Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.125
      1 /*	$NetBSD: tcp_subr.c,v 1.125 2002/04/27 01:47:58 thorpej Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. All advertising materials mentioning features or use of this software
     82  *    must display the following acknowledgement:
     83  *	This product includes software developed by the University of
     84  *	California, Berkeley and its contributors.
     85  * 4. Neither the name of the University nor the names of its contributors
     86  *    may be used to endorse or promote products derived from this software
     87  *    without specific prior written permission.
     88  *
     89  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     90  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     91  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     92  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     93  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     94  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     95  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     96  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     97  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     98  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     99  * SUCH DAMAGE.
    100  *
    101  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
    102  */
    103 
    104 #include <sys/cdefs.h>
    105 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.125 2002/04/27 01:47:58 thorpej Exp $");
    106 
    107 #include "opt_inet.h"
    108 #include "opt_ipsec.h"
    109 #include "opt_tcp_compat_42.h"
    110 #include "opt_inet_csum.h"
    111 #include "rnd.h"
    112 
    113 #include <sys/param.h>
    114 #include <sys/proc.h>
    115 #include <sys/systm.h>
    116 #include <sys/malloc.h>
    117 #include <sys/mbuf.h>
    118 #include <sys/socket.h>
    119 #include <sys/socketvar.h>
    120 #include <sys/protosw.h>
    121 #include <sys/errno.h>
    122 #include <sys/kernel.h>
    123 #include <sys/pool.h>
    124 #if NRND > 0
    125 #include <sys/md5.h>
    126 #include <sys/rnd.h>
    127 #endif
    128 
    129 #include <net/route.h>
    130 #include <net/if.h>
    131 
    132 #include <netinet/in.h>
    133 #include <netinet/in_systm.h>
    134 #include <netinet/ip.h>
    135 #include <netinet/in_pcb.h>
    136 #include <netinet/ip_var.h>
    137 #include <netinet/ip_icmp.h>
    138 
    139 #ifdef INET6
    140 #ifndef INET
    141 #include <netinet/in.h>
    142 #endif
    143 #include <netinet/ip6.h>
    144 #include <netinet6/in6_pcb.h>
    145 #include <netinet6/ip6_var.h>
    146 #include <netinet6/in6_var.h>
    147 #include <netinet6/ip6protosw.h>
    148 #include <netinet/icmp6.h>
    149 #endif
    150 
    151 #include <netinet/tcp.h>
    152 #include <netinet/tcp_fsm.h>
    153 #include <netinet/tcp_seq.h>
    154 #include <netinet/tcp_timer.h>
    155 #include <netinet/tcp_var.h>
    156 #include <netinet/tcpip.h>
    157 
    158 #ifdef IPSEC
    159 #include <netinet6/ipsec.h>
    160 #endif /*IPSEC*/
    161 
    162 #ifdef INET6
    163 struct in6pcb tcb6;
    164 #endif
    165 
    166 /* patchable/settable parameters for tcp */
    167 int 	tcp_mssdflt = TCP_MSS;
    168 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    169 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    170 #if NRND > 0
    171 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    172 #endif
    173 int	tcp_do_sack = 1;	/* selective acknowledgement */
    174 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    175 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    176 int	tcp_do_newreno = 0;	/* Use the New Reno algorithms */
    177 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    178 int	tcp_init_win = 1;
    179 int	tcp_mss_ifmtu = 0;
    180 #ifdef TCP_COMPAT_42
    181 int	tcp_compat_42 = 1;
    182 #else
    183 int	tcp_compat_42 = 0;
    184 #endif
    185 int	tcp_rst_ppslim = 100;	/* 100pps */
