Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.123
      1 /*	$NetBSD: tcp_subr.c,v 1.123 2002/03/08 20:48:44 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. All advertising materials mentioning features or use of this software
     82  *    must display the following acknowledgement:
     83  *	This product includes software developed by the University of
     84  *	California, Berkeley and its contributors.
     85  * 4. Neither the name of the University nor the names of its contributors
     86  *    may be used to endorse or promote products derived from this software
     87  *    without specific prior written permission.
     88  *
     89  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     90  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     91  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     92  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     93  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     94  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     95  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     96  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     97  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     98  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     99  * SUCH DAMAGE.
    100  *
    101  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
    102  */
    103 
    104 #include <sys/cdefs.h>
    105 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.123 2002/03/08 20:48:44 thorpej Exp $");
    106 
    107 #include "opt_inet.h"
    108 #include "opt_ipsec.h"
    109 #include "opt_tcp_compat_42.h"
    110 #include "opt_inet_csum.h"
    111 #include "rnd.h"
    112 
    113 #include <sys/param.h>
    114 #include <sys/proc.h>
    115 #include <sys/systm.h>
    116 #include <sys/malloc.h>
    117 #include <sys/mbuf.h>
    118 #include <sys/socket.h>
    119 #include <sys/socketvar.h>
    120 #include <sys/protosw.h>
    121 #include <sys/errno.h>
    122 #include <sys/kernel.h>
    123 #include <sys/pool.h>
    124 #if NRND > 0
    125 #include <sys/md5.h>
    126 #include <sys/rnd.h>
    127 #endif
    128 
    129 #include <net/route.h>
    130 #include <net/if.h>
    131 
    132 #include <netinet/in.h>
    133 #include <netinet/in_systm.h>
    134 #include <netinet/ip.h>
    135 #include <netinet/in_pcb.h>
    136 #include <netinet/ip_var.h>
    137 #include <netinet/ip_icmp.h>
    138 
    139 #ifdef INET6
    140 #ifndef INET
    141 #include <netinet/in.h>
    142 #endif
    143 #include <netinet/ip6.h>
    144 #include <netinet6/in6_pcb.h>
    145 #include <netinet6/ip6_var.h>
    146 #include <netinet6/in6_var.h>
    147 #include <netinet6/ip6protosw.h>
    148 #include <netinet/icmp6.h>
    149 #endif
    150 
    151 #include <netinet/tcp.h>
    152 #include <netinet/tcp_fsm.h>
    153 #include <netinet/tcp_seq.h>
    154 #include <netinet/tcp_timer.h>
    155 #include <netinet/tcp_var.h>
    156 #include <netinet/tcpip.h>
    157 
    158 #ifdef IPSEC
    159 #include <netinet6/ipsec.h>
    160 #endif /*IPSEC*/
    161 
    162 #ifdef INET6
    163 struct in6pcb tcb6;
    164 #endif
    165 
    166 /* patchable/settable parameters for tcp */
    167 int 	tcp_mssdflt = TCP_MSS;
    168 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    169 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    170 #if NRND > 0
    171 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    172 #endif
    173 int	tcp_do_sack = 1;	/* selective acknowledgement */
    174 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    175 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    176 int	tcp_do_newreno = 0;	/* Use the New Reno algorithms */
    177 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    178 int	tcp_init_win = 1;
    179 int	tcp_mss_ifmtu = 0;
    180 #ifdef TCP_COMPAT_42
    181 int	tcp_compat_42 = 1;
    182 #else
    183 int	tcp_compat_42 = 0;
    184 #endif
    185 int	tcp_rst_ppslim = 100;	/* 100pps */
    186 
    187 /* tcb hash */
    188 #ifndef TCBHASHSIZE
    189 #define	TCBHASHSIZE	128
    190 #endif
    191 int	tcbhashsize = TCBHASHSIZE;
    192 
    193 /* syn hash parameters */
    194 #define	TCP_SYN_HASH_SIZE	293
    195 #define	TCP_SYN_BUCKET_SIZE	35
    196 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    197 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    198 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    199 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    200 
    201 int	tcp_freeq __P((struct tcpcb *));
    202 
    203 #ifdef INET
    204 void	tcp_mtudisc_callback __P((struct in_addr));
    205 #endif
    206 #ifdef INET6
    207 void	tcp6_mtudisc_callback __P((struct in6_addr *));
    208 #endif
    209 
    210 void	tcp_mtudisc __P((struct inpcb *, int));
    211 #ifdef INET6
    212 void	tcp6_mtudisc __P((struct in6pcb *, int));
    213 #endif
    214 
    215 struct pool tcpcb_pool;
    216 
    217 #ifdef TCP_CSUM_COUNTERS
    218 #include <sys/device.h>
    219 
    220 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    221     NULL, "tcp", "hwcsum bad");
    222 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    223     NULL, "tcp", "hwcsum ok");
    224 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    225     NULL, "tcp", "hwcsum data");
    226 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    227     NULL, "tcp", "swcsum");
    228 #endif /* TCP_CSUM_COUNTERS */
    229 
    230 /*
    231  * Tcp initialization
    232  */
    233 void
    234 tcp_init()
    235 {
    236 	int hlen;
    237 
    238 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
    239 	    NULL);
    240 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    241 #ifdef INET6
    242 	tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
    243 #endif
    244 
    245 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    246 #ifdef INET6
    247 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    248 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    249 #endif
    250 	if (max_protohdr < hlen)
    251 		max_protohdr = hlen;
    252 	if (max_linkhdr + hlen > MHLEN)
    253 		panic("tcp_init");
    254 
    255 #ifdef INET
    256 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    257 #endif
    258 #ifdef INET6
    259 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    260 #endif
    261 
    262 	/* Initialize timer state. */
    263 	tcp_timer_init();
    264 
    265 	/* Initialize the compressed state engine. */
    266 	syn_cache_init();
    267 
    268 #ifdef TCP_CSUM_COUNTERS
    269 	evcnt_attach_static(&tcp_hwcsum_bad);
    270 	evcnt_attach_static(&tcp_hwcsum_ok);
    271 	evcnt_attach_static(&tcp_hwcsum_data);
    272 	evcnt_attach_static(&tcp_swcsum);
    273 #endif /* TCP_CSUM_COUNTERS */
    274 }
    275 
    276 /*
    277  * Create template to be used to send tcp packets on a connection.
    278  * Call after host entry created, allocates an mbuf and fills
    279  * in a skeletal tcp/ip header, minimizing the amount of work
    280  * necessary when the connection is used.
