tcp_subr.c revision 1.123 1 /* $NetBSD: tcp_subr.c,v 1.123 2002/03/08 20:48:44 thorpej Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
102 */
103
104 #include <sys/cdefs.h>
105 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.123 2002/03/08 20:48:44 thorpej Exp $");
106
107 #include "opt_inet.h"
108 #include "opt_ipsec.h"
109 #include "opt_tcp_compat_42.h"
110 #include "opt_inet_csum.h"
111 #include "rnd.h"
112
113 #include <sys/param.h>
114 #include <sys/proc.h>
115 #include <sys/systm.h>
116 #include <sys/malloc.h>
117 #include <sys/mbuf.h>
118 #include <sys/socket.h>
119 #include <sys/socketvar.h>
120 #include <sys/protosw.h>
121 #include <sys/errno.h>
122 #include <sys/kernel.h>
123 #include <sys/pool.h>
124 #if NRND > 0
125 #include <sys/md5.h>
126 #include <sys/rnd.h>
127 #endif
128
129 #include <net/route.h>
130 #include <net/if.h>
131
132 #include <netinet/in.h>
133 #include <netinet/in_systm.h>
134 #include <netinet/ip.h>
135 #include <netinet/in_pcb.h>
136 #include <netinet/ip_var.h>
137 #include <netinet/ip_icmp.h>
138
139 #ifdef INET6
140 #ifndef INET
141 #include <netinet/in.h>
142 #endif
143 #include <netinet/ip6.h>
144 #include <netinet6/in6_pcb.h>
145 #include <netinet6/ip6_var.h>
146 #include <netinet6/in6_var.h>
147 #include <netinet6/ip6protosw.h>
148 #include <netinet/icmp6.h>
149 #endif
150
151 #include <netinet/tcp.h>
152 #include <netinet/tcp_fsm.h>
153 #include <netinet/tcp_seq.h>
154 #include <netinet/tcp_timer.h>
155 #include <netinet/tcp_var.h>
156 #include <netinet/tcpip.h>
157
158 #ifdef IPSEC
159 #include <netinet6/ipsec.h>
160 #endif /*IPSEC*/
161
162 #ifdef INET6
163 struct in6pcb tcb6;
164 #endif
165
166 /* patchable/settable parameters for tcp */
167 int tcp_mssdflt = TCP_MSS;
168 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
169 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
170 #if NRND > 0
171 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
172 #endif
173 int tcp_do_sack = 1; /* selective acknowledgement */
174 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
175 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
176 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
177 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
178 int tcp_init_win = 1;
179 int tcp_mss_ifmtu = 0;
180 #ifdef TCP_COMPAT_42
181 int tcp_compat_42 = 1;
182 #else
183 int tcp_compat_42 = 0;
184 #endif
185 int tcp_rst_ppslim = 100; /* 100pps */
186
187 /* tcb hash */
188 #ifndef TCBHASHSIZE
189 #define TCBHASHSIZE 128
190 #endif
191 int tcbhashsize = TCBHASHSIZE;
192
193 /* syn hash parameters */
194 #define TCP_SYN_HASH_SIZE 293
195 #define TCP_SYN_BUCKET_SIZE 35
196 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
197 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
198 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
199 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
200
201 int tcp_freeq __P((struct tcpcb *));
202
203 #ifdef INET
204 void tcp_mtudisc_callback __P((struct in_addr));
205 #endif
206 #ifdef INET6
207 void tcp6_mtudisc_callback __P((struct in6_addr *));
208 #endif
209
210 void tcp_mtudisc __P((struct inpcb *, int));
211 #ifdef INET6
212 void tcp6_mtudisc __P((struct in6pcb *, int));
213 #endif
214
215 struct pool tcpcb_pool;
216
217 #ifdef TCP_CSUM_COUNTERS
218 #include <sys/device.h>
219
220 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
221 NULL, "tcp", "hwcsum bad");
222 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
223 NULL, "tcp", "hwcsum ok");
224 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
225 NULL, "tcp", "hwcsum data");
226 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
227 NULL, "tcp", "swcsum");
228 #endif /* TCP_CSUM_COUNTERS */
229
230 /*
231 * Tcp initialization
232 */
233 void
234 tcp_init()
235 {
236 int hlen;
237
238 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
239 NULL);
240 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
241 #ifdef INET6
242 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
243 #endif
244
245 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
246 #ifdef INET6
247 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
248 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
249 #endif
250 if (max_protohdr < hlen)
251 max_protohdr = hlen;
252 if (max_linkhdr + hlen > MHLEN)
253 panic("tcp_init");
254
255 #ifdef INET
256 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
257 #endif
258 #ifdef INET6
259 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
260 #endif
261
262 /* Initialize timer state. */
263 tcp_timer_init();
264
265 /* Initialize the compressed state engine. */
266 syn_cache_init();
267
268 #ifdef TCP_CSUM_COUNTERS
269 evcnt_attach_static(&tcp_hwcsum_bad);
270 evcnt_attach_static(&tcp_hwcsum_ok);
271 evcnt_attach_static(&tcp_hwcsum_data);
272 evcnt_attach_static(&tcp_swcsum);
273 #endif /* TCP_CSUM_COUNTERS */
274 }
275
276 /*
277 * Create template to be used to send tcp packets on a connection.
278 * Call after host entry created, allocates an mbuf and fills
279 * in a skeletal tcp/ip header, minimizing the amount of work
280 * necessary when the connection is used.
281 */
282 struct mbuf *
283 tcp_template(tp)
284 struct tcpcb *tp;
285 {
286 struct inpcb *inp = tp->t_inpcb;
287 #ifdef INET6
288 struct in6pcb *in6p = tp->t_in6pcb;
289 #endif
290 struct tcphdr *n;
291 struct mbuf *m;
292 int hlen;
293
294 switch (tp->t_family) {
295 case AF_INET:
296 hlen = sizeof(struct ip);
297 if (inp)
298 break;
299 #ifdef INET6
300 if (in6p) {
301 /* mapped addr case */
302 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
303 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
304 break;
305 }
306 #endif
307 return NULL; /*EINVAL*/
308 #ifdef INET6
309 case AF_INET6:
310 hlen = sizeof(struct ip6_hdr);
311 if (in6p) {
312 /* more sainty check? */
313 break;
314 }
315 return NULL; /*EINVAL*/
316 #endif
317 default:
318 hlen = 0; /*pacify gcc*/
319 return NULL; /*EAFNOSUPPORT*/
320 }
321 #ifdef DIAGNOSTIC
322 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
323 panic("mclbytes too small for t_template");
324 #endif
325 m = tp->t_template;
326 if (m && m->m_len == hlen + sizeof(struct tcphdr))
327 ;
328 else {
329 if (m)
330 m_freem(m);
331 m = tp->t_template = NULL;
332 MGETHDR(m, M_DONTWAIT, MT_HEADER);
333 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
334 MCLGET(m, M_DONTWAIT);
335 if ((m->m_flags & M_EXT) == 0) {
336 m_free(m);
337 m = NULL;
338 }
339 }
340 if (m == NULL)
341 return NULL;
342 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
343 }
344
345 bzero(mtod(m, caddr_t), m->m_len);
346
347 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
348
349 switch (tp->t_family) {
350 case AF_INET:
351 {
352 struct ipovly *ipov;
353 mtod(m, struct ip *)->ip_v = 4;
354 ipov = mtod(m, struct ipovly *);
355 ipov->ih_pr = IPPROTO_TCP;
356 ipov->ih_len = htons(sizeof(struct tcphdr));
357 if (inp) {
358 ipov->ih_src = inp->inp_laddr;
359 ipov->ih_dst = inp->inp_faddr;
360 }
361 #ifdef INET6
362 else if (in6p) {
363 /* mapped addr case */
364 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
365 sizeof(ipov->ih_src));
366 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
367 sizeof(ipov->ih_dst));
368 }
369 #endif
370 /*
371 * Compute the pseudo-header portion of the checksum
372 * now. We incrementally add in the TCP option and
373 * payload lengths later, and then compute the TCP
374 * checksum right before the packet is sent off onto
375 * the wire.
