tcp_subr.c revision 1.108 1 /* $NetBSD: tcp_subr.c,v 1.108 2001/03/20 20:07:51 thorpej Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
102 */
103
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_tcp_compat_42.h"
107 #include "rnd.h"
108
109 #include <sys/param.h>
110 #include <sys/proc.h>
111 #include <sys/systm.h>
112 #include <sys/malloc.h>
113 #include <sys/mbuf.h>
114 #include <sys/socket.h>
115 #include <sys/socketvar.h>
116 #include <sys/protosw.h>
117 #include <sys/errno.h>
118 #include <sys/kernel.h>
119 #include <sys/pool.h>
120 #if NRND > 0
121 #include <sys/md5.h>
122 #include <sys/rnd.h>
123 #endif
124
125 #include <net/route.h>
126 #include <net/if.h>
127
128 #include <netinet/in.h>
129 #include <netinet/in_systm.h>
130 #include <netinet/ip.h>
131 #include <netinet/in_pcb.h>
132 #include <netinet/ip_var.h>
133 #include <netinet/ip_icmp.h>
134
135 #ifdef INET6
136 #ifndef INET
137 #include <netinet/in.h>
138 #endif
139 #include <netinet/ip6.h>
140 #include <netinet6/in6_pcb.h>
141 #include <netinet6/ip6_var.h>
142 #include <netinet6/in6_var.h>
143 #include <netinet6/ip6protosw.h>
144 #include <netinet/icmp6.h>
145 #endif
146
147 #include <netinet/tcp.h>
148 #include <netinet/tcp_fsm.h>
149 #include <netinet/tcp_seq.h>
150 #include <netinet/tcp_timer.h>
151 #include <netinet/tcp_var.h>
152 #include <netinet/tcpip.h>
153
154 #ifdef IPSEC
155 #include <netinet6/ipsec.h>
156 #endif /*IPSEC*/
157
158 #ifdef INET6
159 struct in6pcb tcb6;
160 #endif
161
162 /* patchable/settable parameters for tcp */
163 int tcp_mssdflt = TCP_MSS;
164 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
165 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
166 #if NRND > 0
167 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
168 #endif
169 int tcp_do_sack = 1; /* selective acknowledgement */
170 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
171 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
172 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
173 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
174 int tcp_init_win = 1;
175 int tcp_mss_ifmtu = 0;
176 #ifdef TCP_COMPAT_42
177 int tcp_compat_42 = 1;
178 #else
179 int tcp_compat_42 = 0;
180 #endif
181 int tcp_rst_ppslim = 100; /* 100pps */
182
183 /* tcb hash */
184 #ifndef TCBHASHSIZE
185 #define TCBHASHSIZE 128
186 #endif
187 int tcbhashsize = TCBHASHSIZE;
188
189 /* syn hash parameters */
190 #define TCP_SYN_HASH_SIZE 293
191 #define TCP_SYN_BUCKET_SIZE 35
192 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
193 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
194 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
195 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
196 int tcp_syn_cache_interval = 1; /* runs timer twice a second */
197
198 int tcp_freeq __P((struct tcpcb *));
199
200 #ifdef INET
201 void tcp_mtudisc_callback __P((struct in_addr));
202 #endif
203 #ifdef INET6
204 void tcp6_mtudisc_callback __P((struct in6_addr *));
205 #endif
206
207 void tcp_mtudisc __P((struct inpcb *, int));
208 #ifdef INET6
209 void tcp6_mtudisc __P((struct in6pcb *, int));
210 #endif
211
212 struct pool tcpcb_pool;
213
214 /*
215 * Tcp initialization
216 */
217 void
218 tcp_init()
219 {
220 int hlen;
221
222 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
223 0, NULL, NULL, M_PCB);
224 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
225 #ifdef INET6
226 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
227 #endif
228 LIST_INIT(&tcp_delacks);
229
230 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
231 #ifdef INET6
232 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
233 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
234 #endif
235 if (max_protohdr < hlen)
236 max_protohdr = hlen;
237 if (max_linkhdr + hlen > MHLEN)
238 panic("tcp_init");
239
240 #ifdef INET
241 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
242 #endif
243 #ifdef INET6
244 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
245 #endif
246
247 /* Initialize the compressed state engine. */
248 syn_cache_init();
249 }
250
251 /*
252 * Create template to be used to send tcp packets on a connection.
253 * Call after host entry created, allocates an mbuf and fills
254 * in a skeletal tcp/ip header, minimizing the amount of work
255 * necessary when the connection is used.
256 */
257 struct mbuf *
258 tcp_template(tp)
259 struct tcpcb *tp;
260 {
261 struct inpcb *inp = tp->t_inpcb;
262 #ifdef INET6
263 struct in6pcb *in6p = tp->t_in6pcb;
264 #endif
265 struct tcphdr *n;
266 struct mbuf *m;
267 int hlen;
268
269 switch (tp->t_family) {
270 case AF_INET:
271 hlen = sizeof(struct ip);
272 if (inp)
273 break;
274 #ifdef INET6
275 if (in6p) {
276 /* mapped addr case */
277 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
278 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
279 break;
280 }
281 #endif
282 return NULL; /*EINVAL*/
283 #ifdef INET6
284 case AF_INET6:
285 hlen = sizeof(struct ip6_hdr);
286 if (in6p) {
287 /* more sainty check? */
288 break;
289 }
290 return NULL; /*EINVAL*/
291 #endif
292 default:
293 hlen = 0; /*pacify gcc*/
294 return NULL; /*EAFNOSUPPORT*/
295 }
296 #ifdef DIAGNOSTIC
297 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
298 panic("mclbytes too small for t_template");
299 #endif
300 m = tp->t_template;
301 if (m && m->m_len == hlen + sizeof(struct tcphdr))
302 ;
303 else {
304 if (m)
305 m_freem(m);
306 m = tp->t_template = NULL;
307 MGETHDR(m, M_DONTWAIT, MT_HEADER);
308 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
309 MCLGET(m, M_DONTWAIT);
310 if ((m->m_flags & M_EXT) == 0) {
311 m_free(m);
312 m = NULL;
313 }
314 }
315 if (m == NULL)
316 return NULL;
317 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
318 }
319 bzero(mtod(m, caddr_t), m->m_len);
320 switch (tp->t_family) {
321 case AF_INET:
322 {
323 struct ipovly *ipov;
324 mtod(m, struct ip *)->ip_v = 4;
325 ipov = mtod(m, struct ipovly *);
326 ipov->ih_pr = IPPROTO_TCP;
327 ipov->ih_len = htons(sizeof(struct tcphdr));
328 if (inp) {
329 ipov->ih_src = inp->inp_laddr;
330 ipov->ih_dst = inp->inp_faddr;
331 }
332 #ifdef INET6
333 else if (in6p) {
334 /* mapped addr case */
335 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
336 sizeof(ipov->ih_src));
337 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
338 sizeof(ipov->ih_dst));
339 }
340 #endif
341 break;
342 }
343 #ifdef INET6
344 case AF_INET6:
345 {
346 struct ip6_hdr *ip6;
347 mtod(m, struct ip *)->ip_v = 6;
348 ip6 = mtod(m, struct ip6_hdr *);
349 ip6->ip6_nxt = IPPROTO_TCP;
350 ip6->ip6_plen = htons(sizeof(struct tcphdr));
351 ip6->ip6_src = in6p->in6p_laddr;
352 ip6->ip6_dst = in6p->in6p_faddr;
353 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
354 if (ip6_auto_flowlabel) {
355 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
356 ip6->ip6_flow |=
357 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
358 }
359 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
360 ip6->ip6_vfc |= IPV6_VERSION;
361 break;
362 }
363 #endif
364 }
365 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
366 if (inp) {
367 n->th_sport = inp->inp_lport;
368 n->th_dport = inp->inp_fport;
369 }
370 #ifdef INET6
371 else if (in6p) {
372 n->th_sport = in6p->in6p_lport;
373 n->th_dport = in6p->in6p_fport;
374 }
375 #endif
376 n->th_seq = 0;
377 n->th_ack = 0;
378 n->th_x2 = 0;
379 n->th_off = 5;
380 n->th_flags = 0;
381 n->th_win = 0;
382 n->th_sum = 0;
383 n->th_urp = 0;
384 return (m);
385 }
386
387 /*
388 * Send a single message to the TCP at address specified by
389 * the given TCP/IP header. If m == 0, then we make a copy
390 * of the tcpiphdr at ti and send directly to the addressed host.
