcb *inp;
2140 register struct tcpcb *tp = 0;
2141 register struct tcpiphdr *ti;
2142 struct sockaddr_in *sin;
2143 struct mbuf *am;
2144 int s;
2145
2146 ti = mtod(m, struct tcpiphdr *);
2147 s = splsoftnet();
2148 if ((sc = syn_cache_lookup(ti, &scp)) == NULL) {
2149 splx(s);
2150 return (NULL);
2151 }
2152
2153 /*
2154 * Verify the sequence and ack numbers. Try getting the correct
2155 * response again.
2156 */
2157 if ((ti->ti_ack != sc->sc_iss + 1) ||
2158 SEQ_LEQ(ti->ti_seq, sc->sc_irs) ||
2159 SEQ_GT(ti->ti_seq, sc->sc_irs + 1 + sc->sc_win)) {
2160 (void) syn_cache_respond(sc, m);
2161 splx(s);
2162 return ((struct socket *)(-1));
2163 }
2164
2165 /* Remove this cache entry */
2166 SYN_CACHE_RM(sc);
2167 splx(s);
2168
2169 /*
2170 * Ok, create the full blown connection, and set things up
2171 * as they would have been set up if we had created the
2172 * connection when the SYN arrived. If we can't create
2173 * the connection, abort it.
2174 */
2175 so = sonewconn(so, SS_ISCONNECTED);
2176 if (so == NULL)
2177 goto resetandabort;
2178
2179 inp = sotoinpcb(so);
2180 inp->inp_laddr = sc->sc_dst;
2181 inp->inp_lport = sc->sc_dport;
2182 in_pcbstate(inp, INP_BOUND);
2183 inp->inp_options = ip_srcroute();
2184 if (inp->inp_options == NULL) {
2185 inp->inp_options = sc->sc_ipopts;
2186 sc->sc_ipopts = NULL;
2187 }
2188
2189 /*
2190 * Give the new socket our cached route reference.
2191 */
2192 inp->inp_route = sc->sc_route; /* struct assignment */
2193 sc->sc_route.ro_rt = NULL;
2194
2195 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
2196 if (am == NULL)
2197 goto resetandabort;
2198 am->m_len = sizeof(struct sockaddr_in);
2199 sin = mtod(am, struct sockaddr_in *);
2200 sin->sin_family = AF_INET;
2201 sin->sin_len = sizeof(*sin);
2202 sin->sin_addr = sc->sc_src;
2203 sin->sin_port = sc->sc_sport;
2204 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
2205 if (in_pcbconnect(inp, am)) {
2206 (void) m_free(am);
2207 goto resetandabort;
2208 }
2209 (void) m_free(am);
2210
2211 tp = intotcpcb(inp);
2212 if (sc->sc_request_r_scale != 15) {
2213 tp->requested_s_scale = sc->sc_requested_s_scale;
2214 tp->request_r_scale = sc->sc_request_r_scale;
2215 tp->snd_scale = sc->sc_requested_s_scale;
2216 tp->rcv_scale = sc->sc_request_r_scale;
2217 tp->t_flags |= TF_RCVD_SCALE;
2218 }
2219 if (sc->sc_flags & SCF_TIMESTAMP)
2220 tp->t_flags |= TF_RCVD_TSTMP;
2221
2222 tp->t_template = tcp_template(tp);
2223 if (tp->t_template == 0) {
2224 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
2225 so = NULL;
2226 m_freem(m);
2227 goto abort;
2228 }
2229
2230 tp->iss = sc->sc_iss;
2231 tp->irs = sc->sc_irs;
2232 tcp_sendseqinit(tp);
2233 tcp_rcvseqinit(tp);
2234 tp->t_state = TCPS_SYN_RECEIVED;
2235 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
2236 tcpstat.tcps_accepts++;
2237
2238 /* Initialize tp->t_ourmss before we deal with the peer's! */
2239 tp->t_ourmss = sc->sc_ourmaxseg;
2240 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
2241
2242 /*
2243 * Initialize the initial congestion window. If we
2244 * had to retransmit the SYN,ACK, we must initialize cwnd
2245 * to 1 segment (i.e. the Loss Window).
