Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.98
      1 /*	$NetBSD: tcp_input.c,v 1.98 1999/12/11 09:55:14 itojun Exp $	*/
      2 
      3 /*
      4 %%% portions-copyright-nrl-95
      5 Portions of this software are Copyright 1995-1998 by Randall Atkinson,
      6 Ronald Lee, Daniel McDonald, Bao Phan, and Chris Winters. All Rights
      7 Reserved. All rights under this copyright have been assigned to the US
      8 Naval Research Laboratory (NRL). The NRL Copyright Notice and License
      9 Agreement Version 1.1 (January 17, 1995) applies to these portions of the
     10 software.
     11 You should have received a copy of the license with this software. If you
     12 didn't get a copy, you may request one from <license (at) ipv6.nrl.navy.mil>.
     13 
     14 */
     15 
     16 /*
     17  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
     18  * All rights reserved.
     19  *
     20  * Redistribution and use in source and binary forms, with or without
     21  * modification, are permitted provided that the following conditions
     22  * are met:
     23  * 1. Redistributions of source code must retain the above copyright
     24  *    notice, this list of conditions and the following disclaimer.
     25  * 2. Redistributions in binary form must reproduce the above copyright
     26  *    notice, this list of conditions and the following disclaimer in the
     27  *    documentation and/or other materials provided with the distribution.
     28  * 3. Neither the name of the project nor the names of its contributors
     29  *    may be used to endorse or promote products derived from this software
     30  *    without specific prior written permission.
     31  *
     32  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     33  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     34  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     35  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     36  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     37  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     38  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     39  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     40  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     41  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     42  * SUCH DAMAGE.
     43  */
     44 
     45 /*-
     46  * Copyright (c) 1997, 1998, 1999 The NetBSD Foundation, Inc.
     47  * All rights reserved.
     48  *
     49  * This code is derived from software contributed to The NetBSD Foundation
     50  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     51  * Facility, NASA Ames Research Center.
     52  *
     53  * Redistribution and use in source and binary forms, with or without
     54  * modification, are permitted provided that the following conditions
     55  * are met:
     56  * 1. Redistributions of source code must retain the above copyright
     57  *    notice, this list of conditions and the following disclaimer.
     58  * 2. Redistributions in binary form must reproduce the above copyright
     59  *    notice, this list of conditions and the following disclaimer in the
     60  *    documentation and/or other materials provided with the distribution.
     61  * 3. All advertising materials mentioning features or use of this software
     62  *    must display the following acknowledgement:
     63  *	This product includes software developed by the NetBSD
     64  *	Foundation, Inc. and its contributors.
     65  * 4. Neither the name of The NetBSD Foundation nor the names of its
     66  *    contributors may be used to endorse or promote products derived
     67  *    from this software without specific prior written permission.
     68  *
     69  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     70  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     71  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     72  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     73  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     74  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     75  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     76  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     77  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     78  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     79  * POSSIBILITY OF SUCH DAMAGE.
     80  */
     81 
     82 /*
     83  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
     84  *	The Regents of the University of California.  All rights reserved.
     85  *
     86  * Redistribution and use in source and binary forms, with or without
     87  * modification, are permitted provided that the following conditions
     88  * are met:
     89  * 1. Redistributions of source code must retain the above copyright
     90  *    notice, this list of conditions and the following disclaimer.
     91  * 2. Redistributions in binary form must reproduce the above copyright
     92  *    notice, this list of conditions and the following disclaimer in the
     93  *    documentation and/or other materials provided with the distribution.
     94  * 3. All advertising materials mentioning features or use of this software
     95  *    must display the following acknowledgement:
     96  *	This product includes software developed by the University of
     97  *	California, Berkeley and its contributors.
     98  * 4. Neither the name of the University nor the names of its contributors
     99  *    may be used to endorse or promote products derived from this software
    100  *    without specific prior written permission.
    101  *
    102  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    103  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    104  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    105  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    106  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    107  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    108  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    109  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    110  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    111  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    112  * SUCH DAMAGE.
    113  *
    114  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    115  */
    116 
    117 /*
    118  *	TODO list for SYN cache stuff:
    119  *
    120  *	Find room for a "state" field, which is needed to keep a
    121  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    122  *	that this is fairly important for very high-volume web and
    123  *	mail servers, which use a large number of short-lived
    124  *	connections.
    125  */
    126 
    127 #include "opt_inet.h"
    128 #include "opt_ipsec.h"
    129 
    130 #include <sys/param.h>
    131 #include <sys/systm.h>
    132 #include <sys/malloc.h>
    133 #include <sys/mbuf.h>
    134 #include <sys/protosw.h>
    135 #include <sys/socket.h>
    136 #include <sys/socketvar.h>
    137 #include <sys/errno.h>
    138 #include <sys/syslog.h>
    139 #include <sys/pool.h>
    140 #include <sys/domain.h>
    141 
    142 #include <net/if.h>
    143 #include <net/route.h>
    144 #include <net/if_types.h>
    145 
    146 #include <netinet/in.h>
    147 #include <netinet/in_systm.h>
    148 #include <netinet/ip.h>
    149 #include <netinet/in_pcb.h>
    150 #include <netinet/ip_var.h>
    151 
    152 #ifdef INET6
    153 #ifndef INET
    154 #include <netinet/in.h>
    155 #endif
    156 #include <netinet/ip6.h>
    157 #include <netinet6/in6_pcb.h>
    158 #include <netinet6/ip6_var.h>
    159 #include <netinet6/in6_var.h>
    160 #include <netinet/icmp6.h>
    161 #include <netinet6/nd6.h>
    162 #endif
    163 
    164 #include <netinet/tcp.h>
    165 #include <netinet/tcp_fsm.h>
    166 #include <netinet/tcp_seq.h>
    167 #include <netinet/tcp_timer.h>
    168 #include <netinet/tcp_var.h>
    169 #include <netinet/tcpip.h>
    170 #include <netinet/tcp_debug.h>
    171 
    172 #include <machine/stdarg.h>
    173 
    174 #ifdef IPSEC
    175 #include <netinet6/ipsec.h>
    176 #include <netkey/key.h>
    177 #include <netkey/key_debug.h>
    178 #endif /*IPSEC*/
    179 #ifdef INET6
    180 #include "faith.h"
    181 #endif
    182 
    183 int	tcprexmtthresh = 3;
    184 int	tcp_log_refused;
    185 
    186 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
    187 
    188 /* for modulo comparisons of timestamps */
    189 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    190 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    191 
    192 /*
    193  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    194  */
    195 #ifdef INET6
    196 #define ND6_HINT(tp) \
    197 do { \
    198 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 \
    199 	 && tp->t_in6pcb->in6p_route.ro_rt) { \
    200 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL); \
    201 	} \
    202 } while (0)
    203 #else
    204 #define ND6_HINT(tp)
    205 #endif
    206 
    207 /*
    208  * Macro to compute ACK transmission behavior.  Delay the ACK unless
    209  * we have already delayed an ACK (must send an ACK every two segments).
    210  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    211  * option is enabled.
    212  */
    213 #define	TCP_SETUP_ACK(tp, th) \
    214 do { \
    215 	if ((tp)->t_flags & TF_DELACK || \
    216 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
    217 		tp->t_flags |= TF_ACKNOW; \
    218 	else \
    219 		TCP_SET_DELACK(tp); \
    220 } while (0)
    221 
    222 int
    223 tcp_reass(tp, th, m, tlen)
    224 	register struct tcpcb *tp;
    225 	register struct tcphdr *th;
    226 	struct mbuf *m;
    227 	int *tlen;
    228 {
    229 	register struct ipqent *p, *q, *nq, *tiqe = NULL;
    230 	struct socket *so = NULL;
    231 	int pkt_flags;
    232 	tcp_seq pkt_seq;
    233 	unsigned pkt_len;
    234 	u_long rcvpartdupbyte = 0;
    235 	u_long rcvoobyte;
    236 
    237 	if (tp->t_inpcb)
    238 		so = tp->t_inpcb->inp_socket;
    239 #ifdef INET6
    240 	else if (tp->t_in6pcb)
    241 		so = tp->t_in6pcb->in6p_socket;
    242 #endif
    243 
    244 	TCP_REASS_LOCK_CHECK(tp);
    245 
    246 	/*
    247 	 * Call with th==0 after become established to
    248 	 * force pre-ESTABLISHED data up to user socket.
    249 	 */
    250 	if (th == 0)
    251 		goto present;
    252 
    253 	rcvoobyte = *tlen;
    254 	/*
    255 	 * Copy these to local variables because the tcpiphdr
    256 	 * gets munged while we are collapsing mbufs.
    257 	 */
    258 	pkt_seq = th->th_seq;
    259 	pkt_len = *tlen;
    260 	pkt_flags = th->th_flags;
    261 	/*
    262 	 * Find a segment which begins after this one does.
    263 	 */
    264 	for (p = NULL, q = tp->segq.lh_first; q != NULL; q = nq) {
    265 		nq = q->ipqe_q.le_next;
    266 		/*
    267 		 * If the received segment is just right after this
    268 		 * fragment, merge the two together and then check
    269 		 * for further overlaps.
    270 		 */
    271 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    272 #ifdef TCPREASS_DEBUG
    273 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    274 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    275 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    276 #endif
    277 			pkt_len += q->ipqe_len;
    278 			pkt_flags |= q->ipqe_flags;
    279 			pkt_seq = q->ipqe_seq;
    280 			m_cat(q->ipqe_m, m);
    281 			m = q->ipqe_m;
    282 			goto free_ipqe;
    283 		}
    284 		/*
    285 		 * If the received segment is completely past this
    286 		 * fragment, we need to go the next fragment.
    287 		 */
    288 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    289 			p = q;
    290 			continue;
    291 		}
    292 		/*
    293 		 * If the fragment is past the received segment,
    294 		 * it (or any following) can't be concatenated.
    295 		 */
    296 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len))
    297 			break;
    298 		/*
    299 		 * We've received all the data in this segment before.
    300 		 * mark it as a duplicate and return.
    301 		 */
    302 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    303 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    304 			tcpstat.tcps_rcvduppack++;
    305 			tcpstat.tcps_rcvdupbyte += pkt_len;
    306 			m_freem(m);
    307 			if (tiqe != NULL)
    308 				pool_put(&ipqent_pool, tiqe);
    309 			return (0);
    310 		}
    311 		/*
    312 		 * Received segment completely overlaps this fragment
    313 		 * so we drop the fragment (this keeps the temporal
    314 		 * ordering of segments correct).
    315 		 */
    316 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    317 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    318 			rcvpartdupbyte += q->ipqe_len;
    319 			m_freem(q->ipqe_m);
    320 			goto free_ipqe;
    321 		}
    322 		/*
    323 		 * RX'ed segment extends past the end of the
    324 		 * fragment.  Drop the overlapping bytes.  Then
    325 		 * merge the fragment and segment then treat as
    326 		 * a longer received packet.
    327 		 */
    328 		if (SEQ_LT(q->ipqe_seq, pkt_seq)
    329 		    && SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    330 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    331 #ifdef TCPREASS_DEBUG
    332 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    333 			       tp, overlap,
    334 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    335 #endif
    336 			m_adj(m, overlap);
    337 			rcvpartdupbyte += overlap;
    338 			m_cat(q->ipqe_m, m);
    339 			m = q->ipqe_m;
    340 			pkt_seq = q->ipqe_seq;
    341 			pkt_len += q->ipqe_len - overlap;
    342 			rcvoobyte -= overlap;
    343 			goto free_ipqe;
    344 		}
    345 		/*
    346 		 * RX'ed segment extends past the front of the
    347 		 * fragment.  Drop the overlapping bytes on the
    348 		 * received packet.  The packet will then be
    349 		 * contatentated with this fragment a bit later.
    350 		 */
    351 		if (SEQ_GT(q->ipqe_seq, pkt_seq)
    352 		    && SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    353 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    354 #ifdef TCPREASS_DEBUG
    355 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    356 			       tp, overlap,
    357 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    358 #endif
    359 			m_adj(m, -overlap);
    360 			pkt_len -= overlap;
    361 			rcvpartdupbyte += overlap;
    362 			rcvoobyte -= overlap;
    363 		}
    364 		/*
    365 		 * If the received segment immediates precedes this
    366 		 * fragment then tack the fragment onto this segment
    367 		 * and reinsert the data.
    368 		 */
    369 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    370 #ifdef TCPREASS_DEBUG
    371 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    372 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    373 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    374 #endif
    375 			pkt_len += q->ipqe_len;
    376 			pkt_flags |= q->ipqe_flags;
    377 			m_cat(m, q->ipqe_m);
    378 			LIST_REMOVE(q, ipqe_q);
    379 			LIST_REMOVE(q, ipqe_timeq);
    380 			if (tiqe == NULL) {
    381 			    tiqe = q;
    382 			} else {
    383 			    pool_put(&ipqent_pool, q);
    384 			}
    385 			break;
    386 		}
    387 		/*
    388 		 * If the fragment is before the segment, remember it.
    389 		 * When this loop is terminated, p will contain the
    390 		 * pointer to fragment that is right before the received
    391 		 * segment.
    392 		 */
    393 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    394 			p = q;
    395 
    396 		continue;
    397 
    398 		/*
    399 		 * This is a common operation.  It also will allow
    400 		 * to save doing a malloc/free in most instances.
    401 		 */
    402 	  free_ipqe:
    403 		LIST_REMOVE(q, ipqe_q);
    404 		LIST_REMOVE(q, ipqe_timeq);
    405 		if (tiqe == NULL) {
    406 		    tiqe = q;
    407 		} else {
    408 		    pool_put(&ipqent_pool, q);
    409 		}
    410 	}
    411 
    412 	/*
    413 	 * Allocate a new queue entry since the received segment did not
    414 	 * collapse onto any other out-of-order block; thus we are allocating
    415 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    416 	 * we would be reusing it.
    417 	 * XXX If we can't, just drop the packet.  XXX
    418 	 */
    419 	if (tiqe == NULL) {
    420 		tiqe = pool_get(&ipqent_pool, PR_NOWAIT);
    421 		if (tiqe == NULL) {
    422 			tcpstat.tcps_rcvmemdrop++;
    423 			m_freem(m);
    424 			return (0);
    425 		}
    426 	}
    427 
    428 	/*
    429 	 * Update the counters.
    430 	 */
    431 	tcpstat.tcps_rcvoopack++;
    432 	tcpstat.tcps_rcvoobyte += rcvoobyte;
    433 	if (rcvpartdupbyte) {
    434 	    tcpstat.tcps_rcvpartduppack++;
    435 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
    436 	}
    437 
    438 	/*
    439 	 * Insert the new fragment queue entry into both queues.
    440 	 */
    441 	tiqe->ipqe_m = m;
    442 	tiqe->ipqe_seq = pkt_seq;
    443 	tiqe->ipqe_len = pkt_len;
    444 	tiqe->ipqe_flags = pkt_flags;
    445 	if (p == NULL) {
    446 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    447 #ifdef TCPREASS_DEBUG
    448 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    449 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    450 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    451 #endif
    452 	} else {
    453 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
    454 #ifdef TCPREASS_DEBUG
    455 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    456 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    457 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    458 #endif
    459 	}
    460 
    461 	LIST_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    462 
    463 present:
    464 	/*
    465 	 * Present data to user, advancing rcv_nxt through
    466 	 * completed sequence space.