376 */
377 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
378 ipov->ih_dst.s_addr,
379 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
380 break;
381 }
382 #ifdef INET6
383 case AF_INET6:
384 {
385 struct ip6_hdr *ip6;
386 mtod(m, struct ip *)->ip_v = 6;
387 ip6 = mtod(m, struct ip6_hdr *);
388 ip6->ip6_nxt = IPPROTO_TCP;
389 ip6->ip6_plen = htons(sizeof(struct tcphdr));
390 ip6->ip6_src = in6p->in6p_laddr;
391 ip6->ip6_dst = in6p->in6p_faddr;
392 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
393 if (ip6_auto_flowlabel) {
394 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
395 ip6->ip6_flow |=
396 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
397 }
398 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
399 ip6->ip6_vfc |= IPV6_VERSION;
400
401 /*
402 * Compute the pseudo-header portion of the checksum
403 * now. We incrementally add in the TCP option and
404 * payload lengths later, and then compute the TCP
405 * checksum right before the packet is sent off onto
406 * the wire.
407 */
408 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
409 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
410 htonl(IPPROTO_TCP));
411 break;
412 }
413 #endif
414 }
415 if (inp) {
416 n->th_sport = inp->inp_lport;
417 n->th_dport = inp->inp_fport;
418 }
419 #ifdef INET6
420 else if (in6p) {
421 n->th_sport = in6p->in6p_lport;
422 n->th_dport = in6p->in6p_fport;
423 }
424 #endif
425 n->th_seq = 0;
426 n->th_ack = 0;
427 n->th_x2 = 0;
428 n->th_off = 5;
429 n->th_flags = 0;
430 n->th_win = 0;
431 n->th_urp = 0;
432 return (m);
433 }
434
435 /*
436 * Send a single message to the TCP at address specified by
437 * the given TCP/IP header. If m == 0, then we make a copy
438 * of the tcpiphdr at ti and send directly to the addressed host.
439 * This is used to force keep alive messages out using the TCP
440 * template for a connection tp->t_template. If flags are given
441 * then we send a message back to the TCP which originated the
442 * segment ti, and discard the mbuf containing it and any other
443 * attached mbufs.
444 *
445 * In any case the ack and sequence number of the transmitted
446 * segment are as specified by the parameters.
447 */
448 int
449 tcp_respond(tp, template, m, th0, ack, seq, flags)
450 struct tcpcb *tp;
451 struct mbuf *template;
452 struct mbuf *m;
453 struct tcphdr *th0;
454 tcp_seq ack, seq;
455 int flags;
456 {
457 struct route *ro;
458 int error, tlen, win = 0;
459 int hlen;
460 struct ip *ip;
461 #ifdef INET6
462 struct ip6_hdr *ip6;
463 #endif
464 int family; /* family on packet, not inpcb/in6pcb! */
465 struct tcphdr *th;
466
467 if (tp != NULL && (flags & TH_RST) == 0) {
468 #ifdef DIAGNOSTIC
469 if (tp->t_inpcb && tp->t_in6pcb)
470 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
471 #endif
472 #ifdef INET
473 if (tp->t_inpcb)
474 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
475 #endif
476 #ifdef INET6
477 if (tp->t_in6pcb)
478 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
479 #endif
480 }
481
482 ip = NULL;
483 #ifdef INET6
484 ip6 = NULL;
485 #endif
486 if (m == 0) {
487 if (!template)
488 return EINVAL;
489
490 /* get family information from template */
491 switch (mtod(template, struct ip *)->ip_v) {
492 case 4:
493 family = AF_INET;
494 hlen = sizeof(struct ip);
495 break;
496 #ifdef INET6
497 case 6:
498 family = AF_INET6;
499 hlen = sizeof(struct ip6_hdr);
500 break;
501 #endif
502 default:
503 return EAFNOSUPPORT;
504 }
505
506 MGETHDR(m, M_DONTWAIT, MT_HEADER);
507 if (m) {
508 MCLGET(m, M_DONTWAIT);
509 if ((m->m_flags & M_EXT) == 0) {
510 m_free(m);
511 m = NULL;
512 }
513 }
514 if (m == NULL)
515 return (ENOBUFS);
516
517 if (tcp_compat_42)
518 tlen = 1;
519 else
520 tlen = 0;
521
522 m->m_data += max_linkhdr;
523 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
524 template->m_len);
525 switch (family) {
526 case AF_INET:
527 ip = mtod(m, struct ip *);
528 th = (struct tcphdr *)(ip + 1);
529 break;
530 #ifdef INET6
531 case AF_INET6:
532 ip6 = mtod(m, struct ip6_hdr *);
533 th = (struct tcphdr *)(ip6 + 1);
534 break;
535 #endif
536 #if 0
537 default:
538 /* noone will visit here */
539 m_freem(m);
540 return EAFNOSUPPORT;
541 #endif
542 }
543 flags = TH_ACK;
544 } else {
545
546 if ((m->m_flags & M_PKTHDR) == 0) {
547 #if 0
548 printf("non PKTHDR to tcp_respond\n");
549 #endif
550 m_freem(m);
551 return EINVAL;
552 }
553 #ifdef DIAGNOSTIC
554 if (!th0)
555 panic("th0 == NULL in tcp_respond");
556 #endif
557
558 /* get family information from m */
559 switch (mtod(m, struct ip *)->ip_v) {
560 case 4:
561 family = AF_INET;
562 hlen = sizeof(struct ip);
563 ip = mtod(m, struct ip *);
564 break;
565 #ifdef INET6
566 case 6:
567 family = AF_INET6;
568 hlen = sizeof(struct ip6_hdr);
569 ip6 = mtod(m, struct ip6_hdr *);
570 break;
571 #endif
572 default:
573 m_freem(m);
574 return EAFNOSUPPORT;
575 }
576 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
577 tlen = sizeof(*th0);
578 else
579 tlen = th0->th_off << 2;
580
581 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
582 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
583 m->m_len = hlen + tlen;
584 m_freem(m->m_next);
585 m->m_next = NULL;
586 } else {
587 struct mbuf *n;
588
589 #ifdef DIAGNOSTIC
590 if (max_linkhdr + hlen + tlen > MCLBYTES) {
591 m_freem(m);
592 return EMSGSIZE;
593 }
594 #endif
595 MGETHDR(n, M_DONTWAIT, MT_HEADER);
596 if (n && max_linkhdr + hlen + tlen > MHLEN) {
597 MCLGET(n, M_DONTWAIT);
598 if ((n->m_flags & M_EXT) == 0) {
599 m_freem(n);
600 n = NULL;
601 }
602 }
603 if (!n) {
604 m_freem(m);
605 return ENOBUFS;
606 }
607
608 n->m_data += max_linkhdr;
609 n->m_len = hlen + tlen;
610 m_copyback(n, 0, hlen, mtod(m, caddr_t));
611 m_copyback(n, hlen, tlen, (caddr_t)th0);
612
613 m_freem(m);
614 m = n;
615 n = NULL;