    281  */
    282 struct mbuf *
    283 tcp_template(tp)
    284 	struct tcpcb *tp;
    285 {
    286 	struct inpcb *inp = tp->t_inpcb;
    287 #ifdef INET6
    288 	struct in6pcb *in6p = tp->t_in6pcb;
    289 #endif
    290 	struct tcphdr *n;
    291 	struct mbuf *m;
    292 	int hlen;
    293 
    294 	switch (tp->t_family) {
    295 	case AF_INET:
    296 		hlen = sizeof(struct ip);
    297 		if (inp)
    298 			break;
    299 #ifdef INET6
    300 		if (in6p) {
    301 			/* mapped addr case */
    302 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    303 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    304 				break;
    305 		}
    306 #endif
    307 		return NULL;	/*EINVAL*/
    308 #ifdef INET6
    309 	case AF_INET6:
    310 		hlen = sizeof(struct ip6_hdr);
    311 		if (in6p) {
    312 			/* more sainty check? */
    313 			break;
    314 		}
    315 		return NULL;	/*EINVAL*/
    316 #endif
    317 	default:
    318 		hlen = 0;	/*pacify gcc*/
    319 		return NULL;	/*EAFNOSUPPORT*/
    320 	}
    321 #ifdef DIAGNOSTIC
    322 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    323 		panic("mclbytes too small for t_template");
    324 #endif
    325 	m = tp->t_template;
    326 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    327 		;
    328 	else {
    329 		if (m)
    330 			m_freem(m);
    331 		m = tp->t_template = NULL;
    332 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    333 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    334 			MCLGET(m, M_DONTWAIT);
    335 			if ((m->m_flags & M_EXT) == 0) {
    336 				m_free(m);
    337 				m = NULL;
    338 			}
    339 		}
    340 		if (m == NULL)
    341 			return NULL;
    342 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    343 	}
    344 
    345 	bzero(mtod(m, caddr_t), m->m_len);
    346 
    347 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
    348 
    349 	switch (tp->t_family) {
    350 	case AF_INET:
    351 	    {
    352 		struct ipovly *ipov;
    353 		mtod(m, struct ip *)->ip_v = 4;
    354 		ipov = mtod(m, struct ipovly *);
    355 		ipov->ih_pr = IPPROTO_TCP;
    356 		ipov->ih_len = htons(sizeof(struct tcphdr));
    357 		if (inp) {
    358 			ipov->ih_src = inp->inp_laddr;
    359 			ipov->ih_dst = inp->inp_faddr;
    360 		}
    361 #ifdef INET6
    362 		else if (in6p) {
    363 			/* mapped addr case */
    364 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    365 				sizeof(ipov->ih_src));
    366 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    367 				sizeof(ipov->ih_dst));
    368 		}
    369 #endif
    370 		/*
    371 		 * Compute the pseudo-header portion of the checksum
    372 		 * now.  We incrementally add in the TCP option and
    373 		 * payload lengths later, and then compute the TCP
    374 		 * checksum right before the packet is sent off onto
    375 		 * the wire.
    376 		 */
    377 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    378 		    ipov->ih_dst.s_addr,
    379 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    380 		break;
    381 	    }
    382 #ifdef INET6
    383 	case AF_INET6:
    384 	    {
    385 		struct ip6_hdr *ip6;
    386 		mtod(m, struct ip *)->ip_v = 6;
    387 		ip6 = mtod(m, struct ip6_hdr *);
    388 		ip6->ip6_nxt = IPPROTO_TCP;
    389 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    390 		ip6->ip6_src = in6p->in6p_laddr;
    391 		ip6->ip6_dst = in6p->in6p_faddr;
    392 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    393 		if (ip6_auto_flowlabel) {
    394 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    395 			ip6->ip6_flow |=
    396 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
    397 		}
    398 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    399 		ip6->ip6_vfc |= IPV6_VERSION;
    400 
    401 		/*
    402 		 * Compute the pseudo-header portion of the checksum
    403 		 * now.  We incrementally add in the TCP option and
    404 		 * payload lengths later, and then compute the TCP
    405 		 * checksum right before the packet is sent off onto
    406 		 * the wire.
    407 		 */
    408 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    409 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    410 		    htonl(IPPROTO_TCP));
    411 		break;
    412 	    }
    413 #endif
    414 	}
    415 	if (inp) {
    416 		n->th_sport = inp->inp_lport;
    417 		n->th_dport = inp->inp_fport;
    418 	}
    419 #ifdef INET6
    420 	else if (in6p) {
    421 		n->th_sport = in6p->in6p_lport;
    422 		n->th_dport = in6p->in6p_fport;
    423 	}
    424 #endif
    425 	n->th_seq = 0;
    426 	n->th_ack = 0;
    427 	n->th_x2 = 0;
    428 	n->th_off = 5;
    429 	n->th_flags = 0;
    430 	n->th_win = 0;
    431 	n->th_urp = 0;
    432 	return (m);
    433 }
    434 
    435 /*
    436  * Send a single message to the TCP at address specified by
    437  * the given TCP/IP header.  If m == 0, then we make a copy
    438  * of the tcpiphdr at ti and send directly to the addressed host.
    439  * This is used to force keep alive messages out using the TCP
    440  * template for a connection tp->t_template.  If flags are given
    441  * then we send a message back to the TCP which originated the
    442  * segment ti, and discard the mbuf containing it and any other
    443  * attached mbufs.
    444  *
    445  * In any case the ack and sequence number of the transmitted
    446  * segment are as specified by the parameters.
    447  */
    448 int
    449 tcp_respond(tp, template, m, th0, ack, seq, flags)
    450 	struct tcpcb *tp;
    451 	struct mbuf *template;
    452 	struct mbuf *m;
    453 	struct tcphdr *th0;
    454 	tcp_seq ack, seq;
    455 	int flags;
    456 {
    457 	struct route *ro;
    458 	int error, tlen, win = 0;
    459 	int hlen;
    460 	struct ip *ip;
    461 #ifdef INET6
    462 	struct ip6_hdr *ip6;
    463 #endif
    464 	int family;	/* family on packet, not inpcb/in6pcb! */
    465 	struct tcphdr *th;
    466 
    467 	if (tp != NULL && (flags & TH_RST) == 0) {
    468 #ifdef DIAGNOSTIC
    469 		if (tp->t_inpcb && tp->t_in6pcb)
    470 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    471 #endif
    472 #ifdef INET
    473 		if (tp->t_inpcb)
    474 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    475 #endif
    476 #ifdef INET6
    477 		if (tp->t_in6pcb)
    478 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    479 #endif
    480 	}
    481 
    482 	ip = NULL;
    483 #ifdef INET6
    484 	ip6 = NULL;
    485 #endif
    486 	if (m == 0) {
    487 		if (!template)
    488 			return EINVAL;
    489 
    490 		/* get family information from template */
    491 		switch (mtod(template, struct ip *)->ip_v) {
    492 		case 4:
    493 			family = AF_INET;
    494 			hlen = sizeof(struct ip);
    495 			break;
    496 #ifdef INET6
    497 		case 6:
    498 			family = AF_INET6;
    499 			hlen = sizeof(struct ip6_hdr);
    500 			break;
    501 #endif
    502 		default:
    503 			return EAFNOSUPPORT;
    504 		}
    505 
    506 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    507 		if (m) {
    508 			MCLGET(m, M_DONTWAIT);
    509 			if ((m->m_flags & M_EXT) == 0) {
    510 				m_free(m);
    511 				m = NULL;
    512 			}
    513 		}
    514 		if (m == NULL)
    515 			return (ENOBUFS);
    516 
    517 		if (tcp_compat_42)
    518 			tlen = 1;
    519 		else
    520 			tlen = 0;
    521 
    522 		m->m_data += max_linkhdr;
    523 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
    524 			template->m_len);
    525 		switch (family) {
    526 		case AF_INET:
    527 			ip = mtod(m, struct ip *);
    528 			th = (struct tcphdr *)(ip + 1);
    529 			break;
    530 #ifdef INET6
    531 		case AF_INET6:
    532 			ip6 = mtod(m, struct ip6_hdr *);
    533 			th = (struct tcphdr *)(ip6 + 1);
    534 			break;
    535 #endif
    536 #if 0
    537 		default:
    538 			/* noone will visit here */
    539 			m_freem(m);
    540 			return EAFNOSUPPORT;
    541 #endif
    542 		}
    543 		flags = TH_ACK;
    544 	} else {
    545 
    546 		if ((m->m_flags & M_PKTHDR) == 0) {
    547 #if 0
    548 			printf("non PKTHDR to tcp_respond\n");
    549 #endif
    550 			m_freem(m);
    551 			return EINVAL;
    552 		}
    553 #ifdef DIAGNOSTIC
    554 		if (!th0)
    555 			panic("th0 == NULL in tcp_respond");
    556 #endif
    557 
    558 		/* get family information from m */
    559 		switch (mtod(m, struct ip *)->ip_v) {
    560 		case 4:
    561 			family = AF_INET;
    562 			hlen = sizeof(struct ip);
    563 			ip = mtod(m, struct ip *);
