tcp_subr.c revision 1.112 1 /* $NetBSD: tcp_subr.c,v 1.112 2001/06/12 15:17:28 wiz Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
102 */
103
104 #include "opt_inet.h"
105 #include "opt_ipsec.h"
106 #include "opt_tcp_compat_42.h"
107 #include "opt_inet_csum.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #endif
147
148 #include <netinet/tcp.h>
149 #include <netinet/tcp_fsm.h>
150 #include <netinet/tcp_seq.h>
151 #include <netinet/tcp_timer.h>
152 #include <netinet/tcp_var.h>
153 #include <netinet/tcpip.h>
154
155 #ifdef IPSEC
156 #include <netinet6/ipsec.h>
157 #endif /*IPSEC*/
158
159 #ifdef INET6
160 struct in6pcb tcb6;
161 #endif
162
163 /* patchable/settable parameters for tcp */
164 int tcp_mssdflt = TCP_MSS;
165 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
166 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
167 #if NRND > 0
168 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
169 #endif
170 int tcp_do_sack = 1; /* selective acknowledgement */
171 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
172 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
173 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
174 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
175 int tcp_init_win = 1;
176 int tcp_mss_ifmtu = 0;
177 #ifdef TCP_COMPAT_42
178 int tcp_compat_42 = 1;
179 #else
180 int tcp_compat_42 = 0;
181 #endif
182 int tcp_rst_ppslim = 100; /* 100pps */
183
184 /* tcb hash */
185 #ifndef TCBHASHSIZE
186 #define TCBHASHSIZE 128
187 #endif
188 int tcbhashsize = TCBHASHSIZE;
189
190 /* syn hash parameters */
191 #define TCP_SYN_HASH_SIZE 293
192 #define TCP_SYN_BUCKET_SIZE 35
193 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
194 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
195 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
196 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
197 int tcp_syn_cache_interval = 1; /* runs timer twice a second */
198
199 int tcp_freeq __P((struct tcpcb *));
200
201 #ifdef INET
202 void tcp_mtudisc_callback __P((struct in_addr));
203 #endif
204 #ifdef INET6
205 void tcp6_mtudisc_callback __P((struct in6_addr *));
206 #endif
207
208 void tcp_mtudisc __P((struct inpcb *, int));
209 #ifdef INET6
210 void tcp6_mtudisc __P((struct in6pcb *, int));
211 #endif
212
213 struct pool tcpcb_pool;
214
215 #ifdef TCP_CSUM_COUNTERS
216 #include <sys/device.h>
217
218 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
219 NULL, "tcp", "hwcsum bad");
220 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
221 NULL, "tcp", "hwcsum ok");
222 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
223 NULL, "tcp", "hwcsum data");
224 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
225 NULL, "tcp", "swcsum");
226 #endif /* TCP_CSUM_COUNTERS */
227
228 /*
229 * Tcp initialization
230 */
231 void
232 tcp_init()
233 {
234 int hlen;
235
236 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
237 0, NULL, NULL, M_PCB);
238 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
239 #ifdef INET6
240 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
241 #endif
242 LIST_INIT(&tcp_delacks);
243
244 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
245 #ifdef INET6
246 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
247 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
248 #endif
249 if (max_protohdr < hlen)
250 max_protohdr = hlen;
251 if (max_linkhdr + hlen > MHLEN)
252 panic("tcp_init");
253
254 #ifdef INET
255 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
256 #endif
257 #ifdef INET6
258 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
259 #endif
260
261 /* Initialize the compressed state engine. */
262 syn_cache_init();
263
264 #ifdef TCP_CSUM_COUNTERS
265 evcnt_attach_static(&tcp_hwcsum_bad);
266 evcnt_attach_static(&tcp_hwcsum_ok);
267 evcnt_attach_static(&tcp_hwcsum_data);
268 evcnt_attach_static(&tcp_swcsum);
269 #endif /* TCP_CSUM_COUNTERS */
270 }
271
272 /*
273 * Create template to be used to send tcp packets on a connection.
274 * Call after host entry created, allocates an mbuf and fills
275 * in a skeletal tcp/ip header, minimizing the amount of work
276 * necessary when the connection is used.
277 */
278 struct mbuf *
279 tcp_template(tp)
280 struct tcpcb *tp;
281 {
282 struct inpcb *inp = tp->t_inpcb;
283 #ifdef INET6
284 struct in6pcb *in6p = tp->t_in6pcb;
285 #endif
286 struct tcphdr *n;
287 struct mbuf *m;
288 int hlen;
289
290 switch (tp->t_family) {
291 case AF_INET:
292 hlen = sizeof(struct ip);
293 if (inp)
294 break;
295 #ifdef INET6
296 if (in6p) {
297 /* mapped addr case */
298 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
299 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
300 break;
301 }
302 #endif
303 return NULL; /*EINVAL*/
304 #ifdef INET6
305 case AF_INET6:
306 hlen = sizeof(struct ip6_hdr);
307 if (in6p) {
308 /* more sainty check? */
309 break;
310 }
311 return NULL; /*EINVAL*/
312 #endif
313 default:
314 hlen = 0; /*pacify gcc*/
315 return NULL; /*EAFNOSUPPORT*/
316 }
317 #ifdef DIAGNOSTIC
318 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
319 panic("mclbytes too small for t_template");
320 #endif
321 m = tp->t_template;
322 if (m && m->m_len == hlen + sizeof(struct tcphdr))
323 ;
324 else {
325 if (m)
326 m_freem(m);
327 m = tp->t_template = NULL;
328 MGETHDR(m, M_DONTWAIT, MT_HEADER);
329 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
330 MCLGET(m, M_DONTWAIT);
331 if ((m->m_flags & M_EXT) == 0) {
332 m_free(m);
333 m = NULL;
334 }
335 }
336 if (m == NULL)
337 return NULL;
338 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
339 }
340
341 bzero(mtod(m, caddr_t), m->m_len);
342
343 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
344
345 switch (tp->t_family) {
346 case AF_INET:
347 {
348 struct ipovly *ipov;
349 mtod(m, struct ip *)->ip_v = 4;
350 ipov = mtod(m, struct ipovly *);
351 ipov->ih_pr = IPPROTO_TCP;
352 ipov->ih_len = htons(sizeof(struct tcphdr));
353 if (inp) {
354 ipov->ih_src = inp->inp_laddr;
355 ipov->ih_dst = inp->inp_faddr;
356 }
357 #ifdef INET6
358 else if (in6p) {
359 /* mapped addr case */
360 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
361 sizeof(ipov->ih_src));
362 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
363 sizeof(ipov->ih_dst));
364 }
365 #endif
366 /*
367 * Compute the pseudo-header portion of the checksum
368 * now. We incrementally add in the TCP option and
369 * payload lengths later, and then compute the TCP
370 * checksum right before the packet is sent off onto
371 * the wire.