    186 
    187 /* tcb hash */
    188 #ifndef TCBHASHSIZE
    189 #define	TCBHASHSIZE	128
    190 #endif
    191 int	tcbhashsize = TCBHASHSIZE;
    192 
    193 /* syn hash parameters */
    194 #define	TCP_SYN_HASH_SIZE	293
    195 #define	TCP_SYN_BUCKET_SIZE	35
    196 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    197 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    198 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    199 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    200 
    201 int	tcp_freeq __P((struct tcpcb *));
    202 
    203 #ifdef INET
    204 void	tcp_mtudisc_callback __P((struct in_addr));
    205 #endif
    206 #ifdef INET6
    207 void	tcp6_mtudisc_callback __P((struct in6_addr *));
    208 #endif
    209 
    210 void	tcp_mtudisc __P((struct inpcb *, int));
    211 #ifdef INET6
    212 void	tcp6_mtudisc __P((struct in6pcb *, int));
    213 #endif
    214 
    215 struct pool tcpcb_pool;
    216 
    217 #ifdef TCP_CSUM_COUNTERS
    218 #include <sys/device.h>
    219 
    220 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    221     NULL, "tcp", "hwcsum bad");
    222 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    223     NULL, "tcp", "hwcsum ok");
    224 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    225     NULL, "tcp", "hwcsum data");
    226 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    227     NULL, "tcp", "swcsum");
    228 #endif /* TCP_CSUM_COUNTERS */
    229 
    230 #ifdef TCP_OUTPUT_COUNTERS
    231 #include <sys/device.h>
    232 
    233 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    234     NULL, "tcp", "output big header");
    235 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    236     NULL, "tcp", "output copy small");
    237 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    238     NULL, "tcp", "output copy big");
    239 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    240     NULL, "tcp", "output reference big");
    241 #endif /* TCP_OUTPUT_COUNTERS */
    242 
    243 /*
    244  * Tcp initialization
    245  */
    246 void
    247 tcp_init()
    248 {
    249 	int hlen;
    250 
    251 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
    252 	    NULL);
    253 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    254 #ifdef INET6
    255 	tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
    256 #endif
    257 
    258 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    259 #ifdef INET6
    260 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    261 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    262 #endif
    263 	if (max_protohdr < hlen)
    264 		max_protohdr = hlen;
    265 	if (max_linkhdr + hlen > MHLEN)
    266 		panic("tcp_init");
    267 
    268 #ifdef INET
    269 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    270 #endif
    271 #ifdef INET6
    272 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    273 #endif
    274 
    275 	/* Initialize timer state. */
    276 	tcp_timer_init();
    277 
    278 	/* Initialize the compressed state engine. */
    279 	syn_cache_init();
    280 
    281 #ifdef TCP_CSUM_COUNTERS
    282 	evcnt_attach_static(&tcp_hwcsum_bad);
    283 	evcnt_attach_static(&tcp_hwcsum_ok);
    284 	evcnt_attach_static(&tcp_hwcsum_data);
    285 	evcnt_attach_static(&tcp_swcsum);
    286 #endif /* TCP_CSUM_COUNTERS */
    287 
    288 #ifdef TCP_OUTPUT_COUNTERS
    289 	evcnt_attach_static(&tcp_output_bigheader);
    290 	evcnt_attach_static(&tcp_output_copysmall);
    291 	evcnt_attach_static(&tcp_output_copybig);
    292 	evcnt_attach_static(&tcp_output_refbig);
    293 #endif /* TCP_OUTPUT_COUNTERS */
    294 }
    295 
    296 /*
    297  * Create template to be used to send tcp packets on a connection.
    298  * Call after host entry created, allocates an mbuf and fills
    299  * in a skeletal tcp/ip header, minimizing the amount of work
    300  * necessary when the connection is used.
