tcp_subr.c revision 1.107 1 /* $NetBSD: tcp_subr.c,v 1.107 2001/02/11 06:49:49 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
102 */
103
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_tcp_compat_42.h"
107 #include "rnd.h"
108
109 #include <sys/param.h>
110 #include <sys/proc.h>
111 #include <sys/systm.h>
112 #include <sys/malloc.h>
113 #include <sys/mbuf.h>
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/protosw.h>
117 #include <sys/errno.h>
118 #include <sys/kernel.h>
119 #include <sys/pool.h>
120 #if NRND > 0
121 #include <sys/rnd.h>
122 #endif
123
124 #include <net/route.h>
125 #include <net/if.h>
126
127 #include <netinet/in.h>
128 #include <netinet/in_systm.h>
129 #include <netinet/ip.h>
130 #include <netinet/in_pcb.h>
131 #include <netinet/ip_var.h>
132 #include <netinet/ip_icmp.h>
133
134 #ifdef INET6
135 #ifndef INET
136 #include <netinet/in.h>
137 #endif
138 #include <netinet/ip6.h>
139 #include <netinet6/in6_pcb.h>
140 #include <netinet6/ip6_var.h>
141 #include <netinet6/in6_var.h>
142 #include <netinet6/ip6protosw.h>
143 #include <netinet/icmp6.h>
144 #endif
145
146 #include <netinet/tcp.h>
147 #include <netinet/tcp_fsm.h>
148 #include <netinet/tcp_seq.h>
149 #include <netinet/tcp_timer.h>
150 #include <netinet/tcp_var.h>
151 #include <netinet/tcpip.h>
152
153 #ifdef IPSEC
154 #include <netinet6/ipsec.h>
155 #endif /*IPSEC*/
156
157 #ifdef INET6
158 struct in6pcb tcb6;
159 #endif
160
161 /* patchable/settable parameters for tcp */
162 int tcp_mssdflt = TCP_MSS;
163 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
164 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
165 int tcp_do_sack = 1; /* selective acknowledgement */
166 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
167 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
168 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
169 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
170 int tcp_init_win = 1;
171 int tcp_mss_ifmtu = 0;
172 #ifdef TCP_COMPAT_42
173 int tcp_compat_42 = 1;
174 #else
175 int tcp_compat_42 = 0;
176 #endif
177 int tcp_rst_ppslim = 100; /* 100pps */
178
179 /* tcb hash */
180 #ifndef TCBHASHSIZE
181 #define TCBHASHSIZE 128
182 #endif
183 int tcbhashsize = TCBHASHSIZE;
184
185 /* syn hash parameters */
186 #define TCP_SYN_HASH_SIZE 293
187 #define TCP_SYN_BUCKET_SIZE 35
188 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
189 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
190 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
191 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
192 int tcp_syn_cache_interval = 1; /* runs timer twice a second */
193
194 int tcp_freeq __P((struct tcpcb *));
195
196 #ifdef INET
197 void tcp_mtudisc_callback __P((struct in_addr));
198 #endif
199 #ifdef INET6
200 void tcp6_mtudisc_callback __P((struct in6_addr *));
201 #endif
202
203 void tcp_mtudisc __P((struct inpcb *, int));
204 #ifdef INET6
205 void tcp6_mtudisc __P((struct in6pcb *, int));
206 #endif
207
208 struct pool tcpcb_pool;
209
210 /*
211 * Tcp initialization
212 */
213 void
214 tcp_init()
215 {
216 int hlen;
217
218 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
219 0, NULL, NULL, M_PCB);
220 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
221 #ifdef INET6
222 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
223 #endif
224 LIST_INIT(&tcp_delacks);
225
226 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
227 #ifdef INET6
228 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
229 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
230 #endif
231 if (max_protohdr < hlen)
232 max_protohdr = hlen;
233 if (max_linkhdr + hlen > MHLEN)
234 panic("tcp_init");
235
236 #ifdef INET
237 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
238 #endif
239 #ifdef INET6
240 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
241 #endif
242
243 /* Initialize the compressed state engine. */
244 syn_cache_init();
245 }
246
247 /*
248 * Create template to be used to send tcp packets on a connection.
249 * Call after host entry created, allocates an mbuf and fills
250 * in a skeletal tcp/ip header, minimizing the amount of work
251 * necessary when the connection is used.
252 */
253 struct mbuf *
254 tcp_template(tp)
255 struct tcpcb *tp;
256 {
257 struct inpcb *inp = tp->t_inpcb;
258 #ifdef INET6
259 struct in6pcb *in6p = tp->t_in6pcb;
260 #endif
261 struct tcphdr *n;
262 struct mbuf *m;
263 int hlen;
264
265 switch (tp->t_family) {
266 case AF_INET:
267 hlen = sizeof(struct ip);
268 if (inp)
269 break;
270 #ifdef INET6
271 if (in6p) {
272 /* mapped addr case */
273 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
274 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
275 break;
276 }
277 #endif
278 return NULL; /*EINVAL*/
279 #ifdef INET6
280 case AF_INET6:
281 hlen = sizeof(struct ip6_hdr);
282 if (in6p) {
283 /* more sainty check? */
284 break;
285 }
286 return NULL; /*EINVAL*/
287 #endif
288 default:
289 hlen = 0; /*pacify gcc*/
290 return NULL; /*EAFNOSUPPORT*/
291 }
292 #ifdef DIAGNOSTIC
293 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
294 panic("mclbytes too small for t_template");
295 #endif
296 m = tp->t_template;
297 if (m && m->m_len == hlen + sizeof(struct tcphdr))
298 ;
299 else {
300 if (m)
301 m_freem(m);
302 m = tp->t_template = NULL;
303 MGETHDR(m, M_DONTWAIT, MT_HEADER);
304 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
305 MCLGET(m, M_DONTWAIT);
306 if ((m->m_flags & M_EXT) == 0) {
307 m_free(m);
308 m = NULL;
309 }
310 }
311 if (m == NULL)
312 return NULL;
313 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
314 }
315 bzero(mtod(m, caddr_t), m->m_len);
316 switch (tp->t_family) {
317 case AF_INET:
318 {
319 struct ipovly *ipov;
320 mtod(m, struct ip *)->ip_v = 4;
321 ipov = mtod(m, struct ipovly *);
322 ipov->ih_pr = IPPROTO_TCP;
323 ipov->ih_len = htons(sizeof(struct tcphdr));
324 if (inp) {
325 ipov->ih_src = inp->inp_laddr;
326 ipov->ih_dst = inp->inp_faddr;
327 }
328 #ifdef INET6
329 else if (in6p) {
330 /* mapped addr case */
331 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
332 sizeof(ipov->ih_src));
333 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
334 sizeof(ipov->ih_dst));
335 }
336 #endif
337 break;
338 }
339 #ifdef INET6
340 case AF_INET6:
341 {
342 struct ip6_hdr *ip6;
343 mtod(m, struct ip *)->ip_v = 6;
344 ip6 = mtod(m, struct ip6_hdr *);
345 ip6->ip6_nxt = IPPROTO_TCP;
346 ip6->ip6_plen = htons(sizeof(struct tcphdr));
347 ip6->ip6_src = in6p->in6p_laddr;
348 ip6->ip6_dst = in6p->in6p_faddr;
349 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
350 if (ip6_auto_flowlabel) {
351 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
352 ip6->ip6_flow |=
353 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
354 }
355 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
356 ip6->ip6_vfc |= IPV6_VERSION;
357 break;
358 }
359 #endif
360 }
361 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
362 if (inp) {
363 n->th_sport = inp->inp_lport;
364 n->th_dport = inp->inp_fport;
365 }
366 #ifdef INET6
367 else if (in6p) {
368 n->th_sport = in6p->in6p_lport;
369 n->th_dport = in6p->in6p_fport;
370 }
371 #endif
372 n->th_seq = 0;
373 n->th_ack = 0;
374 n->th_x2 = 0;
375 n->th_off = 5;
376 n->th_flags = 0;
377 n->th_win = 0;
378 n->th_sum = 0;
379 n->th_urp = 0;
380 return (m);
381 }
382
383 /*
384 * Send a single message to the TCP at address specified by
385 * the given TCP/IP header. If m == 0, then we make a copy
386 * of the tcpiphdr at ti and send directly to the addressed host.