    564 			break;
    565 #ifdef INET6
    566 		case 6:
    567 			family = AF_INET6;
    568 			hlen = sizeof(struct ip6_hdr);
    569 			ip6 = mtod(m, struct ip6_hdr *);
    570 			break;
    571 #endif
    572 		default:
    573 			m_freem(m);
    574 			return EAFNOSUPPORT;
    575 		}
    576 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    577 			tlen = sizeof(*th0);
    578 		else
    579 			tlen = th0->th_off << 2;
    580 
    581 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    582 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
    583 			m->m_len = hlen + tlen;
    584 			m_freem(m->m_next);
    585 			m->m_next = NULL;
    586 		} else {
    587 			struct mbuf *n;
    588 
    589 #ifdef DIAGNOSTIC
    590 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    591 				m_freem(m);
    592 				return EMSGSIZE;
    593 			}
    594 #endif
    595 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    596 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    597 				MCLGET(n, M_DONTWAIT);
    598 				if ((n->m_flags & M_EXT) == 0) {
    599 					m_freem(n);
    600 					n = NULL;
    601 				}
    602 			}
    603 			if (!n) {
    604 				m_freem(m);
    605 				return ENOBUFS;
    606 			}
    607 
    608 			n->m_data += max_linkhdr;
    609 			n->m_len = hlen + tlen;
    610 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
    611 			m_copyback(n, hlen, tlen, (caddr_t)th0);
    612 
    613 			m_freem(m);
    614 			m = n;
    615 			n = NULL;
    616 		}
    617 
    618 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    619 		switch (family) {
    620 		case AF_INET:
    621 			ip = mtod(m, struct ip *);
    622 			th = (struct tcphdr *)(ip + 1);
    623 			ip->ip_p = IPPROTO_TCP;
    624 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    625 			ip->ip_p = IPPROTO_TCP;
    626 			break;
    627 #ifdef INET6
    628 		case AF_INET6:
    629 			ip6 = mtod(m, struct ip6_hdr *);
    630 			th = (struct tcphdr *)(ip6 + 1);
    631 			ip6->ip6_nxt = IPPROTO_TCP;
    632 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    633 			ip6->ip6_nxt = IPPROTO_TCP;
    634 			break;
    635 #endif
    636 #if 0
    637 		default:
    638 			/* noone will visit here */
    639 			m_freem(m);
    640 			return EAFNOSUPPORT;
    641 #endif
    642 		}
    643 		xchg(th->th_dport, th->th_sport, u_int16_t);
    644 #undef xchg
    645 		tlen = 0;	/*be friendly with the following code*/
    646 	}
    647 	th->th_seq = htonl(seq);
    648 	th->th_ack = htonl(ack);
    649 	th->th_x2 = 0;
    650 	if ((flags & TH_SYN) == 0) {
    651 		if (tp)
    652 			win >>= tp->rcv_scale;
    653 		if (win > TCP_MAXWIN)
    654 			win = TCP_MAXWIN;
    655 		th->th_win = htons((u_int16_t)win);
    656 		th->th_off = sizeof (struct tcphdr) >> 2;
    657 		tlen += sizeof(*th);
    658 	} else
    659 		tlen += th->th_off << 2;
    660 	m->m_len = hlen + tlen;
    661 	m->m_pkthdr.len = hlen + tlen;
    662 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    663 	th->th_flags = flags;
    664 	th->th_urp = 0;
    665 
    666 	switch (family) {
    667 #ifdef INET
    668 	case AF_INET:
    669 	    {
    670 		struct ipovly *ipov = (struct ipovly *)ip;
    671 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    672 		ipov->ih_len = htons((u_int16_t)tlen);
    673 
    674 		th->th_sum = 0;
    675 		th->th_sum = in_cksum(m, hlen + tlen);
    676 		ip->ip_len = hlen + tlen;	/*will be flipped on output*/
    677 		ip->ip_ttl = ip_defttl;
    678 		break;
    679 	    }
    680 #endif
    681 #ifdef INET6
    682 	case AF_INET6:
    683 	    {
    684 		th->th_sum = 0;
    685 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    686 				tlen);
    687 		ip6->ip6_plen = ntohs(tlen);
    688 		if (tp && tp->t_in6pcb) {
    689 			struct ifnet *oifp;
    690 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    691 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    692 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    693 		} else
    694 			ip6->ip6_hlim = ip6_defhlim;
    695 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    696 		if (ip6_auto_flowlabel) {
    697 			ip6->ip6_flow |=
    698 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
    699 		}
    700 		break;
    701 	    }
    702 #endif
    703 	}
    704 
    705 #ifdef IPSEC
    706 	(void)ipsec_setsocket(m, NULL);
    707 #endif /*IPSEC*/
    708 
    709 	if (tp != NULL && tp->t_inpcb != NULL) {
    710 		ro = &tp->t_inpcb->inp_route;
    711 #ifdef IPSEC
    712 		if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
    713 			m_freem(m);
    714 			return ENOBUFS;
    715 		}
    716 #endif
    717 #ifdef DIAGNOSTIC
    718 		if (family != AF_INET)
    719 			panic("tcp_respond: address family mismatch");
    720 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    721 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    722 			    ntohl(ip->ip_dst.s_addr),
    723 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    724 		}
    725 #endif
    726 	}
    727 #ifdef INET6
    728 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    729 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    730 #ifdef IPSEC
    731 		if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
    732 			m_freem(m);
    733 			return ENOBUFS;
    734 		}
    735 #endif
    736 #ifdef DIAGNOSTIC
    737 		if (family == AF_INET) {
    738 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    739 				panic("tcp_respond: not mapped addr");
    740 			if (bcmp(&ip->ip_dst,
    741 					&tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    742 					sizeof(ip->ip_dst)) != 0) {
    743 				panic("tcp_respond: ip_dst != in6p_faddr");
    744 			}
    745 		} else if (family == AF_INET6) {
    746 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
    747 				panic("tcp_respond: ip6_dst != in6p_faddr");
    748 		} else
    749 			panic("tcp_respond: address family mismatch");
    750 #endif
    751 	}
    752 #endif
    753 	else
    754 		ro = NULL;
    755 
    756 	switch (family) {
    757 #ifdef INET
    758 	case AF_INET:
    759 		error = ip_output(m, NULL, ro,
    760 		    (ip_mtudisc ? IP_MTUDISC : 0),
    761 		    NULL);
    762 		break;
    763 #endif
    764 #ifdef INET6
    765 	case AF_INET6:
    766 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
    767 			NULL);
    768 		break;
    769 #endif
    770 	default:
    771 		error = EAFNOSUPPORT;
    772 		break;
    773 	}
    774 
    775 	return (error);
    776 }
    777 
    778 /*
    779  * Create a new TCP control block, making an
    780  * empty reassembly queue and hooking it to the argument
    781  * protocol control block.
    782  */
    783 struct tcpcb *
    784 tcp_newtcpcb(family, aux)
    785 	int family;	/* selects inpcb, or in6pcb */
    786 	void *aux;
    787 {
    788 	struct tcpcb *tp;
    789 	int i;
    790 
    791 	switch (family) {
    792 	case PF_INET:
    793 		break;
    794 #ifdef INET6
    795 	case PF_INET6:
    796 		break;
    797 #endif
    798 	default:
    799 		return NULL;
    800 	}
    801 
    802 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    803 	if (tp == NULL)
    804 		return (NULL);
    805 	bzero((caddr_t)tp, sizeof(struct tcpcb));
    806 	LIST_INIT(&tp->segq);
    807 	LIST_INIT(&tp->timeq);
    808 	tp->t_family = family;		/* may be overridden later on */
    809 	tp->t_peermss = tcp_mssdflt;
    810 	tp->t_ourmss = tcp_mssdflt;
    811 	tp->t_segsz = tcp_mssdflt;
    812 	LIST_INIT(&tp->t_sc);
    813 
    814 	callout_init(&tp->t_delack_ch);
    815 	for (i = 0; i < TCPT_NTIMERS; i++)
    816 		TCP_TIMER_INIT(tp, i);
    817 
    818 	tp->t_flags = 0;
    819 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    820 		tp->t_flags |= TF_REQ_SCALE;
    821 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    822 		tp->t_flags |= TF_REQ_TSTMP;
    823 	if (tcp_do_sack == 2)
    824 		tp->t_flags |= TF_WILL_SACK;
    825 	else if (tcp_do_sack == 1)
    826 		tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
    827 	tp->t_flags |= TF_CANT_TXSACK;
    828 	switch (family) {
    829 	case PF_INET:
    830 		tp->t_inpcb = (struct inpcb *)aux;
    831 		break;
    832 #ifdef INET6
    833 	case PF_INET6:
    834 		tp->t_in6pcb = (struct in6pcb *)aux;
    835 		break;
    836 #endif
    837 	}
    838 	/*
    839 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    840 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    841 	 * reasonable initial retransmit time.
