Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.86
      1 /*	$NetBSD: tcp_input.c,v 1.86 1999/07/14 22:37:13 itojun Exp $	*/
      2 
      3 /*
      4 %%% portions-copyright-nrl-95
      5 Portions of this software are Copyright 1995-1998 by Randall Atkinson,
      6 Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
      7 Reserved. All rights under this copyright have been assigned to the US
      8 Naval Research Laboratory (NRL). The NRL Copyright Notice and License
      9 Agreement Version 1.1 (January 17, 1995) applies to these portions of the
     10 software.
     11 You should have received a copy of the license with this software. If you
     12 didn't get a copy, you may request one from <license (at) ipv6.nrl.navy.mil>.
     13 
     14 */
     15 
     16 /*
     17  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
     18  * All rights reserved.
     19  *
     20  * Redistribution and use in source and binary forms, with or without
     21  * modification, are permitted provided that the following conditions
     22  * are met:
     23  * 1. Redistributions of source code must retain the above copyright
     24  *    notice, this list of conditions and the following disclaimer.
     25  * 2. Redistributions in binary form must reproduce the above copyright
     26  *    notice, this list of conditions and the following disclaimer in the
     27  *    documentation and/or other materials provided with the distribution.
     28  * 3. Neither the name of the project nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  */
     44 
     45 /*-
     46  * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
     47  * All rights reserved.
     48  *
     49  * This code is derived from software contributed to The NetBSD Foundation
     50  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     51  * Facility, NASA Ames Research Center.
     52  *
     53  * Redistribution and use in source and binary forms, with or without
     54  * modification, are permitted provided that the following conditions
     55  * are met:
     56  * 1. Redistributions of source code must retain the above copyright
     57  *    notice, this list of conditions and the following disclaimer.
     58  * 2. Redistributions in binary form must reproduce the above copyright
     59  *    notice, this list of conditions and the following disclaimer in the
     60  *    documentation and/or other materials provided with the distribution.
     61  * 3. All advertising materials mentioning features or use of this software
     62  *    must display the following acknowledgement:
     63  *	This product includes software developed by the NetBSD
     64  *	Foundation, Inc. and its contributors.
     65  * 4. Neither the name of The NetBSD Foundation nor the names of its
     66  *    contributors may be used to endorse or promote products derived
     67  *    from this software without specific prior written permission.
     68  *
     69  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     70  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     71  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     72  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     73  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     74  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     75  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     76  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     77  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     78  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     79  * POSSIBILITY OF SUCH DAMAGE.
     80  */
     81 
     82 /*
     83  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
     84  *	The Regents of the University of California.  All rights reserved.
     85  *
     86  * Redistribution and use in source and binary forms, with or without
     87  * modification, are permitted provided that the following conditions
     88  * are met:
     89  * 1. Redistributions of source code must retain the above copyright
     90  *    notice, this list of conditions and the following disclaimer.
     91  * 2. Redistributions in binary form must reproduce the above copyright
     92  *    notice, this list of conditions and the following disclaimer in the
     93  *    documentation and/or other materials provided with the distribution.
     94  * 3. All advertising materials mentioning features or use of this software
     95  *    must display the following acknowledgement:
     96  *	This product includes software developed by the University of
     97  *	California, Berkeley and its contributors.
     98  * 4. Neither the name of the University nor the names of its contributors
     99  *    may be used to endorse or promote products derived from this software
    100  *    without specific prior written permission.
    101  *
    102  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    103  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    104  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    105  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    106  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    107  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    108  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    109  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    110  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    111  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    112  * SUCH DAMAGE.
    113  *
    114  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    115  */
    116 
    117 /*
    118  *	TODO list for SYN cache stuff:
    119  *
    120  *	Find room for a "state" field, which is needed to keep a
    121  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    122  *	that this is fairly important for very high-volume web and
    123  *	mail servers, which use a large number of short-lived
    124  *	connections.
    125  */
    126 
    127 #include "opt_inet.h"
    128 #include "opt_ipsec.h"
    129 
    130 #include <sys/param.h>
    131 #include <sys/systm.h>
    132 #include <sys/malloc.h>
    133 #include <sys/mbuf.h>
    134 #include <sys/protosw.h>
    135 #include <sys/socket.h>
    136 #include <sys/socketvar.h>
    137 #include <sys/errno.h>
    138 #include <sys/syslog.h>
    139 #include <sys/pool.h>
    140 #include <sys/domain.h>
    141 
    142 #include <net/if.h>
    143 #include <net/route.h>
    144 
    145 #include <netinet/in.h>
    146 #include <netinet/in_systm.h>
    147 #include <netinet/ip.h>
    148 #include <netinet/in_pcb.h>
    149 #include <netinet/ip_var.h>
    150 
    151 #ifdef INET6
    152 #ifndef INET
    153 #include <netinet/in.h>
    154 #endif
    155 #include <netinet/ip6.h>
    156 #include <netinet6/in6_pcb.h>
    157 #include <netinet6/ip6_var.h>
    158 #include <netinet6/in6_var.h>
    159 #include <netinet/icmp6.h>
    160 #endif
    161 
    162 #include <netinet/tcp.h>
    163 #include <netinet/tcp_fsm.h>
    164 #include <netinet/tcp_seq.h>
    165 #include <netinet/tcp_timer.h>
    166 #include <netinet/tcp_var.h>
    167 #include <netinet/tcpip.h>
    168 #include <netinet/tcp_debug.h>
    169 
    170 #include <machine/stdarg.h>
    171 
    172 #ifdef IPSEC
    173 #include <netinet6/ipsec.h>
    174 #include <netkey/key.h>
    175 #include <netkey/key_debug.h>
    176 #endif /*IPSEC*/
    177 
    178 int	tcprexmtthresh = 3;
    179 int	tcp_log_refused;
    180 
    181 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
    182 
    183 /* for modulo comparisons of timestamps */
    184 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    185 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    186 
    187 /*
    188  * Macro to compute ACK transmission behavior.  Delay the ACK unless
    189  * we have already delayed an ACK (must send an ACK every two segments).
    190  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    191  * option is enabled.
    192  */
    193 #define	TCP_SETUP_ACK(tp, th) \
    194 do { \
    195 	if ((tp)->t_flags & TF_DELACK || \
    196 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
    197 		tp->t_flags |= TF_ACKNOW; \
    198 	else \
    199 		TCP_SET_DELACK(tp); \
    200 } while (0)
    201 
    202 int
    203 tcp_reass(tp, th, m, tlen)
    204 	register struct tcpcb *tp;
    205 	register struct tcphdr *th;
    206 	struct mbuf *m;
    207 	int *tlen;
    208 {
    209 	register struct ipqent *p, *q, *nq, *tiqe = NULL;
    210 	struct socket *so = NULL;
    211 	int pkt_flags;
    212 	tcp_seq pkt_seq;
    213 	unsigned pkt_len;
    214 	u_long rcvpartdupbyte = 0;
    215 	u_long rcvoobyte;
    216 
    217 	if (tp->t_inpcb)
    218 		so = tp->t_inpcb->inp_socket;
    219 #ifdef INET6
    220 	else if (tp->t_in6pcb)
    221 		so = tp->t_in6pcb->in6p_socket;
    222 #endif
    223 
    224 	TCP_REASS_LOCK_CHECK(tp);
    225 
    226 	/*
    227 	 * Call with th==0 after become established to
    228 	 * force pre-ESTABLISHED data up to user socket.
    229 	 */
    230 	if (th == 0)
    231 		goto present;
    232 
    233 	rcvoobyte = *tlen;
    234 	/*
    235 	 * Copy these to local variables because the tcpiphdr
    236 	 * gets munged while we are collapsing mbufs.
    237 	 */
    238 	pkt_seq = th->th_seq;
    239 	pkt_len = *tlen;
    240 	pkt_flags = th->th_flags;
    241 	/*
    242 	 * Find a segment which begins after this one does.
    243 	 */
    244 	for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
    245 		nq = q->ipqe_q.le_next;
    246 		/*
    247 		 * If the received segment is just right after this
    248 		 * fragment, merge the two together and then check
    249 		 * for further overlaps.
    250 		 */
    251 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    252 #ifdef TCPREASS_DEBUG
    253 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    254 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    255 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    256 #endif
    257 			pkt_len += q->ipqe_len;
    258 			pkt_flags |= q->ipqe_flags;
    259 			pkt_seq = q->ipqe_seq;
    260 			m_cat(q->ipqe_m, m);
    261 			m = q->ipqe_m;
    262 			goto free_ipqe;
    263 		}
    264 		/*
    265 		 * If the received segment is completely past this
    266 		 * fragment, we need to go the next fragment.
    267 		 */
    268 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    269 			p = q;
    270 			continue;
    271 		}
    272 		/*
    273 		 * If the fragment is past the received segment,
    274 		 * it (or any following) can't be concatenated.
    275 		 */
    276 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
    277 			break;
    278 		/*
    279 		 * We've received all the data in this segment before.
    280 		 * mark it as a duplicate and return.
    281 		 */
    282 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    283 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    284 			tcpstat.tcps_rcvduppack++;
    285 			tcpstat.tcps_rcvdupbyte += pkt_len;
    286 			m_freem(m);
    287 			if (tiqe != NULL)
    288 				pool_put(&ipqent_pool, tiqe);
    289 			return (0);
    290 		}
    291 		/*
    292 		 * Received segment completely overlaps this fragment
    293 		 * so we drop the fragment (this keeps the temporal
    294 		 * ordering of segments correct).
    295 		 */
    296 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    297 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    298 			rcvpartdupbyte += q->ipqe_len;
    299 			m_freem(q->ipqe_m);
    300 			goto free_ipqe;
    301 		}
    302 		/*
    303 		 * RX'ed segment extends past the end of the
    304 		 * fragment.  Drop the overlapping bytes.  Then
    305 		 * merge the fragment and segment then treat as
    306 		 * a longer received packet.
    307 		 */
    308 		if (SEQ_LT(q->ipqe_seq, pkt_seq)
    309 		    && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    310 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    311 #ifdef TCPREASS_DEBUG
    312 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    313 			       tp, overlap,
    314 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    315 #endif
    316 			m_adj(m, overlap);
    317 			rcvpartdupbyte += overlap;
    318 			m_cat(q->ipqe_m, m);
    319 			m = q->ipqe_m;
    320 			pkt_seq = q->ipqe_seq;
    321 			pkt_len += q->ipqe_len - overlap;
    322 			rcvoobyte -= overlap;
    323 			goto free_ipqe;
    324 		}
    325 		/*
    326 		 * RX'ed segment extends past the front of the
    327 		 * fragment.  Drop the overlapping bytes on the
    328 		 * received packet.  The packet will then be
    329 		 * contatentated with this fragment a bit later.
    330 		 */
    331 		if (SEQ_GT(q->ipqe_seq, pkt_seq)
    332 		    && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    333 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    334 #ifdef TCPREASS_DEBUG
    335 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    336 			       tp, overlap,
    337 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    338 #endif
    339 			m_adj(m, -overlap);
    340 			pkt_len -= overlap;
    341 			rcvpartdupbyte += overlap;
    342 			rcvoobyte -= overlap;
    343 		}
    344 		/*
    345 		 * If the received segment immediates precedes this
    346 		 * fragment then tack the fragment onto this segment
    347 		 * and reinsert the data.
    348 		 */
    349 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    350 #ifdef TCPREASS_DEBUG
    351 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    352 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    353 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    354 #endif
    355 			pkt_len += q->ipqe_len;
    356 			pkt_flags |= q->ipqe_flags;
    357 			m_cat(m, q->ipqe_m);
    358 			LIST_REMOVE(q, ipqe_q);
    359 			LIST_REMOVE(q, ipqe_timeq);
    360 			if (tiqe == NULL) {
    361 			    tiqe = q;
    362 			} else {
    363 			    pool_put(&ipqent_pool, q);
    364 			}
    365 			break;
    366 		}
    367 		/*
    368 		 * If the fragment is before the segment, remember it.
    369 		 * When this loop is terminated, p will contain the
    370 		 * pointer to fragment that is right before the received
    371 		 * segment.
    372 		 */
    373 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    374 			p = q;
    375 
    376 		continue;
    377 
    378 		/*
    379 		 * This is a common operation.  It also will allow
    380 		 * to save doing a malloc/free in most instances.
    381 		 */
    382 	  free_ipqe:
    383 		LIST_REMOVE(q, ipqe_q);
    384 		LIST_REMOVE(q, ipqe_timeq);
    385 		if (tiqe == NULL) {
    386 		    tiqe = q;
    387 		} else {
    388 		    pool_put(&ipqent_pool, q);
    389 		}
    390 	}
    391 
    392 	/*
    393 	 * Allocate a new queue entry since the received segment did not
    394 	 * collapse onto any other out-of-order block; thus we are allocating
    395 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    396 	 * we would be reusing it.
    397 	 * XXX If we can't, just drop the packet.  XXX
    398 	 */
    399 	if (tiqe == NULL) {
    400 		tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
    401 		if (tiqe == NULL) {
    402 			tcpstat.tcps_rcvmemdrop++;
    403 			m_freem(m);
    404 			return (0);
    405 		}
    406 	}
    407 
    408 	/*
    409 	 * Update the counters.
    410 	 */
    411 	tcpstat.tcps_rcvoopack++;
    412 	tcpstat.tcps_rcvoobyte += rcvoobyte;
    413 	if (rcvpartdupbyte) {
    414 	    tcpstat.tcps_rcvpartduppack++;
    415 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
    416 	}
    417 
    418 	/*
    419 	 * Insert the new fragment queue entry into both queues.
    420 	 */
    421 	tiqe->ipqe_m = m;
    422 	tiqe->ipqe_seq = pkt_seq;
    423 	tiqe->ipqe_len = pkt_len;
    424 	tiqe->ipqe_flags = pkt_flags;
    425 	if (p == NULL) {
    426 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    427 #ifdef TCPREASS_DEBUG
    428 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    429 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    430 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    431 #endif
    432 	} else {
    433 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
    434 #ifdef TCPREASS_DEBUG
    435 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    436 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    437 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    438 #endif
    439 	}
    440 
    441 	LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    442 
    443 present:
    444 	/*
    445 	 * Present data to user, advancing rcv_nxt through
    446 	 * completed sequence space.
    447 	 */
    448 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    449 		return (0);
    450 	q = tp->segq.lh_first;
    451 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    452 		return (0);
    453 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    454 		return (0);
    455 
    456 	tp->rcv_nxt += q->ipqe_len;
    457 	pkt_flags = q->ipqe_flags & TH_FIN;
    458 
    459 	LIST_REMOVE(q, ipqe_q);
    460 	LIST_REMOVE(q, ipqe_timeq);
    461 	if (so->so_state & SS_CANTRCVMORE)
    462 		m_freem(q->ipqe_m);
    463 	else
    464 		sbappend(&so->so_rcv, q->ipqe_m);
    465 	pool_put(&ipqent_pool, q);
    466 	sorwakeup(so);
    467 	return (pkt_flags);
    468 }
    469 
    470 #if defined(INET6) && !defined(TCP6)
    471 int
    472 tcp6_input(mp, offp, proto)
    473 	struct mbuf **mp;
    474 	int *offp, proto;
    475 {
    476 	struct mbuf *m = *mp;
    477 
    478 #if defined(NFAITH) && 0 < NFAITH
    479 	if (m->m_pkthdr.rcvif) {
    480 		if (m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
    481 			/* XXX send icmp6 host/port unreach? */
    482 			m_freem(m);
    483 			return IPPROTO_DONE;
    484 		}
    485 	}
    486 #endif
    487 
    488 	/*
    489 	 * draft-itojun-ipv6-tcp-to-anycast
    490 	 * better place to put this in?