387 * This is used to force keep alive messages out using the TCP
388 * template for a connection tp->t_template. If flags are given
389 * then we send a message back to the TCP which originated the
390 * segment ti, and discard the mbuf containing it and any other
391 * attached mbufs.
392 *
393 * In any case the ack and sequence number of the transmitted
394 * segment are as specified by the parameters.
395 */
396 int
397 tcp_respond(tp, template, m, th0, ack, seq, flags)
398 struct tcpcb *tp;
399 struct mbuf *template;
400 struct mbuf *m;
401 struct tcphdr *th0;
402 tcp_seq ack, seq;
403 int flags;
404 {
405 struct route *ro;
406 int error, tlen, win = 0;
407 int hlen;
408 struct ip *ip;
409 #ifdef INET6
410 struct ip6_hdr *ip6;
411 #endif
412 int family; /* family on packet, not inpcb/in6pcb! */
413 struct tcphdr *th;
414
415 if (tp != NULL && (flags & TH_RST) == 0) {
416 #ifdef DIAGNOSTIC
417 if (tp->t_inpcb && tp->t_in6pcb)
418 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
419 #endif
420 #ifdef INET
421 if (tp->t_inpcb)
422 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
423 #endif
424 #ifdef INET6
425 if (tp->t_in6pcb)
426 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
427 #endif
428 }
429
430 ip = NULL;
431 #ifdef INET6
432 ip6 = NULL;
433 #endif
434 if (m == 0) {
435 if (!template)
436 return EINVAL;
437
438 /* get family information from template */
439 switch (mtod(template, struct ip *)->ip_v) {
440 case 4:
441 family = AF_INET;
442 hlen = sizeof(struct ip);
443 break;
444 #ifdef INET6
445 case 6:
446 family = AF_INET6;
447 hlen = sizeof(struct ip6_hdr);
448 break;
449 #endif
450 default:
451 return EAFNOSUPPORT;
452 }
453
454 MGETHDR(m, M_DONTWAIT, MT_HEADER);
455 if (m) {
456 MCLGET(m, M_DONTWAIT);
457 if ((m->m_flags & M_EXT) == 0) {
458 m_free(m);
459 m = NULL;
460 }
461 }
462 if (m == NULL)
463 return (ENOBUFS);
464
465 if (tcp_compat_42)
466 tlen = 1;
467 else
468 tlen = 0;
469
470 m->m_data += max_linkhdr;
471 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
472 template->m_len);
473 switch (family) {
474 case AF_INET:
475 ip = mtod(m, struct ip *);
476 th = (struct tcphdr *)(ip + 1);
477 break;
478 #ifdef INET6
479 case AF_INET6:
480 ip6 = mtod(m, struct ip6_hdr *);
481 th = (struct tcphdr *)(ip6 + 1);
482 break;
483 #endif
484 #if 0
485 default:
486 /* noone will visit here */
487 m_freem(m);
488 return EAFNOSUPPORT;
489 #endif
490 }
491 flags = TH_ACK;
492 } else {
493
494 if ((m->m_flags & M_PKTHDR) == 0) {
495 #if 0
496 printf("non PKTHDR to tcp_respond\n");
497 #endif
498 m_freem(m);
499 return EINVAL;
500 }
501 #ifdef DIAGNOSTIC
502 if (!th0)
503 panic("th0 == NULL in tcp_respond");
504 #endif
505
506 /* get family information from m */
507 switch (mtod(m, struct ip *)->ip_v) {
508 case 4:
509 family = AF_INET;
510 hlen = sizeof(struct ip);
511 ip = mtod(m, struct ip *);
512 break;
513 #ifdef INET6
514 case 6:
515 family = AF_INET6;
516 hlen = sizeof(struct ip6_hdr);
517 ip6 = mtod(m, struct ip6_hdr *);
518 break;
519 #endif
520 default:
521 m_freem(m);
522 return EAFNOSUPPORT;
523 }
524 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
525 tlen = sizeof(*th0);
526 else
527 tlen = th0->th_off << 2;
528
529 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
530 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
531 m->m_len = hlen + tlen;
532 m_freem(m->m_next);
533 m->m_next = NULL;
534 } else {
535 struct mbuf *n;
536
537 #ifdef DIAGNOSTIC
538 if (max_linkhdr + hlen + tlen > MCLBYTES) {
539 m_freem(m);
540 return EMSGSIZE;
541 }
542 #endif
543 MGETHDR(n, M_DONTWAIT, MT_HEADER);
544 if (n && max_linkhdr + hlen + tlen > MHLEN) {
545 MCLGET(n, M_DONTWAIT);
546 if ((n->m_flags & M_EXT) == 0) {
547 m_freem(n);
548 n = NULL;
549 }
550 }
551 if (!n) {
552 m_freem(m);
553 return ENOBUFS;
554 }
555
556 n->m_data += max_linkhdr;
557 n->m_len = hlen + tlen;
558 m_copyback(n, 0, hlen, mtod(m, caddr_t));
559 m_copyback(n, hlen, tlen, (caddr_t)th0);
560
561 m_freem(m);
562 m = n;
563 n = NULL;
564 }
565
566 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
567 switch (family) {
568 case AF_INET:
569 ip = mtod(m, struct ip *);
570 th = (struct tcphdr *)(ip + 1);
571 ip->ip_p = IPPROTO_TCP;
572 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
573 ip->ip_p = IPPROTO_TCP;
574 break;
575 #ifdef INET6
576 case AF_INET6:
577 ip6 = mtod(m, struct ip6_hdr *);
578 th = (struct tcphdr *)(ip6 + 1);
579 ip6->ip6_nxt = IPPROTO_TCP;
580 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
581 ip6->ip6_nxt = IPPROTO_TCP;
582 break;
583 #endif
584 #if 0
585 default:
586 /* noone will visit here */
587 m_freem(m);
588 return EAFNOSUPPORT;
589 #endif
590 }
591 xchg(th->th_dport, th->th_sport, u_int16_t);
592 #undef xchg
593 tlen = 0; /*be friendly with the following code*/
594 }
595 th->th_seq = htonl(seq);