616 }
617
618 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
619 switch (family) {
620 case AF_INET:
621 ip = mtod(m, struct ip *);
622 th = (struct tcphdr *)(ip + 1);
623 ip->ip_p = IPPROTO_TCP;
624 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
625 ip->ip_p = IPPROTO_TCP;
626 break;
627 #ifdef INET6
628 case AF_INET6:
629 ip6 = mtod(m, struct ip6_hdr *);
630 th = (struct tcphdr *)(ip6 + 1);
631 ip6->ip6_nxt = IPPROTO_TCP;
632 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
633 ip6->ip6_nxt = IPPROTO_TCP;
634 break;
635 #endif
636 #if 0
637 default:
638 /* noone will visit here */
639 m_freem(m);
640 return EAFNOSUPPORT;
641 #endif
642 }
643 xchg(th->th_dport, th->th_sport, u_int16_t);
644 #undef xchg
645 tlen = 0; /*be friendly with the following code*/
646 }
647 th->th_seq = htonl(seq);
648 th->th_ack = htonl(ack);
649 th->th_x2 = 0;
650 if ((flags & TH_SYN) == 0) {
651 if (tp)
652 win >>= tp->rcv_scale;
653 if (win > TCP_MAXWIN)
654 win = TCP_MAXWIN;
655 th->th_win = htons((u_int16_t)win);
656 th->th_off = sizeof (struct tcphdr) >> 2;
657 tlen += sizeof(*th);
658 } else
659 tlen += th->th_off << 2;
660 m->m_len = hlen + tlen;
661 m->m_pkthdr.len = hlen + tlen;
662 m->m_pkthdr.rcvif = (struct ifnet *) 0;
663 th->th_flags = flags;
664 th->th_urp = 0;
665
666 switch (family) {
667 #ifdef INET
668 case AF_INET:
669 {
670 struct ipovly *ipov = (struct ipovly *)ip;
671 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
672 ipov->ih_len = htons((u_int16_t)tlen);
673
674 th->th_sum = 0;
675 th->th_sum = in_cksum(m, hlen + tlen);
676 ip->ip_len = hlen + tlen; /*will be flipped on output*/
677 ip->ip_ttl = ip_defttl;
678 break;
679 }
680 #endif
681 #ifdef INET6
682 case AF_INET6:
683 {
684 th->th_sum = 0;
685 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
686 tlen);
687 ip6->ip6_plen = ntohs(tlen);
688 if (tp && tp->t_in6pcb) {
689 struct ifnet *oifp;
690 ro = (struct route *)&tp->t_in6pcb->in6p_route;
691 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
692 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
693 } else
694 ip6->ip6_hlim = ip6_defhlim;
695 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
696 if (ip6_auto_flowlabel) {
697 ip6->ip6_flow |=
698 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
699 }
700 break;
701 }
702 #endif
703 }
704
705 #ifdef IPSEC
706 (void)ipsec_setsocket(m, NULL);
707 #endif /*IPSEC*/
708
709 if (tp != NULL && tp->t_inpcb != NULL) {
710 ro = &tp->t_inpcb->inp_route;
711 #ifdef IPSEC
712 if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
713 m_freem(m);
714 return ENOBUFS;
715 }
716 #endif
717 #ifdef DIAGNOSTIC
718 if (family != AF_INET)
719 panic("tcp_respond: address family mismatch");
720 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
721 panic("tcp_respond: ip_dst %x != inp_faddr %x",
722 ntohl(ip->ip_dst.s_addr),
723 ntohl(tp->t_inpcb->inp_faddr.s_addr));
724 }
725 #endif
726 }
727 #ifdef INET6
728 else if (tp != NULL && tp->t_in6pcb != NULL) {
729 ro = (struct route *)&tp->t_in6pcb->in6p_route;
730 #ifdef IPSEC
731 if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
732 m_freem(m);
733 return ENOBUFS;
734 }
735 #endif
736 #ifdef DIAGNOSTIC
737 if (family == AF_INET) {
738 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
739 panic("tcp_respond: not mapped addr");
740 if (bcmp(&ip->ip_dst,
741 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
742 sizeof(ip->ip_dst)) != 0) {
743 panic("tcp_respond: ip_dst != in6p_faddr");
744 }
745 } else if (family == AF_INET6) {
746 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
747 panic("tcp_respond: ip6_dst != in6p_faddr");
748 } else
749 panic("tcp_respond: address family mismatch");
750 #endif
751 }
752 #endif
753 else
754 ro = NULL;
755
756 switch (family) {
757 #ifdef INET
758 case AF_INET:
759 error = ip_output(m, NULL, ro,
760 (ip_mtudisc ? IP_MTUDISC : 0),
761 NULL);
762 break;
763 #endif
764 #ifdef INET6
765 case AF_INET6:
766 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
767 NULL);
768 break;
769 #endif
770 default:
771 error = EAFNOSUPPORT;
772 break;
773 }
774
775 return (error);
776 }
777
778 /*
779 * Create a new TCP control block, making an
780 * empty reassembly queue and hooking it to the argument
781 * protocol control block.
782 */
783 struct tcpcb *
784 tcp_newtcpcb(family, aux)
785 int family; /* selects inpcb, or in6pcb */
786 void *aux;
787 {
788 struct tcpcb *tp;
789 int i;
790
791 switch (family) {
792 case PF_INET:
793 break;
794 #ifdef INET6
795 case PF_INET6:
796 break;
797 #endif
798 default:
799 return NULL;
800 }
801
802 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
803 if (tp == NULL)
804 return (NULL);
805 bzero((caddr_t)tp, sizeof(struct tcpcb));
806 LIST_INIT(&tp->segq);
807 LIST_INIT(&tp->timeq);
808 tp->t_family = family; /* may be overridden later on */
809 tp->t_peermss = tcp_mssdflt;
810 tp->t_ourmss = tcp_mssdflt;
811 tp->t_segsz = tcp_mssdflt;
812 LIST_INIT(&tp->t_sc);
813
814 callout_init(&tp->t_delack_ch);
815 for (i = 0; i < TCPT_NTIMERS; i++)
816 TCP_TIMER_INIT(tp, i);
817
818 tp->t_flags = 0;
819 if (tcp_do_rfc1323 && tcp_do_win_scale)
820 tp->t_flags |= TF_REQ_SCALE;
821 if (tcp_do_rfc1323 && tcp_do_timestamps)
822 tp->t_flags |= TF_REQ_TSTMP;
823 if (tcp_do_sack == 2)
824 tp->t_flags |= TF_WILL_SACK;
825 else if (tcp_do_sack == 1)
826 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
827 tp->t_flags |= TF_CANT_TXSACK;
828 switch (family) {
829 case PF_INET:
830 tp->t_inpcb = (struct inpcb *)aux;
831 break;
832 #ifdef INET6
833 case PF_INET6:
834 tp->t_in6pcb = (struct in6pcb *)aux;
835 break;
836 #endif
837 }
838 /*
839 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
840 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
841 * reasonable initial retransmit time.