    467 	 */
    468 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    469 		return (0);
    470 	q = tp->segq.lh_first;
    471 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    472 		return (0);
    473 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    474 		return (0);
    475 
    476 	tp->rcv_nxt += q->ipqe_len;
    477 	pkt_flags = q->ipqe_flags & TH_FIN;
    478 	ND6_HINT(tp);
    479 
    480 	LIST_REMOVE(q, ipqe_q);
    481 	LIST_REMOVE(q, ipqe_timeq);
    482 	if (so->so_state & SS_CANTRCVMORE)
    483 		m_freem(q->ipqe_m);
    484 	else
    485 		sbappend(&so->so_rcv, q->ipqe_m);
    486 	pool_put(&ipqent_pool, q);
    487 	sorwakeup(so);
    488 	return (pkt_flags);
    489 }
    490 
    491 #if defined(INET6) && !defined(TCP6)
    492 int
    493 tcp6_input(mp, offp, proto)
    494 	struct mbuf **mp;
    495 	int *offp, proto;
    496 {
    497 	struct mbuf *m = *mp;
    498 
    499 #if defined(NFAITH) && 0 < NFAITH
    500 	if (m->m_pkthdr.rcvif) {
    501 		if (m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
    502 			/* XXX send icmp6 host/port unreach? */
    503 			m_freem(m);
    504 			return IPPROTO_DONE;
    505 		}
    506 	}
    507 #endif
    508 
    509 	/*
    510 	 * draft-itojun-ipv6-tcp-to-anycast
    511 	 * better place to put this in?
    512 	 */
    513 	if (m->m_flags & M_ANYCAST6) {
    514 		struct ip6_hdr *ip6;
    515 		if (m->m_len < sizeof(struct ip6_hdr)) {
    516 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    517 				tcpstat.tcps_rcvshort++;
    518 				return IPPROTO_DONE;
    519 			}
    520 		}
    521 		ip6 = mtod(m, struct ip6_hdr *);
    522 		icmp6_error(m, ICMP6_DST_UNREACH,
    523 			ICMP6_DST_UNREACH_ADDR,
    524 			(caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
    525 		return IPPROTO_DONE;
    526 	}
    527 
    528 	tcp_input(m, *offp, proto);
    529 	return IPPROTO_DONE;
    530 }
    531 #endif
    532 
    533 /*
    534  * TCP input routine, follows pages 65-76 of the
    535  * protocol specification dated September, 1981 very closely.
    536  */
    537 void
    538 #if __STDC__
    539 tcp_input(struct mbuf *m, ...)
    540 #else
    541 tcp_input(m, va_alist)
    542 	register struct mbuf *m;
    543 #endif
    544 {
    545 	int proto;
    546 	register struct tcphdr *th;
    547 	struct ip *ip;
    548 	register struct inpcb *inp;
    549 #ifdef INET6
    550 	struct ip6_hdr *ip6;
    551 	register struct in6pcb *in6p;
    552 #endif
    553 	caddr_t optp = NULL;
    554 	int optlen = 0;
    555 	int len, tlen, toff, hdroptlen = 0;
    556 	register struct tcpcb *tp = 0;
    557 	register int tiflags;
    558 	struct socket *so = NULL;
    559 	int todrop, acked, ourfinisacked, needoutput = 0;
    560 	short ostate = 0;
    561 	int iss = 0;
    562 	u_long tiwin;
    563 	struct tcp_opt_info opti;
    564 	int off, iphlen;
    565 	va_list ap;
    566 	int af;		/* af on the wire */
    567 	struct mbuf *tcp_saveti = NULL;
    568 
    569 	va_start(ap, m);
    570 	toff = va_arg(ap, int);
    571 	proto = va_arg(ap, int);
    572 	va_end(ap);
    573 
    574 	tcpstat.tcps_rcvtotal++;
    575 
    576 	bzero(&opti, sizeof(opti));
    577 	opti.ts_present = 0;
    578 	opti.maxseg = 0;
    579 
    580 	/*
    581 	 * Get IP and TCP header together in first mbuf.
    582 	 * Note: IP leaves IP header in first mbuf.
    583 	 */
    584 	ip = mtod(m, struct ip *);
    585 #ifdef INET6
    586 	ip6 = NULL;
    587 #endif
    588 	switch (ip->ip_v) {
    589 	case 4:
    590 		af = AF_INET;
    591 		iphlen = sizeof(struct ip);
    592 		/* would like to get rid of this... */
    593 		if (toff > sizeof (struct ip)) {
    594 			ip_stripoptions(m, (struct mbuf *)0);
    595 			toff = sizeof(struct ip);
    596 		}
    597 		if (m->m_len < toff + sizeof (struct tcphdr)) {
    598 			if ((m = m_pullup(m, toff + sizeof (struct tcphdr))) == 0) {
    599 				tcpstat.tcps_rcvshort++;
    600 				return;
    601 			}
    602 		}
    603 		ip = mtod(m, struct ip *);
    604 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    605 
    606 		/*
    607 		 * Checksum extended TCP header and data.
    608 		 */
    609 		len = ip->ip_len;
    610 		tlen = len - toff;
    611 	    {
    612 		struct ipovly *ipov;
    613 		ipov = (struct ipovly *)ip;
    614 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    615 		ipov->ih_len = htons(tlen);
    616 	    }
    617 		if (in_cksum(m, len) != 0) {
    618 			tcpstat.tcps_rcvbadsum++;
    619 			goto drop;
    620 		}
    621 		break;
    622 #ifdef INET6
    623 	case 6:
    624 		ip = NULL;
    625 		iphlen = sizeof(struct ip6_hdr);
    626 		af = AF_INET6;
    627 		if (m->m_len < toff + sizeof(struct tcphdr)) {
    628 			m = m_pullup(m, toff + sizeof(struct tcphdr));	/*XXX*/
    629 			if (m == NULL) {
    630 				tcpstat.tcps_rcvshort++;
    631 				return;
    632 			}
    633 		}
    634 		ip6 = mtod(m, struct ip6_hdr *);
    635 		th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    636 
    637 		/*
    638 		 * Checksum extended TCP header and data.
    639 		 */
    640 		len = m->m_pkthdr.len;
    641 		tlen = len - toff;
    642 		if (in6_cksum(m, IPPROTO_TCP, toff, tlen)) {
    643 			tcpstat.tcps_rcvbadsum++;
    644 			goto drop;
    645 		}
    646 		break;
    647 #endif
    648 	default:
    649 		m_freem(m);
    650 		return;
    651 	}
    652 
    653 	/*
    654 	 * Check that TCP offset makes sense,
    655 	 * pull out TCP options and adjust length.		XXX
    656 	 */
    657 	off = th->th_off << 2;
    658 	if (off < sizeof (struct tcphdr) || off > tlen) {
    659 		tcpstat.tcps_rcvbadoff++;
    660 		goto drop;
    661 	}
    662 	tlen -= off;
    663 
    664 	/*
    665 	 * tcp_input() has been modified to use tlen to mean the TCP data
    666 	 * length throughout the function.  Other functions can use
    667 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
    668 	 * rja
    669 	 */
    670 
    671 	if (off > sizeof (struct tcphdr)) {
    672 		if (m->m_len < toff + off) {
    673 			if ((m = m_pullup(m, toff + off)) == 0) {
    674 				tcpstat.tcps_rcvshort++;
    675 				return;
    676 			}
    677 			switch (af) {
    678 			case AF_INET:
    679 				ip = mtod(m, struct ip *);
    680 				break;
    681 #ifdef INET6
    682 			case AF_INET6:
    683 				ip6 = mtod(m, struct ip6_hdr *);
    684 				break;
    685 #endif
    686 			}
    687 			th = (struct tcphdr *)(mtod(m, caddr_t) + toff);
    688 		}
    689 		optlen = off - sizeof (struct tcphdr);
    690 		optp = mtod(m, caddr_t) + toff + sizeof (struct tcphdr);
    691 		/*
    692 		 * Do quick retrieval of timestamp options ("options
    693 		 * prediction?").  If timestamp is the only option and it's
    694 		 * formatted as recommended in RFC 1323 appendix A, we
    695 		 * quickly get the values now and not bother calling
    696 		 * tcp_dooptions(), etc.
    697 		 */
    698 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
    699 		     (optlen > TCPOLEN_TSTAMP_APPA &&
    700 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
    701 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
    702 		     (th->th_flags & TH_SYN) == 0) {
    703 			opti.ts_present = 1;
    704 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
    705 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
    706 			optp = NULL;	/* we've parsed the options */
    707 		}
    708 	}
    709 	tiflags = th->th_flags;
    710 
    711 	/*
    712 	 * Convert TCP protocol specific fields to host format.
    713 	 */
    714 	NTOHL(th->th_seq);
    715 	NTOHL(th->th_ack);
    716 	NTOHS(th->th_win);
    717 	NTOHS(th->th_urp);
    718 
    719 	/*
    720 	 * Locate pcb for segment.
    721 	 */
    722 findpcb:
    723 	inp = NULL;
    724 #ifdef INET6
    725 	in6p = NULL;
    726 #endif
    727 	switch (af) {
    728 	case AF_INET:
    729 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
    730 		    ip->ip_dst, th->th_dport);
    731 		if (inp == 0) {
    732 			++tcpstat.tcps_pcbhashmiss;
    733 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
    734 		}
    735 #if defined(INET6) && !defined(TCP6)
    736 		if (inp == 0) {
    737 			struct in6_addr s, d;
    738 
    739 			/* mapped addr case */
    740 			bzero(&s, sizeof(s));
    741 			s.s6_addr16[5] = htons(0xffff);
    742 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
    743 			bzero(&d, sizeof(d));
    744 			d.s6_addr16[5] = htons(0xffff);
    745 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
    746 			in6p = in6_pcblookup_connect(&tcb6, &s, th->th_sport,
    747 				&d, th->th_dport, 0);
    748 			if (in6p == 0) {
    749 				++tcpstat.tcps_pcbhashmiss;
    750 				in6p = in6_pcblookup_bind(&tcb6, &d,
    751 					th->th_dport, 0);
    752 			}
    753 		}
    754 #endif
    755 #ifndef INET6
    756 		if (inp == 0)
    757 #else
    758 		if (inp == 0 && in6p == 0)
    759 #endif
    760 		{
    761 			++tcpstat.tcps_noport;
    762 			if (tcp_log_refused && (tiflags & TH_SYN)) {
    763 #ifndef INET6
    764 				char src[4*sizeof "123"];
    765 				char dst[4*sizeof "123"];
    766 #else
    767 				char src[INET6_ADDRSTRLEN];
    768 				char dst[INET6_ADDRSTRLEN];
    769 #endif
    770 				if (ip) {
    771 					strcpy(src, inet_ntoa(ip->ip_src));
    772 					strcpy(dst, inet_ntoa(ip->ip_dst));
    773 				}
    774 #ifdef INET6
    775 				else if (ip6) {
    776 					strcpy(src, ip6_sprintf(&ip6->ip6_src));
    777 					strcpy(dst, ip6_sprintf(&ip6->ip6_dst));
    778 				}
    779 #endif
    780 				else {
    781 					strcpy(src, "(unknown)");
    782 					strcpy(dst, "(unknown)");
    783 				}
    784 				log(LOG_INFO,
    785 				    "Connection attempt to TCP %s:%d from %s:%d\n",
    786 				    dst, ntohs(th->th_dport),
    787 				    src, ntohs(th->th_sport));
    788 			}
    789 			goto dropwithreset;
    790 		}
    791 #ifdef IPSEC
    792 		if (inp && ipsec4_in_reject(m, inp)) {
    793 			ipsecstat.in_polvio++;
    794 			goto drop;
    795 		}
    796 #ifdef INET6
    797 		else if (in6p && ipsec4_in_reject_so(m, in6p->in6p_socket)) {
    798 			ipsecstat.in_polvio++;
    799 			goto drop;
    800 		}
    801 #endif
    802 #endif /*IPSEC*/
    803 		break;
    804 #if defined(INET6) && !defined(TCP6)
    805 	case AF_INET6:
    806 	    {
    807 		int faith;
    808 
    809 #if defined(NFAITH) && NFAITH > 0
    810 		if (m->m_pkthdr.rcvif
    811 		 && m->m_pkthdr.rcvif->if_type == IFT_FAITH) {
    812 			faith = 1;
    813 		} else
    814 			faith = 0;
    815 #else
    816 		faith = 0;
    817 #endif
    818 		in6p = in6_pcblookup_connect(&tcb6, &ip6->ip6_src, th->th_sport,
    819 			&ip6->ip6_dst, th->th_dport, faith);
    820 		if (in6p == NULL) {
    821 			++tcpstat.tcps_pcbhashmiss;
    822 			in6p = in6_pcblookup_bind(&tcb6, &ip6->ip6_dst,
    823 				th->th_dport, faith);
    824 		}
    825 		if (in6p == NULL) {
    826 			++tcpstat.tcps_noport;
    827 			goto dropwithreset;
    828 		}
    829 #ifdef IPSEC
    830 		if (ipsec6_in_reject(m, in6p)) {
    831 			ipsec6stat.in_polvio++;
    832 			goto drop;
    833 		}
    834 #endif /*IPSEC*/
    835 		break;
    836 	    }
    837 #endif
    838 	}
    839 
    840 	/*
    841 	 * If the state is CLOSED (i.e., TCB does not exist) then
    842 	 * all data in the incoming segment is discarded.
    843 	 * If the TCB exists but is in CLOSED state, it is embryonic,
    844 	 * but should either do a listen or a connect soon.
    845 	 */
    846 	tp = NULL;
    847 	so = NULL;
    848 	if (inp) {
    849 		tp = intotcpcb(inp);
    850 		so = inp->inp_socket;
    851 	}
    852 #ifdef INET6
    853 	else if (in6p) {
    854 		tp = in6totcpcb(in6p);
    855 		so = in6p->in6p_socket;
    856 	}
    857 #endif
    858 	if (tp == 0) {
    859 		goto dropwithreset;
    860 	}
    861 	if (tp->t_state == TCPS_CLOSED)
    862 		goto drop;
    863 
    864 	/* Unscale the window into a 32-bit value. */
    865 	if ((tiflags & TH_SYN) == 0)
    866 		tiwin = th->th_win << tp->snd_scale;
    867 	else
    868 		tiwin = th->th_win;
    869 
    870 #ifdef INET6
    871 	/* save packet options if user wanted */
    872 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
    873 		if (in6p->in6p_options) {
    874 			m_freem(in6p->in6p_options);
    875 			in6p->in6p_options = 0;
    876 		}
    877 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
    878 	}
    879 #endif
    880 
    881 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
    882 		union syn_cache_sa src;
    883 		union syn_cache_sa dst;
    884 
    885 		bzero(&src, sizeof(src));
    886 		bzero(&dst, sizeof(dst));
    887 		switch (af) {
    888 		case AF_INET:
    889 			src.sin.sin_len = sizeof(struct sockaddr_in);
    890 			src.sin.sin_family = AF_INET;
    891 			src.sin.sin_addr = ip->ip_src;
    892 			src.sin.sin_port = th->th_sport;
    893 
    894 			dst.sin.sin_len = sizeof(struct sockaddr_in);
    895 			dst.sin.sin_family = AF_INET;
    896 			dst.sin.sin_addr = ip->ip_dst;
    897 			dst.sin.sin_port = th->th_dport;
    898 			break;
    899 #ifdef INET6
    900 		case AF_INET6:
    901 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
    902 			src.sin6.sin6_family = AF_INET6;
    903 			src.sin6.sin6_addr = ip6->ip6_src;
    904 			src.sin6.sin6_port = th->th_sport;
    905 
    906 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
    907 			dst.sin6.sin6_family = AF_INET6;
    908 			dst.sin6.sin6_addr = ip6->ip6_dst;
    909 			dst.sin6.sin6_port = th->th_dport;
    910 			break;
    911 #endif /* INET6 */
    912 		default:
    913 			goto badsyn;	/*sanity*/
    914 		}
    915 
    916 		if (so->so_options & SO_DEBUG) {
    917 			ostate = tp->t_state;
    918 			tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
    919 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
    920 				m_freem(tcp_saveti);
    921 				tcp_saveti = NULL;
    922 			} else {
    923 				tcp_saveti->m_len += sizeof(struct tcphdr);
    924 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
    925 					sizeof(struct tcphdr));
    926 			}
    927 			if (tcp_saveti) {
    928 				/*
    929 				 * need to recover version # field, which was
    930 				 * overwritten on ip_cksum computation.