    491 	 */
    492 	if (m->m_flags & M_ANYCAST6) {
    493 		if (m->m_len >= sizeof(struct ip6_hdr)) {
    494 			struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
    495 			icmp6_error(m, ICMP6_DST_UNREACH,
    496 				ICMP6_DST_UNREACH_ADDR,
    497 				(caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
    498 		} else
    499 			m_freem(m);
    500 		return IPPROTO_DONE;
    501 	}
    502 
    503 	tcp_input(m, *offp, proto);
    504 	return IPPROTO_DONE;
    505 }
    506 #endif
    507 
    508 /*
    509  * TCP input routine, follows pages 65-76 of the
    510  * protocol specification dated September, 1981 very closely.
    511  */
    512 void
    513 #if __STDC__
    514 tcp_input(struct mbuf *m, ...)
    515 #else
    516 tcp_input(m, va_alist)
    517 	register struct mbuf *m;
    518 #endif
    519 {
    520 	int proto;
    521 	register struct tcphdr *th;
    522 	struct ip *ip;
    523 	register struct inpcb *inp;
    524 #ifdef INET6
    525 	struct ip6_hdr *ip6;
    526 	register struct in6pcb *in6p;
    527 #endif
    528 	caddr_t optp = NULL;
    529 	int optlen = 0;
    530 	int len, tlen, toff, hdroptlen = 0;
    531 	register struct tcpcb *tp = 0;
    532 	register int tiflags;
    533 	struct socket *so = NULL;
    534 	int todrop, acked, ourfinisacked, needoutput = 0;
    535 	short ostate = 0;
    536 	int iss = 0;
    537 	u_long tiwin;
    538 	struct tcp_opt_info opti;
    539 	int off, iphlen;
    540 	va_list ap;
    541 	int af;		/* af on the wire */
    542 	struct mbuf *tcp_saveti = NULL;
    543 
    544 	va_start(ap, m);
    545 	toff = va_arg(ap, int);
    546 	proto = va_arg(ap, int);
    547 	va_end(ap);
    548 
    549 	tcpstat.tcps_rcvtotal++;
    550 
    551 	bzero(&opti, sizeof(opti));
    552 	opti.ts_present = 0;
    553 	opti.maxseg = 0;
    554 
    555 	/*
    556 	 * Get IP and TCP header together in first mbuf.
    557 	 * Note: IP leaves IP header in first mbuf.
    558 	 */
    559 	ip = mtod(m, struct ip *);
    560 #ifdef INET6
    561 	ip6 = NULL;
    562 #endif
    563 	switch (ip->ip_v) {
    564 	case 4:
    565 		af = AF_INET;
    566 		iphlen = sizeof(struct ip);
    567 		/* would like to get rid of this... */
    568 		if (toff > sizeof (struct ip)) {
    569 			ip_stripoptions(m, (struct mbuf *)0);
    570 			toff = sizeof(struct ip);
    571 		}
    572 		if (m->m_len < toff + sizeof (struct tcphdr)) {
    573 			if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
    574 				tcpstat.tcps_rcvshort++;
    575 				return;
    576 			}
    577 		}
    578 		ip = mtod(m, struct ip *);
    579 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    580 
    581 		/*
    582 		 * Checksum extended TCP header and data.
    583 		 */
    584 		len = ip->ip_len;
    585 		tlen = len - toff;
    586 	    {
    587 		struct ipovly *ipov;
    588 		ipov = (struct ipovly *)ip;
    589 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    590 		ipov->ih_len = htons(tlen);
    591 	    }
    592 		if (in_cksum(m, len) != 0) {
    593 			tcpstat.tcps_rcvbadsum++;
    594 			goto drop;
    595 		}
    596 		break;
    597 #ifdef INET6
    598 	case 6:
    599 		ip = NULL;
    600 		iphlen = sizeof(struct ip6_hdr);
    601 		af = AF_INET6;
    602 		if (m->m_len < toff + sizeof(struct tcphdr)) {
    603 			m = m_pullup(m, toff + sizeof(struct tcphdr));	/*XXX*/
    604 			if (m == NULL) {
    605 				tcpstat.tcps_rcvshort++;
    606 				return;
    607 			}
    608 		}
    609 		ip6 = mtod(m, struct ip6_hdr *);
    610 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    611 
    612 		/*
    613 		 * Checksum extended TCP header and data.
    614 		 */
    615 		len = m->m_pkthdr.len;
    616 		tlen = len - toff;
    617 		if (in6_cksum(m, IPPROTO_TCP, toff, tlen)) {
    618 			tcpstat.tcps_rcvbadsum++;
    619 			goto drop;
    620 		}
    621 		break;
    622 #endif
    623 	default:
    624 		m_freem(m);
    625 		return;
    626 	}
    627 
    628 	/*
    629 	 * Check that TCP offset makes sense,
    630 	 * pull out TCP options and adjust length.		XXX
    631 	 */
    632 	off = th->th_off << 2;
    633 	if (off < sizeof (struct tcphdr) || off > tlen) {
    634 		tcpstat.tcps_rcvbadoff++;
    635 		goto drop;
    636 	}
    637 	tlen -= off;
    638 
    639 	/*
    640 	 * tcp_input() has been modified to use tlen to mean the TCP data
    641 	 * length throughout the function.  Other functions can use
    642 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
    643 	 * rja
    644 	 */
    645 
    646 	if (off > sizeof (struct tcphdr)) {
    647 		if (m->m_len < toff + off) {
    648 			if ((m = m_pullup(m, toff + off)) == 0) {
    649 				tcpstat.tcps_rcvshort++;
    650 				return;
    651 			}
    652 			switch (af) {
    653 			case AF_INET:
    654 				ip = mtod(m, struct ip *);
    655 				break;
    656 #ifdef INET6
    657 			case AF_INET6:
    658 				ip6 = mtod(m, struct ip6_hdr *);
    659 				break;
    660 #endif
    661 			}
    662 			th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    663 		}
    664 		optlen = off - sizeof (struct tcphdr);
    665 		optp = mtod(m, caddr_t) + toff + sizeof (struct tcphdr);
    666 		/*
    667 		 * Do quick retrieval of timestamp options ("options
    668 		 * prediction?").  If timestamp is the only option and it's
    669 		 * formatted as recommended in RFC 1323 appendix A, we
    670 		 * quickly get the values now and not bother calling
    671 		 * tcp_dooptions(), etc.
    672 		 */
    673 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
    674 		     (optlen > TCPOLEN_TSTAMP_APPA &&
    675 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
    676 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
    677 		     (th->th_flags & TH_SYN) == 0) {
    678 			opti.ts_present = 1;
    679 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
    680 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
    681 			optp = NULL;	/* we've parsed the options */
    682 		}
    683 	}
    684 	tiflags = th->th_flags;
    685 
    686 	/*
    687 	 * Convert TCP protocol specific fields to host format.
    688 	 */
    689 	NTOHL(th->th_seq);
    690 	NTOHL(th->th_ack);
    691 	NTOHS(th->th_win);
    692 	NTOHS(th->th_urp);
    693 
    694 	/*
    695 	 * Locate pcb for segment.
    696 	 */
    697 findpcb:
    698 	inp = NULL;
    699 #ifdef INET6
    700 	in6p = NULL;
    701 #endif
    702 	switch (af) {
    703 	case AF_INET:
    704 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
    705 		    ip->ip_dst, th->th_dport);
    706 		if (inp == 0) {
    707 			++tcpstat.tcps_pcbhashmiss;
    708 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
    709 		}
    710 #if defined(INET6) && !defined(TCP6)
    711 		if (inp == 0) {
    712 			struct in6_addr s, d;
    713 
    714 			/* mapped addr case */
    715 			bzero(&s, sizeof(s));
    716 			s.s6_addr16[5] = htons(0xffff);
    717 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
    718 			bzero(&d, sizeof(d));
    719 			d.s6_addr16[5] = htons(0xffff);
    720 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
    721 			in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
    722 				&d, th->th_dport);
    723 			if (in6p == 0) {
    724 				++tcpstat.tcps_pcbhashmiss;
    725 				in6p = in6_pcblookup_bind(&tcb6, &d, th->th_dport);
    726 			}
    727 		}
    728 #endif
    729 #ifndef INET6
    730 		if (inp == 0)
    731 #else
    732 		if (inp == 0 && in6p == 0)
    733 #endif
    734 		{
    735 			++tcpstat.tcps_noport;
    736 			if (tcp_log_refused && (tiflags & TH_SYN)) {
    737 #ifndef INET6
    738 				char src[4*sizeof "123"];
    739 				char dst[4*sizeof "123"];
    740 #else
    741 				char src[INET6_ADDRSTRLEN];
    742 				char dst[INET6_ADDRSTRLEN];
    743 #endif
    744 				if (ip) {
    745 					strcpy(src, inet_ntoa(ip->ip_dst));
    746 					strcpy(dst, inet_ntoa(ip->ip_dst));
    747 				}
    748 #ifdef INET6
    749 				else if (ip6) {
    750 					strcpy(src, ip6_sprintf(&ip6->ip6_dst));
    751 					strcpy(dst, ip6_sprintf(&ip6->ip6_src));
    752 				}
    753 #endif
    754 				else {
    755 					strcpy(src, "(unknown)");
    756 					strcpy(dst, "(unknown)");
    757 				}
    758 				log(LOG_INFO,
    759 				    "Connection attempt to TCP %s:%d from %s:%d\n",
    760 				    src, ntohs(th->th_dport),
    761 				    dst, ntohs(th->th_sport));
    762 			}
    763 			goto dropwithreset;
    764 		}
    765 #ifdef IPSEC
    766 		if (inp && ipsec4_in_reject(m, inp)) {
    767 			ipsecstat.in_polvio++;
    768 			goto drop;
    769 		}
    770 #ifdef INET6
    771 		else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
    772 			ipsecstat.in_polvio++;
    773 			goto drop;
    774 		}
    775 #endif
    776 #endif /*IPSEC*/
    777 		break;
    778 #if defined(INET6) && !defined(TCP6)
    779 	case AF_INET6:
    780 		in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
    781 			&ip6->ip6_dst, th->th_dport);
    782 		if (in6p == NULL) {
    783 			++tcpstat.tcps_pcbhashmiss;
    784 			in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst, th->th_dport);
    785 		}
    786 		if (in6p == NULL) {
    787 			++tcpstat.tcps_noport;
    788 			goto dropwithreset;
    789 		}
    790 #ifdef IPSEC
    791 		if (ipsec6_in_reject(m, in6p)) {
    792 			ipsec6stat.in_polvio++;
    793 			goto drop;
    794 		}
    795 #endif /*IPSEC*/
    796 		break;
    797 #endif
    798 	}
    799 
    800 	/*
    801 	 * If the state is CLOSED (i.e., TCB does not exist) then
    802 	 * all data in the incoming segment is discarded.
    803 	 * If the TCB exists but is in CLOSED state, it is embryonic,
    804 	 * but should either do a listen or a connect soon.
    805 	 */
    806 	tp = NULL;
    807 	so = NULL;
    808 	if (inp) {
    809 		tp = intotcpcb(inp);
    810 		so = inp->inp_socket;
    811 	}
    812 #ifdef INET6
    813 	else if (in6p) {
    814 		tp = in6totcpcb(in6p);
    815 		so = in6p->in6p_socket;
    816 	}
    817 #endif
    818 	if (tp == 0) {
    819 		goto dropwithreset;
    820 	}
    821 	if (tp->t_state == TCPS_CLOSED)
    822 		goto drop;
    823 
    824 	/* Unscale the window into a 32-bit value. */
    825 	if ((tiflags & TH_SYN) == 0)
    826 		tiwin = th->th_win << tp->snd_scale;
    827 	else
    828 		tiwin = th->th_win;
    829 
    830 #ifdef INET6
    831 	/* save packet options if user wanted */
    832 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
    833 		if (in6p->in6p_options) {
    834 			m_freem(in6p->in6p_options);
    835 			in6p->in6p_options = 0;
    836 		}
    837 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
    838 	}
    839 #endif
    840 
    841 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
    842 		union syn_cache_sa src;
    843 		union syn_cache_sa dst;
    844 
    845 		bzero(&src, sizeof(src));
    846 		bzero(&dst, sizeof(dst));
    847 		switch (af) {
    848 		case AF_INET:
    849 			src.sin.sin_len = sizeof(struct sockaddr_in);
    850 			src.sin.sin_family = AF_INET;
    851 			src.sin.sin_addr = ip->ip_src;
    852 			src.sin.sin_port = th->th_sport;
    853 
    854 			dst.sin.sin_len = sizeof(struct sockaddr_in);
    855 			dst.sin.sin_family = AF_INET;
    856 			dst.sin.sin_addr = ip->ip_dst;
    857 			dst.sin.sin_port = th->th_dport;
    858 			break;
    859 #ifdef INET6
    860 		case AF_INET6:
    861 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
    862 			src.sin6.sin6_family = AF_INET6;
    863 			src.sin6.sin6_addr = ip6->ip6_src;
    864 			src.sin6.sin6_port = th->th_sport;
    865 
    866 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
    867 			dst.sin6.sin6_family = AF_INET6;
    868 			dst.sin6.sin6_addr = ip6->ip6_dst;
    869 			dst.sin6.sin6_port = th->th_dport;
    870 			break;
    871 #endif /* INET6 */
    872 		default:
    873 			goto badsyn;	/*sanity*/
    874 		}
    875 
    876 		if (so->so_options & SO_DEBUG) {
    877 			ostate = tp->t_state;
    878 			tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
    879 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
    880 				m_freem(tcp_saveti);
    881 				tcp_saveti = NULL;
    882 			} else {
    883 				tcp_saveti->m_len += sizeof(struct tcphdr);
    884 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
    885 					sizeof(struct tcphdr));
    886 			}
    887 			if (tcp_saveti) {
    888 				/*
    889 				 * need to recover version # field, which was
    890 				 * overwritten on ip_cksum computation.
    891 				 */
    892 				struct ip *sip;
    893 				sip = mtod(tcp_saveti, struct ip *);
    894 				switch (af) {
    895 				case AF_INET:
    896 					sip->ip_v = 4;
    897 					break;
    898 #ifdef INET6
    899 				case AF_INET6:
    900 					sip->ip_v = 6;
    901 					break;
    902 #endif
    903 				}
    904 			}
    905 		}
    906 		if (so->so_options & SO_ACCEPTCONN) {
    907   			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
    908 				if (tiflags & TH_RST) {
    909 					syn_cache_reset(&src.sa, &dst.sa, th);
    910 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
    911 				    (TH_ACK|TH_SYN)) {
    912 					/*
    913 					 * Received a SYN,ACK.  This should
    914 					 * never happen while we are in
    915 					 * LISTEN.  Send an RST.