    842 	 */
    843 	tp->t_srtt = TCPTV_SRTTBASE;
    844 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    845 	tp->t_rttmin = TCPTV_MIN;
    846 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    847 	    TCPTV_MIN, TCPTV_REXMTMAX);
    848 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    849 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    850 	if (family == AF_INET) {
    851 		struct inpcb *inp = (struct inpcb *)aux;
    852 		inp->inp_ip.ip_ttl = ip_defttl;
    853 		inp->inp_ppcb = (caddr_t)tp;
    854 	}
    855 #ifdef INET6
    856 	else if (family == AF_INET6) {
    857 		struct in6pcb *in6p = (struct in6pcb *)aux;
    858 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
    859 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
    860 					       : NULL);
    861 		in6p->in6p_ppcb = (caddr_t)tp;
    862 	}
    863 #endif
    864 
    865 	/*
    866 	 * Initialize our timebase.  When we send timestamps, we take
    867 	 * the delta from tcp_now -- this means each connection always
    868 	 * gets a timebase of 0, which makes it, among other things,
    869 	 * more difficult to determine how long a system has been up,
    870 	 * and thus how many TCP sequence increments have occurred.
    871 	 */
    872 	tp->ts_timebase = tcp_now;
    873 
    874 	return (tp);
    875 }
    876 
    877 /*
    878  * Drop a TCP connection, reporting
    879  * the specified error.  If connection is synchronized,
    880  * then send a RST to peer.
    881  */
    882 struct tcpcb *
    883 tcp_drop(tp, errno)
    884 	struct tcpcb *tp;
    885 	int errno;
    886 {
    887 	struct socket *so = NULL;
    888 
    889 #ifdef DIAGNOSTIC
    890 	if (tp->t_inpcb && tp->t_in6pcb)
    891 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
    892 #endif
    893 #ifdef INET
    894 	if (tp->t_inpcb)
    895 		so = tp->t_inpcb->inp_socket;
    896 #endif
    897 #ifdef INET6
    898 	if (tp->t_in6pcb)
    899 		so = tp->t_in6pcb->in6p_socket;
    900 #endif
    901 	if (!so)
    902 		return NULL;
    903 
    904 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
    905 		tp->t_state = TCPS_CLOSED;
    906 		(void) tcp_output(tp);
    907 		tcpstat.tcps_drops++;
    908 	} else
    909 		tcpstat.tcps_conndrops++;
    910 	if (errno == ETIMEDOUT && tp->t_softerror)
    911 		errno = tp->t_softerror;
    912 	so->so_error = errno;
    913 	return (tcp_close(tp));
    914 }
    915 
    916 /*
    917  * Close a TCP control block:
    918  *	discard all space held by the tcp
    919  *	discard internet protocol block
    920  *	wake up any sleepers
    921  */
    922 struct tcpcb *
    923 tcp_close(tp)
    924 	struct tcpcb *tp;
    925 {
    926 	struct inpcb *inp;
    927 #ifdef INET6
    928 	struct in6pcb *in6p;
    929 #endif
    930 	struct socket *so;
    931 #ifdef RTV_RTT
    932 	struct rtentry *rt;
    933 #endif
    934 	struct route *ro;
    935 
    936 	inp = tp->t_inpcb;
    937 #ifdef INET6
    938 	in6p = tp->t_in6pcb;
    939 #endif
    940 	so = NULL;
    941 	ro = NULL;
    942 	if (inp) {
    943 		so = inp->inp_socket;
    944 		ro = &inp->inp_route;
    945 	}
    946 #ifdef INET6
    947 	else if (in6p) {
    948 		so = in6p->in6p_socket;
    949 		ro = (struct route *)&in6p->in6p_route;
    950 	}
    951 #endif
    952 
    953 #ifdef RTV_RTT
    954 	/*
    955 	 * If we sent enough data to get some meaningful characteristics,
    956 	 * save them in the routing entry.  'Enough' is arbitrarily
    957 	 * defined as the sendpipesize (default 4K) * 16.  This would
    958 	 * give us 16 rtt samples assuming we only get one sample per
    959 	 * window (the usual case on a long haul net).  16 samples is
    960 	 * enough for the srtt filter to converge to within 5% of the correct
    961 	 * value; fewer samples and we could save a very bogus rtt.
    962 	 *
    963 	 * Don't update the default route's characteristics and don't
    964 	 * update anything that the user "locked".
    965 	 */
    966 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
    967 	    ro && (rt = ro->ro_rt) &&
    968 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
    969 		u_long i = 0;
    970 
    971 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
    972 			i = tp->t_srtt *
    973 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
    974 			if (rt->rt_rmx.rmx_rtt && i)
    975 				/*
    976 				 * filter this update to half the old & half
    977 				 * the new values, converting scale.
    978 				 * See route.h and tcp_var.h for a
    979 				 * description of the scaling constants.
    980 				 */
    981 				rt->rt_rmx.rmx_rtt =
    982 				    (rt->rt_rmx.rmx_rtt + i) / 2;
    983 			else
    984 				rt->rt_rmx.rmx_rtt = i;
    985 		}
    986 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
    987 			i = tp->t_rttvar *
    988 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
    989 			if (rt->rt_rmx.rmx_rttvar && i)
    990 				rt->rt_rmx.rmx_rttvar =
    991 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
    992 			else
    993 				rt->rt_rmx.rmx_rttvar = i;
    994 		}
    995 		/*
    996 		 * update the pipelimit (ssthresh) if it has been updated
    997 		 * already or if a pipesize was specified & the threshhold
    998 		 * got below half the pipesize.  I.e., wait for bad news
    999 		 * before we start updating, then update on both good
   1000 		 * and bad news.
   1001 		 */
   1002 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1003 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1004 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1005 			/*
   1006 			 * convert the limit from user data bytes to
   1007 			 * packets then to packet data bytes.
   1008 			 */
   1009 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1010 			if (i < 2)
   1011 				i = 2;
   1012 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1013 			if (rt->rt_rmx.rmx_ssthresh)
   1014 				rt->rt_rmx.rmx_ssthresh =
   1015 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1016 			else
   1017 				rt->rt_rmx.rmx_ssthresh = i;
   1018 		}
   1019 	}
   1020 #endif /* RTV_RTT */
   1021 	/* free the reassembly queue, if any */
   1022 	TCP_REASS_LOCK(tp);
   1023 	(void) tcp_freeq(tp);
   1024 	TCP_REASS_UNLOCK(tp);
   1025 
   1026 	tcp_canceltimers(tp);
   1027 	TCP_CLEAR_DELACK(tp);
   1028 	syn_cache_cleanup(tp);
   1029 
   1030 	if (tp->t_template) {
   1031 		m_free(tp->t_template);
   1032 		tp->t_template = NULL;
   1033 	}
   1034 	pool_put(&tcpcb_pool, tp);
   1035 	if (inp) {
   1036 		inp->inp_ppcb = 0;
   1037 		soisdisconnected(so);
   1038 		in_pcbdetach(inp);
   1039 	}
   1040 #ifdef INET6
   1041 	else if (in6p) {
   1042 		in6p->in6p_ppcb = 0;
   1043 		soisdisconnected(so);
   1044 		in6_pcbdetach(in6p);
   1045 	}
   1046 #endif
   1047 	tcpstat.tcps_closed++;
   1048 	return ((struct tcpcb *)0);
   1049 }
   1050 
   1051 int
   1052 tcp_freeq(tp)
   1053 	struct tcpcb *tp;
   1054 {
   1055 	struct ipqent *qe;
   1056 	int rv = 0;
   1057 #ifdef TCPREASS_DEBUG
   1058 	int i = 0;
   1059 #endif
   1060 
   1061 	TCP_REASS_LOCK_CHECK(tp);
   1062 
   1063 	while ((qe = LIST_FIRST(&tp->segq)) != NULL) {
   1064 #ifdef TCPREASS_DEBUG
   1065 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1066 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1067 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1068 #endif
   1069 		LIST_REMOVE(qe, ipqe_q);
   1070 		LIST_REMOVE(qe, ipqe_timeq);
   1071 		m_freem(qe->ipqe_m);
   1072 		pool_put(&ipqent_pool, qe);
   1073 		rv = 1;
   1074 	}
   1075 	return (rv);
   1076 }
   1077 
   1078 /*
   1079  * Protocol drain routine.  Called when memory is in short supply.