    301  */
    302 struct mbuf *
    303 tcp_template(tp)
    304 	struct tcpcb *tp;
    305 {
    306 	struct inpcb *inp = tp->t_inpcb;
    307 #ifdef INET6
    308 	struct in6pcb *in6p = tp->t_in6pcb;
    309 #endif
    310 	struct tcphdr *n;
    311 	struct mbuf *m;
    312 	int hlen;
    313 
    314 	switch (tp->t_family) {
    315 	case AF_INET:
    316 		hlen = sizeof(struct ip);
    317 		if (inp)
    318 			break;
    319 #ifdef INET6
    320 		if (in6p) {
    321 			/* mapped addr case */
    322 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    323 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    324 				break;
    325 		}
    326 #endif
    327 		return NULL;	/*EINVAL*/
    328 #ifdef INET6
    329 	case AF_INET6:
    330 		hlen = sizeof(struct ip6_hdr);
    331 		if (in6p) {
    332 			/* more sainty check? */
    333 			break;
    334 		}
    335 		return NULL;	/*EINVAL*/
    336 #endif
    337 	default:
    338 		hlen = 0;	/*pacify gcc*/
    339 		return NULL;	/*EAFNOSUPPORT*/
    340 	}
    341 #ifdef DIAGNOSTIC
    342 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    343 		panic("mclbytes too small for t_template");
    344 #endif
    345 	m = tp->t_template;
    346 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    347 		;
    348 	else {
    349 		if (m)
    350 			m_freem(m);
    351 		m = tp->t_template = NULL;
    352 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    353 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    354 			MCLGET(m, M_DONTWAIT);
    355 			if ((m->m_flags & M_EXT) == 0) {
    356 				m_free(m);
    357 				m = NULL;
    358 			}
    359 		}
    360 		if (m == NULL)
    361 			return NULL;
    362 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    363 	}
    364 
    365 	bzero(mtod(m, caddr_t), m->m_len);
    366 
    367 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
    368 
    369 	switch (tp->t_family) {
    370 	case AF_INET:
    371 	    {
    372 		struct ipovly *ipov;
    373 		mtod(m, struct ip *)->ip_v = 4;
    374 		ipov = mtod(m, struct ipovly *);
    375 		ipov->ih_pr = IPPROTO_TCP;
    376 		ipov->ih_len = htons(sizeof(struct tcphdr));
    377 		if (inp) {
    378 			ipov->ih_src = inp->inp_laddr;
    379 			ipov->ih_dst = inp->inp_faddr;
    380 		}
    381 #ifdef INET6
    382 		else if (in6p) {
    383 			/* mapped addr case */
    384 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    385 				sizeof(ipov->ih_src));
    386 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    387 				sizeof(ipov->ih_dst));
    388 		}
    389 #endif
    390 		/*
    391 		 * Compute the pseudo-header portion of the checksum
    392 		 * now.  We incrementally add in the TCP option and
    393 		 * payload lengths later, and then compute the TCP
    394 		 * checksum right before the packet is sent off onto
    395 		 * the wire.
    396 		 */
    397 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    398 		    ipov->ih_dst.s_addr,
    399 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    400 		break;
    401 	    }
    402 #ifdef INET6
    403 	case AF_INET6:
    404 	    {
    405 		struct ip6_hdr *ip6;
    406 		mtod(m, struct ip *)->ip_v = 6;
    407 		ip6 = mtod(m, struct ip6_hdr *);
    408 		ip6->ip6_nxt = IPPROTO_TCP;
    409 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    410 		ip6->ip6_src = in6p->in6p_laddr;
    411 		ip6->ip6_dst = in6p->in6p_faddr;
    412 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    413 		if (ip6_auto_flowlabel) {
    414 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    415 			ip6->ip6_flow |=
    416 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
    417 		}
    418 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    419 		ip6->ip6_vfc |= IPV6_VERSION;
    420 
    421 		/*
    422 		 * Compute the pseudo-header portion of the checksum
    423 		 * now.  We incrementally add in the TCP option and
    424 		 * payload lengths later, and then compute the TCP
    425 		 * checksum right before the packet is sent off onto
    426 		 * the wire.
    427 		 */
    428 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    429 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    430 		    htonl(IPPROTO_TCP));
    431 		break;
    432 	    }
    433 #endif
    434 	}
    435 	if (inp) {
    436 		n->th_sport = inp->inp_lport;
    437 		n->th_dport = inp->inp_fport;
    438 	}
    439 #ifdef INET6
    440 	else if (in6p) {
    441 		n->th_sport = in6p->in6p_lport;
    442 		n->th_dport = in6p->in6p_fport;
    443 	}
    444 #endif
    445 	n->th_seq = 0;
    446 	n->th_ack = 0;
    447 	n->th_x2 = 0;
    448 	n->th_off = 5;
    449 	n->th_flags = 0;
    450 	n->th_win = 0;
    451 	n->th_urp = 0;
    452 	return (m);
    453 }
    454 
    455 /*
    456  * Send a single message to the TCP at address specified by
    457  * the given TCP/IP header.  If m == 0, then we make a copy
    458  * of the tcpiphdr at ti and send directly to the addressed host.
    459  * This is used to force keep alive messages out using the TCP
    460  * template for a connection tp->t_template.  If flags are given
    461  * then we send a message back to the TCP which originated the
    462  * segment ti, and discard the mbuf containing it and any other
    463  * attached mbufs.