842 */
843 tp->t_srtt = TCPTV_SRTTBASE;
844 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
845 tp->t_rttmin = TCPTV_MIN;
846 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
847 TCPTV_MIN, TCPTV_REXMTMAX);
848 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
849 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
850 if (family == AF_INET) {
851 struct inpcb *inp = (struct inpcb *)aux;
852 inp->inp_ip.ip_ttl = ip_defttl;
853 inp->inp_ppcb = (caddr_t)tp;
854 }
855 #ifdef INET6
856 else if (family == AF_INET6) {
857 struct in6pcb *in6p = (struct in6pcb *)aux;
858 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
859 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
860 : NULL);
861 in6p->in6p_ppcb = (caddr_t)tp;
862 }
863 #endif
864
865 /*
866 * Initialize our timebase. When we send timestamps, we take
867 * the delta from tcp_now -- this means each connection always
868 * gets a timebase of 0, which makes it, among other things,
869 * more difficult to determine how long a system has been up,
870 * and thus how many TCP sequence increments have occurred.
871 */
872 tp->ts_timebase = tcp_now;
873
874 return (tp);
875 }
876
877 /*
878 * Drop a TCP connection, reporting
879 * the specified error. If connection is synchronized,
880 * then send a RST to peer.
881 */
882 struct tcpcb *
883 tcp_drop(tp, errno)
884 struct tcpcb *tp;
885 int errno;
886 {
887 struct socket *so = NULL;
888
889 #ifdef DIAGNOSTIC
890 if (tp->t_inpcb && tp->t_in6pcb)
891 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
892 #endif
893 #ifdef INET
894 if (tp->t_inpcb)
895 so = tp->t_inpcb->inp_socket;
896 #endif
897 #ifdef INET6
898 if (tp->t_in6pcb)
899 so = tp->t_in6pcb->in6p_socket;
900 #endif
901 if (!so)
902 return NULL;
903
904 if (TCPS_HAVERCVDSYN(tp->t_state)) {
905 tp->t_state = TCPS_CLOSED;
906 (void) tcp_output(tp);
907 tcpstat.tcps_drops++;
908 } else
909 tcpstat.tcps_conndrops++;
910 if (errno == ETIMEDOUT && tp->t_softerror)
911 errno = tp->t_softerror;
912 so->so_error = errno;
913 return (tcp_close(tp));
914 }
915
916 /*
917 * Close a TCP control block:
918 * discard all space held by the tcp
919 * discard internet protocol block
920 * wake up any sleepers
921 */
922 struct tcpcb *
923 tcp_close(tp)
924 struct tcpcb *tp;
925 {
926 struct inpcb *inp;
927 #ifdef INET6
928 struct in6pcb *in6p;
929 #endif
930 struct socket *so;
931 #ifdef RTV_RTT
932 struct rtentry *rt;
933 #endif
934 struct route *ro;
935
936 inp = tp->t_inpcb;
937 #ifdef INET6
938 in6p = tp->t_in6pcb;
939 #endif
940 so = NULL;
941 ro = NULL;
942 if (inp) {
943 so = inp->inp_socket;
944 ro = &inp->inp_route;
945 }
946 #ifdef INET6
947 else if (in6p) {
948 so = in6p->in6p_socket;
949 ro = (struct route *)&in6p->in6p_route;
950 }
951 #endif
952
953 #ifdef RTV_RTT
954 /*
955 * If we sent enough data to get some meaningful characteristics,
956 * save them in the routing entry. 'Enough' is arbitrarily
957 * defined as the sendpipesize (default 4K) * 16. This would
958 * give us 16 rtt samples assuming we only get one sample per
959 * window (the usual case on a long haul net). 16 samples is
960 * enough for the srtt filter to converge to within 5% of the correct
961 * value; fewer samples and we could save a very bogus rtt.
962 *
963 * Don't update the default route's characteristics and don't
964 * update anything that the user "locked".
965 */
966 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
967 ro && (rt = ro->ro_rt) &&
968 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
969 u_long i = 0;
970
971 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
972 i = tp->t_srtt *
973 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
974 if (rt->rt_rmx.rmx_rtt && i)
975 /*
976 * filter this update to half the old & half
977 * the new values, converting scale.
978 * See route.h and tcp_var.h for a
979 * description of the scaling constants.
980 */
981 rt->rt_rmx.rmx_rtt =
982 (rt->rt_rmx.rmx_rtt + i) / 2;
983 else
984 rt->rt_rmx.rmx_rtt = i;
985 }
986 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
987 i = tp->t_rttvar *
988 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
989 if (rt->rt_rmx.rmx_rttvar && i)
990 rt->rt_rmx.rmx_rttvar =
991 (rt->rt_rmx.rmx_rttvar + i) / 2;
992 else
993 rt->rt_rmx.rmx_rttvar = i;
994 }
995 /*
996 * update the pipelimit (ssthresh) if it has been updated
997 * already or if a pipesize was specified & the threshhold
998 * got below half the pipesize. I.e., wait for bad news
999 * before we start updating, then update on both good
1000 * and bad news.
1001 */
1002 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1003 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1004 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1005 /*
1006 * convert the limit from user data bytes to
1007 * packets then to packet data bytes.
1008 */
1009 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1010 if (i < 2)
1011 i = 2;
1012 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1013 if (rt->rt_rmx.rmx_ssthresh)
1014 rt->rt_rmx.rmx_ssthresh =
1015 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1016 else
1017 rt->rt_rmx.rmx_ssthresh = i;
1018 }
1019 }
1020 #endif /* RTV_RTT */
1021 /* free the reassembly queue, if any */
1022 TCP_REASS_LOCK(tp);
1023 (void) tcp_freeq(tp);
1024 TCP_REASS_UNLOCK(tp);
1025
1026 tcp_canceltimers(tp);
1027 TCP_CLEAR_DELACK(tp);
1028 syn_cache_cleanup(tp);
1029
1030 if (tp->t_template) {
1031 m_free(tp->t_template);
1032 tp->t_template = NULL;
1033 }
1034 pool_put(&tcpcb_pool, tp);
1035 if (inp) {
1036 inp->inp_ppcb = 0;
1037 soisdisconnected(so);
1038 in_pcbdetach(inp);
1039 }
1040 #ifdef INET6
1041 else if (in6p) {
1042 in6p->in6p_ppcb = 0;
1043 soisdisconnected(so);
1044 in6_pcbdetach(in6p);
1045 }
1046 #endif
1047 tcpstat.tcps_closed++;
1048 return ((struct tcpcb *)0);
1049 }
1050
1051 int
1052 tcp_freeq(tp)
1053 struct tcpcb *tp;
1054 {
1055 struct ipqent *qe;
1056 int rv = 0;
1057 #ifdef TCPREASS_DEBUG
1058 int i = 0;
1059 #endif
1060
1061 TCP_REASS_LOCK_CHECK(tp);
1062
1063 while ((qe = LIST_FIRST(&tp->segq)) != NULL) {
1064 #ifdef TCPREASS_DEBUG
1065 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1066 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1067 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1068 #endif
1069 LIST_REMOVE(qe, ipqe_q);
1070 LIST_REMOVE(qe, ipqe_timeq);
1071 m_freem(qe->ipqe_m);
1072 pool_put(&ipqent_pool, qe);
1073 rv = 1;
1074 }
1075 return (rv);
1076 }
1077
1078 /*
1079 * Protocol drain routine. Called when memory is in short supply.
