Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.118
      1 /*	$NetBSD: tcp_subr.c,v 1.118 2001/09/10 22:14:27 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. All advertising materials mentioning features or use of this software
     82  *    must display the following acknowledgement:
     83  *	This product includes software developed by the University of
     84  *	California, Berkeley and its contributors.
     85  * 4. Neither the name of the University nor the names of its contributors
     86  *    may be used to endorse or promote products derived from this software
     87  *    without specific prior written permission.
     88  *
     89  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     90  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     91  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     92  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     93  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     94  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     95  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     96  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     97  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     98  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     99  * SUCH DAMAGE.
    100  *
    101  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
    102  */
    103 
    104 #include "opt_inet.h"
    105 #include "opt_ipsec.h"
    106 #include "opt_tcp_compat_42.h"
    107 #include "opt_inet_csum.h"
    108 #include "rnd.h"
    109 
    110 #include <sys/param.h>
    111 #include <sys/proc.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/socket.h>
    116 #include <sys/socketvar.h>
    117 #include <sys/protosw.h>
    118 #include <sys/errno.h>
    119 #include <sys/kernel.h>
    120 #include <sys/pool.h>
    121 #if NRND > 0
    122 #include <sys/md5.h>
    123 #include <sys/rnd.h>
    124 #endif
    125 
    126 #include <net/route.h>
    127 #include <net/if.h>
    128 
    129 #include <netinet/in.h>
    130 #include <netinet/in_systm.h>
    131 #include <netinet/ip.h>
    132 #include <netinet/in_pcb.h>
    133 #include <netinet/ip_var.h>
    134 #include <netinet/ip_icmp.h>
    135 
    136 #ifdef INET6
    137 #ifndef INET
    138 #include <netinet/in.h>
    139 #endif
    140 #include <netinet/ip6.h>
    141 #include <netinet6/in6_pcb.h>
    142 #include <netinet6/ip6_var.h>
    143 #include <netinet6/in6_var.h>
    144 #include <netinet6/ip6protosw.h>
    145 #include <netinet/icmp6.h>
    146 #endif
    147 
    148 #include <netinet/tcp.h>
    149 #include <netinet/tcp_fsm.h>
    150 #include <netinet/tcp_seq.h>
    151 #include <netinet/tcp_timer.h>
    152 #include <netinet/tcp_var.h>
    153 #include <netinet/tcpip.h>
    154 
    155 #ifdef IPSEC
    156 #include <netinet6/ipsec.h>
    157 #endif /*IPSEC*/
    158 
    159 #ifdef INET6
    160 struct in6pcb tcb6;
    161 #endif
    162 
    163 /* patchable/settable parameters for tcp */
    164 int 	tcp_mssdflt = TCP_MSS;
    165 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    166 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    167 #if NRND > 0
    168 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    169 #endif
    170 int	tcp_do_sack = 1;	/* selective acknowledgement */
    171 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    172 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    173 int	tcp_do_newreno = 0;	/* Use the New Reno algorithms */
    174 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    175 int	tcp_init_win = 1;
    176 int	tcp_mss_ifmtu = 0;
    177 #ifdef TCP_COMPAT_42
    178 int	tcp_compat_42 = 1;
    179 #else
    180 int	tcp_compat_42 = 0;
    181 #endif
    182 int	tcp_rst_ppslim = 100;	/* 100pps */
    183 
    184 /* tcb hash */
    185 #ifndef TCBHASHSIZE
    186 #define	TCBHASHSIZE	128
    187 #endif
    188 int	tcbhashsize = TCBHASHSIZE;
    189 
    190 /* syn hash parameters */
    191 #define	TCP_SYN_HASH_SIZE	293
    192 #define	TCP_SYN_BUCKET_SIZE	35
    193 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    194 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    195 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    196 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    197 int	tcp_syn_cache_interval = 1;	/* runs timer twice a second */
    198 
    199 int	tcp_freeq __P((struct tcpcb *));
    200 
    201 #ifdef INET
    202 void	tcp_mtudisc_callback __P((struct in_addr));
    203 #endif
    204 #ifdef INET6
    205 void	tcp6_mtudisc_callback __P((struct in6_addr *));
    206 #endif
    207 
    208 void	tcp_mtudisc __P((struct inpcb *, int));
    209 #ifdef INET6
    210 void	tcp6_mtudisc __P((struct in6pcb *, int));
    211 #endif
    212 
    213 struct pool tcpcb_pool;
    214 
    215 #ifdef TCP_CSUM_COUNTERS
    216 #include <sys/device.h>
    217 
    218 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    219     NULL, "tcp", "hwcsum bad");
    220 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    221     NULL, "tcp", "hwcsum ok");
    222 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    223     NULL, "tcp", "hwcsum data");
    224 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    225     NULL, "tcp", "swcsum");
    226 #endif /* TCP_CSUM_COUNTERS */
    227 
    228 /*
    229  * Tcp initialization
    230  */
    231 void
    232 tcp_init()
    233 {
    234 	int hlen;
    235 
    236 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
    237 	    0, NULL, NULL, M_PCB);
    238 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    239 #ifdef INET6
    240 	tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
    241 #endif
    242 
    243 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    244 #ifdef INET6
    245 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    246 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    247 #endif
    248 	if (max_protohdr < hlen)
    249 		max_protohdr = hlen;
    250 	if (max_linkhdr + hlen > MHLEN)
    251 		panic("tcp_init");
    252 
    253 #ifdef INET
    254 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    255 #endif
    256 #ifdef INET6
    257 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    258 #endif
    259 
    260 	/* Initialize timer state. */
    261 	tcp_timer_init();
    262 
    263 	/* Initialize the compressed state engine. */
    264 	syn_cache_init();
    265 
    266 #ifdef TCP_CSUM_COUNTERS
    267 	evcnt_attach_static(&tcp_hwcsum_bad);
    268 	evcnt_attach_static(&tcp_hwcsum_ok);
    269 	evcnt_attach_static(&tcp_hwcsum_data);
    270 	evcnt_attach_static(&tcp_swcsum);
    271 #endif /* TCP_CSUM_COUNTERS */
    272 }
    273 
    274 /*
    275  * Create template to be used to send tcp packets on a connection.
    276  * Call after host entry created, allocates an mbuf and fills
    277  * in a skeletal tcp/ip header, minimizing the amount of work
    278  * necessary when the connection is used.
    279  */
    280 struct mbuf *
    281 tcp_template(tp)
    282 	struct tcpcb *tp;
    283 {
    284 	struct inpcb *inp = tp->t_inpcb;
    285 #ifdef INET6
    286 	struct in6pcb *in6p = tp->t_in6pcb;
    287 #endif
    288 	struct tcphdr *n;
    289 	struct mbuf *m;
    290 	int hlen;
    291 
    292 	switch (tp->t_family) {
    293 	case AF_INET:
    294 		hlen = sizeof(struct ip);
    295 		if (inp)
    296 			break;
    297 #ifdef INET6
    298 		if (in6p) {
    299 			/* mapped addr case */
    300 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    301 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    302 				break;
    303 		}
    304 #endif
    305 		return NULL;	/*EINVAL*/
    306 #ifdef INET6
    307 	case AF_INET6:
    308 		hlen = sizeof(struct ip6_hdr);
    309 		if (in6p) {
    310 			/* more sainty check? */
    311 			break;
    312 		}
    313 		return NULL;	/*EINVAL*/
    314 #endif
    315 	default:
    316 		hlen = 0;	/*pacify gcc*/
    317 		return NULL;	/*EAFNOSUPPORT*/
    318 	}
    319 #ifdef DIAGNOSTIC
    320 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    321 		panic("mclbytes too small for t_template");
    322 #endif
    323 	m = tp->t_template;
    324 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    325 		;
    326 	else {
    327 		if (m)
    328 			m_freem(m);
    329 		m = tp->t_template = NULL;
    330 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    331 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    332 			MCLGET(m, M_DONTWAIT);
    333 			if ((m->m_flags & M_EXT) == 0) {
    334 				m_free(m);
    335 				m = NULL;
    336 			}
    337 		}
    338 		if (m == NULL)
    339 			return NULL;
    340 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    341 	}
    342 
    343 	bzero(mtod(m, caddr_t), m->m_len);
    344 
    345 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
    346 
    347 	switch (tp->t_family) {
    348 	case AF_INET:
    349 	    {
    350 		struct ipovly *ipov;
    351 		mtod(m, struct ip *)->ip_v = 4;
    352 		ipov = mtod(m, struct ipovly *);
    353 		ipov->ih_pr = IPPROTO_TCP;
    354 		ipov->ih_len = htons(sizeof(struct tcphdr));
    355 		if (inp) {
    356 			ipov->ih_src = inp->inp_laddr;
    357 			ipov->ih_dst = inp->inp_faddr;
    358 		}
    359 #ifdef INET6
    360 		else if (in6p) {
    361 			/* mapped addr case */
    362 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    363 				sizeof(ipov->ih_src));
    364 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    365 				sizeof(ipov->ih_dst));
    366 		}
    367 #endif
    368 		/*
    369 		 * Compute the pseudo-header portion of the checksum
    370 		 * now.  We incrementally add in the TCP option and
    371 		 * payload lengths later, and then compute the TCP
    372 		 * checksum right before the packet is sent off onto
    373 		 * the wire.