    931 				 */
    932 				struct ip *sip;
    933 				sip = mtod(tcp_saveti, struct ip *);
    934 				switch (af) {
    935 				case AF_INET:
    936 					sip->ip_v = 4;
    937 					break;
    938 #ifdef INET6
    939 				case AF_INET6:
    940 					sip->ip_v = 6;
    941 					break;
    942 #endif
    943 				}
    944 			}
    945 		}
    946 		if (so->so_options & SO_ACCEPTCONN) {
    947   			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
    948 				if (tiflags & TH_RST) {
    949 					syn_cache_reset(&src.sa, &dst.sa, th);
    950 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
    951 				    (TH_ACK|TH_SYN)) {
    952 					/*
    953 					 * Received a SYN,ACK.  This should
    954 					 * never happen while we are in
    955 					 * LISTEN.  Send an RST.
    956 					 */
    957 					goto badsyn;
    958 				} else if (tiflags & TH_ACK) {
    959 					so = syn_cache_get(&src.sa, &dst.sa,
    960 						th, toff, tlen, so, m);
    961 					if (so == NULL) {
    962 						/*
    963 						 * We don't have a SYN for
    964 						 * this ACK; send an RST.
    965 						 */
    966 						goto badsyn;
    967 					} else if (so ==
    968 					    (struct socket *)(-1)) {
    969 						/*
    970 						 * We were unable to create
    971 						 * the connection.  If the
    972 						 * 3-way handshake was
    973 						 * completed, and RST has
    974 						 * been sent to the peer.
    975 						 * Since the mbuf might be
    976 						 * in use for the reply,
    977 						 * do not free it.
    978 						 */
    979 						m = NULL;
    980 					} else {
    981 						/*
    982 						 * We have created a
    983 						 * full-blown connection.
    984 						 */
    985 						tp = NULL;
    986 						inp = NULL;
    987 #ifdef INET6
    988 						in6p = NULL;
    989 #endif
    990 						switch (so->so_proto->pr_domain->dom_family) {
    991 						case AF_INET:
    992 							inp = sotoinpcb(so);
    993 							tp = intotcpcb(inp);
    994 							break;
    995 #ifdef INET6
    996 						case AF_INET6:
    997 							in6p = sotoin6pcb(so);
    998 							tp = in6totcpcb(in6p);
    999 							break;
   1000 #endif
   1001 						}
   1002 						if (tp == NULL)
   1003 							goto badsyn;	/*XXX*/
   1004 						tiwin <<= tp->snd_scale;
   1005 						goto after_listen;
   1006 					}
   1007   				} else {
   1008 					/*
   1009 					 * None of RST, SYN or ACK was set.
   1010 					 * This is an invalid packet for a
   1011 					 * TCB in LISTEN state.  Send a RST.
   1012 					 */
   1013 					goto badsyn;
   1014 				}
   1015   			} else {
   1016 				/*
   1017 				 * Received a SYN.
   1018 				 */
   1019 
   1020 				/*
   1021 				 * LISTEN socket received a SYN
   1022 				 * from itself?  This can't possibly
   1023 				 * be valid; drop the packet.
   1024 				 */
   1025 				if (th->th_sport == th->th_dport) {
   1026 					int i;
   1027 
   1028 					switch (af) {
   1029 					case AF_INET:
   1030 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1031 						break;
   1032 #ifdef INET6
   1033 					case AF_INET6:
   1034 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1035 						break;
   1036 #endif
   1037 					default:
   1038 						i = 1;
   1039 					}
   1040 					if (i) {
   1041 						tcpstat.tcps_badsyn++;
   1042 						goto drop;
   1043 					}
   1044 				}
   1045 
   1046 				/*
   1047 				 * SYN looks ok; create compressed TCP
   1048 				 * state for it.
   1049 				 */
   1050 				if (so->so_qlen <= so->so_qlimit &&
   1051 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1052 						so, m, optp, optlen, &opti))
   1053 					m = NULL;
   1054 			}
   1055 			goto drop;
   1056 		}
   1057 	}
   1058 
   1059 after_listen:
   1060 #ifdef DIAGNOSTIC
   1061 	/*
   1062 	 * Should not happen now that all embryonic connections
   1063 	 * are handled with compressed state.
   1064 	 */
   1065 	if (tp->t_state == TCPS_LISTEN)
   1066 		panic("tcp_input: TCPS_LISTEN");
   1067 #endif
   1068 
   1069 	/*
   1070 	 * Segment received on connection.
   1071 	 * Reset idle time and keep-alive timer.
   1072 	 */
   1073 	tp->t_idle = 0;
   1074 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1075 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1076 
   1077 	/*
   1078 	 * Process options.
   1079 	 */
   1080 	if (optp)
   1081 		tcp_dooptions(tp, optp, optlen, th, &opti);
   1082 
   1083 	/*
   1084 	 * Header prediction: check for the two common cases
   1085 	 * of a uni-directional data xfer.  If the packet has
   1086 	 * no control flags, is in-sequence, the window didn't
   1087 	 * change and we're not retransmitting, it's a
   1088 	 * candidate.  If the length is zero and the ack moved
   1089 	 * forward, we're the sender side of the xfer.  Just
   1090 	 * free the data acked & wake any higher level process
   1091 	 * that was blocked waiting for space.  If the length
   1092 	 * is non-zero and the ack didn't move, we're the
   1093 	 * receiver side.  If we're getting packets in-order
   1094 	 * (the reassembly queue is empty), add the data to
   1095 	 * the socket buffer and note that we need a delayed ack.
   1096 	 */
   1097 	if (tp->t_state == TCPS_ESTABLISHED &&
   1098 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
   1099 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1100 	    th->th_seq == tp->rcv_nxt &&
   1101 	    tiwin && tiwin == tp->snd_wnd &&
   1102 	    tp->snd_nxt == tp->snd_max) {
   1103 
   1104 		/*
   1105 		 * If last ACK falls within this segment's sequence numbers,
   1106 		 *  record the timestamp.
   1107 		 */
   1108 		if (opti.ts_present &&
   1109 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1110 		    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
   1111 			tp->ts_recent_age = tcp_now;
   1112 			tp->ts_recent = opti.ts_val;
   1113 		}
   1114 
   1115 		if (tlen == 0) {
   1116 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1117 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1118 			    tp->snd_cwnd >= tp->snd_wnd &&
   1119 			    tp->t_dupacks < tcprexmtthresh) {
   1120 				/*
   1121 				 * this is a pure ack for outstanding data.
   1122 				 */
   1123 				++tcpstat.tcps_predack;
   1124 				if (opti.ts_present && opti.ts_ecr)
   1125 					tcp_xmit_timer(tp,
   1126 					    tcp_now - opti.ts_ecr + 1);
   1127 				else if (tp->t_rtt &&
   1128 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1129 					tcp_xmit_timer(tp, tp->t_rtt);
   1130 				acked = th->th_ack - tp->snd_una;
   1131 				tcpstat.tcps_rcvackpack++;
   1132 				tcpstat.tcps_rcvackbyte += acked;
   1133 				ND6_HINT(tp);
   1134 				sbdrop(&so->so_snd, acked);
   1135 				/*
   1136 				 * We want snd_recover to track snd_una to
   1137 				 * avoid sequence wraparound problems for
   1138 				 * very large transfers.
   1139 				 */
   1140 				tp->snd_una = tp->snd_recover = th->th_ack;
   1141 				m_freem(m);
   1142 
   1143 				/*
   1144 				 * If all outstanding data are acked, stop
   1145 				 * retransmit timer, otherwise restart timer
   1146 				 * using current (possibly backed-off) value.
   1147 				 * If process is waiting for space,
   1148 				 * wakeup/selwakeup/signal.  If data
   1149 				 * are ready to send, let tcp_output
   1150 				 * decide between more output or persist.
   1151 				 */
   1152 				if (tp->snd_una == tp->snd_max)
   1153 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1154 				else if (TCP_TIMER_ISARMED(tp,
   1155 				    TCPT_PERSIST) == 0)
   1156 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1157 					    tp->t_rxtcur);
   1158 
   1159 				sowwakeup(so);
   1160 				if (so->so_snd.sb_cc)
   1161 					(void) tcp_output(tp);
   1162 				if (tcp_saveti)
   1163 					m_freem(tcp_saveti);
   1164 				return;
   1165 			}
   1166 		} else if (th->th_ack == tp->snd_una &&
   1167 		    tp->segq.lh_first == NULL &&
   1168 		    tlen <= sbspace(&so->so_rcv)) {
   1169 			/*
   1170 			 * this is a pure, in-sequence data packet
   1171 			 * with nothing on the reassembly queue and
   1172 			 * we have enough buffer space to take it.
   1173 			 */
   1174 			++tcpstat.tcps_preddat;
   1175 			tp->rcv_nxt += tlen;
   1176 			tcpstat.tcps_rcvpack++;
   1177 			tcpstat.tcps_rcvbyte += tlen;
   1178 			ND6_HINT(tp);
   1179 			/*
   1180 			 * Drop TCP, IP headers and TCP options then add data
   1181 			 * to socket buffer.
   1182 			 */
   1183 			m_adj(m, toff + off);
   1184 			sbappend(&so->so_rcv, m);
   1185 			sorwakeup(so);
   1186 			TCP_SETUP_ACK(tp, th);
   1187 			if (tp->t_flags & TF_ACKNOW)
   1188 				(void) tcp_output(tp);
   1189 			if (tcp_saveti)
   1190 				m_freem(tcp_saveti);
   1191 			return;
   1192 		}
   1193 	}
   1194 
   1195 	/*
   1196 	 * Compute mbuf offset to TCP data segment.
   1197 	 */
   1198 	hdroptlen = toff + off;
   1199 
   1200 	/*
   1201 	 * Calculate amount of space in receive window,
   1202 	 * and then do TCP input processing.
   1203 	 * Receive window is amount of space in rcv queue,
   1204 	 * but not less than advertised window.
   1205 	 */
   1206 	{ int win;
   1207 
   1208 	win = sbspace(&so->so_rcv);
   1209 	if (win < 0)
   1210 		win = 0;
   1211 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   1212 	}
   1213 
   1214 	switch (tp->t_state) {
   1215 
   1216 	/*
   1217 	 * If the state is SYN_SENT:
   1218 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   1219 	 *	if seg contains a RST, then drop the connection.
   1220 	 *	if seg does not contain SYN, then drop it.
   1221 	 * Otherwise this is an acceptable SYN segment
   1222 	 *	initialize tp->rcv_nxt and tp->irs
   1223 	 *	if seg contains ack then advance tp->snd_una
   1224 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   1225 	 *	arrange for segment to be acked (eventually)
   1226 	 *	continue processing rest of data/controls, beginning with URG
   1227 	 */
   1228 	case TCPS_SYN_SENT:
   1229 		if ((tiflags & TH_ACK) &&
   1230 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1231 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1232 			goto dropwithreset;
   1233 		if (tiflags & TH_RST) {
   1234 			if (tiflags & TH_ACK)
   1235 				tp = tcp_drop(tp, ECONNREFUSED);
   1236 			goto drop;
   1237 		}
   1238 		if ((tiflags & TH_SYN) == 0)
   1239 			goto drop;
   1240 		if (tiflags & TH_ACK) {
   1241 			tp->snd_una = tp->snd_recover = th->th_ack;
   1242 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1243 				tp->snd_nxt = tp->snd_una;
   1244 		}
   1245 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1246 		tp->irs = th->th_seq;
   1247 		tcp_rcvseqinit(tp);
   1248 		tp->t_flags |= TF_ACKNOW;
   1249 		tcp_mss_from_peer(tp, opti.maxseg);
   1250 
   1251 		/*
   1252 		 * Initialize the initial congestion window.  If we
   1253 		 * had to retransmit the SYN, we must initialize cwnd
   1254 		 * to 1 segment (i.e. the Loss Window).
   1255 		 */
   1256 		if (tp->t_flags & TF_SYN_REXMT)
   1257 			tp->snd_cwnd = tp->t_peermss;
   1258 		else
   1259 			tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
   1260 			    tp->t_peermss);
   1261 
   1262 		tcp_rmx_rtt(tp);
   1263 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
   1264 			tcpstat.tcps_connects++;
   1265 			soisconnected(so);
   1266 			tcp_established(tp);
   1267 			/* Do window scaling on this connection? */
   1268 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1269 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1270 				tp->snd_scale = tp->requested_s_scale;
   1271 				tp->rcv_scale = tp->request_r_scale;
   1272 			}
   1273 			TCP_REASS_LOCK(tp);
   1274 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1275 			TCP_REASS_UNLOCK(tp);
   1276 			/*
   1277 			 * if we didn't have to retransmit the SYN,
   1278 			 * use its rtt as our initial srtt & rtt var.
   1279 			 */
   1280 			if (tp->t_rtt)
   1281 				tcp_xmit_timer(tp, tp->t_rtt);
   1282 		} else
   1283 			tp->t_state = TCPS_SYN_RECEIVED;
   1284 
   1285 		/*
   1286 		 * Advance th->th_seq to correspond to first data byte.
   1287 		 * If data, trim to stay within window,
   1288 		 * dropping FIN if necessary.
   1289 		 */
   1290 		th->th_seq++;
   1291 		if (tlen > tp->rcv_wnd) {
   1292 			todrop = tlen - tp->rcv_wnd;
   1293 			m_adj(m, -todrop);
   1294 			tlen = tp->rcv_wnd;
   1295 			tiflags &= ~TH_FIN;
   1296 			tcpstat.tcps_rcvpackafterwin++;
   1297 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1298 		}
   1299 		tp->snd_wl1 = th->th_seq - 1;
   1300 		tp->rcv_up = th->th_seq;
   1301 		goto step6;
   1302 
   1303 	/*
   1304 	 * If the state is SYN_RECEIVED:
   1305 	 *	If seg contains an ACK, but not for our SYN, drop the input
   1306 	 *	and generate an RST.  See page 36, rfc793
   1307 	 */
   1308 	case TCPS_SYN_RECEIVED:
   1309 		if ((tiflags & TH_ACK) &&
   1310 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1311 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1312 			goto dropwithreset;
   1313 		break;
   1314 	}
   1315 
   1316 	/*
   1317 	 * States other than LISTEN or SYN_SENT.
   1318 	 * First check timestamp, if present.
   1319 	 * Then check that at least some bytes of segment are within
   1320 	 * receive window.  If segment begins before rcv_nxt,
   1321 	 * drop leading data (and SYN); if nothing left, just ack.
   1322 	 *
   1323 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   1324 	 * and it's less than ts_recent, drop it.
   1325 	 */
   1326 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   1327 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   1328 
   1329 		/* Check to see if ts_recent is over 24 days old.  */
   1330 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
   1331 			/*
   1332 			 * Invalidate ts_recent.  If this segment updates
   1333 			 * ts_recent, the age will be reset later and ts_recent
   1334 			 * will get a valid value.  If it does not, setting
   1335 			 * ts_recent to zero will at least satisfy the
   1336 			 * requirement that zero be placed in the timestamp
   1337 			 * echo reply when ts_recent isn't valid.  The
   1338 			 * age isn't reset until we get a valid ts_recent
   1339 			 * because we don't want out-of-order segments to be
   1340 			 * dropped when ts_recent is old.
   1341 			 */
   1342 			tp->ts_recent = 0;
   1343 		} else {
   1344 			tcpstat.tcps_rcvduppack++;
   1345 			tcpstat.tcps_rcvdupbyte += tlen;
   1346 			tcpstat.tcps_pawsdrop++;
   1347 			goto dropafterack;
   1348 		}
   1349 	}
   1350 
   1351 	todrop = tp->rcv_nxt - th->th_seq;
   1352 	if (todrop > 0) {
   1353 		if (tiflags & TH_SYN) {
   1354 			tiflags &= ~TH_SYN;
   1355 			th->th_seq++;
   1356 			if (th->th_urp > 1)
   1357 				th->th_urp--;
   1358 			else {
   1359 				tiflags &= ~TH_URG;
   1360 				th->th_urp = 0;
   1361 			}
   1362 			todrop--;
   1363 		}
   1364 		if (todrop > tlen ||
   1365 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1366 			/*
   1367 			 * Any valid FIN must be to the left of the window.