372 */
373 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
374 ipov->ih_dst.s_addr,
375 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
376 break;
377 }
378 #ifdef INET6
379 case AF_INET6:
380 {
381 struct ip6_hdr *ip6;
382 mtod(m, struct ip *)->ip_v = 6;
383 ip6 = mtod(m, struct ip6_hdr *);
384 ip6->ip6_nxt = IPPROTO_TCP;
385 ip6->ip6_plen = htons(sizeof(struct tcphdr));
386 ip6->ip6_src = in6p->in6p_laddr;
387 ip6->ip6_dst = in6p->in6p_faddr;
388 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
389 if (ip6_auto_flowlabel) {
390 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
391 ip6->ip6_flow |=
392 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
393 }
394 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
395 ip6->ip6_vfc |= IPV6_VERSION;
396
397 /*
398 * Compute the pseudo-header portion of the checksum
399 * now. We incrementally add in the TCP option and
400 * payload lengths later, and then compute the TCP
401 * checksum right before the packet is sent off onto
402 * the wire.
403 */
404 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
405 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
406 htonl(IPPROTO_TCP));
407 break;
408 }
409 #endif
410 }
411 if (inp) {
412 n->th_sport = inp->inp_lport;
413 n->th_dport = inp->inp_fport;
414 }
415 #ifdef INET6
416 else if (in6p) {
417 n->th_sport = in6p->in6p_lport;
418 n->th_dport = in6p->in6p_fport;
419 }
420 #endif
421 n->th_seq = 0;
422 n->th_ack = 0;
423 n->th_x2 = 0;
424 n->th_off = 5;
425 n->th_flags = 0;
426 n->th_win = 0;
427 n->th_urp = 0;
428 return (m);
429 }
430
431 /*
432 * Send a single message to the TCP at address specified by
433 * the given TCP/IP header. If m == 0, then we make a copy
434 * of the tcpiphdr at ti and send directly to the addressed host.
435 * This is used to force keep alive messages out using the TCP
436 * template for a connection tp->t_template. If flags are given
437 * then we send a message back to the TCP which originated the
438 * segment ti, and discard the mbuf containing it and any other
439 * attached mbufs.
440 *
441 * In any case the ack and sequence number of the transmitted
442 * segment are as specified by the parameters.
443 */
444 int
445 tcp_respond(tp, template, m, th0, ack, seq, flags)
446 struct tcpcb *tp;
447 struct mbuf *template;
448 struct mbuf *m;
449 struct tcphdr *th0;
450 tcp_seq ack, seq;
451 int flags;
452 {
453 struct route *ro;
454 int error, tlen, win = 0;
455 int hlen;
456 struct ip *ip;
457 #ifdef INET6
458 struct ip6_hdr *ip6;
459 #endif
460 int family; /* family on packet, not inpcb/in6pcb! */
461 struct tcphdr *th;
462
463 if (tp != NULL && (flags & TH_RST) == 0) {
464 #ifdef DIAGNOSTIC
465 if (tp->t_inpcb && tp->t_in6pcb)
466 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
467 #endif
468 #ifdef INET
469 if (tp->t_inpcb)
470 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
471 #endif
472 #ifdef INET6
473 if (tp->t_in6pcb)
474 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
475 #endif
476 }
477
478 ip = NULL;
479 #ifdef INET6
480 ip6 = NULL;
481 #endif
482 if (m == 0) {
483 if (!template)
484 return EINVAL;
485
486 /* get family information from template */
487 switch (mtod(template, struct ip *)->ip_v) {
488 case 4:
489 family = AF_INET;
490 hlen = sizeof(struct ip);
491 break;
492 #ifdef INET6
493 case 6:
494 family = AF_INET6;
495 hlen = sizeof(struct ip6_hdr);
496 break;
497 #endif
498 default:
499 return EAFNOSUPPORT;
500 }
501
502 MGETHDR(m, M_DONTWAIT, MT_HEADER);
503 if (m) {
504 MCLGET(m, M_DONTWAIT);
505 if ((m->m_flags & M_EXT) == 0) {
506 m_free(m);
507 m = NULL;
508 }
509 }
510 if (m == NULL)
511 return (ENOBUFS);
512
513 if (tcp_compat_42)
514 tlen = 1;
515 else
516 tlen = 0;
517
518 m->m_data += max_linkhdr;
519 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
520 template->m_len);
521 switch (family) {
522 case AF_INET:
523 ip = mtod(m, struct ip *);
524 th = (struct tcphdr *)(ip + 1);
525 break;
526 #ifdef INET6
527 case AF_INET6:
528 ip6 = mtod(m, struct ip6_hdr *);
529 th = (struct tcphdr *)(ip6 + 1);
530 break;
531 #endif
532 #if 0
533 default:
534 /* noone will visit here */
535 m_freem(m);
536 return EAFNOSUPPORT;
537 #endif
538 }
539 flags = TH_ACK;
540 } else {
541
542 if ((m->m_flags & M_PKTHDR) == 0) {
543 #if 0
544 printf("non PKTHDR to tcp_respond\n");
545 #endif
546 m_freem(m);
547 return EINVAL;
548 }
549 #ifdef DIAGNOSTIC
550 if (!th0)
551 panic("th0 == NULL in tcp_respond");
552 #endif
553
554 /* get family information from m */
555 switch (mtod(m, struct ip *)->ip_v) {
556 case 4:
557 family = AF_INET;
558 hlen = sizeof(struct ip);
559 ip = mtod(m, struct ip *);
560 break;
561 #ifdef INET6
562 case 6:
563 family = AF_INET6;
564 hlen = sizeof(struct ip6_hdr);
565 ip6 = mtod(m, struct ip6_hdr *);
566 break;
567 #endif
568 default:
569 m_freem(m);
570 return EAFNOSUPPORT;
571 }
572 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
573 tlen = sizeof(*th0);
574 else
575 tlen = th0->th_off << 2;
576
577 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
578 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
579 m->m_len = hlen + tlen;
580 m_freem(m->m_next);
581 m->m_next = NULL;
582 } else {
583 struct mbuf *n;
584
585 #ifdef DIAGNOSTIC
586 if (max_linkhdr + hlen + tlen > MCLBYTES) {
587 m_freem(m);
588 return EMSGSIZE;
589 }
590 #endif
591 MGETHDR(n, M_DONTWAIT, MT_HEADER);
592 if (n && max_linkhdr + hlen + tlen > MHLEN) {
593 MCLGET(n, M_DONTWAIT);
594 if ((n->m_flags & M_EXT) == 0) {
595 m_freem(n);
596 n = NULL;
597 }
598 }
599 if (!n) {
600 m_freem(m);
601 return ENOBUFS;
602 }
603
604 n->m_data += max_linkhdr;
605 n->m_len = hlen + tlen;
606 m_copyback(n, 0, hlen, mtod(m, caddr_t));
607 m_copyback(n, hlen, tlen, (caddr_t)th0);
608
609 m_freem(m);
610 m = n;
611 n = NULL;
612 }
613
614 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
615 switch (family) {
616 case AF_INET:
617 ip = mtod(m, struct ip *);
618 th = (struct tcphdr *)(ip + 1);
619 ip->ip_p = IPPROTO_TCP;
620 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
621 ip->ip_p = IPPROTO_TCP;
622 break;
623 #ifdef INET6
624 case AF_INET6:
625 ip6 = mtod(m, struct ip6_hdr *);
626 th = (struct tcphdr *)(ip6 + 1);
627 ip6->ip6_nxt = IPPROTO_TCP;
628 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