    374 		 */
    375 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    376 		    ipov->ih_dst.s_addr,
    377 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    378 		break;
    379 	    }
    380 #ifdef INET6
    381 	case AF_INET6:
    382 	    {
    383 		struct ip6_hdr *ip6;
    384 		mtod(m, struct ip *)->ip_v = 6;
    385 		ip6 = mtod(m, struct ip6_hdr *);
    386 		ip6->ip6_nxt = IPPROTO_TCP;
    387 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    388 		ip6->ip6_src = in6p->in6p_laddr;
    389 		ip6->ip6_dst = in6p->in6p_faddr;
    390 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    391 		if (ip6_auto_flowlabel) {
    392 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    393 			ip6->ip6_flow |=
    394 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
    395 		}
    396 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    397 		ip6->ip6_vfc |= IPV6_VERSION;
    398 
    399 		/*
    400 		 * Compute the pseudo-header portion of the checksum
    401 		 * now.  We incrementally add in the TCP option and
    402 		 * payload lengths later, and then compute the TCP
    403 		 * checksum right before the packet is sent off onto
    404 		 * the wire.
    405 		 */
    406 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    407 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    408 		    htonl(IPPROTO_TCP));
    409 		break;
    410 	    }
    411 #endif
    412 	}
    413 	if (inp) {
    414 		n->th_sport = inp->inp_lport;
    415 		n->th_dport = inp->inp_fport;
    416 	}
    417 #ifdef INET6
    418 	else if (in6p) {
    419 		n->th_sport = in6p->in6p_lport;
    420 		n->th_dport = in6p->in6p_fport;
    421 	}
    422 #endif
    423 	n->th_seq = 0;
    424 	n->th_ack = 0;
    425 	n->th_x2 = 0;
    426 	n->th_off = 5;
    427 	n->th_flags = 0;
    428 	n->th_win = 0;
    429 	n->th_urp = 0;
    430 	return (m);
    431 }
    432 
    433 /*
    434  * Send a single message to the TCP at address specified by
    435  * the given TCP/IP header.  If m == 0, then we make a copy
    436  * of the tcpiphdr at ti and send directly to the addressed host.
    437  * This is used to force keep alive messages out using the TCP
    438  * template for a connection tp->t_template.  If flags are given
    439  * then we send a message back to the TCP which originated the
    440  * segment ti, and discard the mbuf containing it and any other
    441  * attached mbufs.
    442  *
    443  * In any case the ack and sequence number of the transmitted
    444  * segment are as specified by the parameters.
    445  */
    446 int
    447 tcp_respond(tp, template, m, th0, ack, seq, flags)
    448 	struct tcpcb *tp;
    449 	struct mbuf *template;
    450 	struct mbuf *m;
    451 	struct tcphdr *th0;
    452 	tcp_seq ack, seq;
    453 	int flags;
    454 {
    455 	struct route *ro;
    456 	int error, tlen, win = 0;
    457 	int hlen;
    458 	struct ip *ip;
    459 #ifdef INET6
    460 	struct ip6_hdr *ip6;
    461 #endif
    462 	int family;	/* family on packet, not inpcb/in6pcb! */
    463 	struct tcphdr *th;
    464 
    465 	if (tp != NULL && (flags & TH_RST) == 0) {
    466 #ifdef DIAGNOSTIC
    467 		if (tp->t_inpcb && tp->t_in6pcb)
    468 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    469 #endif
    470 #ifdef INET
    471 		if (tp->t_inpcb)
    472 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    473 #endif
    474 #ifdef INET6
    475 		if (tp->t_in6pcb)
    476 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    477 #endif
    478 	}
    479 
    480 	ip = NULL;
    481 #ifdef INET6
    482 	ip6 = NULL;
    483 #endif
    484 	if (m == 0) {
    485 		if (!template)
    486 			return EINVAL;
    487 
    488 		/* get family information from template */
    489 		switch (mtod(template, struct ip *)->ip_v) {
    490 		case 4:
    491 			family = AF_INET;
    492 			hlen = sizeof(struct ip);
    493 			break;
    494 #ifdef INET6
    495 		case 6:
    496 			family = AF_INET6;
    497 			hlen = sizeof(struct ip6_hdr);
    498 			break;
    499 #endif
    500 		default:
    501 			return EAFNOSUPPORT;
    502 		}
    503 
    504 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    505 		if (m) {
    506 			MCLGET(m, M_DONTWAIT);
    507 			if ((m->m_flags & M_EXT) == 0) {
    508 				m_free(m);
    509 				m = NULL;
    510 			}
    511 		}
    512 		if (m == NULL)
    513 			return (ENOBUFS);
    514 
    515 		if (tcp_compat_42)
    516 			tlen = 1;
    517 		else
    518 			tlen = 0;
    519 
    520 		m->m_data += max_linkhdr;
    521 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
    522 			template->m_len);
    523 		switch (family) {
    524 		case AF_INET:
    525 			ip = mtod(m, struct ip *);
    526 			th = (struct tcphdr *)(ip + 1);
    527 			break;
    528 #ifdef INET6
    529 		case AF_INET6:
    530 			ip6 = mtod(m, struct ip6_hdr *);
    531 			th = (struct tcphdr *)(ip6 + 1);
    532 			break;
    533 #endif
    534 #if 0
    535 		default:
    536 			/* noone will visit here */
    537 			m_freem(m);
    538 			return EAFNOSUPPORT;
    539 #endif
    540 		}
    541 		flags = TH_ACK;
    542 	} else {
    543 
    544 		if ((m->m_flags & M_PKTHDR) == 0) {
    545 #if 0
    546 			printf("non PKTHDR to tcp_respond\n");
    547 #endif
    548 			m_freem(m);
    549 			return EINVAL;
    550 		}
    551 #ifdef DIAGNOSTIC
    552 		if (!th0)
    553 			panic("th0 == NULL in tcp_respond");
    554 #endif
    555 
    556 		/* get family information from m */
    557 		switch (mtod(m, struct ip *)->ip_v) {
    558 		case 4:
    559 			family = AF_INET;
    560 			hlen = sizeof(struct ip);
    561 			ip = mtod(m, struct ip *);
    562 			break;
    563 #ifdef INET6
    564 		case 6:
    565 			family = AF_INET6;
    566 			hlen = sizeof(struct ip6_hdr);
    567 			ip6 = mtod(m, struct ip6_hdr *);
    568 			break;
    569 #endif
    570 		default:
    571 			m_freem(m);
    572 			return EAFNOSUPPORT;
    573 		}
    574 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    575 			tlen = sizeof(*th0);
    576 		else
    577 			tlen = th0->th_off << 2;
    578 
    579 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    580 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
    581 			m->m_len = hlen + tlen;
    582 			m_freem(m->m_next);
    583 			m->m_next = NULL;
    584 		} else {
    585 			struct mbuf *n;
    586 
    587 #ifdef DIAGNOSTIC
    588 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    589 				m_freem(m);
    590 				return EMSGSIZE;
    591 			}
    592 #endif
    593 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    594 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    595 				MCLGET(n, M_DONTWAIT);
    596 				if ((n->m_flags & M_EXT) == 0) {
    597 					m_freem(n);
    598 					n = NULL;
    599 				}
    600 			}
    601 			if (!n) {
    602 				m_freem(m);
    603 				return ENOBUFS;
    604 			}
    605 
    606 			n->m_data += max_linkhdr;
    607 			n->m_len = hlen + tlen;
    608 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
    609 			m_copyback(n, hlen, tlen, (caddr_t)th0);
