Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.97
      1 /*	$NetBSD: tcp_input.c,v 1.97 1999/12/08 16:22:20 itojun Exp $	*/
      2 
      3 /*
      4 %%% portions-copyright-nrl-95
      5 Portions of this software are Copyright 1995-1998 by Randall Atkinson,
      6 Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
      7 Reserved. All rights under this copyright have been assigned to the US
      8 Naval Research Laboratory (NRL). The NRL Copyright Notice and License
      9 Agreement Version 1.1 (January 17, 1995) applies to these portions of the
     10 software.
     11 You should have received a copy of the license with this software. If you
     12 didn't get a copy, you may request one from <license (at) ipv6.nrl.navy.mil>.
     13 
     14 */
     15 
     16 /*
     17  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
     18  * All rights reserved.
     19  *
     20  * Redistribution and use in source and binary forms, with or without
     21  * modification, are permitted provided that the following conditions
     22  * are met:
     23  * 1. Redistributions of source code must retain the above copyright
     24  *    notice, this list of conditions and the following disclaimer.
     25  * 2. Redistributions in binary form must reproduce the above copyright
     26  *    notice, this list of conditions and the following disclaimer in the
     27  *    documentation and/or other materials provided with the distribution.
     28  * 3. Neither the name of the project nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  */
     44 
     45 /*-
     46  * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
     47  * All rights reserved.
     48  *
     49  * This code is derived from software contributed to The NetBSD Foundation
     50  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     51  * Facility, NASA Ames Research Center.
     52  *
     53  * Redistribution and use in source and binary forms, with or without
     54  * modification, are permitted provided that the following conditions
     55  * are met:
     56  * 1. Redistributions of source code must retain the above copyright
     57  *    notice, this list of conditions and the following disclaimer.
     58  * 2. Redistributions in binary form must reproduce the above copyright
     59  *    notice, this list of conditions and the following disclaimer in the
     60  *    documentation and/or other materials provided with the distribution.
     61  * 3. All advertising materials mentioning features or use of this software
     62  *    must display the following acknowledgement:
     63  *	This product includes software developed by the NetBSD
     64  *	Foundation, Inc. and its contributors.
     65  * 4. Neither the name of The NetBSD Foundation nor the names of its
     66  *    contributors may be used to endorse or promote products derived
     67  *    from this software without specific prior written permission.
     68  *
     69  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     70  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     71  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     72  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     73  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     74  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     75  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     76  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     77  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     78  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     79  * POSSIBILITY OF SUCH DAMAGE.
     80  */
     81 
     82 /*
     83  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
     84  *	The Regents of the University of California.  All rights reserved.
     85  *
     86  * Redistribution and use in source and binary forms, with or without
     87  * modification, are permitted provided that the following conditions
     88  * are met:
     89  * 1. Redistributions of source code must retain the above copyright
     90  *    notice, this list of conditions and the following disclaimer.
     91  * 2. Redistributions in binary form must reproduce the above copyright
     92  *    notice, this list of conditions and the following disclaimer in the
     93  *    documentation and/or other materials provided with the distribution.
     94  * 3. All advertising materials mentioning features or use of this software
     95  *    must display the following acknowledgement:
     96  *	This product includes software developed by the University of
     97  *	California, Berkeley and its contributors.
     98  * 4. Neither the name of the University nor the names of its contributors
     99  *    may be used to endorse or promote products derived from this software
    100  *    without specific prior written permission.
    101  *
    102  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    103  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    104  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    105  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    106  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    107  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    108  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    109  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    110  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    111  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    112  * SUCH DAMAGE.
    113  *
    114  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    115  */
    116 
    117 /*
    118  *	TODO list for SYN cache stuff:
    119  *
    120  *	Find room for a "state" field, which is needed to keep a
    121  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    122  *	that this is fairly important for very high-volume web and
    123  *	mail servers, which use a large number of short-lived
    124  *	connections.
    125  */
    126 
    127 #include "opt_inet.h"
    128 #include "opt_ipsec.h"
    129 
    130 #include <sys/param.h>
    131 #include <sys/systm.h>
    132 #include <sys/malloc.h>
    133 #include <sys/mbuf.h>
    134 #include <sys/protosw.h>
    135 #include <sys/socket.h>
    136 #include <sys/socketvar.h>
    137 #include <sys/errno.h>
    138 #include <sys/syslog.h>
    139 #include <sys/pool.h>
    140 #include <sys/domain.h>
    141 
    142 #include <net/if.h>
    143 #include <net/route.h>
    144 #include <net/if_types.h>
    145 
    146 #include <netinet/in.h>
    147 #include <netinet/in_systm.h>
    148 #include <netinet/ip.h>
    149 #include <netinet/in_pcb.h>
    150 #include <netinet/ip_var.h>
    151 
    152 #ifdef INET6
    153 #ifndef INET
    154 #include <netinet/in.h>
    155 #endif
    156 #include <netinet/ip6.h>
    157 #include <netinet6/in6_pcb.h>
    158 #include <netinet6/ip6_var.h>
    159 #include <netinet6/in6_var.h>
    160 #include <netinet/icmp6.h>
    161 #endif
    162 
    163 #include <netinet/tcp.h>
    164 #include <netinet/tcp_fsm.h>
    165 #include <netinet/tcp_seq.h>
    166 #include <netinet/tcp_timer.h>
    167 #include <netinet/tcp_var.h>
    168 #include <netinet/tcpip.h>
    169 #include <netinet/tcp_debug.h>
    170 
    171 #include <machine/stdarg.h>
    172 
    173 #ifdef IPSEC
    174 #include <netinet6/ipsec.h>
    175 #include <netkey/key.h>
    176 #include <netkey/key_debug.h>
    177 #endif /*IPSEC*/
    178 #ifdef INET6
    179 #include "faith.h"
    180 #endif
    181 
    182 int	tcprexmtthresh = 3;
    183 int	tcp_log_refused;
    184 
    185 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
    186 
    187 /* for modulo comparisons of timestamps */
    188 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    189 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    190 
    191 /*
    192  * Macro to compute ACK transmission behavior.  Delay the ACK unless
    193  * we have already delayed an ACK (must send an ACK every two segments).
    194  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    195  * option is enabled.
    196  */
    197 #define	TCP_SETUP_ACK(tp, th) \
    198 do { \
    199 	if ((tp)->t_flags & TF_DELACK || \
    200 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
    201 		tp->t_flags |= TF_ACKNOW; \
    202 	else \
    203 		TCP_SET_DELACK(tp); \
    204 } while (0)
    205 
    206 int
    207 tcp_reass(tp, th, m, tlen)
    208 	register struct tcpcb *tp;
    209 	register struct tcphdr *th;
    210 	struct mbuf *m;
    211 	int *tlen;
    212 {
    213 	register struct ipqent *p, *q, *nq, *tiqe = NULL;
    214 	struct socket *so = NULL;
    215 	int pkt_flags;
    216 	tcp_seq pkt_seq;
    217 	unsigned pkt_len;
    218 	u_long rcvpartdupbyte = 0;
    219 	u_long rcvoobyte;
    220 
    221 	if (tp->t_inpcb)
    222 		so = tp->t_inpcb->inp_socket;
    223 #ifdef INET6
    224 	else if (tp->t_in6pcb)
    225 		so = tp->t_in6pcb->in6p_socket;
    226 #endif
    227 
    228 	TCP_REASS_LOCK_CHECK(tp);
    229 
    230 	/*
    231 	 * Call with th==0 after become established to
    232 	 * force pre-ESTABLISHED data up to user socket.
    233 	 */
    234 	if (th == 0)
    235 		goto present;
    236 
    237 	rcvoobyte = *tlen;
    238 	/*
    239 	 * Copy these to local variables because the tcpiphdr
    240 	 * gets munged while we are collapsing mbufs.
    241 	 */
    242 	pkt_seq = th->th_seq;
    243 	pkt_len = *tlen;
    244 	pkt_flags = th->th_flags;
    245 	/*
    246 	 * Find a segment which begins after this one does.
    247 	 */
    248 	for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
    249 		nq = q->ipqe_q.le_next;
    250 		/*
    251 		 * If the received segment is just right after this
    252 		 * fragment, merge the two together and then check
    253 		 * for further overlaps.
    254 		 */
    255 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    256 #ifdef TCPREASS_DEBUG
    257 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    258 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    259 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    260 #endif
    261 			pkt_len += q->ipqe_len;
    262 			pkt_flags |= q->ipqe_flags;
    263 			pkt_seq = q->ipqe_seq;
    264 			m_cat(q->ipqe_m, m);
    265 			m = q->ipqe_m;
    266 			goto free_ipqe;
    267 		}
    268 		/*
    269 		 * If the received segment is completely past this
    270 		 * fragment, we need to go the next fragment.
    271 		 */
    272 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    273 			p = q;
    274 			continue;
    275 		}
    276 		/*
    277 		 * If the fragment is past the received segment,
    278 		 * it (or any following) can't be concatenated.
    279 		 */
    280 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
    281 			break;
    282 		/*
    283 		 * We've received all the data in this segment before.
    284 		 * mark it as a duplicate and return.
    285 		 */
    286 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    287 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    288 			tcpstat.tcps_rcvduppack++;
    289 			tcpstat.tcps_rcvdupbyte += pkt_len;
    290 			m_freem(m);
    291 			if (tiqe != NULL)
    292 				pool_put(&ipqent_pool, tiqe);
    293 			return (0);
    294 		}
    295 		/*
    296 		 * Received segment completely overlaps this fragment
    297 		 * so we drop the fragment (this keeps the temporal
    298 		 * ordering of segments correct).
    299 		 */
    300 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    301 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    302 			rcvpartdupbyte += q->ipqe_len;
    303 			m_freem(q->ipqe_m);
    304 			goto free_ipqe;
    305 		}
    306 		/*
    307 		 * RX'ed segment extends past the end of the
    308 		 * fragment.  Drop the overlapping bytes.  Then
    309 		 * merge the fragment and segment then treat as
    310 		 * a longer received packet.
    311 		 */
    312 		if (SEQ_LT(q->ipqe_seq, pkt_seq)
    313 		    && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    314 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    315 #ifdef TCPREASS_DEBUG
    316 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    317 			       tp, overlap,
    318 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    319 #endif
    320 			m_adj(m, overlap);
    321 			rcvpartdupbyte += overlap;
    322 			m_cat(q->ipqe_m, m);
    323 			m = q->ipqe_m;
    324 			pkt_seq = q->ipqe_seq;
    325 			pkt_len += q->ipqe_len - overlap;
    326 			rcvoobyte -= overlap;
    327 			goto free_ipqe;
    328 		}
    329 		/*
    330 		 * RX'ed segment extends past the front of the
    331 		 * fragment.  Drop the overlapping bytes on the
    332 		 * received packet.  The packet will then be
    333 		 * contatentated with this fragment a bit later.
    334 		 */
    335 		if (SEQ_GT(q->ipqe_seq, pkt_seq)
    336 		    && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    337 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    338 #ifdef TCPREASS_DEBUG
    339 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    340 			       tp, overlap,
    341 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    342 #endif
    343 			m_adj(m, -overlap);
    344 			pkt_len -= overlap;
    345 			rcvpartdupbyte += overlap;
    346 			rcvoobyte -= overlap;
    347 		}
    348 		/*
    349 		 * If the received segment immediates precedes this
    350 		 * fragment then tack the fragment onto this segment
    351 		 * and reinsert the data.
    352 		 */
    353 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    354 #ifdef TCPREASS_DEBUG
    355 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    356 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    357 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    358 #endif
    359 			pkt_len += q->ipqe_len;
    360 			pkt_flags |= q->ipqe_flags;
    361 			m_cat(m, q->ipqe_m);
    362 			LIST_REMOVE(q, ipqe_q);
    363 			LIST_REMOVE(q, ipqe_timeq);
    364 			if (tiqe == NULL) {
    365 			    tiqe = q;
    366 			} else {
    367 			    pool_put(&ipqent_pool, q);
    368 			}
    369 			break;
    370 		}
    371 		/*
    372 		 * If the fragment is before the segment, remember it.
    373 		 * When this loop is terminated, p will contain the
    374 		 * pointer to fragment that is right before the received
    375 		 * segment.
    376 		 */
    377 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    378 			p = q;
    379 
    380 		continue;
    381 
    382 		/*
    383 		 * This is a common operation.  It also will allow
    384 		 * to save doing a malloc/free in most instances.
    385 		 */
    386 	  free_ipqe:
    387 		LIST_REMOVE(q, ipqe_q);
    388 		LIST_REMOVE(q, ipqe_timeq);
    389 		if (tiqe == NULL) {
    390 		    tiqe = q;
    391 		} else {
    392 		    pool_put(&ipqent_pool, q);
    393 		}
    394 	}
    395 
    396 	/*
    397 	 * Allocate a new queue entry since the received segment did not
    398 	 * collapse onto any other out-of-order block; thus we are allocating
    399 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    400 	 * we would be reusing it.
    401 	 * XXX If we can't, just drop the packet.  XXX
    402 	 */
    403 	if (tiqe == NULL) {
    404 		tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
    405 		if (tiqe == NULL) {
    406 			tcpstat.tcps_rcvmemdrop++;
    407 			m_freem(m);
    408 			return (0);
    409 		}
    410 	}
    411 
    412 	/*
    413 	 * Update the counters.
    414 	 */
    415 	tcpstat.tcps_rcvoopack++;
    416 	tcpstat.tcps_rcvoobyte += rcvoobyte;
    417 	if (rcvpartdupbyte) {
    418 	    tcpstat.tcps_rcvpartduppack++;
    419 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
    420 	}
    421 
    422 	/*
    423 	 * Insert the new fragment queue entry into both queues.
    424 	 */
    425 	tiqe->ipqe_m = m;
    426 	tiqe->ipqe_seq = pkt_seq;
    427 	tiqe->ipqe_len = pkt_len;
    428 	tiqe->ipqe_flags = pkt_flags;
    429 	if (p == NULL) {
    430 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    431 #ifdef TCPREASS_DEBUG
    432 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    433 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    434 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    435 #endif
    436 	} else {
    437 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
    438 #ifdef TCPREASS_DEBUG
    439 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    440 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    441 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    442 #endif
    443 	}
    444 
    445 	LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    446 
    447 present:
    448 	/*
    449 	 * Present data to user, advancing rcv_nxt through
    450 	 * completed sequence space.
    451 	 */
    452 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    453 		return (0);
    454 	q = tp->segq.lh_first;
    455 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    456 		return (0);
    457 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    458 		return (0);
    459 
    460 	tp->rcv_nxt += q->ipqe_len;
    461 	pkt_flags = q->ipqe_flags & TH_FIN;
    462 
    463 	LIST_REMOVE(q, ipqe_q);
    464 	LIST_REMOVE(q, ipqe_timeq);
    465 	if (so->so_state & SS_CANTRCVMORE)
    466 		m_freem(q->ipqe_m);
    467 	else
    468 		sbappend(&so->so_rcv, q->ipqe_m);
    469 	pool_put(&ipqent_pool, q);
    470 	sorwakeup(so);
    471 	return (pkt_flags);
    472 }
    473 
    474 #if defined(INET6) && !defined(TCP6)
    475 int
    476 tcp6_input(mp, offp, proto)
    477 	struct mbuf **mp;
    478 	int *offp, proto;
    479 {
    480 	struct mbuf *m = *mp;
    481 
    482 #if defined(NFAITH) && 0 < NFAITH
    483 	if (m->m_pkthdr.rcvif) {
    484 		if (m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
    485 			/* XXX send icmp6 host/port unreach? */
    486 			m_freem(m);
    487 			return IPPROTO_DONE;
    488 		}
    489 	}
    490 #endif
    491 
    492 	/*
    493 	 * draft-itojun-ipv6-tcp-to-anycast
    494 	 * better place to put this in?