391 * This is used to force keep alive messages out using the TCP
392 * template for a connection tp->t_template. If flags are given
393 * then we send a message back to the TCP which originated the
394 * segment ti, and discard the mbuf containing it and any other
395 * attached mbufs.
396 *
397 * In any case the ack and sequence number of the transmitted
398 * segment are as specified by the parameters.
399 */
400 int
401 tcp_respond(tp, template, m, th0, ack, seq, flags)
402 struct tcpcb *tp;
403 struct mbuf *template;
404 struct mbuf *m;
405 struct tcphdr *th0;
406 tcp_seq ack, seq;
407 int flags;
408 {
409 struct route *ro;
410 int error, tlen, win = 0;
411 int hlen;
412 struct ip *ip;
413 #ifdef INET6
414 struct ip6_hdr *ip6;
415 #endif
416 int family; /* family on packet, not inpcb/in6pcb! */
417 struct tcphdr *th;
418
419 if (tp != NULL && (flags & TH_RST) == 0) {
420 #ifdef DIAGNOSTIC
421 if (tp->t_inpcb && tp->t_in6pcb)
422 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
423 #endif
424 #ifdef INET
425 if (tp->t_inpcb)
426 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
427 #endif
428 #ifdef INET6
429 if (tp->t_in6pcb)
430 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
431 #endif
432 }
433
434 ip = NULL;
435 #ifdef INET6
436 ip6 = NULL;
437 #endif
438 if (m == 0) {
439 if (!template)
440 return EINVAL;
441
442 /* get family information from template */
443 switch (mtod(template, struct ip *)->ip_v) {
444 case 4:
445 family = AF_INET;
446 hlen = sizeof(struct ip);
447 break;
448 #ifdef INET6
449 case 6:
450 family = AF_INET6;
451 hlen = sizeof(struct ip6_hdr);
452 break;
453 #endif
454 default:
455 return EAFNOSUPPORT;
456 }
457
458 MGETHDR(m, M_DONTWAIT, MT_HEADER);
459 if (m) {
460 MCLGET(m, M_DONTWAIT);
461 if ((m->m_flags & M_EXT) == 0) {
462 m_free(m);
463 m = NULL;
464 }
465 }
466 if (m == NULL)
467 return (ENOBUFS);
468
469 if (tcp_compat_42)
470 tlen = 1;
471 else
472 tlen = 0;
473
474 m->m_data += max_linkhdr;
475 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
476 template->m_len);
477 switch (family) {
478 case AF_INET:
479 ip = mtod(m, struct ip *);
480 th = (struct tcphdr *)(ip + 1);
481 break;
482 #ifdef INET6
483 case AF_INET6:
484 ip6 = mtod(m, struct ip6_hdr *);
485 th = (struct tcphdr *)(ip6 + 1);
486 break;
487 #endif
488 #if 0
489 default:
490 /* noone will visit here */
491 m_freem(m);
492 return EAFNOSUPPORT;
493 #endif
494 }
495 flags = TH_ACK;
496 } else {
497
498 if ((m->m_flags & M_PKTHDR) == 0) {
499 #if 0
500 printf("non PKTHDR to tcp_respond\n");
501 #endif
502 m_freem(m);
503 return EINVAL;
504 }
505 #ifdef DIAGNOSTIC
506 if (!th0)
507 panic("th0 == NULL in tcp_respond");
508 #endif
509
510 /* get family information from m */
511 switch (mtod(m, struct ip *)->ip_v) {
512 case 4:
513 family = AF_INET;
514 hlen = sizeof(struct ip);
515 ip = mtod(m, struct ip *);
516 break;
517 #ifdef INET6
518 case 6:
519 family = AF_INET6;
520 hlen = sizeof(struct ip6_hdr);
521 ip6 = mtod(m, struct ip6_hdr *);
522 break;
523 #endif
524 default:
525 m_freem(m);
526 return EAFNOSUPPORT;
527 }
528 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
529 tlen = sizeof(*th0);
530 else
531 tlen = th0->th_off << 2;
532
533 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
534 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
535 m->m_len = hlen + tlen;
536 m_freem(m->m_next);
537 m->m_next = NULL;
538 } else {
539 struct mbuf *n;
540
541 #ifdef DIAGNOSTIC
542 if (max_linkhdr + hlen + tlen > MCLBYTES) {
543 m_freem(m);
544 return EMSGSIZE;
545 }
546 #endif
547 MGETHDR(n, M_DONTWAIT, MT_HEADER);
548 if (n && max_linkhdr + hlen + tlen > MHLEN) {
549 MCLGET(n, M_DONTWAIT);
550 if ((n->m_flags & M_EXT) == 0) {
551 m_freem(n);
552 n = NULL;
553 }
554 }
555 if (!n) {
556 m_freem(m);
557 return ENOBUFS;
558 }
559
560 n->m_data += max_linkhdr;
561 n->m_len = hlen + tlen;
562 m_copyback(n, 0, hlen, mtod(m, caddr_t));
563 m_copyback(n, hlen, tlen, (caddr_t)th0);
564
565 m_freem(m);
566 m = n;
567 n = NULL;
568 }
569
570 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
571 switch (family) {
572 case AF_INET:
573 ip = mtod(m, struct ip *);
574 th = (struct tcphdr *)(ip + 1);
575 ip->ip_p = IPPROTO_TCP;
576 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
577 ip->ip_p = IPPROTO_TCP;
578 break;
579 #ifdef INET6
580 case AF_INET6:
581 ip6 = mtod(m, struct ip6_hdr *);
582 th = (struct tcphdr *)(ip6 + 1);
583 ip6->ip6_nxt = IPPROTO_TCP;
584 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
585 ip6->ip6_nxt = IPPROTO_TCP;
586 break;
587 #endif
588 #if 0
589 default:
590 /* noone will visit here */
591 m_freem(m);
592 return EAFNOSUPPORT;
593 #endif
594 }
595 xchg(th->th_dport, th->th_sport, u_int16_t);
596 #undef xchg
597 tlen = 0; /*be friendly with the following code*/
598 }
599 th->th_seq = htonl(seq);
600 th->th_ack = htonl(ack);
601 th->th_x2 = 0;
602 if ((flags & TH_SYN) == 0) {
603 if (tp)
604 win >>= tp->rcv_scale;
605 if (win > TCP_MAXWIN)
606 win = TCP_MAXWIN;
607 th->th_win = htons((u_int16_t)win);
608 th->th_off = sizeof (struct tcphdr) >> 2;
609 tlen += sizeof(*th);
610 } else
611 tlen += th->th_off << 2;
612 m->m_len = hlen + tlen;
613 m->m_pkthdr.len = hlen + tlen;
614 m->m_pkthdr.rcvif = (struct ifnet *) 0;
615 th->th_flags = flags;
616 th->th_urp = 0;
617
618 switch (family) {
619 #ifdef INET
620 case AF_INET:
621 {