    610 
    611 			m_freem(m);
    612 			m = n;
    613 			n = NULL;
    614 		}
    615 
    616 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    617 		switch (family) {
    618 		case AF_INET:
    619 			ip = mtod(m, struct ip *);
    620 			th = (struct tcphdr *)(ip + 1);
    621 			ip->ip_p = IPPROTO_TCP;
    622 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    623 			ip->ip_p = IPPROTO_TCP;
    624 			break;
    625 #ifdef INET6
    626 		case AF_INET6:
    627 			ip6 = mtod(m, struct ip6_hdr *);
    628 			th = (struct tcphdr *)(ip6 + 1);
    629 			ip6->ip6_nxt = IPPROTO_TCP;
    630 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    631 			ip6->ip6_nxt = IPPROTO_TCP;
    632 			break;
    633 #endif
    634 #if 0
    635 		default:
    636 			/* noone will visit here */
    637 			m_freem(m);
    638 			return EAFNOSUPPORT;
    639 #endif
    640 		}
    641 		xchg(th->th_dport, th->th_sport, u_int16_t);
    642 #undef xchg
    643 		tlen = 0;	/*be friendly with the following code*/
    644 	}
    645 	th->th_seq = htonl(seq);
    646 	th->th_ack = htonl(ack);
    647 	th->th_x2 = 0;
    648 	if ((flags & TH_SYN) == 0) {
    649 		if (tp)
    650 			win >>= tp->rcv_scale;
    651 		if (win > TCP_MAXWIN)
    652 			win = TCP_MAXWIN;
    653 		th->th_win = htons((u_int16_t)win);
    654 		th->th_off = sizeof (struct tcphdr) >> 2;
    655 		tlen += sizeof(*th);
    656 	} else
    657 		tlen += th->th_off << 2;
    658 	m->m_len = hlen + tlen;
    659 	m->m_pkthdr.len = hlen + tlen;
    660 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    661 	th->th_flags = flags;
    662 	th->th_urp = 0;
    663 
    664 	switch (family) {
    665 #ifdef INET
    666 	case AF_INET:
    667 	    {
    668 		struct ipovly *ipov = (struct ipovly *)ip;
    669 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    670 		ipov->ih_len = htons((u_int16_t)tlen);
    671 
    672 		th->th_sum = 0;
    673 		th->th_sum = in_cksum(m, hlen + tlen);
    674 		ip->ip_len = hlen + tlen;	/*will be flipped on output*/
    675 		ip->ip_ttl = ip_defttl;
    676 		break;
    677 	    }
    678 #endif
    679 #ifdef INET6
    680 	case AF_INET6:
    681 	    {
    682 		th->th_sum = 0;
    683 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    684 				tlen);
    685 		ip6->ip6_plen = ntohs(tlen);
    686 		if (tp && tp->t_in6pcb) {
    687 			struct ifnet *oifp;
    688 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    689 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    690 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    691 		} else
    692 			ip6->ip6_hlim = ip6_defhlim;
    693 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    694 		if (ip6_auto_flowlabel) {
    695 			ip6->ip6_flow |=
    696 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
    697 		}
    698 		break;
    699 	    }
    700 #endif
    701 	}
    702 
    703 #ifdef IPSEC
    704 	(void)ipsec_setsocket(m, NULL);
    705 #endif /*IPSEC*/
    706 
    707 	if (tp != NULL && tp->t_inpcb != NULL) {
    708 		ro = &tp->t_inpcb->inp_route;
    709 #ifdef IPSEC
    710 		if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
    711 			m_freem(m);
    712 			return ENOBUFS;
    713 		}
    714 #endif
    715 #ifdef DIAGNOSTIC
    716 		if (family != AF_INET)
    717 			panic("tcp_respond: address family mismatch");
    718 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    719 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    720 			    ntohl(ip->ip_dst.s_addr),
    721 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    722 		}
    723 #endif
    724 	}
    725 #ifdef INET6
    726 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    727 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    728 #ifdef IPSEC
    729 		if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
    730 			m_freem(m);
    731 			return ENOBUFS;
    732 		}
    733 #endif
    734 #ifdef DIAGNOSTIC
    735 		if (family == AF_INET) {
    736 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    737 				panic("tcp_respond: not mapped addr");
    738 			if (bcmp(&ip->ip_dst,
    739 					&tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    740 					sizeof(ip->ip_dst)) != 0) {
    741 				panic("tcp_respond: ip_dst != in6p_faddr");
    742 			}
    743 		} else if (family == AF_INET6) {
    744 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
    745 				panic("tcp_respond: ip6_dst != in6p_faddr");
    746 		} else
    747 			panic("tcp_respond: address family mismatch");
    748 #endif
    749 	}
    750 #endif
    751 	else
    752 		ro = NULL;
    753 
    754 	switch (family) {
    755 #ifdef INET
    756 	case AF_INET:
    757 		error = ip_output(m, NULL, ro,
    758 		    (ip_mtudisc ? IP_MTUDISC : 0),
    759 		    NULL);
    760 		break;
    761 #endif
    762 #ifdef INET6
    763 	case AF_INET6:
    764 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
    765 			NULL);
    766 		break;
    767 #endif
    768 	default:
    769 		error = EAFNOSUPPORT;
    770 		break;
    771 	}
    772 
    773 	return (error);
    774 }
    775 
    776 /*
    777  * Create a new TCP control block, making an
    778  * empty reassembly queue and hooking it to the argument
    779  * protocol control block.
    780  */
    781 struct tcpcb *
    782 tcp_newtcpcb(family, aux)
    783 	int family;	/* selects inpcb, or in6pcb */
    784 	void *aux;
    785 {
    786 	struct tcpcb *tp;
    787 	int i;
    788 
    789 	switch (family) {
    790 	case PF_INET:
    791 		break;
    792 #ifdef INET6
    793 	case PF_INET6:
    794 		break;
    795 #endif
    796 	default:
    797 		return NULL;
    798 	}
    799 
    800 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    801 	if (tp == NULL)
    802 		return (NULL);
    803 	bzero((caddr_t)tp, sizeof(struct tcpcb));
    804 	LIST_INIT(&tp->segq);
    805 	LIST_INIT(&tp->timeq);
    806 	tp->t_family = family;		/* may be overridden later on */
    807 	tp->t_peermss = tcp_mssdflt;
    808 	tp->t_ourmss = tcp_mssdflt;
    809 	tp->t_segsz = tcp_mssdflt;
    810 	LIST_INIT(&tp->t_sc);
    811 
    812 	callout_init(&tp->t_delack_ch);
    813 	for (i = 0; i < TCPT_NTIMERS; i++)
    814 		TCP_TIMER_INIT(tp, i);
    815 
    816 	tp->t_flags = 0;
    817 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    818 		tp->t_flags |= TF_REQ_SCALE;
    819 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    820 		tp->t_flags |= TF_REQ_TSTMP;
    821 	if (tcp_do_sack == 2)
    822 		tp->t_flags |= TF_WILL_SACK;
    823 	else if (tcp_do_sack == 1)
    824 		tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
    825 	tp->t_flags |= TF_CANT_TXSACK;
    826 	switch (family) {
    827 	case PF_INET:
    828 		tp->t_inpcb = (struct inpcb *)aux;
    829 		break;
    830 #ifdef INET6
    831 	case PF_INET6:
    832 		tp->t_in6pcb = (struct in6pcb *)aux;
    833 		break;
    834 #endif
    835 	}
    836 	/*
    837 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    838 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    839 	 * reasonable initial retransmit time.