    464  *
    465  * In any case the ack and sequence number of the transmitted
    466  * segment are as specified by the parameters.
    467  */
    468 int
    469 tcp_respond(tp, template, m, th0, ack, seq, flags)
    470 	struct tcpcb *tp;
    471 	struct mbuf *template;
    472 	struct mbuf *m;
    473 	struct tcphdr *th0;
    474 	tcp_seq ack, seq;
    475 	int flags;
    476 {
    477 	struct route *ro;
    478 	int error, tlen, win = 0;
    479 	int hlen;
    480 	struct ip *ip;
    481 #ifdef INET6
    482 	struct ip6_hdr *ip6;
    483 #endif
    484 	int family;	/* family on packet, not inpcb/in6pcb! */
    485 	struct tcphdr *th;
    486 
    487 	if (tp != NULL && (flags & TH_RST) == 0) {
    488 #ifdef DIAGNOSTIC
    489 		if (tp->t_inpcb && tp->t_in6pcb)
    490 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    491 #endif
    492 #ifdef INET
    493 		if (tp->t_inpcb)
    494 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    495 #endif
    496 #ifdef INET6
    497 		if (tp->t_in6pcb)
    498 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    499 #endif
    500 	}
    501 
    502 	ip = NULL;
    503 #ifdef INET6
    504 	ip6 = NULL;
    505 #endif
    506 	if (m == 0) {
    507 		if (!template)
    508 			return EINVAL;
    509 
    510 		/* get family information from template */
    511 		switch (mtod(template, struct ip *)->ip_v) {
    512 		case 4:
    513 			family = AF_INET;
    514 			hlen = sizeof(struct ip);
    515 			break;
    516 #ifdef INET6
    517 		case 6:
    518 			family = AF_INET6;
    519 			hlen = sizeof(struct ip6_hdr);
    520 			break;
    521 #endif
    522 		default:
    523 			return EAFNOSUPPORT;
    524 		}
    525 
    526 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    527 		if (m) {
    528 			MCLGET(m, M_DONTWAIT);
    529 			if ((m->m_flags & M_EXT) == 0) {
    530 				m_free(m);
    531 				m = NULL;
    532 			}
    533 		}
    534 		if (m == NULL)
    535 			return (ENOBUFS);
    536 
    537 		if (tcp_compat_42)
    538 			tlen = 1;
    539 		else
    540 			tlen = 0;
    541 
    542 		m->m_data += max_linkhdr;
    543 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
    544 			template->m_len);
    545 		switch (family) {
    546 		case AF_INET:
    547 			ip = mtod(m, struct ip *);
    548 			th = (struct tcphdr *)(ip + 1);
    549 			break;
    550 #ifdef INET6
    551 		case AF_INET6:
    552 			ip6 = mtod(m, struct ip6_hdr *);
    553 			th = (struct tcphdr *)(ip6 + 1);
    554 			break;
    555 #endif
    556 #if 0
    557 		default:
    558 			/* noone will visit here */
    559 			m_freem(m);
    560 			return EAFNOSUPPORT;
    561 #endif
    562 		}
    563 		flags = TH_ACK;
    564 	} else {
    565 
    566 		if ((m->m_flags & M_PKTHDR) == 0) {
    567 #if 0
    568 			printf("non PKTHDR to tcp_respond\n");
    569 #endif
    570 			m_freem(m);
    571 			return EINVAL;
    572 		}
    573 #ifdef DIAGNOSTIC
    574 		if (!th0)
    575 			panic("th0 == NULL in tcp_respond");
    576 #endif
    577 
    578 		/* get family information from m */
    579 		switch (mtod(m, struct ip *)->ip_v) {
    580 		case 4:
    581 			family = AF_INET;
    582 			hlen = sizeof(struct ip);
    583 			ip = mtod(m, struct ip *);
    584 			break;
    585 #ifdef INET6
    586 		case 6:
    587 			family = AF_INET6;
    588 			hlen = sizeof(struct ip6_hdr);
    589 			ip6 = mtod(m, struct ip6_hdr *);
    590 			break;
    591 #endif
    592 		default:
    593 			m_freem(m);
    594 			return EAFNOSUPPORT;
    595 		}
    596 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    597 			tlen = sizeof(*th0);
    598 		else
    599 			tlen = th0->th_off << 2;
    600 
    601 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    602 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
    603 			m->m_len = hlen + tlen;
    604 			m_freem(m->m_next);
    605 			m->m_next = NULL;
    606 		} else {