622 struct ipovly *ipov = (struct ipovly *)ip;
623 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
624 ipov->ih_len = htons((u_int16_t)tlen);
625
626 th->th_sum = 0;
627 th->th_sum = in_cksum(m, hlen + tlen);
628 ip->ip_len = hlen + tlen; /*will be flipped on output*/
629 ip->ip_ttl = ip_defttl;
630 break;
631 }
632 #endif
633 #ifdef INET6
634 case AF_INET6:
635 {
636 th->th_sum = 0;
637 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
638 tlen);
639 ip6->ip6_plen = ntohs(tlen);
640 if (tp && tp->t_in6pcb) {
641 struct ifnet *oifp;
642 ro = (struct route *)&tp->t_in6pcb->in6p_route;
643 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
644 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
645 } else
646 ip6->ip6_hlim = ip6_defhlim;
647 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
648 if (ip6_auto_flowlabel) {
649 ip6->ip6_flow |=
650 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
651 }
652 break;
653 }
654 #endif
655 }
656
657 #ifdef IPSEC
658 (void)ipsec_setsocket(m, NULL);
659 #endif /*IPSEC*/
660
661 if (tp != NULL && tp->t_inpcb != NULL) {
662 ro = &tp->t_inpcb->inp_route;
663 #ifdef IPSEC
664 if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
665 m_freem(m);
666 return ENOBUFS;
667 }
668 #endif
669 #ifdef DIAGNOSTIC
670 if (family != AF_INET)
671 panic("tcp_respond: address family mismatch");
672 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
673 panic("tcp_respond: ip_dst %x != inp_faddr %x",
674 ntohl(ip->ip_dst.s_addr),
675 ntohl(tp->t_inpcb->inp_faddr.s_addr));
676 }
677 #endif
678 }
679 #ifdef INET6
680 else if (tp != NULL && tp->t_in6pcb != NULL) {
681 ro = (struct route *)&tp->t_in6pcb->in6p_route;
682 #ifdef IPSEC
683 if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
684 m_freem(m);
685 return ENOBUFS;
686 }
687 #endif
688 #ifdef DIAGNOSTIC
689 if (family == AF_INET) {
690 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
691 panic("tcp_respond: not mapped addr");
692 if (bcmp(&ip->ip_dst,
693 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
694 sizeof(ip->ip_dst)) != 0) {
695 panic("tcp_respond: ip_dst != in6p_faddr");
696 }
697 } else if (family == AF_INET6) {
698 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
699 panic("tcp_respond: ip6_dst != in6p_faddr");
700 } else
701 panic("tcp_respond: address family mismatch");
702 #endif
703 }
704 #endif
705 else
706 ro = NULL;
707
708 switch (family) {
709 #ifdef INET
710 case AF_INET:
711 error = ip_output(m, NULL, ro,
712 (ip_mtudisc ? IP_MTUDISC : 0),
713 NULL);
714 break;
715 #endif
716 #ifdef INET6
717 case AF_INET6:
718 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
719 NULL);
720 break;
721 #endif
722 default:
723 error = EAFNOSUPPORT;
724 break;
725 }
726
727 return (error);
728 }
729
730 /*
731 * Create a new TCP control block, making an
732 * empty reassembly queue and hooking it to the argument
733 * protocol control block.
734 */
735 struct tcpcb *
736 tcp_newtcpcb(family, aux)
737 int family; /* selects inpcb, or in6pcb */
738 void *aux;
739 {
740 struct tcpcb *tp;
741
742 switch (family) {
743 case PF_INET:
744 break;
745 #ifdef INET6
746 case PF_INET6:
747 break;
748 #endif
749 default:
750 return NULL;
751 }
752
753 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
754 if (tp == NULL)
755 return (NULL);
756 bzero((caddr_t)tp, sizeof(struct tcpcb));
757 LIST_INIT(&tp->segq);
758 LIST_INIT(&tp->timeq);
759 tp->t_family = family; /* may be overridden later on */
760 tp->t_peermss = tcp_mssdflt;
761 tp->t_ourmss = tcp_mssdflt;
762 tp->t_segsz = tcp_mssdflt;
763 LIST_INIT(&tp->t_sc);
764
765 tp->t_flags = 0;
766 if (tcp_do_rfc1323 && tcp_do_win_scale)
767 tp->t_flags |= TF_REQ_SCALE;
768 if (tcp_do_rfc1323 && tcp_do_timestamps)
769 tp->t_flags |= TF_REQ_TSTMP;
770 if (tcp_do_sack == 2)
771 tp->t_flags |= TF_WILL_SACK;
772 else if (tcp_do_sack == 1)
773 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
774 tp->t_flags |= TF_CANT_TXSACK;
775 switch (family) {
776 case PF_INET:
777 tp->t_inpcb = (struct inpcb *)aux;
778 break;
779 #ifdef INET6
780 case PF_INET6:
781 tp->t_in6pcb = (struct in6pcb *)aux;
782 break;
783 #endif
784 }
785 /*
786 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
787 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
788 * reasonable initial retransmit time.
789 */
790 tp->t_srtt = TCPTV_SRTTBASE;
791 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
792 tp->t_rttmin = TCPTV_MIN;
793 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
794 TCPTV_MIN, TCPTV_REXMTMAX);
795 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
796 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
797 if (family == AF_INET) {
798 struct inpcb *inp = (struct inpcb *)aux;
799 inp->inp_ip.ip_ttl = ip_defttl;
800 inp->inp_ppcb = (caddr_t)tp;
801 }
802 #ifdef INET6
803 else if (family == AF_INET6) {
804 struct in6pcb *in6p = (struct in6pcb *)aux;
805 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
806 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
807 : NULL);
808 in6p->in6p_ppcb = (caddr_t)tp;
809 }
810 #endif
811
812 /*
813 * Initialize our timebase. When we send timestamps, we take
814 * the delta from tcp_now -- this means each connection always
815 * gets a timebase of 0, which makes it, among other things,
816 * more difficult to determine how long a system has been up,
817 * and thus how many TCP sequence increments have occurred.