    840 	 */
    841 	tp->t_srtt = TCPTV_SRTTBASE;
    842 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    843 	tp->t_rttmin = TCPTV_MIN;
    844 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    845 	    TCPTV_MIN, TCPTV_REXMTMAX);
    846 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    847 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    848 	if (family == AF_INET) {
    849 		struct inpcb *inp = (struct inpcb *)aux;
    850 		inp->inp_ip.ip_ttl = ip_defttl;
    851 		inp->inp_ppcb = (caddr_t)tp;
    852 	}
    853 #ifdef INET6
    854 	else if (family == AF_INET6) {
    855 		struct in6pcb *in6p = (struct in6pcb *)aux;
    856 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
    857 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
    858 					       : NULL);
    859 		in6p->in6p_ppcb = (caddr_t)tp;
    860 	}
    861 #endif
    862 
    863 	/*
    864 	 * Initialize our timebase.  When we send timestamps, we take
    865 	 * the delta from tcp_now -- this means each connection always
    866 	 * gets a timebase of 0, which makes it, among other things,
    867 	 * more difficult to determine how long a system has been up,
    868 	 * and thus how many TCP sequence increments have occurred.
    869 	 */
    870 	tp->ts_timebase = tcp_now;
    871 
    872 	return (tp);
    873 }
    874 
    875 /*
    876  * Drop a TCP connection, reporting
    877  * the specified error.  If connection is synchronized,
    878  * then send a RST to peer.
    879  */
    880 struct tcpcb *
    881 tcp_drop(tp, errno)
    882 	struct tcpcb *tp;
    883 	int errno;
    884 {
    885 	struct socket *so = NULL;
    886 
    887 #ifdef DIAGNOSTIC
    888 	if (tp->t_inpcb && tp->t_in6pcb)
    889 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
    890 #endif
    891 #ifdef INET
    892 	if (tp->t_inpcb)
    893 		so = tp->t_inpcb->inp_socket;
    894 #endif
    895 #ifdef INET6
    896 	if (tp->t_in6pcb)
    897 		so = tp->t_in6pcb->in6p_socket;
    898 #endif
    899 	if (!so)
    900 		return NULL;
    901 
    902 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
    903 		tp->t_state = TCPS_CLOSED;
    904 		(void) tcp_output(tp);
    905 		tcpstat.tcps_drops++;
    906 	} else
    907 		tcpstat.tcps_conndrops++;
    908 	if (errno == ETIMEDOUT && tp->t_softerror)
    909 		errno = tp->t_softerror;
    910 	so->so_error = errno;
    911 	return (tcp_close(tp));
    912 }
    913 
    914 /*
    915  * Close a TCP control block:
    916  *	discard all space held by the tcp
    917  *	discard internet protocol block
    918  *	wake up any sleepers
    919  */
    920 struct tcpcb *
    921 tcp_close(tp)
    922 	struct tcpcb *tp;
    923 {
    924 	struct inpcb *inp;
    925 #ifdef INET6
    926 	struct in6pcb *in6p;
    927 #endif
    928 	struct socket *so;
    929 #ifdef RTV_RTT
    930 	struct rtentry *rt;
    931 #endif
    932 	struct route *ro;
    933 
    934 	inp = tp->t_inpcb;
    935 #ifdef INET6
    936 	in6p = tp->t_in6pcb;
    937 #endif
    938 	so = NULL;
    939 	ro = NULL;
    940 	if (inp) {
    941 		so = inp->inp_socket;
    942 		ro = &inp->inp_route;
    943 	}
    944 #ifdef INET6
    945 	else if (in6p) {
    946 		so = in6p->in6p_socket;
    947 		ro = (struct route *)&in6p->in6p_route;
    948 	}
    949 #endif
    950 
    951 #ifdef RTV_RTT
    952 	/*
    953 	 * If we sent enough data to get some meaningful characteristics,
    954 	 * save them in the routing entry.  'Enough' is arbitrarily
    955 	 * defined as the sendpipesize (default 4K) * 16.  This would
    956 	 * give us 16 rtt samples assuming we only get one sample per
    957 	 * window (the usual case on a long haul net).  16 samples is
    958 	 * enough for the srtt filter to converge to within 5% of the correct
    959 	 * value; fewer samples and we could save a very bogus rtt.
    960 	 *
    961 	 * Don't update the default route's characteristics and don't
    962 	 * update anything that the user "locked".
    963 	 */
    964 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
    965 	    ro && (rt = ro->ro_rt) &&
    966 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
    967 		u_long i = 0;
    968 
    969 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
    970 			i = tp->t_srtt *
    971 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
    972 			if (rt->rt_rmx.rmx_rtt && i)
    973 				/*
    974 				 * filter this update to half the old & half
    975 				 * the new values, converting scale.
    976 				 * See route.h and tcp_var.h for a
    977 				 * description of the scaling constants.
    978 				 */
    979 				rt->rt_rmx.rmx_rtt =
    980 				    (rt->rt_rmx.rmx_rtt + i) / 2;
    981 			else
    982 				rt->rt_rmx.rmx_rtt = i;
    983 		}
    984 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
    985 			i = tp->t_rttvar *
    986 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
    987 			if (rt->rt_rmx.rmx_rttvar && i)
    988 				rt->rt_rmx.rmx_rttvar =
    989 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
    990 			else
    991 				rt->rt_rmx.rmx_rttvar = i;
    992 		}
    993 		/*
    994 		 * update the pipelimit (ssthresh) if it has been updated
    995 		 * already or if a pipesize was specified & the threshhold
    996 		 * got below half the pipesize.  I.e., wait for bad news
    997 		 * before we start updating, then update on both good
    998 		 * and bad news.
    999 		 */
   1000 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1001 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1002 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1003 			/*
   1004 			 * convert the limit from user data bytes to
   1005 			 * packets then to packet data bytes.
   1006 			 */
   1007 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1008 			if (i < 2)
   1009 				i = 2;
   1010 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1011 			if (rt->rt_rmx.rmx_ssthresh)
   1012 				rt->rt_rmx.rmx_ssthresh =
   1013 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1014 			else
   1015 				rt->rt_rmx.rmx_ssthresh = i;
   1016 		}
   1017 	}
   1018 #endif /* RTV_RTT */
   1019 	/* free the reassembly queue, if any */
   1020 	TCP_REASS_LOCK(tp);
   1021 	(void) tcp_freeq(tp);
   1022 	TCP_REASS_UNLOCK(tp);
   1023 
   1024 	tcp_canceltimers(tp);
   1025 	TCP_CLEAR_DELACK(tp);
   1026 	syn_cache_cleanup(tp);
   1027 
   1028 	if (tp->t_template) {
   1029 		m_free(tp->t_template);
   1030 		tp->t_template = NULL;
   1031 	}
   1032 	pool_put(&tcpcb_pool, tp);
   1033 	if (inp) {
   1034 		inp->inp_ppcb = 0;
   1035 		soisdisconnected(so);
   1036 		in_pcbdetach(inp);
   1037 	}
   1038 #ifdef INET6
   1039 	else if (in6p) {
   1040 		in6p->in6p_ppcb = 0;
   1041 		soisdisconnected(so);
   1042 		in6_pcbdetach(in6p);
   1043 	}
   1044 #endif
   1045 	tcpstat.tcps_closed++;
   1046 	return ((struct tcpcb *)0);
   1047 }
   1048 
   1049 int
   1050 tcp_freeq(tp)
   1051 	struct tcpcb *tp;
   1052 {
   1053 	struct ipqent *qe;
   1054 	int rv = 0;
   1055 #ifdef TCPREASS_DEBUG
   1056 	int i = 0;
   1057 #endif
   1058 
   1059 	TCP_REASS_LOCK_CHECK(tp);
   1060 
   1061 	while ((qe = tp->segq.lh_first) != NULL) {
   1062 #ifdef TCPREASS_DEBUG
   1063 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1064 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1065 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1066 #endif
   1067 		LIST_REMOVE(qe, ipqe_q);
   1068 		LIST_REMOVE(qe, ipqe_timeq);
   1069 		m_freem(qe->ipqe_m);
   1070 		pool_put(&ipqent_pool, qe);
   1071 		rv = 1;
   1072 	}
   1073 	return (rv);
   1074 }
   1075 
   1076 /*
   1077  * Protocol drain routine.  Called when memory is in short supply.