2246 */
2247 if (sc->sc_rxtshift)
2248 tp->snd_cwnd = tp->t_peermss;
2249 else
2250 tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
2251
2252 tcp_rmx_rtt(tp);
2253 tp->snd_wl1 = sc->sc_irs;
2254 tp->rcv_up = sc->sc_irs + 1;
2255
2256 /*
2257 * This is what whould have happened in tcp_ouput() when
2258 * the SYN,ACK was sent.
2259 */
2260 tp->snd_up = tp->snd_una;
2261 tp->snd_max = tp->snd_nxt = tp->iss+1;
2262 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2263 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
2264 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
2265 tp->last_ack_sent = tp->rcv_nxt;
2266
2267 tcpstat.tcps_sc_completed++;
2268 SYN_CACHE_PUT(sc);
2269 return (so);
2270
2271 resetandabort:
2272 (void) tcp_respond(NULL, ti, m, ti->ti_seq+ti->ti_len,
2273 (tcp_seq)0, TH_RST|TH_ACK);
2274 abort:
2275 if (so != NULL)
2276 (void) soabort(so);
2277 SYN_CACHE_PUT(sc);
2278 tcpstat.tcps_sc_aborted++;
2279 return ((struct socket *)(-1));
2280 }
2281
2282 /*
2283 * This function is called when we get a RST for a
2284 * non-existant connection, so that we can see if the
2285 * connection is in the syn cache. If it is, zap it.
2286 */
2287
2288 void
2289 syn_cache_reset(ti)
2290 register struct tcpiphdr *ti;
2291 {
2292 struct syn_cache *sc;
2293 struct syn_cache_head *scp;
2294 int s = splsoftnet();
2295
2296 if ((sc = syn_cache_lookup(ti, &scp)) == NULL) {
2297 splx(s);
2298 return;
2299 }
2300 if (SEQ_LT(ti->ti_seq,sc->sc_irs) ||
2301 SEQ_GT(ti->ti_seq, sc->sc_irs+1)) {
2302 splx(s);
2303 return;
2304 }
2305 SYN_CACHE_RM(sc);
2306 splx(s);
2307 tcpstat.tcps_sc_reset++;
2308 SYN_CACHE_PUT(sc);
2309 }
2310
2311 void
2312 syn_cache_unreach(ip, th)
2313 struct ip *ip;
2314 struct tcphdr *th;
2315 {
2316 struct syn_cache *sc;
2317 struct syn_cache_head *scp;
2318 struct tcpiphdr ti2;
2319 int s;
2320
2321 ti2.ti_src.s_addr = ip->ip_dst.s_addr;
2322 ti2.ti_dst.s_addr = ip->ip_src.s_addr;
2323 ti2.ti_sport = th->th_dport;
2324 ti2.ti_dport = th->th_sport;
2325
2326 s = splsoftnet();
2327 if ((sc = syn_cache_lookup(&ti2, &scp)) == NULL) {
2328 splx(s);
2329 return;
2330 }
2331 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
2332 if (ntohl (th->th_seq) != sc->sc_iss) {
2333 splx(s);
2334 return;
2335 }
2336
2337 /*
2338 * If we've rertransmitted 3 times and this is our second error,
2339 * we remove the entry. Otherwise, we allow it to continue on.
2340 * This prevents us from incorrectly nuking an entry during a
2341 * spurious network outage.
2342 *
2343 * See tcp_notify().
2344 */
2345 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
2346 sc->sc_flags |= SCF_UNREACH;
2347 splx(s);
2348 return;
2349 }
2350
2351 SYN_CACHE_RM(sc);
2352 splx(s);
2353 tcpstat.tcps_sc_unreach++;
2354 SYN_CACHE_PUT(sc);
2355 }
2356
2357 /*
2358 * Given a LISTEN socket and an inbound SYN request, add
2359 * this to the syn cache, and send back a segment:
2360 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
2361 * to the source.
2362 *
2363 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
2364 * Doing so would require that we hold onto the data and deliver it
2365 * to the application. However, if we are the target of a SYN-flood
2366 * DoS attack, an attacker could send data which would eventually
2367 * consume all available buffer space if it were ACKed. By not ACKing
2368 * the data, we avoid this DoS scenario.