    607 			struct mbuf *n;
    608 
    609 #ifdef DIAGNOSTIC
    610 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    611 				m_freem(m);
    612 				return EMSGSIZE;
    613 			}
    614 #endif
    615 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    616 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    617 				MCLGET(n, M_DONTWAIT);
    618 				if ((n->m_flags & M_EXT) == 0) {
    619 					m_freem(n);
    620 					n = NULL;
    621 				}
    622 			}
    623 			if (!n) {
    624 				m_freem(m);
    625 				return ENOBUFS;
    626 			}
    627 
    628 			n->m_data += max_linkhdr;
    629 			n->m_len = hlen + tlen;
    630 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
    631 			m_copyback(n, hlen, tlen, (caddr_t)th0);
    632 
    633 			m_freem(m);
    634 			m = n;
    635 			n = NULL;
    636 		}
    637 
    638 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    639 		switch (family) {
    640 		case AF_INET:
    641 			ip = mtod(m, struct ip *);
    642 			th = (struct tcphdr *)(ip + 1);
    643 			ip->ip_p = IPPROTO_TCP;
    644 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    645 			ip->ip_p = IPPROTO_TCP;
    646 			break;
    647 #ifdef INET6
    648 		case AF_INET6:
    649 			ip6 = mtod(m, struct ip6_hdr *);
    650 			th = (struct tcphdr *)(ip6 + 1);
    651 			ip6->ip6_nxt = IPPROTO_TCP;
    652 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    653 			ip6->ip6_nxt = IPPROTO_TCP;
    654 			break;
    655 #endif
    656 #if 0
    657 		default:
    658 			/* noone will visit here */
    659 			m_freem(m);
    660 			return EAFNOSUPPORT;
    661 #endif
    662 		}
    663 		xchg(th->th_dport, th->th_sport, u_int16_t);
    664 #undef xchg
    665 		tlen = 0;	/*be friendly with the following code*/
    666 	}
    667 	th->th_seq = htonl(seq);
    668 	th->th_ack = htonl(ack);
    669 	th->th_x2 = 0;
    670 	if ((flags & TH_SYN) == 0) {
    671 		if (tp)
    672 			win >>= tp->rcv_scale;
    673 		if (win > TCP_MAXWIN)
    674 			win = TCP_MAXWIN;
    675 		th->th_win = htons((u_int16_t)win);
    676 		th->th_off = sizeof (struct tcphdr) >> 2;
    677 		tlen += sizeof(*th);
    678 	} else
    679 		tlen += th->th_off << 2;
    680 	m->m_len = hlen + tlen;
    681 	m->m_pkthdr.len = hlen + tlen;
    682 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    683 	th->th_flags = flags;
    684 	th->th_urp = 0;
    685 
    686 	switch (family) {
    687 #ifdef INET
    688 	case AF_INET:
    689 	    {
    690 		struct ipovly *ipov = (struct ipovly *)ip;
    691 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    692 		ipov->ih_len = htons((u_int16_t)tlen);
    693 
    694 		th->th_sum = 0;
    695 		th->th_sum = in_cksum(m, hlen + tlen);
    696 		ip->ip_len = hlen + tlen;	/*will be flipped on output*/
    697 		ip->ip_ttl = ip_defttl;
    698 		break;
    699 	    }
    700 #endif
    701 #ifdef INET6
    702 	case AF_INET6:
    703 	    {
    704 		th->th_sum = 0;
    705 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    706 				tlen);
    707 		ip6->ip6_plen = ntohs(tlen);
    708 		if (tp && tp->t_in6pcb) {
    709 			struct ifnet *oifp;
    710 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    711 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    712 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    713 		} else
    714 			ip6->ip6_hlim = ip6_defhlim;
    715 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    716 		if (ip6_auto_flowlabel) {
    717 			ip6->ip6_flow |=
    718 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
    719 		}
    720 		break;
    721 	    }
    722 #endif
    723 	}
    724 
    725 #ifdef IPSEC
    726 	(void)ipsec_setsocket(m, NULL);
    727 #endif /*IPSEC*/
    728 
    729 	if (tp != NULL && tp->t_inpcb != NULL) {
    730 		ro = &tp->t_inpcb->inp_route;
    731 #ifdef IPSEC
    732 		if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
    733 			m_freem(m);