629 ip6->ip6_nxt = IPPROTO_TCP;
630 break;
631 #endif
632 #if 0
633 default:
634 /* noone will visit here */
635 m_freem(m);
636 return EAFNOSUPPORT;
637 #endif
638 }
639 xchg(th->th_dport, th->th_sport, u_int16_t);
640 #undef xchg
641 tlen = 0; /*be friendly with the following code*/
642 }
643 th->th_seq = htonl(seq);
644 th->th_ack = htonl(ack);
645 th->th_x2 = 0;
646 if ((flags & TH_SYN) == 0) {
647 if (tp)
648 win >>= tp->rcv_scale;
649 if (win > TCP_MAXWIN)
650 win = TCP_MAXWIN;
651 th->th_win = htons((u_int16_t)win);
652 th->th_off = sizeof (struct tcphdr) >> 2;
653 tlen += sizeof(*th);
654 } else
655 tlen += th->th_off << 2;
656 m->m_len = hlen + tlen;
657 m->m_pkthdr.len = hlen + tlen;
658 m->m_pkthdr.rcvif = (struct ifnet *) 0;
659 th->th_flags = flags;
660 th->th_urp = 0;
661
662 switch (family) {
663 #ifdef INET
664 case AF_INET:
665 {
666 struct ipovly *ipov = (struct ipovly *)ip;
667 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
668 ipov->ih_len = htons((u_int16_t)tlen);
669
670 th->th_sum = 0;
671 th->th_sum = in_cksum(m, hlen + tlen);
672 ip->ip_len = hlen + tlen; /*will be flipped on output*/
673 ip->ip_ttl = ip_defttl;
674 break;
675 }
676 #endif
677 #ifdef INET6
678 case AF_INET6:
679 {
680 th->th_sum = 0;
681 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
682 tlen);
683 ip6->ip6_plen = ntohs(tlen);
684 if (tp && tp->t_in6pcb) {
685 struct ifnet *oifp;
686 ro = (struct route *)&tp->t_in6pcb->in6p_route;
687 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
688 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
689 } else
690 ip6->ip6_hlim = ip6_defhlim;
691 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
692 if (ip6_auto_flowlabel) {
693 ip6->ip6_flow |=
694 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
695 }
696 break;
697 }
698 #endif
699 }
700
701 #ifdef IPSEC
702 (void)ipsec_setsocket(m, NULL);
703 #endif /*IPSEC*/
704
705 if (tp != NULL && tp->t_inpcb != NULL) {
706 ro = &tp->t_inpcb->inp_route;
707 #ifdef IPSEC
708 if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
709 m_freem(m);
710 return ENOBUFS;
711 }
712 #endif
713 #ifdef DIAGNOSTIC
714 if (family != AF_INET)
715 panic("tcp_respond: address family mismatch");
716 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
717 panic("tcp_respond: ip_dst %x != inp_faddr %x",
718 ntohl(ip->ip_dst.s_addr),
719 ntohl(tp->t_inpcb->inp_faddr.s_addr));
720 }
721 #endif
722 }
723 #ifdef INET6
724 else if (tp != NULL && tp->t_in6pcb != NULL) {
725 ro = (struct route *)&tp->t_in6pcb->in6p_route;
726 #ifdef IPSEC
727 if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
728 m_freem(m);
729 return ENOBUFS;
730 }
731 #endif
732 #ifdef DIAGNOSTIC
733 if (family == AF_INET) {
734 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
735 panic("tcp_respond: not mapped addr");
736 if (bcmp(&ip->ip_dst,
737 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
738 sizeof(ip->ip_dst)) != 0) {
739 panic("tcp_respond: ip_dst != in6p_faddr");
740 }
741 } else if (family == AF_INET6) {
742 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
743 panic("tcp_respond: ip6_dst != in6p_faddr");
744 } else
745 panic("tcp_respond: address family mismatch");
746 #endif
747 }
748 #endif
749 else
750 ro = NULL;
751
752 switch (family) {
753 #ifdef INET
754 case AF_INET:
755 error = ip_output(m, NULL, ro,
756 (ip_mtudisc ? IP_MTUDISC : 0),
757 NULL);
758 break;
759 #endif
760 #ifdef INET6
761 case AF_INET6:
762 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
763 NULL);
764 break;
765 #endif
766 default:
767 error = EAFNOSUPPORT;
768 break;
769 }
770
771 return (error);
772 }
773
774 /*
775 * Create a new TCP control block, making an
776 * empty reassembly queue and hooking it to the argument
777 * protocol control block.
778 */
779 struct tcpcb *
780 tcp_newtcpcb(family, aux)
781 int family; /* selects inpcb, or in6pcb */
782 void *aux;
783 {
784 struct tcpcb *tp;
785
786 switch (family) {
787 case PF_INET:
788 break;
789 #ifdef INET6
790 case PF_INET6:
791 break;
792 #endif
793 default:
794 return NULL;
795 }
796
797 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
798 if (tp == NULL)
799 return (NULL);
800 bzero((caddr_t)tp, sizeof(struct tcpcb));
801 LIST_INIT(&tp->segq);
802 LIST_INIT(&tp->timeq);
803 tp->t_family = family; /* may be overridden later on */
804 tp->t_peermss = tcp_mssdflt;
805 tp->t_ourmss = tcp_mssdflt;
806 tp->t_segsz = tcp_mssdflt;
807 LIST_INIT(&tp->t_sc);
808
809 tp->t_flags = 0;
810 if (tcp_do_rfc1323 && tcp_do_win_scale)
811 tp->t_flags |= TF_REQ_SCALE;
812 if (tcp_do_rfc1323 && tcp_do_timestamps)
813 tp->t_flags |= TF_REQ_TSTMP;
814 if (tcp_do_sack == 2)
815 tp->t_flags |= TF_WILL_SACK;
816 else if (tcp_do_sack == 1)
817 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
818 tp->t_flags |= TF_CANT_TXSACK;
819 switch (family) {
820 case PF_INET:
821 tp->t_inpcb = (struct inpcb *)aux;
822 break;
823 #ifdef INET6
824 case PF_INET6:
825 tp->t_in6pcb = (struct in6pcb *)aux;
826 break;
827 #endif
828 }
829 /*
830 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
831 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
832 * reasonable initial retransmit time.
833 */
834 tp->t_srtt = TCPTV_SRTTBASE;
835 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
836 tp->t_rttmin = TCPTV_MIN;
837 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
838 TCPTV_MIN, TCPTV_REXMTMAX);
839 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
840 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
841 if (family == AF_INET) {
842 struct inpcb *inp = (struct inpcb *)aux;
843 inp->inp_ip.ip_ttl = ip_defttl;
844 inp->inp_ppcb = (caddr_t)tp;
845 }
846 #ifdef INET6
847 else if (family == AF_INET6) {
848 struct in6pcb *in6p = (struct in6pcb *)aux;
849 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
850 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
851 : NULL);
852 in6p->in6p_ppcb = (caddr_t)tp;
853 }
854 #endif
855
856 /*
857 * Initialize our timebase. When we send timestamps, we take
858 * the delta from tcp_now -- this means each connection always
859 * gets a timebase of 0, which makes it, among other things,
860 * more difficult to determine how long a system has been up,
861 * and thus how many TCP sequence increments have occurred.