   1078  */
   1079 void
   1080 tcp_drain()
   1081 {
   1082 	struct inpcb *inp;
   1083 	struct tcpcb *tp;
   1084 
   1085 	/*
   1086 	 * Free the sequence queue of all TCP connections.
   1087 	 */
   1088 	inp = tcbtable.inpt_queue.cqh_first;
   1089 	if (inp)						/* XXX */
   1090 	for (; inp != (struct inpcb *)&tcbtable.inpt_queue;
   1091 	    inp = inp->inp_queue.cqe_next) {
   1092 		if ((tp = intotcpcb(inp)) != NULL) {
   1093 			/*
   1094 			 * We may be called from a device's interrupt
   1095 			 * context.  If the tcpcb is already busy,
   1096 			 * just bail out now.
   1097 			 */
   1098 			if (tcp_reass_lock_try(tp) == 0)
   1099 				continue;
   1100 			if (tcp_freeq(tp))
   1101 				tcpstat.tcps_connsdrained++;
   1102 			TCP_REASS_UNLOCK(tp);
   1103 		}
   1104 	}
   1105 }
   1106 
   1107 /*
   1108  * Notify a tcp user of an asynchronous error;
   1109  * store error as soft error, but wake up user
   1110  * (for now, won't do anything until can select for soft error).
   1111  */
   1112 void
   1113 tcp_notify(inp, error)
   1114 	struct inpcb *inp;
   1115 	int error;
   1116 {
   1117 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1118 	struct socket *so = inp->inp_socket;
   1119 
   1120 	/*
   1121 	 * Ignore some errors if we are hooked up.
   1122 	 * If connection hasn't completed, has retransmitted several times,
   1123 	 * and receives a second error, give up now.  This is better
   1124 	 * than waiting a long time to establish a connection that
   1125 	 * can never complete.
   1126 	 */
   1127 	if (tp->t_state == TCPS_ESTABLISHED &&
   1128 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1129 	      error == EHOSTDOWN)) {
   1130 		return;
   1131 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1132 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1133 		so->so_error = error;
   1134 	else
   1135 		tp->t_softerror = error;
   1136 	wakeup((caddr_t) &so->so_timeo);
   1137 	sorwakeup(so);
   1138 	sowwakeup(so);
   1139 }
   1140 
   1141 #ifdef INET6
   1142 void
   1143 tcp6_notify(in6p, error)
   1144 	struct in6pcb *in6p;
   1145 	int error;
   1146 {
   1147 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1148 	struct socket *so = in6p->in6p_socket;
   1149 
   1150 	/*
   1151 	 * Ignore some errors if we are hooked up.
   1152 	 * If connection hasn't completed, has retransmitted several times,
   1153 	 * and receives a second error, give up now.  This is better
   1154 	 * than waiting a long time to establish a connection that
   1155 	 * can never complete.
   1156 	 */
   1157 	if (tp->t_state == TCPS_ESTABLISHED &&
   1158 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1159 	      error == EHOSTDOWN)) {
   1160 		return;
   1161 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1162 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1163 		so->so_error = error;
   1164 	else
   1165 		tp->t_softerror = error;
   1166 	wakeup((caddr_t) &so->so_timeo);
   1167 	sorwakeup(so);
   1168 	sowwakeup(so);
   1169 }
   1170 #endif
   1171 
   1172 #ifdef INET6
   1173 void
   1174 tcp6_ctlinput(cmd, sa, d)
   1175 	int cmd;
   1176 	struct sockaddr *sa;
   1177 	void *d;
   1178 {
   1179 	struct tcphdr th;
   1180 	void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
   1181 	int nmatch;
   1182 	struct ip6_hdr *ip6;
   1183 	const struct sockaddr_in6 *sa6_src = NULL;
   1184 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
   1185 	struct mbuf *m;
   1186 	int off;
   1187 
   1188 	if (sa->sa_family != AF_INET6 ||
   1189 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1190 		return;
   1191 	if ((unsigned)cmd >= PRC_NCMDS)
   1192 		return;
   1193 	else if (cmd == PRC_QUENCH) {
   1194 		/* XXX there's no PRC_QUENCH in IPv6 */
   1195 		notify = tcp6_quench;
   1196 	} else if (PRC_IS_REDIRECT(cmd))
   1197 		notify = in6_rtchange, d = NULL;
   1198 	else if (cmd == PRC_MSGSIZE)
   1199 		; /* special code is present, see below */
   1200 	else if (cmd == PRC_HOSTDEAD)
   1201 		d = NULL;
   1202 	else if (inet6ctlerrmap[cmd] == 0)
   1203 		return;
   1204 
   1205 	/* if the parameter is from icmp6, decode it. */
   1206 	if (d != NULL) {
   1207 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1208 		m = ip6cp->ip6c_m;
   1209 		ip6 = ip6cp->ip6c_ip6;
   1210 		off = ip6cp->ip6c_off;
   1211 		sa6_src = ip6cp->ip6c_src;
   1212 	} else {
   1213 		m = NULL;
   1214 		ip6 = NULL;
   1215 		sa6_src = &sa6_any;
   1216 	}
   1217 
   1218 	if (ip6) {
   1219 		/*
   1220 		 * XXX: We assume that when ip6 is non NULL,
   1221 		 * M and OFF are valid.
   1222 		 */
   1223 
   1224 		/* check if we can safely examine src and dst ports */
   1225 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1226 			if (cmd == PRC_MSGSIZE)
   1227 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1228 			return;
   1229 		}
   1230 
   1231 		bzero(&th, sizeof(th));
   1232 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
   1233 
   1234 		if (cmd == PRC_MSGSIZE) {
   1235 			int valid = 0;
   1236 
   1237 			/*
   1238 			 * Check to see if we have a valid TCP connection
   1239 			 * corresponding to the address in the ICMPv6 message
   1240 			 * payload.
   1241 			 */
   1242 			if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
   1243 			    th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
   1244 			    th.th_sport, 0))
   1245 				valid++;
   1246 
   1247 			/*
   1248 			 * Depending on the value of "valid" and routing table
   1249 			 * size (mtudisc_{hi,lo}wat), we will:
   1250 			 * - recalcurate the new MTU and create the
   1251 			 *   corresponding routing entry, or
   1252 			 * - ignore the MTU change notification.