   1080  */
   1081 void
   1082 tcp_drain()
   1083 {
   1084 	struct inpcb *inp;
   1085 	struct tcpcb *tp;
   1086 
   1087 	/*
   1088 	 * Free the sequence queue of all TCP connections.
   1089 	 */
   1090 	inp = CIRCLEQ_FIRST(&tcbtable.inpt_queue);
   1091 	if (inp)						/* XXX */
   1092 	CIRCLEQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue) {
   1093 		if ((tp = intotcpcb(inp)) != NULL) {
   1094 			/*
   1095 			 * We may be called from a device's interrupt
   1096 			 * context.  If the tcpcb is already busy,
   1097 			 * just bail out now.
   1098 			 */
   1099 			if (tcp_reass_lock_try(tp) == 0)
   1100 				continue;
   1101 			if (tcp_freeq(tp))
   1102 				tcpstat.tcps_connsdrained++;
   1103 			TCP_REASS_UNLOCK(tp);
   1104 		}
   1105 	}
   1106 }
   1107 
   1108 /*
   1109  * Notify a tcp user of an asynchronous error;
   1110  * store error as soft error, but wake up user
   1111  * (for now, won't do anything until can select for soft error).
   1112  */
   1113 void
   1114 tcp_notify(inp, error)
   1115 	struct inpcb *inp;
   1116 	int error;
   1117 {
   1118 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1119 	struct socket *so = inp->inp_socket;
   1120 
   1121 	/*
   1122 	 * Ignore some errors if we are hooked up.
   1123 	 * If connection hasn't completed, has retransmitted several times,
   1124 	 * and receives a second error, give up now.  This is better
   1125 	 * than waiting a long time to establish a connection that
   1126 	 * can never complete.
   1127 	 */
   1128 	if (tp->t_state == TCPS_ESTABLISHED &&
   1129 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1130 	      error == EHOSTDOWN)) {
   1131 		return;
   1132 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1133 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1134 		so->so_error = error;
   1135 	else
   1136 		tp->t_softerror = error;
   1137 	wakeup((caddr_t) &so->so_timeo);
   1138 	sorwakeup(so);
   1139 	sowwakeup(so);
   1140 }
   1141 
   1142 #ifdef INET6
   1143 void
   1144 tcp6_notify(in6p, error)
   1145 	struct in6pcb *in6p;
   1146 	int error;
   1147 {
   1148 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1149 	struct socket *so = in6p->in6p_socket;
   1150 
   1151 	/*
   1152 	 * Ignore some errors if we are hooked up.
   1153 	 * If connection hasn't completed, has retransmitted several times,
   1154 	 * and receives a second error, give up now.  This is better
   1155 	 * than waiting a long time to establish a connection that
   1156 	 * can never complete.
   1157 	 */
   1158 	if (tp->t_state == TCPS_ESTABLISHED &&
   1159 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1160 	      error == EHOSTDOWN)) {
   1161 		return;
   1162 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1163 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1164 		so->so_error = error;
   1165 	else
   1166 		tp->t_softerror = error;
   1167 	wakeup((caddr_t) &so->so_timeo);
   1168 	sorwakeup(so);
   1169 	sowwakeup(so);
   1170 }
   1171 #endif
   1172 
   1173 #ifdef INET6
   1174 void
   1175 tcp6_ctlinput(cmd, sa, d)
   1176 	int cmd;
   1177 	struct sockaddr *sa;
   1178 	void *d;
   1179 {
   1180 	struct tcphdr th;
   1181 	void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
   1182 	int nmatch;
   1183 	struct ip6_hdr *ip6;
   1184 	const struct sockaddr_in6 *sa6_src = NULL;
   1185 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
   1186 	struct mbuf *m;
   1187 	int off;
   1188 
   1189 	if (sa->sa_family != AF_INET6 ||
   1190 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1191 		return;
   1192 	if ((unsigned)cmd >= PRC_NCMDS)
   1193 		return;
   1194 	else if (cmd == PRC_QUENCH) {
   1195 		/* XXX there's no PRC_QUENCH in IPv6 */
   1196 		notify = tcp6_quench;
   1197 	} else if (PRC_IS_REDIRECT(cmd))
   1198 		notify = in6_rtchange, d = NULL;
   1199 	else if (cmd == PRC_MSGSIZE)
   1200 		; /* special code is present, see below */
   1201 	else if (cmd == PRC_HOSTDEAD)
   1202 		d = NULL;
   1203 	else if (inet6ctlerrmap[cmd] == 0)
   1204 		return;
   1205 
   1206 	/* if the parameter is from icmp6, decode it. */
   1207 	if (d != NULL) {
   1208 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1209 		m = ip6cp->ip6c_m;
   1210 		ip6 = ip6cp->ip6c_ip6;
   1211 		off = ip6cp->ip6c_off;
   1212 		sa6_src = ip6cp->ip6c_src;
   1213 	} else {
   1214 		m = NULL;
   1215 		ip6 = NULL;
   1216 		sa6_src = &sa6_any;
   1217 	}
   1218 
   1219 	if (ip6) {
   1220 		/*
   1221 		 * XXX: We assume that when ip6 is non NULL,
   1222 		 * M and OFF are valid.
   1223 		 */
   1224 
   1225 		/* check if we can safely examine src and dst ports */
   1226 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1227 			if (cmd == PRC_MSGSIZE)
   1228 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1229 			return;
   1230 		}
   1231 
   1232 		bzero(&th, sizeof(th));
   1233 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
   1234 
   1235 		if (cmd == PRC_MSGSIZE) {
   1236 			int valid = 0;
   1237 
   1238 			/*
   1239 			 * Check to see if we have a valid TCP connection
   1240 			 * corresponding to the address in the ICMPv6 message
   1241 			 * payload.
   1242 			 */
   1243 			if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
   1244 			    th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
   1245 			    th.th_sport, 0))
   1246 				valid++;
   1247 
   1248 			/*
   1249 			 * Depending on the value of "valid" and routing table
   1250 			 * size (mtudisc_{hi,lo}wat), we will:
   1251 			 * - recalcurate the new MTU and create the
   1252 			 *   corresponding routing entry, or
   1253 			 * - ignore the MTU change notification.