818 */
819 tp->ts_timebase = tcp_now;
820
821 return (tp);
822 }
823
824 /*
825 * Drop a TCP connection, reporting
826 * the specified error. If connection is synchronized,
827 * then send a RST to peer.
828 */
829 struct tcpcb *
830 tcp_drop(tp, errno)
831 struct tcpcb *tp;
832 int errno;
833 {
834 struct socket *so = NULL;
835
836 #ifdef DIAGNOSTIC
837 if (tp->t_inpcb && tp->t_in6pcb)
838 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
839 #endif
840 #ifdef INET
841 if (tp->t_inpcb)
842 so = tp->t_inpcb->inp_socket;
843 #endif
844 #ifdef INET6
845 if (tp->t_in6pcb)
846 so = tp->t_in6pcb->in6p_socket;
847 #endif
848 if (!so)
849 return NULL;
850
851 if (TCPS_HAVERCVDSYN(tp->t_state)) {
852 tp->t_state = TCPS_CLOSED;
853 (void) tcp_output(tp);
854 tcpstat.tcps_drops++;
855 } else
856 tcpstat.tcps_conndrops++;
857 if (errno == ETIMEDOUT && tp->t_softerror)
858 errno = tp->t_softerror;
859 so->so_error = errno;
860 return (tcp_close(tp));
861 }
862
863 /*
864 * Close a TCP control block:
865 * discard all space held by the tcp
866 * discard internet protocol block
867 * wake up any sleepers
868 */
869 struct tcpcb *
870 tcp_close(tp)
871 struct tcpcb *tp;
872 {
873 struct inpcb *inp;
874 #ifdef INET6
875 struct in6pcb *in6p;
876 #endif
877 struct socket *so;
878 #ifdef RTV_RTT
879 struct rtentry *rt;
880 #endif
881 struct route *ro;
882
883 inp = tp->t_inpcb;
884 #ifdef INET6
885 in6p = tp->t_in6pcb;
886 #endif
887 so = NULL;
888 ro = NULL;
889 if (inp) {
890 so = inp->inp_socket;
891 ro = &inp->inp_route;
892 }
893 #ifdef INET6
894 else if (in6p) {
895 so = in6p->in6p_socket;
896 ro = (struct route *)&in6p->in6p_route;
897 }
898 #endif
899
900 #ifdef RTV_RTT
901 /*
902 * If we sent enough data to get some meaningful characteristics,
903 * save them in the routing entry. 'Enough' is arbitrarily
904 * defined as the sendpipesize (default 4K) * 16. This would
905 * give us 16 rtt samples assuming we only get one sample per
906 * window (the usual case on a long haul net). 16 samples is
907 * enough for the srtt filter to converge to within 5% of the correct
908 * value; fewer samples and we could save a very bogus rtt.
909 *
910 * Don't update the default route's characteristics and don't
911 * update anything that the user "locked".
912 */
913 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
914 ro && (rt = ro->ro_rt) &&
915 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
916 u_long i = 0;
917
918 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
919 i = tp->t_srtt *
920 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
921 if (rt->rt_rmx.rmx_rtt && i)
922 /*
923 * filter this update to half the old & half
924 * the new values, converting scale.
925 * See route.h and tcp_var.h for a
926 * description of the scaling constants.
927 */
928 rt->rt_rmx.rmx_rtt =
929 (rt->rt_rmx.rmx_rtt + i) / 2;
930 else
931 rt->rt_rmx.rmx_rtt = i;
932 }
933 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
934 i = tp->t_rttvar *
935 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
936 if (rt->rt_rmx.rmx_rttvar && i)
937 rt->rt_rmx.rmx_rttvar =
938 (rt->rt_rmx.rmx_rttvar + i) / 2;
939 else
940 rt->rt_rmx.rmx_rttvar = i;
941 }
942 /*
943 * update the pipelimit (ssthresh) if it has been updated
944 * already or if a pipesize was specified & the threshhold
945 * got below half the pipesize. I.e., wait for bad news
946 * before we start updating, then update on both good
947 * and bad news.
948 */
949 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
950 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
951 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
952 /*
953 * convert the limit from user data bytes to
954 * packets then to packet data bytes.
955 */
956 i = (i + tp->t_segsz / 2) / tp->t_segsz;
957 if (i < 2)
958 i = 2;
959 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
960 if (rt->rt_rmx.rmx_ssthresh)
961 rt->rt_rmx.rmx_ssthresh =
962 (rt->rt_rmx.rmx_ssthresh + i) / 2;
963 else
964 rt->rt_rmx.rmx_ssthresh = i;
965 }
966 }
967 #endif /* RTV_RTT */
968 /* free the reassembly queue, if any */
969 TCP_REASS_LOCK(tp);
970 (void) tcp_freeq(tp);
971 TCP_REASS_UNLOCK(tp);
972
973 TCP_CLEAR_DELACK(tp);
974 syn_cache_cleanup(tp);
975
976 if (tp->t_template) {
977 m_free(tp->t_template);
978 tp->t_template = NULL;
979 }
980 pool_put(&tcpcb_pool, tp);
981 if (inp) {
982 inp->inp_ppcb = 0;
983 soisdisconnected(so);
984 in_pcbdetach(inp);
985 }
986 #ifdef INET6
987 else if (in6p) {
988 in6p->in6p_ppcb = 0;
989 soisdisconnected(so);
990 in6_pcbdetach(in6p);
991 }
992 #endif
993 tcpstat.tcps_closed++;
994 return ((struct tcpcb *)0);
995 }
996
997 int
998 tcp_freeq(tp)
999 struct tcpcb *tp;
1000 {
1001 struct ipqent *qe;
1002 int rv = 0;
1003 #ifdef TCPREASS_DEBUG
1004 int i = 0;
1005 #endif
1006
1007 TCP_REASS_LOCK_CHECK(tp);
1008
1009 while ((qe = tp->segq.lh_first) != NULL) {
1010 #ifdef TCPREASS_DEBUG
1011 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1012 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1013 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1014 #endif
1015 LIST_REMOVE(qe, ipqe_q);
1016 LIST_REMOVE(qe, ipqe_timeq);
1017 m_freem(qe->ipqe_m);
1018 pool_put(&ipqent_pool, qe);
1019 rv = 1;
1020 }
1021 return (rv);
1022 }
1023
1024 /*
1025 * Protocol drain routine. Called when memory is in short supply.
1026 */
1027 void
1028 tcp_drain()
1029 {
1030 struct inpcb *inp;
1031 struct tcpcb *tp;
1032
1033 /*
1034 * Free the sequence queue of all TCP connections.