596 th->th_ack = htonl(ack);
597 th->th_x2 = 0;
598 if ((flags & TH_SYN) == 0) {
599 if (tp)
600 win >>= tp->rcv_scale;
601 if (win > TCP_MAXWIN)
602 win = TCP_MAXWIN;
603 th->th_win = htons((u_int16_t)win);
604 th->th_off = sizeof (struct tcphdr) >> 2;
605 tlen += sizeof(*th);
606 } else
607 tlen += th->th_off << 2;
608 m->m_len = hlen + tlen;
609 m->m_pkthdr.len = hlen + tlen;
610 m->m_pkthdr.rcvif = (struct ifnet *) 0;
611 th->th_flags = flags;
612 th->th_urp = 0;
613
614 switch (family) {
615 #ifdef INET
616 case AF_INET:
617 {
618 struct ipovly *ipov = (struct ipovly *)ip;
619 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
620 ipov->ih_len = htons((u_int16_t)tlen);
621
622 th->th_sum = 0;
623 th->th_sum = in_cksum(m, hlen + tlen);
624 ip->ip_len = hlen + tlen; /*will be flipped on output*/
625 ip->ip_ttl = ip_defttl;
626 break;
627 }
628 #endif
629 #ifdef INET6
630 case AF_INET6:
631 {
632 th->th_sum = 0;
633 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
634 tlen);
635 ip6->ip6_plen = ntohs(tlen);
636 if (tp && tp->t_in6pcb) {
637 struct ifnet *oifp;
638 ro = (struct route *)&tp->t_in6pcb->in6p_route;
639 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
640 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
641 } else
642 ip6->ip6_hlim = ip6_defhlim;
643 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
644 if (ip6_auto_flowlabel) {
645 ip6->ip6_flow |=
646 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
647 }
648 break;
649 }
650 #endif
651 }
652
653 #ifdef IPSEC
654 (void)ipsec_setsocket(m, NULL);
655 #endif /*IPSEC*/
656
657 if (tp != NULL && tp->t_inpcb != NULL) {
658 ro = &tp->t_inpcb->inp_route;
659 #ifdef IPSEC
660 if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
661 m_freem(m);
662 return ENOBUFS;
663 }
664 #endif
665 #ifdef DIAGNOSTIC
666 if (family != AF_INET)
667 panic("tcp_respond: address family mismatch");
668 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
669 panic("tcp_respond: ip_dst %x != inp_faddr %x",
670 ntohl(ip->ip_dst.s_addr),
671 ntohl(tp->t_inpcb->inp_faddr.s_addr));
672 }
673 #endif
674 }
675 #ifdef INET6
676 else if (tp != NULL && tp->t_in6pcb != NULL) {
677 ro = (struct route *)&tp->t_in6pcb->in6p_route;
678 #ifdef IPSEC
679 if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
680 m_freem(m);
681 return ENOBUFS;
682 }
683 #endif
684 #ifdef DIAGNOSTIC
685 if (family == AF_INET) {
686 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
687 panic("tcp_respond: not mapped addr");
688 if (bcmp(&ip->ip_dst,
689 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
690 sizeof(ip->ip_dst)) != 0) {
691 panic("tcp_respond: ip_dst != in6p_faddr");
692 }
693 } else if (family == AF_INET6) {
694 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
695 panic("tcp_respond: ip6_dst != in6p_faddr");
696 } else
697 panic("tcp_respond: address family mismatch");
698 #endif
699 }
700 #endif
701 else
702 ro = NULL;
703
704 switch (family) {
705 #ifdef INET
706 case AF_INET:
707 error = ip_output(m, NULL, ro,
708 (ip_mtudisc ? IP_MTUDISC : 0),
709 NULL);
710 break;
711 #endif
712 #ifdef INET6
713 case AF_INET6:
714 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
715 NULL);
716 break;
717 #endif
718 default:
719 error = EAFNOSUPPORT;
720 break;
721 }
722
723 return (error);
724 }
725
726 /*
727 * Create a new TCP control block, making an
728 * empty reassembly queue and hooking it to the argument
729 * protocol control block.
730 */
731 struct tcpcb *
732 tcp_newtcpcb(family, aux)
733 int family; /* selects inpcb, or in6pcb */
734 void *aux;
735 {
736 struct tcpcb *tp;
737
738 switch (family) {
739 case PF_INET:
740 break;
741 #ifdef INET6
742 case PF_INET6:
743 break;
744 #endif
745 default:
746 return NULL;
747 }
748
749 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
750 if (tp == NULL)
751 return (NULL);
752 bzero((caddr_t)tp, sizeof(struct tcpcb));
753 LIST_INIT(&tp->segq);
754 LIST_INIT(&tp->timeq);
755 tp->t_family = family; /* may be overridden later on */
756 tp->t_peermss = tcp_mssdflt;
757 tp->t_ourmss = tcp_mssdflt;
758 tp->t_segsz = tcp_mssdflt;
759 LIST_INIT(&tp->t_sc);
760
761 tp->t_flags = 0;
762 if (tcp_do_rfc1323 && tcp_do_win_scale)
763 tp->t_flags |= TF_REQ_SCALE;
764 if (tcp_do_rfc1323 && tcp_do_timestamps)
765 tp->t_flags |= TF_REQ_TSTMP;
766 if (tcp_do_sack == 2)
767 tp->t_flags |= TF_WILL_SACK;
768 else if (tcp_do_sack == 1)
769 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
770 tp->t_flags |= TF_CANT_TXSACK;
771 switch (family) {
772 case PF_INET:
773 tp->t_inpcb = (struct inpcb *)aux;
774 break;
775 #ifdef INET6
776 case PF_INET6:
777 tp->t_in6pcb = (struct in6pcb *)aux;
778 break;
779 #endif
780 }
781 /*
782 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
783 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
784 * reasonable initial retransmit time.