   1368 			 * At this point the FIN must be a duplicate or
   1369 			 * out of sequence; drop it.
   1370 			 */
   1371 			tiflags &= ~TH_FIN;
   1372 			/*
   1373 			 * Send an ACK to resynchronize and drop any data.
   1374 			 * But keep on processing for RST or ACK.
   1375 			 */
   1376 			tp->t_flags |= TF_ACKNOW;
   1377 			todrop = tlen;
   1378 			tcpstat.tcps_rcvdupbyte += todrop;
   1379 			tcpstat.tcps_rcvduppack++;
   1380 		} else {
   1381 			tcpstat.tcps_rcvpartduppack++;
   1382 			tcpstat.tcps_rcvpartdupbyte += todrop;
   1383 		}
   1384 		hdroptlen += todrop;	/*drop from head afterwards*/
   1385 		th->th_seq += todrop;
   1386 		tlen -= todrop;
   1387 		if (th->th_urp > todrop)
   1388 			th->th_urp -= todrop;
   1389 		else {
   1390 			tiflags &= ~TH_URG;
   1391 			th->th_urp = 0;
   1392 		}
   1393 	}
   1394 
   1395 	/*
   1396 	 * If new data are received on a connection after the
   1397 	 * user processes are gone, then RST the other end.
   1398 	 */
   1399 	if ((so->so_state & SS_NOFDREF) &&
   1400 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   1401 		tp = tcp_close(tp);
   1402 		tcpstat.tcps_rcvafterclose++;
   1403 		goto dropwithreset;
   1404 	}
   1405 
   1406 	/*
   1407 	 * If segment ends after window, drop trailing data
   1408 	 * (and PUSH and FIN); if nothing left, just ACK.
   1409 	 */
   1410 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   1411 	if (todrop > 0) {
   1412 		tcpstat.tcps_rcvpackafterwin++;
   1413 		if (todrop >= tlen) {
   1414 			tcpstat.tcps_rcvbyteafterwin += tlen;
   1415 			/*
   1416 			 * If a new connection request is received
   1417 			 * while in TIME_WAIT, drop the old connection
   1418 			 * and start over if the sequence numbers
   1419 			 * are above the previous ones.
   1420 			 */
   1421 			if (tiflags & TH_SYN &&
   1422 			    tp->t_state == TCPS_TIME_WAIT &&
   1423 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   1424 				iss = tcp_new_iss(tp, sizeof(struct tcpcb),
   1425 						  tp->snd_nxt);
   1426 				tp = tcp_close(tp);
   1427 				goto findpcb;
   1428 			}
   1429 			/*
   1430 			 * If window is closed can only take segments at
   1431 			 * window edge, and have to drop data and PUSH from
   1432 			 * incoming segments.  Continue processing, but
   1433 			 * remember to ack.  Otherwise, drop segment
   1434 			 * and ack.
   1435 			 */
   1436 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   1437 				tp->t_flags |= TF_ACKNOW;
   1438 				tcpstat.tcps_rcvwinprobe++;
   1439 			} else
   1440 				goto dropafterack;
   1441 		} else
   1442 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1443 		m_adj(m, -todrop);
   1444 		tlen -= todrop;
   1445 		tiflags &= ~(TH_PUSH|TH_FIN);
   1446 	}
   1447 
   1448 	/*
   1449 	 * If last ACK falls within this segment's sequence numbers,
   1450 	 * and the timestamp is newer, record it.
   1451 	 */
   1452 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
   1453 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1454 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
   1455 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   1456 		tp->ts_recent_age = tcp_now;
   1457 		tp->ts_recent = opti.ts_val;
   1458 	}
   1459 
   1460 	/*
   1461 	 * If the RST bit is set examine the state:
   1462 	 *    SYN_RECEIVED STATE:
   1463 	 *	If passive open, return to LISTEN state.
   1464 	 *	If active open, inform user that connection was refused.
   1465 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   1466 	 *	Inform user that connection was reset, and close tcb.
   1467 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   1468 	 *	Close the tcb.
   1469 	 */
   1470 	if (tiflags&TH_RST) switch (tp->t_state) {
   1471 
   1472 	case TCPS_SYN_RECEIVED:
   1473 		so->so_error = ECONNREFUSED;
   1474 		goto close;
   1475 
   1476 	case TCPS_ESTABLISHED:
   1477 	case TCPS_FIN_WAIT_1:
   1478 	case TCPS_FIN_WAIT_2:
   1479 	case TCPS_CLOSE_WAIT:
   1480 		so->so_error = ECONNRESET;
   1481 	close:
   1482 		tp->t_state = TCPS_CLOSED;
   1483 		tcpstat.tcps_drops++;
   1484 		tp = tcp_close(tp);
   1485 		goto drop;
   1486 
   1487 	case TCPS_CLOSING:
   1488 	case TCPS_LAST_ACK:
   1489 	case TCPS_TIME_WAIT:
   1490 		tp = tcp_close(tp);
   1491 		goto drop;
   1492 	}
   1493 
   1494 	/*
   1495 	 * If a SYN is in the window, then this is an
   1496 	 * error and we send an RST and drop the connection.
   1497 	 */
   1498 	if (tiflags & TH_SYN) {
   1499 		tp = tcp_drop(tp, ECONNRESET);
   1500 		goto dropwithreset;
   1501 	}
   1502 
   1503 	/*
   1504 	 * If the ACK bit is off we drop the segment and return.
   1505 	 */
   1506 	if ((tiflags & TH_ACK) == 0) {
   1507 		if (tp->t_flags & TF_ACKNOW)
   1508 			goto dropafterack;
   1509 		else
   1510 			goto drop;
   1511 	}
   1512 
   1513 	/*
   1514 	 * Ack processing.
   1515 	 */
   1516 	switch (tp->t_state) {
   1517 
   1518 	/*
   1519 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   1520 	 * ESTABLISHED state and continue processing, otherwise
   1521 	 * send an RST.
   1522 	 */
   1523 	case TCPS_SYN_RECEIVED:
   1524 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   1525 		    SEQ_GT(th->th_ack, tp->snd_max))
   1526 			goto dropwithreset;
   1527 		tcpstat.tcps_connects++;
   1528 		soisconnected(so);
   1529 		tcp_established(tp);
   1530 		/* Do window scaling? */
   1531 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1532 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1533 			tp->snd_scale = tp->requested_s_scale;
   1534 			tp->rcv_scale = tp->request_r_scale;
   1535 		}
   1536 		TCP_REASS_LOCK(tp);
   1537 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1538 		TCP_REASS_UNLOCK(tp);
   1539 		tp->snd_wl1 = th->th_seq - 1;
   1540 		/* fall into ... */
   1541 
   1542 	/*
   1543 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   1544 	 * ACKs.  If the ack is in the range
   1545 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   1546 	 * then advance tp->snd_una to th->th_ack and drop
   1547 	 * data from the retransmission queue.  If this ACK reflects
   1548 	 * more up to date window information we update our window information.
   1549 	 */
   1550 	case TCPS_ESTABLISHED:
   1551 	case TCPS_FIN_WAIT_1:
   1552 	case TCPS_FIN_WAIT_2:
   1553 	case TCPS_CLOSE_WAIT:
   1554 	case TCPS_CLOSING:
   1555 	case TCPS_LAST_ACK:
   1556 	case TCPS_TIME_WAIT:
   1557 
   1558 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   1559 			if (tlen == 0 && tiwin == tp->snd_wnd) {
   1560 				tcpstat.tcps_rcvdupack++;
   1561 				/*
   1562 				 * If we have outstanding data (other than
   1563 				 * a window probe), this is a completely
   1564 				 * duplicate ack (ie, window info didn't
   1565 				 * change), the ack is the biggest we've
   1566 				 * seen and we've seen exactly our rexmt
   1567 				 * threshhold of them, assume a packet
   1568 				 * has been dropped and retransmit it.
   1569 				 * Kludge snd_nxt & the congestion
   1570 				 * window so we send only this one
   1571 				 * packet.
   1572 				 *
   1573 				 * We know we're losing at the current
   1574 				 * window size so do congestion avoidance
   1575 				 * (set ssthresh to half the current window
   1576 				 * and pull our congestion window back to
   1577 				 * the new ssthresh).
   1578 				 *
   1579 				 * Dup acks mean that packets have left the
   1580 				 * network (they're now cached at the receiver)
   1581 				 * so bump cwnd by the amount in the receiver
   1582 				 * to keep a constant cwnd packets in the
   1583 				 * network.
   1584 				 */
   1585 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   1586 				    th->th_ack != tp->snd_una)
   1587 					tp->t_dupacks = 0;
   1588 				else if (++tp->t_dupacks == tcprexmtthresh) {
   1589 					tcp_seq onxt = tp->snd_nxt;
   1590 					u_int win =
   1591 					    min(tp->snd_wnd, tp->snd_cwnd) /
   1592 					    2 /	tp->t_segsz;
   1593 					if (tcp_do_newreno && SEQ_LT(th->th_ack,
   1594 					    tp->snd_recover)) {
   1595 						/*
   1596 						 * False fast retransmit after
   1597 						 * timeout.  Do not cut window.
   1598 						 */
   1599 						tp->snd_cwnd += tp->t_segsz;
   1600 						tp->t_dupacks = 0;
   1601 						(void) tcp_output(tp);
   1602 						goto drop;
   1603 					}
   1604 
   1605 					if (win < 2)
   1606 						win = 2;
   1607 					tp->snd_ssthresh = win * tp->t_segsz;
   1608 					tp->snd_recover = tp->snd_max;
   1609 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1610 					tp->t_rtt = 0;
   1611 					tp->snd_nxt = th->th_ack;
   1612 					tp->snd_cwnd = tp->t_segsz;
   1613 					(void) tcp_output(tp);
   1614 					tp->snd_cwnd = tp->snd_ssthresh +
   1615 					       tp->t_segsz * tp->t_dupacks;
   1616 					if (SEQ_GT(onxt, tp->snd_nxt))
   1617 						tp->snd_nxt = onxt;
   1618 					goto drop;
   1619 				} else if (tp->t_dupacks > tcprexmtthresh) {
   1620 					tp->snd_cwnd += tp->t_segsz;
   1621 					(void) tcp_output(tp);
   1622 					goto drop;
   1623 				}
   1624 			} else
   1625 				tp->t_dupacks = 0;
   1626 			break;
   1627 		}
   1628 		/*
   1629 		 * If the congestion window was inflated to account
   1630 		 * for the other side's cached packets, retract it.
   1631 		 */
   1632 		if (tcp_do_newreno == 0) {
   1633 			if (tp->t_dupacks >= tcprexmtthresh &&
   1634 			    tp->snd_cwnd > tp->snd_ssthresh)
   1635 				tp->snd_cwnd = tp->snd_ssthresh;
   1636 			tp->t_dupacks = 0;
   1637 		} else if (tp->t_dupacks >= tcprexmtthresh &&
   1638 			   tcp_newreno(tp, th) == 0) {
   1639 			tp->snd_cwnd = tp->snd_ssthresh;
   1640 			/*
   1641 			 * Window inflation should have left us with approx.
   1642 			 * snd_ssthresh outstanding data.  But in case we
   1643 			 * would be inclined to send a burst, better to do
   1644 			 * it via the slow start mechanism.
   1645 			 */
   1646 			if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
   1647 				tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
   1648 				    + tp->t_segsz;
   1649 			tp->t_dupacks = 0;
   1650 		}
   1651 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   1652 			tcpstat.tcps_rcvacktoomuch++;
   1653 			goto dropafterack;
   1654 		}
   1655 		acked = th->th_ack - tp->snd_una;
   1656 		tcpstat.tcps_rcvackpack++;
   1657 		tcpstat.tcps_rcvackbyte += acked;
   1658 
   1659 		/*
   1660 		 * If we have a timestamp reply, update smoothed
   1661 		 * round trip time.  If no timestamp is present but
   1662 		 * transmit timer is running and timed sequence
   1663 		 * number was acked, update smoothed round trip time.
   1664 		 * Since we now have an rtt measurement, cancel the
   1665 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   1666 		 * Recompute the initial retransmit timer.
   1667 		 */
   1668 		if (opti.ts_present && opti.ts_ecr)
   1669 			tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
   1670 		else if (tp->t_rtt && SEQ_GT(th->th_ack, tp->t_rtseq))
   1671 			tcp_xmit_timer(tp,tp->t_rtt);
   1672 
   1673 		/*
   1674 		 * If all outstanding data is acked, stop retransmit
   1675 		 * timer and remember to restart (more output or persist).
   1676 		 * If there is more data to be acked, restart retransmit
   1677 		 * timer, using current (possibly backed-off) value.
   1678 		 */
   1679 		if (th->th_ack == tp->snd_max) {
   1680 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1681 			needoutput = 1;
   1682 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   1683 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   1684 		/*
   1685 		 * When new data is acked, open the congestion window.
   1686 		 * If the window gives us less than ssthresh packets
   1687 		 * in flight, open exponentially (segsz per packet).
   1688 		 * Otherwise open linearly: segsz per window
   1689 		 * (segsz^2 / cwnd per packet), plus a constant
   1690 		 * fraction of a packet (segsz/8) to help larger windows
   1691 		 * open quickly enough.
   1692 		 */
   1693 		{
   1694 		register u_int cw = tp->snd_cwnd;
   1695 		register u_int incr = tp->t_segsz;
   1696 
   1697 		if (cw > tp->snd_ssthresh)
   1698 			incr = incr * incr / cw;
   1699 		if (tcp_do_newreno == 0 || SEQ_GEQ(th->th_ack, tp->snd_recover))
   1700 			tp->snd_cwnd = min(cw + incr,
   1701 			    TCP_MAXWIN << tp->snd_scale);
   1702 		}
   1703 		ND6_HINT(tp);
   1704 		if (acked > so->so_snd.sb_cc) {
   1705 			tp->snd_wnd -= so->so_snd.sb_cc;
   1706 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   1707 			ourfinisacked = 1;
   1708 		} else {
   1709 			sbdrop(&so->so_snd, acked);
   1710 			tp->snd_wnd -= acked;
   1711 			ourfinisacked = 0;
   1712 		}
   1713 		sowwakeup(so);
   1714 		/*
   1715 		 * We want snd_recover to track snd_una to
   1716 		 * avoid sequence wraparound problems for
   1717 		 * very large transfers.
   1718 		 */
   1719 		tp->snd_una = tp->snd_recover = th->th_ack;
   1720 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1721 			tp->snd_nxt = tp->snd_una;
   1722 
   1723 		switch (tp->t_state) {
   1724 
   1725 		/*
   1726 		 * In FIN_WAIT_1 STATE in addition to the processing
   1727 		 * for the ESTABLISHED state if our FIN is now acknowledged
   1728 		 * then enter FIN_WAIT_2.
   1729 		 */
   1730 		case TCPS_FIN_WAIT_1:
   1731 			if (ourfinisacked) {
   1732 				/*
   1733 				 * If we can't receive any more
   1734 				 * data, then closing user can proceed.
   1735 				 * Starting the timer is contrary to the
   1736 				 * specification, but if we don't get a FIN
   1737 				 * we'll hang forever.
   1738 				 */
   1739 				if (so->so_state & SS_CANTRCVMORE) {
   1740 					soisdisconnected(so);
   1741 					if (tcp_maxidle > 0)
   1742 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   1743 						    tcp_maxidle);
   1744 				}
   1745 				tp->t_state = TCPS_FIN_WAIT_2;
   1746 			}
   1747 			break;
   1748 
   1749 	 	/*
   1750 		 * In CLOSING STATE in addition to the processing for
   1751 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   1752 		 * then enter the TIME-WAIT state, otherwise ignore
   1753 		 * the segment.