    916 					 */
    917 					goto badsyn;
    918 				} else if (tiflags & TH_ACK) {
    919 					so = syn_cache_get(&src.sa, &dst.sa,
    920 						th, toff, tlen, so, m);
    921 					if (so == NULL) {
    922 						/*
    923 						 * We don't have a SYN for
    924 						 * this ACK; send an RST.
    925 						 */
    926 						goto badsyn;
    927 					} else if (so ==
    928 					    (struct socket *)(-1)) {
    929 						/*
    930 						 * We were unable to create
    931 						 * the connection.  If the
    932 						 * 3-way handshake was
    933 						 * completed, and RST has
    934 						 * been sent to the peer.
    935 						 * Since the mbuf might be
    936 						 * in use for the reply,
    937 						 * do not free it.
    938 						 */
    939 						m = NULL;
    940 					} else {
    941 						/*
    942 						 * We have created a
    943 						 * full-blown connection.
    944 						 */
    945 						tp = NULL;
    946 						inp = NULL;
    947 #ifdef INET6
    948 						in6p = NULL;
    949 #endif
    950 						switch (so->so_proto->pr_domain->dom_family) {
    951 						case AF_INET:
    952 							inp = sotoinpcb(so);
    953 							tp = intotcpcb(inp);
    954 							break;
    955 #ifdef INET6
    956 						case AF_INET6:
    957 							in6p = sotoin6pcb(so);
    958 							tp = in6totcpcb(in6p);
    959 							break;
    960 #endif
    961 						}
    962 						if (tp == NULL)
    963 							goto badsyn;	/*XXX*/
    964 						tiwin <<= tp->snd_scale;
    965 						goto after_listen;
    966 					}
    967   				} else {
    968 					/*
    969 					 * None of RST, SYN or ACK was set.
    970 					 * This is an invalid packet for a
    971 					 * TCB in LISTEN state.  Send a RST.
    972 					 */
    973 					goto badsyn;
    974 				}
    975   			} else {
    976 				/*
    977 				 * Received a SYN.
    978 				 */
    979 
    980 				/*
    981 				 * LISTEN socket received a SYN
    982 				 * from itself?  This can't possibly
    983 				 * be valid; drop the packet.
    984 				 */
    985 				if (th->th_sport == th->th_dport) {
    986 					int i;
    987 
    988 					switch (af) {
    989 					case AF_INET:
    990 						i = in_hosteq(ip->ip_src, ip->ip_dst);
    991 						break;
    992 #ifdef INET6
    993 					case AF_INET6:
    994 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
    995 						break;
    996 #endif
    997 					default:
    998 						i = 1;
    999 					}
   1000 					if (i) {
   1001 						tcpstat.tcps_badsyn++;
   1002 						goto drop;
   1003 					}
   1004 				}
   1005 
   1006 				/*
   1007 				 * SYN looks ok; create compressed TCP
   1008 				 * state for it.
   1009 				 */
   1010 				if (so->so_qlen <= so->so_qlimit &&
   1011 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1012 						so, m, optp, optlen, &opti))
   1013 					m = NULL;
   1014 			}
   1015 			goto drop;
   1016 		}
   1017 	}
   1018 
   1019 after_listen:
   1020 #ifdef DIAGNOSTIC
   1021 	/*
   1022 	 * Should not happen now that all embryonic connections
   1023 	 * are handled with compressed state.
   1024 	 */
   1025 	if (tp->t_state == TCPS_LISTEN)
   1026 		panic("tcp_input: TCPS_LISTEN");
   1027 #endif
   1028 
   1029 	/*
   1030 	 * Segment received on connection.
   1031 	 * Reset idle time and keep-alive timer.
   1032 	 */
   1033 	tp->t_idle = 0;
   1034 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1035 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1036 
   1037 	/*
   1038 	 * Process options.
   1039 	 */
   1040 	if (optp)
   1041 		tcp_dooptions(tp, optp, optlen, th, &opti);
   1042 
   1043 	/*
   1044 	 * Header prediction: check for the two common cases
   1045 	 * of a uni-directional data xfer.  If the packet has
   1046 	 * no control flags, is in-sequence, the window didn't
   1047 	 * change and we're not retransmitting, it's a
   1048 	 * candidate.  If the length is zero and the ack moved
   1049 	 * forward, we're the sender side of the xfer.  Just
   1050 	 * free the data acked & wake any higher level process
   1051 	 * that was blocked waiting for space.  If the length
   1052 	 * is non-zero and the ack didn't move, we're the
   1053 	 * receiver side.  If we're getting packets in-order
   1054 	 * (the reassembly queue is empty), add the data to
   1055 	 * the socket buffer and note that we need a delayed ack.
   1056 	 */
   1057 	if (tp->t_state == TCPS_ESTABLISHED &&
   1058 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
   1059 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1060 	    th->th_seq == tp->rcv_nxt &&
   1061 	    tiwin && tiwin == tp->snd_wnd &&
   1062 	    tp->snd_nxt == tp->snd_max) {
   1063 
   1064 		/*
   1065 		 * If last ACK falls within this segment's sequence numbers,
   1066 		 *  record the timestamp.
   1067 		 */
   1068 		if (opti.ts_present &&
   1069 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1070 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
   1071 			tp->ts_recent_age = tcp_now;
   1072 			tp->ts_recent = opti.ts_val;
   1073 		}
   1074 
   1075 		if (tlen == 0) {
   1076 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1077 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1078 			    tp->snd_cwnd >= tp->snd_wnd &&
   1079 			    tp->t_dupacks < tcprexmtthresh) {
   1080 				/*
   1081 				 * this is a pure ack for outstanding data.
   1082 				 */
   1083 				++tcpstat.tcps_predack;
   1084 				if (opti.ts_present)
   1085 					tcp_xmit_timer(tp,
   1086 					    tcp_now-opti.ts_ecr+1);
   1087 				else if (tp->t_rtt &&
   1088 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1089 					tcp_xmit_timer(tp, tp->t_rtt);
   1090 				acked = th->th_ack - tp->snd_una;
   1091 				tcpstat.tcps_rcvackpack++;
   1092 				tcpstat.tcps_rcvackbyte += acked;
   1093 				sbdrop(&so->so_snd, acked);
   1094 				tp->snd_una = th->th_ack;
   1095 				m_freem(m);
   1096 
   1097 				/*
   1098 				 * If all outstanding data are acked, stop
   1099 				 * retransmit timer, otherwise restart timer
   1100 				 * using current (possibly backed-off) value.
   1101 				 * If process is waiting for space,
   1102 				 * wakeup/selwakeup/signal.  If data
   1103 				 * are ready to send, let tcp_output
   1104 				 * decide between more output or persist.
   1105 				 */
   1106 				if (tp->snd_una == tp->snd_max)
   1107 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1108 				else if (TCP_TIMER_ISARMED(tp,
   1109 				    TCPT_PERSIST) == 0)
   1110 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1111 					    tp->t_rxtcur);
   1112 
   1113 				sowwakeup(so);
   1114 				if (so->so_snd.sb_cc)
   1115 					(void) tcp_output(tp);
   1116 				return;
   1117 			}
   1118 		} else if (th->th_ack == tp->snd_una &&
   1119 		    tp->segq.lh_first == NULL &&
   1120 		    tlen <= sbspace(&so->so_rcv)) {
   1121 			/*
   1122 			 * this is a pure, in-sequence data packet
   1123 			 * with nothing on the reassembly queue and
   1124 			 * we have enough buffer space to take it.
   1125 			 */
   1126 			++tcpstat.tcps_preddat;
   1127 			tp->rcv_nxt += tlen;
   1128 			tcpstat.tcps_rcvpack++;
   1129 			tcpstat.tcps_rcvbyte += tlen;
   1130 			/*
   1131 			 * Drop TCP, IP headers and TCP options then add data
   1132 			 * to socket buffer.
   1133 			 */
   1134 			m->m_data += toff + off;
   1135 			m->m_len -= (toff + off);
   1136 			sbappend(&so->so_rcv, m);
   1137 			sorwakeup(so);
   1138 			TCP_SETUP_ACK(tp, th);
   1139 			if (tp->t_flags & TF_ACKNOW)
   1140 				(void) tcp_output(tp);
   1141 			return;
   1142 		}
   1143 	}
   1144 
   1145 	/*
   1146 	 * Drop TCP, IP headers and TCP options.
   1147 	 */
   1148 	hdroptlen  = toff + off;
   1149 	m->m_data += hdroptlen;
   1150 	m->m_len  -= hdroptlen;
   1151 
   1152 	/*
   1153 	 * Calculate amount of space in receive window,
   1154 	 * and then do TCP input processing.
   1155 	 * Receive window is amount of space in rcv queue,
   1156 	 * but not less than advertised window.
   1157 	 */
   1158 	{ int win;
   1159 
   1160 	win = sbspace(&so->so_rcv);
   1161 	if (win < 0)
   1162 		win = 0;
   1163 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   1164 	}
   1165 
   1166 	switch (tp->t_state) {
   1167 
   1168 	/*
   1169 	 * If the state is SYN_SENT:
   1170 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   1171 	 *	if seg contains a RST, then drop the connection.
   1172 	 *	if seg does not contain SYN, then drop it.
   1173 	 * Otherwise this is an acceptable SYN segment
   1174 	 *	initialize tp->rcv_nxt and tp->irs
   1175 	 *	if seg contains ack then advance tp->snd_una
   1176 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   1177 	 *	arrange for segment to be acked (eventually)
   1178 	 *	continue processing rest of data/controls, beginning with URG
   1179 	 */
   1180 	case TCPS_SYN_SENT:
   1181 		if ((tiflags & TH_ACK) &&
   1182 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1183 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1184 			goto dropwithreset;
   1185 		if (tiflags & TH_RST) {
   1186 			if (tiflags & TH_ACK)
   1187 				tp = tcp_drop(tp, ECONNREFUSED);
   1188 			goto drop;
   1189 		}
   1190 		if ((tiflags & TH_SYN) == 0)
   1191 			goto drop;
   1192 		if (tiflags & TH_ACK) {
   1193 			tp->snd_una = th->th_ack;
   1194 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1195 				tp->snd_nxt = tp->snd_una;
   1196 		}
   1197 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1198 		tp->irs = th->th_seq;
   1199 		tcp_rcvseqinit(tp);
   1200 		tp->t_flags |= TF_ACKNOW;
   1201 		tcp_mss_from_peer(tp, opti.maxseg);
   1202 
   1203 		/*
   1204 		 * Initialize the initial congestion window.  If we
   1205 		 * had to retransmit the SYN, we must initialize cwnd
   1206 		 * to 1 segment (i.e. the Loss Window).
   1207 		 */
   1208 		if (tp->t_flags & TF_SYN_REXMT)
   1209 			tp->snd_cwnd = tp->t_peermss;
   1210 		else
   1211 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
   1212 			    tp->t_peermss);
   1213 
   1214 		tcp_rmx_rtt(tp);
   1215 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
   1216 			tcpstat.tcps_connects++;
   1217 			soisconnected(so);
   1218 			tcp_established(tp);
   1219 			/* Do window scaling on this connection? */
   1220 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1221 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1222 				tp->snd_scale = tp->requested_s_scale;
   1223 				tp->rcv_scale = tp->request_r_scale;
   1224 			}
   1225 			TCP_REASS_LOCK(tp);
   1226 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1227 			TCP_REASS_UNLOCK(tp);
   1228 			/*
   1229 			 * if we didn't have to retransmit the SYN,
   1230 			 * use its rtt as our initial srtt & rtt var.
   1231 			 */
   1232 			if (tp->t_rtt)
   1233 				tcp_xmit_timer(tp, tp->t_rtt);
   1234 		} else
   1235 			tp->t_state = TCPS_SYN_RECEIVED;
   1236 
   1237 		/*
   1238 		 * Advance th->th_seq to correspond to first data byte.
   1239 		 * If data, trim to stay within window,
   1240 		 * dropping FIN if necessary.
   1241 		 */
   1242 		th->th_seq++;
   1243 		if (tlen > tp->rcv_wnd) {
   1244 			todrop = tlen - tp->rcv_wnd;
   1245 			m_adj(m, -todrop);
   1246 			tlen = tp->rcv_wnd;
   1247 			tiflags &= ~TH_FIN;
   1248 			tcpstat.tcps_rcvpackafterwin++;
   1249 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1250 		}
   1251 		tp->snd_wl1 = th->th_seq - 1;
   1252 		tp->rcv_up = th->th_seq;
   1253 		goto step6;
   1254 
   1255 	/*
   1256 	 * If the state is SYN_RECEIVED:
   1257 	 *	If seg contains an ACK, but not for our SYN, drop the input
   1258 	 *	and generate an RST.  See page 36, rfc793
   1259 	 */
   1260 	case TCPS_SYN_RECEIVED:
   1261 		if ((tiflags & TH_ACK) &&
   1262 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1263 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1264 			goto dropwithreset;
   1265 		break;
   1266 	}
   1267 
   1268 	/*
   1269 	 * States other than LISTEN or SYN_SENT.
   1270 	 * First check timestamp, if present.
   1271 	 * Then check that at least some bytes of segment are within
   1272 	 * receive window.  If segment begins before rcv_nxt,
   1273 	 * drop leading data (and SYN); if nothing left, just ack.
   1274 	 *
   1275 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   1276 	 * and it's less than ts_recent, drop it.
   1277 	 */
   1278 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   1279 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   1280 
   1281 		/* Check to see if ts_recent is over 24 days old.  */
   1282 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
   1283 			/*
   1284 			 * Invalidate ts_recent.  If this segment updates
   1285 			 * ts_recent, the age will be reset later and ts_recent
   1286 			 * will get a valid value.  If it does not, setting
   1287 			 * ts_recent to zero will at least satisfy the
   1288 			 * requirement that zero be placed in the timestamp
   1289 			 * echo reply when ts_recent isn't valid.  The
   1290 			 * age isn't reset until we get a valid ts_recent
   1291 			 * because we don't want out-of-order segments to be
   1292 			 * dropped when ts_recent is old.
   1293 			 */
   1294 			tp->ts_recent = 0;
   1295 		} else {
   1296 			tcpstat.tcps_rcvduppack++;
   1297 			tcpstat.tcps_rcvdupbyte += tlen;
   1298 			tcpstat.tcps_pawsdrop++;
   1299 			goto dropafterack;
   1300 		}
   1301 	}
   1302 
   1303 	todrop = tp->rcv_nxt - th->th_seq;
   1304 	if (todrop > 0) {
   1305 		if (tiflags & TH_SYN) {
   1306 			tiflags &= ~TH_SYN;
   1307 			th->th_seq++;
   1308 			if (th->th_urp > 1)
   1309 				th->th_urp--;
   1310 			else {
   1311 				tiflags &= ~TH_URG;
   1312 				th->th_urp = 0;
   1313 			}
   1314 			todrop--;
   1315 		}
   1316 		if (todrop > tlen ||
   1317 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1318 			/*
   1319 			 * Any valid FIN must be to the left of the window.
   1320 			 * At this point the FIN must be a duplicate or
   1321 			 * out of sequence; drop it.
   1322 			 */
   1323 			tiflags &= ~TH_FIN;
   1324 			/*
   1325 			 * Send an ACK to resynchronize and drop any data.
   1326 			 * But keep on processing for RST or ACK.