1080 */
1081 void
1082 tcp_drain()
1083 {
1084 struct inpcb *inp;
1085 struct tcpcb *tp;
1086
1087 /*
1088 * Free the sequence queue of all TCP connections.
1089 */
1090 inp = CIRCLEQ_FIRST(&tcbtable.inpt_queue);
1091 if (inp) /* XXX */
1092 CIRCLEQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue) {
1093 if ((tp = intotcpcb(inp)) != NULL) {
1094 /*
1095 * We may be called from a device's interrupt
1096 * context. If the tcpcb is already busy,
1097 * just bail out now.
1098 */
1099 if (tcp_reass_lock_try(tp) == 0)
1100 continue;
1101 if (tcp_freeq(tp))
1102 tcpstat.tcps_connsdrained++;
1103 TCP_REASS_UNLOCK(tp);
1104 }
1105 }
1106 }
1107
1108 /*
1109 * Notify a tcp user of an asynchronous error;
1110 * store error as soft error, but wake up user
1111 * (for now, won't do anything until can select for soft error).
1112 */
1113 void
1114 tcp_notify(inp, error)
1115 struct inpcb *inp;
1116 int error;
1117 {
1118 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1119 struct socket *so = inp->inp_socket;
1120
1121 /*
1122 * Ignore some errors if we are hooked up.
1123 * If connection hasn't completed, has retransmitted several times,
1124 * and receives a second error, give up now. This is better
1125 * than waiting a long time to establish a connection that
1126 * can never complete.
1127 */
1128 if (tp->t_state == TCPS_ESTABLISHED &&
1129 (error == EHOSTUNREACH || error == ENETUNREACH ||
1130 error == EHOSTDOWN)) {
1131 return;
1132 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1133 tp->t_rxtshift > 3 && tp->t_softerror)
1134 so->so_error = error;
1135 else
1136 tp->t_softerror = error;
1137 wakeup((caddr_t) &so->so_timeo);
1138 sorwakeup(so);
1139 sowwakeup(so);
1140 }
1141
1142 #ifdef INET6
1143 void
1144 tcp6_notify(in6p, error)
1145 struct in6pcb *in6p;
1146 int error;
1147 {
1148 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1149 struct socket *so = in6p->in6p_socket;
1150
1151 /*
1152 * Ignore some errors if we are hooked up.
1153 * If connection hasn't completed, has retransmitted several times,
1154 * and receives a second error, give up now. This is better
1155 * than waiting a long time to establish a connection that
1156 * can never complete.
1157 */
1158 if (tp->t_state == TCPS_ESTABLISHED &&
1159 (error == EHOSTUNREACH || error == ENETUNREACH ||
1160 error == EHOSTDOWN)) {
1161 return;
1162 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1163 tp->t_rxtshift > 3 && tp->t_softerror)
1164 so->so_error = error;
1165 else
1166 tp->t_softerror = error;
1167 wakeup((caddr_t) &so->so_timeo);
1168 sorwakeup(so);
1169 sowwakeup(so);
1170 }
1171 #endif
1172
1173 #ifdef INET6
1174 void
1175 tcp6_ctlinput(cmd, sa, d)
1176 int cmd;
1177 struct sockaddr *sa;
1178 void *d;
1179 {
1180 struct tcphdr th;
1181 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1182 int nmatch;
1183 struct ip6_hdr *ip6;
1184 const struct sockaddr_in6 *sa6_src = NULL;
1185 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1186 struct mbuf *m;
1187 int off;
1188
1189 if (sa->sa_family != AF_INET6 ||
1190 sa->sa_len != sizeof(struct sockaddr_in6))
1191 return;
1192 if ((unsigned)cmd >= PRC_NCMDS)
1193 return;
1194 else if (cmd == PRC_QUENCH) {
1195 /* XXX there's no PRC_QUENCH in IPv6 */
1196 notify = tcp6_quench;
1197 } else if (PRC_IS_REDIRECT(cmd))
1198 notify = in6_rtchange, d = NULL;
1199 else if (cmd == PRC_MSGSIZE)
1200 ; /* special code is present, see below */
1201 else if (cmd == PRC_HOSTDEAD)
1202 d = NULL;
1203 else if (inet6ctlerrmap[cmd] == 0)
1204 return;
1205
1206 /* if the parameter is from icmp6, decode it. */
1207 if (d != NULL) {
1208 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1209 m = ip6cp->ip6c_m;
1210 ip6 = ip6cp->ip6c_ip6;
1211 off = ip6cp->ip6c_off;
1212 sa6_src = ip6cp->ip6c_src;
1213 } else {
1214 m = NULL;
1215 ip6 = NULL;
1216 sa6_src = &sa6_any;
1217 }
1218
1219 if (ip6) {
1220 /*
1221 * XXX: We assume that when ip6 is non NULL,
1222 * M and OFF are valid.
1223 */
1224
1225 /* check if we can safely examine src and dst ports */
1226 if (m->m_pkthdr.len < off + sizeof(th)) {
1227 if (cmd == PRC_MSGSIZE)
1228 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1229 return;
1230 }
1231
1232 bzero(&th, sizeof(th));
1233 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1234
1235 if (cmd == PRC_MSGSIZE) {
1236 int valid = 0;
1237
1238 /*
1239 * Check to see if we have a valid TCP connection
1240 * corresponding to the address in the ICMPv6 message
1241 * payload.
1242 */
1243 if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
1244 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1245 th.th_sport, 0))
1246 valid++;
1247
1248 /*
1249 * Depending on the value of "valid" and routing table
1250 * size (mtudisc_{hi,lo}wat), we will:
1251 * - recalcurate the new MTU and create the
1252 * corresponding routing entry, or
1253 * - ignore the MTU change notification.
1254 */
1255 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1256
1257 /*
1258 * no need to call in6_pcbnotify, it should have been
1259 * called via callback if necessary
1260 */
1261 return;
1262 }
1263
1264 nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
1265 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1266 if (nmatch == 0 && syn_cache_count &&
1267 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1268 inet6ctlerrmap[cmd] == ENETUNREACH ||
1269 inet6ctlerrmap[cmd] == EHOSTDOWN))
1270 syn_cache_unreach((struct sockaddr *)sa6_src,
1271 sa, &th);
1272 } else {
1273 (void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
1274 0, cmd, NULL, notify);
1275 }
1276 }
1277 #endif
1278
1279 #ifdef INET
1280 /* assumes that ip header and tcp header are contiguous on mbuf */
1281 void *
1282 tcp_ctlinput(cmd, sa, v)
1283 int cmd;
1284 struct sockaddr *sa;
1285 void *v;
1286 {
1287 struct ip *ip = v;
1288 struct tcphdr *th;
1289 struct icmp *icp;
1290 extern const int inetctlerrmap[];
1291 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1292 int errno;
1293 int nmatch;
1294
1295 if (sa->sa_family != AF_INET ||
1296 sa->sa_len != sizeof(struct sockaddr_in))
1297 return NULL;
1298 if ((unsigned)cmd >= PRC_NCMDS)
1299 return NULL;
1300 errno = inetctlerrmap[cmd];
1301 if (cmd == PRC_QUENCH)
1302 notify = tcp_quench;
1303 else if (PRC_IS_REDIRECT(cmd))
1304 notify = in_rtchange, ip = 0;
1305 else if (cmd == PRC_MSGSIZE && ip_mtudisc && ip && ip->ip_v == 4) {
1306 /*
1307 * Check to see if we have a valid TCP connection
1308 * corresponding to the address in the ICMP message
1309 * payload.