785 */
786 tp->t_srtt = TCPTV_SRTTBASE;
787 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
788 tp->t_rttmin = TCPTV_MIN;
789 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
790 TCPTV_MIN, TCPTV_REXMTMAX);
791 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
792 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
793 if (family == AF_INET) {
794 struct inpcb *inp = (struct inpcb *)aux;
795 inp->inp_ip.ip_ttl = ip_defttl;
796 inp->inp_ppcb = (caddr_t)tp;
797 }
798 #ifdef INET6
799 else if (family == AF_INET6) {
800 struct in6pcb *in6p = (struct in6pcb *)aux;
801 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
802 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
803 : NULL);
804 in6p->in6p_ppcb = (caddr_t)tp;
805 }
806 #endif
807 return (tp);
808 }
809
810 /*
811 * Drop a TCP connection, reporting
812 * the specified error. If connection is synchronized,
813 * then send a RST to peer.
814 */
815 struct tcpcb *
816 tcp_drop(tp, errno)
817 struct tcpcb *tp;
818 int errno;
819 {
820 struct socket *so = NULL;
821
822 #ifdef DIAGNOSTIC
823 if (tp->t_inpcb && tp->t_in6pcb)
824 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
825 #endif
826 #ifdef INET
827 if (tp->t_inpcb)
828 so = tp->t_inpcb->inp_socket;
829 #endif
830 #ifdef INET6
831 if (tp->t_in6pcb)
832 so = tp->t_in6pcb->in6p_socket;
833 #endif
834 if (!so)
835 return NULL;
836
837 if (TCPS_HAVERCVDSYN(tp->t_state)) {
838 tp->t_state = TCPS_CLOSED;
839 (void) tcp_output(tp);
840 tcpstat.tcps_drops++;
841 } else
842 tcpstat.tcps_conndrops++;
843 if (errno == ETIMEDOUT && tp->t_softerror)
844 errno = tp->t_softerror;
845 so->so_error = errno;
846 return (tcp_close(tp));
847 }
848
849 /*
850 * Close a TCP control block:
851 * discard all space held by the tcp
852 * discard internet protocol block
853 * wake up any sleepers
854 */
855 struct tcpcb *
856 tcp_close(tp)
857 struct tcpcb *tp;
858 {
859 struct inpcb *inp;
860 #ifdef INET6
861 struct in6pcb *in6p;
862 #endif
863 struct socket *so;
864 #ifdef RTV_RTT
865 struct rtentry *rt;
866 #endif
867 struct route *ro;
868
869 inp = tp->t_inpcb;
870 #ifdef INET6
871 in6p = tp->t_in6pcb;
872 #endif
873 so = NULL;
874 ro = NULL;
875 if (inp) {
876 so = inp->inp_socket;
877 ro = &inp->inp_route;
878 }
879 #ifdef INET6
880 else if (in6p) {
881 so = in6p->in6p_socket;
882 ro = (struct route *)&in6p->in6p_route;
883 }
884 #endif
885
886 #ifdef RTV_RTT
887 /*
888 * If we sent enough data to get some meaningful characteristics,
889 * save them in the routing entry. 'Enough' is arbitrarily
890 * defined as the sendpipesize (default 4K) * 16. This would
891 * give us 16 rtt samples assuming we only get one sample per
892 * window (the usual case on a long haul net). 16 samples is
893 * enough for the srtt filter to converge to within 5% of the correct
894 * value; fewer samples and we could save a very bogus rtt.
895 *
896 * Don't update the default route's characteristics and don't
897 * update anything that the user "locked".
898 */
899 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
900 ro && (rt = ro->ro_rt) &&
901 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
902 u_long i = 0;
903
904 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
905 i = tp->t_srtt *
906 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
907 if (rt->rt_rmx.rmx_rtt && i)
908 /*
909 * filter this update to half the old & half
910 * the new values, converting scale.
911 * See route.h and tcp_var.h for a
912 * description of the scaling constants.
913 */
914 rt->rt_rmx.rmx_rtt =
915 (rt->rt_rmx.rmx_rtt + i) / 2;
916 else
917 rt->rt_rmx.rmx_rtt = i;
918 }
919 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
920 i = tp->t_rttvar *
921 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
922 if (rt->rt_rmx.rmx_rttvar && i)
923 rt->rt_rmx.rmx_rttvar =
924 (rt->rt_rmx.rmx_rttvar + i) / 2;
925 else
926 rt->rt_rmx.rmx_rttvar = i;
927 }
928 /*
929 * update the pipelimit (ssthresh) if it has been updated
930 * already or if a pipesize was specified & the threshhold
931 * got below half the pipesize. I.e., wait for bad news
932 * before we start updating, then update on both good
933 * and bad news.
934 */
935 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
936 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
937 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
938 /*
939 * convert the limit from user data bytes to
940 * packets then to packet data bytes.
941 */
942 i = (i + tp->t_segsz / 2) / tp->t_segsz;
943 if (i < 2)
944 i = 2;
945 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
946 if (rt->rt_rmx.rmx_ssthresh)
947 rt->rt_rmx.rmx_ssthresh =
948 (rt->rt_rmx.rmx_ssthresh + i) / 2;
949 else
950 rt->rt_rmx.rmx_ssthresh = i;
951 }
952 }
953 #endif /* RTV_RTT */
954 /* free the reassembly queue, if any */
955 TCP_REASS_LOCK(tp);
956 (void) tcp_freeq(tp);
957 TCP_REASS_UNLOCK(tp);
958
959 TCP_CLEAR_DELACK(tp);
960 syn_cache_cleanup(tp);
961
962 if (tp->t_template) {
963 m_free(tp->t_template);
964 tp->t_template = NULL;
965 }
966 pool_put(&tcpcb_pool, tp);
967 if (inp) {
968 inp->inp_ppcb = 0;
969 soisdisconnected(so);
970 in_pcbdetach(inp);
971 }
972 #ifdef INET6
973 else if (in6p) {
974 in6p->in6p_ppcb = 0;
975 soisdisconnected(so);
976 in6_pcbdetach(in6p);
977 }
978 #endif
979 tcpstat.tcps_closed++;
980 return ((struct tcpcb *)0);
981 }
982
983 int
984 tcp_freeq(tp)
985 struct tcpcb *tp;
986 {
987 struct ipqent *qe;
988 int rv = 0;
989 #ifdef TCPREASS_DEBUG
990 int i = 0;
991 #endif
992
993 TCP_REASS_LOCK_CHECK(tp);
994
995 while ((qe = tp->segq.lh_first) != NULL) {
996 #ifdef TCPREASS_DEBUG
997 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
998 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
999 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1000 #endif
1001 LIST_REMOVE(qe, ipqe_q);
1002 LIST_REMOVE(qe, ipqe_timeq);
1003 m_freem(qe->ipqe_m);
1004 pool_put(&ipqent_pool, qe);
1005 rv = 1;
1006 }
1007 return (rv);
1008 }
1009
1010 /*
1011 * Protocol drain routine. Called when memory is in short supply.