   1253 			 */
   1254 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1255 
   1256 			/*
   1257 			 * no need to call in6_pcbnotify, it should have been
   1258 			 * called via callback if necessary
   1259 			 */
   1260 			return;
   1261 		}
   1262 
   1263 		nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
   1264 		    (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1265 		if (nmatch == 0 && syn_cache_count &&
   1266 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1267 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1268 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1269 			syn_cache_unreach((struct sockaddr *)sa6_src,
   1270 					  sa, &th);
   1271 	} else {
   1272 		(void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
   1273 		    0, cmd, NULL, notify);
   1274 	}
   1275 }
   1276 #endif
   1277 
   1278 #ifdef INET
   1279 /* assumes that ip header and tcp header are contiguous on mbuf */
   1280 void *
   1281 tcp_ctlinput(cmd, sa, v)
   1282 	int cmd;
   1283 	struct sockaddr *sa;
   1284 	void *v;
   1285 {
   1286 	struct ip *ip = v;
   1287 	struct tcphdr *th;
   1288 	struct icmp *icp;
   1289 	extern int inetctlerrmap[];
   1290 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
   1291 	int errno;
   1292 	int nmatch;
   1293 
   1294 	if (sa->sa_family != AF_INET ||
   1295 	    sa->sa_len != sizeof(struct sockaddr_in))
   1296 		return NULL;
   1297 	if ((unsigned)cmd >= PRC_NCMDS)
   1298 		return NULL;
   1299 	errno = inetctlerrmap[cmd];
   1300 	if (cmd == PRC_QUENCH)
   1301 		notify = tcp_quench;
   1302 	else if (PRC_IS_REDIRECT(cmd))
   1303 		notify = in_rtchange, ip = 0;
   1304 	else if (cmd == PRC_MSGSIZE && ip_mtudisc && ip && ip->ip_v == 4) {
   1305 		/*
   1306 		 * Check to see if we have a valid TCP connection
   1307 		 * corresponding to the address in the ICMP message
   1308 		 * payload.
   1309 		 *
   1310 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1311 		 */
   1312 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1313 		if (in_pcblookup_connect(&tcbtable,
   1314 					 ip->ip_dst, th->th_dport,
   1315 					 ip->ip_src, th->th_sport) == NULL)
   1316 			return NULL;
   1317 
   1318 		/*
   1319 		 * Now that we've validated that we are actually communicating
   1320 		 * with the host indicated in the ICMP message, locate the
   1321 		 * ICMP header, recalculate the new MTU, and create the
   1322 		 * corresponding routing entry.
   1323 		 */
   1324 		icp = (struct icmp *)((caddr_t)ip -
   1325 		    offsetof(struct icmp, icmp_ip));
   1326 		icmp_mtudisc(icp, ip->ip_dst);
   1327 
   1328 		return NULL;
   1329 	} else if (cmd == PRC_HOSTDEAD)
   1330 		ip = 0;
   1331 	else if (errno == 0)
   1332 		return NULL;
   1333 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1334 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1335 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
   1336 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1337 		if (nmatch == 0 && syn_cache_count &&
   1338 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1339 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1340 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1341 			struct sockaddr_in sin;
   1342 			bzero(&sin, sizeof(sin));
   1343 			sin.sin_len = sizeof(sin);
   1344 			sin.sin_family = AF_INET;
   1345 			sin.sin_port = th->th_sport;
   1346 			sin.sin_addr = ip->ip_src;
   1347 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1348 		}
   1349 
   1350 		/* XXX mapped address case */
   1351 	} else
   1352 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
   1353 		    notify);
   1354 	return NULL;
   1355 }
   1356 
   1357 /*
   1358  * When a source quence is received, we are being notifed of congestion.
   1359  * Close the congestion window down to the Loss Window (one segment).
   1360  * We will gradually open it again as we proceed.
   1361  */
   1362 void
   1363 tcp_quench(inp, errno)
   1364 	struct inpcb *inp;
   1365 	int errno;
   1366 {
   1367 	struct tcpcb *tp = intotcpcb(inp);
   1368 
   1369 	if (tp)
   1370 		tp->snd_cwnd = tp->t_segsz;
   1371 }
   1372 #endif
   1373 
   1374 #ifdef INET6
   1375 void
   1376 tcp6_quench(in6p, errno)
   1377 	struct in6pcb *in6p;
   1378 	int errno;
   1379 {
   1380 	struct tcpcb *tp = in6totcpcb(in6p);
   1381 
   1382 	if (tp)
   1383 		tp->snd_cwnd = tp->t_segsz;
   1384 }
   1385 #endif
   1386 
   1387 #ifdef INET
   1388 /*
   1389  * Path MTU Discovery handlers.
   1390  */
   1391 void
   1392 tcp_mtudisc_callback(faddr)
   1393 	struct in_addr faddr;
   1394 {
   1395 
   1396 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1397 }
   1398 
   1399 /*
   1400  * On receipt of path MTU corrections, flush old route and replace it
   1401  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1402  * that all packets will be received.
   1403  */
   1404 void
   1405 tcp_mtudisc(inp, errno)
   1406 	struct inpcb *inp;
   1407 	int errno;
   1408 {
   1409 	struct tcpcb *tp = intotcpcb(inp);
   1410 	struct rtentry *rt = in_pcbrtentry(inp);
   1411 
   1412 	if (tp != 0) {
   1413 		if (rt != 0) {
   1414 			/*
   1415 			 * If this was not a host route, remove and realloc.
   1416 			 */
   1417 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1418 				in_rtchange(inp, errno);
   1419 				if ((rt = in_pcbrtentry(inp)) == 0)
   1420 					return;
   1421 			}
   1422 
   1423 			/*
   1424 			 * Slow start out of the error condition.  We
   1425 			 * use the MTU because we know it's smaller
   1426 			 * than the previously transmitted segment.
   1427 			 *
   1428 			 * Note: This is more conservative than the
   1429 			 * suggestion in draft-floyd-incr-init-win-03.
   1430 			 */
   1431 			if (rt->rt_rmx.rmx_mtu != 0)
   1432 				tp->snd_cwnd =
   1433 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1434 				    rt->rt_rmx.rmx_mtu);
   1435 		}
   1436 
   1437 		/*
   1438 		 * Resend unacknowledged packets.
   1439 		 */
   1440 		tp->snd_nxt = tp->snd_una;
   1441 		tcp_output(tp);
   1442 	}
   1443 }
   1444 #endif
   1445 
   1446 #ifdef INET6
   1447 /*
   1448  * Path MTU Discovery handlers.
   1449  */
   1450 void
   1451 tcp6_mtudisc_callback(faddr)
   1452 	struct in6_addr *faddr;
   1453 {
   1454 	struct sockaddr_in6 sin6;
   1455 
   1456 	bzero(&sin6, sizeof(sin6));
   1457 	sin6.sin6_family = AF_INET6;
   1458 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1459 	sin6.sin6_addr = *faddr;
   1460 	(void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
   1461 	    (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1462 }
   1463 
   1464 void
   1465 tcp6_mtudisc(in6p, errno)
   1466 	struct in6pcb *in6p;
   1467 	int errno;
   1468 {
   1469 	struct tcpcb *tp = in6totcpcb(in6p);
   1470 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1471 
   1472 	if (tp != 0) {
   1473 		if (rt != 0) {
   1474 			/*
   1475 			 * If this was not a host route, remove and realloc.
   1476 			 */
   1477 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1478 				in6_rtchange(in6p, errno);
   1479 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1480 					return;
   1481 			}
   1482 
   1483 			/*
   1484 			 * Slow start out of the error condition.  We
   1485 			 * use the MTU because we know it's smaller
   1486 			 * than the previously transmitted segment.
   1487 			 *
   1488 			 * Note: This is more conservative than the
   1489 			 * suggestion in draft-floyd-incr-init-win-03.
   1490 			 */
   1491 			if (rt->rt_rmx.rmx_mtu != 0)
   1492 				tp->snd_cwnd =
   1493 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1494 				    rt->rt_rmx.rmx_mtu);
   1495 		}
   1496 
   1497 		/*
   1498 		 * Resend unacknowledged packets.
   1499 		 */
   1500 		tp->snd_nxt = tp->snd_una;
   1501 		tcp_output(tp);
   1502 	}
   1503 }
   1504 #endif /* INET6 */
   1505 
   1506 /*
   1507  * Compute the MSS to advertise to the peer.  Called only during
   1508  * the 3-way handshake.  If we are the server (peer initiated
   1509  * connection), we are called with a pointer to the interface
   1510  * on which the SYN packet arrived.  If we are the client (we
   1511  * initiated connection), we are called with a pointer to the
   1512  * interface out which this connection should go.