862 */
863 tp->ts_timebase = tcp_now;
864
865 return (tp);
866 }
867
868 /*
869 * Drop a TCP connection, reporting
870 * the specified error. If connection is synchronized,
871 * then send a RST to peer.
872 */
873 struct tcpcb *
874 tcp_drop(tp, errno)
875 struct tcpcb *tp;
876 int errno;
877 {
878 struct socket *so = NULL;
879
880 #ifdef DIAGNOSTIC
881 if (tp->t_inpcb && tp->t_in6pcb)
882 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
883 #endif
884 #ifdef INET
885 if (tp->t_inpcb)
886 so = tp->t_inpcb->inp_socket;
887 #endif
888 #ifdef INET6
889 if (tp->t_in6pcb)
890 so = tp->t_in6pcb->in6p_socket;
891 #endif
892 if (!so)
893 return NULL;
894
895 if (TCPS_HAVERCVDSYN(tp->t_state)) {
896 tp->t_state = TCPS_CLOSED;
897 (void) tcp_output(tp);
898 tcpstat.tcps_drops++;
899 } else
900 tcpstat.tcps_conndrops++;
901 if (errno == ETIMEDOUT && tp->t_softerror)
902 errno = tp->t_softerror;
903 so->so_error = errno;
904 return (tcp_close(tp));
905 }
906
907 /*
908 * Close a TCP control block:
909 * discard all space held by the tcp
910 * discard internet protocol block
911 * wake up any sleepers
912 */
913 struct tcpcb *
914 tcp_close(tp)
915 struct tcpcb *tp;
916 {
917 struct inpcb *inp;
918 #ifdef INET6
919 struct in6pcb *in6p;
920 #endif
921 struct socket *so;
922 #ifdef RTV_RTT
923 struct rtentry *rt;
924 #endif
925 struct route *ro;
926
927 inp = tp->t_inpcb;
928 #ifdef INET6
929 in6p = tp->t_in6pcb;
930 #endif
931 so = NULL;
932 ro = NULL;
933 if (inp) {
934 so = inp->inp_socket;
935 ro = &inp->inp_route;
936 }
937 #ifdef INET6
938 else if (in6p) {
939 so = in6p->in6p_socket;
940 ro = (struct route *)&in6p->in6p_route;
941 }
942 #endif
943
944 #ifdef RTV_RTT
945 /*
946 * If we sent enough data to get some meaningful characteristics,
947 * save them in the routing entry. 'Enough' is arbitrarily
948 * defined as the sendpipesize (default 4K) * 16. This would
949 * give us 16 rtt samples assuming we only get one sample per
950 * window (the usual case on a long haul net). 16 samples is
951 * enough for the srtt filter to converge to within 5% of the correct
952 * value; fewer samples and we could save a very bogus rtt.
953 *
954 * Don't update the default route's characteristics and don't
955 * update anything that the user "locked".
956 */
957 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
958 ro && (rt = ro->ro_rt) &&
959 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
960 u_long i = 0;
961
962 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
963 i = tp->t_srtt *
964 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
965 if (rt->rt_rmx.rmx_rtt && i)
966 /*
967 * filter this update to half the old & half
968 * the new values, converting scale.
969 * See route.h and tcp_var.h for a
970 * description of the scaling constants.
971 */
972 rt->rt_rmx.rmx_rtt =
973 (rt->rt_rmx.rmx_rtt + i) / 2;
974 else
975 rt->rt_rmx.rmx_rtt = i;
976 }
977 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
978 i = tp->t_rttvar *
979 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
980 if (rt->rt_rmx.rmx_rttvar && i)
981 rt->rt_rmx.rmx_rttvar =
982 (rt->rt_rmx.rmx_rttvar + i) / 2;
983 else
984 rt->rt_rmx.rmx_rttvar = i;
985 }
986 /*
987 * update the pipelimit (ssthresh) if it has been updated
988 * already or if a pipesize was specified & the threshhold
989 * got below half the pipesize. I.e., wait for bad news
990 * before we start updating, then update on both good
991 * and bad news.
992 */
993 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
994 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
995 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
996 /*
997 * convert the limit from user data bytes to
998 * packets then to packet data bytes.
999 */
1000 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1001 if (i < 2)
1002 i = 2;
1003 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1004 if (rt->rt_rmx.rmx_ssthresh)
1005 rt->rt_rmx.rmx_ssthresh =
1006 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1007 else
1008 rt->rt_rmx.rmx_ssthresh = i;
1009 }
1010 }
1011 #endif /* RTV_RTT */
1012 /* free the reassembly queue, if any */
1013 TCP_REASS_LOCK(tp);
1014 (void) tcp_freeq(tp);
1015 TCP_REASS_UNLOCK(tp);
1016
1017 TCP_CLEAR_DELACK(tp);
1018 syn_cache_cleanup(tp);
1019
1020 if (tp->t_template) {
1021 m_free(tp->t_template);
1022 tp->t_template = NULL;
1023 }
1024 pool_put(&tcpcb_pool, tp);
1025 if (inp) {
1026 inp->inp_ppcb = 0;
1027 soisdisconnected(so);
1028 in_pcbdetach(inp);
1029 }
1030 #ifdef INET6
1031 else if (in6p) {
1032 in6p->in6p_ppcb = 0;
1033 soisdisconnected(so);
1034 in6_pcbdetach(in6p);
1035 }
1036 #endif
1037 tcpstat.tcps_closed++;
1038 return ((struct tcpcb *)0);
1039 }
1040
1041 int
1042 tcp_freeq(tp)
1043 struct tcpcb *tp;
1044 {
1045 struct ipqent *qe;
1046 int rv = 0;
1047 #ifdef TCPREASS_DEBUG
1048 int i = 0;
1049 #endif
1050
1051 TCP_REASS_LOCK_CHECK(tp);
1052
1053 while ((qe = tp->segq.lh_first) != NULL) {
1054 #ifdef TCPREASS_DEBUG
1055 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1056 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1057 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1058 #endif
1059 LIST_REMOVE(qe, ipqe_q);
1060 LIST_REMOVE(qe, ipqe_timeq);
1061 m_freem(qe->ipqe_m);
1062 pool_put(&ipqent_pool, qe);
1063 rv = 1;
1064 }
1065 return (rv);
1066 }
1067
1068 /*
1069 * Protocol drain routine. Called when memory is in short supply.
1070 */
1071 void
1072 tcp_drain()
1073 {
1074 struct inpcb *inp;
1075 struct tcpcb *tp;
1076
1077 /*
1078 * Free the sequence queue of all TCP connections.