   1327 			 */
   1328 			tp->t_flags |= TF_ACKNOW;
   1329 			todrop = tlen;
   1330 			tcpstat.tcps_rcvdupbyte += todrop;
   1331 			tcpstat.tcps_rcvduppack++;
   1332 		} else {
   1333 			tcpstat.tcps_rcvpartduppack++;
   1334 			tcpstat.tcps_rcvpartdupbyte += todrop;
   1335 		}
   1336 		m_adj(m, todrop);
   1337 		th->th_seq += todrop;
   1338 		tlen -= todrop;
   1339 		if (th->th_urp > todrop)
   1340 			th->th_urp -= todrop;
   1341 		else {
   1342 			tiflags &= ~TH_URG;
   1343 			th->th_urp = 0;
   1344 		}
   1345 	}
   1346 
   1347 	/*
   1348 	 * If new data are received on a connection after the
   1349 	 * user processes are gone, then RST the other end.
   1350 	 */
   1351 	if ((so->so_state & SS_NOFDREF) &&
   1352 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   1353 		tp = tcp_close(tp);
   1354 		tcpstat.tcps_rcvafterclose++;
   1355 		goto dropwithreset;
   1356 	}
   1357 
   1358 	/*
   1359 	 * If segment ends after window, drop trailing data
   1360 	 * (and PUSH and FIN); if nothing left, just ACK.
   1361 	 */
   1362 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   1363 	if (todrop > 0) {
   1364 		tcpstat.tcps_rcvpackafterwin++;
   1365 		if (todrop >= tlen) {
   1366 			tcpstat.tcps_rcvbyteafterwin += tlen;
   1367 			/*
   1368 			 * If a new connection request is received
   1369 			 * while in TIME_WAIT, drop the old connection
   1370 			 * and start over if the sequence numbers
   1371 			 * are above the previous ones.
   1372 			 */
   1373 			if (tiflags & TH_SYN &&
   1374 			    tp->t_state == TCPS_TIME_WAIT &&
   1375 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   1376 				iss = tcp_new_iss(tp, sizeof(struct tcpcb),
   1377 						  tp->snd_nxt);
   1378 				tp = tcp_close(tp);
   1379 				/*
   1380 				 * We have already advanced the mbuf
   1381 				 * pointers past the IP+TCP headers and
   1382 				 * options.  Restore those pointers before
   1383 				 * attempting to use the TCP header again.
   1384 				 */
   1385 				m->m_data -= hdroptlen;
   1386 				m->m_len  += hdroptlen;
   1387 				hdroptlen = 0;
   1388 				goto findpcb;
   1389 			}
   1390 			/*
   1391 			 * If window is closed can only take segments at
   1392 			 * window edge, and have to drop data and PUSH from
   1393 			 * incoming segments.  Continue processing, but
   1394 			 * remember to ack.  Otherwise, drop segment
   1395 			 * and ack.
   1396 			 */
   1397 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   1398 				tp->t_flags |= TF_ACKNOW;
   1399 				tcpstat.tcps_rcvwinprobe++;
   1400 			} else
   1401 				goto dropafterack;
   1402 		} else
   1403 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1404 		m_adj(m, -todrop);
   1405 		tlen -= todrop;
   1406 		tiflags &= ~(TH_PUSH|TH_FIN);
   1407 	}
   1408 
   1409 	/*
   1410 	 * If last ACK falls within this segment's sequence numbers,
   1411 	 * and the timestamp is newer, record it.
   1412 	 */
   1413 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
   1414 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1415 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
   1416 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   1417 		tp->ts_recent_age = tcp_now;
   1418 		tp->ts_recent = opti.ts_val;
   1419 	}
   1420 
   1421 	/*
   1422 	 * If the RST bit is set examine the state:
   1423 	 *    SYN_RECEIVED STATE:
   1424 	 *	If passive open, return to LISTEN state.
   1425 	 *	If active open, inform user that connection was refused.
   1426 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   1427 	 *	Inform user that connection was reset, and close tcb.
   1428 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   1429 	 *	Close the tcb.
   1430 	 */
   1431 	if (tiflags&TH_RST) switch (tp->t_state) {
   1432 
   1433 	case TCPS_SYN_RECEIVED:
   1434 		so->so_error = ECONNREFUSED;
   1435 		goto close;
   1436 
   1437 	case TCPS_ESTABLISHED:
   1438 	case TCPS_FIN_WAIT_1:
   1439 	case TCPS_FIN_WAIT_2:
   1440 	case TCPS_CLOSE_WAIT:
   1441 		so->so_error = ECONNRESET;
   1442 	close:
   1443 		tp->t_state = TCPS_CLOSED;
   1444 		tcpstat.tcps_drops++;
   1445 		tp = tcp_close(tp);
   1446 		goto drop;
   1447 
   1448 	case TCPS_CLOSING:
   1449 	case TCPS_LAST_ACK:
   1450 	case TCPS_TIME_WAIT:
   1451 		tp = tcp_close(tp);
   1452 		goto drop;
   1453 	}
   1454 
   1455 	/*
   1456 	 * If a SYN is in the window, then this is an
   1457 	 * error and we send an RST and drop the connection.
   1458 	 */
   1459 	if (tiflags & TH_SYN) {
   1460 		tp = tcp_drop(tp, ECONNRESET);
   1461 		goto dropwithreset;
   1462 	}
   1463 
   1464 	/*
   1465 	 * If the ACK bit is off we drop the segment and return.
   1466 	 */
   1467 	if ((tiflags & TH_ACK) == 0) {
   1468 		if (tp->t_flags & TF_ACKNOW)
   1469 			goto dropafterack;
   1470 		else
   1471 			goto drop;
   1472 	}
   1473 
   1474 	/*
   1475 	 * Ack processing.
   1476 	 */
   1477 	switch (tp->t_state) {
   1478 
   1479 	/*
   1480 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   1481 	 * ESTABLISHED state and continue processing, otherwise
   1482 	 * send an RST.
   1483 	 */
   1484 	case TCPS_SYN_RECEIVED:
   1485 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   1486 		    SEQ_GT(th->th_ack, tp->snd_max))
   1487 			goto dropwithreset;
   1488 		tcpstat.tcps_connects++;
   1489 		soisconnected(so);
   1490 		tcp_established(tp);
   1491 		/* Do window scaling? */
   1492 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1493 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1494 			tp->snd_scale = tp->requested_s_scale;
   1495 			tp->rcv_scale = tp->request_r_scale;
   1496 		}
   1497 		TCP_REASS_LOCK(tp);
   1498 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1499 		TCP_REASS_UNLOCK(tp);
   1500 		tp->snd_wl1 = th->th_seq - 1;
   1501 		/* fall into ... */
   1502 
   1503 	/*
   1504 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   1505 	 * ACKs.  If the ack is in the range
   1506 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   1507 	 * then advance tp->snd_una to th->th_ack and drop
   1508 	 * data from the retransmission queue.  If this ACK reflects
   1509 	 * more up to date window information we update our window information.
   1510 	 */
   1511 	case TCPS_ESTABLISHED:
   1512 	case TCPS_FIN_WAIT_1:
   1513 	case TCPS_FIN_WAIT_2:
   1514 	case TCPS_CLOSE_WAIT:
   1515 	case TCPS_CLOSING:
   1516 	case TCPS_LAST_ACK:
   1517 	case TCPS_TIME_WAIT:
   1518 
   1519 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   1520 			if (tlen == 0 && tiwin == tp->snd_wnd) {
   1521 				tcpstat.tcps_rcvdupack++;
   1522 				/*
   1523 				 * If we have outstanding data (other than
   1524 				 * a window probe), this is a completely
   1525 				 * duplicate ack (ie, window info didn't
   1526 				 * change), the ack is the biggest we've
   1527 				 * seen and we've seen exactly our rexmt
   1528 				 * threshhold of them, assume a packet
   1529 				 * has been dropped and retransmit it.
   1530 				 * Kludge snd_nxt & the congestion
   1531 				 * window so we send only this one
   1532 				 * packet.
   1533 				 *
   1534 				 * We know we're losing at the current
   1535 				 * window size so do congestion avoidance
   1536 				 * (set ssthresh to half the current window
   1537 				 * and pull our congestion window back to
   1538 				 * the new ssthresh).
   1539 				 *
   1540 				 * Dup acks mean that packets have left the
   1541 				 * network (they're now cached at the receiver)
   1542 				 * so bump cwnd by the amount in the receiver
   1543 				 * to keep a constant cwnd packets in the
   1544 				 * network.
   1545 				 */
   1546 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   1547 				    th->th_ack != tp->snd_una)
   1548 					tp->t_dupacks = 0;
   1549 				else if (++tp->t_dupacks == tcprexmtthresh) {
   1550 					tcp_seq onxt = tp->snd_nxt;
   1551 					u_int win =
   1552 					    min(tp->snd_wnd, tp->snd_cwnd) /
   1553 					    2 /	tp->t_segsz;
   1554 					if (SEQ_LT(th->th_ack, tp->snd_recover)) {
   1555 						/*
   1556 						 * False fast retransmit after
   1557 						 * timeout.  Do not cut window.
   1558 						 */
   1559 						tp->snd_cwnd += tp->t_segsz;
   1560 						tp->t_dupacks = 0;
   1561 						(void) tcp_output(tp);
   1562 						goto drop;
   1563 					}
   1564 
   1565 					if (win < 2)
   1566 						win = 2;
   1567 					tp->snd_ssthresh = win * tp->t_segsz;
   1568 					tp->snd_recover = tp->snd_max;
   1569 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1570 					tp->t_rtt = 0;
   1571 					tp->snd_nxt = th->th_ack;
   1572 					tp->snd_cwnd = tp->t_segsz;
   1573 					(void) tcp_output(tp);
   1574 					tp->snd_cwnd = tp->snd_ssthresh +
   1575 					       tp->t_segsz * tp->t_dupacks;
   1576 					if (SEQ_GT(onxt, tp->snd_nxt))
   1577 						tp->snd_nxt = onxt;
   1578 					goto drop;
   1579 				} else if (tp->t_dupacks > tcprexmtthresh) {
   1580 					tp->snd_cwnd += tp->t_segsz;
   1581 					(void) tcp_output(tp);
   1582 					goto drop;
   1583 				}
   1584 			} else
   1585 				tp->t_dupacks = 0;
   1586 			break;
   1587 		}
   1588 		/*
   1589 		 * If the congestion window was inflated to account
   1590 		 * for the other side's cached packets, retract it.
   1591 		 */
   1592 		if (!tcp_do_newreno) {
   1593 			if (tp->t_dupacks >= tcprexmtthresh &&
   1594 			    tp->snd_cwnd > tp->snd_ssthresh)
   1595 				tp->snd_cwnd = tp->snd_ssthresh;
   1596 			tp->t_dupacks = 0;
   1597 		} else if (tp->t_dupacks >= tcprexmtthresh
   1598 		    && !tcp_newreno(tp, th)) {
   1599 			tp->snd_cwnd = tp->snd_ssthresh;
   1600 			/*
   1601 			 * Window inflation should have left us with approx.
   1602 			 * snd_ssthresh outstanding data.  But in case we
   1603 			 * would be inclined to send a burst, better to do
   1604 			 * it via the slow start mechanism.
   1605 			 */
   1606 			if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
   1607 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
   1608 				     + tp->t_segsz;
   1609 			tp->t_dupacks = 0;
   1610 		}
   1611 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   1612 			tcpstat.tcps_rcvacktoomuch++;
   1613 			goto dropafterack;
   1614 		}
   1615 		acked = th->th_ack - tp->snd_una;
   1616 		tcpstat.tcps_rcvackpack++;
   1617 		tcpstat.tcps_rcvackbyte += acked;
   1618 
   1619 		/*
   1620 		 * If we have a timestamp reply, update smoothed
   1621 		 * round trip time.  If no timestamp is present but
   1622 		 * transmit timer is running and timed sequence
   1623 		 * number was acked, update smoothed round trip time.
   1624 		 * Since we now have an rtt measurement, cancel the
   1625 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   1626 		 * Recompute the initial retransmit timer.
   1627 		 */
   1628 		if (opti.ts_present)
   1629 			tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
   1630 		else if (tp->t_rtt && SEQ_GT(th->th_ack, tp->t_rtseq))
   1631 			tcp_xmit_timer(tp,tp->t_rtt);
   1632 
   1633 		/*
   1634 		 * If all outstanding data is acked, stop retransmit
   1635 		 * timer and remember to restart (more output or persist).
   1636 		 * If there is more data to be acked, restart retransmit
   1637 		 * timer, using current (possibly backed-off) value.
   1638 		 */
   1639 		if (th->th_ack == tp->snd_max) {
   1640 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1641 			needoutput = 1;
   1642 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   1643 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   1644 		/*
   1645 		 * When new data is acked, open the congestion window.
   1646 		 * If the window gives us less than ssthresh packets
   1647 		 * in flight, open exponentially (segsz per packet).
   1648 		 * Otherwise open linearly: segsz per window
   1649 		 * (segsz^2 / cwnd per packet), plus a constant
   1650 		 * fraction of a packet (segsz/8) to help larger windows
   1651 		 * open quickly enough.
   1652 		 */
   1653 		{
   1654 		register u_int cw = tp->snd_cwnd;
   1655 		register u_int incr = tp->t_segsz;
   1656 
   1657 		if (cw > tp->snd_ssthresh)
   1658 			incr = incr * incr / cw;
   1659 		if (!tcp_do_newreno || SEQ_GEQ(th->th_ack, tp->snd_recover))
   1660 			tp->snd_cwnd = min(cw + incr,TCP_MAXWIN<<tp->snd_scale);
   1661 		}
   1662 		if (acked > so->so_snd.sb_cc) {
   1663 			tp->snd_wnd -= so->so_snd.sb_cc;
   1664 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   1665 			ourfinisacked = 1;
   1666 		} else {
   1667 			sbdrop(&so->so_snd, acked);
   1668 			tp->snd_wnd -= acked;
   1669 			ourfinisacked = 0;
   1670 		}
   1671 		sowwakeup(so);
   1672 		tp->snd_una = th->th_ack;
   1673 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1674 			tp->snd_nxt = tp->snd_una;
   1675 
   1676 		switch (tp->t_state) {
   1677 
   1678 		/*
   1679 		 * In FIN_WAIT_1 STATE in addition to the processing
   1680 		 * for the ESTABLISHED state if our FIN is now acknowledged
   1681 		 * then enter FIN_WAIT_2.
   1682 		 */
   1683 		case TCPS_FIN_WAIT_1:
   1684 			if (ourfinisacked) {
   1685 				/*
   1686 				 * If we can't receive any more
   1687 				 * data, then closing user can proceed.
   1688 				 * Starting the timer is contrary to the
   1689 				 * specification, but if we don't get a FIN
   1690 				 * we'll hang forever.
   1691 				 */
   1692 				if (so->so_state & SS_CANTRCVMORE) {
   1693 					soisdisconnected(so);
   1694 					if (tcp_maxidle > 0)
   1695 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   1696 						    tcp_maxidle);
   1697 				}
   1698 				tp->t_state = TCPS_FIN_WAIT_2;
   1699 			}
   1700 			break;
   1701 
   1702 	 	/*
   1703 		 * In CLOSING STATE in addition to the processing for
   1704 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   1705 		 * then enter the TIME-WAIT state, otherwise ignore
   1706 		 * the segment.