    734 			return ENOBUFS;
    735 		}
    736 #endif
    737 #ifdef DIAGNOSTIC
    738 		if (family != AF_INET)
    739 			panic("tcp_respond: address family mismatch");
    740 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    741 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    742 			    ntohl(ip->ip_dst.s_addr),
    743 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    744 		}
    745 #endif
    746 	}
    747 #ifdef INET6
    748 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    749 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    750 #ifdef IPSEC
    751 		if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
    752 			m_freem(m);
    753 			return ENOBUFS;
    754 		}
    755 #endif
    756 #ifdef DIAGNOSTIC
    757 		if (family == AF_INET) {
    758 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    759 				panic("tcp_respond: not mapped addr");
    760 			if (bcmp(&ip->ip_dst,
    761 					&tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    762 					sizeof(ip->ip_dst)) != 0) {
    763 				panic("tcp_respond: ip_dst != in6p_faddr");
    764 			}
    765 		} else if (family == AF_INET6) {
    766 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
    767 				panic("tcp_respond: ip6_dst != in6p_faddr");
    768 		} else
    769 			panic("tcp_respond: address family mismatch");
    770 #endif
    771 	}
    772 #endif
    773 	else
    774 		ro = NULL;
    775 
    776 	switch (family) {
    777 #ifdef INET
    778 	case AF_INET:
    779 		error = ip_output(m, NULL, ro,
    780 		    (ip_mtudisc ? IP_MTUDISC : 0),
    781 		    NULL);
    782 		break;
    783 #endif
    784 #ifdef INET6
    785 	case AF_INET6:
    786 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
    787 			NULL);
    788 		break;
    789 #endif
    790 	default:
    791 		error = EAFNOSUPPORT;
    792 		break;
    793 	}
    794 
    795 	return (error);
    796 }
    797 
    798 /*
    799  * Create a new TCP control block, making an
    800  * empty reassembly queue and hooking it to the argument
    801  * protocol control block.
    802  */
    803 struct tcpcb *
    804 tcp_newtcpcb(family, aux)
    805 	int family;	/* selects inpcb, or in6pcb */
    806 	void *aux;
    807 {
    808 	struct tcpcb *tp;
    809 	int i;
    810 
    811 	switch (family) {
    812 	case PF_INET:
    813 		break;
    814 #ifdef INET6
    815 	case PF_INET6:
    816 		break;
    817 #endif
    818 	default:
    819 		return NULL;
    820 	}
    821 
    822 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    823 	if (tp == NULL)
    824 		return (NULL);
    825 	bzero((caddr_t)tp, sizeof(struct tcpcb));
    826 	LIST_INIT(&tp->segq);
    827 	LIST_INIT(&tp->timeq);
    828 	tp->t_family = family;		/* may be overridden later on */
    829 	tp->t_peermss = tcp_mssdflt;
    830 	tp->t_ourmss = tcp_mssdflt;
    831 	tp->t_segsz = tcp_mssdflt;
    832 	LIST_INIT(&tp->t_sc);
    833 
    834 	callout_init(&tp->t_delack_ch);
    835 	for (i = 0; i < TCPT_NTIMERS; i++)
    836 		TCP_TIMER_INIT(tp, i);
    837 
    838 	tp->t_flags = 0;
    839 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    840 		tp->t_flags |= TF_REQ_SCALE;
    841 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    842 		tp->t_flags |= TF_REQ_TSTMP;
    843 	if (tcp_do_sack == 2)
    844 		tp->t_flags |= TF_WILL_SACK;
    845 	else if (tcp_do_sack == 1)
    846 		tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
    847 	tp->t_flags |= TF_CANT_TXSACK;
    848 	switch (family) {
    849 	case PF_INET:
    850 		tp->t_inpcb = (struct inpcb *)aux;
    851 		break;
    852 #ifdef INET6
    853 	case PF_INET6:
    854 		tp->t_in6pcb = (struct in6pcb *)aux;
    855 		break;
    856 #endif
    857 	}
    858 	/*
    859 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    860 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    861 	 * reasonable initial retransmit time.