2369 */
2370
2371 int
2372 syn_cache_add(so, m, optp, optlen, oi)
2373 struct socket *so;
2374 struct mbuf *m;
2375 u_char *optp;
2376 int optlen;
2377 struct tcp_opt_info *oi;
2378 {
2379 register struct tcpiphdr *ti;
2380 struct tcpcb tb, *tp;
2381 long win;
2382 struct syn_cache *sc;
2383 struct syn_cache_head *scp;
2384 struct mbuf *ipopts;
2385
2386 tp = sototcpcb(so);
2387 ti = mtod(m, struct tcpiphdr *);
2388
2389 /*
2390 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
2391 * in_broadcast() should never return true on a received
2392 * packet with M_BCAST not set.
2393 */
2394 if (m->m_flags & (M_BCAST|M_MCAST) ||
2395 IN_MULTICAST(ti->ti_src.s_addr) ||
2396 IN_MULTICAST(ti->ti_dst.s_addr))
2397 return (0);
2398
2399 /*
2400 * Initialize some local state.
2401 */
2402 win = sbspace(&so->so_rcv);
2403 if (win > TCP_MAXWIN)
2404 win = TCP_MAXWIN;
2405
2406 /*
2407 * Remember the IP options, if any.
2408 */
2409 ipopts = ip_srcroute();
2410
2411 if (optp) {
2412 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
2413 tcp_dooptions(&tb, optp, optlen, ti, oi);
2414 } else
2415 tb.t_flags = 0;
2416
2417 /*
2418 * See if we already have an entry for this connection.
2419 * If we do, resend the SYN,ACK. We do not count this
2420 * as a retransmission (XXX though maybe we should).
2421 */
2422 if ((sc = syn_cache_lookup(ti, &scp)) != NULL) {
2423 tcpstat.tcps_sc_dupesyn++;
2424 if (ipopts) {
2425 /*
2426 * If we were remembering a previous source route,
2427 * forget it and use the new one we've been given.
2428 */
2429 if (sc->sc_ipopts)
2430 (void) m_free(sc->sc_ipopts);
2431 sc->sc_ipopts = ipopts;
2432 }
2433 sc->sc_timestamp = tb.ts_recent;
2434 if (syn_cache_respond(sc, m) == 0) {
2435 tcpstat.tcps_sndacks++;
2436 tcpstat.tcps_sndtotal++;
2437 }
2438 return (1);
2439 }
2440
2441 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
2442 if (sc == NULL) {
2443 if (ipopts)
2444 (void) m_free(ipopts);
2445 return (0);
2446 }
2447
2448 /*
2449 * Fill in the cache, and put the necessary IP and TCP
2450 * options into the reply.
2451 */
2452 memset(&sc->sc_route, 0, sizeof(sc->sc_route));
2453 sc->sc_src.s_addr = ti->ti_src.s_addr;
2454 sc->sc_dst.s_addr = ti->ti_dst.s_addr;
2455 sc->sc_sport = ti->ti_sport;
2456 sc->sc_dport = ti->ti_dport;
2457 sc->sc_flags = 0;
2458 sc->sc_ipopts = ipopts;
2459 sc->sc_irs = ti->ti_seq;
2460 sc->sc_iss = tcp_new_iss(sc, sizeof(struct syn_cache), 0);
2461 sc->sc_peermaxseg = oi->maxseg;
2462 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
2463 m->m_pkthdr.rcvif : NULL);
2464 sc->sc_win = win;
2465 sc->sc_timestamp = tb.ts_recent;
2466 if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
2467 sc->sc_flags |= SCF_TIMESTAMP;
2468 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2469 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2470 sc->sc_requested_s_scale = tb.requested_s_scale;
2471 sc->sc_request_r_scale = 0;
2472 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
2473 TCP_MAXWIN << sc->sc_request_r_scale <
2474 so->so_rcv.sb_hiwat)
2475 sc->sc_request_r_scale++;
2476 } else {
2477 sc->sc_requested_s_scale = 15;
2478 sc->sc_request_r_scale = 15;
2479 }
2480 if (syn_cache_respond(sc, m) == 0) {
2481 syn_cache_insert(sc);
2482 tcpstat.tcps_sndacks++;
2483 tcpstat.tcps_sndtotal++;
2484 } else {
2485 SYN_CACHE_PUT(sc);
2486 tcpstat.tcps_sc_dropped++;
2487 }
2488 return (1);
2489 }
2490
2491 int
2492 syn_cache_respond(sc, m)
2493 struct syn_cache *sc;
2494 struct mbuf *m;
2495 {
2496 struct route *ro = &sc->sc_route;
2497 struct rtentry *rt;
2498 struct sockaddr_in *dst;
2499 struct tcpiphdr *ti;
2500 u_int8_t *optp;
2501 int optlen, error;
2502 u_int16_t tlen;
2503
2504 /* Compute the size of the TCP options. */
2505 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
2506 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
2507
2508 tlen = sizeof(struct tcpiphdr) + optlen;
2509
2510 /*
2511 * Create the IP+TCP header from scratch. Reuse the received mbuf
2512 * if possible.