   1707 		 */
   1708 		case TCPS_CLOSING:
   1709 			if (ourfinisacked) {
   1710 				tp->t_state = TCPS_TIME_WAIT;
   1711 				tcp_canceltimers(tp);
   1712 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   1713 				soisdisconnected(so);
   1714 			}
   1715 			break;
   1716 
   1717 		/*
   1718 		 * In LAST_ACK, we may still be waiting for data to drain
   1719 		 * and/or to be acked, as well as for the ack of our FIN.
   1720 		 * If our FIN is now acknowledged, delete the TCB,
   1721 		 * enter the closed state and return.
   1722 		 */
   1723 		case TCPS_LAST_ACK:
   1724 			if (ourfinisacked) {
   1725 				tp = tcp_close(tp);
   1726 				goto drop;
   1727 			}
   1728 			break;
   1729 
   1730 		/*
   1731 		 * In TIME_WAIT state the only thing that should arrive
   1732 		 * is a retransmission of the remote FIN.  Acknowledge
   1733 		 * it and restart the finack timer.
   1734 		 */
   1735 		case TCPS_TIME_WAIT:
   1736 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   1737 			goto dropafterack;
   1738 		}
   1739 	}
   1740 
   1741 step6:
   1742 	/*
   1743 	 * Update window information.
   1744 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   1745 	 */
   1746 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   1747 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
   1748 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
   1749 		/* keep track of pure window updates */
   1750 		if (tlen == 0 &&
   1751 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   1752 			tcpstat.tcps_rcvwinupd++;
   1753 		tp->snd_wnd = tiwin;
   1754 		tp->snd_wl1 = th->th_seq;
   1755 		tp->snd_wl2 = th->th_ack;
   1756 		if (tp->snd_wnd > tp->max_sndwnd)
   1757 			tp->max_sndwnd = tp->snd_wnd;
   1758 		needoutput = 1;
   1759 	}
   1760 
   1761 	/*
   1762 	 * Process segments with URG.
   1763 	 */
   1764 	if ((tiflags & TH_URG) && th->th_urp &&
   1765 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1766 		/*
   1767 		 * This is a kludge, but if we receive and accept
   1768 		 * random urgent pointers, we'll crash in
   1769 		 * soreceive.  It's hard to imagine someone
   1770 		 * actually wanting to send this much urgent data.
   1771 		 */
   1772 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   1773 			th->th_urp = 0;			/* XXX */
   1774 			tiflags &= ~TH_URG;		/* XXX */
   1775 			goto dodata;			/* XXX */
   1776 		}
   1777 		/*
   1778 		 * If this segment advances the known urgent pointer,
   1779 		 * then mark the data stream.  This should not happen
   1780 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   1781 		 * a FIN has been received from the remote side.
   1782 		 * In these states we ignore the URG.
   1783 		 *
   1784 		 * According to RFC961 (Assigned Protocols),
   1785 		 * the urgent pointer points to the last octet
   1786 		 * of urgent data.  We continue, however,
   1787 		 * to consider it to indicate the first octet
   1788 		 * of data past the urgent section as the original
   1789 		 * spec states (in one of two places).
   1790 		 */
   1791 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   1792 			tp->rcv_up = th->th_seq + th->th_urp;
   1793 			so->so_oobmark = so->so_rcv.sb_cc +
   1794 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   1795 			if (so->so_oobmark == 0)
   1796 				so->so_state |= SS_RCVATMARK;
   1797 			sohasoutofband(so);
   1798 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   1799 		}
   1800 		/*
   1801 		 * Remove out of band data so doesn't get presented to user.
   1802 		 * This can happen independent of advancing the URG pointer,
   1803 		 * but if two URG's are pending at once, some out-of-band
   1804 		 * data may creep in... ick.
   1805 		 */
   1806 		if (th->th_urp <= (u_int16_t) tlen
   1807 #ifdef SO_OOBINLINE
   1808 		     && (so->so_options & SO_OOBINLINE) == 0
   1809 #endif
   1810 		     )
   1811 			tcp_pulloutofband(so, th, m);
   1812 	} else
   1813 		/*
   1814 		 * If no out of band data is expected,
   1815 		 * pull receive urgent pointer along
   1816 		 * with the receive window.
   1817 		 */
   1818 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   1819 			tp->rcv_up = tp->rcv_nxt;
   1820 dodata:							/* XXX */
   1821 
   1822 	/*
   1823 	 * Process the segment text, merging it into the TCP sequencing queue,
   1824 	 * and arranging for acknowledgment of receipt if necessary.
   1825 	 * This process logically involves adjusting tp->rcv_wnd as data
   1826 	 * is presented to the user (this happens in tcp_usrreq.c,
   1827 	 * case PRU_RCVD).  If a FIN has already been received on this
   1828 	 * connection then we just ignore the text.
   1829 	 */
   1830 	if ((tlen || (tiflags & TH_FIN)) &&
   1831 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1832 		/*
   1833 		 * Insert segment ti into reassembly queue of tcp with
   1834 		 * control block tp.  Return TH_FIN if reassembly now includes
   1835 		 * a segment with FIN.  The macro form does the common case
   1836 		 * inline (segment is the next to be received on an
   1837 		 * established connection, and the queue is empty),
   1838 		 * avoiding linkage into and removal from the queue and
   1839 		 * repetition of various conversions.
   1840 		 * Set DELACK for segments received in order, but ack
   1841 		 * immediately when segments are out of order
   1842 		 * (so fast retransmit can work).
   1843 		 */
   1844 		/* NOTE: this was TCP_REASS() macro, but used only once */
   1845 		TCP_REASS_LOCK(tp);
   1846 		if (th->th_seq == tp->rcv_nxt &&
   1847 		    tp->segq.lh_first == NULL &&
   1848 		    tp->t_state == TCPS_ESTABLISHED) {
   1849 			TCP_SETUP_ACK(tp, th);
   1850 			tp->rcv_nxt += tlen;
   1851 			tiflags = th->th_flags & TH_FIN;
   1852 			tcpstat.tcps_rcvpack++;\
   1853 			tcpstat.tcps_rcvbyte += tlen;\
   1854 			sbappend(&(so)->so_rcv, m);
   1855 			sorwakeup(so);
   1856 		} else {
   1857 			tiflags = tcp_reass(tp, th, m, &tlen);
   1858 			tp->t_flags |= TF_ACKNOW;
   1859 		}
   1860 		TCP_REASS_UNLOCK(tp);
   1861 
   1862 		/*
   1863 		 * Note the amount of data that peer has sent into
   1864 		 * our window, in order to estimate the sender's
   1865 		 * buffer size.
   1866 		 */
   1867 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   1868 	} else {
   1869 		m_freem(m);
   1870 		m = NULL;
   1871 		tiflags &= ~TH_FIN;
   1872 	}
   1873 
   1874 	/*
   1875 	 * If FIN is received ACK the FIN and let the user know
   1876 	 * that the connection is closing.  Ignore a FIN received before
   1877 	 * the connection is fully established.
   1878 	 */
   1879 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   1880 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1881 			socantrcvmore(so);
   1882 			tp->t_flags |= TF_ACKNOW;
   1883 			tp->rcv_nxt++;
   1884 		}
   1885 		switch (tp->t_state) {
   1886 
   1887 	 	/*
   1888 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   1889 		 */
   1890 		case TCPS_ESTABLISHED:
   1891 			tp->t_state = TCPS_CLOSE_WAIT;
   1892 			break;
   1893 
   1894 	 	/*
   1895 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   1896 		 * enter the CLOSING state.
   1897 		 */
   1898 		case TCPS_FIN_WAIT_1:
   1899 			tp->t_state = TCPS_CLOSING;
   1900 			break;
   1901 
   1902 	 	/*
   1903 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   1904 		 * starting the time-wait timer, turning off the other
   1905 		 * standard timers.
   1906 		 */
   1907 		case TCPS_FIN_WAIT_2:
   1908 			tp->t_state = TCPS_TIME_WAIT;
   1909 			tcp_canceltimers(tp);
   1910 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   1911 			soisdisconnected(so);
   1912 			break;
   1913 
   1914 		/*
   1915 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   1916 		 */
   1917 		case TCPS_TIME_WAIT:
   1918 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   1919 			break;
   1920 		}
   1921 	}
   1922 	if (so->so_options & SO_DEBUG) {
   1923 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   1924 		m_freem(tcp_saveti);
   1925 	}
   1926 
   1927 	/*
   1928 	 * Return any desired output.
   1929 	 */
   1930 	if (needoutput || (tp->t_flags & TF_ACKNOW))
   1931 		(void) tcp_output(tp);
   1932 	return;
   1933 
   1934 badsyn:
   1935 	/*
   1936 	 * Received a bad SYN.  Increment counters and dropwithreset.
   1937 	 */
   1938 	tcpstat.tcps_badsyn++;
   1939 	tp = NULL;
   1940 	goto dropwithreset;
   1941 
   1942 dropafterack:
   1943 	/*
   1944 	 * Generate an ACK dropping incoming segment if it occupies
   1945 	 * sequence space, where the ACK reflects our state.
   1946 	 */
   1947 	if (tiflags & TH_RST)
   1948 		goto drop;
   1949 	m_freem(m);
   1950 	tp->t_flags |= TF_ACKNOW;
   1951 	(void) tcp_output(tp);
   1952 	return;
   1953 
   1954 dropwithreset:
   1955 	/*
   1956 	 * Generate a RST, dropping incoming segment.
   1957 	 * Make ACK acceptable to originator of segment.
   1958 	 * Don't bother to respond if destination was broadcast/multicast.
   1959 	 */
   1960 	if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
   1961 		goto drop;
   1962 	if (ip && IN_MULTICAST(ip->ip_dst.s_addr))
   1963 		goto drop;
   1964 #ifdef INET6
   1965 	if (m->m_flags & M_ANYCAST6)
   1966 		goto drop;
   1967 	else if (ip6 && IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1968 		goto drop;
   1969 #endif
   1970 	/* recover the header if dropped. */
   1971 	m->m_data -= hdroptlen;
   1972 	m->m_len += hdroptlen;
   1973     {
   1974 	/*
   1975 	 * need to recover version # field, which was overwritten on
   1976 	 * ip_cksum computation.
   1977 	 */
   1978 	struct ip *sip;
   1979 	sip = mtod(m, struct ip *);
   1980 	switch (af) {
   1981 	case AF_INET:
   1982 		sip->ip_v = 4;
   1983 		break;
   1984 #ifdef INET6
   1985 	case AF_INET6:
   1986 		sip->ip_v = 6;
   1987 		break;
   1988 #endif
   1989 	}
   1990     }
   1991 	if (tiflags & TH_ACK)
   1992 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   1993 	else {
   1994 		if (tiflags & TH_SYN)
   1995 			tlen++;
   1996 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   1997 		    TH_RST|TH_ACK);
   1998 	}
   1999 	return;
   2000 
   2001 drop:
   2002 	/*
   2003 	 * Drop space held by incoming segment and return.
   2004 	 */
   2005 	if (tp) {
   2006 		if (tp->t_inpcb)
   2007 			so = tp->t_inpcb->inp_socket;
   2008 #ifdef INET6
   2009 		else if (tp->t_in6pcb)
   2010 			so = tp->t_in6pcb->in6p_socket;
   2011 #endif
   2012 		else
   2013 			so = NULL;
   2014 		if (so && (so->so_options & SO_DEBUG) != 0) {
   2015 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   2016 			m_freem(tcp_saveti);
   2017 		}
   2018 	}
   2019 	m_freem(m);
   2020 	return;
   2021 }
   2022 
   2023 void
   2024 tcp_dooptions(tp, cp, cnt, th, oi)
   2025 	struct tcpcb *tp;
   2026 	u_char *cp;
   2027 	int cnt;
   2028 	struct tcphdr *th;
   2029 	struct tcp_opt_info *oi;
   2030 {
   2031 	u_int16_t mss;
   2032 	int opt, optlen;
   2033 
   2034 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   2035 		opt = cp[0];
   2036 		if (opt == TCPOPT_EOL)
   2037 			break;
   2038 		if (opt == TCPOPT_NOP)
   2039 			optlen = 1;
   2040 		else {
   2041 			optlen = cp[1];
   2042 			if (optlen <= 0)
   2043 				break;
   2044 		}
   2045 		switch (opt) {
   2046 
   2047 		default:
   2048 			continue;
   2049 
   2050 		case TCPOPT_MAXSEG:
   2051 			if (optlen != TCPOLEN_MAXSEG)
   2052 				continue;
   2053 			if (!(th->th_flags & TH_SYN))
   2054 				continue;
   2055 			bcopy(cp + 2, &mss, sizeof(mss));
   2056 			oi->maxseg = ntohs(mss);
   2057 			break;
   2058 
   2059 		case TCPOPT_WINDOW:
   2060 			if (optlen != TCPOLEN_WINDOW)
   2061 				continue;
   2062 			if (!(th->th_flags & TH_SYN))
   2063 				continue;
   2064 			tp->t_flags |= TF_RCVD_SCALE;
   2065 			tp->requested_s_scale = cp[2];
   2066 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   2067 #if 0	/*XXX*/
   2068 				char *p;
   2069 
   2070 				if (ip)
   2071 					p = ntohl(ip->ip_src);
   2072 #ifdef INET6
   2073 				else if (ip6)
   2074 					p = ip6_sprintf(&ip6->ip6_src);
   2075 #endif
   2076 				else
   2077 					p = "(unknown)";
   2078 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   2079 				    "assuming %d\n",
   2080 				    tp->requested_s_scale, p,
   2081 				    TCP_MAX_WINSHIFT);
   2082 #else
   2083 				log(LOG_ERR, "TCP: invalid wscale %d, "
   2084 				    "assuming %d\n",
   2085 				    tp->requested_s_scale,
   2086 				    TCP_MAX_WINSHIFT);
   2087 #endif
   2088 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   2089 			}
   2090 			break;
   2091 
   2092 		case TCPOPT_TIMESTAMP:
   2093 			if (optlen != TCPOLEN_TIMESTAMP)
   2094 				continue;
   2095 			oi->ts_present = 1;
   2096 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   2097 			NTOHL(oi->ts_val);
   2098 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   2099 			NTOHL(oi->ts_ecr);
   2100 
   2101 			/*
   2102 			 * A timestamp received in a SYN makes
   2103 			 * it ok to send timestamp requests and replies.
   2104 			 */
   2105 			if (th->th_flags & TH_SYN) {
   2106 				tp->t_flags |= TF_RCVD_TSTMP;
   2107 				tp->ts_recent = oi->ts_val;
   2108 				tp->ts_recent_age = tcp_now;
   2109 			}
   2110 			break;
   2111 		case TCPOPT_SACK_PERMITTED:
   2112 			if (optlen != TCPOLEN_SACK_PERMITTED)
   2113 				continue;
   2114 			if (!(th->th_flags & TH_SYN))
   2115 				continue;
   2116 			tp->t_flags &= ~TF_CANT_TXSACK;
   2117 			break;
   2118 
   2119 		case TCPOPT_SACK:
   2120 			if (tp->t_flags & TF_IGNR_RXSACK)
   2121 				continue;
   2122 			if (optlen % 8 != 2 || optlen < 10)
   2123 				continue;
   2124 			cp += 2;
   2125 			optlen -= 2;
   2126 			for (; optlen > 0; cp -= 8, optlen -= 8) {
   2127 				tcp_seq lwe, rwe;
   2128 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
   2129 				NTOHL(lwe);
   2130 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
   2131 				NTOHL(rwe);
   2132 				/* tcp_mark_sacked(tp, lwe, rwe); */
   2133 			}
   2134 			break;
   2135 		}
   2136 	}
   2137 }
   2138 
   2139 /*
   2140  * Pull out of band byte out of a segment so
   2141  * it doesn't appear in the user's data queue.