   1254 			 */
   1255 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1256 
   1257 			/*
   1258 			 * no need to call in6_pcbnotify, it should have been
   1259 			 * called via callback if necessary
   1260 			 */
   1261 			return;
   1262 		}
   1263 
   1264 		nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
   1265 		    (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1266 		if (nmatch == 0 && syn_cache_count &&
   1267 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1268 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1269 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1270 			syn_cache_unreach((struct sockaddr *)sa6_src,
   1271 					  sa, &th);
   1272 	} else {
   1273 		(void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
   1274 		    0, cmd, NULL, notify);
   1275 	}
   1276 }
   1277 #endif
   1278 
   1279 #ifdef INET
   1280 /* assumes that ip header and tcp header are contiguous on mbuf */
   1281 void *
   1282 tcp_ctlinput(cmd, sa, v)
   1283 	int cmd;
   1284 	struct sockaddr *sa;
   1285 	void *v;
   1286 {
   1287 	struct ip *ip = v;
   1288 	struct tcphdr *th;
   1289 	struct icmp *icp;
   1290 	extern const int inetctlerrmap[];
   1291 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
   1292 	int errno;
   1293 	int nmatch;
   1294 
   1295 	if (sa->sa_family != AF_INET ||
   1296 	    sa->sa_len != sizeof(struct sockaddr_in))
   1297 		return NULL;
   1298 	if ((unsigned)cmd >= PRC_NCMDS)
   1299 		return NULL;
   1300 	errno = inetctlerrmap[cmd];
   1301 	if (cmd == PRC_QUENCH)
   1302 		notify = tcp_quench;
   1303 	else if (PRC_IS_REDIRECT(cmd))
   1304 		notify = in_rtchange, ip = 0;
   1305 	else if (cmd == PRC_MSGSIZE && ip_mtudisc && ip && ip->ip_v == 4) {
   1306 		/*
   1307 		 * Check to see if we have a valid TCP connection
   1308 		 * corresponding to the address in the ICMP message
   1309 		 * payload.
   1310 		 *
   1311 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1312 		 */
   1313 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1314 		if (in_pcblookup_connect(&tcbtable,
   1315 					 ip->ip_dst, th->th_dport,
   1316 					 ip->ip_src, th->th_sport) == NULL)
   1317 			return NULL;
   1318 
   1319 		/*
   1320 		 * Now that we've validated that we are actually communicating
   1321 		 * with the host indicated in the ICMP message, locate the
   1322 		 * ICMP header, recalculate the new MTU, and create the
   1323 		 * corresponding routing entry.
   1324 		 */
   1325 		icp = (struct icmp *)((caddr_t)ip -
   1326 		    offsetof(struct icmp, icmp_ip));
   1327 		icmp_mtudisc(icp, ip->ip_dst);
   1328 
   1329 		return NULL;
   1330 	} else if (cmd == PRC_HOSTDEAD)
   1331 		ip = 0;
   1332 	else if (errno == 0)
   1333 		return NULL;
   1334 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1335 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1336 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
   1337 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1338 		if (nmatch == 0 && syn_cache_count &&
   1339 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1340 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1341 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1342 			struct sockaddr_in sin;
   1343 			bzero(&sin, sizeof(sin));
   1344 			sin.sin_len = sizeof(sin);
   1345 			sin.sin_family = AF_INET;
   1346 			sin.sin_port = th->th_sport;
   1347 			sin.sin_addr = ip->ip_src;
   1348 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1349 		}
   1350 
   1351 		/* XXX mapped address case */
   1352 	} else
   1353 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
   1354 		    notify);
   1355 	return NULL;
   1356 }
   1357 
   1358 /*
   1359  * When a source quence is received, we are being notifed of congestion.
   1360  * Close the congestion window down to the Loss Window (one segment).
   1361  * We will gradually open it again as we proceed.
   1362  */
   1363 void
   1364 tcp_quench(inp, errno)
   1365 	struct inpcb *inp;
   1366 	int errno;
   1367 {
   1368 	struct tcpcb *tp = intotcpcb(inp);
   1369 
   1370 	if (tp)
   1371 		tp->snd_cwnd = tp->t_segsz;
   1372 }
   1373 #endif
   1374 
   1375 #ifdef INET6
   1376 void
   1377 tcp6_quench(in6p, errno)
   1378 	struct in6pcb *in6p;
   1379 	int errno;
   1380 {
   1381 	struct tcpcb *tp = in6totcpcb(in6p);
   1382 
   1383 	if (tp)
   1384 		tp->snd_cwnd = tp->t_segsz;
   1385 }
   1386 #endif
   1387 
   1388 #ifdef INET
   1389 /*
   1390  * Path MTU Discovery handlers.
   1391  */
   1392 void
   1393 tcp_mtudisc_callback(faddr)
   1394 	struct in_addr faddr;
   1395 {
   1396 
   1397 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1398 }
   1399 
   1400 /*
   1401  * On receipt of path MTU corrections, flush old route and replace it
   1402  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1403  * that all packets will be received.
   1404  */
   1405 void
   1406 tcp_mtudisc(inp, errno)
   1407 	struct inpcb *inp;
   1408 	int errno;
   1409 {
   1410 	struct tcpcb *tp = intotcpcb(inp);
   1411 	struct rtentry *rt = in_pcbrtentry(inp);
   1412 
   1413 	if (tp != 0) {
   1414 		if (rt != 0) {
   1415 			/*
   1416 			 * If this was not a host route, remove and realloc.
   1417 			 */
   1418 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1419 				in_rtchange(inp, errno);
   1420 				if ((rt = in_pcbrtentry(inp)) == 0)
   1421 					return;
   1422 			}
   1423 
   1424 			/*
   1425 			 * Slow start out of the error condition.  We
   1426 			 * use the MTU because we know it's smaller
   1427 			 * than the previously transmitted segment.
   1428 			 *
   1429 			 * Note: This is more conservative than the
   1430 			 * suggestion in draft-floyd-incr-init-win-03.
   1431 			 */
   1432 			if (rt->rt_rmx.rmx_mtu != 0)
   1433 				tp->snd_cwnd =
   1434 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1435 				    rt->rt_rmx.rmx_mtu);
   1436 		}
   1437 
   1438 		/*
   1439 		 * Resend unacknowledged packets.
   1440 		 */
   1441 		tp->snd_nxt = tp->snd_una;
   1442 		tcp_output(tp);
   1443 	}
   1444 }
   1445 #endif
   1446 
   1447 #ifdef INET6
   1448 /*
   1449  * Path MTU Discovery handlers.
   1450  */
   1451 void
   1452 tcp6_mtudisc_callback(faddr)
   1453 	struct in6_addr *faddr;
   1454 {
   1455 	struct sockaddr_in6 sin6;
   1456 
   1457 	bzero(&sin6, sizeof(sin6));
   1458 	sin6.sin6_family = AF_INET6;
   1459 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1460 	sin6.sin6_addr = *faddr;
   1461 	(void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
   1462 	    (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1463 }
   1464 
   1465 void
   1466 tcp6_mtudisc(in6p, errno)
   1467 	struct in6pcb *in6p;
   1468 	int errno;
   1469 {
   1470 	struct tcpcb *tp = in6totcpcb(in6p);
   1471 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1472 
   1473 	if (tp != 0) {
   1474 		if (rt != 0) {
   1475 			/*
   1476 			 * If this was not a host route, remove and realloc.
   1477 			 */
   1478 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1479 				in6_rtchange(in6p, errno);
   1480 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1481 					return;
   1482 			}
   1483 
   1484 			/*
   1485 			 * Slow start out of the error condition.  We
   1486 			 * use the MTU because we know it's smaller
   1487 			 * than the previously transmitted segment.
   1488 			 *
   1489 			 * Note: This is more conservative than the
   1490 			 * suggestion in draft-floyd-incr-init-win-03.
   1491 			 */
   1492 			if (rt->rt_rmx.rmx_mtu != 0)
   1493 				tp->snd_cwnd =
   1494 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1495 				    rt->rt_rmx.rmx_mtu);
   1496 		}
   1497 
   1498 		/*
   1499 		 * Resend unacknowledged packets.
   1500 		 */
   1501 		tp->snd_nxt = tp->snd_una;
   1502 		tcp_output(tp);
   1503 	}
   1504 }
   1505 #endif /* INET6 */
   1506 
   1507 /*
   1508  * Compute the MSS to advertise to the peer.  Called only during
   1509  * the 3-way handshake.  If we are the server (peer initiated
   1510  * connection), we are called with a pointer to the interface
   1511  * on which the SYN packet arrived.  If we are the client (we
   1512  * initiated connection), we are called with a pointer to the
   1513  * interface out which this connection should go.