   1754 		 */
   1755 		case TCPS_CLOSING:
   1756 			if (ourfinisacked) {
   1757 				tp->t_state = TCPS_TIME_WAIT;
   1758 				tcp_canceltimers(tp);
   1759 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   1760 				soisdisconnected(so);
   1761 			}
   1762 			break;
   1763 
   1764 		/*
   1765 		 * In LAST_ACK, we may still be waiting for data to drain
   1766 		 * and/or to be acked, as well as for the ack of our FIN.
   1767 		 * If our FIN is now acknowledged, delete the TCB,
   1768 		 * enter the closed state and return.
   1769 		 */
   1770 		case TCPS_LAST_ACK:
   1771 			if (ourfinisacked) {
   1772 				tp = tcp_close(tp);
   1773 				goto drop;
   1774 			}
   1775 			break;
   1776 
   1777 		/*
   1778 		 * In TIME_WAIT state the only thing that should arrive
   1779 		 * is a retransmission of the remote FIN.  Acknowledge
   1780 		 * it and restart the finack timer.
   1781 		 */
   1782 		case TCPS_TIME_WAIT:
   1783 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   1784 			goto dropafterack;
   1785 		}
   1786 	}
   1787 
   1788 step6:
   1789 	/*
   1790 	 * Update window information.
   1791 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   1792 	 */
   1793 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   1794 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
   1795 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
   1796 		/* keep track of pure window updates */
   1797 		if (tlen == 0 &&
   1798 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   1799 			tcpstat.tcps_rcvwinupd++;
   1800 		tp->snd_wnd = tiwin;
   1801 		tp->snd_wl1 = th->th_seq;
   1802 		tp->snd_wl2 = th->th_ack;
   1803 		if (tp->snd_wnd > tp->max_sndwnd)
   1804 			tp->max_sndwnd = tp->snd_wnd;
   1805 		needoutput = 1;
   1806 	}
   1807 
   1808 	/*
   1809 	 * Process segments with URG.
   1810 	 */
   1811 	if ((tiflags & TH_URG) && th->th_urp &&
   1812 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1813 		/*
   1814 		 * This is a kludge, but if we receive and accept
   1815 		 * random urgent pointers, we'll crash in
   1816 		 * soreceive.  It's hard to imagine someone
   1817 		 * actually wanting to send this much urgent data.
   1818 		 */
   1819 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   1820 			th->th_urp = 0;			/* XXX */
   1821 			tiflags &= ~TH_URG;		/* XXX */
   1822 			goto dodata;			/* XXX */
   1823 		}
   1824 		/*
   1825 		 * If this segment advances the known urgent pointer,
   1826 		 * then mark the data stream.  This should not happen
   1827 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   1828 		 * a FIN has been received from the remote side.
   1829 		 * In these states we ignore the URG.
   1830 		 *
   1831 		 * According to RFC961 (Assigned Protocols),
   1832 		 * the urgent pointer points to the last octet
   1833 		 * of urgent data.  We continue, however,
   1834 		 * to consider it to indicate the first octet
   1835 		 * of data past the urgent section as the original
   1836 		 * spec states (in one of two places).
   1837 		 */
   1838 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   1839 			tp->rcv_up = th->th_seq + th->th_urp;
   1840 			so->so_oobmark = so->so_rcv.sb_cc +
   1841 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   1842 			if (so->so_oobmark == 0)
   1843 				so->so_state |= SS_RCVATMARK;
   1844 			sohasoutofband(so);
   1845 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   1846 		}
   1847 		/*
   1848 		 * Remove out of band data so doesn't get presented to user.
   1849 		 * This can happen independent of advancing the URG pointer,
   1850 		 * but if two URG's are pending at once, some out-of-band
   1851 		 * data may creep in... ick.
   1852 		 */
   1853 		if (th->th_urp <= (u_int16_t) tlen
   1854 #ifdef SO_OOBINLINE
   1855 		     && (so->so_options & SO_OOBINLINE) == 0
   1856 #endif
   1857 		     )
   1858 			tcp_pulloutofband(so, th, m, hdroptlen);
   1859 	} else
   1860 		/*
   1861 		 * If no out of band data is expected,
   1862 		 * pull receive urgent pointer along
   1863 		 * with the receive window.
   1864 		 */
   1865 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   1866 			tp->rcv_up = tp->rcv_nxt;
   1867 dodata:							/* XXX */
   1868 
   1869 	/*
   1870 	 * Process the segment text, merging it into the TCP sequencing queue,
   1871 	 * and arranging for acknowledgement of receipt if necessary.
   1872 	 * This process logically involves adjusting tp->rcv_wnd as data
   1873 	 * is presented to the user (this happens in tcp_usrreq.c,
   1874 	 * case PRU_RCVD).  If a FIN has already been received on this
   1875 	 * connection then we just ignore the text.
   1876 	 */
   1877 	if ((tlen || (tiflags & TH_FIN)) &&
   1878 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1879 		/*
   1880 		 * Insert segment ti into reassembly queue of tcp with
   1881 		 * control block tp.  Return TH_FIN if reassembly now includes
   1882 		 * a segment with FIN.  The macro form does the common case
   1883 		 * inline (segment is the next to be received on an
   1884 		 * established connection, and the queue is empty),
   1885 		 * avoiding linkage into and removal from the queue and
   1886 		 * repetition of various conversions.
   1887 		 * Set DELACK for segments received in order, but ack
   1888 		 * immediately when segments are out of order
   1889 		 * (so fast retransmit can work).
   1890 		 */
   1891 		/* NOTE: this was TCP_REASS() macro, but used only once */
   1892 		TCP_REASS_LOCK(tp);
   1893 		if (th->th_seq == tp->rcv_nxt &&
   1894 		    tp->segq.lh_first == NULL &&
   1895 		    tp->t_state == TCPS_ESTABLISHED) {
   1896 			TCP_SETUP_ACK(tp, th);
   1897 			tp->rcv_nxt += tlen;
   1898 			tiflags = th->th_flags & TH_FIN;
   1899 			tcpstat.tcps_rcvpack++;
   1900 			tcpstat.tcps_rcvbyte += tlen;
   1901 			ND6_HINT(tp);
   1902 			m_adj(m, hdroptlen);
   1903 			sbappend(&(so)->so_rcv, m);
   1904 			sorwakeup(so);
   1905 		} else {
   1906 			m_adj(m, hdroptlen);
   1907 			tiflags = tcp_reass(tp, th, m, &tlen);
   1908 			tp->t_flags |= TF_ACKNOW;
   1909 		}
   1910 		TCP_REASS_UNLOCK(tp);
   1911 
   1912 		/*
   1913 		 * Note the amount of data that peer has sent into
   1914 		 * our window, in order to estimate the sender's
   1915 		 * buffer size.
   1916 		 */
   1917 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   1918 	} else {
   1919 		m_freem(m);
   1920 		m = NULL;
   1921 		tiflags &= ~TH_FIN;
   1922 	}
   1923 
   1924 	/*
   1925 	 * If FIN is received ACK the FIN and let the user know
   1926 	 * that the connection is closing.  Ignore a FIN received before
   1927 	 * the connection is fully established.
   1928 	 */
   1929 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   1930 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1931 			socantrcvmore(so);
   1932 			tp->t_flags |= TF_ACKNOW;
   1933 			tp->rcv_nxt++;
   1934 		}
   1935 		switch (tp->t_state) {
   1936 
   1937 	 	/*
   1938 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   1939 		 */
   1940 		case TCPS_ESTABLISHED:
   1941 			tp->t_state = TCPS_CLOSE_WAIT;
   1942 			break;
   1943 
   1944 	 	/*
   1945 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   1946 		 * enter the CLOSING state.
   1947 		 */
   1948 		case TCPS_FIN_WAIT_1:
   1949 			tp->t_state = TCPS_CLOSING;
   1950 			break;
   1951 
   1952 	 	/*
   1953 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   1954 		 * starting the time-wait timer, turning off the other
   1955 		 * standard timers.
   1956 		 */
   1957 		case TCPS_FIN_WAIT_2:
   1958 			tp->t_state = TCPS_TIME_WAIT;
   1959 			tcp_canceltimers(tp);
   1960 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   1961 			soisdisconnected(so);
   1962 			break;
   1963 
   1964 		/*
   1965 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   1966 		 */
   1967 		case TCPS_TIME_WAIT:
   1968 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   1969 			break;
   1970 		}
   1971 	}
   1972 	if (so->so_options & SO_DEBUG) {
   1973 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   1974 	}
   1975 
   1976 	/*
   1977 	 * Return any desired output.
   1978 	 */
   1979 	if (needoutput || (tp->t_flags & TF_ACKNOW))
   1980 		(void) tcp_output(tp);
   1981 	if (tcp_saveti)
   1982 		m_freem(tcp_saveti);
   1983 	return;
   1984 
   1985 badsyn:
   1986 	/*
   1987 	 * Received a bad SYN.  Increment counters and dropwithreset.
   1988 	 */
   1989 	tcpstat.tcps_badsyn++;
   1990 	tp = NULL;
   1991 	goto dropwithreset;
   1992 
   1993 dropafterack:
   1994 	/*
   1995 	 * Generate an ACK dropping incoming segment if it occupies
   1996 	 * sequence space, where the ACK reflects our state.
   1997 	 */
   1998 	if (tiflags & TH_RST)
   1999 		goto drop;
   2000 	m_freem(m);
   2001 	tp->t_flags |= TF_ACKNOW;
   2002 	(void) tcp_output(tp);
   2003 	if (tcp_saveti)
   2004 		m_freem(tcp_saveti);
   2005 	return;
   2006 
   2007 dropwithreset:
   2008 	/*
   2009 	 * Generate a RST, dropping incoming segment.
   2010 	 * Make ACK acceptable to originator of segment.
   2011 	 * Don't bother to respond if destination was broadcast/multicast.
   2012 	 */
   2013 	if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST))
   2014 		goto drop;
   2015 	if (ip && IN_MULTICAST(ip->ip_dst.s_addr))
   2016 		goto drop;
   2017 #ifdef INET6
   2018 	if (m->m_flags & M_ANYCAST6)
   2019 		goto drop;
   2020 	else if (ip6 && IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   2021 		goto drop;
   2022 #endif
   2023     {
   2024 	/*
   2025 	 * need to recover version # field, which was overwritten on
   2026 	 * ip_cksum computation.
   2027 	 */
   2028 	struct ip *sip;
   2029 	sip = mtod(m, struct ip *);
   2030 	switch (af) {
   2031 	case AF_INET:
   2032 		sip->ip_v = 4;
   2033 		break;
   2034 #ifdef INET6
   2035 	case AF_INET6:
   2036 		sip->ip_v = 6;
   2037 		break;
   2038 #endif
   2039 	}
   2040     }
   2041 	if (tiflags & TH_ACK)
   2042 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2043 	else {
   2044 		if (tiflags & TH_SYN)
   2045 			tlen++;
   2046 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2047 		    TH_RST|TH_ACK);
   2048 	}
   2049 	if (tcp_saveti)
   2050 		m_freem(tcp_saveti);
   2051 	return;
   2052 
   2053 drop:
   2054 	/*
   2055 	 * Drop space held by incoming segment and return.
   2056 	 */
   2057 	if (tp) {
   2058 		if (tp->t_inpcb)
   2059 			so = tp->t_inpcb->inp_socket;
   2060 #ifdef INET6
   2061 		else if (tp->t_in6pcb)
   2062 			so = tp->t_in6pcb->in6p_socket;
   2063 #endif
   2064 		else
   2065 			so = NULL;
   2066 		if (so && (so->so_options & SO_DEBUG) != 0)
   2067 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   2068 	}
   2069 	if (tcp_saveti)
   2070 		m_freem(tcp_saveti);
   2071 	m_freem(m);
   2072 	return;
   2073 }
   2074 
   2075 void
   2076 tcp_dooptions(tp, cp, cnt, th, oi)
   2077 	struct tcpcb *tp;
   2078 	u_char *cp;
   2079 	int cnt;
   2080 	struct tcphdr *th;
   2081 	struct tcp_opt_info *oi;
   2082 {
   2083 	u_int16_t mss;
   2084 	int opt, optlen;
   2085 
   2086 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   2087 		opt = cp[0];
   2088 		if (opt == TCPOPT_EOL)
   2089 			break;
   2090 		if (opt == TCPOPT_NOP)
   2091 			optlen = 1;
   2092 		else {
   2093 			optlen = cp[1];
   2094 			if (optlen <= 0)
   2095 				break;
   2096 		}
   2097 		switch (opt) {
   2098 
   2099 		default:
   2100 			continue;
   2101 
   2102 		case TCPOPT_MAXSEG:
   2103 			if (optlen != TCPOLEN_MAXSEG)
   2104 				continue;
   2105 			if (!(th->th_flags & TH_SYN))
   2106 				continue;
   2107 			bcopy(cp + 2, &mss, sizeof(mss));
   2108 			oi->maxseg = ntohs(mss);
   2109 			break;
   2110 
   2111 		case TCPOPT_WINDOW:
   2112 			if (optlen != TCPOLEN_WINDOW)
   2113 				continue;
   2114 			if (!(th->th_flags & TH_SYN))
   2115 				continue;
   2116 			tp->t_flags |= TF_RCVD_SCALE;
   2117 			tp->requested_s_scale = cp[2];
   2118 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   2119 #if 0	/*XXX*/
   2120 				char *p;
   2121 
   2122 				if (ip)
   2123 					p = ntohl(ip->ip_src);
   2124 #ifdef INET6
   2125 				else if (ip6)
   2126 					p = ip6_sprintf(&ip6->ip6_src);
   2127 #endif
   2128 				else
   2129 					p = "(unknown)";
   2130 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   2131 				    "assuming %d\n",
   2132 				    tp->requested_s_scale, p,
   2133 				    TCP_MAX_WINSHIFT);
   2134 #else
   2135 				log(LOG_ERR, "TCP: invalid wscale %d, "
   2136 				    "assuming %d\n",
   2137 				    tp->requested_s_scale,
   2138 				    TCP_MAX_WINSHIFT);
   2139 #endif
   2140 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   2141 			}
   2142 			break;
   2143 
   2144 		case TCPOPT_TIMESTAMP:
   2145 			if (optlen != TCPOLEN_TIMESTAMP)
   2146 				continue;
   2147 			oi->ts_present = 1;
   2148 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   2149 			NTOHL(oi->ts_val);
   2150 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   2151 			NTOHL(oi->ts_ecr);
   2152 
   2153 			/*
   2154 			 * A timestamp received in a SYN makes
   2155 			 * it ok to send timestamp requests and replies.
   2156 			 */
   2157 			if (th->th_flags & TH_SYN) {
   2158 				tp->t_flags |= TF_RCVD_TSTMP;
   2159 				tp->ts_recent = oi->ts_val;
   2160 				tp->ts_recent_age = tcp_now;
   2161 			}
   2162 			break;
   2163 		case TCPOPT_SACK_PERMITTED:
   2164 			if (optlen != TCPOLEN_SACK_PERMITTED)
   2165 				continue;
   2166 			if (!(th->th_flags & TH_SYN))
   2167 				continue;
   2168 			tp->t_flags &= ~TF_CANT_TXSACK;
   2169 			break;
   2170 
   2171 		case TCPOPT_SACK:
   2172 			if (tp->t_flags & TF_IGNR_RXSACK)
   2173 				continue;
   2174 			if (optlen % 8 != 2 || optlen < 10)
   2175 				continue;
   2176 			cp += 2;
   2177 			optlen -= 2;
   2178 			for (; optlen > 0; cp -= 8, optlen -= 8) {
   2179 				tcp_seq lwe, rwe;
   2180 				bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
   2181 				NTOHL(lwe);
   2182 				bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
   2183 				NTOHL(rwe);
   2184 				/* tcp_mark_sacked(tp, lwe, rwe); */
   2185 			}
   2186 			break;
   2187 		}
   2188 	}
   2189 }
   2190 
   2191 /*
   2192  * Pull out of band byte out of a segment so
   2193  * it doesn't appear in the user's data queue.