   1513  *
   1514  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1515  * header size from MSS advertisement.  MSS option must hold the maximum
   1516  * segment size we can accept, so it must always be:
   1517  *	 max(if mtu) - ip header - tcp header
   1518  */
   1519 u_long
   1520 tcp_mss_to_advertise(ifp, af)
   1521 	const struct ifnet *ifp;
   1522 	int af;
   1523 {
   1524 	extern u_long in_maxmtu;
   1525 	u_long mss = 0;
   1526 	u_long hdrsiz;
   1527 
   1528 	/*
   1529 	 * In order to avoid defeating path MTU discovery on the peer,
   1530 	 * we advertise the max MTU of all attached networks as our MSS,
   1531 	 * per RFC 1191, section 3.1.
   1532 	 *
   1533 	 * We provide the option to advertise just the MTU of
   1534 	 * the interface on which we hope this connection will
   1535 	 * be receiving.  If we are responding to a SYN, we
   1536 	 * will have a pretty good idea about this, but when
   1537 	 * initiating a connection there is a bit more doubt.
   1538 	 *
   1539 	 * We also need to ensure that loopback has a large enough
   1540 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1541 	 */
   1542 
   1543 	if (ifp != NULL)
   1544 		mss = ifp->if_mtu;
   1545 
   1546 	if (tcp_mss_ifmtu == 0)
   1547 		switch (af) {
   1548 		case AF_INET:
   1549 			mss = max(in_maxmtu, mss);
   1550 			break;
   1551 #ifdef INET6
   1552 		case AF_INET6:
   1553 			mss = max(in6_maxmtu, mss);
   1554 			break;
   1555 #endif
   1556 		}
   1557 
   1558 	switch (af) {
   1559 	case AF_INET:
   1560 		hdrsiz = sizeof(struct ip);
   1561 		break;
   1562 #ifdef INET6
   1563 	case AF_INET6:
   1564 		hdrsiz = sizeof(struct ip6_hdr);
   1565 		break;
   1566 #endif
   1567 	default:
   1568 		hdrsiz = 0;
   1569 		break;
   1570 	}
   1571 	hdrsiz += sizeof(struct tcphdr);
   1572 	if (mss > hdrsiz)
   1573 		mss -= hdrsiz;
   1574 
   1575 	mss = max(tcp_mssdflt, mss);
   1576 	return (mss);
   1577 }
   1578 
   1579 /*
   1580  * Set connection variables based on the peer's advertised MSS.
   1581  * We are passed the TCPCB for the actual connection.  If we
   1582  * are the server, we are called by the compressed state engine
   1583  * when the 3-way handshake is complete.  If we are the client,
   1584  * we are called when we receive the SYN,ACK from the server.
   1585  *
   1586  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1587  * before this routine is called!
   1588  */
   1589 void
   1590 tcp_mss_from_peer(tp, offer)
   1591 	struct tcpcb *tp;
   1592 	int offer;
   1593 {
   1594 	struct socket *so;
   1595 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1596 	struct rtentry *rt;
   1597 #endif
   1598 	u_long bufsize;
   1599 	int mss;
   1600 
   1601 #ifdef DIAGNOSTIC
   1602 	if (tp->t_inpcb && tp->t_in6pcb)
   1603 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1604 #endif
   1605 	so = NULL;
   1606 	rt = NULL;
   1607 #ifdef INET
   1608 	if (tp->t_inpcb) {
   1609 		so = tp->t_inpcb->inp_socket;
   1610 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1611 		rt = in_pcbrtentry(tp->t_inpcb);
   1612 #endif
   1613 	}
   1614 #endif
   1615 #ifdef INET6
   1616 	if (tp->t_in6pcb) {
   1617 		so = tp->t_in6pcb->in6p_socket;
   1618 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1619 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1620 #endif
   1621 	}
   1622 #endif
   1623 
   1624 	/*
   1625 	 * As per RFC1122, use the default MSS value, unless they
   1626 	 * sent us an offer.  Do not accept offers less than 32 bytes.
   1627 	 */
   1628 	mss = tcp_mssdflt;
   1629 	if (offer)
   1630 		mss = offer;
   1631 	mss = max(mss, 32);		/* sanity */
   1632 	tp->t_peermss = mss;
   1633 	mss -= tcp_optlen(tp);
   1634 #ifdef INET
   1635 	if (tp->t_inpcb)
   1636 		mss -= ip_optlen(tp->t_inpcb);
   1637 #endif
   1638 #ifdef INET6
   1639 	if (tp->t_in6pcb)
   1640 		mss -= ip6_optlen(tp->t_in6pcb);
   1641 #endif
   1642 
   1643 	/*
   1644 	 * If there's a pipesize, change the socket buffer to that size.
   1645 	 * Make the socket buffer an integral number of MSS units.  If
   1646 	 * the MSS is larger than the socket buffer, artificially decrease
   1647 	 * the MSS.
   1648 	 */
   1649 #ifdef RTV_SPIPE
   1650 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1651 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1652 	else
   1653 #endif
   1654 		bufsize = so->so_snd.sb_hiwat;
   1655 	if (bufsize < mss)
   1656 		mss = bufsize;
   1657 	else {
   1658 		bufsize = roundup(bufsize, mss);
   1659 		if (bufsize > sb_max)
   1660 			bufsize = sb_max;
   1661 		(void) sbreserve(&so->so_snd, bufsize);
   1662 	}
   1663 	tp->t_segsz = mss;
   1664 
   1665 #ifdef RTV_SSTHRESH
   1666 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1667 		/*
   1668 		 * There's some sort of gateway or interface buffer
   1669 		 * limit on the path.  Use this to set the slow
   1670 		 * start threshold, but set the threshold to no less
   1671 		 * than 2 * MSS.
   1672 		 */
   1673 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1674 	}
   1675 #endif
   1676 }
   1677 
   1678 /*
   1679  * Processing necessary when a TCP connection is established.
   1680  */
   1681 void
   1682 tcp_established(tp)
   1683 	struct tcpcb *tp;
   1684 {
   1685 	struct socket *so;
   1686 #ifdef RTV_RPIPE
   1687 	struct rtentry *rt;
   1688 #endif
   1689 	u_long bufsize;
   1690 
   1691 #ifdef DIAGNOSTIC
   1692 	if (tp->t_inpcb && tp->t_in6pcb)
   1693 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   1694 #endif
   1695 	so = NULL;
   1696 	rt = NULL;
   1697 #ifdef INET
   1698 	if (tp->t_inpcb) {
   1699 		so = tp->t_inpcb->inp_socket;
   1700 #if defined(RTV_RPIPE)
   1701 		rt = in_pcbrtentry(tp->t_inpcb);
   1702 #endif
   1703 	}
   1704 #endif
   1705 #ifdef INET6
   1706 	if (tp->t_in6pcb) {
   1707 		so = tp->t_in6pcb->in6p_socket;
   1708 #if defined(RTV_RPIPE)
   1709 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1710 #endif
   1711 	}
   1712 #endif
   1713 
   1714 	tp->t_state = TCPS_ESTABLISHED;
   1715 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1716 
   1717 #ifdef RTV_RPIPE
   1718 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   1719 		bufsize = rt->rt_rmx.rmx_recvpipe;
   1720 	else
   1721 #endif
   1722 		bufsize = so->so_rcv.sb_hiwat;
   1723 	if (bufsize > tp->t_ourmss) {
   1724 		bufsize = roundup(bufsize, tp->t_ourmss);
   1725 		if (bufsize > sb_max)
   1726 			bufsize = sb_max;
   1727 		(void) sbreserve(&so->so_rcv, bufsize);
   1728 	}
   1729 }
   1730 
   1731 /*
   1732  * Check if there's an initial rtt or rttvar.  Convert from the
   1733  * route-table units to scaled multiples of the slow timeout timer.
   1734  * Called only during the 3-way handshake.