1012 */
1013 void
1014 tcp_drain()
1015 {
1016 struct inpcb *inp;
1017 struct tcpcb *tp;
1018
1019 /*
1020 * Free the sequence queue of all TCP connections.
1021 */
1022 inp = tcbtable.inpt_queue.cqh_first;
1023 if (inp) /* XXX */
1024 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
1025 inp = inp->inp_queue.cqe_next) {
1026 if ((tp = intotcpcb(inp)) != NULL) {
1027 /*
1028 * We may be called from a device's interrupt
1029 * context. If the tcpcb is already busy,
1030 * just bail out now.
1031 */
1032 if (tcp_reass_lock_try(tp) == 0)
1033 continue;
1034 if (tcp_freeq(tp))
1035 tcpstat.tcps_connsdrained++;
1036 TCP_REASS_UNLOCK(tp);
1037 }
1038 }
1039 }
1040
1041 /*
1042 * Notify a tcp user of an asynchronous error;
1043 * store error as soft error, but wake up user
1044 * (for now, won't do anything until can select for soft error).
1045 */
1046 void
1047 tcp_notify(inp, error)
1048 struct inpcb *inp;
1049 int error;
1050 {
1051 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1052 struct socket *so = inp->inp_socket;
1053
1054 /*
1055 * Ignore some errors if we are hooked up.
1056 * If connection hasn't completed, has retransmitted several times,
1057 * and receives a second error, give up now. This is better
1058 * than waiting a long time to establish a connection that
1059 * can never complete.
1060 */
1061 if (tp->t_state == TCPS_ESTABLISHED &&
1062 (error == EHOSTUNREACH || error == ENETUNREACH ||
1063 error == EHOSTDOWN)) {
1064 return;
1065 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1066 tp->t_rxtshift > 3 && tp->t_softerror)
1067 so->so_error = error;
1068 else
1069 tp->t_softerror = error;
1070 wakeup((caddr_t) &so->so_timeo);
1071 sorwakeup(so);
1072 sowwakeup(so);
1073 }
1074
1075 #ifdef INET6
1076 void
1077 tcp6_notify(in6p, error)
1078 struct in6pcb *in6p;
1079 int error;
1080 {
1081 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1082 struct socket *so = in6p->in6p_socket;
1083
1084 /*
1085 * Ignore some errors if we are hooked up.
1086 * If connection hasn't completed, has retransmitted several times,
1087 * and receives a second error, give up now. This is better
1088 * than waiting a long time to establish a connection that
1089 * can never complete.
1090 */
1091 if (tp->t_state == TCPS_ESTABLISHED &&
1092 (error == EHOSTUNREACH || error == ENETUNREACH ||
1093 error == EHOSTDOWN)) {
1094 return;
1095 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1096 tp->t_rxtshift > 3 && tp->t_softerror)
1097 so->so_error = error;
1098 else
1099 tp->t_softerror = error;
1100 wakeup((caddr_t) &so->so_timeo);
1101 sorwakeup(so);
1102 sowwakeup(so);
1103 }
1104 #endif
1105
1106 #ifdef INET6
1107 void
1108 tcp6_ctlinput(cmd, sa, d)
1109 int cmd;
1110 struct sockaddr *sa;
1111 void *d;
1112 {
1113 struct tcphdr th;
1114 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1115 int nmatch;
1116 struct ip6_hdr *ip6;
1117 const struct sockaddr_in6 *sa6_src = NULL;
1118 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1119 struct mbuf *m;
1120 int off;
1121
1122 if (sa->sa_family != AF_INET6 ||
1123 sa->sa_len != sizeof(struct sockaddr_in6))
1124 return;
1125 if ((unsigned)cmd >= PRC_NCMDS)
1126 return;
1127 else if (cmd == PRC_QUENCH) {
1128 /* XXX there's no PRC_QUENCH in IPv6 */
1129 notify = tcp6_quench;
1130 } else if (PRC_IS_REDIRECT(cmd))
1131 notify = in6_rtchange, d = NULL;
1132 else if (cmd == PRC_MSGSIZE)
1133 ; /* special code is present, see below */
1134 else if (cmd == PRC_HOSTDEAD)
1135 d = NULL;
1136 else if (inet6ctlerrmap[cmd] == 0)
1137 return;
1138
1139 /* if the parameter is from icmp6, decode it. */
1140 if (d != NULL) {
1141 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1142 m = ip6cp->ip6c_m;
1143 ip6 = ip6cp->ip6c_ip6;
1144 off = ip6cp->ip6c_off;
1145 sa6_src = ip6cp->ip6c_src;
1146 } else {
1147 m = NULL;
1148 ip6 = NULL;
1149 sa6_src = &sa6_any;
1150 }
1151
1152 if (ip6) {
1153 /*
1154 * XXX: We assume that when ip6 is non NULL,
1155 * M and OFF are valid.
1156 */
1157
1158 /* check if we can safely examine src and dst ports */
1159 if (m->m_pkthdr.len < off + sizeof(th))
1160 return;
1161
1162 bzero(&th, sizeof(th));
1163 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1164
1165 if (cmd == PRC_MSGSIZE) {
1166 int valid = 0;
1167
1168 /*
1169 * Check to see if we have a valid TCP connection
1170 * corresponding to the address in the ICMPv6 message
1171 * payload.
1172 */
1173 if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
1174 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1175 th.th_sport, 0))
1176 valid++;
1177
1178 /*
1179 * Depending on the value of "valid" and routing table
1180 * size (mtudisc_{hi,lo}wat), we will:
1181 * - recalcurate the new MTU and create the
1182 * corresponding routing entry, or
1183 * - ignore the MTU change notification.