   2194  * It is still reflected in the segment length for
   2195  * sequencing purposes.
   2196  */
   2197 void
   2198 tcp_pulloutofband(so, th, m, off)
   2199 	struct socket *so;
   2200 	struct tcphdr *th;
   2201 	register struct mbuf *m;
   2202 	int off;
   2203 {
   2204 	int cnt = off + th->th_urp - 1;
   2205 
   2206 	while (cnt >= 0) {
   2207 		if (m->m_len > cnt) {
   2208 			char *cp = mtod(m, caddr_t) + cnt;
   2209 			struct tcpcb *tp = sototcpcb(so);
   2210 
   2211 			tp->t_iobc = *cp;
   2212 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   2213 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   2214 			m->m_len--;
   2215 			return;
   2216 		}
   2217 		cnt -= m->m_len;
   2218 		m = m->m_next;
   2219 		if (m == 0)
   2220 			break;
   2221 	}
   2222 	panic("tcp_pulloutofband");
   2223 }
   2224 
   2225 /*
   2226  * Collect new round-trip time estimate
   2227  * and update averages and current timeout.
   2228  */
   2229 void
   2230 tcp_xmit_timer(tp, rtt)
   2231 	register struct tcpcb *tp;
   2232 	short rtt;
   2233 {
   2234 	register short delta;
   2235 	short rttmin;
   2236 
   2237 	tcpstat.tcps_rttupdated++;
   2238 	--rtt;
   2239 	if (tp->t_srtt != 0) {
   2240 		/*
   2241 		 * srtt is stored as fixed point with 3 bits after the
   2242 		 * binary point (i.e., scaled by 8).  The following magic
   2243 		 * is equivalent to the smoothing algorithm in rfc793 with
   2244 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
   2245 		 * point).  Adjust rtt to origin 0.
   2246 		 */
   2247 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   2248 		if ((tp->t_srtt += delta) <= 0)
   2249 			tp->t_srtt = 1 << 2;
   2250 		/*
   2251 		 * We accumulate a smoothed rtt variance (actually, a
   2252 		 * smoothed mean difference), then set the retransmit
   2253 		 * timer to smoothed rtt + 4 times the smoothed variance.
   2254 		 * rttvar is stored as fixed point with 2 bits after the
   2255 		 * binary point (scaled by 4).  The following is
   2256 		 * equivalent to rfc793 smoothing with an alpha of .75
   2257 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
   2258 		 * rfc793's wired-in beta.
   2259 		 */
   2260 		if (delta < 0)
   2261 			delta = -delta;
   2262 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   2263 		if ((tp->t_rttvar += delta) <= 0)
   2264 			tp->t_rttvar = 1 << 2;
   2265 	} else {
   2266 		/*
   2267 		 * No rtt measurement yet - use the unsmoothed rtt.
   2268 		 * Set the variance to half the rtt (so our first
   2269 		 * retransmit happens at 3*rtt).
   2270 		 */
   2271 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   2272 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   2273 	}
   2274 	tp->t_rtt = 0;
   2275 	tp->t_rxtshift = 0;
   2276 
   2277 	/*
   2278 	 * the retransmit should happen at rtt + 4 * rttvar.
   2279 	 * Because of the way we do the smoothing, srtt and rttvar
   2280 	 * will each average +1/2 tick of bias.  When we compute
   2281 	 * the retransmit timer, we want 1/2 tick of rounding and
   2282 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   2283 	 * firing of the timer.  The bias will give us exactly the
   2284 	 * 1.5 tick we need.  But, because the bias is
   2285 	 * statistical, we have to test that we don't drop below
   2286 	 * the minimum feasible timer (which is 2 ticks).
   2287 	 */
   2288 	if (tp->t_rttmin > rtt + 2)
   2289 		rttmin = tp->t_rttmin;
   2290 	else
   2291 		rttmin = rtt + 2;
   2292 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp), rttmin, TCPTV_REXMTMAX);
   2293 
   2294 	/*
   2295 	 * We received an ack for a packet that wasn't retransmitted;
   2296 	 * it is probably safe to discard any error indications we've
   2297 	 * received recently.  This isn't quite right, but close enough
   2298 	 * for now (a route might have failed after we sent a segment,
   2299 	 * and the return path might not be symmetrical).
   2300 	 */
   2301 	tp->t_softerror = 0;
   2302 }
   2303 
   2304 /*
   2305  * Checks for partial ack.  If partial ack arrives, force the retransmission
   2306  * of the next unacknowledged segment, do not clear tp->t_dupacks, and return
   2307  * 1.  By setting snd_nxt to th_ack, this forces retransmission timer to
   2308  * be started again.  If the ack advances at least to tp->snd_recover, return 0.
   2309  */
   2310 int
   2311 tcp_newreno(tp, th)
   2312 	struct tcpcb *tp;
   2313 	struct tcphdr *th;
   2314 {
   2315 	tcp_seq onxt = tp->snd_nxt;
   2316 	u_long ocwnd = tp->snd_cwnd;
   2317 
   2318 	if (SEQ_LT(th->th_ack, tp->snd_recover)) {
   2319 		/*
   2320 		 * snd_una has not yet been updated and the socket's send
   2321 		 * buffer has not yet drained off the ACK'd data, so we
   2322 		 * have to leave snd_una as it was to get the correct data
   2323 		 * offset in tcp_output().
   2324 		 */
   2325 		TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2326 	        tp->t_rtt = 0;
   2327 	        tp->snd_nxt = th->th_ack;
   2328 		/*
   2329 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
   2330 		 * is not yet updated when we're called.
   2331 		 */
   2332 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
   2333 	        (void) tcp_output(tp);
   2334 	        tp->snd_cwnd = ocwnd;
   2335 	        if (SEQ_GT(onxt, tp->snd_nxt))
   2336 	                tp->snd_nxt = onxt;
   2337 	        /*
   2338 	         * Partial window deflation.  Relies on fact that tp->snd_una
   2339 	         * not updated yet.
   2340 	         */
   2341 	        tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
   2342 	        return 1;
   2343 	}
   2344 	return 0;
   2345 }
   2346 
   2347 
   2348 /*
   2349  * TCP compressed state engine.  Currently used to hold compressed
   2350  * state for SYN_RECEIVED.
   2351  */
   2352 
   2353 u_long	syn_cache_count;
   2354 u_int32_t syn_hash1, syn_hash2;
   2355 
   2356 #define SYN_HASH(sa, sp, dp) \
   2357 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   2358 				     ((u_int32_t)(sp)))^syn_hash2)))
   2359 #ifndef INET6
   2360 #define	SYN_HASHALL(hash, src, dst) \
   2361 do {									\
   2362 	hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr,	\
   2363 		((struct sockaddr_in *)(src))->sin_port,		\
   2364 		((struct sockaddr_in *)(dst))->sin_port);		\
   2365 } while (0)
   2366 #else
   2367 #define SYN_HASH6(sa, sp, dp) \
   2368 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   2369 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   2370 	 & 0x7fffffff)
   2371 
   2372 #define SYN_HASHALL(hash, src, dst) \
   2373 do {									\
   2374 	switch ((src)->sa_family) {					\
   2375 	case AF_INET:							\
   2376 		hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
   2377 			((struct sockaddr_in *)(src))->sin_port,	\
   2378 			((struct sockaddr_in *)(dst))->sin_port);	\
   2379 		break;							\
   2380 	case AF_INET6:							\
   2381 		hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
   2382 			((struct sockaddr_in6 *)(src))->sin6_port,	\
   2383 			((struct sockaddr_in6 *)(dst))->sin6_port);	\
   2384 		break;							\
   2385 	default:							\
   2386 		hash = 0;						\
   2387 	}								\
   2388 } while (0)
   2389 #endif /* INET6 */
   2390 
   2391 #define	SYN_CACHE_RM(sc)						\
   2392 do {									\
   2393 	LIST_REMOVE((sc), sc_bucketq);					\
   2394 	(sc)->sc_tp = NULL;						\
   2395 	LIST_REMOVE((sc), sc_tpq);					\
   2396 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
   2397 	TAILQ_REMOVE(&tcp_syn_cache_timeq[(sc)->sc_rxtshift], (sc), sc_timeq); \
   2398 	syn_cache_count--;						\
   2399 } while (0)
   2400 
   2401 #define	SYN_CACHE_PUT(sc)						\
   2402 do {									\
   2403 	if ((sc)->sc_ipopts)						\
   2404 		(void) m_free((sc)->sc_ipopts);				\
   2405 	if ((sc)->sc_route4.ro_rt != NULL)				\
   2406 		RTFREE((sc)->sc_route4.ro_rt);				\
   2407 	pool_put(&syn_cache_pool, (sc));				\
   2408 } while (0)
   2409 
   2410 struct pool syn_cache_pool;
   2411 
   2412 /*
   2413  * We don't estimate RTT with SYNs, so each packet starts with the default
   2414  * RTT and each timer queue has a fixed timeout value.  This allows us to
   2415  * optimize the timer queues somewhat.
   2416  */
   2417 #define	SYN_CACHE_TIMER_ARM(sc)						\
   2418 do {									\
   2419 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   2420 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   2421 	    TCPTV_REXMTMAX);						\
   2422 	PRT_SLOW_ARM((sc)->sc_rexmt, (sc)->sc_rxtcur);			\
   2423 } while (0)
   2424 
   2425 TAILQ_HEAD(, syn_cache) tcp_syn_cache_timeq[TCP_MAXRXTSHIFT + 1];
   2426 
   2427 void
   2428 syn_cache_init()
   2429 {
   2430 	int i;
   2431 
   2432 	/* Initialize the hash buckets. */
   2433 	for (i = 0; i < tcp_syn_cache_size; i++)
   2434 		LIST_INIT(&tcp_syn_cache[i].sch_bucket);
   2435 
   2436 	/* Initialize the timer queues. */
   2437 	for (i = 0; i <= TCP_MAXRXTSHIFT; i++)
   2438 		TAILQ_INIT(&tcp_syn_cache_timeq[i]);
   2439 
   2440 	/* Initialize the syn cache pool. */
   2441 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   2442 	    "synpl", 0, NULL, NULL, M_PCB);
   2443 }
   2444 
   2445 void
   2446 syn_cache_insert(sc, tp)
   2447 	struct syn_cache *sc;
   2448 	struct tcpcb *tp;
   2449 {
   2450 	struct syn_cache_head *scp;
   2451 	struct syn_cache *sc2;
   2452 	int s, i;
   2453 
   2454 	/*
   2455 	 * If there are no entries in the hash table, reinitialize
   2456 	 * the hash secrets.
   2457 	 */
   2458 	if (syn_cache_count == 0) {
   2459 		struct timeval tv;
   2460 		microtime(&tv);
   2461 		syn_hash1 = random() ^ (u_long)&sc;
   2462 		syn_hash2 = random() ^ tv.tv_usec;
   2463 	}
   2464 
   2465 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   2466 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   2467 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   2468 
   2469 	/*
   2470 	 * Make sure that we don't overflow the per-bucket
   2471 	 * limit or the total cache size limit.
   2472 	 */
   2473 	s = splsoftnet();
   2474 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   2475 		tcpstat.tcps_sc_bucketoverflow++;
   2476 		/*
   2477 		 * The bucket is full.  Toss the oldest element in the
   2478 		 * bucket.  This will be the entry with our bucket
   2479 		 * index closest to the front of the timer queue with
   2480 		 * the largest timeout value.
   2481 		 *
   2482 		 * Note: This timer queue traversal may be expensive, so
   2483 		 * we hope that this doesn't happen very often.  It is
   2484 		 * much more likely that we'll overflow the entire
   2485 		 * cache, which is much easier to handle; see below.
   2486 		 */
   2487 		for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
   2488 			for (sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
   2489 			     sc2 != NULL;
   2490 			     sc2 = TAILQ_NEXT(sc2, sc_timeq)) {
   2491 				if (sc2->sc_bucketidx == sc->sc_bucketidx) {
   2492 					SYN_CACHE_RM(sc2);
   2493 					SYN_CACHE_PUT(sc2);
   2494 					goto insert;	/* 2 level break */
   2495 				}
   2496 			}
   2497 		}
   2498 #ifdef DIAGNOSTIC
   2499 		/*
   2500 		 * This should never happen; we should always find an
   2501 		 * entry in our bucket.
   2502 		 */
   2503 		panic("syn_cache_insert: bucketoverflow: impossible");
   2504 #endif
   2505 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   2506 		tcpstat.tcps_sc_overflowed++;
   2507 		/*
   2508 		 * The cache is full.  Toss the oldest entry in the
   2509 		 * entire cache.  This is the front entry in the
   2510 		 * first non-empty timer queue with the largest
   2511 		 * timeout value.
   2512 		 */
   2513 		for (i = TCP_MAXRXTSHIFT; i >= 0; i--) {
   2514 			sc2 = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
   2515 			if (sc2 == NULL)
   2516 				continue;
   2517 			SYN_CACHE_RM(sc2);
   2518 			SYN_CACHE_PUT(sc2);
   2519 			goto insert;		/* symmetry with above */
   2520 		}
   2521 #ifdef DIAGNOSTIC
   2522 		/*
   2523 		 * This should never happen; we should always find an
   2524 		 * entry in the cache.
   2525 		 */
   2526 		panic("syn_cache_insert: cache overflow: impossible");
   2527 #endif
   2528 	}
   2529 
   2530  insert:
   2531 	/*
   2532 	 * Initialize the entry's timer.
   2533 	 */
   2534 	sc->sc_rxttot = 0;
   2535 	sc->sc_rxtshift = 0;
   2536 	SYN_CACHE_TIMER_ARM(sc);
   2537 	TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift], sc, sc_timeq);
   2538 
   2539 	/* Link it from tcpcb entry */
   2540 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   2541 
   2542 	/* Put it into the bucket. */
   2543 	LIST_INSERT_HEAD(&scp->sch_bucket, sc, sc_bucketq);
   2544 	scp->sch_length++;
   2545 	syn_cache_count++;
   2546 
   2547 	tcpstat.tcps_sc_added++;
   2548 	splx(s);
   2549 }
   2550 
   2551 /*
   2552  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   2553  * If we have retransmitted an entry the maximum number of times, expire
   2554  * that entry.
   2555  */
   2556 void
   2557 syn_cache_timer()
   2558 {
   2559 	struct syn_cache *sc, *nsc;
   2560 	int i, s;
   2561 
   2562 	s = splsoftnet();
   2563 
   2564 	/*
   2565 	 * First, get all the entries that need to be retransmitted, or
   2566 	 * must be expired due to exceeding the initial keepalive time.
   2567 	 */
   2568 	for (i = 0; i < TCP_MAXRXTSHIFT; i++) {
   2569 		for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[i]);
   2570 		     sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
   2571 		     sc = nsc) {
   2572 			nsc = TAILQ_NEXT(sc, sc_timeq);
   2573 
   2574 			/*
   2575 			 * Compute the total amount of time this entry has
   2576 			 * been on a queue.  If this entry has been on longer
   2577 			 * than the keep alive timer would allow, expire it.
   2578 			 */
   2579 			sc->sc_rxttot += sc->sc_rxtcur;
   2580 			if (sc->sc_rxttot >= TCPTV_KEEP_INIT) {
   2581 				tcpstat.tcps_sc_timed_out++;
   2582 				SYN_CACHE_RM(sc);
   2583 				SYN_CACHE_PUT(sc);
   2584 				continue;
   2585 			}
   2586 
   2587 			tcpstat.tcps_sc_retransmitted++;
   2588 			(void) syn_cache_respond(sc, NULL);
   2589 
   2590 			/* Advance this entry onto the next timer queue. */
   2591 			TAILQ_REMOVE(&tcp_syn_cache_timeq[i], sc, sc_timeq);
   2592 			sc->sc_rxtshift = i + 1;
   2593 			SYN_CACHE_TIMER_ARM(sc);
   2594 			TAILQ_INSERT_TAIL(&tcp_syn_cache_timeq[sc->sc_rxtshift],
   2595 			    sc, sc_timeq);
   2596 		}
   2597 	}
   2598 
   2599 	/*
   2600 	 * Now get all the entries that are expired due to too many
   2601 	 * retransmissions.