    495 	 */
    496 	if (m->m_flags & M_ANYCAST6) {
    497 		if (m->m_len >= sizeof(struct ip6_hdr)) {
    498 			struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
    499 			icmp6_error(m, ICMP6_DST_UNREACH,
    500 				ICMP6_DST_UNREACH_ADDR,
    501 				(caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
    502 		} else
    503 			m_freem(m);
    504 		return IPPROTO_DONE;
    505 	}
    506 
    507 	tcp_input(m, *offp, proto);
    508 	return IPPROTO_DONE;
    509 }
    510 #endif
    511 
    512 /*
    513  * TCP input routine, follows pages 65-76 of the
    514  * protocol specification dated September, 1981 very closely.
    515  */
    516 void
    517 #if __STDC__
    518 tcp_input(struct mbuf *m, ...)
    519 #else
    520 tcp_input(m, va_alist)
    521 	register struct mbuf *m;
    522 #endif
    523 {
    524 	int proto;
    525 	register struct tcphdr *th;
    526 	struct ip *ip;
    527 	register struct inpcb *inp;
    528 #ifdef INET6
    529 	struct ip6_hdr *ip6;
    530 	register struct in6pcb *in6p;
    531 #endif
    532 	caddr_t optp = NULL;
    533 	int optlen = 0;
    534 	int len, tlen, toff, hdroptlen = 0;
    535 	register struct tcpcb *tp = 0;
    536 	register int tiflags;
    537 	struct socket *so = NULL;
    538 	int todrop, acked, ourfinisacked, needoutput = 0;
    539 	short ostate = 0;
    540 	int iss = 0;
    541 	u_long tiwin;
    542 	struct tcp_opt_info opti;
    543 	int off, iphlen;
    544 	va_list ap;
    545 	int af;		/* af on the wire */
    546 	struct mbuf *tcp_saveti = NULL;
    547 
    548 	va_start(ap, m);
    549 	toff = va_arg(ap, int);
    550 	proto = va_arg(ap, int);
    551 	va_end(ap);
    552 
    553 	tcpstat.tcps_rcvtotal++;
    554 
    555 	bzero(&opti, sizeof(opti));
    556 	opti.ts_present = 0;
    557 	opti.maxseg = 0;
    558 
    559 	/*
    560 	 * Get IP and TCP header together in first mbuf.
    561 	 * Note: IP leaves IP header in first mbuf.
    562 	 */
    563 	ip = mtod(m, struct ip *);
    564 #ifdef INET6
    565 	ip6 = NULL;
    566 #endif
    567 	switch (ip->ip_v) {
    568 	case 4:
    569 		af = AF_INET;
    570 		iphlen = sizeof(struct ip);
    571 		/* would like to get rid of this... */
    572 		if (toff > sizeof (struct ip)) {
    573 			ip_stripoptions(m, (struct mbuf *)0);
    574 			toff = sizeof(struct ip);
    575 		}
    576 		if (m->m_len < toff + sizeof (struct tcphdr)) {
    577 			if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
    578 				tcpstat.tcps_rcvshort++;
    579 				return;
    580 			}
    581 		}
    582 		ip = mtod(m, struct ip *);
    583 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    584 
    585 		/*
    586 		 * Checksum extended TCP header and data.
    587 		 */
    588 		len = ip->ip_len;
    589 		tlen = len - toff;
    590 	    {
    591 		struct ipovly *ipov;
    592 		ipov = (struct ipovly *)ip;
    593 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    594 		ipov->ih_len = htons(tlen);
    595 	    }
    596 		if (in_cksum(m, len) != 0) {
    597 			tcpstat.tcps_rcvbadsum++;
    598 			goto drop;
    599 		}
    600 		break;
    601 #ifdef INET6
    602 	case 6:
    603 		ip = NULL;
    604 		iphlen = sizeof(struct ip6_hdr);
    605 		af = AF_INET6;
    606 		if (m->m_len < toff + sizeof(struct tcphdr)) {
    607 			m = m_pullup(m, toff + sizeof(struct tcphdr));	/*XXX*/
    608 			if (m == NULL) {
    609 				tcpstat.tcps_rcvshort++;
    610 				return;
    611 			}
    612 		}
    613 		ip6 = mtod(m, struct ip6_hdr *);
    614 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    615 
    616 		/*
    617 		 * Checksum extended TCP header and data.
    618 		 */
    619 		len = m->m_pkthdr.len;
    620 		tlen = len - toff;
    621 		if (in6_cksum(m, IPPROTO_TCP, toff, tlen)) {
    622 			tcpstat.tcps_rcvbadsum++;
    623 			goto drop;
    624 		}
    625 		break;
    626 #endif
    627 	default:
    628 		m_freem(m);
    629 		return;
    630 	}
    631 
    632 	/*
    633 	 * Check that TCP offset makes sense,
    634 	 * pull out TCP options and adjust length.		XXX
    635 	 */
    636 	off = th->th_off << 2;
    637 	if (off < sizeof (struct tcphdr) || off > tlen) {
    638 		tcpstat.tcps_rcvbadoff++;
    639 		goto drop;
    640 	}
    641 	tlen -= off;
    642 
    643 	/*
    644 	 * tcp_input() has been modified to use tlen to mean the TCP data
    645 	 * length throughout the function.  Other functions can use
    646 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
    647 	 * rja
    648 	 */
    649 
    650 	if (off > sizeof (struct tcphdr)) {
    651 		if (m->m_len < toff + off) {
    652 			if ((m = m_pullup(m, toff + off)) == 0) {
    653 				tcpstat.tcps_rcvshort++;
    654 				return;
    655 			}
    656 			switch (af) {
    657 			case AF_INET:
    658 				ip = mtod(m, struct ip *);
    659 				break;
    660 #ifdef INET6
    661 			case AF_INET6:
    662 				ip6 = mtod(m, struct ip6_hdr *);
    663 				break;
    664 #endif
    665 			}
    666 			th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    667 		}
    668 		optlen = off - sizeof (struct tcphdr);
    669 		optp = mtod(m, caddr_t) + toff + sizeof (struct tcphdr);
    670 		/*
    671 		 * Do quick retrieval of timestamp options ("options
    672 		 * prediction?").  If timestamp is the only option and it's
    673 		 * formatted as recommended in RFC 1323 appendix A, we
    674 		 * quickly get the values now and not bother calling
    675 		 * tcp_dooptions(), etc.
    676 		 */
    677 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
    678 		     (optlen > TCPOLEN_TSTAMP_APPA &&
    679 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
    680 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
    681 		     (th->th_flags & TH_SYN) == 0) {
    682 			opti.ts_present = 1;
    683 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
    684 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
    685 			optp = NULL;	/* we've parsed the options */
    686 		}
    687 	}
    688 	tiflags = th->th_flags;
    689 
    690 	/*
    691 	 * Convert TCP protocol specific fields to host format.
    692 	 */
    693 	NTOHL(th->th_seq);
    694 	NTOHL(th->th_ack);
    695 	NTOHS(th->th_win);
    696 	NTOHS(th->th_urp);
    697 
    698 	/*
    699 	 * Locate pcb for segment.
    700 	 */
    701 findpcb:
    702 	inp = NULL;
    703 #ifdef INET6
    704 	in6p = NULL;
    705 #endif
    706 	switch (af) {
    707 	case AF_INET:
    708 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
    709 		    ip->ip_dst, th->th_dport);
    710 		if (inp == 0) {
    711 			++tcpstat.tcps_pcbhashmiss;
    712 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
    713 		}
    714 #if defined(INET6) && !defined(TCP6)
    715 		if (inp == 0) {
    716 			struct in6_addr s, d;
    717 
    718 			/* mapped addr case */
    719 			bzero(&s, sizeof(s));
    720 			s.s6_addr16[5] = htons(0xffff);
    721 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
    722 			bzero(&d, sizeof(d));
    723 			d.s6_addr16[5] = htons(0xffff);
    724 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
    725 			in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
    726 				&d, th->th_dport, 0);
    727 			if (in6p == 0) {
    728 				++tcpstat.tcps_pcbhashmiss;
    729 				in6p = in6_pcblookup_bind(&tcb6, &d,
    730 					th->th_dport, 0);
    731 			}
    732 		}
    733 #endif
    734 #ifndef INET6
    735 		if (inp == 0)
    736 #else
    737 		if (inp == 0 && in6p == 0)
    738 #endif
    739 		{
    740 			++tcpstat.tcps_noport;
    741 			if (tcp_log_refused && (tiflags & TH_SYN)) {
    742 #ifndef INET6
    743 				char src[4*sizeof "123"];
    744 				char dst[4*sizeof "123"];
    745 #else
    746 				char src[INET6_ADDRSTRLEN];
    747 				char dst[INET6_ADDRSTRLEN];
    748 #endif
    749 				if (ip) {
    750 					strcpy(src, inet_ntoa(ip->ip_src));
    751 					strcpy(dst, inet_ntoa(ip->ip_dst));
    752 				}
    753 #ifdef INET6
    754 				else if (ip6) {
    755 					strcpy(src, ip6_sprintf(&ip6->ip6_src));
    756 					strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
    757 				}
    758 #endif
    759 				else {
    760 					strcpy(src, "(unknown)");
    761 					strcpy(dst, "(unknown)");
    762 				}
    763 				log(LOG_INFO,
    764 				    "Connection attempt to TCP %s:%d from %s:%d\n",
    765 				    dst, ntohs(th->th_dport),
    766 				    src, ntohs(th->th_sport));
    767 			}
    768 			goto dropwithreset;
    769 		}
    770 #ifdef IPSEC
    771 		if (inp && ipsec4_in_reject(m, inp)) {
    772 			ipsecstat.in_polvio++;
    773 			goto drop;
    774 		}
    775 #ifdef INET6
    776 		else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
    777 			ipsecstat.in_polvio++;
    778 			goto drop;
    779 		}
    780 #endif
    781 #endif /*IPSEC*/
    782 		break;
    783 #if defined(INET6) && !defined(TCP6)
    784 	case AF_INET6:
    785 	    {
    786 		int faith;
    787 
    788 #if defined(NFAITH) && NFAITH > 0
    789 		if (m->m_pkthdr.rcvif
    790 		 && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
    791 			faith = 1;
    792 		} else
    793 			faith = 0;
    794 #else
    795 		faith = 0;
    796 #endif
    797 		in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
    798 			&ip6->ip6_dst, th->th_dport, faith);
    799 		if (in6p == NULL) {
    800 			++tcpstat.tcps_pcbhashmiss;
    801 			in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
    802 				th->th_dport, faith);
    803 		}
    804 		if (in6p == NULL) {
    805 			++tcpstat.tcps_noport;
    806 			goto dropwithreset;
    807 		}
    808 #ifdef IPSEC
    809 		if (ipsec6_in_reject(m, in6p)) {
    810 			ipsec6stat.in_polvio++;
    811 			goto drop;
    812 		}
    813 #endif /*IPSEC*/
    814 		break;
    815 	    }
    816 #endif
    817 	}
    818 
    819 	/*
    820 	 * If the state is CLOSED (i.e., TCB does not exist) then
    821 	 * all data in the incoming segment is discarded.
    822 	 * If the TCB exists but is in CLOSED state, it is embryonic,
    823 	 * but should either do a listen or a connect soon.
    824 	 */
    825 	tp = NULL;
    826 	so = NULL;
    827 	if (inp) {
    828 		tp = intotcpcb(inp);
    829 		so = inp->inp_socket;
    830 	}
    831 #ifdef INET6
    832 	else if (in6p) {
    833 		tp = in6totcpcb(in6p);
    834 		so = in6p->in6p_socket;
    835 	}
    836 #endif
    837 	if (tp == 0) {
    838 		goto dropwithreset;
    839 	}
    840 	if (tp->t_state == TCPS_CLOSED)
    841 		goto drop;
    842 
    843 	/* Unscale the window into a 32-bit value. */
    844 	if ((tiflags & TH_SYN) == 0)
    845 		tiwin = th->th_win << tp->snd_scale;
    846 	else
    847 		tiwin = th->th_win;
    848 
    849 #ifdef INET6
    850 	/* save packet options if user wanted */
    851 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
    852 		if (in6p->in6p_options) {
    853 			m_freem(in6p->in6p_options);
    854 			in6p->in6p_options = 0;
    855 		}
    856 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
    857 	}
    858 #endif
    859 
    860 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
    861 		union syn_cache_sa src;
    862 		union syn_cache_sa dst;
    863 
    864 		bzero(&src, sizeof(src));
    865 		bzero(&dst, sizeof(dst));
    866 		switch (af) {
    867 		case AF_INET:
    868 			src.sin.sin_len = sizeof(struct sockaddr_in);
    869 			src.sin.sin_family = AF_INET;
    870 			src.sin.sin_addr = ip->ip_src;
    871 			src.sin.sin_port = th->th_sport;
    872 
    873 			dst.sin.sin_len = sizeof(struct sockaddr_in);
    874 			dst.sin.sin_family = AF_INET;
    875 			dst.sin.sin_addr = ip->ip_dst;
    876 			dst.sin.sin_port = th->th_dport;
    877 			break;
    878 #ifdef INET6
    879 		case AF_INET6:
    880 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
    881 			src.sin6.sin6_family = AF_INET6;
    882 			src.sin6.sin6_addr = ip6->ip6_src;
    883 			src.sin6.sin6_port = th->th_sport;
    884 
    885 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
    886 			dst.sin6.sin6_family = AF_INET6;
    887 			dst.sin6.sin6_addr = ip6->ip6_dst;
    888 			dst.sin6.sin6_port = th->th_dport;
    889 			break;
    890 #endif /* INET6 */
    891 		default:
    892 			goto badsyn;	/*sanity*/
    893 		}
    894 
    895 		if (so->so_options & SO_DEBUG) {
    896 			ostate = tp->t_state;
    897 			tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
    898 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
    899 				m_freem(tcp_saveti);
    900 				tcp_saveti = NULL;
    901 			} else {
    902 				tcp_saveti->m_len += sizeof(struct tcphdr);
    903 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
    904 					sizeof(struct tcphdr));
    905 			}
    906 			if (tcp_saveti) {
    907 				/*
    908 				 * need to recover version # field, which was
    909 				 * overwritten on ip_cksum computation.
    910 				 */
    911 				struct ip *sip;
    912 				sip = mtod(tcp_saveti, struct ip *);
    913 				switch (af) {
    914 				case AF_INET:
    915 					sip->ip_v = 4;
    916 					break;
    917 #ifdef INET6
    918 				case AF_INET6:
    919 					sip->ip_v = 6;
    920 					break;
    921 #endif
    922 				}
    923 			}
    924 		}
    925 		if (so->so_options & SO_ACCEPTCONN) {
    926   			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
    927 				if (tiflags & TH_RST) {
    928 					syn_cache_reset(&src.sa, &dst.sa, th);
    929 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
    930 				    (TH_ACK|TH_SYN)) {
    931 					/*
    932 					 * Received a SYN,ACK.  This should
    933 					 * never happen while we are in
    934 					 * LISTEN.  Send an RST.