   2142  * It is still reflected in the segment length for
   2143  * sequencing purposes.
   2144  */
   2145 void
   2146 tcp_pulloutofband(so, th, m)
   2147 	struct socket *so;
   2148 	struct tcphdr *th;
   2149 	register struct mbuf *m;
   2150 {
   2151 	int cnt = th->th_urp - 1;
   2152 
   2153 	while (cnt >= 0) {
   2154 		if (m->m_len > cnt) {
   2155 			char *cp = mtod(m, caddr_t) + cnt;
   2156 			struct tcpcb *tp = sototcpcb(so);
   2157 
   2158 			tp->t_iobc = *cp;
   2159 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   2160 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   2161 			m->m_len--;
   2162 			return;
   2163 		}
   2164 		cnt -= m->m_len;
   2165 		m = m->m_next;
   2166 		if (m == 0)
   2167 			break;
   2168 	}
   2169 	panic("tcp_pulloutofband");
   2170 }
   2171 
   2172 /*
   2173  * Collect new round-trip time estimate
   2174  * and update averages and current timeout.
   2175  */
   2176 void
   2177 tcp_xmit_timer(tp, rtt)
   2178 	register struct tcpcb *tp;
   2179 	short rtt;
   2180 {
   2181 	register short delta;
   2182 	short rttmin;
   2183 
   2184 	tcpstat.tcps_rttupdated++;
   2185 	--rtt;
   2186 	if (tp->t_srtt != 0) {
   2187 		/*
   2188 		 * srtt is stored as fixed point with 3 bits after the
   2189 		 * binary point (i.e., scaled by 8).  The following magic
   2190 		 * is equivalent to the smoothing algorithm in rfc793 with
   2191 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
   2192 		 * point).  Adjust rtt to origin 0.
   2193 		 */
   2194 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   2195 		if ((tp->t_srtt += delta) <= 0)
   2196 			tp->t_srtt = 1 << 2;
   2197 		/*
   2198 		 * We accumulate a smoothed rtt variance (actually, a
   2199 		 * smoothed mean difference), then set the retransmit
   2200 		 * timer to smoothed rtt + 4 times the smoothed variance.
   2201 		 * rttvar is stored as fixed point with 2 bits after the
   2202 		 * binary point (scaled by 4).  The following is
   2203 		 * equivalent to rfc793 smoothing with an alpha of .75
   2204 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
   2205 		 * rfc793's wired-in beta.
   2206 		 */
   2207 		if (delta < 0)
   2208 			delta = -delta;
   2209 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   2210 		if ((tp->t_rttvar += delta) <= 0)
   2211 			tp->t_rttvar = 1 << 2;
   2212 	} else {
   2213 		/*
   2214 		 * No rtt measurement yet - use the unsmoothed rtt.
   2215 		 * Set the variance to half the rtt (so our first
   2216 		 * retransmit happens at 3*rtt).
   2217 		 */
   2218 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   2219 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   2220 	}
   2221 	tp->t_rtt = 0;
   2222 	tp->t_rxtshift = 0;
   2223 
   2224 	/*
   2225 	 * the retransmit should happen at rtt + 4 * rttvar.
   2226 	 * Because of the way we do the smoothing, srtt and rttvar
   2227 	 * will each average +1/2 tick of bias.  When we compute
   2228 	 * the retransmit timer, we want 1/2 tick of rounding and
   2229 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   2230 	 * firing of the timer.  The bias will give us exactly the
   2231 	 * 1.5 tick we need.  But, because the bias is
   2232 	 * statistical, we have to test that we don't drop below
   2233 	 * the minimum feasible timer (which is 2 ticks).
   2234 	 */
   2235 	if (tp->t_rttmin > rtt + 2)
   2236 		rttmin = tp->t_rttmin;
   2237 	else
   2238 		rttmin = rtt + 2;
   2239 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
   2240 
   2241 	/*
   2242 	 * We received an ack for a packet that wasn't retransmitted;
   2243 	 * it is probably safe to discard any error indications we've
   2244 	 * received recently.  This isn't quite right, but close enough
   2245 	 * for now (a route might have failed after we sent a segment,
   2246 	 * and the return path might not be symmetrical).
   2247 	 */
   2248 	tp->t_softerror = 0;
   2249 }
   2250 
   2251 /*
   2252  * Checks for partial ack.  If partial ack arrives, force the retransmission
   2253  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
   2254  * 1.  By setting snd_nxt to ti_ack, this forces retransmission timer to
   2255  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
   2256  */
   2257 int
   2258 tcp_newreno(tp, th)
   2259 	struct tcpcb *tp;
   2260 	struct tcphdr *th;
   2261 {
   2262 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
   2263 	        tcp_seq onxt = tp->snd_nxt;
   2264 	        tcp_seq ouna = tp->snd_una;  /* Haven't updated snd_una yet*/
   2265 	        u_long  ocwnd = tp->snd_cwnd;
   2266 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2267 	        tp->t_rtt = 0;
   2268 	        tp->snd_nxt = th->th_ack;
   2269 	        tp->snd_cwnd = tp->t_segsz;
   2270 	        tp->snd_una = th->th_ack;
   2271 	        (void) tcp_output(tp);
   2272 	        tp->snd_cwnd = ocwnd;
   2273 	        tp->snd_una = ouna;
   2274 	        if (SEQ_GT(onxt, tp->snd_nxt))
   2275 	                tp->snd_nxt = onxt;
   2276 	        /*
   2277 	         * Partial window deflation.  Relies on fact that tp->snd_una
   2278 	         * not updated yet.
   2279 	         */
   2280 	        tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
   2281 	        return 1;
   2282 	}
   2283 	return 0;
   2284 }
   2285 
   2286 
   2287 /*
   2288  * TCP compressed state engine.  Currently used to hold compressed
   2289  * state for SYN_RECEIVED.
   2290  */
   2291 
   2292 u_long	syn_cache_count;
   2293 u_int32_t syn_hash1, syn_hash2;
   2294 
   2295 #define SYN_HASH(sa, sp, dp) \
   2296 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   2297 				     ((u_int32_t)(sp)))^syn_hash2)))
   2298 #ifndef INET6
   2299 #define	SYN_HASHALL(hash, src, dst) \
   2300 do {									\
   2301 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
   2302 		((struct sockaddr_in *)(src))->sin_port,		\
   2303 		((struct sockaddr_in *)(dst))->sin_port);		\
   2304 } while (0)
   2305 #else
   2306 #define SYN_HASH6(sa, sp, dp) \
   2307 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   2308 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   2309 	 & 0x7fffffff)
   2310 
   2311 #define SYN_HASHALL(hash, src, dst) \
   2312 do {									\
   2313 	switch ((src)->sa_family) {					\
   2314 	case AF_INET:							\
   2315 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
   2316 			((struct sockaddr_in *)(src))->sin_port,	\
   2317 			((struct sockaddr_in *)(dst))->sin_port);	\
   2318 		break;							\
   2319 	case AF_INET6:							\
   2320 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
   2321 			((struct sockaddr_in6 *)(src))->sin6_port,	\
   2322 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
   2323 		break;							\
   2324 	default:							\
   2325 		hash = 0;						\
   2326 	}								\
   2327 } while (0)
   2328 #endif /* INET6 */
   2329 
   2330 #define	SYN_CACHE_RM(sc)						\
   2331 do {									\
   2332 	LIST_REMOVE((sc), sc_bucketq);					\
   2333 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
   2334 	TAILQ_REMOVE(&tcp_syn_cache_timeq[(sc)->sc_rxtshift], (sc), sc_timeq); \
   2335 	syn_cache_count--;						\
   2336 } while (0)
   2337 
   2338 #define	SYN_CACHE_PUT(sc)						\
   2339 do {									\
   2340 	if ((sc)->sc_ipopts)						\
   2341 		(void) m_free((sc)->sc_ipopts);				\
   2342 	if ((sc)->sc_route4.ro_rt != NULL)				\
   2343 		RTFREE((sc)->sc_route4.ro_rt);				\
   2344 	pool_put(&syn_cache_pool, (sc));				\
   2345 } while (0)
   2346 
   2347 struct pool syn_cache_pool;
   2348 
   2349 /*
   2350  * We don't estimate RTT with SYNs, so each packet starts with the default
   2351  * RTT and each timer queue has a fixed timeout value.  This allows us to
   2352  * optimize the timer queues somewhat.
   2353  */
   2354 #define	SYN_CACHE_TIMER_ARM(sc)						\
   2355 do {									\
   2356 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   2357 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   2358 	    TCPTV_REXMTMAX);						\
   2359 	PRT_SLOW_ARM((sc)->sc_rexmt, (sc)->sc_rxtcur);			\
   2360 } while (0)
   2361 
   2362 TAILQ_HEAD(, syn_cache) tcp_syn_cache_timeq[TCP_MAXRXTSHIFT + 1];
   2363 
   2364 void
   2365 syn_cache_init()
   2366 {
   2367 	int i;
   2368 
   2369 	/* Initialize the hash buckets. */
   2370 	for (i = 0; i < tcp_syn_cache_size; i++)
   2371 		LIST_INIT(&tcp_syn_cache[i].sch_bucket);
   2372 
   2373 	/* Initialize the timer queues. */
   2374 	for (i = 0; i <= TCP_MAXRXTSHIFT; i++)
   2375 		TAILQ_INIT(&tcp_syn_cache_timeq[i]);
   2376 
   2377 	/* Initialize the syn cache pool. */
   2378 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   2379 	    "synpl", 0, NULL, NULL, M_PCB);
   2380 }
   2381 
   2382 void
   2383 syn_cache_insert(sc)
   2384 	struct syn_cache *sc;
   2385 {
   2386 	struct syn_cache_head *scp;
   2387 	struct syn_cache *sc2;
   2388 	int s, i;
   2389 
   2390 	/*
   2391 	 * If there are no entries in the hash table, reinitialize
   2392 	 * the hash secrets.
   2393 	 */
   2394 	if (syn_cache_count == 0) {
   2395 		struct timeval tv;
   2396 		microtime(&tv);
   2397 		syn_hash1 = random() ^ (u_long)&sc;
   2398 		syn_hash2 = random() ^ tv.tv_usec;
   2399 	}
   2400 
   2401 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   2402 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   2403 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   2404 
   2405 	/*
   2406 	 * Make sure that we don't overflow the per-bucket
   2407 	 * limit or the total cache size limit.
   2408 	 */
   2409 	s = splsoftnet();
   2410 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   2411 		tcpstat.tcps_sc_bucketoverflow++;
   2412 		/*
   2413 		 * The bucket is full.  Toss the oldest element in the
   2414 		 * bucket.  This will be the entry with our bucket
   2415 		 * index closest to the front of the timer queue with
   2416 		 * the largest timeout value.
   2417 		 *
   2418 		 * Note: This timer queue traversal may be expensive, so
   2419 		 * we hope that this doesn't happen very often.  It is
   2420 		 * much more likely that we'll overflow the entire
   2421 		 * cache, which is much easier to handle; see below.
   2422 		 */
   2423 		for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
   2424 			for (sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
   2425 			     sc2 != NULL;
   2426 			     sc2 = TAILQ_NEXT(sc2, sc_timeq)) {
   2427 				if (sc2->sc_bucketidx == sc->sc_bucketidx) {
   2428 					SYN_CACHE_RM(sc2);
   2429 					SYN_CACHE_PUT(sc2);
   2430 					goto insert;	/* 2 level break */
   2431 				}
   2432 			}
   2433 		}
   2434 #ifdef DIAGNOSTIC
   2435 		/*
   2436 		 * This should never happen; we should always find an
   2437 		 * entry in our bucket.
   2438 		 */
   2439 		panic("syn_cache_insert: bucketoverflow: impossible");
   2440 #endif
   2441 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   2442 		tcpstat.tcps_sc_overflowed++;
   2443 		/*
   2444 		 * The cache is full.  Toss the oldest entry in the
   2445 		 * entire cache.  This is the front entry in the
   2446 		 * first non-empty timer queue with the largest
   2447 		 * timeout value.
   2448 		 */
   2449 		for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
   2450 			sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
   2451 			if (sc2 == NULL)
   2452 				continue;
   2453 			SYN_CACHE_RM(sc2);
   2454 			SYN_CACHE_PUT(sc2);
   2455 			goto insert;		/* symmetry with above */
   2456 		}
   2457 #ifdef DIAGNOSTIC
   2458 		/*
   2459 		 * This should never happen; we should always find an
   2460 		 * entry in the cache.
   2461 		 */
   2462 		panic("syn_cache_insert: cache overflow: impossible");
   2463 #endif
   2464 	}
   2465 
   2466  insert:
   2467 	/*
   2468 	 * Initialize the entry's timer.
   2469 	 */
   2470 	sc->sc_rxttot = 0;
   2471 	sc->sc_rxtshift = 0;
   2472 	SYN_CACHE_TIMER_ARM(sc);
   2473 	TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift], sc, sc_timeq);
   2474 
   2475 	/* Put it into the bucket. */
   2476 	LIST_INSERT_HEAD(&scp->sch_bucket, sc, sc_bucketq);
   2477 	scp->sch_length++;
   2478 	syn_cache_count++;
   2479 
   2480 	tcpstat.tcps_sc_added++;
   2481 	splx(s);
   2482 }
   2483 
   2484 /*
   2485  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   2486  * If we have retransmitted an entry the maximum number of times, expire
   2487  * that entry.
   2488  */
   2489 void
   2490 syn_cache_timer()
   2491 {
   2492 	struct syn_cache *sc, *nsc;
   2493 	int i, s;
   2494 
   2495 	s = splsoftnet();
   2496 
   2497 	/*
   2498 	 * First, get all the entries that need to be retransmitted, or
   2499 	 * must be expired due to exceeding the initial keepalive time.
   2500 	 */
   2501 	for (i = 0; i < TCP_MAXRXTSHIFT; i++) {
   2502 		for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
   2503 		     sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
   2504 		     sc = nsc) {
   2505 			nsc = TAILQ_NEXT(sc, sc_timeq);
   2506 
   2507 			/*
   2508 			 * Compute the total amount of time this entry has
   2509 			 * been on a queue.  If this entry has been on longer
   2510 			 * than the keep alive timer would allow, expire it.