   1735  */
   1736 void
   1737 tcp_rmx_rtt(tp)
   1738 	struct tcpcb *tp;
   1739 {
   1740 #ifdef RTV_RTT
   1741 	struct rtentry *rt = NULL;
   1742 	int rtt;
   1743 
   1744 #ifdef DIAGNOSTIC
   1745 	if (tp->t_inpcb && tp->t_in6pcb)
   1746 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   1747 #endif
   1748 #ifdef INET
   1749 	if (tp->t_inpcb)
   1750 		rt = in_pcbrtentry(tp->t_inpcb);
   1751 #endif
   1752 #ifdef INET6
   1753 	if (tp->t_in6pcb)
   1754 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1755 #endif
   1756 	if (rt == NULL)
   1757 		return;
   1758 
   1759 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   1760 		/*
   1761 		 * XXX The lock bit for MTU indicates that the value
   1762 		 * is also a minimum value; this is subject to time.
   1763 		 */
   1764 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   1765 			TCPT_RANGESET(tp->t_rttmin,
   1766 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   1767 			    TCPTV_MIN, TCPTV_REXMTMAX);
   1768 		tp->t_srtt = rtt /
   1769 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1770 		if (rt->rt_rmx.rmx_rttvar) {
   1771 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   1772 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   1773 				(TCP_RTTVAR_SHIFT + 2));
   1774 		} else {
   1775 			/* Default variation is +- 1 rtt */
   1776 			tp->t_rttvar =
   1777 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   1778 		}
   1779 		TCPT_RANGESET(tp->t_rxtcur,
   1780 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   1781 		    tp->t_rttmin, TCPTV_REXMTMAX);
   1782 	}
   1783 #endif
   1784 }
   1785 
   1786 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   1787 #if NRND > 0
   1788 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   1789 #endif
   1790 
   1791 /*
   1792  * Get a new sequence value given a tcp control block
   1793  */
   1794 tcp_seq
   1795 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   1796 {
   1797 
   1798 #ifdef INET
   1799 	if (tp->t_inpcb != NULL) {
   1800 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   1801 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   1802 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   1803 		    addin));
   1804 	}
   1805 #endif
   1806 #ifdef INET6
   1807 	if (tp->t_in6pcb != NULL) {
   1808 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   1809 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   1810 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   1811 		    addin));
   1812 	}
   1813 #endif
   1814 	/* Not possible. */
   1815 	panic("tcp_new_iss");
   1816 }
   1817 
   1818 /*
   1819  * This routine actually generates a new TCP initial sequence number.
   1820  */
   1821 tcp_seq
   1822 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   1823     size_t addrsz, tcp_seq addin)
   1824 {
   1825 	tcp_seq tcp_iss;
   1826 
   1827 #if NRND > 0
   1828 	static int beenhere;
   1829 
   1830 	/*
   1831 	 * If we haven't been here before, initialize our cryptographic
   1832 	 * hash secret.
   1833 	 */
   1834 	if (beenhere == 0) {
   1835 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   1836 		    RND_EXTRACT_ANY);
   1837 		beenhere = 1;
   1838 	}
   1839 
   1840 	if (tcp_do_rfc1948) {
   1841 		MD5_CTX ctx;
   1842 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   1843 
   1844 		/*
   1845 		 * Compute the base value of the ISS.  It is a hash
   1846 		 * of (saddr, sport, daddr, dport, secret).
   1847 		 */
   1848 		MD5Init(&ctx);
   1849 
   1850 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   1851 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   1852 
   1853 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   1854 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   1855 
   1856 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   1857 
   1858 		MD5Final(hash, &ctx);
   1859 
   1860 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   1861 
   1862 		/*
   1863 		 * Now increment our "timer", and add it in to
   1864 		 * the computed value.
   1865 		 *
   1866 		 * XXX Use `addin'?
   1867 		 * XXX TCP_ISSINCR too large to use?
   1868 		 */
   1869 		tcp_iss_seq += TCP_ISSINCR;
   1870 #ifdef TCPISS_DEBUG
   1871 		printf("ISS hash 0x%08x, ", tcp_iss);
   1872 #endif
   1873 		tcp_iss += tcp_iss_seq + addin;
   1874 #ifdef TCPISS_DEBUG
   1875 		printf("new ISS 0x%08x\n", tcp_iss);
   1876 #endif
   1877 	} else
   1878 #endif /* NRND > 0 */
   1879 	{
   1880 		/*
   1881 		 * Randomize.
   1882 		 */
   1883 #if NRND > 0
   1884 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   1885 #else
   1886 		tcp_iss = random();
   1887 #endif
   1888 
   1889 		/*
   1890 		 * If we were asked to add some amount to a known value,
   1891 		 * we will take a random value obtained above, mask off
   1892 		 * the upper bits, and add in the known value.  We also
   1893 		 * add in a constant to ensure that we are at least a
   1894 		 * certain distance from the original value.
   1895 		 *
   1896 		 * This is used when an old connection is in timed wait
   1897 		 * and we have a new one coming in, for instance.
   1898 		 */
   1899 		if (addin != 0) {
   1900 #ifdef TCPISS_DEBUG
   1901 			printf("Random %08x, ", tcp_iss);
   1902 #endif
   1903 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   1904 			tcp_iss += addin + TCP_ISSINCR;
   1905 #ifdef TCPISS_DEBUG
   1906 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   1907 #endif
   1908 		} else {
   1909 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   1910 			tcp_iss += tcp_iss_seq;
   1911 			tcp_iss_seq += TCP_ISSINCR;
   1912 #ifdef TCPISS_DEBUG
   1913 			printf("ISS %08x\n", tcp_iss);
   1914 #endif
   1915 		}
   1916 	}
   1917 
   1918 	if (tcp_compat_42) {
   1919 		/*
   1920 		 * Limit it to the positive range for really old TCP
   1921 		 * implementations.
   1922 		 */
   1923 		if (tcp_iss >= 0x80000000)
   1924 			tcp_iss &= 0x7fffffff;		/* XXX */
   1925 	}
   1926 
   1927 	return (tcp_iss);
   1928 }
   1929 
   1930 #ifdef IPSEC
   1931 /* compute ESP/AH header size for TCP, including outer IP header. */
   1932 size_t
   1933 ipsec4_hdrsiz_tcp(tp)
   1934 	struct tcpcb *tp;
   1935 {
   1936 	struct inpcb *inp;
   1937 	size_t hdrsiz;
   1938 
   1939 	/* XXX mapped addr case (tp->t_in6pcb) */
   1940 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   1941 		return 0;
   1942 	switch (tp->t_family) {
   1943 	case AF_INET:
   1944 		/* XXX: should use currect direction. */
   1945 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   1946 		break;
   1947 	default:
   1948 		hdrsiz = 0;
   1949 		break;
   1950 	}
   1951 
   1952 	return hdrsiz;
   1953 }
   1954 
   1955 #ifdef INET6
   1956 size_t
   1957 ipsec6_hdrsiz_tcp(tp)
   1958 	struct tcpcb *tp;
   1959 {
   1960 	struct in6pcb *in6p;
   1961 	size_t hdrsiz;
   1962 
   1963 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   1964 		return 0;
   1965 	switch (tp->t_family) {
   1966 	case AF_INET6:
   1967 		/* XXX: should use currect direction. */
   1968 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   1969 		break;
   1970 	case AF_INET:
   1971 		/* mapped address case - tricky */
   1972 	default:
   1973 		hdrsiz = 0;
   1974 		break;
   1975 	}
   1976 
   1977 	return hdrsiz;
   1978 }
   1979 #endif
   1980 #endif /*IPSEC*/
   1981 
   1982 /*
   1983  * Determine the length of the TCP options for this connection.
   1984  *
   1985  * XXX:  What do we do for SACK, when we add that?  Just reserve
   1986  *       all of the space?  Otherwise we can't exactly be incrementing
   1987  *       cwnd by an amount that varies depending on the amount we last
   1988  *       had to SACK!
   1989  */
   1990 
   1991 u_int
   1992 tcp_optlen(tp)
   1993 	struct tcpcb *tp;
   1994 {
   1995 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   1996 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   1997 		return TCPOLEN_TSTAMP_APPA;
   1998 	else
   1999 		return 0;
   2000 }
   2001