   2602 	 */
   2603 	for (sc = TAILQ_FIRST(&tcp_syn_cache_timeq[TCP_MAXRXTSHIFT]);
   2604 	     sc != NULL && PRT_SLOW_ISEXPIRED(sc->sc_rexmt);
   2605 	     sc = nsc) {
   2606 		nsc = TAILQ_NEXT(sc, sc_timeq);
   2607 		tcpstat.tcps_sc_timed_out++;
   2608 		SYN_CACHE_RM(sc);
   2609 		SYN_CACHE_PUT(sc);
   2610 	}
   2611 	splx(s);
   2612 }
   2613 
   2614 /*
   2615  * Remove syn cache created by the specified tcb entry,
   2616  * because this does not make sense to keep them
   2617  * (if there's no tcb entry, syn cache entry will never be used)
   2618  */
   2619 void
   2620 syn_cache_cleanup(tp)
   2621 	struct tcpcb *tp;
   2622 {
   2623 	struct syn_cache *sc, *nsc;
   2624 	int s;
   2625 
   2626 	s = splsoftnet();
   2627 
   2628 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   2629 		nsc = LIST_NEXT(sc, sc_tpq);
   2630 
   2631 #ifdef DIAGNOSTIC
   2632 		if (sc->sc_tp != tp)
   2633 			panic("invalid sc_tp in syn_cache_cleanup");
   2634 #endif
   2635 		SYN_CACHE_RM(sc);
   2636 		SYN_CACHE_PUT(sc);
   2637 	}
   2638 	/* just for safety */
   2639 	LIST_INIT(&tp->t_sc);
   2640 
   2641 	splx(s);
   2642 }
   2643 
   2644 /*
   2645  * Find an entry in the syn cache.
   2646  */
   2647 struct syn_cache *
   2648 syn_cache_lookup(src, dst, headp)
   2649 	struct sockaddr *src;
   2650 	struct sockaddr *dst;
   2651 	struct syn_cache_head **headp;
   2652 {
   2653 	struct syn_cache *sc;
   2654 	struct syn_cache_head *scp;
   2655 	u_int32_t hash;
   2656 	int s;
   2657 
   2658 	SYN_HASHALL(hash, src, dst);
   2659 
   2660 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   2661 	*headp = scp;
   2662 	s = splsoftnet();
   2663 	for (sc = LIST_FIRST(&scp->sch_bucket); sc != NULL;
   2664 	     sc = LIST_NEXT(sc, sc_bucketq)) {
   2665 		if (sc->sc_hash != hash)
   2666 			continue;
   2667 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
   2668 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
   2669 			splx(s);
   2670 			return (sc);
   2671 		}
   2672 	}
   2673 	splx(s);
   2674 	return (NULL);
   2675 }
   2676 
   2677 /*
   2678  * This function gets called when we receive an ACK for a
   2679  * socket in the LISTEN state.  We look up the connection
   2680  * in the syn cache, and if its there, we pull it out of
   2681  * the cache and turn it into a full-blown connection in
   2682  * the SYN-RECEIVED state.
   2683  *
   2684  * The return values may not be immediately obvious, and their effects
   2685  * can be subtle, so here they are:
   2686  *
   2687  *	NULL	SYN was not found in cache; caller should drop the
   2688  *		packet and send an RST.
   2689  *
   2690  *	-1	We were unable to create the new connection, and are
   2691  *		aborting it.  An ACK,RST is being sent to the peer
   2692  *		(unless we got screwey sequence numbners; see below),
   2693  *		because the 3-way handshake has been completed.  Caller
   2694  *		should not free the mbuf, since we may be using it.  If
   2695  *		we are not, we will free it.
   2696  *
   2697  *	Otherwise, the return value is a pointer to the new socket
   2698  *	associated with the connection.
   2699  */
   2700 struct socket *
   2701 syn_cache_get(src, dst, th, hlen, tlen, so, m)
   2702 	struct sockaddr *src;
   2703 	struct sockaddr *dst;
   2704 	struct tcphdr *th;
   2705 	unsigned int hlen, tlen;
   2706 	struct socket *so;
   2707 	struct mbuf *m;
   2708 {
   2709 	struct syn_cache *sc;
   2710 	struct syn_cache_head *scp;
   2711 	register struct inpcb *inp = NULL;
   2712 #ifdef INET6
   2713 	register struct in6pcb *in6p = NULL;
   2714 #endif
   2715 	register struct tcpcb *tp = 0;
   2716 	struct mbuf *am;
   2717 	int s;
   2718 	struct socket *oso;
   2719 
   2720 	s = splsoftnet();
   2721 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   2722 		splx(s);
   2723 		return (NULL);
   2724 	}
   2725 
   2726 	/*
   2727 	 * Verify the sequence and ack numbers.  Try getting the correct
   2728 	 * response again.
   2729 	 */
   2730 	if ((th->th_ack != sc->sc_iss + 1) ||
   2731 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   2732 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   2733 		(void) syn_cache_respond(sc, m);
   2734 		splx(s);
   2735 		return ((struct socket *)(-1));
   2736 	}
   2737 
   2738 	/* Remove this cache entry */
   2739 	SYN_CACHE_RM(sc);
   2740 	splx(s);
   2741 
   2742 	/*
   2743 	 * Ok, create the full blown connection, and set things up
   2744 	 * as they would have been set up if we had created the
   2745 	 * connection when the SYN arrived.  If we can't create
   2746 	 * the connection, abort it.
   2747 	 */
   2748 	/*
   2749 	 * inp still has the OLD in_pcb stuff, set the
   2750 	 * v6-related flags on the new guy, too.   This is
   2751 	 * done particularly for the case where an AF_INET6
   2752 	 * socket is bound only to a port, and a v4 connection
   2753 	 * comes in on that port.
   2754 	 * we also copy the flowinfo from the original pcb
   2755 	 * to the new one.
   2756 	 */
   2757     {
   2758 	struct inpcb *parentinpcb;
   2759 
   2760 	parentinpcb = (struct inpcb *)so->so_pcb;
   2761 
   2762 	oso = so;
   2763 	so = sonewconn(so, SS_ISCONNECTED);
   2764 	if (so == NULL)
   2765 		goto resetandabort;
   2766 
   2767 	switch (so->so_proto->pr_domain->dom_family) {
   2768 	case AF_INET:
   2769 		inp = sotoinpcb(so);
   2770 		break;
   2771 #ifdef INET6
   2772 	case AF_INET6:
   2773 		in6p = sotoin6pcb(so);
   2774 #if 0 /*def INET6*/
   2775 		inp->inp_flags |= (parentinpcb->inp_flags &
   2776 			(INP_IPV6 | INP_IPV6_UNDEC | INP_IPV6_MAPPED));
   2777 		if ((inp->inp_flags & INP_IPV6) &&
   2778 		   !(inp->inp_flags & INP_IPV6_MAPPED)) {
   2779 			inp->inp_ipv6.ip6_hlim = parentinpcb->inp_ipv6.ip6_hlim;
   2780 			inp->inp_ipv6.ip6_vfc = parentinpcb->inp_ipv6.ip6_vfc;
   2781 		}
   2782 #endif
   2783 		break;
   2784 #endif
   2785 	}
   2786     }
   2787 	switch (src->sa_family) {
   2788 	case AF_INET:
   2789 		if (inp) {
   2790 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   2791 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   2792 			inp->inp_options = ip_srcroute();
   2793 			in_pcbstate(inp, INP_BOUND);
   2794 			if (inp->inp_options == NULL) {
   2795 				inp->inp_options = sc->sc_ipopts;
   2796 				sc->sc_ipopts = NULL;
   2797 			}
   2798 		}
   2799 #ifdef INET6
   2800 		else if (in6p) {
   2801 			/* IPv4 packet to AF_INET6 socket */
   2802 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
   2803 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   2804 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   2805 				&in6p->in6p_laddr.s6_addr32[3],
   2806 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   2807 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   2808 			in6totcpcb(in6p)->t_family = AF_INET;
   2809 		}
   2810 #endif
   2811 		break;
   2812 #ifdef INET6
   2813 	case AF_INET6:
   2814 		if (in6p) {
   2815 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   2816 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   2817 #if 0
   2818 			in6p->in6p_flowinfo = ip6->ip6_flow & IPV6_FLOWINFO_MASK;
   2819 			/*inp->inp_options = ip6_srcroute();*/ /* soon. */
   2820 #endif
   2821 		}
   2822 		break;
   2823 #endif
   2824 	}
   2825 #ifdef INET6
   2826 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   2827 		struct in6pcb *oin6p = sotoin6pcb(oso);
   2828 		/* inherit socket options from the listening socket */
   2829 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   2830 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   2831 			m_freem(in6p->in6p_options);
   2832 			in6p->in6p_options = 0;
   2833 		}
   2834 		ip6_savecontrol(in6p, &in6p->in6p_options,
   2835 			mtod(m, struct ip6_hdr *), m);
   2836 	}
   2837 #endif
   2838 
   2839 #ifdef IPSEC
   2840     {
   2841 	struct secpolicy *sp;
   2842 	if (inp) {
   2843 		sp = ipsec_copy_policy(sotoinpcb(oso)->inp_sp);
   2844 		if (sp) {
   2845 			key_freesp(inp->inp_sp);
   2846 			inp->inp_sp = sp;
   2847 		} else
   2848 			printf("tcp_input: could not copy policy\n");
   2849 	}
   2850 #ifdef INET6
   2851 	else if (in6p) {
   2852 		sp = ipsec_copy_policy(sotoin6pcb(oso)->in6p_sp);
   2853 		if (sp) {
   2854 			key_freesp(in6p->in6p_sp);
   2855 			in6p->in6p_sp = sp;
   2856 		} else
   2857 			printf("tcp_input: could not copy policy\n");
   2858 	}
   2859 #endif
   2860     }
   2861 #endif
   2862 
   2863 	/*
   2864 	 * Give the new socket our cached route reference.
   2865 	 */
   2866 	if (inp)
   2867 		inp->inp_route = sc->sc_route4;		/* struct assignment */
   2868 #ifdef INET6
   2869 	else
   2870 		in6p->in6p_route = sc->sc_route6;
   2871 #endif
   2872 	sc->sc_route4.ro_rt = NULL;
   2873 
   2874 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   2875 	if (am == NULL)
   2876 		goto resetandabort;
   2877 	am->m_len = src->sa_len;
   2878 	bcopy(src, mtod(am, caddr_t), src->sa_len);
   2879 	if (inp) {
   2880 		if (in_pcbconnect(inp, am)) {
   2881 			(void) m_free(am);
   2882 			goto resetandabort;
   2883 		}
   2884 	}
   2885 #ifdef INET6
   2886 	else if (in6p) {
   2887 		if (src->sa_family == AF_INET) {
   2888 			/* IPv4 packet to AF_INET6 socket */
   2889 			struct sockaddr_in6 *sin6;
   2890 			sin6 = mtod(am, struct sockaddr_in6 *);
   2891 			am->m_len = sizeof(*sin6);
   2892 			bzero(sin6, sizeof(*sin6));
   2893 			sin6->sin6_family = AF_INET6;
   2894 			sin6->sin6_len = sizeof(*sin6);
   2895 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
   2896 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
   2897 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   2898 				&sin6->sin6_addr.s6_addr32[3],
   2899 				sizeof(sin6->sin6_addr.s6_addr32[3]));
   2900 		}
   2901 		if (in6_pcbconnect(in6p, am)) {
   2902 			(void) m_free(am);
   2903 			goto resetandabort;
   2904 		}
   2905 	}
   2906 #endif
   2907 	else {
   2908 		(void) m_free(am);
   2909 		goto resetandabort;
   2910 	}
   2911 	(void) m_free(am);
   2912 
   2913 	if (inp)
   2914 		tp = intotcpcb(inp);
   2915 #ifdef INET6
   2916 	else if (in6p)
   2917 		tp = in6totcpcb(in6p);
   2918 #endif
   2919 	else
   2920 		tp = NULL;
   2921 	if (sc->sc_request_r_scale != 15) {
   2922 		tp->requested_s_scale = sc->sc_requested_s_scale;
   2923 		tp->request_r_scale = sc->sc_request_r_scale;
   2924 		tp->snd_scale = sc->sc_requested_s_scale;
   2925 		tp->rcv_scale = sc->sc_request_r_scale;
   2926 		tp->t_flags |= TF_RCVD_SCALE;
   2927 	}
   2928 	if (sc->sc_flags & SCF_TIMESTAMP)
   2929 		tp->t_flags |= TF_RCVD_TSTMP;
   2930 
   2931 	tp->t_template = tcp_template(tp);
   2932 	if (tp->t_template == 0) {
   2933 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   2934 		so = NULL;
   2935 		m_freem(m);
   2936 		goto abort;
   2937 	}
   2938 
   2939 	tp->iss = sc->sc_iss;
   2940 	tp->irs = sc->sc_irs;
   2941 	tcp_sendseqinit(tp);
   2942 	tcp_rcvseqinit(tp);
   2943 	tp->t_state = TCPS_SYN_RECEIVED;
   2944 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
   2945 	tcpstat.tcps_accepts++;
   2946 
   2947 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   2948 	tp->t_ourmss = sc->sc_ourmaxseg;
   2949 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   2950 
   2951 	/*
   2952 	 * Initialize the initial congestion window.  If we
   2953 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   2954 	 * to 1 segment (i.e. the Loss Window).
   2955 	 */
   2956 	if (sc->sc_rxtshift)
   2957 		tp->snd_cwnd = tp->t_peermss;
   2958 	else
   2959 		tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win, tp->t_peermss);
   2960 
   2961 	tcp_rmx_rtt(tp);
   2962 	tp->snd_wl1 = sc->sc_irs;
   2963 	tp->rcv_up = sc->sc_irs + 1;
   2964 
   2965 	/*
   2966 	 * This is what whould have happened in tcp_ouput() when
   2967 	 * the SYN,ACK was sent.
   2968 	 */
   2969 	tp->snd_up = tp->snd_una;
   2970 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   2971 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2972 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   2973 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   2974 	tp->last_ack_sent = tp->rcv_nxt;
   2975 
   2976 	tcpstat.tcps_sc_completed++;
   2977 	SYN_CACHE_PUT(sc);
   2978 	return (so);
   2979 
   2980 resetandabort:
   2981 	(void) tcp_respond(NULL, m, m, th,
   2982 			   th->th_seq + tlen, (tcp_seq)0, TH_RST|TH_ACK);
   2983 abort:
   2984 	if (so != NULL)
   2985 		(void) soabort(so);
   2986 	SYN_CACHE_PUT(sc);
   2987 	tcpstat.tcps_sc_aborted++;
   2988 	return ((struct socket *)(-1));
   2989 }
   2990 
   2991 /*
   2992  * This function is called when we get a RST for a
   2993  * non-existant connection, so that we can see if the
   2994  * connection is in the syn cache.  If it is, zap it.