    935 					 */
    936 					goto badsyn;
    937 				} else if (tiflags & TH_ACK) {
    938 					so = syn_cache_get(&src.sa, &dst.sa,
    939 						th, toff, tlen, so, m);
    940 					if (so == NULL) {
    941 						/*
    942 						 * We don't have a SYN for
    943 						 * this ACK; send an RST.
    944 						 */
    945 						goto badsyn;
    946 					} else if (so ==
    947 					    (struct socket *)(-1)) {
    948 						/*
    949 						 * We were unable to create
    950 						 * the connection.  If the
    951 						 * 3-way handshake was
    952 						 * completed, and RST has
    953 						 * been sent to the peer.
    954 						 * Since the mbuf might be
    955 						 * in use for the reply,
    956 						 * do not free it.
    957 						 */
    958 						m = NULL;
    959 					} else {
    960 						/*
    961 						 * We have created a
    962 						 * full-blown connection.
    963 						 */
    964 						tp = NULL;
    965 						inp = NULL;
    966 #ifdef INET6
    967 						in6p = NULL;
    968 #endif
    969 						switch (so->so_proto->pr_domain->dom_family) {
    970 						case AF_INET:
    971 							inp = sotoinpcb(so);
    972 							tp = intotcpcb(inp);
    973 							break;
    974 #ifdef INET6
    975 						case AF_INET6:
    976 							in6p = sotoin6pcb(so);
    977 							tp = in6totcpcb(in6p);
    978 							break;
    979 #endif
    980 						}
    981 						if (tp == NULL)
    982 							goto badsyn;	/*XXX*/
    983 						tiwin <<= tp->snd_scale;
    984 						goto after_listen;
    985 					}
    986   				} else {
    987 					/*
    988 					 * None of RST, SYN or ACK was set.
    989 					 * This is an invalid packet for a
    990 					 * TCB in LISTEN state.  Send a RST.
    991 					 */
    992 					goto badsyn;
    993 				}
    994   			} else {
    995 				/*
    996 				 * Received a SYN.
    997 				 */
    998 
    999 				/*
   1000 				 * LISTEN socket received a SYN
   1001 				 * from itself?  This can't possibly
   1002 				 * be valid; drop the packet.
   1003 				 */
   1004 				if (th->th_sport == th->th_dport) {
   1005 					int i;
   1006 
   1007 					switch (af) {
   1008 					case AF_INET:
   1009 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1010 						break;
   1011 #ifdef INET6
   1012 					case AF_INET6:
   1013 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1014 						break;
   1015 #endif
   1016 					default:
   1017 						i = 1;
   1018 					}
   1019 					if (i) {
   1020 						tcpstat.tcps_badsyn++;
   1021 						goto drop;
   1022 					}
   1023 				}
   1024 
   1025 				/*
   1026 				 * SYN looks ok; create compressed TCP
   1027 				 * state for it.
   1028 				 */
   1029 				if (so->so_qlen <= so->so_qlimit &&
   1030 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1031 						so, m, optp, optlen, &opti))
   1032 					m = NULL;
   1033 			}
   1034 			goto drop;
   1035 		}
   1036 	}
   1037 
   1038 after_listen:
   1039 #ifdef DIAGNOSTIC
   1040 	/*
   1041 	 * Should not happen now that all embryonic connections
   1042 	 * are handled with compressed state.
   1043 	 */
   1044 	if (tp->t_state == TCPS_LISTEN)
   1045 		panic("tcp_input: TCPS_LISTEN");
   1046 #endif
   1047 
   1048 	/*
   1049 	 * Segment received on connection.
   1050 	 * Reset idle time and keep-alive timer.
   1051 	 */
   1052 	tp->t_idle = 0;
   1053 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1054 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1055 
   1056 	/*
   1057 	 * Process options.
   1058 	 */
   1059 	if (optp)
   1060 		tcp_dooptions(tp, optp, optlen, th, &opti);
   1061 
   1062 	/*
   1063 	 * Header prediction: check for the two common cases
   1064 	 * of a uni-directional data xfer.  If the packet has
   1065 	 * no control flags, is in-sequence, the window didn't
   1066 	 * change and we're not retransmitting, it's a
   1067 	 * candidate.  If the length is zero and the ack moved
   1068 	 * forward, we're the sender side of the xfer.  Just
   1069 	 * free the data acked & wake any higher level process
   1070 	 * that was blocked waiting for space.  If the length
   1071 	 * is non-zero and the ack didn't move, we're the
   1072 	 * receiver side.  If we're getting packets in-order
   1073 	 * (the reassembly queue is empty), add the data to
   1074 	 * the socket buffer and note that we need a delayed ack.
   1075 	 */
   1076 	if (tp->t_state == TCPS_ESTABLISHED &&
   1077 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
   1078 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1079 	    th->th_seq == tp->rcv_nxt &&
   1080 	    tiwin && tiwin == tp->snd_wnd &&
   1081 	    tp->snd_nxt == tp->snd_max) {
   1082 
   1083 		/*
   1084 		 * If last ACK falls within this segment's sequence numbers,
   1085 		 *  record the timestamp.
   1086 		 */
   1087 		if (opti.ts_present &&
   1088 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1089 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
   1090 			tp->ts_recent_age = tcp_now;
   1091 			tp->ts_recent = opti.ts_val;
   1092 		}
   1093 
   1094 		if (tlen == 0) {
   1095 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1096 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1097 			    tp->snd_cwnd >= tp->snd_wnd &&
   1098 			    tp->t_dupacks < tcprexmtthresh) {
   1099 				/*
   1100 				 * this is a pure ack for outstanding data.
   1101 				 */
   1102 				++tcpstat.tcps_predack;
   1103 				if (opti.ts_present && opti.ts_ecr)
   1104 					tcp_xmit_timer(tp,
   1105 					    tcp_now - opti.ts_ecr + 1);
   1106 				else if (tp->t_rtt &&
   1107 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1108 					tcp_xmit_timer(tp, tp->t_rtt);
   1109 				acked = th->th_ack - tp->snd_una;
   1110 				tcpstat.tcps_rcvackpack++;
   1111 				tcpstat.tcps_rcvackbyte += acked;
   1112 				sbdrop(&so->so_snd, acked);
   1113 				/*
   1114 				 * We want snd_recover to track snd_una to
   1115 				 * avoid sequence wraparound problems for
   1116 				 * very large transfers.
   1117 				 */
   1118 				tp->snd_una = tp->snd_recover = th->th_ack;
   1119 				m_freem(m);
   1120 
   1121 				/*
   1122 				 * If all outstanding data are acked, stop
   1123 				 * retransmit timer, otherwise restart timer
   1124 				 * using current (possibly backed-off) value.
   1125 				 * If process is waiting for space,
   1126 				 * wakeup/selwakeup/signal.  If data
   1127 				 * are ready to send, let tcp_output
   1128 				 * decide between more output or persist.
   1129 				 */
   1130 				if (tp->snd_una == tp->snd_max)
   1131 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1132 				else if (TCP_TIMER_ISARMED(tp,
   1133 				    TCPT_PERSIST) == 0)
   1134 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1135 					    tp->t_rxtcur);
   1136 
   1137 				sowwakeup(so);
   1138 				if (so->so_snd.sb_cc)
   1139 					(void) tcp_output(tp);
   1140 				if (tcp_saveti)
   1141 					m_freem(tcp_saveti);
   1142 				return;
   1143 			}
   1144 		} else if (th->th_ack == tp->snd_una &&
   1145 		    tp->segq.lh_first == NULL &&
   1146 		    tlen <= sbspace(&so->so_rcv)) {
   1147 			/*
   1148 			 * this is a pure, in-sequence data packet
   1149 			 * with nothing on the reassembly queue and
   1150 			 * we have enough buffer space to take it.
   1151 			 */
   1152 			++tcpstat.tcps_preddat;
   1153 			tp->rcv_nxt += tlen;
   1154 			tcpstat.tcps_rcvpack++;
   1155 			tcpstat.tcps_rcvbyte += tlen;
   1156 			/*
   1157 			 * Drop TCP, IP headers and TCP options then add data
   1158 			 * to socket buffer.
   1159 			 */
   1160 			m_adj(m, toff + off);
   1161 			sbappend(&so->so_rcv, m);
   1162 			sorwakeup(so);
   1163 			TCP_SETUP_ACK(tp, th);
   1164 			if (tp->t_flags & TF_ACKNOW)
   1165 				(void) tcp_output(tp);
   1166 			if (tcp_saveti)
   1167 				m_freem(tcp_saveti);
   1168 			return;
   1169 		}
   1170 	}
   1171 
   1172 	/*
   1173 	 * Compute mbuf offset to TCP data segment.
   1174 	 */
   1175 	hdroptlen = toff + off;
   1176 
   1177 	/*
   1178 	 * Calculate amount of space in receive window,
   1179 	 * and then do TCP input processing.
   1180 	 * Receive window is amount of space in rcv queue,
   1181 	 * but not less than advertised window.
   1182 	 */
   1183 	{ int win;
   1184 
   1185 	win = sbspace(&so->so_rcv);
   1186 	if (win < 0)
   1187 		win = 0;
   1188 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   1189 	}
   1190 
   1191 	switch (tp->t_state) {
   1192 
   1193 	/*
   1194 	 * If the state is SYN_SENT:
   1195 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   1196 	 *	if seg contains a RST, then drop the connection.
   1197 	 *	if seg does not contain SYN, then drop it.
   1198 	 * Otherwise this is an acceptable SYN segment
   1199 	 *	initialize tp->rcv_nxt and tp->irs
   1200 	 *	if seg contains ack then advance tp->snd_una
   1201 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   1202 	 *	arrange for segment to be acked (eventually)
   1203 	 *	continue processing rest of data/controls, beginning with URG
   1204 	 */
   1205 	case TCPS_SYN_SENT:
   1206 		if ((tiflags & TH_ACK) &&
   1207 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1208 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1209 			goto dropwithreset;
   1210 		if (tiflags & TH_RST) {
   1211 			if (tiflags & TH_ACK)
   1212 				tp = tcp_drop(tp, ECONNREFUSED);
   1213 			goto drop;
   1214 		}
   1215 		if ((tiflags & TH_SYN) == 0)
   1216 			goto drop;
   1217 		if (tiflags & TH_ACK) {
   1218 			tp->snd_una = tp->snd_recover = th->th_ack;
   1219 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1220 				tp->snd_nxt = tp->snd_una;
   1221 		}
   1222 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1223 		tp->irs = th->th_seq;
   1224 		tcp_rcvseqinit(tp);
   1225 		tp->t_flags |= TF_ACKNOW;
   1226 		tcp_mss_from_peer(tp, opti.maxseg);
   1227 
   1228 		/*
   1229 		 * Initialize the initial congestion window.  If we
   1230 		 * had to retransmit the SYN, we must initialize cwnd
   1231 		 * to 1 segment (i.e. the Loss Window).
   1232 		 */
   1233 		if (tp->t_flags & TF_SYN_REXMT)
   1234 			tp->snd_cwnd = tp->t_peermss;
   1235 		else
   1236 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
   1237 			    tp->t_peermss);
   1238 
   1239 		tcp_rmx_rtt(tp);
   1240 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
   1241 			tcpstat.tcps_connects++;
   1242 			soisconnected(so);
   1243 			tcp_established(tp);
   1244 			/* Do window scaling on this connection? */
   1245 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1246 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1247 				tp->snd_scale = tp->requested_s_scale;
   1248 				tp->rcv_scale = tp->request_r_scale;
   1249 			}
   1250 			TCP_REASS_LOCK(tp);
   1251 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1252 			TCP_REASS_UNLOCK(tp);
   1253 			/*
   1254 			 * if we didn't have to retransmit the SYN,
   1255 			 * use its rtt as our initial srtt & rtt var.
   1256 			 */
   1257 			if (tp->t_rtt)
   1258 				tcp_xmit_timer(tp, tp->t_rtt);
   1259 		} else
   1260 			tp->t_state = TCPS_SYN_RECEIVED;
   1261 
   1262 		/*
   1263 		 * Advance th->th_seq to correspond to first data byte.
   1264 		 * If data, trim to stay within window,
   1265 		 * dropping FIN if necessary.
   1266 		 */
   1267 		th->th_seq++;
   1268 		if (tlen > tp->rcv_wnd) {
   1269 			todrop = tlen - tp->rcv_wnd;
   1270 			m_adj(m, -todrop);
   1271 			tlen = tp->rcv_wnd;
   1272 			tiflags &= ~TH_FIN;
   1273 			tcpstat.tcps_rcvpackafterwin++;
   1274 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1275 		}
   1276 		tp->snd_wl1 = th->th_seq - 1;
   1277 		tp->rcv_up = th->th_seq;
   1278 		goto step6;
   1279 
   1280 	/*
   1281 	 * If the state is SYN_RECEIVED:
   1282 	 *	If seg contains an ACK, but not for our SYN, drop the input
   1283 	 *	and generate an RST.  See page 36, rfc793
   1284 	 */
   1285 	case TCPS_SYN_RECEIVED:
   1286 		if ((tiflags & TH_ACK) &&
   1287 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1288 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1289 			goto dropwithreset;
   1290 		break;
   1291 	}
   1292 
   1293 	/*
   1294 	 * States other than LISTEN or SYN_SENT.
   1295 	 * First check timestamp, if present.
   1296 	 * Then check that at least some bytes of segment are within
   1297 	 * receive window.  If segment begins before rcv_nxt,
   1298 	 * drop leading data (and SYN); if nothing left, just ack.
   1299 	 *
   1300 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   1301 	 * and it's less than ts_recent, drop it.
   1302 	 */
   1303 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   1304 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   1305 
   1306 		/* Check to see if ts_recent is over 24 days old.  */
   1307 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
   1308 			/*
   1309 			 * Invalidate ts_recent.  If this segment updates
   1310 			 * ts_recent, the age will be reset later and ts_recent
   1311 			 * will get a valid value.  If it does not, setting
   1312 			 * ts_recent to zero will at least satisfy the
   1313 			 * requirement that zero be placed in the timestamp
   1314 			 * echo reply when ts_recent isn't valid.  The
   1315 			 * age isn't reset until we get a valid ts_recent
   1316 			 * because we don't want out-of-order segments to be
   1317 			 * dropped when ts_recent is old.
   1318 			 */
   1319 			tp->ts_recent = 0;
   1320 		} else {
   1321 			tcpstat.tcps_rcvduppack++;
   1322 			tcpstat.tcps_rcvdupbyte += tlen;
   1323 			tcpstat.tcps_pawsdrop++;
   1324 			goto dropafterack;
   1325 		}
   1326 	}
   1327 
   1328 	todrop = tp->rcv_nxt - th->th_seq;
   1329 	if (todrop > 0) {
   1330 		if (tiflags & TH_SYN) {
   1331 			tiflags &= ~TH_SYN;
   1332 			th->th_seq++;
   1333 			if (th->th_urp > 1)
   1334 				th->th_urp--;
   1335 			else {
   1336 				tiflags &= ~TH_URG;
   1337 				th->th_urp = 0;
   1338 			}
   1339 			todrop--;
   1340 		}
   1341 		if (todrop > tlen ||
   1342 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1343 			/*
   1344 			 * Any valid FIN must be to the left of the window.
   1345 			 * At this point the FIN must be a duplicate or
   1346 			 * out of sequence; drop it.
   1347 			 */
   1348 			tiflags &= ~TH_FIN;
   1349 			/*
   1350 			 * Send an ACK to resynchronize and drop any data.
   1351 			 * But keep on processing for RST or ACK.