   2511 			 */
   2512 			sc->sc_rxttot += sc->sc_rxtcur;
   2513 			if (sc->sc_rxttot >= TCPTV_KEEP_INIT) {
   2514 				tcpstat.tcps_sc_timed_out++;
   2515 				SYN_CACHE_RM(sc);
   2516 				SYN_CACHE_PUT(sc);
   2517 				continue;
   2518 			}
   2519 
   2520 			tcpstat.tcps_sc_retransmitted++;
   2521 			(void) syn_cache_respond(sc, NULL);
   2522 
   2523 			/* Advance this entry onto the next timer queue. */
   2524 			TAILQ_REMOVE(&tcp_syn_cache_timeq[i], sc, sc_timeq);
   2525 			sc->sc_rxtshift = i + 1;
   2526 			SYN_CACHE_TIMER_ARM(sc);
   2527 			TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift],
   2528 			    sc, sc_timeq);
   2529 		}
   2530 	}
   2531 
   2532 	/*
   2533 	 * Now get all the entries that are expired due to too many
   2534 	 * retransmissions.
   2535 	 */
   2536 	for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[TCP_MAXRXTSHIFT]);
   2537 	     sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
   2538 	     sc = nsc) {
   2539 		nsc = TAILQ_NEXT(sc, sc_timeq);
   2540 		tcpstat.tcps_sc_timed_out++;
   2541 		SYN_CACHE_RM(sc);
   2542 		SYN_CACHE_PUT(sc);
   2543 	}
   2544 	splx(s);
   2545 }
   2546 
   2547 /*
   2548  * Find an entry in the syn cache.
   2549  */
   2550 struct syn_cache *
   2551 syn_cache_lookup(src, dst, headp)
   2552 	struct sockaddr *src;
   2553 	struct sockaddr *dst;
   2554 	struct syn_cache_head **headp;
   2555 {
   2556 	struct syn_cache *sc;
   2557 	struct syn_cache_head *scp;
   2558 	u_int32_t hash;
   2559 	int s;
   2560 
   2561 	SYN_HASHALL(hash, src, dst);
   2562 
   2563 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   2564 	*headp = scp;
   2565 	s = splsoftnet();
   2566 	for (sc = LIST_FIRST(&scp->sch_bucket); sc != NULL;
   2567 	     sc = LIST_NEXT(sc, sc_bucketq)) {
   2568 		if (sc->sc_hash != hash)
   2569 			continue;
   2570 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
   2571 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
   2572 			splx(s);
   2573 			return (sc);
   2574 		}
   2575 	}
   2576 	splx(s);
   2577 	return (NULL);
   2578 }
   2579 
   2580 /*
   2581  * This function gets called when we receive an ACK for a
   2582  * socket in the LISTEN state.  We look up the connection
   2583  * in the syn cache, and if its there, we pull it out of
   2584  * the cache and turn it into a full-blown connection in
   2585  * the SYN-RECEIVED state.
   2586  *
   2587  * The return values may not be immediately obvious, and their effects
   2588  * can be subtle, so here they are:
   2589  *
   2590  *	NULL	SYN was not found in cache; caller should drop the
   2591  *		packet and send an RST.
   2592  *
   2593  *	-1	We were unable to create the new connection, and are
   2594  *		aborting it.  An ACK,RST is being sent to the peer
   2595  *		(unless we got screwey sequence numbners; see below),
   2596  *		because the 3-way handshake has been completed.  Caller
   2597  *		should not free the mbuf, since we may be using it.  If
   2598  *		we are not, we will free it.
   2599  *
   2600  *	Otherwise, the return value is a pointer to the new socket
   2601  *	associated with the connection.
   2602  */
   2603 struct socket *
   2604 syn_cache_get(src, dst, th, hlen, tlen, so, m)
   2605 	struct sockaddr *src;
   2606 	struct sockaddr *dst;
   2607 	struct tcphdr *th;
   2608 	unsigned int hlen, tlen;
   2609 	struct socket *so;
   2610 	struct mbuf *m;
   2611 {
   2612 	struct syn_cache *sc;
   2613 	struct syn_cache_head *scp;
   2614 	register struct inpcb *inp = NULL;
   2615 #ifdef INET6
   2616 	register struct in6pcb *in6p = NULL;
   2617 #endif
   2618 	register struct tcpcb *tp = 0;
   2619 	struct mbuf *am;
   2620 	int s;
   2621 	struct socket *oso;
   2622 
   2623 	s = splsoftnet();
   2624 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   2625 		splx(s);
   2626 		return (NULL);
   2627 	}
   2628 
   2629 	/*
   2630 	 * Verify the sequence and ack numbers.  Try getting the correct
   2631 	 * response again.
   2632 	 */
   2633 	if ((th->th_ack != sc->sc_iss + 1) ||
   2634 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   2635 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   2636 		(void) syn_cache_respond(sc, m);
   2637 		splx(s);
   2638 		return ((struct socket *)(-1));
   2639 	}
   2640 
   2641 	/* Remove this cache entry */
   2642 	SYN_CACHE_RM(sc);
   2643 	splx(s);
   2644 
   2645 	/*
   2646 	 * Ok, create the full blown connection, and set things up
   2647 	 * as they would have been set up if we had created the
   2648 	 * connection when the SYN arrived.  If we can't create
   2649 	 * the connection, abort it.
   2650 	 */
   2651 	/*
   2652 	 * inp still has the OLD in_pcb stuff, set the
   2653 	 * v6-related flags on the new guy, too.   This is
   2654 	 * done particularly for the case where an AF_INET6
   2655 	 * socket is bound only to a port, and a v4 connection
   2656 	 * comes in on that port.
   2657 	 * we also copy the flowinfo from the original pcb
   2658 	 * to the new one.
   2659 	 */
   2660     {
   2661 	struct inpcb *parentinpcb;
   2662 
   2663 	parentinpcb = (struct inpcb *)so->so_pcb;
   2664 
   2665 	oso = so;
   2666 	so = sonewconn(so, SS_ISCONNECTED);
   2667 	if (so == NULL)
   2668 		goto resetandabort;
   2669 
   2670 	switch (so->so_proto->pr_domain->dom_family) {
   2671 	case AF_INET:
   2672 		inp = sotoinpcb(so);
   2673 		break;
   2674 #ifdef INET6
   2675 	case AF_INET6:
   2676 		in6p = sotoin6pcb(so);
   2677 #if 0 /*def INET6*/
   2678 		inp->inp_flags |= (parentinpcb->inp_flags &
   2679 			(INP_IPV6 | INP_IPV6_UNDEC | INP_IPV6_MAPPED));
   2680 		if ((inp->inp_flags & INP_IPV6) &&
   2681 		   !(inp->inp_flags & INP_IPV6_MAPPED)) {
   2682 			inp->inp_ipv6.ip6_hlim = parentinpcb->inp_ipv6.ip6_hlim;
   2683 			inp->inp_ipv6.ip6_vfc = parentinpcb->inp_ipv6.ip6_vfc;
   2684 		}
   2685 #endif
   2686 		break;
   2687 #endif
   2688 	}
   2689     }
   2690 	switch (src->sa_family) {
   2691 	case AF_INET:
   2692 		if (inp) {
   2693 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   2694 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   2695 			inp->inp_options = ip_srcroute();
   2696 			in_pcbstate(inp, INP_BOUND);
   2697 			if (inp->inp_options == NULL) {
   2698 				inp->inp_options = sc->sc_ipopts;
   2699 				sc->sc_ipopts = NULL;
   2700 			}
   2701 		}
   2702 #ifdef INET6
   2703 		else if (in6p) {
   2704 			/* IPv4 packet to AF_INET6 socket */
   2705 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
   2706 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   2707 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   2708 				&in6p->in6p_laddr.s6_addr32[3],
   2709 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   2710 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   2711 			in6totcpcb(in6p)->t_family = AF_INET;
   2712 		}
   2713 #endif
   2714 		break;
   2715 #ifdef INET6
   2716 	case AF_INET6:
   2717 		if (in6p) {
   2718 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   2719 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   2720 #if 0
   2721 			in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
   2722 			/*inp->inp_options = ip6_srcroute();*/ /* soon. */
   2723 #endif
   2724 		}
   2725 		break;
   2726 #endif
   2727 	}
   2728 #ifdef INET6
   2729 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   2730 		struct in6pcb *oin6p = sotoin6pcb(oso);
   2731 		/* inherit socket options from the listening socket */
   2732 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   2733 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   2734 			m_freem(in6p->in6p_options);
   2735 			in6p->in6p_options = 0;
   2736 		}
   2737 		ip6_savecontrol(in6p, &in6p->in6p_options,
   2738 			mtod(m, struct ip6_hdr *), m);
   2739 	}
   2740 #endif
   2741 
   2742 #ifdef IPSEC
   2743     {
   2744 	struct secpolicy *sp;
   2745 	if (inp) {
   2746 		sp = ipsec_copy_policy(sotoinpcb(oso)->inp_sp);
   2747 		if (sp) {
   2748 			key_freesp(inp->inp_sp);
   2749 			inp->inp_sp = sp;
   2750 		} else
   2751 			printf("tcp_input: could not copy policy\n");
   2752 	}
   2753 #ifdef INET6
   2754 	else if (in6p) {
   2755 		sp = ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp);
   2756 		if (sp) {
   2757 			key_freesp(in6p->in6p_sp);
   2758 			in6p->in6p_sp = sp;
   2759 		} else
   2760 			printf("tcp_input: could not copy policy\n");
   2761 	}
   2762 #endif
   2763     }
   2764 #endif
   2765 
   2766 	/*
   2767 	 * Give the new socket our cached route reference.
   2768 	 */
   2769 	if (inp)
   2770 		inp->inp_route = sc->sc_route4;		/* struct assignment */
   2771 #ifdef INET6
   2772 	else
   2773 		in6p->in6p_route = sc->sc_route6;
   2774 #endif
   2775 	sc->sc_route4.ro_rt = NULL;
   2776 
   2777 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   2778 	if (am == NULL)
   2779 		goto resetandabort;
   2780 	am->m_len = src->sa_len;
   2781 	bcopy(src, mtod(am, caddr_t), src->sa_len);
   2782 	if (inp) {
   2783 		if (in_pcbconnect(inp, am)) {
   2784 			(void) m_free(am);
   2785 			goto resetandabort;
   2786 		}
   2787 	}
   2788 #ifdef INET6
   2789 	else if (in6p) {
   2790 		if (src->sa_family == AF_INET) {
   2791 			/* IPv4 packet to AF_INET6 socket */
   2792 			struct sockaddr_in6 *sin6;
   2793 			sin6 = mtod(am, struct sockaddr_in6 *);
   2794 			am->m_len = sizeof(*sin6);
   2795 			bzero(sin6, sizeof(*sin6));
   2796 			sin6->sin6_family = AF_INET6;
   2797 			sin6->sin6_len = sizeof(*sin6);
   2798 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
   2799 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
   2800 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   2801 				&sin6->sin6_addr.s6_addr32[3],
   2802 				sizeof(sin6->sin6_addr.s6_addr32[3]));
   2803 		}
   2804 		if (in6_pcbconnect(in6p, am)) {
   2805 			(void) m_free(am);
   2806 			goto resetandabort;
   2807 		}
   2808 	}
   2809 #endif
   2810 	else {
   2811 		(void) m_free(am);
   2812 		goto resetandabort;
   2813 	}
   2814 	(void) m_free(am);
   2815 
   2816 	if (inp)
   2817 		tp = intotcpcb(inp);
   2818 #ifdef INET6
   2819 	else if (in6p)
   2820 		tp = in6totcpcb(in6p);
   2821 #endif
   2822 	else
   2823 		tp = NULL;
   2824 	if (sc->sc_request_r_scale != 15) {
   2825 		tp->requested_s_scale = sc->sc_requested_s_scale;
   2826 		tp->request_r_scale = sc->sc_request_r_scale;
   2827 		tp->snd_scale = sc->sc_requested_s_scale;
   2828 		tp->rcv_scale = sc->sc_request_r_scale;
   2829 		tp->t_flags |= TF_RCVD_SCALE;
   2830 	}
   2831 	if (sc->sc_flags & SCF_TIMESTAMP)
   2832 		tp->t_flags |= TF_RCVD_TSTMP;
   2833 
   2834 	tp->t_template = tcp_template(tp);
   2835 	if (tp->t_template == 0) {
   2836 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   2837 		so = NULL;
   2838 		m_freem(m);
   2839 		goto abort;
   2840 	}
   2841 
   2842 	tp->iss = sc->sc_iss;
   2843 	tp->irs = sc->sc_irs;
   2844 	tcp_sendseqinit(tp);
   2845 	tcp_rcvseqinit(tp);
   2846 	tp->t_state = TCPS_SYN_RECEIVED;
   2847 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
   2848 	tcpstat.tcps_accepts++;
   2849 
   2850 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   2851 	tp->t_ourmss = sc->sc_ourmaxseg;
   2852 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   2853 
   2854 	/*
   2855 	 * Initialize the initial congestion window.  If we
   2856 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   2857 	 * to 1 segment (i.e. the Loss Window).
   2858 	 */
   2859 	if (sc->sc_rxtshift)
   2860 		tp->snd_cwnd = tp->t_peermss;
   2861 	else
   2862 		tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
   2863 
   2864 	tcp_rmx_rtt(tp);
   2865 	tp->snd_wl1 = sc->sc_irs;
   2866 	tp->rcv_up = sc->sc_irs + 1;
   2867 
   2868 	/*
   2869 	 * This is what whould have happened in tcp_ouput() when
   2870 	 * the SYN,ACK was sent.
   2871 	 */
   2872 	tp->snd_up = tp->snd_una;
   2873 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   2874 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2875 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   2876 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   2877 	tp->last_ack_sent = tp->rcv_nxt;
   2878 
   2879 	tcpstat.tcps_sc_completed++;
   2880 	SYN_CACHE_PUT(sc);
   2881 	return (so);
   2882 
   2883 resetandabort:
   2884 	(void) tcp_respond(NULL, m, m, th,
   2885 			   th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
   2886 abort:
   2887 	if (so != NULL)
   2888 		(void) soabort(so);
   2889 	SYN_CACHE_PUT(sc);
   2890 	tcpstat.tcps_sc_aborted++;
   2891 	return ((struct socket *)(-1));
   2892 }
   2893 
   2894 /*
   2895  * This function is called when we get a RST for a
   2896  * non-existant connection, so that we can see if the
   2897  * connection is in the syn cache.  If it is, zap it.
   2898  */
   2899 
   2900 void
   2901 syn_cache_reset(src, dst, th)
   2902 	struct sockaddr *src;
   2903 	struct sockaddr *dst;
   2904 	struct tcphdr *th;
   2905 {
   2906 	struct syn_cache *sc;
   2907 	struct syn_cache_head *scp;
   2908 	int s = splsoftnet();
   2909 
   2910 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   2911 		splx(s);
   2912 		return;
   2913 	}
   2914 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   2915 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   2916 		splx(s);
   2917 		return;
   2918 	}
   2919 	SYN_CACHE_RM(sc);
   2920 	splx(s);
   2921 	tcpstat.tcps_sc_reset++;
   2922 	SYN_CACHE_PUT(sc);
   2923 }
   2924 
   2925 void
   2926 syn_cache_unreach(src, dst, th)
   2927 	struct sockaddr *src;
   2928 	struct sockaddr *dst;
   2929 	struct tcphdr *th;
   2930 {
   2931 	struct syn_cache *sc;
   2932 	struct syn_cache_head *scp;
   2933 	int s;
   2934 
   2935 	s = splsoftnet();
   2936 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   2937 		splx(s);
   2938 		return;
   2939 	}
   2940 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   2941 	if (ntohl (th->th_seq) != sc->sc_iss) {
   2942 		splx(s);
   2943 		return;
   2944 	}
   2945 
   2946 	/*
   2947 	 * If we've rertransmitted 3 times and this is our second error,
   2948 	 * we remove the entry.  Otherwise, we allow it to continue on.