1310 *
1311 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1312 */
1313 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1314 if (in_pcblookup_connect(&tcbtable,
1315 ip->ip_dst, th->th_dport,
1316 ip->ip_src, th->th_sport) == NULL)
1317 return NULL;
1318
1319 /*
1320 * Now that we've validated that we are actually communicating
1321 * with the host indicated in the ICMP message, locate the
1322 * ICMP header, recalculate the new MTU, and create the
1323 * corresponding routing entry.
1324 */
1325 icp = (struct icmp *)((caddr_t)ip -
1326 offsetof(struct icmp, icmp_ip));
1327 icmp_mtudisc(icp, ip->ip_dst);
1328
1329 return NULL;
1330 } else if (cmd == PRC_HOSTDEAD)
1331 ip = 0;
1332 else if (errno == 0)
1333 return NULL;
1334 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1335 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1336 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1337 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1338 if (nmatch == 0 && syn_cache_count &&
1339 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1340 inetctlerrmap[cmd] == ENETUNREACH ||
1341 inetctlerrmap[cmd] == EHOSTDOWN)) {
1342 struct sockaddr_in sin;
1343 bzero(&sin, sizeof(sin));
1344 sin.sin_len = sizeof(sin);
1345 sin.sin_family = AF_INET;
1346 sin.sin_port = th->th_sport;
1347 sin.sin_addr = ip->ip_src;
1348 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1349 }
1350
1351 /* XXX mapped address case */
1352 } else
1353 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1354 notify);
1355 return NULL;
1356 }
1357
1358 /*
1359 * When a source quence is received, we are being notifed of congestion.
1360 * Close the congestion window down to the Loss Window (one segment).
1361 * We will gradually open it again as we proceed.
1362 */
1363 void
1364 tcp_quench(inp, errno)
1365 struct inpcb *inp;
1366 int errno;
1367 {
1368 struct tcpcb *tp = intotcpcb(inp);
1369
1370 if (tp)
1371 tp->snd_cwnd = tp->t_segsz;
1372 }
1373 #endif
1374
1375 #ifdef INET6
1376 void
1377 tcp6_quench(in6p, errno)
1378 struct in6pcb *in6p;
1379 int errno;
1380 {
1381 struct tcpcb *tp = in6totcpcb(in6p);
1382
1383 if (tp)
1384 tp->snd_cwnd = tp->t_segsz;
1385 }
1386 #endif
1387
1388 #ifdef INET
1389 /*
1390 * Path MTU Discovery handlers.
1391 */
1392 void
1393 tcp_mtudisc_callback(faddr)
1394 struct in_addr faddr;
1395 {
1396
1397 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1398 }
1399
1400 /*
1401 * On receipt of path MTU corrections, flush old route and replace it
1402 * with the new one. Retransmit all unacknowledged packets, to ensure
1403 * that all packets will be received.
1404 */
1405 void
1406 tcp_mtudisc(inp, errno)
1407 struct inpcb *inp;
1408 int errno;
1409 {
1410 struct tcpcb *tp = intotcpcb(inp);
1411 struct rtentry *rt = in_pcbrtentry(inp);
1412
1413 if (tp != 0) {
1414 if (rt != 0) {
1415 /*
1416 * If this was not a host route, remove and realloc.
1417 */
1418 if ((rt->rt_flags & RTF_HOST) == 0) {
1419 in_rtchange(inp, errno);
1420 if ((rt = in_pcbrtentry(inp)) == 0)
1421 return;
1422 }
1423
1424 /*
1425 * Slow start out of the error condition. We
1426 * use the MTU because we know it's smaller
1427 * than the previously transmitted segment.
1428 *
1429 * Note: This is more conservative than the
1430 * suggestion in draft-floyd-incr-init-win-03.
1431 */
1432 if (rt->rt_rmx.rmx_mtu != 0)
1433 tp->snd_cwnd =
1434 TCP_INITIAL_WINDOW(tcp_init_win,
1435 rt->rt_rmx.rmx_mtu);
1436 }
1437
1438 /*
1439 * Resend unacknowledged packets.
1440 */
1441 tp->snd_nxt = tp->snd_una;
1442 tcp_output(tp);
1443 }
1444 }
1445 #endif
1446
1447 #ifdef INET6
1448 /*
1449 * Path MTU Discovery handlers.
1450 */
1451 void
1452 tcp6_mtudisc_callback(faddr)
1453 struct in6_addr *faddr;
1454 {
1455 struct sockaddr_in6 sin6;
1456
1457 bzero(&sin6, sizeof(sin6));
1458 sin6.sin6_family = AF_INET6;
1459 sin6.sin6_len = sizeof(struct sockaddr_in6);
1460 sin6.sin6_addr = *faddr;
1461 (void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
1462 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1463 }
1464
1465 void
1466 tcp6_mtudisc(in6p, errno)
1467 struct in6pcb *in6p;
1468 int errno;
1469 {
1470 struct tcpcb *tp = in6totcpcb(in6p);
1471 struct rtentry *rt = in6_pcbrtentry(in6p);
1472
1473 if (tp != 0) {
1474 if (rt != 0) {
1475 /*
1476 * If this was not a host route, remove and realloc.
1477 */
1478 if ((rt->rt_flags & RTF_HOST) == 0) {
1479 in6_rtchange(in6p, errno);
1480 if ((rt = in6_pcbrtentry(in6p)) == 0)
1481 return;
1482 }
1483
1484 /*
1485 * Slow start out of the error condition. We
1486 * use the MTU because we know it's smaller
1487 * than the previously transmitted segment.
1488 *
1489 * Note: This is more conservative than the
1490 * suggestion in draft-floyd-incr-init-win-03.
1491 */
1492 if (rt->rt_rmx.rmx_mtu != 0)
1493 tp->snd_cwnd =
1494 TCP_INITIAL_WINDOW(tcp_init_win,
1495 rt->rt_rmx.rmx_mtu);
1496 }
1497
1498 /*
1499 * Resend unacknowledged packets.
1500 */
1501 tp->snd_nxt = tp->snd_una;
1502 tcp_output(tp);
1503 }
1504 }
1505 #endif /* INET6 */
1506
1507 /*
1508 * Compute the MSS to advertise to the peer. Called only during
1509 * the 3-way handshake. If we are the server (peer initiated
1510 * connection), we are called with a pointer to the interface
1511 * on which the SYN packet arrived. If we are the client (we
1512 * initiated connection), we are called with a pointer to the
1513 * interface out which this connection should go.