1079 */
1080 inp = tcbtable.inpt_queue.cqh_first;
1081 if (inp) /* XXX */
1082 for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
1083 inp = inp->inp_queue.cqe_next) {
1084 if ((tp = intotcpcb(inp)) != NULL) {
1085 /*
1086 * We may be called from a device's interrupt
1087 * context. If the tcpcb is already busy,
1088 * just bail out now.
1089 */
1090 if (tcp_reass_lock_try(tp) == 0)
1091 continue;
1092 if (tcp_freeq(tp))
1093 tcpstat.tcps_connsdrained++;
1094 TCP_REASS_UNLOCK(tp);
1095 }
1096 }
1097 }
1098
1099 /*
1100 * Notify a tcp user of an asynchronous error;
1101 * store error as soft error, but wake up user
1102 * (for now, won't do anything until can select for soft error).
1103 */
1104 void
1105 tcp_notify(inp, error)
1106 struct inpcb *inp;
1107 int error;
1108 {
1109 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1110 struct socket *so = inp->inp_socket;
1111
1112 /*
1113 * Ignore some errors if we are hooked up.
1114 * If connection hasn't completed, has retransmitted several times,
1115 * and receives a second error, give up now. This is better
1116 * than waiting a long time to establish a connection that
1117 * can never complete.
1118 */
1119 if (tp->t_state == TCPS_ESTABLISHED &&
1120 (error == EHOSTUNREACH || error == ENETUNREACH ||
1121 error == EHOSTDOWN)) {
1122 return;
1123 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1124 tp->t_rxtshift > 3 && tp->t_softerror)
1125 so->so_error = error;
1126 else
1127 tp->t_softerror = error;
1128 wakeup((caddr_t) &so->so_timeo);
1129 sorwakeup(so);
1130 sowwakeup(so);
1131 }
1132
1133 #ifdef INET6
1134 void
1135 tcp6_notify(in6p, error)
1136 struct in6pcb *in6p;
1137 int error;
1138 {
1139 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1140 struct socket *so = in6p->in6p_socket;
1141
1142 /*
1143 * Ignore some errors if we are hooked up.
1144 * If connection hasn't completed, has retransmitted several times,
1145 * and receives a second error, give up now. This is better
1146 * than waiting a long time to establish a connection that
1147 * can never complete.
1148 */
1149 if (tp->t_state == TCPS_ESTABLISHED &&
1150 (error == EHOSTUNREACH || error == ENETUNREACH ||
1151 error == EHOSTDOWN)) {
1152 return;
1153 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1154 tp->t_rxtshift > 3 && tp->t_softerror)
1155 so->so_error = error;
1156 else
1157 tp->t_softerror = error;
1158 wakeup((caddr_t) &so->so_timeo);
1159 sorwakeup(so);
1160 sowwakeup(so);
1161 }
1162 #endif
1163
1164 #ifdef INET6
1165 void
1166 tcp6_ctlinput(cmd, sa, d)
1167 int cmd;
1168 struct sockaddr *sa;
1169 void *d;
1170 {
1171 struct tcphdr th;
1172 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1173 int nmatch;
1174 struct ip6_hdr *ip6;
1175 const struct sockaddr_in6 *sa6_src = NULL;
1176 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1177 struct mbuf *m;
1178 int off;
1179
1180 if (sa->sa_family != AF_INET6 ||
1181 sa->sa_len != sizeof(struct sockaddr_in6))
1182 return;
1183 if ((unsigned)cmd >= PRC_NCMDS)
1184 return;
1185 else if (cmd == PRC_QUENCH) {
1186 /* XXX there's no PRC_QUENCH in IPv6 */
1187 notify = tcp6_quench;
1188 } else if (PRC_IS_REDIRECT(cmd))
1189 notify = in6_rtchange, d = NULL;
1190 else if (cmd == PRC_MSGSIZE)
1191 ; /* special code is present, see below */
1192 else if (cmd == PRC_HOSTDEAD)
1193 d = NULL;
1194 else if (inet6ctlerrmap[cmd] == 0)
1195 return;
1196
1197 /* if the parameter is from icmp6, decode it. */
1198 if (d != NULL) {
1199 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1200 m = ip6cp->ip6c_m;
1201 ip6 = ip6cp->ip6c_ip6;
1202 off = ip6cp->ip6c_off;
1203 sa6_src = ip6cp->ip6c_src;
1204 } else {
1205 m = NULL;
1206 ip6 = NULL;
1207 sa6_src = &sa6_any;
1208 }
1209
1210 if (ip6) {
1211 /*
1212 * XXX: We assume that when ip6 is non NULL,
1213 * M and OFF are valid.
1214 */
1215
1216 /* check if we can safely examine src and dst ports */
1217 if (m->m_pkthdr.len < off + sizeof(th)) {
1218 if (cmd == PRC_MSGSIZE)
1219 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1220 return;
1221 }
1222
1223 bzero(&th, sizeof(th));
1224 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1225
1226 if (cmd == PRC_MSGSIZE) {
1227 int valid = 0;
1228
1229 /*
1230 * Check to see if we have a valid TCP connection
1231 * corresponding to the address in the ICMPv6 message
1232 * payload.
1233 */
1234 if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
1235 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1236 th.th_sport, 0))
1237 valid++;
1238
1239 /*
1240 * Depending on the value of "valid" and routing table
1241 * size (mtudisc_{hi,lo}wat), we will:
1242 * - recalcurate the new MTU and create the
1243 * corresponding routing entry, or
1244 * - ignore the MTU change notification.
1245 */
1246 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1247
1248 /*
1249 * no need to call in6_pcbnotify, it should have been
1250 * called via callback if necessary
1251 */
1252 return;
1253 }
1254
1255 nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
1256 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1257 if (nmatch == 0 && syn_cache_count &&
1258 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1259 inet6ctlerrmap[cmd] == ENETUNREACH ||
1260 inet6ctlerrmap[cmd] == EHOSTDOWN))
1261 syn_cache_unreach((struct sockaddr *)sa6_src,
1262 sa, &th);
1263 } else {
1264 (void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
1265 0, cmd, NULL, notify);
1266 }
1267 }
1268 #endif
1269
1270 #ifdef INET
1271 /* assumes that ip header and tcp header are contiguous on mbuf */
1272 void *
1273 tcp_ctlinput(cmd, sa, v)
1274 int cmd;
1275 struct sockaddr *sa;
1276 void *v;
1277 {
1278 struct ip *ip = v;
1279 struct tcphdr *th;
1280 struct icmp *icp;
1281 extern int inetctlerrmap[];
1282 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1283 int errno;
1284 int nmatch;
1285
1286 if (sa->sa_family != AF_INET ||
1287 sa->sa_len != sizeof(struct sockaddr_in))
1288 return NULL;
1289 if ((unsigned)cmd >= PRC_NCMDS)
1290 return NULL;
1291 errno = inetctlerrmap[cmd];
1292 if (cmd == PRC_QUENCH)
1293 notify = tcp_quench;
1294 else if (PRC_IS_REDIRECT(cmd))
1295 notify = in_rtchange, ip = 0;
1296 else if (cmd == PRC_MSGSIZE && ip_mtudisc && ip && ip->ip_v == 4) {
1297 /*
1298 * Check to see if we have a valid TCP connection
1299 * corresponding to the address in the ICMP message
1300 * payload.