   2949 	 * This prevents us from incorrectly nuking an entry during a
   2950 	 * spurious network outage.
   2951 	 *
   2952 	 * See tcp_notify().
   2953 	 */
   2954 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   2955 		sc->sc_flags |= SCF_UNREACH;
   2956 		splx(s);
   2957 		return;
   2958 	}
   2959 
   2960 	SYN_CACHE_RM(sc);
   2961 	splx(s);
   2962 	tcpstat.tcps_sc_unreach++;
   2963 	SYN_CACHE_PUT(sc);
   2964 }
   2965 
   2966 /*
   2967  * Given a LISTEN socket and an inbound SYN request, add
   2968  * this to the syn cache, and send back a segment:
   2969  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   2970  * to the source.
   2971  *
   2972  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   2973  * Doing so would require that we hold onto the data and deliver it
   2974  * to the application.  However, if we are the target of a SYN-flood
   2975  * DoS attack, an attacker could send data which would eventually
   2976  * consume all available buffer space if it were ACKed.  By not ACKing
   2977  * the data, we avoid this DoS scenario.
   2978  */
   2979 
   2980 int
   2981 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
   2982 	struct sockaddr *src;
   2983 	struct sockaddr *dst;
   2984 	struct tcphdr *th;
   2985 	unsigned int hlen;
   2986 	struct socket *so;
   2987 	struct mbuf *m;
   2988 	u_char *optp;
   2989 	int optlen;
   2990 	struct tcp_opt_info *oi;
   2991 {
   2992 	struct tcpcb tb, *tp;
   2993 	long win;
   2994 	struct syn_cache *sc;
   2995 	struct syn_cache_head *scp;
   2996 	struct mbuf *ipopts;
   2997 #ifdef IPSEC
   2998 	size_t ipsechdrsiz;
   2999 #endif
   3000 
   3001 	tp = sototcpcb(so);
   3002 
   3003 	/*
   3004 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   3005 	 * in_broadcast() should never return true on a received
   3006 	 * packet with M_BCAST not set.
   3007 	 */
   3008 	if (m->m_flags & (M_BCAST|M_MCAST))
   3009 		return 0;
   3010 #ifdef INET6
   3011 	if (m->m_flags & M_ANYCAST6)
   3012 		return 0;
   3013 #endif
   3014 
   3015 	switch (src->sa_family) {
   3016 	case AF_INET:
   3017 		if (IN_MULTICAST(((struct sockaddr_in *)src)->sin_addr.s_addr)
   3018 		 || IN_MULTICAST(((struct sockaddr_in *)dst)->sin_addr.s_addr))
   3019 			return 0;
   3020 #ifdef IPSEC
   3021 		ipsechdrsiz = ipsec4_hdrsiz_tcp(tp);
   3022 #endif
   3023 		break;
   3024 #ifdef INET6
   3025 	case AF_INET6:
   3026 		if (IN6_IS_ADDR_MULTICAST(&((struct sockaddr_in6 *)src)->sin6_addr)
   3027 		 || IN6_IS_ADDR_MULTICAST(&((struct sockaddr_in6 *)dst)->sin6_addr))
   3028 			return 0;
   3029 #if defined(IPSEC) && !defined(TCP6)
   3030 		ipsechdrsiz = ipsec6_hdrsiz_tcp(tp);
   3031 #endif
   3032 		break;
   3033 #endif
   3034 	}
   3035 
   3036 	/*
   3037 	 * Initialize some local state.
   3038 	 */
   3039 	win = sbspace(&so->so_rcv);
   3040 	if (win > TCP_MAXWIN)
   3041 		win = TCP_MAXWIN;
   3042 
   3043 	if (src->sa_family == AF_INET) {
   3044 		/*
   3045 		 * Remember the IP options, if any.
   3046 		 */
   3047 		ipopts = ip_srcroute();
   3048 	} else
   3049 		ipopts = NULL;
   3050 
   3051 	if (optp) {
   3052 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   3053 		tcp_dooptions(&tb, optp, optlen, th, oi);
   3054 	} else
   3055 		tb.t_flags = 0;
   3056 
   3057 	/*
   3058 	 * See if we already have an entry for this connection.
   3059 	 * If we do, resend the SYN,ACK.  We do not count this
   3060 	 * as a retransmission (XXX though maybe we should).
   3061 	 */
   3062 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   3063 		tcpstat.tcps_sc_dupesyn++;
   3064 		if (ipopts) {
   3065 			/*
   3066 			 * If we were remembering a previous source route,
   3067 			 * forget it and use the new one we've been given.
   3068 			 */
   3069 			if (sc->sc_ipopts)
   3070 				(void) m_free(sc->sc_ipopts);
   3071 			sc->sc_ipopts = ipopts;
   3072 		}
   3073 		sc->sc_timestamp = tb.ts_recent;
   3074 		if (syn_cache_respond(sc, m) == 0) {
   3075 			tcpstat.tcps_sndacks++;
   3076 			tcpstat.tcps_sndtotal++;
   3077 		}
   3078 		return (1);
   3079 	}
   3080 
   3081 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   3082 	if (sc == NULL) {
   3083 		if (ipopts)
   3084 			(void) m_free(ipopts);
   3085 		return (0);
   3086 	}
   3087 
   3088 	/*
   3089 	 * Fill in the cache, and put the necessary IP and TCP
   3090 	 * options into the reply.
   3091 	 */
   3092 	bzero(sc, sizeof(struct syn_cache));
   3093 	bcopy(src, &sc->sc_src, src->sa_len);
   3094 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   3095 	sc->sc_flags = 0;
   3096 	sc->sc_ipopts = ipopts;
   3097 	sc->sc_irs = th->th_seq;
   3098 	sc->sc_iss = tcp_new_iss(sc, sizeof(struct syn_cache), 0);
   3099 	sc->sc_peermaxseg = oi->maxseg;
   3100 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   3101 						m->m_pkthdr.rcvif : NULL);
   3102 #ifdef IPSEC
   3103 	if (ipsechdrsiz < sc->sc_ourmaxseg)
   3104 		sc->sc_ourmaxseg -= ipsechdrsiz;
   3105 #endif
   3106 	sc->sc_win = win;
   3107 	sc->sc_timestamp = tb.ts_recent;
   3108 	if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
   3109 		sc->sc_flags |= SCF_TIMESTAMP;
   3110 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   3111 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   3112 		sc->sc_requested_s_scale = tb.requested_s_scale;
   3113 		sc->sc_request_r_scale = 0;
   3114 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   3115 		    TCP_MAXWIN << sc->sc_request_r_scale <
   3116 		    so->so_rcv.sb_hiwat)
   3117 			sc->sc_request_r_scale++;
   3118 	} else {
   3119 		sc->sc_requested_s_scale = 15;
   3120 		sc->sc_request_r_scale = 15;
   3121 	}
   3122 	sc->sc_so = so;
   3123 	if (syn_cache_respond(sc, m) == 0) {
   3124 		syn_cache_insert(sc);
   3125 		tcpstat.tcps_sndacks++;
   3126 		tcpstat.tcps_sndtotal++;
   3127 	} else {
   3128 		SYN_CACHE_PUT(sc);
   3129 		tcpstat.tcps_sc_dropped++;
   3130 	}
   3131 	return (1);
   3132 }
   3133 
   3134 int
   3135 syn_cache_respond(sc, m)
   3136 	struct syn_cache *sc;
   3137 	struct mbuf *m;
   3138 {
   3139 	struct route *ro = &sc->sc_route4;
   3140 	struct rtentry *rt;
   3141 	u_int8_t *optp;
   3142 	int optlen, error;
   3143 	u_int16_t tlen;
   3144 	struct ip *ip = NULL;
   3145 #ifdef INET6
   3146 	struct ip6_hdr *ip6 = NULL;
   3147 #endif
   3148 	struct tcphdr *th;
   3149 	u_int hlen;
   3150 
   3151 	switch (sc->sc_src.sa.sa_family) {
   3152 	case AF_INET:
   3153 		hlen = sizeof(struct ip);
   3154 		break;
   3155 #ifdef INET6
   3156 	case AF_INET6:
   3157 		hlen = sizeof(struct ip6_hdr);
   3158 		break;
   3159 #endif
   3160 	default:
   3161 		if (m)
   3162 			m_freem(m);
   3163 		return EAFNOSUPPORT;
   3164 	}
   3165 
   3166 	/* Compute the size of the TCP options. */
   3167 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   3168 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   3169 
   3170 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   3171 
   3172 	/*
   3173 	 * Create the IP+TCP header from scratch.  Reuse the received mbuf
   3174 	 * if possible.
   3175 	 */
   3176 	if (m != NULL) {
   3177 		m_freem(m->m_next);
   3178 		m->m_next = NULL;
   3179 		MRESETDATA(m);
   3180 	} else {
   3181 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3182 		if (m == NULL)
   3183 			return (ENOBUFS);
   3184 	}
   3185 
   3186 	/* Fixup the mbuf. */
   3187 	m->m_data += max_linkhdr;
   3188 	m->m_len = m->m_pkthdr.len = tlen;
   3189 #ifdef IPSEC
   3190 	/* use IPsec policy on listening socket, on SYN ACK */
   3191 	m->m_pkthdr.rcvif = (struct ifnet *)sc->sc_so;
   3192 #else
   3193 	m->m_pkthdr.rcvif = NULL;
   3194 #endif
   3195 	memset(mtod(m, u_char *), 0, tlen);
   3196 
   3197 	switch (sc->sc_src.sa.sa_family) {
   3198 	case AF_INET:
   3199 		ip = mtod(m, struct ip *);
   3200 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   3201 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   3202 		ip->ip_p = IPPROTO_TCP;
   3203 		th = (struct tcphdr *)(ip + 1);
   3204 		th->th_dport = sc->sc_src.sin.sin_port;
   3205 		th->th_sport = sc->sc_dst.sin.sin_port;
   3206 		break;
   3207 #ifdef INET6
   3208 	case AF_INET6:
   3209 		ip6 = mtod(m, struct ip6_hdr *);
   3210 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   3211 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   3212 		ip6->ip6_nxt = IPPROTO_TCP;
   3213 		/* ip6_plen will be updated in ip6_output() */
   3214 		th = (struct tcphdr *)(ip6 + 1);
   3215 		th->th_dport = sc->sc_src.sin6.sin6_port;
   3216 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   3217 		break;
   3218 #endif
   3219 	default:
   3220 		th = NULL;
   3221 	}
   3222 
   3223 	th->th_seq = htonl(sc->sc_iss);
   3224 	th->th_ack = htonl(sc->sc_irs + 1);
   3225 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   3226 	th->th_flags = TH_SYN|TH_ACK;
   3227 	th->th_win = htons(sc->sc_win);
   3228 	/* th_sum already 0 */
   3229 	/* th_urp already 0 */
   3230 
   3231 	/* Tack on the TCP options. */
   3232 	optp = (u_int8_t *)(th + 1);
   3233 	*optp++ = TCPOPT_MAXSEG;
   3234 	*optp++ = 4;
   3235 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   3236 	*optp++ = sc->sc_ourmaxseg & 0xff;
   3237 
   3238 	if (sc->sc_request_r_scale != 15) {
   3239 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   3240 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   3241 		    sc->sc_request_r_scale);
   3242 		optp += 4;
   3243 	}
   3244 
   3245 	if (sc->sc_flags & SCF_TIMESTAMP) {
   3246 		u_int32_t *lp = (u_int32_t *)(optp);
   3247 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   3248 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   3249 		*lp++ = htonl(tcp_now);
   3250 		*lp   = htonl(sc->sc_timestamp);
   3251 		optp += TCPOLEN_TSTAMP_APPA;
   3252 	}
   3253 
   3254 	/* Compute the packet's checksum. */
   3255 	switch (sc->sc_src.sa.sa_family) {
   3256 	case AF_INET:
   3257 		ip->ip_len = htons(tlen - hlen);
   3258 		th->th_sum = 0;
   3259 		th->th_sum = in_cksum(m, tlen);
   3260 		break;
   3261 #ifdef INET6
   3262 	case AF_INET6:
   3263 		ip6->ip6_plen = htons(tlen - hlen);
   3264 		th->th_sum = 0;
   3265 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   3266 		break;
   3267 #endif
   3268 	}
   3269 
   3270 	/*
   3271 	 * Fill in some straggling IP bits.  Note the stack expects
   3272 	 * ip_len to be in host order, for convenience.
   3273 	 */
   3274 	switch (sc->sc_src.sa.sa_family) {
   3275 	case AF_INET:
   3276 		ip->ip_len = tlen;
   3277 		ip->ip_ttl = ip_defttl;
   3278 		/* XXX tos? */
   3279 		break;
   3280 #ifdef INET6
   3281 	case AF_INET6:
   3282 		ip6->ip6_vfc = IPV6_VERSION;
   3283 		ip6->ip6_plen = htons(tlen - hlen);
   3284 		ip6->ip6_hlim = ip6_defhlim;
   3285 		/* XXX flowlabel? */
   3286 		break;
   3287 #endif
   3288 	}
   3289 
   3290 	/*
   3291 	 * If we're doing Path MTU discovery, we need to set DF unless
   3292 	 * the route's MTU is locked.  If we don't yet know the route,
   3293 	 * look it up now.  We will copy this reference to the inpcb
   3294 	 * when we finish creating the connection.
   3295 	 */
   3296 	if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
   3297 		if (ro->ro_rt != NULL) {
   3298 			RTFREE(ro->ro_rt);
   3299 			ro->ro_rt = NULL;
   3300 		}
   3301 		bcopy(&sc->sc_src, &ro->ro_dst, sc->sc_src.sa.sa_len);
   3302 		rtalloc(ro);
   3303 		if ((rt = ro->ro_rt) == NULL) {
   3304 			m_freem(m);
   3305 			switch (sc->sc_src.sa.sa_family) {
   3306 			case AF_INET:
   3307 				ipstat.ips_noroute++;
   3308 				break;
   3309 #ifdef INET6
   3310 			case AF_INET6:
   3311 				ip6stat.ip6s_noroute++;
   3312 				break;
   3313 #endif
   3314 			}
   3315 			return (EHOSTUNREACH);
   3316 		}
   3317 	}
   3318 
   3319 	switch (sc->sc_src.sa.sa_family) {
   3320 	case AF_INET:
   3321 		if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
   3322 			ip->ip_off |= IP_DF;
   3323 
   3324 		/* ...and send it off! */
   3325 		error = ip_output(m, sc->sc_ipopts, ro, 0, NULL);
   3326 		break;
   3327 #ifdef INET6
   3328 	case AF_INET6:
   3329 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
   3330 			0, NULL);
   3331 		break;
   3332 #endif
   3333 	default:
   3334 		error = EAFNOSUPPORT;
   3335 		break;
   3336 	}
   3337 	return (error);
   3338 }
   3339