1514 *
1515 * NOTE: Do not subtract IP option/extension header size nor IPsec
1516 * header size from MSS advertisement. MSS option must hold the maximum
1517 * segment size we can accept, so it must always be:
1518 * max(if mtu) - ip header - tcp header
1519 */
1520 u_long
1521 tcp_mss_to_advertise(ifp, af)
1522 const struct ifnet *ifp;
1523 int af;
1524 {
1525 extern u_long in_maxmtu;
1526 u_long mss = 0;
1527 u_long hdrsiz;
1528
1529 /*
1530 * In order to avoid defeating path MTU discovery on the peer,
1531 * we advertise the max MTU of all attached networks as our MSS,
1532 * per RFC 1191, section 3.1.
1533 *
1534 * We provide the option to advertise just the MTU of
1535 * the interface on which we hope this connection will
1536 * be receiving. If we are responding to a SYN, we
1537 * will have a pretty good idea about this, but when
1538 * initiating a connection there is a bit more doubt.
1539 *
1540 * We also need to ensure that loopback has a large enough
1541 * MSS, as the loopback MTU is never included in in_maxmtu.
1542 */
1543
1544 if (ifp != NULL)
1545 mss = ifp->if_mtu;
1546
1547 if (tcp_mss_ifmtu == 0)
1548 switch (af) {
1549 case AF_INET:
1550 mss = max(in_maxmtu, mss);
1551 break;
1552 #ifdef INET6
1553 case AF_INET6:
1554 mss = max(in6_maxmtu, mss);
1555 break;
1556 #endif
1557 }
1558
1559 switch (af) {
1560 case AF_INET:
1561 hdrsiz = sizeof(struct ip);
1562 break;
1563 #ifdef INET6
1564 case AF_INET6:
1565 hdrsiz = sizeof(struct ip6_hdr);
1566 break;
1567 #endif
1568 default:
1569 hdrsiz = 0;
1570 break;
1571 }
1572 hdrsiz += sizeof(struct tcphdr);
1573 if (mss > hdrsiz)
1574 mss -= hdrsiz;
1575
1576 mss = max(tcp_mssdflt, mss);
1577 return (mss);
1578 }
1579
1580 /*
1581 * Set connection variables based on the peer's advertised MSS.
1582 * We are passed the TCPCB for the actual connection. If we
1583 * are the server, we are called by the compressed state engine
1584 * when the 3-way handshake is complete. If we are the client,
1585 * we are called when we receive the SYN,ACK from the server.
1586 *
1587 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1588 * before this routine is called!
1589 */
1590 void
1591 tcp_mss_from_peer(tp, offer)
1592 struct tcpcb *tp;
1593 int offer;
1594 {
1595 struct socket *so;
1596 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1597 struct rtentry *rt;
1598 #endif
1599 u_long bufsize;
1600 int mss;
1601
1602 #ifdef DIAGNOSTIC
1603 if (tp->t_inpcb && tp->t_in6pcb)
1604 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1605 #endif
1606 so = NULL;
1607 rt = NULL;
1608 #ifdef INET
1609 if (tp->t_inpcb) {
1610 so = tp->t_inpcb->inp_socket;
1611 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1612 rt = in_pcbrtentry(tp->t_inpcb);
1613 #endif
1614 }
1615 #endif
1616 #ifdef INET6
1617 if (tp->t_in6pcb) {
1618 so = tp->t_in6pcb->in6p_socket;
1619 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1620 rt = in6_pcbrtentry(tp->t_in6pcb);
1621 #endif
1622 }
1623 #endif
1624
1625 /*
1626 * As per RFC1122, use the default MSS value, unless they
1627 * sent us an offer. Do not accept offers less than 32 bytes.
1628 */
1629 mss = tcp_mssdflt;
1630 if (offer)
1631 mss = offer;
1632 mss = max(mss, 32); /* sanity */
1633 tp->t_peermss = mss;
1634 mss -= tcp_optlen(tp);
1635 #ifdef INET
1636 if (tp->t_inpcb)
1637 mss -= ip_optlen(tp->t_inpcb);
1638 #endif
1639 #ifdef INET6
1640 if (tp->t_in6pcb)
1641 mss -= ip6_optlen(tp->t_in6pcb);
1642 #endif
1643
1644 /*
1645 * If there's a pipesize, change the socket buffer to that size.
1646 * Make the socket buffer an integral number of MSS units. If
1647 * the MSS is larger than the socket buffer, artificially decrease
1648 * the MSS.
1649 */
1650 #ifdef RTV_SPIPE
1651 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1652 bufsize = rt->rt_rmx.rmx_sendpipe;
1653 else
1654 #endif
1655 bufsize = so->so_snd.sb_hiwat;
1656 if (bufsize < mss)
1657 mss = bufsize;
1658 else {
1659 bufsize = roundup(bufsize, mss);
1660 if (bufsize > sb_max)
1661 bufsize = sb_max;
1662 (void) sbreserve(&so->so_snd, bufsize);
1663 }
1664 tp->t_segsz = mss;
1665
1666 #ifdef RTV_SSTHRESH
1667 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1668 /*
1669 * There's some sort of gateway or interface buffer
1670 * limit on the path. Use this to set the slow
1671 * start threshold, but set the threshold to no less
1672 * than 2 * MSS.
1673 */
1674 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1675 }
1676 #endif
1677 }
1678
1679 /*
1680 * Processing necessary when a TCP connection is established.
1681 */
1682 void
1683 tcp_established(tp)
1684 struct tcpcb *tp;
1685 {
1686 struct socket *so;
1687 #ifdef RTV_RPIPE
1688 struct rtentry *rt;
1689 #endif
1690 u_long bufsize;
1691
1692 #ifdef DIAGNOSTIC
1693 if (tp->t_inpcb && tp->t_in6pcb)
1694 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1695 #endif
1696 so = NULL;
1697 rt = NULL;
1698 #ifdef INET
1699 if (tp->t_inpcb) {
1700 so = tp->t_inpcb->inp_socket;
1701 #if defined(RTV_RPIPE)
1702 rt = in_pcbrtentry(tp->t_inpcb);
1703 #endif
1704 }
1705 #endif
1706 #ifdef INET6
1707 if (tp->t_in6pcb) {
1708 so = tp->t_in6pcb->in6p_socket;
1709 #if defined(RTV_RPIPE)
1710 rt = in6_pcbrtentry(tp->t_in6pcb);
1711 #endif
1712 }
1713 #endif
1714
1715 tp->t_state = TCPS_ESTABLISHED;
1716 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1717
1718 #ifdef RTV_RPIPE
1719 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1720 bufsize = rt->rt_rmx.rmx_recvpipe;
1721 else
1722 #endif
1723 bufsize = so->so_rcv.sb_hiwat;
1724 if (bufsize > tp->t_ourmss) {
1725 bufsize = roundup(bufsize, tp->t_ourmss);
1726 if (bufsize > sb_max)
1727 bufsize = sb_max;
1728 (void) sbreserve(&so->so_rcv, bufsize);
1729 }
1730 }
1731
1732 /*
1733 * Check if there's an initial rtt or rttvar. Convert from the
1734 * route-table units to scaled multiples of the slow timeout timer.
1735 * Called only during the 3-way handshake.