   1352 			 */
   1353 			tp->t_flags |= TF_ACKNOW;
   1354 			todrop = tlen;
   1355 			tcpstat.tcps_rcvdupbyte += todrop;
   1356 			tcpstat.tcps_rcvduppack++;
   1357 		} else {
   1358 			tcpstat.tcps_rcvpartduppack++;
   1359 			tcpstat.tcps_rcvpartdupbyte += todrop;
   1360 		}
   1361 		hdroptlen += todrop;	/*drop from head afterwards*/
   1362 		th->th_seq += todrop;
   1363 		tlen -= todrop;
   1364 		if (th->th_urp > todrop)
   1365 			th->th_urp -= todrop;
   1366 		else {
   1367 			tiflags &= ~TH_URG;
   1368 			th->th_urp = 0;
   1369 		}
   1370 	}
   1371 
   1372 	/*
   1373 	 * If new data are received on a connection after the
   1374 	 * user processes are gone, then RST the other end.
   1375 	 */
   1376 	if ((so->so_state & SS_NOFDREF) &&
   1377 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   1378 		tp = tcp_close(tp);
   1379 		tcpstat.tcps_rcvafterclose++;
   1380 		goto dropwithreset;
   1381 	}
   1382 
   1383 	/*
   1384 	 * If segment ends after window, drop trailing data
   1385 	 * (and PUSH and FIN); if nothing left, just ACK.
   1386 	 */
   1387 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   1388 	if (todrop > 0) {
   1389 		tcpstat.tcps_rcvpackafterwin++;
   1390 		if (todrop >= tlen) {
   1391 			tcpstat.tcps_rcvbyteafterwin += tlen;
   1392 			/*
   1393 			 * If a new connection request is received
   1394 			 * while in TIME_WAIT, drop the old connection
   1395 			 * and start over if the sequence numbers
   1396 			 * are above the previous ones.
   1397 			 */
   1398 			if (tiflags & TH_SYN &&
   1399 			    tp->t_state == TCPS_TIME_WAIT &&
   1400 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   1401 				iss = tcp_new_iss(tp, sizeof(struct tcpcb),
   1402 						  tp->snd_nxt);
   1403 				tp = tcp_close(tp);
   1404 				goto findpcb;
   1405 			}
   1406 			/*
   1407 			 * If window is closed can only take segments at
   1408 			 * window edge, and have to drop data and PUSH from
   1409 			 * incoming segments.  Continue processing, but
   1410 			 * remember to ack.  Otherwise, drop segment
   1411 			 * and ack.
   1412 			 */
   1413 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   1414 				tp->t_flags |= TF_ACKNOW;
   1415 				tcpstat.tcps_rcvwinprobe++;
   1416 			} else
   1417 				goto dropafterack;
   1418 		} else
   1419 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1420 		m_adj(m, -todrop);
   1421 		tlen -= todrop;
   1422 		tiflags &= ~(TH_PUSH|TH_FIN);
   1423 	}
   1424 
   1425 	/*
   1426 	 * If last ACK falls within this segment's sequence numbers,
   1427 	 * and the timestamp is newer, record it.
   1428 	 */
   1429 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
   1430 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1431 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
   1432 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   1433 		tp->ts_recent_age = tcp_now;
   1434 		tp->ts_recent = opti.ts_val;
   1435 	}
   1436 
   1437 	/*
   1438 	 * If the RST bit is set examine the state:
   1439 	 *    SYN_RECEIVED STATE:
   1440 	 *	If passive open, return to LISTEN state.
   1441 	 *	If active open, inform user that connection was refused.
   1442 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   1443 	 *	Inform user that connection was reset, and close tcb.
   1444 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   1445 	 *	Close the tcb.
   1446 	 */
   1447 	if (tiflags&TH_RST) switch (tp->t_state) {
   1448 
   1449 	case TCPS_SYN_RECEIVED:
   1450 		so->so_error = ECONNREFUSED;
   1451 		goto close;
   1452 
   1453 	case TCPS_ESTABLISHED:
   1454 	case TCPS_FIN_WAIT_1:
   1455 	case TCPS_FIN_WAIT_2:
   1456 	case TCPS_CLOSE_WAIT:
   1457 		so->so_error = ECONNRESET;
   1458 	close:
   1459 		tp->t_state = TCPS_CLOSED;
   1460 		tcpstat.tcps_drops++;
   1461 		tp = tcp_close(tp);
   1462 		goto drop;
   1463 
   1464 	case TCPS_CLOSING:
   1465 	case TCPS_LAST_ACK:
   1466 	case TCPS_TIME_WAIT:
   1467 		tp = tcp_close(tp);
   1468 		goto drop;
   1469 	}
   1470 
   1471 	/*
   1472 	 * If a SYN is in the window, then this is an
   1473 	 * error and we send an RST and drop the connection.
   1474 	 */
   1475 	if (tiflags & TH_SYN) {
   1476 		tp = tcp_drop(tp, ECONNRESET);
   1477 		goto dropwithreset;
   1478 	}
   1479 
   1480 	/*
   1481 	 * If the ACK bit is off we drop the segment and return.
   1482 	 */
   1483 	if ((tiflags & TH_ACK) == 0) {
   1484 		if (tp->t_flags & TF_ACKNOW)
   1485 			goto dropafterack;
   1486 		else
   1487 			goto drop;
   1488 	}
   1489 
   1490 	/*
   1491 	 * Ack processing.
   1492 	 */
   1493 	switch (tp->t_state) {
   1494 
   1495 	/*
   1496 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   1497 	 * ESTABLISHED state and continue processing, otherwise
   1498 	 * send an RST.
   1499 	 */
   1500 	case TCPS_SYN_RECEIVED:
   1501 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   1502 		    SEQ_GT(th->th_ack, tp->snd_max))
   1503 			goto dropwithreset;
   1504 		tcpstat.tcps_connects++;
   1505 		soisconnected(so);
   1506 		tcp_established(tp);
   1507 		/* Do window scaling? */
   1508 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1509 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1510 			tp->snd_scale = tp->requested_s_scale;
   1511 			tp->rcv_scale = tp->request_r_scale;
   1512 		}
   1513 		TCP_REASS_LOCK(tp);
   1514 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1515 		TCP_REASS_UNLOCK(tp);
   1516 		tp->snd_wl1 = th->th_seq - 1;
   1517 		/* fall into ... */
   1518 
   1519 	/*
   1520 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   1521 	 * ACKs.  If the ack is in the range
   1522 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   1523 	 * then advance tp->snd_una to th->th_ack and drop
   1524 	 * data from the retransmission queue.  If this ACK reflects
   1525 	 * more up to date window information we update our window information.
   1526 	 */
   1527 	case TCPS_ESTABLISHED:
   1528 	case TCPS_FIN_WAIT_1:
   1529 	case TCPS_FIN_WAIT_2:
   1530 	case TCPS_CLOSE_WAIT:
   1531 	case TCPS_CLOSING:
   1532 	case TCPS_LAST_ACK:
   1533 	case TCPS_TIME_WAIT:
   1534 
   1535 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   1536 			if (tlen == 0 && tiwin == tp->snd_wnd) {
   1537 				tcpstat.tcps_rcvdupack++;
   1538 				/*
   1539 				 * If we have outstanding data (other than
   1540 				 * a window probe), this is a completely
   1541 				 * duplicate ack (ie, window info didn't
   1542 				 * change), the ack is the biggest we've
   1543 				 * seen and we've seen exactly our rexmt
   1544 				 * threshhold of them, assume a packet
   1545 				 * has been dropped and retransmit it.
   1546 				 * Kludge snd_nxt & the congestion
   1547 				 * window so we send only this one
   1548 				 * packet.
   1549 				 *
   1550 				 * We know we're losing at the current
   1551 				 * window size so do congestion avoidance
   1552 				 * (set ssthresh to half the current window
   1553 				 * and pull our congestion window back to
   1554 				 * the new ssthresh).
   1555 				 *
   1556 				 * Dup acks mean that packets have left the
   1557 				 * network (they're now cached at the receiver)
   1558 				 * so bump cwnd by the amount in the receiver
   1559 				 * to keep a constant cwnd packets in the
   1560 				 * network.
   1561 				 */
   1562 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   1563 				    th->th_ack != tp->snd_una)
   1564 					tp->t_dupacks = 0;
   1565 				else if (++tp->t_dupacks == tcprexmtthresh) {
   1566 					tcp_seq onxt = tp->snd_nxt;
   1567 					u_int win =
   1568 					    min(tp->snd_wnd, tp->snd_cwnd) /
   1569 					    2 /	tp->t_segsz;
   1570 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
   1571 					    tp->snd_recover)) {
   1572 						/*
   1573 						 * False fast retransmit after
   1574 						 * timeout.  Do not cut window.
   1575 						 */
   1576 						tp->snd_cwnd += tp->t_segsz;
   1577 						tp->t_dupacks = 0;
   1578 						(void) tcp_output(tp);
   1579 						goto drop;
   1580 					}
   1581 
   1582 					if (win < 2)
   1583 						win = 2;
   1584 					tp->snd_ssthresh = win * tp->t_segsz;
   1585 					tp->snd_recover = tp->snd_max;
   1586 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1587 					tp->t_rtt = 0;
   1588 					tp->snd_nxt = th->th_ack;
   1589 					tp->snd_cwnd = tp->t_segsz;
   1590 					(void) tcp_output(tp);
   1591 					tp->snd_cwnd = tp->snd_ssthresh +
   1592 					       tp->t_segsz * tp->t_dupacks;
   1593 					if (SEQ_GT(onxt, tp->snd_nxt))
   1594 						tp->snd_nxt = onxt;
   1595 					goto drop;
   1596 				} else if (tp->t_dupacks > tcprexmtthresh) {
   1597 					tp->snd_cwnd += tp->t_segsz;
   1598 					(void) tcp_output(tp);
   1599 					goto drop;
   1600 				}
   1601 			} else
   1602 				tp->t_dupacks = 0;
   1603 			break;
   1604 		}
   1605 		/*
   1606 		 * If the congestion window was inflated to account
   1607 		 * for the other side's cached packets, retract it.
   1608 		 */
   1609 		if (tcp_do_newreno == 0) {
   1610 			if (tp->t_dupacks >= tcprexmtthresh &&
   1611 			    tp->snd_cwnd > tp->snd_ssthresh)
   1612 				tp->snd_cwnd = tp->snd_ssthresh;
   1613 			tp->t_dupacks = 0;
   1614 		} else if (tp->t_dupacks >= tcprexmtthresh &&
   1615 			   tcp_newreno(tp, th) == 0) {
   1616 			tp->snd_cwnd = tp->snd_ssthresh;
   1617 			/*
   1618 			 * Window inflation should have left us with approx.
   1619 			 * snd_ssthresh outstanding data.  But in case we
   1620 			 * would be inclined to send a burst, better to do
   1621 			 * it via the slow start mechanism.
   1622 			 */
   1623 			if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
   1624 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
   1625 				    + tp->t_segsz;
   1626 			tp->t_dupacks = 0;
   1627 		}
   1628 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   1629 			tcpstat.tcps_rcvacktoomuch++;
   1630 			goto dropafterack;
   1631 		}
   1632 		acked = th->th_ack - tp->snd_una;
   1633 		tcpstat.tcps_rcvackpack++;
   1634 		tcpstat.tcps_rcvackbyte += acked;
   1635 
   1636 		/*
   1637 		 * If we have a timestamp reply, update smoothed
   1638 		 * round trip time.  If no timestamp is present but
   1639 		 * transmit timer is running and timed sequence
   1640 		 * number was acked, update smoothed round trip time.
   1641 		 * Since we now have an rtt measurement, cancel the
   1642 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   1643 		 * Recompute the initial retransmit timer.
   1644 		 */
   1645 		if (opti.ts_present && opti.ts_ecr)
   1646 			tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
   1647 		else if (tp->t_rtt && SEQ_GT(th->th_ack, tp->t_rtseq))
   1648 			tcp_xmit_timer(tp,tp->t_rtt);
   1649 
   1650 		/*
   1651 		 * If all outstanding data is acked, stop retransmit
   1652 		 * timer and remember to restart (more output or persist).
   1653 		 * If there is more data to be acked, restart retransmit
   1654 		 * timer, using current (possibly backed-off) value.
   1655 		 */
   1656 		if (th->th_ack == tp->snd_max) {
   1657 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1658 			needoutput = 1;
   1659 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   1660 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   1661 		/*
   1662 		 * When new data is acked, open the congestion window.
   1663 		 * If the window gives us less than ssthresh packets
   1664 		 * in flight, open exponentially (segsz per packet).
   1665 		 * Otherwise open linearly: segsz per window
   1666 		 * (segsz^2 / cwnd per packet), plus a constant
   1667 		 * fraction of a packet (segsz/8) to help larger windows
   1668 		 * open quickly enough.
   1669 		 */
   1670 		{
   1671 		register u_int cw = tp->snd_cwnd;
   1672 		register u_int incr = tp->t_segsz;
   1673 
   1674 		if (cw > tp->snd_ssthresh)
   1675 			incr = incr * incr / cw;
   1676 		if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
   1677 			tp->snd_cwnd = min(cw + incr,
   1678 			    TCP_MAXWIN << tp->snd_scale);
   1679 		}
   1680 		if (acked > so->so_snd.sb_cc) {
   1681 			tp->snd_wnd -= so->so_snd.sb_cc;
   1682 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   1683 			ourfinisacked = 1;
   1684 		} else {
   1685 			sbdrop(&so->so_snd, acked);
   1686 			tp->snd_wnd -= acked;
   1687 			ourfinisacked = 0;
   1688 		}
   1689 		sowwakeup(so);
   1690 		/*
   1691 		 * We want snd_recover to track snd_una to
   1692 		 * avoid sequence wraparound problems for
   1693 		 * very large transfers.
   1694 		 */
   1695 		tp->snd_una = tp->snd_recover = th->th_ack;
   1696 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1697 			tp->snd_nxt = tp->snd_una;
   1698 
   1699 		switch (tp->t_state) {
   1700 
   1701 		/*
   1702 		 * In FIN_WAIT_1 STATE in addition to the processing
   1703 		 * for the ESTABLISHED state if our FIN is now acknowledged
   1704 		 * then enter FIN_WAIT_2.
   1705 		 */
   1706 		case TCPS_FIN_WAIT_1:
   1707 			if (ourfinisacked) {
   1708 				/*
   1709 				 * If we can't receive any more
   1710 				 * data, then closing user can proceed.
   1711 				 * Starting the timer is contrary to the
   1712 				 * specification, but if we don't get a FIN
   1713 				 * we'll hang forever.
   1714 				 */
   1715 				if (so->so_state & SS_CANTRCVMORE) {
   1716 					soisdisconnected(so);
   1717 					if (tcp_maxidle > 0)
   1718 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   1719 						    tcp_maxidle);
   1720 				}
   1721 				tp->t_state = TCPS_FIN_WAIT_2;
   1722 			}
   1723 			break;
   1724 
   1725 	 	/*
   1726 		 * In CLOSING STATE in addition to the processing for
   1727 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   1728 		 * then enter the TIME-WAIT state, otherwise ignore
   1729 		 * the segment.
   1730 		 */
   1731 		case TCPS_CLOSING:
   1732 			if (ourfinisacked) {
   1733 				tp->t_state = TCPS_TIME_WAIT;
   1734 				tcp_canceltimers(tp);
   1735 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   1736 				soisdisconnected(so);
   1737 			}
   1738 			break;
   1739 
   1740 		/*
   1741 		 * In LAST_ACK, we may still be waiting for data to drain
   1742 		 * and/or to be acked, as well as for the ack of our FIN.