   1514  *
   1515  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1516  * header size from MSS advertisement.  MSS option must hold the maximum
   1517  * segment size we can accept, so it must always be:
   1518  *	 max(if mtu) - ip header - tcp header
   1519  */
   1520 u_long
   1521 tcp_mss_to_advertise(ifp, af)
   1522 	const struct ifnet *ifp;
   1523 	int af;
   1524 {
   1525 	extern u_long in_maxmtu;
   1526 	u_long mss = 0;
   1527 	u_long hdrsiz;
   1528 
   1529 	/*
   1530 	 * In order to avoid defeating path MTU discovery on the peer,
   1531 	 * we advertise the max MTU of all attached networks as our MSS,
   1532 	 * per RFC 1191, section 3.1.
   1533 	 *
   1534 	 * We provide the option to advertise just the MTU of
   1535 	 * the interface on which we hope this connection will
   1536 	 * be receiving.  If we are responding to a SYN, we
   1537 	 * will have a pretty good idea about this, but when
   1538 	 * initiating a connection there is a bit more doubt.
   1539 	 *
   1540 	 * We also need to ensure that loopback has a large enough
   1541 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1542 	 */
   1543 
   1544 	if (ifp != NULL)
   1545 		mss = ifp->if_mtu;
   1546 
   1547 	if (tcp_mss_ifmtu == 0)
   1548 		switch (af) {
   1549 		case AF_INET:
   1550 			mss = max(in_maxmtu, mss);
   1551 			break;
   1552 #ifdef INET6
   1553 		case AF_INET6:
   1554 			mss = max(in6_maxmtu, mss);
   1555 			break;
   1556 #endif
   1557 		}
   1558 
   1559 	switch (af) {
   1560 	case AF_INET:
   1561 		hdrsiz = sizeof(struct ip);
   1562 		break;
   1563 #ifdef INET6
   1564 	case AF_INET6:
   1565 		hdrsiz = sizeof(struct ip6_hdr);
   1566 		break;
   1567 #endif
   1568 	default:
   1569 		hdrsiz = 0;
   1570 		break;
   1571 	}
   1572 	hdrsiz += sizeof(struct tcphdr);
   1573 	if (mss > hdrsiz)
   1574 		mss -= hdrsiz;
   1575 
   1576 	mss = max(tcp_mssdflt, mss);
   1577 	return (mss);
   1578 }
   1579 
   1580 /*
   1581  * Set connection variables based on the peer's advertised MSS.
   1582  * We are passed the TCPCB for the actual connection.  If we
   1583  * are the server, we are called by the compressed state engine
   1584  * when the 3-way handshake is complete.  If we are the client,
   1585  * we are called when we receive the SYN,ACK from the server.
   1586  *
   1587  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1588  * before this routine is called!
   1589  */
   1590 void
   1591 tcp_mss_from_peer(tp, offer)
   1592 	struct tcpcb *tp;
   1593 	int offer;
   1594 {
   1595 	struct socket *so;
   1596 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1597 	struct rtentry *rt;
   1598 #endif
   1599 	u_long bufsize;
   1600 	int mss;
   1601 
   1602 #ifdef DIAGNOSTIC
   1603 	if (tp->t_inpcb && tp->t_in6pcb)
   1604 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1605 #endif
   1606 	so = NULL;
   1607 	rt = NULL;
   1608 #ifdef INET
   1609 	if (tp->t_inpcb) {
   1610 		so = tp->t_inpcb->inp_socket;
   1611 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1612 		rt = in_pcbrtentry(tp->t_inpcb);
   1613 #endif
   1614 	}
   1615 #endif
   1616 #ifdef INET6
   1617 	if (tp->t_in6pcb) {
   1618 		so = tp->t_in6pcb->in6p_socket;
   1619 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1620 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1621 #endif
   1622 	}
   1623 #endif
   1624 
   1625 	/*
   1626 	 * As per RFC1122, use the default MSS value, unless they
   1627 	 * sent us an offer.  Do not accept offers less than 32 bytes.
   1628 	 */
   1629 	mss = tcp_mssdflt;
   1630 	if (offer)
   1631 		mss = offer;
   1632 	mss = max(mss, 32);		/* sanity */
   1633 	tp->t_peermss = mss;
   1634 	mss -= tcp_optlen(tp);
   1635 #ifdef INET
   1636 	if (tp->t_inpcb)
   1637 		mss -= ip_optlen(tp->t_inpcb);
   1638 #endif
   1639 #ifdef INET6
   1640 	if (tp->t_in6pcb)
   1641 		mss -= ip6_optlen(tp->t_in6pcb);
   1642 #endif
   1643 
   1644 	/*
   1645 	 * If there's a pipesize, change the socket buffer to that size.
   1646 	 * Make the socket buffer an integral number of MSS units.  If
   1647 	 * the MSS is larger than the socket buffer, artificially decrease
   1648 	 * the MSS.
   1649 	 */
   1650 #ifdef RTV_SPIPE
   1651 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1652 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1653 	else
   1654 #endif
   1655 		bufsize = so->so_snd.sb_hiwat;
   1656 	if (bufsize < mss)
   1657 		mss = bufsize;
   1658 	else {
   1659 		bufsize = roundup(bufsize, mss);
   1660 		if (bufsize > sb_max)
   1661 			bufsize = sb_max;
   1662 		(void) sbreserve(&so->so_snd, bufsize);
   1663 	}
   1664 	tp->t_segsz = mss;
   1665 
   1666 #ifdef RTV_SSTHRESH
   1667 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1668 		/*
   1669 		 * There's some sort of gateway or interface buffer
   1670 		 * limit on the path.  Use this to set the slow
   1671 		 * start threshold, but set the threshold to no less
   1672 		 * than 2 * MSS.
   1673 		 */
   1674 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1675 	}
   1676 #endif
   1677 }
   1678 
   1679 /*
   1680  * Processing necessary when a TCP connection is established.
   1681  */
   1682 void
   1683 tcp_established(tp)
   1684 	struct tcpcb *tp;
   1685 {
   1686 	struct socket *so;
   1687 #ifdef RTV_RPIPE
   1688 	struct rtentry *rt;
   1689 #endif
   1690 	u_long bufsize;
   1691 
   1692 #ifdef DIAGNOSTIC
   1693 	if (tp->t_inpcb && tp->t_in6pcb)
   1694 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   1695 #endif
   1696 	so = NULL;
   1697 	rt = NULL;
   1698 #ifdef INET
   1699 	if (tp->t_inpcb) {
   1700 		so = tp->t_inpcb->inp_socket;
   1701 #if defined(RTV_RPIPE)
   1702 		rt = in_pcbrtentry(tp->t_inpcb);
   1703 #endif
   1704 	}
   1705 #endif
   1706 #ifdef INET6
   1707 	if (tp->t_in6pcb) {
   1708 		so = tp->t_in6pcb->in6p_socket;
   1709 #if defined(RTV_RPIPE)
   1710 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1711 #endif
   1712 	}
   1713 #endif
   1714 
   1715 	tp->t_state = TCPS_ESTABLISHED;
   1716 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1717 
   1718 #ifdef RTV_RPIPE
   1719 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   1720 		bufsize = rt->rt_rmx.rmx_recvpipe;
   1721 	else
   1722 #endif
   1723 		bufsize = so->so_rcv.sb_hiwat;
   1724 	if (bufsize > tp->t_ourmss) {
   1725 		bufsize = roundup(bufsize, tp->t_ourmss);
   1726 		if (bufsize > sb_max)
   1727 			bufsize = sb_max;
   1728 		(void) sbreserve(&so->so_rcv, bufsize);
   1729 	}
   1730 }
   1731 
   1732 /*
   1733  * Check if there's an initial rtt or rttvar.  Convert from the
   1734  * route-table units to scaled multiples of the slow timeout timer.
   1735  * Called only during the 3-way handshake.