1736 */
1737 void
1738 tcp_rmx_rtt(tp)
1739 struct tcpcb *tp;
1740 {
1741 #ifdef RTV_RTT
1742 struct rtentry *rt = NULL;
1743 int rtt;
1744
1745 #ifdef DIAGNOSTIC
1746 if (tp->t_inpcb && tp->t_in6pcb)
1747 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1748 #endif
1749 #ifdef INET
1750 if (tp->t_inpcb)
1751 rt = in_pcbrtentry(tp->t_inpcb);
1752 #endif
1753 #ifdef INET6
1754 if (tp->t_in6pcb)
1755 rt = in6_pcbrtentry(tp->t_in6pcb);
1756 #endif
1757 if (rt == NULL)
1758 return;
1759
1760 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1761 /*
1762 * XXX The lock bit for MTU indicates that the value
1763 * is also a minimum value; this is subject to time.
1764 */
1765 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1766 TCPT_RANGESET(tp->t_rttmin,
1767 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1768 TCPTV_MIN, TCPTV_REXMTMAX);
1769 tp->t_srtt = rtt /
1770 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1771 if (rt->rt_rmx.rmx_rttvar) {
1772 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1773 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1774 (TCP_RTTVAR_SHIFT + 2));
1775 } else {
1776 /* Default variation is +- 1 rtt */
1777 tp->t_rttvar =
1778 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1779 }
1780 TCPT_RANGESET(tp->t_rxtcur,
1781 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1782 tp->t_rttmin, TCPTV_REXMTMAX);
1783 }
1784 #endif
1785 }
1786
1787 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1788 #if NRND > 0
1789 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
1790 #endif
1791
1792 /*
1793 * Get a new sequence value given a tcp control block
1794 */
1795 tcp_seq
1796 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
1797 {
1798
1799 #ifdef INET
1800 if (tp->t_inpcb != NULL) {
1801 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
1802 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
1803 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
1804 addin));
1805 }
1806 #endif
1807 #ifdef INET6
1808 if (tp->t_in6pcb != NULL) {
1809 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
1810 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
1811 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
1812 addin));
1813 }
1814 #endif
1815 /* Not possible. */
1816 panic("tcp_new_iss");
1817 }
1818
1819 /*
1820 * This routine actually generates a new TCP initial sequence number.
1821 */
1822 tcp_seq
1823 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
1824 size_t addrsz, tcp_seq addin)
1825 {
1826 tcp_seq tcp_iss;
1827
1828 #if NRND > 0
1829 static int beenhere;
1830
1831 /*
1832 * If we haven't been here before, initialize our cryptographic
1833 * hash secret.
1834 */
1835 if (beenhere == 0) {
1836 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
1837 RND_EXTRACT_ANY);
1838 beenhere = 1;
1839 }
1840
1841 if (tcp_do_rfc1948) {
1842 MD5_CTX ctx;
1843 u_int8_t hash[16]; /* XXX MD5 knowledge */
1844
1845 /*
1846 * Compute the base value of the ISS. It is a hash
1847 * of (saddr, sport, daddr, dport, secret).
1848 */
1849 MD5Init(&ctx);
1850
1851 MD5Update(&ctx, (u_char *) laddr, addrsz);
1852 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
1853
1854 MD5Update(&ctx, (u_char *) faddr, addrsz);
1855 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
1856
1857 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
1858
1859 MD5Final(hash, &ctx);
1860
1861 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
1862
1863 /*
1864 * Now increment our "timer", and add it in to
1865 * the computed value.
1866 *
1867 * XXX Use `addin'?
1868 * XXX TCP_ISSINCR too large to use?
1869 */
1870 tcp_iss_seq += TCP_ISSINCR;
1871 #ifdef TCPISS_DEBUG
1872 printf("ISS hash 0x%08x, ", tcp_iss);
1873 #endif
1874 tcp_iss += tcp_iss_seq + addin;
1875 #ifdef TCPISS_DEBUG
1876 printf("new ISS 0x%08x\n", tcp_iss);
1877 #endif
1878 } else
1879 #endif /* NRND > 0 */
1880 {
1881 /*
1882 * Randomize.
1883 */
1884 #if NRND > 0
1885 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
1886 #else
1887 tcp_iss = random();
1888 #endif
1889
1890 /*
1891 * If we were asked to add some amount to a known value,
1892 * we will take a random value obtained above, mask off
1893 * the upper bits, and add in the known value. We also
1894 * add in a constant to ensure that we are at least a
1895 * certain distance from the original value.
1896 *
1897 * This is used when an old connection is in timed wait
1898 * and we have a new one coming in, for instance.
1899 */
1900 if (addin != 0) {
1901 #ifdef TCPISS_DEBUG
1902 printf("Random %08x, ", tcp_iss);
1903 #endif
1904 tcp_iss &= TCP_ISS_RANDOM_MASK;
1905 tcp_iss += addin + TCP_ISSINCR;
1906 #ifdef TCPISS_DEBUG
1907 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
1908 #endif
1909 } else {
1910 tcp_iss &= TCP_ISS_RANDOM_MASK;
1911 tcp_iss += tcp_iss_seq;
1912 tcp_iss_seq += TCP_ISSINCR;
1913 #ifdef TCPISS_DEBUG
1914 printf("ISS %08x\n", tcp_iss);
1915 #endif
1916 }
1917 }
1918
1919 if (tcp_compat_42) {
1920 /*
1921 * Limit it to the positive range for really old TCP
1922 * implementations.
1923 */
1924 if (tcp_iss >= 0x80000000)
1925 tcp_iss &= 0x7fffffff; /* XXX */
1926 }
1927
1928 return (tcp_iss);
1929 }
1930
1931 #ifdef IPSEC
1932 /* compute ESP/AH header size for TCP, including outer IP header. */
1933 size_t
1934 ipsec4_hdrsiz_tcp(tp)
1935 struct tcpcb *tp;
1936 {
1937 struct inpcb *inp;
1938 size_t hdrsiz;
1939
1940 /* XXX mapped addr case (tp->t_in6pcb) */
1941 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
1942 return 0;
1943 switch (tp->t_family) {
1944 case AF_INET:
1945 /* XXX: should use currect direction. */
1946 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
1947 break;
1948 default:
1949 hdrsiz = 0;
1950 break;
1951 }
1952
1953 return hdrsiz;
1954 }
1955
1956 #ifdef INET6
1957 size_t
1958 ipsec6_hdrsiz_tcp(tp)
1959 struct tcpcb *tp;
1960 {
1961 struct in6pcb *in6p;
1962 size_t hdrsiz;
1963
1964 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
1965 return 0;
1966 switch (tp->t_family) {
1967 case AF_INET6:
1968 /* XXX: should use currect direction. */
1969 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
1970 break;
1971 case AF_INET:
1972 /* mapped address case - tricky */
1973 default:
1974 hdrsiz = 0;
1975 break;
1976 }
1977
1978 return hdrsiz;
1979 }
1980 #endif
1981 #endif /*IPSEC*/
1982
1983 /*
1984 * Determine the length of the TCP options for this connection.
1985 *
1986 * XXX: What do we do for SACK, when we add that? Just reserve
1987 * all of the space? Otherwise we can't exactly be incrementing
1988 * cwnd by an amount that varies depending on the amount we last
1989 * had to SACK!
1990 */
1991
1992 u_int
1993 tcp_optlen(tp)
1994 struct tcpcb *tp;
1995 {
1996 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
1997 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
1998 return TCPOLEN_TSTAMP_APPA;
1999 else
2000 return 0;
2001 }
2002