   1743 		 * If our FIN is now acknowledged, delete the TCB,
   1744 		 * enter the closed state and return.
   1745 		 */
   1746 		case TCPS_LAST_ACK:
   1747 			if (ourfinisacked) {
   1748 				tp = tcp_close(tp);
   1749 				goto drop;
   1750 			}
   1751 			break;
   1752 
   1753 		/*
   1754 		 * In TIME_WAIT state the only thing that should arrive
   1755 		 * is a retransmission of the remote FIN.  Acknowledge
   1756 		 * it and restart the finack timer.
   1757 		 */
   1758 		case TCPS_TIME_WAIT:
   1759 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   1760 			goto dropafterack;
   1761 		}
   1762 	}
   1763 
   1764 step6:
   1765 	/*
   1766 	 * Update window information.
   1767 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   1768 	 */
   1769 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   1770 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
   1771 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
   1772 		/* keep track of pure window updates */
   1773 		if (tlen == 0 &&
   1774 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   1775 			tcpstat.tcps_rcvwinupd++;
   1776 		tp->snd_wnd = tiwin;
   1777 		tp->snd_wl1 = th->th_seq;
   1778 		tp->snd_wl2 = th->th_ack;
   1779 		if (tp->snd_wnd > tp->max_sndwnd)
   1780 			tp->max_sndwnd = tp->snd_wnd;
   1781 		needoutput = 1;
   1782 	}
   1783 
   1784 	/*
   1785 	 * Process segments with URG.
   1786 	 */
   1787 	if ((tiflags & TH_URG) && th->th_urp &&
   1788 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1789 		/*
   1790 		 * This is a kludge, but if we receive and accept
   1791 		 * random urgent pointers, we'll crash in
   1792 		 * soreceive.  It's hard to imagine someone
   1793 		 * actually wanting to send this much urgent data.
   1794 		 */
   1795 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   1796 			th->th_urp = 0;			/* XXX */
   1797 			tiflags &= ~TH_URG;		/* XXX */
   1798 			goto dodata;			/* XXX */
   1799 		}
   1800 		/*
   1801 		 * If this segment advances the known urgent pointer,
   1802 		 * then mark the data stream.  This should not happen
   1803 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   1804 		 * a FIN has been received from the remote side.
   1805 		 * In these states we ignore the URG.
   1806 		 *
   1807 		 * According to RFC961 (Assigned Protocols),
   1808 		 * the urgent pointer points to the last octet
   1809 		 * of urgent data.  We continue, however,
   1810 		 * to consider it to indicate the first octet
   1811 		 * of data past the urgent section as the original
   1812 		 * spec states (in one of two places).
   1813 		 */
   1814 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   1815 			tp->rcv_up = th->th_seq + th->th_urp;
   1816 			so->so_oobmark = so->so_rcv.sb_cc +
   1817 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   1818 			if (so->so_oobmark == 0)
   1819 				so->so_state |= SS_RCVATMARK;
   1820 			sohasoutofband(so);
   1821 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   1822 		}
   1823 		/*
   1824 		 * Remove out of band data so doesn't get presented to user.
   1825 		 * This can happen independent of advancing the URG pointer,
   1826 		 * but if two URG's are pending at once, some out-of-band
   1827 		 * data may creep in... ick.
   1828 		 */
   1829 		if (th->th_urp <= (u_int16_t) tlen
   1830 #ifdef SO_OOBINLINE
   1831 		     && (so->so_options & SO_OOBINLINE) == 0
   1832 #endif
   1833 		     )
   1834 			tcp_pulloutofband(so, th, m, hdroptlen);
   1835 	} else
   1836 		/*
   1837 		 * If no out of band data is expected,
   1838 		 * pull receive urgent pointer along
   1839 		 * with the receive window.
   1840 		 */
   1841 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   1842 			tp->rcv_up = tp->rcv_nxt;
   1843 dodata:							/* XXX */
   1844 
   1845 	/*
   1846 	 * Process the segment text, merging it into the TCP sequencing queue,
   1847 	 * and arranging for acknowledgement of receipt if necessary.
   1848 	 * This process logically involves adjusting tp->rcv_wnd as data
   1849 	 * is presented to the user (this happens in tcp_usrreq.c,
   1850 	 * case PRU_RCVD).  If a FIN has already been received on this
   1851 	 * connection then we just ignore the text.
   1852 	 */
   1853 	if ((tlen || (tiflags & TH_FIN)) &&
   1854 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1855 		/*
   1856 		 * Insert segment ti into reassembly queue of tcp with
   1857 		 * control block tp.  Return TH_FIN if reassembly now includes
   1858 		 * a segment with FIN.  The macro form does the common case
   1859 		 * inline (segment is the next to be received on an
   1860 		 * established connection, and the queue is empty),
   1861 		 * avoiding linkage into and removal from the queue and
   1862 		 * repetition of various conversions.
   1863 		 * Set DELACK for segments received in order, but ack
   1864 		 * immediately when segments are out of order
   1865 		 * (so fast retransmit can work).
   1866 		 */
   1867 		/* NOTE: this was TCP_REASS() macro, but used only once */
   1868 		TCP_REASS_LOCK(tp);
   1869 		if (th->th_seq == tp->rcv_nxt &&
   1870 		    tp->segq.lh_first == NULL &&
   1871 		    tp->t_state == TCPS_ESTABLISHED) {
   1872 			TCP_SETUP_ACK(tp, th);
   1873 			tp->rcv_nxt += tlen;
   1874 			tiflags = th->th_flags & TH_FIN;
   1875 			tcpstat.tcps_rcvpack++;
   1876 			tcpstat.tcps_rcvbyte += tlen;
   1877 			m_adj(m, hdroptlen);
   1878 			sbappend(&(so)->so_rcv, m);
   1879 			sorwakeup(so);
   1880 		} else {
   1881 			m_adj(m, hdroptlen);
   1882 			tiflags = tcp_reass(tp, th, m, &tlen);
   1883 			tp->t_flags |= TF_ACKNOW;
   1884 		}
   1885 		TCP_REASS_UNLOCK(tp);
   1886 
   1887 		/*
   1888 		 * Note the amount of data that peer has sent into
   1889 		 * our window, in order to estimate the sender's
   1890 		 * buffer size.
   1891 		 */
   1892 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   1893 	} else {
   1894 		m_freem(m);
   1895 		m = NULL;
   1896 		tiflags &= ~TH_FIN;
   1897 	}
   1898 
   1899 	/*
   1900 	 * If FIN is received ACK the FIN and let the user know
   1901 	 * that the connection is closing.  Ignore a FIN received before
   1902 	 * the connection is fully established.
   1903 	 */
   1904 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   1905 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1906 			socantrcvmore(so);
   1907 			tp->t_flags |= TF_ACKNOW;
   1908 			tp->rcv_nxt++;
   1909 		}
   1910 		switch (tp->t_state) {
   1911 
   1912 	 	/*
   1913 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   1914 		 */
   1915 		case TCPS_ESTABLISHED:
   1916 			tp->t_state = TCPS_CLOSE_WAIT;
   1917 			break;
   1918 
   1919 	 	/*
   1920 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   1921 		 * enter the CLOSING state.
   1922 		 */
   1923 		case TCPS_FIN_WAIT_1:
   1924 			tp->t_state = TCPS_CLOSING;
   1925 			break;
   1926 
   1927 	 	/*
   1928 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   1929 		 * starting the time-wait timer, turning off the other
   1930 		 * standard timers.
   1931 		 */
   1932 		case TCPS_FIN_WAIT_2:
   1933 			tp->t_state = TCPS_TIME_WAIT;
   1934 			tcp_canceltimers(tp);
   1935 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   1936 			soisdisconnected(so);
   1937 			break;
   1938 
   1939 		/*
   1940 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   1941 		 */
   1942 		case TCPS_TIME_WAIT:
   1943 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   1944 			break;
   1945 		}
   1946 	}
   1947 	if (so->so_options & SO_DEBUG) {
   1948 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   1949 	}
   1950 
   1951 	/*
   1952 	 * Return any desired output.
   1953 	 */
   1954 	if (needoutput || (tp->t_flags & TF_ACKNOW))
   1955 		(void) tcp_output(tp);
   1956 	if (tcp_saveti)
   1957 		m_freem(tcp_saveti);
   1958 	return;
   1959 
   1960 badsyn:
   1961 	/*
   1962 	 * Received a bad SYN.  Increment counters and dropwithreset.
   1963 	 */
   1964 	tcpstat.tcps_badsyn++;
   1965 	tp = NULL;
   1966 	goto dropwithreset;
   1967 
   1968 dropafterack:
   1969 	/*
   1970 	 * Generate an ACK dropping incoming segment if it occupies
   1971 	 * sequence space, where the ACK reflects our state.
   1972 	 */
   1973 	if (tiflags & TH_RST)
   1974 		goto drop;
   1975 	m_freem(m);
   1976 	tp->t_flags |= TF_ACKNOW;
   1977 	(void) tcp_output(tp);
   1978 	if (tcp_saveti)
   1979 		m_freem(tcp_saveti);
   1980 	return;
   1981 
   1982 dropwithreset:
   1983 	/*
   1984 	 * Generate a RST, dropping incoming segment.
   1985 	 * Make ACK acceptable to originator of segment.
   1986 	 * Don't bother to respond if destination was broadcast/multicast.
   1987 	 */
   1988 	if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
   1989 		goto drop;
   1990 	if (ip && IN_MULTICAST(ip->ip_dst.s_addr))
   1991 		goto drop;
   1992 #ifdef INET6
   1993 	if (m->m_flags & M_ANYCAST6)
   1994 		goto drop;
   1995 	else if (ip6 && IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1996 		goto drop;
   1997 #endif
   1998     {
   1999 	/*
   2000 	 * need to recover version # field, which was overwritten on
   2001 	 * ip_cksum computation.
   2002 	 */
   2003 	struct ip *sip;
   2004 	sip = mtod(m, struct ip *);
   2005 	switch (af) {
   2006 	case AF_INET:
   2007 		sip->ip_v = 4;
   2008 		break;
   2009 #ifdef INET6
   2010 	case AF_INET6:
   2011 		sip->ip_v = 6;
   2012 		break;
   2013 #endif
   2014 	}
   2015     }
   2016 	if (tiflags & TH_ACK)
   2017 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2018 	else {
   2019 		if (tiflags & TH_SYN)
   2020 			tlen++;
   2021 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2022 		    TH_RST|TH_ACK);
   2023 	}
   2024 	if (tcp_saveti)
   2025 		m_freem(tcp_saveti);
   2026 	return;
   2027 
   2028 drop:
   2029 	/*
   2030 	 * Drop space held by incoming segment and return.
   2031 	 */
   2032 	if (tp) {
   2033 		if (tp->t_inpcb)
   2034 			so = tp->t_inpcb->inp_socket;
   2035 #ifdef INET6
   2036 		else if (tp->t_in6pcb)
   2037 			so = tp->t_in6pcb->in6p_socket;
   2038 #endif
   2039 		else
   2040 			so = NULL;
   2041 		if (so && (so->so_options & SO_DEBUG) != 0)
   2042 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   2043 	}
   2044 	if (tcp_saveti)
   2045 		m_freem(tcp_saveti);
   2046 	m_freem(m);
   2047 	return;
   2048 }
   2049 
   2050 void
   2051 tcp_dooptions(tp, cp, cnt, th, oi)
   2052 	struct tcpcb *tp;
   2053 	u_char *cp;
   2054 	int cnt;
   2055 	struct tcphdr *th;
   2056 	struct tcp_opt_info *oi;
   2057 {
   2058 	u_int16_t mss;
   2059 	int opt, optlen;
   2060 
   2061 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   2062 		opt = cp[0];
   2063 		if (opt == TCPOPT_EOL)
   2064 			break;
   2065 		if (opt == TCPOPT_NOP)
   2066 			optlen = 1;
   2067 		else {
   2068 			optlen = cp[1];
   2069 			if (optlen <= 0)
   2070 				break;
   2071 		}
   2072 		switch (opt) {
   2073 
   2074 		default:
   2075 			continue;
   2076 
   2077 		case TCPOPT_MAXSEG:
   2078 			if (optlen != TCPOLEN_MAXSEG)
   2079 				continue;
   2080 			if (!(th->th_flags & TH_SYN))
   2081 				continue;
   2082 			bcopy(cp + 2, &mss, sizeof(mss));
   2083 			oi->maxseg = ntohs(mss);
   2084 			break;
   2085 
   2086 		case TCPOPT_WINDOW:
   2087 			if (optlen != TCPOLEN_WINDOW)
   2088 				continue;
   2089 			if (!(th->th_flags & TH_SYN))
   2090 				continue;
   2091 			tp->t_flags |= TF_RCVD_SCALE;
   2092 			tp->requested_s_scale = cp[2];
   2093 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   2094 #if 0	/*XXX*/
   2095 				char *p;
   2096 
   2097 				if (ip)
   2098 					p = ntohl(ip->ip_src);
   2099 #ifdef INET6
   2100 				else if (ip6)
   2101 					p = ip6_sprintf(&ip6->ip6_src);
   2102 #endif
   2103 				else
   2104 					p = "(unknown)";
   2105 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   2106 				    "assuming %d\n",
   2107 				    tp->requested_s_scale, p,
   2108 				    TCP_MAX_WINSHIFT);
   2109 #else
   2110 				log(LOG_ERR, "TCP: invalid wscale %d, "
   2111 				    "assuming %d\n",
   2112 				    tp->requested_s_scale,
   2113 				    TCP_MAX_WINSHIFT);
   2114 #endif
   2115 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   2116 			}
   2117 			break;
   2118 
   2119 		case TCPOPT_TIMESTAMP:
   2120 			if (optlen != TCPOLEN_TIMESTAMP)
   2121 				continue;
   2122 			oi->ts_present = 1;
   2123 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   2124 			NTOHL(oi->ts_val);
   2125 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   2126 			NTOHL(oi->ts_ecr);
   2127 
   2128 			/*
   2129 			 * A timestamp received in a SYN makes
   2130 			 * it ok to send timestamp requests and replies.
   2131 			 */
   2132 			if (th->th_flags & TH_SYN) {
   2133 				tp->t_flags |= TF_RCVD_TSTMP;
   2134 				tp->ts_recent = oi->ts_val;
   2135 				tp->ts_recent_age = tcp_now;
   2136 			}
   2137 			break;
   2138 		case TCPOPT_SACK_PERMITTED:
   2139 			if (optlen != TCPOLEN_SACK_PERMITTED)
   2140 				continue;
   2141 			if (!(th->th_flags & TH_SYN))
   2142 				continue;
   2143 			tp->t_flags &= ~TF_CANT_TXSACK;
   2144 			break;
   2145 
   2146 		case TCPOPT_SACK:
   2147 			if (tp->t_flags & TF_IGNR_RXSACK)
   2148 				continue;
   2149 			if (optlen % 8 != 2 || optlen < 10)
   2150 				continue;
   2151 			cp += 2;
   2152 			optlen -= 2;
   2153 			for (; optlen > 0; cp -= 8, optlen -= 8) {
   2154 				tcp_seq lwe, rwe;
   2155 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
   2156 				NTOHL(lwe);
   2157 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
   2158 				NTOHL(rwe);
   2159 				/* tcp_mark_sacked(tp, lwe, rwe); */
   2160 			}
   2161 			break;
   2162 		}
   2163 	}
   2164 }
   2165 
   2166 /*
   2167  * Pull out of band byte out of a segment so
   2168  * it doesn't appear in the user's data queue.