1035 */
1036 inp = tcbtable.inpt_queue.cqh_first;
1037 if (inp) /* XXX */
1038 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
1039 inp = inp->inp_queue.cqe_next) {
1040 if ((tp = intotcpcb(inp)) != NULL) {
1041 /*
1042 * We may be called from a device's interrupt
1043 * context. If the tcpcb is already busy,
1044 * just bail out now.
1045 */
1046 if (tcp_reass_lock_try(tp) == 0)
1047 continue;
1048 if (tcp_freeq(tp))
1049 tcpstat.tcps_connsdrained++;
1050 TCP_REASS_UNLOCK(tp);
1051 }
1052 }
1053 }
1054
1055 /*
1056 * Notify a tcp user of an asynchronous error;
1057 * store error as soft error, but wake up user
1058 * (for now, won't do anything until can select for soft error).
1059 */
1060 void
1061 tcp_notify(inp, error)
1062 struct inpcb *inp;
1063 int error;
1064 {
1065 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1066 struct socket *so = inp->inp_socket;
1067
1068 /*
1069 * Ignore some errors if we are hooked up.
1070 * If connection hasn't completed, has retransmitted several times,
1071 * and receives a second error, give up now. This is better
1072 * than waiting a long time to establish a connection that
1073 * can never complete.
1074 */
1075 if (tp->t_state == TCPS_ESTABLISHED &&
1076 (error == EHOSTUNREACH || error == ENETUNREACH ||
1077 error == EHOSTDOWN)) {
1078 return;
1079 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1080 tp->t_rxtshift > 3 && tp->t_softerror)
1081 so->so_error = error;
1082 else
1083 tp->t_softerror = error;
1084 wakeup((caddr_t) &so->so_timeo);
1085 sorwakeup(so);
1086 sowwakeup(so);
1087 }
1088
1089 #ifdef INET6
1090 void
1091 tcp6_notify(in6p, error)
1092 struct in6pcb *in6p;
1093 int error;
1094 {
1095 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1096 struct socket *so = in6p->in6p_socket;
1097
1098 /*
1099 * Ignore some errors if we are hooked up.
1100 * If connection hasn't completed, has retransmitted several times,
1101 * and receives a second error, give up now. This is better
1102 * than waiting a long time to establish a connection that
1103 * can never complete.
1104 */
1105 if (tp->t_state == TCPS_ESTABLISHED &&
1106 (error == EHOSTUNREACH || error == ENETUNREACH ||
1107 error == EHOSTDOWN)) {
1108 return;
1109 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1110 tp->t_rxtshift > 3 && tp->t_softerror)
1111 so->so_error = error;
1112 else
1113 tp->t_softerror = error;
1114 wakeup((caddr_t) &so->so_timeo);
1115 sorwakeup(so);
1116 sowwakeup(so);
1117 }
1118 #endif
1119
1120 #ifdef INET6
1121 void
1122 tcp6_ctlinput(cmd, sa, d)
1123 int cmd;
1124 struct sockaddr *sa;
1125 void *d;
1126 {
1127 struct tcphdr th;
1128 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1129 int nmatch;
1130 struct ip6_hdr *ip6;
1131 const struct sockaddr_in6 *sa6_src = NULL;
1132 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1133 struct mbuf *m;
1134 int off;
1135
1136 if (sa->sa_family != AF_INET6 ||
1137 sa->sa_len != sizeof(struct sockaddr_in6))
1138 return;
1139 if ((unsigned)cmd >= PRC_NCMDS)
1140 return;
1141 else if (cmd == PRC_QUENCH) {
1142 /* XXX there's no PRC_QUENCH in IPv6 */
1143 notify = tcp6_quench;
1144 } else if (PRC_IS_REDIRECT(cmd))
1145 notify = in6_rtchange, d = NULL;
1146 else if (cmd == PRC_MSGSIZE)
1147 ; /* special code is present, see below */
1148 else if (cmd == PRC_HOSTDEAD)
1149 d = NULL;
1150 else if (inet6ctlerrmap[cmd] == 0)
1151 return;
1152
1153 /* if the parameter is from icmp6, decode it. */
1154 if (d != NULL) {
1155 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1156 m = ip6cp->ip6c_m;
1157 ip6 = ip6cp->ip6c_ip6;
1158 off = ip6cp->ip6c_off;
1159 sa6_src = ip6cp->ip6c_src;
1160 } else {
1161 m = NULL;
1162 ip6 = NULL;
1163 sa6_src = &sa6_any;
1164 }
1165
1166 if (ip6) {
1167 /*
1168 * XXX: We assume that when ip6 is non NULL,
1169 * M and OFF are valid.
1170 */
1171
1172 /* check if we can safely examine src and dst ports */
1173 if (m->m_pkthdr.len < off + sizeof(th))
1174 return;
1175
1176 bzero(&th, sizeof(th));
1177 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1178
1179 if (cmd == PRC_MSGSIZE) {
1180 int valid = 0;
1181
1182 /*
1183 * Check to see if we have a valid TCP connection
1184 * corresponding to the address in the ICMPv6 message
1185 * payload.
1186 */
1187 if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
1188 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1189 th.th_sport, 0))
1190 valid++;
1191
1192 /*
1193 * Depending on the value of "valid" and routing table
1194 * size (mtudisc_{hi,lo}wat), we will:
1195 * - recalcurate the new MTU and create the
1196 * corresponding routing entry, or
1197 * - ignore the MTU change notification.
1198 */
1199 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1200
1201 /*
1202 * no need to call in6_pcbnotify, it should have been
1203 * called via callback if necessary
1204 */
1205 return;
1206 }
1207
1208 nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
1209 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1210 if (nmatch == 0 && syn_cache_count &&
1211 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1212 inet6ctlerrmap[cmd] == ENETUNREACH ||
1213 inet6ctlerrmap[cmd] == EHOSTDOWN))
1214 syn_cache_unreach((struct sockaddr *)sa6_src,
1215 sa, &th);
1216 } else {
1217 (void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
1218 0, cmd, NULL, notify);
1219 }
1220 }
1221 #endif
1222
1223 #ifdef INET
1224 /* assumes that ip header and tcp header are contiguous on mbuf */
1225 void *
1226 tcp_ctlinput(cmd, sa, v)
1227 int cmd;
1228 struct sockaddr *sa;
1229 void *v;
1230 {
1231 struct ip *ip = v;
1232 struct tcphdr *th;
1233 struct icmp *icp;
1234 extern int inetctlerrmap[];
1235 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1236 int errno;
1237 int nmatch;
1238
1239 if (sa->sa_family != AF_INET ||
1240 sa->sa_len != sizeof(struct sockaddr_in))
1241 return NULL;
1242 if ((unsigned)cmd >= PRC_NCMDS)
1243 return NULL;
1244 errno = inetctlerrmap[cmd];
1245 if (cmd == PRC_QUENCH)
1246 notify = tcp_quench;
1247 else if (PRC_IS_REDIRECT(cmd))
1248 notify = in_rtchange, ip = 0;
1249 else if (cmd == PRC_MSGSIZE && ip_mtudisc && ip && ip->ip_v == 4) {
1250 /*
1251 * Check to see if we have a valid TCP connection
1252 * corresponding to the address in the ICMP message
1253 * payload.