1301 *
1302 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1303 */
1304 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1305 if (in_pcblookup_connect(&tcbtable,
1306 ip->ip_dst, th->th_dport,
1307 ip->ip_src, th->th_sport) == NULL)
1308 return NULL;
1309
1310 /*
1311 * Now that we've validated that we are actually communicating
1312 * with the host indicated in the ICMP message, locate the
1313 * ICMP header, recalculate the new MTU, and create the
1314 * corresponding routing entry.
1315 */
1316 icp = (struct icmp *)((caddr_t)ip -
1317 offsetof(struct icmp, icmp_ip));
1318 icmp_mtudisc(icp, ip->ip_dst);
1319
1320 return NULL;
1321 } else if (cmd == PRC_HOSTDEAD)
1322 ip = 0;
1323 else if (errno == 0)
1324 return NULL;
1325 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1326 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1327 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1328 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1329 if (nmatch == 0 && syn_cache_count &&
1330 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1331 inetctlerrmap[cmd] == ENETUNREACH ||
1332 inetctlerrmap[cmd] == EHOSTDOWN)) {
1333 struct sockaddr_in sin;
1334 bzero(&sin, sizeof(sin));
1335 sin.sin_len = sizeof(sin);
1336 sin.sin_family = AF_INET;
1337 sin.sin_port = th->th_sport;
1338 sin.sin_addr = ip->ip_src;
1339 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1340 }
1341
1342 /* XXX mapped address case */
1343 } else
1344 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1345 notify);
1346 return NULL;
1347 }
1348
1349 /*
1350 * When a source quence is received, we are being notifed of congestion.
1351 * Close the congestion window down to the Loss Window (one segment).
1352 * We will gradually open it again as we proceed.
1353 */
1354 void
1355 tcp_quench(inp, errno)
1356 struct inpcb *inp;
1357 int errno;
1358 {
1359 struct tcpcb *tp = intotcpcb(inp);
1360
1361 if (tp)
1362 tp->snd_cwnd = tp->t_segsz;
1363 }
1364 #endif
1365
1366 #ifdef INET6
1367 void
1368 tcp6_quench(in6p, errno)
1369 struct in6pcb *in6p;
1370 int errno;
1371 {
1372 struct tcpcb *tp = in6totcpcb(in6p);
1373
1374 if (tp)
1375 tp->snd_cwnd = tp->t_segsz;
1376 }
1377 #endif
1378
1379 #ifdef INET
1380 /*
1381 * Path MTU Discovery handlers.
1382 */
1383 void
1384 tcp_mtudisc_callback(faddr)
1385 struct in_addr faddr;
1386 {
1387
1388 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1389 }
1390
1391 /*
1392 * On receipt of path MTU corrections, flush old route and replace it
1393 * with the new one. Retransmit all unacknowledged packets, to ensure
1394 * that all packets will be received.
1395 */
1396 void
1397 tcp_mtudisc(inp, errno)
1398 struct inpcb *inp;
1399 int errno;
1400 {
1401 struct tcpcb *tp = intotcpcb(inp);
1402 struct rtentry *rt = in_pcbrtentry(inp);
1403
1404 if (tp != 0) {
1405 if (rt != 0) {
1406 /*
1407 * If this was not a host route, remove and realloc.
1408 */
1409 if ((rt->rt_flags & RTF_HOST) == 0) {
1410 in_rtchange(inp, errno);
1411 if ((rt = in_pcbrtentry(inp)) == 0)
1412 return;
1413 }
1414
1415 /*
1416 * Slow start out of the error condition. We
1417 * use the MTU because we know it's smaller
1418 * than the previously transmitted segment.
1419 *
1420 * Note: This is more conservative than the
1421 * suggestion in draft-floyd-incr-init-win-03.
1422 */
1423 if (rt->rt_rmx.rmx_mtu != 0)
1424 tp->snd_cwnd =
1425 TCP_INITIAL_WINDOW(tcp_init_win,
1426 rt->rt_rmx.rmx_mtu);
1427 }
1428
1429 /*
1430 * Resend unacknowledged packets.
1431 */
1432 tp->snd_nxt = tp->snd_una;
1433 tcp_output(tp);
1434 }
1435 }
1436 #endif
1437
1438 #ifdef INET6
1439 /*
1440 * Path MTU Discovery handlers.
1441 */
1442 void
1443 tcp6_mtudisc_callback(faddr)
1444 struct in6_addr *faddr;
1445 {
1446 struct sockaddr_in6 sin6;
1447
1448 bzero(&sin6, sizeof(sin6));
1449 sin6.sin6_family = AF_INET6;
1450 sin6.sin6_len = sizeof(struct sockaddr_in6);
1451 sin6.sin6_addr = *faddr;
1452 (void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
1453 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1454 }
1455
1456 void
1457 tcp6_mtudisc(in6p, errno)
1458 struct in6pcb *in6p;
1459 int errno;
1460 {
1461 struct tcpcb *tp = in6totcpcb(in6p);
1462 struct rtentry *rt = in6_pcbrtentry(in6p);
1463
1464 if (tp != 0) {
1465 if (rt != 0) {
1466 /*
1467 * If this was not a host route, remove and realloc.
1468 */
1469 if ((rt->rt_flags & RTF_HOST) == 0) {
1470 in6_rtchange(in6p, errno);
1471 if ((rt = in6_pcbrtentry(in6p)) == 0)
1472 return;
1473 }
1474
1475 /*
1476 * Slow start out of the error condition. We
1477 * use the MTU because we know it's smaller
1478 * than the previously transmitted segment.
1479 *
1480 * Note: This is more conservative than the
1481 * suggestion in draft-floyd-incr-init-win-03.
1482 */
1483 if (rt->rt_rmx.rmx_mtu != 0)
1484 tp->snd_cwnd =
1485 TCP_INITIAL_WINDOW(tcp_init_win,
1486 rt->rt_rmx.rmx_mtu);
1487 }
1488
1489 /*
1490 * Resend unacknowledged packets.
1491 */
1492 tp->snd_nxt = tp->snd_una;
1493 tcp_output(tp);
1494 }
1495 }
1496 #endif /* INET6 */
1497
1498 /*
1499 * Compute the MSS to advertise to the peer. Called only during
1500 * the 3-way handshake. If we are the server (peer initiated
1501 * connection), we are called with a pointer to the interface
1502 * on which the SYN packet arrived. If we are the client (we
1503 * initiated connection), we are called with a pointer to the
1504 * interface out which this connection should go.
1505 *
1506 * NOTE: Do not subtract IP option/extension header size nor IPsec
1507 * header size from MSS advertisement. MSS option must hold the maximum
1508 * segment size we can accept, so it must always be:
1509 * max(if mtu) - ip header - tcp header
1510 */
1511 u_long
1512 tcp_mss_to_advertise(ifp, af)
1513 const struct ifnet *ifp;
1514 int af;
1515 {
1516 extern u_long in_maxmtu;
1517 u_long mss = 0;
1518 u_long hdrsiz;
1519
1520 /*
1521 * In order to avoid defeating path MTU discovery on the peer,
1522 * we advertise the max MTU of all attached networks as our MSS,
1523 * per RFC 1191, section 3.1.