   2169  * It is still reflected in the segment length for
   2170  * sequencing purposes.
   2171  */
   2172 void
   2173 tcp_pulloutofband(so, th, m, off)
   2174 	struct socket *so;
   2175 	struct tcphdr *th;
   2176 	register struct mbuf *m;
   2177 	int off;
   2178 {
   2179 	int cnt = off + th->th_urp - 1;
   2180 
   2181 	while (cnt >= 0) {
   2182 		if (m->m_len > cnt) {
   2183 			char *cp = mtod(m, caddr_t) + cnt;
   2184 			struct tcpcb *tp = sototcpcb(so);
   2185 
   2186 			tp->t_iobc = *cp;
   2187 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   2188 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   2189 			m->m_len--;
   2190 			return;
   2191 		}
   2192 		cnt -= m->m_len;
   2193 		m = m->m_next;
   2194 		if (m == 0)
   2195 			break;
   2196 	}
   2197 	panic("tcp_pulloutofband");
   2198 }
   2199 
   2200 /*
   2201  * Collect new round-trip time estimate
   2202  * and update averages and current timeout.
   2203  */
   2204 void
   2205 tcp_xmit_timer(tp, rtt)
   2206 	register struct tcpcb *tp;
   2207 	short rtt;
   2208 {
   2209 	register short delta;
   2210 	short rttmin;
   2211 
   2212 	tcpstat.tcps_rttupdated++;
   2213 	--rtt;
   2214 	if (tp->t_srtt != 0) {
   2215 		/*
   2216 		 * srtt is stored as fixed point with 3 bits after the
   2217 		 * binary point (i.e., scaled by 8).  The following magic
   2218 		 * is equivalent to the smoothing algorithm in rfc793 with
   2219 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
   2220 		 * point).  Adjust rtt to origin 0.
   2221 		 */
   2222 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   2223 		if ((tp->t_srtt += delta) <= 0)
   2224 			tp->t_srtt = 1 << 2;
   2225 		/*
   2226 		 * We accumulate a smoothed rtt variance (actually, a
   2227 		 * smoothed mean difference), then set the retransmit
   2228 		 * timer to smoothed rtt + 4 times the smoothed variance.
   2229 		 * rttvar is stored as fixed point with 2 bits after the
   2230 		 * binary point (scaled by 4).  The following is
   2231 		 * equivalent to rfc793 smoothing with an alpha of .75
   2232 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
   2233 		 * rfc793's wired-in beta.
   2234 		 */
   2235 		if (delta < 0)
   2236 			delta = -delta;
   2237 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   2238 		if ((tp->t_rttvar += delta) <= 0)
   2239 			tp->t_rttvar = 1 << 2;
   2240 	} else {
   2241 		/*
   2242 		 * No rtt measurement yet - use the unsmoothed rtt.
   2243 		 * Set the variance to half the rtt (so our first
   2244 		 * retransmit happens at 3*rtt).
   2245 		 */
   2246 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   2247 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   2248 	}
   2249 	tp->t_rtt = 0;
   2250 	tp->t_rxtshift = 0;
   2251 
   2252 	/*
   2253 	 * the retransmit should happen at rtt + 4 * rttvar.
   2254 	 * Because of the way we do the smoothing, srtt and rttvar
   2255 	 * will each average +1/2 tick of bias.  When we compute
   2256 	 * the retransmit timer, we want 1/2 tick of rounding and
   2257 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   2258 	 * firing of the timer.  The bias will give us exactly the
   2259 	 * 1.5 tick we need.  But, because the bias is
   2260 	 * statistical, we have to test that we don't drop below
   2261 	 * the minimum feasible timer (which is 2 ticks).
   2262 	 */
   2263 	if (tp->t_rttmin > rtt + 2)
   2264 		rttmin = tp->t_rttmin;
   2265 	else
   2266 		rttmin = rtt + 2;
   2267 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
   2268 
   2269 	/*
   2270 	 * We received an ack for a packet that wasn't retransmitted;
   2271 	 * it is probably safe to discard any error indications we've
   2272 	 * received recently.  This isn't quite right, but close enough
   2273 	 * for now (a route might have failed after we sent a segment,
   2274 	 * and the return path might not be symmetrical).
   2275 	 */
   2276 	tp->t_softerror = 0;
   2277 }
   2278 
   2279 /*
   2280  * Checks for partial ack.  If partial ack arrives, force the retransmission
   2281  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
   2282  * 1.  By setting snd_nxt to th_ack, this forces retransmission timer to
   2283  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
   2284  */
   2285 int
   2286 tcp_newreno(tp, th)
   2287 	struct tcpcb *tp;
   2288 	struct tcphdr *th;
   2289 {
   2290 	tcp_seq onxt = tp->snd_nxt;
   2291 	u_long ocwnd = tp->snd_cwnd;
   2292 
   2293 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
   2294 		/*
   2295 		 * snd_una has not yet been updated and the socket's send
   2296 		 * buffer has not yet drained off the ACK'd data, so we
   2297 		 * have to leave snd_una as it was to get the correct data
   2298 		 * offset in tcp_output().
   2299 		 */
   2300 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2301 	        tp->t_rtt = 0;
   2302 	        tp->snd_nxt = th->th_ack;
   2303 		/*
   2304 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
   2305 		 * is not yet updated when we're called.
   2306 		 */
   2307 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
   2308 	        (void) tcp_output(tp);
   2309 	        tp->snd_cwnd = ocwnd;
   2310 	        if (SEQ_GT(onxt, tp->snd_nxt))
   2311 	                tp->snd_nxt = onxt;
   2312 	        /*
   2313 	         * Partial window deflation.  Relies on fact that tp->snd_una
   2314 	         * not updated yet.
   2315 	         */
   2316 	        tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
   2317 	        return 1;
   2318 	}
   2319 	return 0;
   2320 }
   2321 
   2322 
   2323 /*
   2324  * TCP compressed state engine.  Currently used to hold compressed
   2325  * state for SYN_RECEIVED.
   2326  */
   2327 
   2328 u_long	syn_cache_count;
   2329 u_int32_t syn_hash1, syn_hash2;
   2330 
   2331 #define SYN_HASH(sa, sp, dp) \
   2332 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   2333 				     ((u_int32_t)(sp)))^syn_hash2)))
   2334 #ifndef INET6
   2335 #define	SYN_HASHALL(hash, src, dst) \
   2336 do {									\
   2337 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
   2338 		((struct sockaddr_in *)(src))->sin_port,		\
   2339 		((struct sockaddr_in *)(dst))->sin_port);		\
   2340 } while (0)
   2341 #else
   2342 #define SYN_HASH6(sa, sp, dp) \
   2343 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   2344 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   2345 	 & 0x7fffffff)
   2346 
   2347 #define SYN_HASHALL(hash, src, dst) \
   2348 do {									\
   2349 	switch ((src)->sa_family) {					\
   2350 	case AF_INET:							\
   2351 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
   2352 			((struct sockaddr_in *)(src))->sin_port,	\
   2353 			((struct sockaddr_in *)(dst))->sin_port);	\
   2354 		break;							\
   2355 	case AF_INET6:							\
   2356 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
   2357 			((struct sockaddr_in6 *)(src))->sin6_port,	\
   2358 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
   2359 		break;							\
   2360 	default:							\
   2361 		hash = 0;						\
   2362 	}								\
   2363 } while (0)
   2364 #endif /* INET6 */
   2365 
   2366 #define	SYN_CACHE_RM(sc)						\
   2367 do {									\
   2368 	LIST_REMOVE((sc), sc_bucketq);					\
   2369 	(sc)->sc_tp = NULL;						\
   2370 	LIST_REMOVE((sc), sc_tpq);					\
   2371 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
   2372 	TAILQ_REMOVE(&tcp_syn_cache_timeq[(sc)->sc_rxtshift], (sc), sc_timeq); \
   2373 	syn_cache_count--;						\
   2374 } while (0)
   2375 
   2376 #define	SYN_CACHE_PUT(sc)						\
   2377 do {									\
   2378 	if ((sc)->sc_ipopts)						\
   2379 		(void) m_free((sc)->sc_ipopts);				\
   2380 	if ((sc)->sc_route4.ro_rt != NULL)				\
   2381 		RTFREE((sc)->sc_route4.ro_rt);				\
   2382 	pool_put(&syn_cache_pool, (sc));				\
   2383 } while (0)
   2384 
   2385 struct pool syn_cache_pool;
   2386 
   2387 /*
   2388  * We don't estimate RTT with SYNs, so each packet starts with the default
   2389  * RTT and each timer queue has a fixed timeout value.  This allows us to
   2390  * optimize the timer queues somewhat.
   2391  */
   2392 #define	SYN_CACHE_TIMER_ARM(sc)						\
   2393 do {									\
   2394 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   2395 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   2396 	    TCPTV_REXMTMAX);						\
   2397 	PRT_SLOW_ARM((sc)->sc_rexmt, (sc)->sc_rxtcur);			\
   2398 } while (0)
   2399 
   2400 TAILQ_HEAD(, syn_cache) tcp_syn_cache_timeq[TCP_MAXRXTSHIFT + 1];
   2401 
   2402 void
   2403 syn_cache_init()
   2404 {
   2405 	int i;
   2406 
   2407 	/* Initialize the hash buckets. */
   2408 	for (i = 0; i < tcp_syn_cache_size; i++)
   2409 		LIST_INIT(&tcp_syn_cache[i].sch_bucket);
   2410 
   2411 	/* Initialize the timer queues. */
   2412 	for (i = 0; i <= TCP_MAXRXTSHIFT; i++)
   2413 		TAILQ_INIT(&tcp_syn_cache_timeq[i]);
   2414 
   2415 	/* Initialize the syn cache pool. */
   2416 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   2417 	    "synpl", 0, NULL, NULL, M_PCB);
   2418 }
   2419 
   2420 void
   2421 syn_cache_insert(sc, tp)
   2422 	struct syn_cache *sc;
   2423 	struct tcpcb *tp;
   2424 {
   2425 	struct syn_cache_head *scp;
   2426 	struct syn_cache *sc2;
   2427 	int s, i;
   2428 
   2429 	/*
   2430 	 * If there are no entries in the hash table, reinitialize
   2431 	 * the hash secrets.
   2432 	 */
   2433 	if (syn_cache_count == 0) {
   2434 		struct timeval tv;
   2435 		microtime(&tv);
   2436 		syn_hash1 = random() ^ (u_long)&sc;
   2437 		syn_hash2 = random() ^ tv.tv_usec;
   2438 	}
   2439 
   2440 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   2441 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   2442 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   2443 
   2444 	/*
   2445 	 * Make sure that we don't overflow the per-bucket
   2446 	 * limit or the total cache size limit.
   2447 	 */
   2448 	s = splsoftnet();
   2449 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   2450 		tcpstat.tcps_sc_bucketoverflow++;
   2451 		/*
   2452 		 * The bucket is full.  Toss the oldest element in the
   2453 		 * bucket.  This will be the entry with our bucket
   2454 		 * index closest to the front of the timer queue with
   2455 		 * the largest timeout value.
   2456 		 *
   2457 		 * Note: This timer queue traversal may be expensive, so
   2458 		 * we hope that this doesn't happen very often.  It is
   2459 		 * much more likely that we'll overflow the entire
   2460 		 * cache, which is much easier to handle; see below.
   2461 		 */
   2462 		for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
   2463 			for (sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
   2464 			     sc2 != NULL;
   2465 			     sc2 = TAILQ_NEXT(sc2, sc_timeq)) {
   2466 				if (sc2->sc_bucketidx == sc->sc_bucketidx) {
   2467 					SYN_CACHE_RM(sc2);
   2468 					SYN_CACHE_PUT(sc2);
   2469 					goto insert;	/* 2 level break */
   2470 				}
   2471 			}
   2472 		}
   2473 #ifdef DIAGNOSTIC
   2474 		/*
   2475 		 * This should never happen; we should always find an
   2476 		 * entry in our bucket.
   2477 		 */
   2478 		panic("syn_cache_insert: bucketoverflow: impossible");
   2479 #endif
   2480 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   2481 		tcpstat.tcps_sc_overflowed++;
   2482 		/*
   2483 		 * The cache is full.  Toss the oldest entry in the
   2484 		 * entire cache.  This is the front entry in the
   2485 		 * first non-empty timer queue with the largest
   2486 		 * timeout value.
   2487 		 */
   2488 		for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
   2489 			sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
   2490 			if (sc2 == NULL)
   2491 				continue;
   2492 			SYN_CACHE_RM(sc2);
   2493 			SYN_CACHE_PUT(sc2);
   2494 			goto insert;		/* symmetry with above */
   2495 		}
   2496 #ifdef DIAGNOSTIC
   2497 		/*
   2498 		 * This should never happen; we should always find an
   2499 		 * entry in the cache.
   2500 		 */
   2501 		panic("syn_cache_insert: cache overflow: impossible");
   2502 #endif
   2503 	}
   2504 
   2505  insert:
   2506 	/*
   2507 	 * Initialize the entry's timer.
   2508 	 */
   2509 	sc->sc_rxttot = 0;
   2510 	sc->sc_rxtshift = 0;
   2511 	SYN_CACHE_TIMER_ARM(sc);
   2512 	TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift], sc, sc_timeq);
   2513 
   2514 	/* Link it from tcpcb entry */
   2515 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   2516 
   2517 	/* Put it into the bucket. */
   2518 	LIST_INSERT_HEAD(&scp->sch_bucket, sc, sc_bucketq);
   2519 	scp->sch_length++;
   2520 	syn_cache_count++;
   2521 
   2522 	tcpstat.tcps_sc_added++;
   2523 	splx(s);
   2524 }
   2525 
   2526 /*
   2527  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   2528  * If we have retransmitted an entry the maximum number of times, expire
   2529  * that entry.
   2530  */
   2531 void
   2532 syn_cache_timer()
   2533 {
   2534 	struct syn_cache *sc, *nsc;
   2535 	int i, s;
   2536 
   2537 	s = splsoftnet();
   2538 
   2539 	/*
   2540 	 * First, get all the entries that need to be retransmitted, or
   2541 	 * must be expired due to exceeding the initial keepalive time.
   2542 	 */
   2543 	for (i = 0; i < TCP_MAXRXTSHIFT; i++) {
   2544 		for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
   2545 		     sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
   2546 		     sc = nsc) {
   2547 			nsc = TAILQ_NEXT(sc, sc_timeq);
   2548 
   2549 			/*
   2550 			 * Compute the total amount of time this entry has
   2551 			 * been on a queue.  If this entry has been on longer
   2552 			 * than the keep alive timer would allow, expire it.
   2553 			 */
   2554 			sc->sc_rxttot += sc->sc_rxtcur;
   2555 			if (sc->sc_rxttot >= TCPTV_KEEP_INIT) {
   2556 				tcpstat.tcps_sc_timed_out++;
   2557 				SYN_CACHE_RM(sc);
   2558 				SYN_CACHE_PUT(sc);
   2559 				continue;
   2560 			}
   2561 
   2562 			tcpstat.tcps_sc_retransmitted++;
   2563 			(void) syn_cache_respond(sc, NULL);
   2564 
   2565 			/* Advance this entry onto the next timer queue. */
   2566 			TAILQ_REMOVE(&tcp_syn_cache_timeq[i], sc, sc_timeq);
   2567 			sc->sc_rxtshift = i + 1;
   2568 			SYN_CACHE_TIMER_ARM(sc);
   2569 			TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift],
   2570 			    sc, sc_timeq);
   2571 		}
   2572 	}
   2573 
   2574 	/*
   2575 	 * Now get all the entries that are expired due to too many
   2576 	 * retransmissions.