1254 */
1255 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1256 if (in_pcblookup_connect(&tcbtable,
1257 ip->ip_dst, th->th_dport,
1258 ip->ip_src, th->th_sport) == NULL)
1259 return NULL;
1260
1261 /*
1262 * Now that we've validated that we are actually communicating
1263 * with the host indicated in the ICMP message, locate the
1264 * ICMP header, recalculate the new MTU, and create the
1265 * corresponding routing entry.
1266 */
1267 icp = (struct icmp *)((caddr_t)ip -
1268 offsetof(struct icmp, icmp_ip));
1269 icmp_mtudisc(icp, ip->ip_dst);
1270
1271 return NULL;
1272 } else if (cmd == PRC_HOSTDEAD)
1273 ip = 0;
1274 else if (errno == 0)
1275 return NULL;
1276 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1277 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1278 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1279 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1280 if (nmatch == 0 && syn_cache_count &&
1281 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1282 inetctlerrmap[cmd] == ENETUNREACH ||
1283 inetctlerrmap[cmd] == EHOSTDOWN)) {
1284 struct sockaddr_in sin;
1285 bzero(&sin, sizeof(sin));
1286 sin.sin_len = sizeof(sin);
1287 sin.sin_family = AF_INET;
1288 sin.sin_port = th->th_sport;
1289 sin.sin_addr = ip->ip_src;
1290 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1291 }
1292
1293 /* XXX mapped address case */
1294 } else
1295 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1296 notify);
1297 return NULL;
1298 }
1299
1300 /*
1301 * When a source quence is received, we are being notifed of congestion.
1302 * Close the congestion window down to the Loss Window (one segment).
1303 * We will gradually open it again as we proceed.
1304 */
1305 void
1306 tcp_quench(inp, errno)
1307 struct inpcb *inp;
1308 int errno;
1309 {
1310 struct tcpcb *tp = intotcpcb(inp);
1311
1312 if (tp)
1313 tp->snd_cwnd = tp->t_segsz;
1314 }
1315 #endif
1316
1317 #ifdef INET6
1318 void
1319 tcp6_quench(in6p, errno)
1320 struct in6pcb *in6p;
1321 int errno;
1322 {
1323 struct tcpcb *tp = in6totcpcb(in6p);
1324
1325 if (tp)
1326 tp->snd_cwnd = tp->t_segsz;
1327 }
1328 #endif
1329
1330 #ifdef INET
1331 /*
1332 * Path MTU Discovery handlers.
1333 */
1334 void
1335 tcp_mtudisc_callback(faddr)
1336 struct in_addr faddr;
1337 {
1338
1339 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1340 }
1341
1342 /*
1343 * On receipt of path MTU corrections, flush old route and replace it
1344 * with the new one. Retransmit all unacknowledged packets, to ensure
1345 * that all packets will be received.
1346 */
1347 void
1348 tcp_mtudisc(inp, errno)
1349 struct inpcb *inp;
1350 int errno;
1351 {
1352 struct tcpcb *tp = intotcpcb(inp);
1353 struct rtentry *rt = in_pcbrtentry(inp);
1354
1355 if (tp != 0) {
1356 if (rt != 0) {
1357 /*
1358 * If this was not a host route, remove and realloc.
1359 */
1360 if ((rt->rt_flags & RTF_HOST) == 0) {
1361 in_rtchange(inp, errno);
1362 if ((rt = in_pcbrtentry(inp)) == 0)
1363 return;
1364 }
1365
1366 /*
1367 * Slow start out of the error condition. We
1368 * use the MTU because we know it's smaller
1369 * than the previously transmitted segment.
1370 *
1371 * Note: This is more conservative than the
1372 * suggestion in draft-floyd-incr-init-win-03.
1373 */
1374 if (rt->rt_rmx.rmx_mtu != 0)
1375 tp->snd_cwnd =
1376 TCP_INITIAL_WINDOW(tcp_init_win,
1377 rt->rt_rmx.rmx_mtu);
1378 }
1379
1380 /*
1381 * Resend unacknowledged packets.
1382 */
1383 tp->snd_nxt = tp->snd_una;
1384 tcp_output(tp);
1385 }
1386 }
1387 #endif
1388
1389 #ifdef INET6
1390 /*
1391 * Path MTU Discovery handlers.
1392 */
1393 void
1394 tcp6_mtudisc_callback(faddr)
1395 struct in6_addr *faddr;
1396 {
1397 struct sockaddr_in6 sin6;
1398
1399 bzero(&sin6, sizeof(sin6));
1400 sin6.sin6_family = AF_INET6;
1401 sin6.sin6_len = sizeof(struct sockaddr_in6);
1402 sin6.sin6_addr = *faddr;
1403 (void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
1404 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1405 }
1406
1407 void
1408 tcp6_mtudisc(in6p, errno)
1409 struct in6pcb *in6p;
1410 int errno;
1411 {
1412 struct tcpcb *tp = in6totcpcb(in6p);
1413 struct rtentry *rt = in6_pcbrtentry(in6p);
1414
1415 if (tp != 0) {
1416 if (rt != 0) {
1417 /*
1418 * If this was not a host route, remove and realloc.
1419 */
1420 if ((rt->rt_flags & RTF_HOST) == 0) {
1421 in6_rtchange(in6p, errno);
1422 if ((rt = in6_pcbrtentry(in6p)) == 0)
1423 return;
1424 }
1425
1426 /*
1427 * Slow start out of the error condition. We
1428 * use the MTU because we know it's smaller
1429 * than the previously transmitted segment.
1430 *
1431 * Note: This is more conservative than the
1432 * suggestion in draft-floyd-incr-init-win-03.
1433 */
1434 if (rt->rt_rmx.rmx_mtu != 0)
1435 tp->snd_cwnd =
1436 TCP_INITIAL_WINDOW(tcp_init_win,
1437 rt->rt_rmx.rmx_mtu);
1438 }
1439
1440 /*
1441 * Resend unacknowledged packets.
1442 */
1443 tp->snd_nxt = tp->snd_una;
1444 tcp_output(tp);
1445 }
1446 }
1447 #endif /* INET6 */
1448
1449 /*
1450 * Compute the MSS to advertise to the peer. Called only during
1451 * the 3-way handshake. If we are the server (peer initiated
1452 * connection), we are called with a pointer to the interface
1453 * on which the SYN packet arrived. If we are the client (we
1454 * initiated connection), we are called with a pointer to the
1455 * interface out which this connection should go.
1456 *
1457 * NOTE: Do not subtract IP option/extension header size nor IPsec
1458 * header size from MSS advertisement. MSS option must hold the maximum
1459 * segment size we can accept, so it must always be:
1460 * max(if mtu) - ip header - tcp header
1461 */
1462 u_long
1463 tcp_mss_to_advertise(ifp, af)
1464 const struct ifnet *ifp;
1465 int af;
1466 {
1467 extern u_long in_maxmtu;
1468 u_long mss = 0;
1469 u_long hdrsiz;
1470
1471 /*
1472 * In order to avoid defeating path MTU discovery on the peer,
1473 * we advertise the max MTU of all attached networks as our MSS,
1474 * per RFC 1191, section 3.1.