1184 */
1185 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1186
1187 /*
1188 * no need to call in6_pcbnotify, it should have been
1189 * called via callback if necessary
1190 */
1191 return;
1192 }
1193
1194 nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
1195 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1196 if (nmatch == 0 && syn_cache_count &&
1197 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1198 inet6ctlerrmap[cmd] == ENETUNREACH ||
1199 inet6ctlerrmap[cmd] == EHOSTDOWN))
1200 syn_cache_unreach((struct sockaddr *)sa6_src,
1201 sa, &th);
1202 } else {
1203 (void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
1204 0, cmd, NULL, notify);
1205 }
1206 }
1207 #endif
1208
1209 #ifdef INET
1210 /* assumes that ip header and tcp header are contiguous on mbuf */
1211 void *
1212 tcp_ctlinput(cmd, sa, v)
1213 int cmd;
1214 struct sockaddr *sa;
1215 void *v;
1216 {
1217 struct ip *ip = v;
1218 struct tcphdr *th;
1219 struct icmp *icp;
1220 extern int inetctlerrmap[];
1221 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1222 int errno;
1223 int nmatch;
1224
1225 if (sa->sa_family != AF_INET ||
1226 sa->sa_len != sizeof(struct sockaddr_in))
1227 return NULL;
1228 if ((unsigned)cmd >= PRC_NCMDS)
1229 return NULL;
1230 errno = inetctlerrmap[cmd];
1231 if (cmd == PRC_QUENCH)
1232 notify = tcp_quench;
1233 else if (PRC_IS_REDIRECT(cmd))
1234 notify = in_rtchange, ip = 0;
1235 else if (cmd == PRC_MSGSIZE && ip_mtudisc && ip && ip->ip_v == 4) {
1236 /*
1237 * Check to see if we have a valid TCP connection
1238 * corresponding to the address in the ICMP message
1239 * payload.
1240 */
1241 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1242 if (in_pcblookup_connect(&tcbtable,
1243 ip->ip_dst, th->th_dport,
1244 ip->ip_src, th->th_sport) == NULL)
1245 return NULL;
1246
1247 /*
1248 * Now that we've validated that we are actually communicating
1249 * with the host indicated in the ICMP message, locate the
1250 * ICMP header, recalculate the new MTU, and create the
1251 * corresponding routing entry.
1252 */
1253 icp = (struct icmp *)((caddr_t)ip -
1254 offsetof(struct icmp, icmp_ip));
1255 icmp_mtudisc(icp, ip->ip_dst);
1256
1257 return NULL;
1258 } else if (cmd == PRC_HOSTDEAD)
1259 ip = 0;
1260 else if (errno == 0)
1261 return NULL;
1262 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1263 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1264 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1265 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1266 if (nmatch == 0 && syn_cache_count &&
1267 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1268 inetctlerrmap[cmd] == ENETUNREACH ||
1269 inetctlerrmap[cmd] == EHOSTDOWN)) {
1270 struct sockaddr_in sin;
1271 bzero(&sin, sizeof(sin));
1272 sin.sin_len = sizeof(sin);
1273 sin.sin_family = AF_INET;
1274 sin.sin_port = th->th_sport;
1275 sin.sin_addr = ip->ip_src;
1276 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1277 }
1278
1279 /* XXX mapped address case */
1280 } else
1281 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1282 notify);
1283 return NULL;
1284 }
1285
1286 /*
1287 * When a source quence is received, we are being notifed of congestion.
1288 * Close the congestion window down to the Loss Window (one segment).
1289 * We will gradually open it again as we proceed.
1290 */
1291 void
1292 tcp_quench(inp, errno)
1293 struct inpcb *inp;
1294 int errno;
1295 {
1296 struct tcpcb *tp = intotcpcb(inp);
1297
1298 if (tp)
1299 tp->snd_cwnd = tp->t_segsz;
1300 }
1301 #endif
1302
1303 #ifdef INET6
1304 void
1305 tcp6_quench(in6p, errno)
1306 struct in6pcb *in6p;
1307 int errno;
1308 {
1309 struct tcpcb *tp = in6totcpcb(in6p);
1310
1311 if (tp)
1312 tp->snd_cwnd = tp->t_segsz;
1313 }
1314 #endif
1315
1316 #ifdef INET
1317 /*
1318 * Path MTU Discovery handlers.
1319 */
1320 void
1321 tcp_mtudisc_callback(faddr)
1322 struct in_addr faddr;
1323 {
1324
1325 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1326 }
1327
1328 /*
1329 * On receipt of path MTU corrections, flush old route and replace it
1330 * with the new one. Retransmit all unacknowledged packets, to ensure
1331 * that all packets will be received.
1332 */
1333 void
1334 tcp_mtudisc(inp, errno)
1335 struct inpcb *inp;
1336 int errno;
1337 {
1338 struct tcpcb *tp = intotcpcb(inp);
1339 struct rtentry *rt = in_pcbrtentry(inp);
1340
1341 if (tp != 0) {
1342 if (rt != 0) {
1343 /*
1344 * If this was not a host route, remove and realloc.
1345 */
1346 if ((rt->rt_flags & RTF_HOST) == 0) {
1347 in_rtchange(inp, errno);
1348 if ((rt = in_pcbrtentry(inp)) == 0)
1349 return;
1350 }
1351
1352 /*
1353 * Slow start out of the error condition. We
1354 * use the MTU because we know it's smaller
1355 * than the previously transmitted segment.
1356 *
1357 * Note: This is more conservative than the
1358 * suggestion in draft-floyd-incr-init-win-03.
1359 */
1360 if (rt->rt_rmx.rmx_mtu != 0)
1361 tp->snd_cwnd =
1362 TCP_INITIAL_WINDOW(tcp_init_win,
1363 rt->rt_rmx.rmx_mtu);
1364 }
1365
1366 /*
1367 * Resend unacknowledged packets.
1368 */
1369 tp->snd_nxt = tp->snd_una;
1370 tcp_output(tp);
1371 }
1372 }
1373 #endif
1374
1375 #ifdef INET6
1376 /*
1377 * Path MTU Discovery handlers.
1378 */
1379 void
1380 tcp6_mtudisc_callback(faddr)
1381 struct in6_addr *faddr;
1382 {
1383 struct sockaddr_in6 sin6;
1384
1385 bzero(&sin6, sizeof(sin6));
1386 sin6.sin6_family = AF_INET6;
1387 sin6.sin6_len = sizeof(struct sockaddr_in6);
1388 sin6.sin6_addr = *faddr;
1389 (void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
1390 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1391 }
1392
1393 void
1394 tcp6_mtudisc(in6p, errno)
1395 struct in6pcb *in6p;
1396 int errno;
1397 {
1398 struct tcpcb *tp = in6totcpcb(in6p);
1399 struct rtentry *rt = in6_pcbrtentry(in6p);
1400
1401 if (tp != 0) {
1402 if (rt != 0) {
1403 /*
1404 * If this was not a host route, remove and realloc.
1405 */
1406 if ((rt->rt_flags & RTF_HOST) == 0) {
1407 in6_rtchange(in6p, errno);
1408 if ((rt = in6_pcbrtentry(in6p)) == 0)
1409 return;
1410 }
1411
1412 /*
1413 * Slow start out of the error condition. We
1414 * use the MTU because we know it's smaller
1415 * than the previously transmitted segment.