2513 */
2514 if (m != NULL) {
2515 m_freem(m->m_next);
2516 m->m_next = NULL;
2517 MRESETDATA(m);
2518 } else {
2519 MGETHDR(m, M_DONTWAIT, MT_DATA);
2520 if (m == NULL)
2521 return (ENOBUFS);
2522 }
2523
2524 /* Fixup the mbuf. */
2525 m->m_data += max_linkhdr;
2526 m->m_len = m->m_pkthdr.len = tlen;
2527 m->m_pkthdr.rcvif = NULL;
2528
2529 ti = mtod(m, struct tcpiphdr *);
2530 memset(ti, 0, tlen);
2531
2532 ti->ti_dst = sc->sc_src;
2533 ti->ti_src = sc->sc_dst;
2534 ti->ti_sport = sc->sc_dport;
2535 ti->ti_dport = sc->sc_sport;
2536 ti->ti_pr = IPPROTO_TCP;
2537 ti->ti_len = htons(tlen - sizeof(struct ip));
2538 /* ti_x1 already 0'd */
2539 ti->ti_seq = htonl(sc->sc_iss);
2540 ti->ti_ack = htonl(sc->sc_irs + 1);
2541 /* ti_x2 already 0 */
2542 ti->ti_off = (sizeof(struct tcphdr) + optlen) >> 2;
2543 ti->ti_flags = TH_SYN|TH_ACK;
2544 ti->ti_win = htons(sc->sc_win);
2545 /* ti_sum already 0 */
2546 /* ti_urp already 0 */
2547
2548 /* Tack on the TCP options. */
2549 optp = (u_int8_t *)(ti + 1);
2550 *optp++ = TCPOPT_MAXSEG;
2551 *optp++ = 4;
2552 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
2553 *optp++ = sc->sc_ourmaxseg & 0xff;
2554
2555 if (sc->sc_request_r_scale != 15) {
2556 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
2557 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
2558 sc->sc_request_r_scale);
2559 optp += 4;
2560 }
2561
2562 if (sc->sc_flags & SCF_TIMESTAMP) {
2563 u_int32_t *lp = (u_int32_t *)(optp);
2564 /* Form timestamp option as shown in appendix A of RFC 1323. */
2565 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
2566 *lp++ = htonl(tcp_now);
2567 *lp = htonl(sc->sc_timestamp);
2568 optp += TCPOLEN_TSTAMP_APPA;
2569 }
2570
2571 /* Compute the packet's checksum. */
2572 ti->ti_sum = in_cksum(m, tlen);
2573
2574 /*
2575 * Fill in some straggling IP bits. Note the stack expects
2576 * ip_len to be in host order, for convenience.
2577 */
2578 ((struct ip *)ti)->ip_len = tlen;
2579 ((struct ip *)ti)->ip_ttl = ip_defttl;
2580 /* XXX tos? */
2581
2582 /*
2583 * If we're doing Path MTU discovery, we need to set DF unless
2584 * the route's MTU is locked. If we don't yet know the route,
2585 * look it up now. We will copy this reference to the inpcb
2586 * when we finish creating the connection.
2587 */
2588 if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
2589 if (ro->ro_rt != NULL) {
2590 RTFREE(ro->ro_rt);
2591 ro->ro_rt = NULL;
2592 }
2593 dst = satosin(&ro->ro_dst);
2594 dst->sin_family = AF_INET;
2595 dst->sin_len = sizeof(*dst);
2596 dst->sin_addr = ti->ti_dst;
2597 rtalloc(ro);
2598 if ((rt = ro->ro_rt) == NULL) {
2599 m_freem(m);
2600 ipstat.ips_noroute++;
2601 return (EHOSTUNREACH);
2602 }
2603 }
2604 if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
2605 ((struct ip *)ti)->ip_off |= IP_DF;
2606
2607 /* ...and send it off! */
2608 error = ip_output(m, sc->sc_ipopts, ro, 0, NULL);
2609
2610 return (error);
2611 }
2612