   2577 	 */
   2578 	for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[TCP_MAXRXTSHIFT]);
   2579 	     sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
   2580 	     sc = nsc) {
   2581 		nsc = TAILQ_NEXT(sc, sc_timeq);
   2582 		tcpstat.tcps_sc_timed_out++;
   2583 		SYN_CACHE_RM(sc);
   2584 		SYN_CACHE_PUT(sc);
   2585 	}
   2586 	splx(s);
   2587 }
   2588 
   2589 /*
   2590  * Remove syn cache created by the specified tcb entry,
   2591  * because this does not make sense to keep them
   2592  * (if there's no tcb entry, syn cache entry will never be used)
   2593  */
   2594 void
   2595 syn_cache_cleanup(tp)
   2596 	struct tcpcb *tp;
   2597 {
   2598 	struct syn_cache *sc, *nsc;
   2599 	int s;
   2600 
   2601 	s = splsoftnet();
   2602 
   2603 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   2604 		nsc = LIST_NEXT(sc, sc_tpq);
   2605 
   2606 #ifdef DIAGNOSTIC
   2607 		if (sc->sc_tp != tp)
   2608 			panic("invalid sc_tp in syn_cache_cleanup");
   2609 #endif
   2610 		SYN_CACHE_RM(sc);
   2611 		SYN_CACHE_PUT(sc);
   2612 	}
   2613 	/* just for safety */
   2614 	LIST_INIT(&tp->t_sc);
   2615 
   2616 	splx(s);
   2617 }
   2618 
   2619 /*
   2620  * Find an entry in the syn cache.
   2621  */
   2622 struct syn_cache *
   2623 syn_cache_lookup(src, dst, headp)
   2624 	struct sockaddr *src;
   2625 	struct sockaddr *dst;
   2626 	struct syn_cache_head **headp;
   2627 {
   2628 	struct syn_cache *sc;
   2629 	struct syn_cache_head *scp;
   2630 	u_int32_t hash;
   2631 	int s;
   2632 
   2633 	SYN_HASHALL(hash, src, dst);
   2634 
   2635 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   2636 	*headp = scp;
   2637 	s = splsoftnet();
   2638 	for (sc = LIST_FIRST(&scp->sch_bucket); sc != NULL;
   2639 	     sc = LIST_NEXT(sc, sc_bucketq)) {
   2640 		if (sc->sc_hash != hash)
   2641 			continue;
   2642 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
   2643 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
   2644 			splx(s);
   2645 			return (sc);
   2646 		}
   2647 	}
   2648 	splx(s);
   2649 	return (NULL);
   2650 }
   2651 
   2652 /*
   2653  * This function gets called when we receive an ACK for a
   2654  * socket in the LISTEN state.  We look up the connection
   2655  * in the syn cache, and if its there, we pull it out of
   2656  * the cache and turn it into a full-blown connection in
   2657  * the SYN-RECEIVED state.
   2658  *
   2659  * The return values may not be immediately obvious, and their effects
   2660  * can be subtle, so here they are:
   2661  *
   2662  *	NULL	SYN was not found in cache; caller should drop the
   2663  *		packet and send an RST.
   2664  *
   2665  *	-1	We were unable to create the new connection, and are
   2666  *		aborting it.  An ACK,RST is being sent to the peer
   2667  *		(unless we got screwey sequence numbners; see below),
   2668  *		because the 3-way handshake has been completed.  Caller
   2669  *		should not free the mbuf, since we may be using it.  If
   2670  *		we are not, we will free it.
   2671  *
   2672  *	Otherwise, the return value is a pointer to the new socket
   2673  *	associated with the connection.
   2674  */
   2675 struct socket *
   2676 syn_cache_get(src, dst, th, hlen, tlen, so, m)
   2677 	struct sockaddr *src;
   2678 	struct sockaddr *dst;
   2679 	struct tcphdr *th;
   2680 	unsigned int hlen, tlen;
   2681 	struct socket *so;
   2682 	struct mbuf *m;
   2683 {
   2684 	struct syn_cache *sc;
   2685 	struct syn_cache_head *scp;
   2686 	register struct inpcb *inp = NULL;
   2687 #ifdef INET6
   2688 	register struct in6pcb *in6p = NULL;
   2689 #endif
   2690 	register struct tcpcb *tp = 0;
   2691 	struct mbuf *am;
   2692 	int s;
   2693 	struct socket *oso;
   2694 
   2695 	s = splsoftnet();
   2696 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   2697 		splx(s);
   2698 		return (NULL);
   2699 	}
   2700 
   2701 	/*
   2702 	 * Verify the sequence and ack numbers.  Try getting the correct
   2703 	 * response again.
   2704 	 */
   2705 	if ((th->th_ack != sc->sc_iss + 1) ||
   2706 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   2707 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   2708 		(void) syn_cache_respond(sc, m);
   2709 		splx(s);
   2710 		return ((struct socket *)(-1));
   2711 	}
   2712 
   2713 	/* Remove this cache entry */
   2714 	SYN_CACHE_RM(sc);
   2715 	splx(s);
   2716 
   2717 	/*
   2718 	 * Ok, create the full blown connection, and set things up
   2719 	 * as they would have been set up if we had created the
   2720 	 * connection when the SYN arrived.  If we can't create
   2721 	 * the connection, abort it.
   2722 	 */
   2723 	/*
   2724 	 * inp still has the OLD in_pcb stuff, set the
   2725 	 * v6-related flags on the new guy, too.   This is
   2726 	 * done particularly for the case where an AF_INET6
   2727 	 * socket is bound only to a port, and a v4 connection
   2728 	 * comes in on that port.
   2729 	 * we also copy the flowinfo from the original pcb
   2730 	 * to the new one.
   2731 	 */
   2732     {
   2733 	struct inpcb *parentinpcb;
   2734 
   2735 	parentinpcb = (struct inpcb *)so->so_pcb;
   2736 
   2737 	oso = so;
   2738 	so = sonewconn(so, SS_ISCONNECTED);
   2739 	if (so == NULL)
   2740 		goto resetandabort;
   2741 
   2742 	switch (so->so_proto->pr_domain->dom_family) {
   2743 	case AF_INET:
   2744 		inp = sotoinpcb(so);
   2745 		break;
   2746 #ifdef INET6
   2747 	case AF_INET6:
   2748 		in6p = sotoin6pcb(so);
   2749 #if 0 /*def INET6*/
   2750 		inp->inp_flags |= (parentinpcb->inp_flags &
   2751 			(INP_IPV6 | INP_IPV6_UNDEC | INP_IPV6_MAPPED));
   2752 		if ((inp->inp_flags & INP_IPV6) &&
   2753 		   !(inp->inp_flags & INP_IPV6_MAPPED)) {
   2754 			inp->inp_ipv6.ip6_hlim = parentinpcb->inp_ipv6.ip6_hlim;
   2755 			inp->inp_ipv6.ip6_vfc = parentinpcb->inp_ipv6.ip6_vfc;
   2756 		}
   2757 #endif
   2758 		break;
   2759 #endif
   2760 	}
   2761     }
   2762 	switch (src->sa_family) {
   2763 	case AF_INET:
   2764 		if (inp) {
   2765 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   2766 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   2767 			inp->inp_options = ip_srcroute();
   2768 			in_pcbstate(inp, INP_BOUND);
   2769 			if (inp->inp_options == NULL) {
   2770 				inp->inp_options = sc->sc_ipopts;
   2771 				sc->sc_ipopts = NULL;
   2772 			}
   2773 		}
   2774 #ifdef INET6
   2775 		else if (in6p) {
   2776 			/* IPv4 packet to AF_INET6 socket */
   2777 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
   2778 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   2779 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   2780 				&in6p->in6p_laddr.s6_addr32[3],
   2781 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   2782 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   2783 			in6totcpcb(in6p)->t_family = AF_INET;
   2784 		}
   2785 #endif
   2786 		break;
   2787 #ifdef INET6
   2788 	case AF_INET6:
   2789 		if (in6p) {
   2790 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   2791 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   2792 #if 0
   2793 			in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
   2794 			/*inp->inp_options = ip6_srcroute();*/ /* soon. */
   2795 #endif
   2796 		}
   2797 		break;
   2798 #endif
   2799 	}
   2800 #ifdef INET6
   2801 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   2802 		struct in6pcb *oin6p = sotoin6pcb(oso);
   2803 		/* inherit socket options from the listening socket */
   2804 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   2805 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   2806 			m_freem(in6p->in6p_options);
   2807 			in6p->in6p_options = 0;
   2808 		}
   2809 		ip6_savecontrol(in6p, &in6p->in6p_options,
   2810 			mtod(m, struct ip6_hdr *), m);
   2811 	}
   2812 #endif
   2813 
   2814 #ifdef IPSEC
   2815     {
   2816 	struct secpolicy *sp;
   2817 	if (inp) {
   2818 		sp = ipsec_copy_policy(sotoinpcb(oso)->inp_sp);
   2819 		if (sp) {
   2820 			key_freesp(inp->inp_sp);
   2821 			inp->inp_sp = sp;
   2822 		} else
   2823 			printf("tcp_input: could not copy policy\n");
   2824 	}
   2825 #ifdef INET6
   2826 	else if (in6p) {
   2827 		sp = ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp);
   2828 		if (sp) {
   2829 			key_freesp(in6p->in6p_sp);
   2830 			in6p->in6p_sp = sp;
   2831 		} else
   2832 			printf("tcp_input: could not copy policy\n");
   2833 	}
   2834 #endif
   2835     }
   2836 #endif
   2837 
   2838 	/*
   2839 	 * Give the new socket our cached route reference.
   2840 	 */
   2841 	if (inp)
   2842 		inp->inp_route = sc->sc_route4;		/* struct assignment */
   2843 #ifdef INET6
   2844 	else
   2845 		in6p->in6p_route = sc->sc_route6;
   2846 #endif
   2847 	sc->sc_route4.ro_rt = NULL;
   2848 
   2849 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   2850 	if (am == NULL)
   2851 		goto resetandabort;
   2852 	am->m_len = src->sa_len;
   2853 	bcopy(src, mtod(am, caddr_t), src->sa_len);
   2854 	if (inp) {
   2855 		if (in_pcbconnect(inp, am)) {
   2856 			(void) m_free(am);
   2857 			goto resetandabort;
   2858 		}
   2859 	}
   2860 #ifdef INET6
   2861 	else if (in6p) {
   2862 		if (src->sa_family == AF_INET) {
   2863 			/* IPv4 packet to AF_INET6 socket */
   2864 			struct sockaddr_in6 *sin6;
   2865 			sin6 = mtod(am, struct sockaddr_in6 *);
   2866 			am->m_len = sizeof(*sin6);
   2867 			bzero(sin6, sizeof(*sin6));
   2868 			sin6->sin6_family = AF_INET6;
   2869 			sin6->sin6_len = sizeof(*sin6);
   2870 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
   2871 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
   2872 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   2873 				&sin6->sin6_addr.s6_addr32[3],
   2874 				sizeof(sin6->sin6_addr.s6_addr32[3]));
   2875 		}
   2876 		if (in6_pcbconnect(in6p, am)) {
   2877 			(void) m_free(am);
   2878 			goto resetandabort;
   2879 		}
   2880 	}
   2881 #endif
   2882 	else {
   2883 		(void) m_free(am);
   2884 		goto resetandabort;
   2885 	}
   2886 	(void) m_free(am);
   2887 
   2888 	if (inp)
   2889 		tp = intotcpcb(inp);
   2890 #ifdef INET6
   2891 	else if (in6p)
   2892 		tp = in6totcpcb(in6p);
   2893 #endif
   2894 	else
   2895 		tp = NULL;
   2896 	if (sc->sc_request_r_scale != 15) {
   2897 		tp->requested_s_scale = sc->sc_requested_s_scale;
   2898 		tp->request_r_scale = sc->sc_request_r_scale;
   2899 		tp->snd_scale = sc->sc_requested_s_scale;
   2900 		tp->rcv_scale = sc->sc_request_r_scale;
   2901 		tp->t_flags |= TF_RCVD_SCALE;
   2902 	}
   2903 	if (sc->sc_flags & SCF_TIMESTAMP)
   2904 		tp->t_flags |= TF_RCVD_TSTMP;
   2905 
   2906 	tp->t_template = tcp_template(tp);
   2907 	if (tp->t_template == 0) {
   2908 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   2909 		so = NULL;
   2910 		m_freem(m);
   2911 		goto abort;
   2912 	}
   2913 
   2914 	tp->iss = sc->sc_iss;
   2915 	tp->irs = sc->sc_irs;
   2916 	tcp_sendseqinit(tp);
   2917 	tcp_rcvseqinit(tp);
   2918 	tp->t_state = TCPS_SYN_RECEIVED;
   2919 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
   2920 	tcpstat.tcps_accepts++;
   2921 
   2922 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   2923 	tp->t_ourmss = sc->sc_ourmaxseg;
   2924 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   2925 
   2926 	/*
   2927 	 * Initialize the initial congestion window.  If we
   2928 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   2929 	 * to 1 segment (i.e. the Loss Window).
   2930 	 */
   2931 	if (sc->sc_rxtshift)
   2932 		tp->snd_cwnd = tp->t_peermss;
   2933 	else
   2934 		tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
   2935 
   2936 	tcp_rmx_rtt(tp);
   2937 	tp->snd_wl1 = sc->sc_irs;
   2938 	tp->rcv_up = sc->sc_irs + 1;
   2939 
   2940 	/*
   2941 	 * This is what whould have happened in tcp_ouput() when
   2942 	 * the SYN,ACK was sent.
   2943 	 */
   2944 	tp->snd_up = tp->snd_una;
   2945 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   2946 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2947 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   2948 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   2949 	tp->last_ack_sent = tp->rcv_nxt;
   2950 
   2951 	tcpstat.tcps_sc_completed++;
   2952 	SYN_CACHE_PUT(sc);
   2953 	return (so);
   2954 
   2955 resetandabort:
   2956 	(void) tcp_respond(NULL, m, m, th,
   2957 			   th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
   2958 abort:
   2959 	if (so != NULL)
   2960 		(void) soabort(so);
   2961 	SYN_CACHE_PUT(sc);
   2962 	tcpstat.tcps_sc_aborted++;
   2963 	return ((struct socket *)(-1));
   2964 }
   2965 
   2966 /*
   2967  * This function is called when we get a RST for a
   2968  * non-existant connection, so that we can see if the
   2969  * connection is in the syn cache.  If it is, zap it.
   2970  */
   2971 
   2972 void
   2973 syn_cache_reset(src, dst, th)
   2974 	struct sockaddr *src;
   2975 	struct sockaddr *dst;
   2976 	struct tcphdr *th;
   2977 {
   2978 	struct syn_cache *sc;
   2979 	struct syn_cache_head *scp;
   2980 	int s = splsoftnet();
   2981 
   2982 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   2983 		splx(s);
   2984 		return;
   2985 	}
   2986 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   2987 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   2988 		splx(s);
   2989 		return;
   2990 	}
   2991 	SYN_CACHE_RM(sc);
   2992 	splx(s);
   2993 	tcpstat.tcps_sc_reset++;
   2994 	SYN_CACHE_PUT(sc);
   2995 }
   2996 
   2997 void
   2998 syn_cache_unreach(src, dst, th)
   2999 	struct sockaddr *src;
   3000 	struct sockaddr *dst;
   3001 	struct tcphdr *th;
   3002 {
   3003 	struct syn_cache *sc;
   3004 	struct syn_cache_head *scp;
   3005 	int s;
   3006 
   3007 	s = splsoftnet();
   3008 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3009 		splx(s);
   3010 		return;
   3011 	}
   3012 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   3013 	if (ntohl (th->th_seq) != sc->sc_iss) {
   3014 		splx(s);
   3015 		return;
   3016 	}
   3017 
   3018 	/*
   3019 	 * If we've rertransmitted 3 times and this is our second error,
   3020 	 * we remove the entry.  Otherwise, we allow it to continue on.