1416 *
1417 * Note: This is more conservative than the
1418 * suggestion in draft-floyd-incr-init-win-03.
1419 */
1420 if (rt->rt_rmx.rmx_mtu != 0)
1421 tp->snd_cwnd =
1422 TCP_INITIAL_WINDOW(tcp_init_win,
1423 rt->rt_rmx.rmx_mtu);
1424 }
1425
1426 /*
1427 * Resend unacknowledged packets.
1428 */
1429 tp->snd_nxt = tp->snd_una;
1430 tcp_output(tp);
1431 }
1432 }
1433 #endif /* INET6 */
1434
1435 /*
1436 * Compute the MSS to advertise to the peer. Called only during
1437 * the 3-way handshake. If we are the server (peer initiated
1438 * connection), we are called with a pointer to the interface
1439 * on which the SYN packet arrived. If we are the client (we
1440 * initiated connection), we are called with a pointer to the
1441 * interface out which this connection should go.
1442 *
1443 * NOTE: Do not subtract IP option/extension header size nor IPsec
1444 * header size from MSS advertisement. MSS option must hold the maximum
1445 * segment size we can accept, so it must always be:
1446 * max(if mtu) - ip header - tcp header
1447 */
1448 u_long
1449 tcp_mss_to_advertise(ifp, af)
1450 const struct ifnet *ifp;
1451 int af;
1452 {
1453 extern u_long in_maxmtu;
1454 u_long mss = 0;
1455 u_long hdrsiz;
1456
1457 /*
1458 * In order to avoid defeating path MTU discovery on the peer,
1459 * we advertise the max MTU of all attached networks as our MSS,
1460 * per RFC 1191, section 3.1.
1461 *
1462 * We provide the option to advertise just the MTU of
1463 * the interface on which we hope this connection will
1464 * be receiving. If we are responding to a SYN, we
1465 * will have a pretty good idea about this, but when
1466 * initiating a connection there is a bit more doubt.
1467 *
1468 * We also need to ensure that loopback has a large enough
1469 * MSS, as the loopback MTU is never included in in_maxmtu.
1470 */
1471
1472 if (ifp != NULL)
1473 mss = ifp->if_mtu;
1474
1475 if (tcp_mss_ifmtu == 0)
1476 mss = max(in_maxmtu, mss);
1477
1478 switch (af) {
1479 case AF_INET:
1480 hdrsiz = sizeof(struct ip);
1481 break;
1482 #ifdef INET6
1483 case AF_INET6:
1484 hdrsiz = sizeof(struct ip6_hdr);
1485 break;
1486 #endif
1487 default:
1488 hdrsiz = 0;
1489 break;
1490 }
1491 hdrsiz += sizeof(struct tcphdr);
1492 if (mss > hdrsiz)
1493 mss -= hdrsiz;
1494
1495 mss = max(tcp_mssdflt, mss);
1496 return (mss);
1497 }
1498
1499 /*
1500 * Set connection variables based on the peer's advertised MSS.
1501 * We are passed the TCPCB for the actual connection. If we
1502 * are the server, we are called by the compressed state engine
1503 * when the 3-way handshake is complete. If we are the client,
1504 * we are called when we recieve the SYN,ACK from the server.
1505 *
1506 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1507 * before this routine is called!
1508 */
1509 void
1510 tcp_mss_from_peer(tp, offer)
1511 struct tcpcb *tp;
1512 int offer;
1513 {
1514 struct socket *so;
1515 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1516 struct rtentry *rt;
1517 #endif
1518 u_long bufsize;
1519 int mss;
1520
1521 #ifdef DIAGNOSTIC
1522 if (tp->t_inpcb && tp->t_in6pcb)
1523 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1524 #endif
1525 so = NULL;
1526 rt = NULL;
1527 #ifdef INET
1528 if (tp->t_inpcb) {
1529 so = tp->t_inpcb->inp_socket;
1530 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1531 rt = in_pcbrtentry(tp->t_inpcb);
1532 #endif
1533 }
1534 #endif
1535 #ifdef INET6
1536 if (tp->t_in6pcb) {
1537 so = tp->t_in6pcb->in6p_socket;
1538 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1539 rt = in6_pcbrtentry(tp->t_in6pcb);
1540 #endif
1541 }
1542 #endif
1543
1544 /*
1545 * As per RFC1122, use the default MSS value, unless they
1546 * sent us an offer. Do not accept offers less than 32 bytes.
1547 */
1548 mss = tcp_mssdflt;
1549 if (offer)
1550 mss = offer;
1551 mss = max(mss, 32); /* sanity */
1552 tp->t_peermss = mss;
1553 mss -= tcp_optlen(tp);
1554 #ifdef INET
1555 if (tp->t_inpcb)
1556 mss -= ip_optlen(tp->t_inpcb);
1557 #endif
1558 #ifdef INET6
1559 if (tp->t_in6pcb)
1560 mss -= ip6_optlen(tp->t_in6pcb);
1561 #endif
1562
1563 /*
1564 * If there's a pipesize, change the socket buffer to that size.
1565 * Make the socket buffer an integral number of MSS units. If
1566 * the MSS is larger than the socket buffer, artificially decrease
1567 * the MSS.
1568 */
1569 #ifdef RTV_SPIPE
1570 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1571 bufsize = rt->rt_rmx.rmx_sendpipe;
1572 else
1573 #endif
1574 bufsize = so->so_snd.sb_hiwat;
1575 if (bufsize < mss)
1576 mss = bufsize;
1577 else {
1578 bufsize = roundup(bufsize, mss);
1579 if (bufsize > sb_max)
1580 bufsize = sb_max;
1581 (void) sbreserve(&so->so_snd, bufsize);
1582 }
1583 tp->t_segsz = mss;
1584
1585 #ifdef RTV_SSTHRESH
1586 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1587 /*
1588 * There's some sort of gateway or interface buffer
1589 * limit on the path. Use this to set the slow
1590 * start threshold, but set the threshold to no less
1591 * than 2 * MSS.
1592 */
1593 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1594 }
1595 #endif
1596 }
1597
1598 /*
1599 * Processing necessary when a TCP connection is established.