   1736  */
   1737 void
   1738 tcp_rmx_rtt(tp)
   1739 	struct tcpcb *tp;
   1740 {
   1741 #ifdef RTV_RTT
   1742 	struct rtentry *rt = NULL;
   1743 	int rtt;
   1744 
   1745 #ifdef DIAGNOSTIC
   1746 	if (tp->t_inpcb && tp->t_in6pcb)
   1747 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   1748 #endif
   1749 #ifdef INET
   1750 	if (tp->t_inpcb)
   1751 		rt = in_pcbrtentry(tp->t_inpcb);
   1752 #endif
   1753 #ifdef INET6
   1754 	if (tp->t_in6pcb)
   1755 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1756 #endif
   1757 	if (rt == NULL)
   1758 		return;
   1759 
   1760 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   1761 		/*
   1762 		 * XXX The lock bit for MTU indicates that the value
   1763 		 * is also a minimum value; this is subject to time.
   1764 		 */
   1765 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   1766 			TCPT_RANGESET(tp->t_rttmin,
   1767 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   1768 			    TCPTV_MIN, TCPTV_REXMTMAX);
   1769 		tp->t_srtt = rtt /
   1770 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1771 		if (rt->rt_rmx.rmx_rttvar) {
   1772 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   1773 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   1774 				(TCP_RTTVAR_SHIFT + 2));
   1775 		} else {
   1776 			/* Default variation is +- 1 rtt */
   1777 			tp->t_rttvar =
   1778 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   1779 		}
   1780 		TCPT_RANGESET(tp->t_rxtcur,
   1781 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   1782 		    tp->t_rttmin, TCPTV_REXMTMAX);
   1783 	}
   1784 #endif
   1785 }
   1786 
   1787 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   1788 #if NRND > 0
   1789 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   1790 #endif
   1791 
   1792 /*
   1793  * Get a new sequence value given a tcp control block
   1794  */
   1795 tcp_seq
   1796 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   1797 {
   1798 
   1799 #ifdef INET
   1800 	if (tp->t_inpcb != NULL) {
   1801 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   1802 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   1803 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   1804 		    addin));
   1805 	}
   1806 #endif
   1807 #ifdef INET6
   1808 	if (tp->t_in6pcb != NULL) {
   1809 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   1810 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   1811 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   1812 		    addin));
   1813 	}
   1814 #endif
   1815 	/* Not possible. */
   1816 	panic("tcp_new_iss");
   1817 }
   1818 
   1819 /*
   1820  * This routine actually generates a new TCP initial sequence number.
   1821  */
   1822 tcp_seq
   1823 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   1824     size_t addrsz, tcp_seq addin)
   1825 {
   1826 	tcp_seq tcp_iss;
   1827 
   1828 #if NRND > 0
   1829 	static int beenhere;
   1830 
   1831 	/*
   1832 	 * If we haven't been here before, initialize our cryptographic
   1833 	 * hash secret.
   1834 	 */
   1835 	if (beenhere == 0) {
   1836 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   1837 		    RND_EXTRACT_ANY);
   1838 		beenhere = 1;
   1839 	}
   1840 
   1841 	if (tcp_do_rfc1948) {
   1842 		MD5_CTX ctx;
   1843 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   1844 
   1845 		/*
   1846 		 * Compute the base value of the ISS.  It is a hash
   1847 		 * of (saddr, sport, daddr, dport, secret).
   1848 		 */
   1849 		MD5Init(&ctx);
   1850 
   1851 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   1852 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   1853 
   1854 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   1855 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   1856 
   1857 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   1858 
   1859 		MD5Final(hash, &ctx);
   1860 
   1861 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   1862 
   1863 		/*
   1864 		 * Now increment our "timer", and add it in to
   1865 		 * the computed value.
   1866 		 *
   1867 		 * XXX Use `addin'?
   1868 		 * XXX TCP_ISSINCR too large to use?
   1869 		 */
   1870 		tcp_iss_seq += TCP_ISSINCR;
   1871 #ifdef TCPISS_DEBUG
   1872 		printf("ISS hash 0x%08x, ", tcp_iss);
   1873 #endif
   1874 		tcp_iss += tcp_iss_seq + addin;
   1875 #ifdef TCPISS_DEBUG
   1876 		printf("new ISS 0x%08x\n", tcp_iss);
   1877 #endif
   1878 	} else
   1879 #endif /* NRND > 0 */
   1880 	{
   1881 		/*
   1882 		 * Randomize.
   1883 		 */
   1884 #if NRND > 0
   1885 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   1886 #else
   1887 		tcp_iss = random();
   1888 #endif
   1889 
   1890 		/*
   1891 		 * If we were asked to add some amount to a known value,
   1892 		 * we will take a random value obtained above, mask off
   1893 		 * the upper bits, and add in the known value.  We also
   1894 		 * add in a constant to ensure that we are at least a
   1895 		 * certain distance from the original value.
   1896 		 *
   1897 		 * This is used when an old connection is in timed wait
   1898 		 * and we have a new one coming in, for instance.
   1899 		 */
   1900 		if (addin != 0) {
   1901 #ifdef TCPISS_DEBUG
   1902 			printf("Random %08x, ", tcp_iss);
   1903 #endif
   1904 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   1905 			tcp_iss += addin + TCP_ISSINCR;
   1906 #ifdef TCPISS_DEBUG
   1907 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   1908 #endif
   1909 		} else {
   1910 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   1911 			tcp_iss += tcp_iss_seq;
   1912 			tcp_iss_seq += TCP_ISSINCR;
   1913 #ifdef TCPISS_DEBUG
   1914 			printf("ISS %08x\n", tcp_iss);
   1915 #endif
   1916 		}
   1917 	}
   1918 
   1919 	if (tcp_compat_42) {
   1920 		/*
   1921 		 * Limit it to the positive range for really old TCP
   1922 		 * implementations.
   1923 		 */
   1924 		if (tcp_iss >= 0x80000000)
   1925 			tcp_iss &= 0x7fffffff;		/* XXX */
   1926 	}
   1927 
   1928 	return (tcp_iss);
   1929 }
   1930 
   1931 #ifdef IPSEC
   1932 /* compute ESP/AH header size for TCP, including outer IP header. */
   1933 size_t
   1934 ipsec4_hdrsiz_tcp(tp)
   1935 	struct tcpcb *tp;
   1936 {
   1937 	struct inpcb *inp;
   1938 	size_t hdrsiz;
   1939 
   1940 	/* XXX mapped addr case (tp->t_in6pcb) */
   1941 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   1942 		return 0;
   1943 	switch (tp->t_family) {
   1944 	case AF_INET:
   1945 		/* XXX: should use currect direction. */
   1946 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   1947 		break;
   1948 	default:
   1949 		hdrsiz = 0;
   1950 		break;
   1951 	}
   1952 
   1953 	return hdrsiz;
   1954 }
   1955 
   1956 #ifdef INET6
   1957 size_t
   1958 ipsec6_hdrsiz_tcp(tp)
   1959 	struct tcpcb *tp;
   1960 {
   1961 	struct in6pcb *in6p;
   1962 	size_t hdrsiz;
   1963 
   1964 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   1965 		return 0;
   1966 	switch (tp->t_family) {
   1967 	case AF_INET6:
   1968 		/* XXX: should use currect direction. */
   1969 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   1970 		break;
   1971 	case AF_INET:
   1972 		/* mapped address case - tricky */
   1973 	default:
   1974 		hdrsiz = 0;
   1975 		break;
   1976 	}
   1977 
   1978 	return hdrsiz;
   1979 }
   1980 #endif
   1981 #endif /*IPSEC*/
   1982 
   1983 /*
   1984  * Determine the length of the TCP options for this connection.
   1985  *
   1986  * XXX:  What do we do for SACK, when we add that?  Just reserve
   1987  *       all of the space?  Otherwise we can't exactly be incrementing
   1988  *       cwnd by an amount that varies depending on the amount we last
   1989  *       had to SACK!
   1990  */
   1991 
   1992 u_int
   1993 tcp_optlen(tp)
   1994 	struct tcpcb *tp;
   1995 {
   1996 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   1997 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   1998 		return TCPOLEN_TSTAMP_APPA;
   1999 	else
   2000 		return 0;
   2001 }
   2002