1524 *
1525 * We provide the option to advertise just the MTU of
1526 * the interface on which we hope this connection will
1527 * be receiving. If we are responding to a SYN, we
1528 * will have a pretty good idea about this, but when
1529 * initiating a connection there is a bit more doubt.
1530 *
1531 * We also need to ensure that loopback has a large enough
1532 * MSS, as the loopback MTU is never included in in_maxmtu.
1533 */
1534
1535 if (ifp != NULL)
1536 mss = ifp->if_mtu;
1537
1538 if (tcp_mss_ifmtu == 0)
1539 mss = max(in_maxmtu, mss);
1540
1541 switch (af) {
1542 case AF_INET:
1543 hdrsiz = sizeof(struct ip);
1544 break;
1545 #ifdef INET6
1546 case AF_INET6:
1547 hdrsiz = sizeof(struct ip6_hdr);
1548 break;
1549 #endif
1550 default:
1551 hdrsiz = 0;
1552 break;
1553 }
1554 hdrsiz += sizeof(struct tcphdr);
1555 if (mss > hdrsiz)
1556 mss -= hdrsiz;
1557
1558 mss = max(tcp_mssdflt, mss);
1559 return (mss);
1560 }
1561
1562 /*
1563 * Set connection variables based on the peer's advertised MSS.
1564 * We are passed the TCPCB for the actual connection. If we
1565 * are the server, we are called by the compressed state engine
1566 * when the 3-way handshake is complete. If we are the client,
1567 * we are called when we receive the SYN,ACK from the server.
1568 *
1569 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1570 * before this routine is called!
1571 */
1572 void
1573 tcp_mss_from_peer(tp, offer)
1574 struct tcpcb *tp;
1575 int offer;
1576 {
1577 struct socket *so;
1578 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1579 struct rtentry *rt;
1580 #endif
1581 u_long bufsize;
1582 int mss;
1583
1584 #ifdef DIAGNOSTIC
1585 if (tp->t_inpcb && tp->t_in6pcb)
1586 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1587 #endif
1588 so = NULL;
1589 rt = NULL;
1590 #ifdef INET
1591 if (tp->t_inpcb) {
1592 so = tp->t_inpcb->inp_socket;
1593 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1594 rt = in_pcbrtentry(tp->t_inpcb);
1595 #endif
1596 }
1597 #endif
1598 #ifdef INET6
1599 if (tp->t_in6pcb) {
1600 so = tp->t_in6pcb->in6p_socket;
1601 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1602 rt = in6_pcbrtentry(tp->t_in6pcb);
1603 #endif
1604 }
1605 #endif
1606
1607 /*
1608 * As per RFC1122, use the default MSS value, unless they
1609 * sent us an offer. Do not accept offers less than 32 bytes.
1610 */
1611 mss = tcp_mssdflt;
1612 if (offer)
1613 mss = offer;
1614 mss = max(mss, 32); /* sanity */
1615 tp->t_peermss = mss;
1616 mss -= tcp_optlen(tp);
1617 #ifdef INET
1618 if (tp->t_inpcb)
1619 mss -= ip_optlen(tp->t_inpcb);
1620 #endif
1621 #ifdef INET6
1622 if (tp->t_in6pcb)
1623 mss -= ip6_optlen(tp->t_in6pcb);
1624 #endif
1625
1626 /*
1627 * If there's a pipesize, change the socket buffer to that size.
1628 * Make the socket buffer an integral number of MSS units. If
1629 * the MSS is larger than the socket buffer, artificially decrease
1630 * the MSS.
1631 */
1632 #ifdef RTV_SPIPE
1633 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1634 bufsize = rt->rt_rmx.rmx_sendpipe;
1635 else
1636 #endif
1637 bufsize = so->so_snd.sb_hiwat;
1638 if (bufsize < mss)
1639 mss = bufsize;
1640 else {
1641 bufsize = roundup(bufsize, mss);
1642 if (bufsize > sb_max)
1643 bufsize = sb_max;
1644 (void) sbreserve(&so->so_snd, bufsize);
1645 }
1646 tp->t_segsz = mss;
1647
1648 #ifdef RTV_SSTHRESH
1649 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1650 /*
1651 * There's some sort of gateway or interface buffer
1652 * limit on the path. Use this to set the slow
1653 * start threshold, but set the threshold to no less
1654 * than 2 * MSS.
1655 */
1656 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1657 }
1658 #endif
1659 }
1660
1661 /*
1662 * Processing necessary when a TCP connection is established.
1663 */
1664 void
1665 tcp_established(tp)
1666 struct tcpcb *tp;
1667 {
1668 struct socket *so;
1669 #ifdef RTV_RPIPE
1670 struct rtentry *rt;
1671 #endif
1672 u_long bufsize;
1673
1674 #ifdef DIAGNOSTIC
1675 if (tp->t_inpcb && tp->t_in6pcb)
1676 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1677 #endif
1678 so = NULL;
1679 rt = NULL;
1680 #ifdef INET
1681 if (tp->t_inpcb) {
1682 so = tp->t_inpcb->inp_socket;
1683 #if defined(RTV_RPIPE)
1684 rt = in_pcbrtentry(tp->t_inpcb);
1685 #endif
1686 }
1687 #endif
1688 #ifdef INET6
1689 if (tp->t_in6pcb) {
1690 so = tp->t_in6pcb->in6p_socket;
1691 #if defined(RTV_RPIPE)
1692 rt = in6_pcbrtentry(tp->t_in6pcb);
1693 #endif
1694 }
1695 #endif
1696
1697 tp->t_state = TCPS_ESTABLISHED;
1698 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1699
1700 #ifdef RTV_RPIPE
1701 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1702 bufsize = rt->rt_rmx.rmx_recvpipe;
1703 else
1704 #endif
1705 bufsize = so->so_rcv.sb_hiwat;
1706 if (bufsize > tp->t_ourmss) {
1707 bufsize = roundup(bufsize, tp->t_ourmss);
1708 if (bufsize > sb_max)
1709 bufsize = sb_max;
1710 (void) sbreserve(&so->so_rcv, bufsize);
1711 }
1712 }
1713
1714 /*
1715 * Check if there's an initial rtt or rttvar. Convert from the
1716 * route-table units to scaled multiples of the slow timeout timer.
1717 * Called only during the 3-way handshake.
1718 */
1719 void
1720 tcp_rmx_rtt(tp)
1721 struct tcpcb *tp;
1722 {
1723 #ifdef RTV_RTT
1724 struct rtentry *rt = NULL;
1725 int rtt;
1726
1727 #ifdef DIAGNOSTIC
1728 if (tp->t_inpcb && tp->t_in6pcb)
1729 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1730 #endif
1731 #ifdef INET
1732 if (tp->t_inpcb)
1733 rt = in_pcbrtentry(tp->t_inpcb);
1734 #endif
1735 #ifdef INET6
1736 if (tp->t_in6pcb)
1737 rt = in6_pcbrtentry(tp->t_in6pcb);
1738 #endif
1739 if (rt == NULL)
1740 return;
1741
1742 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1743 /*
1744 * XXX The lock bit for MTU indicates that the value
1745 * is also a minimum value; this is subject to time.