1600 */
1601 void
1602 tcp_established(tp)
1603 struct tcpcb *tp;
1604 {
1605 struct socket *so;
1606 #ifdef RTV_RPIPE
1607 struct rtentry *rt;
1608 #endif
1609 u_long bufsize;
1610
1611 #ifdef DIAGNOSTIC
1612 if (tp->t_inpcb && tp->t_in6pcb)
1613 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1614 #endif
1615 so = NULL;
1616 rt = NULL;
1617 #ifdef INET
1618 if (tp->t_inpcb) {
1619 so = tp->t_inpcb->inp_socket;
1620 #if defined(RTV_RPIPE)
1621 rt = in_pcbrtentry(tp->t_inpcb);
1622 #endif
1623 }
1624 #endif
1625 #ifdef INET6
1626 if (tp->t_in6pcb) {
1627 so = tp->t_in6pcb->in6p_socket;
1628 #if defined(RTV_RPIPE)
1629 rt = in6_pcbrtentry(tp->t_in6pcb);
1630 #endif
1631 }
1632 #endif
1633
1634 tp->t_state = TCPS_ESTABLISHED;
1635 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1636
1637 #ifdef RTV_RPIPE
1638 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1639 bufsize = rt->rt_rmx.rmx_recvpipe;
1640 else
1641 #endif
1642 bufsize = so->so_rcv.sb_hiwat;
1643 if (bufsize > tp->t_ourmss) {
1644 bufsize = roundup(bufsize, tp->t_ourmss);
1645 if (bufsize > sb_max)
1646 bufsize = sb_max;
1647 (void) sbreserve(&so->so_rcv, bufsize);
1648 }
1649 }
1650
1651 /*
1652 * Check if there's an initial rtt or rttvar. Convert from the
1653 * route-table units to scaled multiples of the slow timeout timer.
1654 * Called only during the 3-way handshake.
1655 */
1656 void
1657 tcp_rmx_rtt(tp)
1658 struct tcpcb *tp;
1659 {
1660 #ifdef RTV_RTT
1661 struct rtentry *rt = NULL;
1662 int rtt;
1663
1664 #ifdef DIAGNOSTIC
1665 if (tp->t_inpcb && tp->t_in6pcb)
1666 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1667 #endif
1668 #ifdef INET
1669 if (tp->t_inpcb)
1670 rt = in_pcbrtentry(tp->t_inpcb);
1671 #endif
1672 #ifdef INET6
1673 if (tp->t_in6pcb)
1674 rt = in6_pcbrtentry(tp->t_in6pcb);
1675 #endif
1676 if (rt == NULL)
1677 return;
1678
1679 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1680 /*
1681 * XXX The lock bit for MTU indicates that the value
1682 * is also a minimum value; this is subject to time.
1683 */
1684 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1685 TCPT_RANGESET(tp->t_rttmin,
1686 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1687 TCPTV_MIN, TCPTV_REXMTMAX);
1688 tp->t_srtt = rtt /
1689 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1690 if (rt->rt_rmx.rmx_rttvar) {
1691 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1692 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1693 (TCP_RTTVAR_SHIFT + 2));
1694 } else {
1695 /* Default variation is +- 1 rtt */
1696 tp->t_rttvar =
1697 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1698 }
1699 TCPT_RANGESET(tp->t_rxtcur,
1700 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1701 tp->t_rttmin, TCPTV_REXMTMAX);
1702 }
1703 #endif
1704 }
1705
1706 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1707
1708 /*
1709 * Get a new sequence value given a tcp control block
1710 */
1711 tcp_seq
1712 tcp_new_iss(tp, len, addin)
1713 void *tp;
1714 u_long len;
1715 tcp_seq addin;
1716 {
1717 tcp_seq tcp_iss;
1718
1719 /*
1720 * Randomize.
1721 */
1722 #if NRND > 0
1723 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
1724 #else
1725 tcp_iss = random();
1726 #endif
1727
1728 /*
1729 * If we were asked to add some amount to a known value,
1730 * we will take a random value obtained above, mask off the upper
1731 * bits, and add in the known value. We also add in a constant to
1732 * ensure that we are at least a certain distance from the original
1733 * value.
1734 *
1735 * This is used when an old connection is in timed wait
1736 * and we have a new one coming in, for instance.
1737 */
1738 if (addin != 0) {
1739 #ifdef TCPISS_DEBUG
1740 printf("Random %08x, ", tcp_iss);
1741 #endif
1742 tcp_iss &= TCP_ISS_RANDOM_MASK;
1743 tcp_iss += addin + TCP_ISSINCR;
1744 #ifdef TCPISS_DEBUG
1745 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
1746 #endif
1747 } else {
1748 tcp_iss &= TCP_ISS_RANDOM_MASK;
1749 tcp_iss += tcp_iss_seq;
1750 tcp_iss_seq += TCP_ISSINCR;
1751 #ifdef TCPISS_DEBUG
1752 printf("ISS %08x\n", tcp_iss);
1753 #endif
1754 }
1755
1756 if (tcp_compat_42) {
1757 /*
1758 * Limit it to the positive range for really old TCP
1759 * implementations.
1760 */
1761 if (tcp_iss >= 0x80000000)
1762 tcp_iss &= 0x7fffffff; /* XXX */
1763 }
1764
1765 return tcp_iss;
1766 }
1767
1768 #ifdef IPSEC
1769 /* compute ESP/AH header size for TCP, including outer IP header. */
1770 size_t
1771 ipsec4_hdrsiz_tcp(tp)
1772 struct tcpcb *tp;
1773 {
1774 struct inpcb *inp;
1775 size_t hdrsiz;
1776
1777 /* XXX mapped addr case (tp->t_in6pcb) */
1778 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
1779 return 0;
1780 switch (tp->t_family) {
1781 case AF_INET:
1782 /* XXX: should use currect direction. */
1783 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
1784 break;
1785 default:
1786 hdrsiz = 0;
1787 break;
1788 }
1789
1790 return hdrsiz;
1791 }
1792
1793 #ifdef INET6
1794 size_t
1795 ipsec6_hdrsiz_tcp(tp)
1796 struct tcpcb *tp;
1797 {
1798 struct in6pcb *in6p;
1799 size_t hdrsiz;
1800
1801 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
1802 return 0;
1803 switch (tp->t_family) {
1804 case AF_INET6:
1805 /* XXX: should use currect direction. */
1806 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
1807 break;
1808 case AF_INET:
1809 /* mapped address case - tricky */
1810 default:
1811 hdrsiz = 0;
1812 break;
1813 }
1814
1815 return hdrsiz;
1816 }
1817 #endif
1818 #endif /*IPSEC*/
1819
1820 /*
1821 * Determine the length of the TCP options for this connection.
1822 *
1823 * XXX: What do we do for SACK, when we add that? Just reserve
1824 * all of the space? Otherwise we can't exactly be incrementing
1825 * cwnd by an amount that varies depending on the amount we last
1826 * had to SACK!
1827 */
1828
1829 u_int
1830 tcp_optlen(tp)
1831 struct tcpcb *tp;
1832 {
1833 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1834 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1835 return TCPOLEN_TSTAMP_APPA;
1836 else
1837 return 0;
1838 }
1839