1475 *
1476 * We provide the option to advertise just the MTU of
1477 * the interface on which we hope this connection will
1478 * be receiving. If we are responding to a SYN, we
1479 * will have a pretty good idea about this, but when
1480 * initiating a connection there is a bit more doubt.
1481 *
1482 * We also need to ensure that loopback has a large enough
1483 * MSS, as the loopback MTU is never included in in_maxmtu.
1484 */
1485
1486 if (ifp != NULL)
1487 mss = ifp->if_mtu;
1488
1489 if (tcp_mss_ifmtu == 0)
1490 mss = max(in_maxmtu, mss);
1491
1492 switch (af) {
1493 case AF_INET:
1494 hdrsiz = sizeof(struct ip);
1495 break;
1496 #ifdef INET6
1497 case AF_INET6:
1498 hdrsiz = sizeof(struct ip6_hdr);
1499 break;
1500 #endif
1501 default:
1502 hdrsiz = 0;
1503 break;
1504 }
1505 hdrsiz += sizeof(struct tcphdr);
1506 if (mss > hdrsiz)
1507 mss -= hdrsiz;
1508
1509 mss = max(tcp_mssdflt, mss);
1510 return (mss);
1511 }
1512
1513 /*
1514 * Set connection variables based on the peer's advertised MSS.
1515 * We are passed the TCPCB for the actual connection. If we
1516 * are the server, we are called by the compressed state engine
1517 * when the 3-way handshake is complete. If we are the client,
1518 * we are called when we recieve the SYN,ACK from the server.
1519 *
1520 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1521 * before this routine is called!
1522 */
1523 void
1524 tcp_mss_from_peer(tp, offer)
1525 struct tcpcb *tp;
1526 int offer;
1527 {
1528 struct socket *so;
1529 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1530 struct rtentry *rt;
1531 #endif
1532 u_long bufsize;
1533 int mss;
1534
1535 #ifdef DIAGNOSTIC
1536 if (tp->t_inpcb && tp->t_in6pcb)
1537 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1538 #endif
1539 so = NULL;
1540 rt = NULL;
1541 #ifdef INET
1542 if (tp->t_inpcb) {
1543 so = tp->t_inpcb->inp_socket;
1544 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1545 rt = in_pcbrtentry(tp->t_inpcb);
1546 #endif
1547 }
1548 #endif
1549 #ifdef INET6
1550 if (tp->t_in6pcb) {
1551 so = tp->t_in6pcb->in6p_socket;
1552 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1553 rt = in6_pcbrtentry(tp->t_in6pcb);
1554 #endif
1555 }
1556 #endif
1557
1558 /*
1559 * As per RFC1122, use the default MSS value, unless they
1560 * sent us an offer. Do not accept offers less than 32 bytes.
1561 */
1562 mss = tcp_mssdflt;
1563 if (offer)
1564 mss = offer;
1565 mss = max(mss, 32); /* sanity */
1566 tp->t_peermss = mss;
1567 mss -= tcp_optlen(tp);
1568 #ifdef INET
1569 if (tp->t_inpcb)
1570 mss -= ip_optlen(tp->t_inpcb);
1571 #endif
1572 #ifdef INET6
1573 if (tp->t_in6pcb)
1574 mss -= ip6_optlen(tp->t_in6pcb);
1575 #endif
1576
1577 /*
1578 * If there's a pipesize, change the socket buffer to that size.
1579 * Make the socket buffer an integral number of MSS units. If
1580 * the MSS is larger than the socket buffer, artificially decrease
1581 * the MSS.
1582 */
1583 #ifdef RTV_SPIPE
1584 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1585 bufsize = rt->rt_rmx.rmx_sendpipe;
1586 else
1587 #endif
1588 bufsize = so->so_snd.sb_hiwat;
1589 if (bufsize < mss)
1590 mss = bufsize;
1591 else {
1592 bufsize = roundup(bufsize, mss);
1593 if (bufsize > sb_max)
1594 bufsize = sb_max;
1595 (void) sbreserve(&so->so_snd, bufsize);
1596 }
1597 tp->t_segsz = mss;
1598
1599 #ifdef RTV_SSTHRESH
1600 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1601 /*
1602 * There's some sort of gateway or interface buffer
1603 * limit on the path. Use this to set the slow
1604 * start threshold, but set the threshold to no less
1605 * than 2 * MSS.
1606 */
1607 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1608 }
1609 #endif
1610 }
1611
1612 /*
1613 * Processing necessary when a TCP connection is established.
1614 */
1615 void
1616 tcp_established(tp)
1617 struct tcpcb *tp;
1618 {
1619 struct socket *so;
1620 #ifdef RTV_RPIPE
1621 struct rtentry *rt;
1622 #endif
1623 u_long bufsize;
1624
1625 #ifdef DIAGNOSTIC
1626 if (tp->t_inpcb && tp->t_in6pcb)
1627 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1628 #endif
1629 so = NULL;
1630 rt = NULL;
1631 #ifdef INET
1632 if (tp->t_inpcb) {
1633 so = tp->t_inpcb->inp_socket;
1634 #if defined(RTV_RPIPE)
1635 rt = in_pcbrtentry(tp->t_inpcb);
1636 #endif
1637 }
1638 #endif
1639 #ifdef INET6
1640 if (tp->t_in6pcb) {
1641 so = tp->t_in6pcb->in6p_socket;
1642 #if defined(RTV_RPIPE)
1643 rt = in6_pcbrtentry(tp->t_in6pcb);
1644 #endif
1645 }
1646 #endif
1647
1648 tp->t_state = TCPS_ESTABLISHED;
1649 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1650
1651 #ifdef RTV_RPIPE
1652 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1653 bufsize = rt->rt_rmx.rmx_recvpipe;
1654 else
1655 #endif
1656 bufsize = so->so_rcv.sb_hiwat;
1657 if (bufsize > tp->t_ourmss) {
1658 bufsize = roundup(bufsize, tp->t_ourmss);
1659 if (bufsize > sb_max)
1660 bufsize = sb_max;
1661 (void) sbreserve(&so->so_rcv, bufsize);
1662 }
1663 }
1664
1665 /*
1666 * Check if there's an initial rtt or rttvar. Convert from the
1667 * route-table units to scaled multiples of the slow timeout timer.
1668 * Called only during the 3-way handshake.
1669 */
1670 void
1671 tcp_rmx_rtt(tp)
1672 struct tcpcb *tp;
1673 {
1674 #ifdef RTV_RTT
1675 struct rtentry *rt = NULL;
1676 int rtt;
1677
1678 #ifdef DIAGNOSTIC
1679 if (tp->t_inpcb && tp->t_in6pcb)
1680 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1681 #endif
1682 #ifdef INET
1683 if (tp->t_inpcb)
1684 rt = in_pcbrtentry(tp->t_inpcb);
1685 #endif
1686 #ifdef INET6
1687 if (tp->t_in6pcb)
1688 rt = in6_pcbrtentry(tp->t_in6pcb);
1689 #endif
1690 if (rt == NULL)
1691 return;
1692
1693 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1694 /*
1695 * XXX The lock bit for MTU indicates that the value
1696 * is also a minimum value; this is subject to time.