1746 */
1747 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1748 TCPT_RANGESET(tp->t_rttmin,
1749 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1750 TCPTV_MIN, TCPTV_REXMTMAX);
1751 tp->t_srtt = rtt /
1752 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1753 if (rt->rt_rmx.rmx_rttvar) {
1754 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1755 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1756 (TCP_RTTVAR_SHIFT + 2));
1757 } else {
1758 /* Default variation is +- 1 rtt */
1759 tp->t_rttvar =
1760 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1761 }
1762 TCPT_RANGESET(tp->t_rxtcur,
1763 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1764 tp->t_rttmin, TCPTV_REXMTMAX);
1765 }
1766 #endif
1767 }
1768
1769 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1770 #if NRND > 0
1771 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
1772 #endif
1773
1774 /*
1775 * Get a new sequence value given a tcp control block
1776 */
1777 tcp_seq
1778 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
1779 {
1780
1781 #ifdef INET
1782 if (tp->t_inpcb != NULL) {
1783 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
1784 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
1785 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
1786 addin));
1787 }
1788 #endif
1789 #ifdef INET6
1790 if (tp->t_in6pcb != NULL) {
1791 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
1792 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
1793 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
1794 addin));
1795 }
1796 #endif
1797 /* Not possible. */
1798 panic("tcp_new_iss");
1799 }
1800
1801 /*
1802 * This routine actually generates a new TCP initial sequence number.
1803 */
1804 tcp_seq
1805 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
1806 size_t addrsz, tcp_seq addin)
1807 {
1808 tcp_seq tcp_iss;
1809
1810 #if NRND > 0
1811 static int beenhere;
1812
1813 /*
1814 * If we haven't been here before, initialize our cryptographic
1815 * hash secret.
1816 */
1817 if (beenhere == 0) {
1818 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
1819 RND_EXTRACT_ANY);
1820 beenhere = 1;
1821 }
1822
1823 if (tcp_do_rfc1948) {
1824 MD5_CTX ctx;
1825 u_int8_t hash[16]; /* XXX MD5 knowledge */
1826
1827 /*
1828 * Compute the base value of the ISS. It is a hash
1829 * of (saddr, sport, daddr, dport, secret).
1830 */
1831 MD5Init(&ctx);
1832
1833 MD5Update(&ctx, (u_char *) laddr, addrsz);
1834 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
1835
1836 MD5Update(&ctx, (u_char *) faddr, addrsz);
1837 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
1838
1839 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
1840
1841 MD5Final(hash, &ctx);
1842
1843 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
1844
1845 /*
1846 * Now increment our "timer", and add it in to
1847 * the computed value.
1848 *
1849 * XXX Use `addin'?
1850 * XXX TCP_ISSINCR too large to use?
1851 */
1852 tcp_iss_seq += TCP_ISSINCR;
1853 #ifdef TCPISS_DEBUG
1854 printf("ISS hash 0x%08x, ", tcp_iss);
1855 #endif
1856 tcp_iss += tcp_iss_seq + addin;
1857 #ifdef TCPISS_DEBUG
1858 printf("new ISS 0x%08x\n", tcp_iss);
1859 #endif
1860 } else
1861 #endif /* NRND > 0 */
1862 {
1863 /*
1864 * Randomize.
1865 */
1866 #if NRND > 0
1867 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
1868 #else
1869 tcp_iss = random();
1870 #endif
1871
1872 /*
1873 * If we were asked to add some amount to a known value,
1874 * we will take a random value obtained above, mask off
1875 * the upper bits, and add in the known value. We also
1876 * add in a constant to ensure that we are at least a
1877 * certain distance from the original value.
1878 *
1879 * This is used when an old connection is in timed wait
1880 * and we have a new one coming in, for instance.
1881 */
1882 if (addin != 0) {
1883 #ifdef TCPISS_DEBUG
1884 printf("Random %08x, ", tcp_iss);
1885 #endif
1886 tcp_iss &= TCP_ISS_RANDOM_MASK;
1887 tcp_iss += addin + TCP_ISSINCR;
1888 #ifdef TCPISS_DEBUG
1889 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
1890 #endif
1891 } else {
1892 tcp_iss &= TCP_ISS_RANDOM_MASK;
1893 tcp_iss += tcp_iss_seq;
1894 tcp_iss_seq += TCP_ISSINCR;
1895 #ifdef TCPISS_DEBUG
1896 printf("ISS %08x\n", tcp_iss);
1897 #endif
1898 }
1899 }
1900
1901 if (tcp_compat_42) {
1902 /*
1903 * Limit it to the positive range for really old TCP
1904 * implementations.
1905 */
1906 if (tcp_iss >= 0x80000000)
1907 tcp_iss &= 0x7fffffff; /* XXX */
1908 }
1909
1910 return (tcp_iss);
1911 }
1912
1913 #ifdef IPSEC
1914 /* compute ESP/AH header size for TCP, including outer IP header. */
1915 size_t
1916 ipsec4_hdrsiz_tcp(tp)
1917 struct tcpcb *tp;
1918 {
1919 struct inpcb *inp;
1920 size_t hdrsiz;
1921
1922 /* XXX mapped addr case (tp->t_in6pcb) */
1923 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
1924 return 0;
1925 switch (tp->t_family) {
1926 case AF_INET:
1927 /* XXX: should use currect direction. */
1928 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
1929 break;
1930 default:
1931 hdrsiz = 0;
1932 break;
1933 }
1934
1935 return hdrsiz;
1936 }
1937
1938 #ifdef INET6
1939 size_t
1940 ipsec6_hdrsiz_tcp(tp)
1941 struct tcpcb *tp;
1942 {
1943 struct in6pcb *in6p;
1944 size_t hdrsiz;
1945
1946 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
1947 return 0;
1948 switch (tp->t_family) {
1949 case AF_INET6:
1950 /* XXX: should use currect direction. */
1951 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
1952 break;
1953 case AF_INET:
1954 /* mapped address case - tricky */
1955 default:
1956 hdrsiz = 0;
1957 break;
1958 }
1959
1960 return hdrsiz;
1961 }
1962 #endif
1963 #endif /*IPSEC*/
1964
1965 /*
1966 * Determine the length of the TCP options for this connection.
1967 *
1968 * XXX: What do we do for SACK, when we add that? Just reserve
1969 * all of the space? Otherwise we can't exactly be incrementing
1970 * cwnd by an amount that varies depending on the amount we last
1971 * had to SACK!
1972 */
1973
1974 u_int
1975 tcp_optlen(tp)
1976 struct tcpcb *tp;
1977 {
1978 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1979 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1980 return TCPOLEN_TSTAMP_APPA;
1981 else
1982 return 0;
1983 }
1984