   3021 	 * This prevents us from incorrectly nuking an entry during a
   3022 	 * spurious network outage.
   3023 	 *
   3024 	 * See tcp_notify().
   3025 	 */
   3026 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   3027 		sc->sc_flags |= SCF_UNREACH;
   3028 		splx(s);
   3029 		return;
   3030 	}
   3031 
   3032 	SYN_CACHE_RM(sc);
   3033 	splx(s);
   3034 	tcpstat.tcps_sc_unreach++;
   3035 	SYN_CACHE_PUT(sc);
   3036 }
   3037 
   3038 /*
   3039  * Given a LISTEN socket and an inbound SYN request, add
   3040  * this to the syn cache, and send back a segment:
   3041  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   3042  * to the source.
   3043  *
   3044  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   3045  * Doing so would require that we hold onto the data and deliver it
   3046  * to the application.  However, if we are the target of a SYN-flood
   3047  * DoS attack, an attacker could send data which would eventually
   3048  * consume all available buffer space if it were ACKed.  By not ACKing
   3049  * the data, we avoid this DoS scenario.
   3050  */
   3051 
   3052 int
   3053 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
   3054 	struct sockaddr *src;
   3055 	struct sockaddr *dst;
   3056 	struct tcphdr *th;
   3057 	unsigned int hlen;
   3058 	struct socket *so;
   3059 	struct mbuf *m;
   3060 	u_char *optp;
   3061 	int optlen;
   3062 	struct tcp_opt_info *oi;
   3063 {
   3064 	struct tcpcb tb, *tp;
   3065 	long win;
   3066 	struct syn_cache *sc;
   3067 	struct syn_cache_head *scp;
   3068 	struct mbuf *ipopts;
   3069 
   3070 	tp = sototcpcb(so);
   3071 
   3072 	/*
   3073 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   3074 	 * in_broadcast() should never return true on a received
   3075 	 * packet with M_BCAST not set.
   3076 	 */
   3077 	if (m->m_flags & (M_BCAST|M_MCAST))
   3078 		return 0;
   3079 #ifdef INET6
   3080 	if (m->m_flags & M_ANYCAST6)
   3081 		return 0;
   3082 #endif
   3083 
   3084 	switch (src->sa_family) {
   3085 	case AF_INET:
   3086 		if (IN_MULTICAST(((struct sockaddr_in *)src)->sin_addr.s_addr)
   3087 		 || IN_MULTICAST(((struct sockaddr_in *)dst)->sin_addr.s_addr))
   3088 			return 0;
   3089 		break;
   3090 #ifdef INET6
   3091 	case AF_INET6:
   3092 		if (IN6_IS_ADDR_MULTICAST(&((struct sockaddr_in6 *)src)->sin6_addr)
   3093 		 || IN6_IS_ADDR_MULTICAST(&((struct sockaddr_in6 *)dst)->sin6_addr))
   3094 			return 0;
   3095 		break;
   3096 #endif
   3097 	default:
   3098 		return 0;
   3099 	}
   3100 
   3101 	/*
   3102 	 * Initialize some local state.
   3103 	 */
   3104 	win = sbspace(&so->so_rcv);
   3105 	if (win > TCP_MAXWIN)
   3106 		win = TCP_MAXWIN;
   3107 
   3108 	if (src->sa_family == AF_INET) {
   3109 		/*
   3110 		 * Remember the IP options, if any.
   3111 		 */
   3112 		ipopts = ip_srcroute();
   3113 	} else
   3114 		ipopts = NULL;
   3115 
   3116 	if (optp) {
   3117 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   3118 		tcp_dooptions(&tb, optp, optlen, th, oi);
   3119 	} else
   3120 		tb.t_flags = 0;
   3121 
   3122 	/*
   3123 	 * See if we already have an entry for this connection.
   3124 	 * If we do, resend the SYN,ACK.  We do not count this
   3125 	 * as a retransmission (XXX though maybe we should).
   3126 	 */
   3127 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   3128 		tcpstat.tcps_sc_dupesyn++;
   3129 		if (ipopts) {
   3130 			/*
   3131 			 * If we were remembering a previous source route,
   3132 			 * forget it and use the new one we've been given.
   3133 			 */
   3134 			if (sc->sc_ipopts)
   3135 				(void) m_free(sc->sc_ipopts);
   3136 			sc->sc_ipopts = ipopts;
   3137 		}
   3138 		sc->sc_timestamp = tb.ts_recent;
   3139 		if (syn_cache_respond(sc, m) == 0) {
   3140 			tcpstat.tcps_sndacks++;
   3141 			tcpstat.tcps_sndtotal++;
   3142 		}
   3143 		return (1);
   3144 	}
   3145 
   3146 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   3147 	if (sc == NULL) {
   3148 		if (ipopts)
   3149 			(void) m_free(ipopts);
   3150 		return (0);
   3151 	}
   3152 
   3153 	/*
   3154 	 * Fill in the cache, and put the necessary IP and TCP
   3155 	 * options into the reply.
   3156 	 */
   3157 	bzero(sc, sizeof(struct syn_cache));
   3158 	bcopy(src, &sc->sc_src, src->sa_len);
   3159 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   3160 	sc->sc_flags = 0;
   3161 	sc->sc_ipopts = ipopts;
   3162 	sc->sc_irs = th->th_seq;
   3163 	sc->sc_iss = tcp_new_iss(sc, sizeof(struct syn_cache), 0);
   3164 	sc->sc_peermaxseg = oi->maxseg;
   3165 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   3166 						m->m_pkthdr.rcvif : NULL,
   3167 						sc->sc_src.sa.sa_family);
   3168 	sc->sc_win = win;
   3169 	sc->sc_timestamp = tb.ts_recent;
   3170 	if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
   3171 		sc->sc_flags |= SCF_TIMESTAMP;
   3172 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   3173 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   3174 		sc->sc_requested_s_scale = tb.requested_s_scale;
   3175 		sc->sc_request_r_scale = 0;
   3176 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   3177 		    TCP_MAXWIN << sc->sc_request_r_scale <
   3178 		    so->so_rcv.sb_hiwat)
   3179 			sc->sc_request_r_scale++;
   3180 	} else {
   3181 		sc->sc_requested_s_scale = 15;
   3182 		sc->sc_request_r_scale = 15;
   3183 	}
   3184 	sc->sc_tp = tp;
   3185 	if (syn_cache_respond(sc, m) == 0) {
   3186 		syn_cache_insert(sc, tp);
   3187 		tcpstat.tcps_sndacks++;
   3188 		tcpstat.tcps_sndtotal++;
   3189 	} else {
   3190 		SYN_CACHE_PUT(sc);
   3191 		tcpstat.tcps_sc_dropped++;
   3192 	}
   3193 	return (1);
   3194 }
   3195 
   3196 int
   3197 syn_cache_respond(sc, m)
   3198 	struct syn_cache *sc;
   3199 	struct mbuf *m;
   3200 {
   3201 	struct route *ro;
   3202 	struct rtentry *rt;
   3203 	u_int8_t *optp;
   3204 	int optlen, error;
   3205 	u_int16_t tlen;
   3206 	struct ip *ip = NULL;
   3207 #ifdef INET6
   3208 	struct ip6_hdr *ip6 = NULL;
   3209 #endif
   3210 	struct tcphdr *th;
   3211 	u_int hlen;
   3212 
   3213 	switch (sc->sc_src.sa.sa_family) {
   3214 	case AF_INET:
   3215 		hlen = sizeof(struct ip);
   3216 		ro = &sc->sc_route4;
   3217 		break;
   3218 #ifdef INET6
   3219 	case AF_INET6:
   3220 		hlen = sizeof(struct ip6_hdr);
   3221 		ro = (struct route *)&sc->sc_route6;
   3222 		break;
   3223 #endif
   3224 	default:
   3225 		if (m)
   3226 			m_freem(m);
   3227 		return EAFNOSUPPORT;
   3228 	}
   3229 
   3230 	/* Compute the size of the TCP options. */
   3231 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   3232 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   3233 
   3234 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   3235 
   3236 	/*
   3237 	 * Create the IP+TCP header from scratch.  Reuse the received mbuf
   3238 	 * if possible.
   3239 	 */
   3240 	if (m != NULL) {
   3241 		m_freem(m->m_next);
   3242 		m->m_next = NULL;
   3243 		MRESETDATA(m);
   3244 	} else {
   3245 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3246 		if (m == NULL)
   3247 			return (ENOBUFS);
   3248 	}
   3249 
   3250 	/* Fixup the mbuf. */
   3251 	m->m_data += max_linkhdr;
   3252 	m->m_len = m->m_pkthdr.len = tlen;
   3253 #ifdef IPSEC
   3254 	if (sc->sc_tp) {
   3255 		struct tcpcb *tp;
   3256 		struct socket *so;
   3257 
   3258 		tp = sc->sc_tp;
   3259 		if (tp->t_inpcb)
   3260 			so = tp->t_inpcb->inp_socket;
   3261 #ifdef INET6
   3262 		else if (tp->t_in6pcb)
   3263 			so = tp->t_in6pcb->in6p_socket;
   3264 #endif
   3265 		else
   3266 			so = NULL;
   3267 		/* use IPsec policy on listening socket, on SYN ACK */
   3268 		m->m_pkthdr.rcvif = (struct ifnet *)so;
   3269 	}
   3270 #else
   3271 	m->m_pkthdr.rcvif = NULL;
   3272 #endif
   3273 	memset(mtod(m, u_char *), 0, tlen);
   3274 
   3275 	switch (sc->sc_src.sa.sa_family) {
   3276 	case AF_INET:
   3277 		ip = mtod(m, struct ip *);
   3278 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   3279 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   3280 		ip->ip_p = IPPROTO_TCP;
   3281 		th = (struct tcphdr *)(ip + 1);
   3282 		th->th_dport = sc->sc_src.sin.sin_port;
   3283 		th->th_sport = sc->sc_dst.sin.sin_port;
   3284 		break;
   3285 #ifdef INET6
   3286 	case AF_INET6:
   3287 		ip6 = mtod(m, struct ip6_hdr *);
   3288 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   3289 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   3290 		ip6->ip6_nxt = IPPROTO_TCP;
   3291 		/* ip6_plen will be updated in ip6_output() */
   3292 		th = (struct tcphdr *)(ip6 + 1);
   3293 		th->th_dport = sc->sc_src.sin6.sin6_port;
   3294 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   3295 		break;
   3296 #endif
   3297 	default:
   3298 		th = NULL;
   3299 	}
   3300 
   3301 	th->th_seq = htonl(sc->sc_iss);
   3302 	th->th_ack = htonl(sc->sc_irs + 1);
   3303 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   3304 	th->th_flags = TH_SYN|TH_ACK;
   3305 	th->th_win = htons(sc->sc_win);
   3306 	/* th_sum already 0 */
   3307 	/* th_urp already 0 */
   3308 
   3309 	/* Tack on the TCP options. */
   3310 	optp = (u_int8_t *)(th + 1);
   3311 	*optp++ = TCPOPT_MAXSEG;
   3312 	*optp++ = 4;
   3313 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   3314 	*optp++ = sc->sc_ourmaxseg & 0xff;
   3315 
   3316 	if (sc->sc_request_r_scale != 15) {
   3317 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   3318 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   3319 		    sc->sc_request_r_scale);
   3320 		optp += 4;
   3321 	}
   3322 
   3323 	if (sc->sc_flags & SCF_TIMESTAMP) {
   3324 		u_int32_t *lp = (u_int32_t *)(optp);
   3325 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   3326 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   3327 		*lp++ = htonl(tcp_now);
   3328 		*lp   = htonl(sc->sc_timestamp);
   3329 		optp += TCPOLEN_TSTAMP_APPA;
   3330 	}
   3331 
   3332 	/* Compute the packet's checksum. */
   3333 	switch (sc->sc_src.sa.sa_family) {
   3334 	case AF_INET:
   3335 		ip->ip_len = htons(tlen - hlen);
   3336 		th->th_sum = 0;
   3337 		th->th_sum = in_cksum(m, tlen);
   3338 		break;
   3339 #ifdef INET6
   3340 	case AF_INET6:
   3341 		ip6->ip6_plen = htons(tlen - hlen);
   3342 		th->th_sum = 0;
   3343 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   3344 		break;
   3345 #endif
   3346 	}
   3347 
   3348 	/*
   3349 	 * Fill in some straggling IP bits.  Note the stack expects
   3350 	 * ip_len to be in host order, for convenience.
   3351 	 */
   3352 	switch (sc->sc_src.sa.sa_family) {
   3353 	case AF_INET:
   3354 		ip->ip_len = tlen;
   3355 		ip->ip_ttl = ip_defttl;
   3356 		/* XXX tos? */
   3357 		break;
   3358 #ifdef INET6
   3359 	case AF_INET6:
   3360 		ip6->ip6_vfc = IPV6_VERSION;
   3361 		ip6->ip6_plen = htons(tlen - hlen);
   3362 		ip6->ip6_hlim = ip6_defhlim;
   3363 		/* XXX flowlabel? */
   3364 		break;
   3365 #endif
   3366 	}
   3367 
   3368 	/*
   3369 	 * If we're doing Path MTU discovery, we need to set DF unless
   3370 	 * the route's MTU is locked.  If we don't yet know the route,
   3371 	 * look it up now.  We will copy this reference to the inpcb
   3372 	 * when we finish creating the connection.
   3373 	 */
   3374 	if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
   3375 		if (ro->ro_rt != NULL) {
   3376 			RTFREE(ro->ro_rt);
   3377 			ro->ro_rt = NULL;
   3378 		}
   3379 		bcopy(&sc->sc_src, &ro->ro_dst, sc->sc_src.sa.sa_len);
   3380 		rtalloc(ro);
   3381 		if ((rt = ro->ro_rt) == NULL) {
   3382 			m_freem(m);
   3383 			switch (sc->sc_src.sa.sa_family) {
   3384 			case AF_INET:
   3385 				ipstat.ips_noroute++;
   3386 				break;
   3387 #ifdef INET6
   3388 			case AF_INET6:
   3389 				ip6stat.ip6s_noroute++;
   3390 				break;
   3391 #endif
   3392 			}
   3393 			return (EHOSTUNREACH);
   3394 		}
   3395 	}
   3396 
   3397 	switch (sc->sc_src.sa.sa_family) {
   3398 	case AF_INET:
   3399 		if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
   3400 			ip->ip_off |= IP_DF;
   3401 
   3402 		/* ...and send it off! */
   3403 		error = ip_output(m, sc->sc_ipopts, ro, 0, NULL);
   3404 		break;
   3405 #ifdef INET6
   3406 	case AF_INET6:
   3407 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
   3408 			0, NULL);
   3409 		break;
   3410 #endif
   3411 	default:
   3412 		error = EAFNOSUPPORT;
   3413 		break;
   3414 	}
   3415 	return (error);
   3416 }
   3417