1697 */
1698 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1699 TCPT_RANGESET(tp->t_rttmin,
1700 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1701 TCPTV_MIN, TCPTV_REXMTMAX);
1702 tp->t_srtt = rtt /
1703 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1704 if (rt->rt_rmx.rmx_rttvar) {
1705 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1706 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1707 (TCP_RTTVAR_SHIFT + 2));
1708 } else {
1709 /* Default variation is +- 1 rtt */
1710 tp->t_rttvar =
1711 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1712 }
1713 TCPT_RANGESET(tp->t_rxtcur,
1714 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1715 tp->t_rttmin, TCPTV_REXMTMAX);
1716 }
1717 #endif
1718 }
1719
1720 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1721 #if NRND > 0
1722 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
1723 #endif
1724
1725 /*
1726 * Get a new sequence value given a tcp control block
1727 */
1728 tcp_seq
1729 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
1730 {
1731
1732 #ifdef INET
1733 if (tp->t_inpcb != NULL) {
1734 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
1735 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
1736 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
1737 addin));
1738 }
1739 #endif
1740 #ifdef INET6
1741 if (tp->t_in6pcb != NULL) {
1742 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
1743 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
1744 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
1745 addin));
1746 }
1747 #endif
1748 /* Not possible. */
1749 panic("tcp_new_iss");
1750 }
1751
1752 /*
1753 * This routine actually generates a new TCP initial sequence number.
1754 */
1755 tcp_seq
1756 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
1757 size_t addrsz, tcp_seq addin)
1758 {
1759 static int beenhere;
1760 tcp_seq tcp_iss;
1761
1762 #if NRND > 0
1763 /*
1764 * If we haven't been here before, initialize our cryptographic
1765 * hash secret.
1766 */
1767 if (beenhere == 0) {
1768 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
1769 RND_EXTRACT_ANY);
1770 beenhere = 1;
1771 }
1772
1773 if (tcp_do_rfc1948) {
1774 MD5_CTX ctx;
1775 u_int8_t hash[16]; /* XXX MD5 knowledge */
1776
1777 /*
1778 * Compute the base value of the ISS. It is a hash
1779 * of (saddr, sport, daddr, dport, secret).
1780 */
1781 MD5Init(&ctx);
1782
1783 MD5Update(&ctx, (u_char *) laddr, addrsz);
1784 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
1785
1786 MD5Update(&ctx, (u_char *) faddr, addrsz);
1787 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
1788
1789 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
1790
1791 MD5Final(hash, &ctx);
1792
1793 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
1794
1795 /*
1796 * Now increment our "timer", and add it in to
1797 * the computed value.
1798 *
1799 * XXX Use `addin'?
1800 * XXX TCP_ISSINCR too large to use?
1801 */
1802 tcp_iss_seq += TCP_ISSINCR;
1803 #ifdef TCPISS_DEBUG
1804 printf("ISS hash 0x%08x, ", tcp_iss);
1805 #endif
1806 tcp_iss += tcp_iss_seq + addin;
1807 #ifdef TCPISS_DEBUG
1808 printf("new ISS 0x%08x\n", tcp_iss);
1809 #endif
1810 } else
1811 #endif /* NRND > 0 */
1812 {
1813 /*
1814 * Randomize.
1815 */
1816 #if NRND > 0
1817 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
1818 #else
1819 tcp_iss = random();
1820 #endif
1821
1822 /*
1823 * If we were asked to add some amount to a known value,
1824 * we will take a random value obtained above, mask off
1825 * the upper bits, and add in the known value. We also
1826 * add in a constant to ensure that we are at least a
1827 * certain distance from the original value.
1828 *
1829 * This is used when an old connection is in timed wait
1830 * and we have a new one coming in, for instance.
1831 */
1832 if (addin != 0) {
1833 #ifdef TCPISS_DEBUG
1834 printf("Random %08x, ", tcp_iss);
1835 #endif
1836 tcp_iss &= TCP_ISS_RANDOM_MASK;
1837 tcp_iss += addin + TCP_ISSINCR;
1838 #ifdef TCPISS_DEBUG
1839 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
1840 #endif
1841 } else {
1842 tcp_iss &= TCP_ISS_RANDOM_MASK;
1843 tcp_iss += tcp_iss_seq;
1844 tcp_iss_seq += TCP_ISSINCR;
1845 #ifdef TCPISS_DEBUG
1846 printf("ISS %08x\n", tcp_iss);
1847 #endif
1848 }
1849 }
1850
1851 if (tcp_compat_42) {
1852 /*
1853 * Limit it to the positive range for really old TCP
1854 * implementations.
1855 */
1856 if (tcp_iss >= 0x80000000)
1857 tcp_iss &= 0x7fffffff; /* XXX */
1858 }
1859
1860 return (tcp_iss);
1861 }
1862
1863 #ifdef IPSEC
1864 /* compute ESP/AH header size for TCP, including outer IP header. */
1865 size_t
1866 ipsec4_hdrsiz_tcp(tp)
1867 struct tcpcb *tp;
1868 {
1869 struct inpcb *inp;
1870 size_t hdrsiz;
1871
1872 /* XXX mapped addr case (tp->t_in6pcb) */
1873 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
1874 return 0;
1875 switch (tp->t_family) {
1876 case AF_INET:
1877 /* XXX: should use currect direction. */
1878 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
1879 break;
1880 default:
1881 hdrsiz = 0;
1882 break;
1883 }
1884
1885 return hdrsiz;
1886 }
1887
1888 #ifdef INET6
1889 size_t
1890 ipsec6_hdrsiz_tcp(tp)
1891 struct tcpcb *tp;
1892 {
1893 struct in6pcb *in6p;
1894 size_t hdrsiz;
1895
1896 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
1897 return 0;
1898 switch (tp->t_family) {
1899 case AF_INET6:
1900 /* XXX: should use currect direction. */
1901 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
1902 break;
1903 case AF_INET:
1904 /* mapped address case - tricky */
1905 default:
1906 hdrsiz = 0;
1907 break;
1908 }
1909
1910 return hdrsiz;
1911 }
1912 #endif
1913 #endif /*IPSEC*/
1914
1915 /*
1916 * Determine the length of the TCP options for this connection.
1917 *
1918 * XXX: What do we do for SACK, when we add that? Just reserve
1919 * all of the space? Otherwise we can't exactly be incrementing
1920 * cwnd by an amount that varies depending on the amount we last
1921 * had to SACK!
1922 */
1923
1924 u_int
1925 tcp_optlen(tp)
1926 struct tcpcb *tp;
1927 {
1928 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1929 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1930 return TCPOLEN_TSTAMP_APPA;
1931 else
1932 return 0;
1933 }
1934