   2995  */
   2996 
   2997 void
   2998 syn_cache_reset(src, dst, th)
   2999 	struct sockaddr *src;
   3000 	struct sockaddr *dst;
   3001 	struct tcphdr *th;
   3002 {
   3003 	struct syn_cache *sc;
   3004 	struct syn_cache_head *scp;
   3005 	int s = splsoftnet();
   3006 
   3007 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3008 		splx(s);
   3009 		return;
   3010 	}
   3011 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   3012 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   3013 		splx(s);
   3014 		return;
   3015 	}
   3016 	SYN_CACHE_RM(sc);
   3017 	splx(s);
   3018 	tcpstat.tcps_sc_reset++;
   3019 	SYN_CACHE_PUT(sc);
   3020 }
   3021 
   3022 void
   3023 syn_cache_unreach(src, dst, th)
   3024 	struct sockaddr *src;
   3025 	struct sockaddr *dst;
   3026 	struct tcphdr *th;
   3027 {
   3028 	struct syn_cache *sc;
   3029 	struct syn_cache_head *scp;
   3030 	int s;
   3031 
   3032 	s = splsoftnet();
   3033 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3034 		splx(s);
   3035 		return;
   3036 	}
   3037 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   3038 	if (ntohl (th->th_seq) != sc->sc_iss) {
   3039 		splx(s);
   3040 		return;
   3041 	}
   3042 
   3043 	/*
   3044 	 * If we've rertransmitted 3 times and this is our second error,
   3045 	 * we remove the entry.  Otherwise, we allow it to continue on.
   3046 	 * This prevents us from incorrectly nuking an entry during a
   3047 	 * spurious network outage.
   3048 	 *
   3049 	 * See tcp_notify().
   3050 	 */
   3051 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   3052 		sc->sc_flags |= SCF_UNREACH;
   3053 		splx(s);
   3054 		return;
   3055 	}
   3056 
   3057 	SYN_CACHE_RM(sc);
   3058 	splx(s);
   3059 	tcpstat.tcps_sc_unreach++;
   3060 	SYN_CACHE_PUT(sc);
   3061 }
   3062 
   3063 /*
   3064  * Given a LISTEN socket and an inbound SYN request, add
   3065  * this to the syn cache, and send back a segment:
   3066  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   3067  * to the source.
   3068  *
   3069  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   3070  * Doing so would require that we hold onto the data and deliver it
   3071  * to the application.  However, if we are the target of a SYN-flood
   3072  * DoS attack, an attacker could send data which would eventually
   3073  * consume all available buffer space if it were ACKed.  By not ACKing
   3074  * the data, we avoid this DoS scenario.
   3075  */
   3076 
   3077 int
   3078 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
   3079 	struct sockaddr *src;
   3080 	struct sockaddr *dst;
   3081 	struct tcphdr *th;
   3082 	unsigned int hlen;
   3083 	struct socket *so;
   3084 	struct mbuf *m;
   3085 	u_char *optp;
   3086 	int optlen;
   3087 	struct tcp_opt_info *oi;
   3088 {
   3089 	struct tcpcb tb, *tp;
   3090 	long win;
   3091 	struct syn_cache *sc;
   3092 	struct syn_cache_head *scp;
   3093 	struct mbuf *ipopts;
   3094 
   3095 	tp = sototcpcb(so);
   3096 
   3097 	/*
   3098 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   3099 	 * in_broadcast() should never return true on a received
   3100 	 * packet with M_BCAST not set.
   3101 	 */
   3102 	if (m->m_flags & (M_BCAST|M_MCAST))
   3103 		return 0;
   3104 #ifdef INET6
   3105 	if (m->m_flags & M_ANYCAST6)
   3106 		return 0;
   3107 #endif
   3108 
   3109 	switch (src->sa_family) {
   3110 	case AF_INET:
   3111 		if (IN_MULTICAST(((struct sockaddr_in *)src)->sin_addr.s_addr)
   3112 		 || IN_MULTICAST(((struct sockaddr_in *)dst)->sin_addr.s_addr))
   3113 			return 0;
   3114 		break;
   3115 #ifdef INET6
   3116 	case AF_INET6:
   3117 		if (IN6_IS_ADDR_MULTICAST(&((struct sockaddr_in6 *)src)->sin6_addr)
   3118 		 || IN6_IS_ADDR_MULTICAST(&((struct sockaddr_in6 *)dst)->sin6_addr))
   3119 			return 0;
   3120 		break;
   3121 #endif
   3122 	default:
   3123 		return 0;
   3124 	}
   3125 
   3126 	/*
   3127 	 * Initialize some local state.
   3128 	 */
   3129 	win = sbspace(&so->so_rcv);
   3130 	if (win > TCP_MAXWIN)
   3131 		win = TCP_MAXWIN;
   3132 
   3133 	if (src->sa_family == AF_INET) {
   3134 		/*
   3135 		 * Remember the IP options, if any.
   3136 		 */
   3137 		ipopts = ip_srcroute();
   3138 	} else
   3139 		ipopts = NULL;
   3140 
   3141 	if (optp) {
   3142 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   3143 		tcp_dooptions(&tb, optp, optlen, th, oi);
   3144 	} else
   3145 		tb.t_flags = 0;
   3146 
   3147 	/*
   3148 	 * See if we already have an entry for this connection.
   3149 	 * If we do, resend the SYN,ACK.  We do not count this
   3150 	 * as a retransmission (XXX though maybe we should).
   3151 	 */
   3152 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   3153 		tcpstat.tcps_sc_dupesyn++;
   3154 		if (ipopts) {
   3155 			/*
   3156 			 * If we were remembering a previous source route,
   3157 			 * forget it and use the new one we've been given.
   3158 			 */
   3159 			if (sc->sc_ipopts)
   3160 				(void) m_free(sc->sc_ipopts);
   3161 			sc->sc_ipopts = ipopts;
   3162 		}
   3163 		sc->sc_timestamp = tb.ts_recent;
   3164 		if (syn_cache_respond(sc, m) == 0) {
   3165 			tcpstat.tcps_sndacks++;
   3166 			tcpstat.tcps_sndtotal++;
   3167 		}
   3168 		return (1);
   3169 	}
   3170 
   3171 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   3172 	if (sc == NULL) {
   3173 		if (ipopts)
   3174 			(void) m_free(ipopts);
   3175 		return (0);
   3176 	}
   3177 
   3178 	/*
   3179 	 * Fill in the cache, and put the necessary IP and TCP
   3180 	 * options into the reply.
   3181 	 */
   3182 	bzero(sc, sizeof(struct syn_cache));
   3183 	bcopy(src, &sc->sc_src, src->sa_len);
   3184 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   3185 	sc->sc_flags = 0;
   3186 	sc->sc_ipopts = ipopts;
   3187 	sc->sc_irs = th->th_seq;
   3188 	sc->sc_iss = tcp_new_iss(sc, sizeof(struct syn_cache), 0);
   3189 	sc->sc_peermaxseg = oi->maxseg;
   3190 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   3191 						m->m_pkthdr.rcvif : NULL,
   3192 						sc->sc_src.sa.sa_family);
   3193 	sc->sc_win = win;
   3194 	sc->sc_timestamp = tb.ts_recent;
   3195 	if (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP))
   3196 		sc->sc_flags |= SCF_TIMESTAMP;
   3197 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   3198 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   3199 		sc->sc_requested_s_scale = tb.requested_s_scale;
   3200 		sc->sc_request_r_scale = 0;
   3201 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   3202 		    TCP_MAXWIN << sc->sc_request_r_scale <
   3203 		    so->so_rcv.sb_hiwat)
   3204 			sc->sc_request_r_scale++;
   3205 	} else {
   3206 		sc->sc_requested_s_scale = 15;
   3207 		sc->sc_request_r_scale = 15;
   3208 	}
   3209 	sc->sc_tp = tp;
   3210 	if (syn_cache_respond(sc, m) == 0) {
   3211 		syn_cache_insert(sc, tp);
   3212 		tcpstat.tcps_sndacks++;
   3213 		tcpstat.tcps_sndtotal++;
   3214 	} else {
   3215 		SYN_CACHE_PUT(sc);
   3216 		tcpstat.tcps_sc_dropped++;
   3217 	}
   3218 	return (1);
   3219 }
   3220 
   3221 int
   3222 syn_cache_respond(sc, m)
   3223 	struct syn_cache *sc;
   3224 	struct mbuf *m;
   3225 {
   3226 	struct route *ro;
   3227 	struct rtentry *rt;
   3228 	u_int8_t *optp;
   3229 	int optlen, error;
   3230 	u_int16_t tlen;
   3231 	struct ip *ip = NULL;
   3232 #ifdef INET6
   3233 	struct ip6_hdr *ip6 = NULL;
   3234 #endif
   3235 	struct tcphdr *th;
   3236 	u_int hlen;
   3237 
   3238 	switch (sc->sc_src.sa.sa_family) {
   3239 	case AF_INET:
   3240 		hlen = sizeof(struct ip);
   3241 		ro = &sc->sc_route4;
   3242 		break;
   3243 #ifdef INET6
   3244 	case AF_INET6:
   3245 		hlen = sizeof(struct ip6_hdr);
   3246 		ro = (struct route *)&sc->sc_route6;
   3247 		break;
   3248 #endif
   3249 	default:
   3250 		if (m)
   3251 			m_freem(m);
   3252 		return EAFNOSUPPORT;
   3253 	}
   3254 
   3255 	/* Compute the size of the TCP options. */
   3256 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   3257 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   3258 
   3259 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   3260 
   3261 	/*
   3262 	 * Create the IP+TCP header from scratch.  Reuse the received mbuf
   3263 	 * if possible.
   3264 	 */
   3265 	if (m != NULL) {
   3266 		m_freem(m->m_next);
   3267 		m->m_next = NULL;
   3268 		MRESETDATA(m);
   3269 	} else {
   3270 		MGETHDR(m, M_DONTWAIT, MT_DATA);
   3271 		if (m == NULL)
   3272 			return (ENOBUFS);
   3273 	}
   3274 
   3275 	/* Fixup the mbuf. */
   3276 	m->m_data += max_linkhdr;
   3277 	m->m_len = m->m_pkthdr.len = tlen;
   3278 #ifdef IPSEC
   3279 	if (sc->sc_tp) {
   3280 		struct tcpcb *tp;
   3281 		struct socket *so;
   3282 
   3283 		tp = sc->sc_tp;
   3284 		if (tp->t_inpcb)
   3285 			so = tp->t_inpcb->inp_socket;
   3286 #ifdef INET6
   3287 		else if (tp->t_in6pcb)
   3288 			so = tp->t_in6pcb->in6p_socket;
   3289 #endif
   3290 		else
   3291 			so = NULL;
   3292 		/* use IPsec policy on listening socket, on SYN ACK */
   3293 		m->m_pkthdr.rcvif = (struct ifnet *)so;
   3294 	}
   3295 #else
   3296 	m->m_pkthdr.rcvif = NULL;
   3297 #endif
   3298 	memset(mtod(m, u_char *), 0, tlen);
   3299 
   3300 	switch (sc->sc_src.sa.sa_family) {
   3301 	case AF_INET:
   3302 		ip = mtod(m, struct ip *);
   3303 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   3304 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   3305 		ip->ip_p = IPPROTO_TCP;
   3306 		th = (struct tcphdr *)(ip + 1);
   3307 		th->th_dport = sc->sc_src.sin.sin_port;
   3308 		th->th_sport = sc->sc_dst.sin.sin_port;
   3309 		break;
   3310 #ifdef INET6
   3311 	case AF_INET6:
   3312 		ip6 = mtod(m, struct ip6_hdr *);
   3313 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   3314 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   3315 		ip6->ip6_nxt = IPPROTO_TCP;
   3316 		/* ip6_plen will be updated in ip6_output() */
   3317 		th = (struct tcphdr *)(ip6 + 1);
   3318 		th->th_dport = sc->sc_src.sin6.sin6_port;
   3319 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   3320 		break;
   3321 #endif
   3322 	default:
   3323 		th = NULL;
   3324 	}
   3325 
   3326 	th->th_seq = htonl(sc->sc_iss);
   3327 	th->th_ack = htonl(sc->sc_irs + 1);
   3328 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   3329 	th->th_flags = TH_SYN|TH_ACK;
   3330 	th->th_win = htons(sc->sc_win);
   3331 	/* th_sum already 0 */
   3332 	/* th_urp already 0 */
   3333 
   3334 	/* Tack on the TCP options. */
   3335 	optp = (u_int8_t *)(th + 1);
   3336 	*optp++ = TCPOPT_MAXSEG;
   3337 	*optp++ = 4;
   3338 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   3339 	*optp++ = sc->sc_ourmaxseg & 0xff;
   3340 
   3341 	if (sc->sc_request_r_scale != 15) {
   3342 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   3343 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   3344 		    sc->sc_request_r_scale);
   3345 		optp += 4;
   3346 	}
   3347 
   3348 	if (sc->sc_flags & SCF_TIMESTAMP) {
   3349 		u_int32_t *lp = (u_int32_t *)(optp);
   3350 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   3351 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   3352 		*lp++ = htonl(tcp_now);
   3353 		*lp   = htonl(sc->sc_timestamp);
   3354 		optp += TCPOLEN_TSTAMP_APPA;
   3355 	}
   3356 
   3357 	/* Compute the packet's checksum. */
   3358 	switch (sc->sc_src.sa.sa_family) {
   3359 	case AF_INET:
   3360 		ip->ip_len = htons(tlen - hlen);
   3361 		th->th_sum = 0;
   3362 		th->th_sum = in_cksum(m, tlen);
   3363 		break;
   3364 #ifdef INET6
   3365 	case AF_INET6:
   3366 		ip6->ip6_plen = htons(tlen - hlen);
   3367 		th->th_sum = 0;
   3368 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   3369 		break;
   3370 #endif
   3371 	}
   3372 
   3373 	/*
   3374 	 * Fill in some straggling IP bits.  Note the stack expects
   3375 	 * ip_len to be in host order, for convenience.
   3376 	 */
   3377 	switch (sc->sc_src.sa.sa_family) {
   3378 	case AF_INET:
   3379 		ip->ip_len = tlen;
   3380 		ip->ip_ttl = ip_defttl;
   3381 		/* XXX tos? */
   3382 		break;
   3383 #ifdef INET6
   3384 	case AF_INET6:
   3385 		ip6->ip6_vfc = IPV6_VERSION;
   3386 		ip6->ip6_plen = htons(tlen - hlen);
   3387 		ip6->ip6_hlim = ip6_defhlim;
   3388 		/* XXX flowlabel? */
   3389 		break;
   3390 #endif
   3391 	}
   3392 
   3393 	/*
   3394 	 * If we're doing Path MTU discovery, we need to set DF unless
   3395 	 * the route's MTU is locked.  If we don't yet know the route,
   3396 	 * look it up now.  We will copy this reference to the inpcb
   3397 	 * when we finish creating the connection.
   3398 	 */
   3399 	if ((rt = ro->ro_rt) == NULL || (rt->rt_flags & RTF_UP) == 0) {
   3400 		if (ro->ro_rt != NULL) {
   3401 			RTFREE(ro->ro_rt);
   3402 			ro->ro_rt = NULL;
   3403 		}
   3404 		bcopy(&sc->sc_src, &ro->ro_dst, sc->sc_src.sa.sa_len);
   3405 		rtalloc(ro);
   3406 		if ((rt = ro->ro_rt) == NULL) {
   3407 			m_freem(m);
   3408 			switch (sc->sc_src.sa.sa_family) {
   3409 			case AF_INET:
   3410 				ipstat.ips_noroute++;
   3411 				break;
   3412 #ifdef INET6
   3413 			case AF_INET6:
   3414 				ip6stat.ip6s_noroute++;
   3415 				break;
   3416 #endif
   3417 			}
   3418 			return (EHOSTUNREACH);
   3419 		}
   3420 	}
   3421 
   3422 	switch (sc->sc_src.sa.sa_family) {
   3423 	case AF_INET:
   3424 		if (ip_mtudisc != 0 && (rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
   3425 			ip->ip_off |= IP_DF;
   3426 
   3427 		/* ...and send it off! */
   3428 		error = ip_output(m, sc->sc_ipopts, ro, 0, NULL);
   3429 		break;
   3430 #ifdef INET6
   3431 	case AF_INET6:
   3432 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro,
   3433 			0, NULL);
   3434 		break;
   3435 #endif
   3436 	default:
   3437 		error = EAFNOSUPPORT;
   3438 		break;
   3439 	}
   3440 	return (error);
   3441 }
   3442