    862 	 */
    863 	tp->t_srtt = TCPTV_SRTTBASE;
    864 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    865 	tp->t_rttmin = TCPTV_MIN;
    866 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    867 	    TCPTV_MIN, TCPTV_REXMTMAX);
    868 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    869 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    870 	if (family == AF_INET) {
    871 		struct inpcb *inp = (struct inpcb *)aux;
    872 		inp->inp_ip.ip_ttl = ip_defttl;
    873 		inp->inp_ppcb = (caddr_t)tp;
    874 	}
    875 #ifdef INET6
    876 	else if (family == AF_INET6) {
    877 		struct in6pcb *in6p = (struct in6pcb *)aux;
    878 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
    879 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
    880 					       : NULL);
    881 		in6p->in6p_ppcb = (caddr_t)tp;
    882 	}
    883 #endif
    884 
    885 	/*
    886 	 * Initialize our timebase.  When we send timestamps, we take
    887 	 * the delta from tcp_now -- this means each connection always
    888 	 * gets a timebase of 0, which makes it, among other things,
    889 	 * more difficult to determine how long a system has been up,
    890 	 * and thus how many TCP sequence increments have occurred.
    891 	 */
    892 	tp->ts_timebase = tcp_now;
    893 
    894 	return (tp);
    895 }
    896 
    897 /*
    898  * Drop a TCP connection, reporting
    899  * the specified error.  If connection is synchronized,
    900  * then send a RST to peer.
    901  */
    902 struct tcpcb *
    903 tcp_drop(tp, errno)
    904 	struct tcpcb *tp;
    905 	int errno;
    906 {
    907 	struct socket *so = NULL;
    908 
    909 #ifdef DIAGNOSTIC
    910 	if (tp->t_inpcb && tp->t_in6pcb)
    911 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
    912 #endif
    913 #ifdef INET
    914 	if (tp->t_inpcb)
    915 		so = tp->t_inpcb->inp_socket;
    916 #endif
    917 #ifdef INET6
    918 	if (tp->t_in6pcb)
    919 		so = tp->t_in6pcb->in6p_socket;
    920 #endif
    921 	if (!so)
    922 		return NULL;
    923 
    924 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
    925 		tp->t_state = TCPS_CLOSED;
    926 		(void) tcp_output(tp);
    927 		tcpstat.tcps_drops++;
    928 	} else
    929 		tcpstat.tcps_conndrops++;
    930 	if (errno == ETIMEDOUT && tp->t_softerror)
    931 		errno = tp->t_softerror;
    932 	so->so_error = errno;
    933 	return (tcp_close(tp));
    934 }
    935 
    936 /*
    937  * Close a TCP control block:
    938  *	discard all space held by the tcp
    939  *	discard internet protocol block
    940  *	wake up any sleepers
    941  */
    942 struct tcpcb *
    943 tcp_close(tp)
    944 	struct tcpcb *tp;
    945 {
    946 	struct inpcb *inp;
    947 #ifdef INET6
    948 	struct in6pcb *in6p;
    949 #endif
    950 	struct socket *so;
    951 #ifdef RTV_RTT
    952 	struct rtentry *rt;
    953 #endif
    954 	struct route *ro;
    955 
    956 	inp = tp->t_inpcb;
    957 #ifdef INET6
    958 	in6p = tp->t_in6pcb;
    959 #endif
    960 	so = NULL;
    961 	ro = NULL;
    962 	if (inp) {
    963 		so = inp->inp_socket;
    964 		ro = &inp->inp_route;
    965 	}
    966 #ifdef INET6
    967 	else if (in6p) {
    968 		so = in6p->in6p_socket;
    969 		ro = (struct route *)&in6p->in6p_route;
    970 	}
    971 #endif
    972 
    973 #ifdef RTV_RTT
    974 	/*
    975 	 * If we sent enough data to get some meaningful characteristics,
    976 	 * save them in the routing entry.  'Enough' is arbitrarily
    977 	 * defined as the sendpipesize (default 4K) * 16.  This would
    978 	 * give us 16 rtt samples assuming we only get one sample per
    979 	 * window (the usual case on a long haul net).  16 samples is
    980 	 * enough for the srtt filter to converge to within 5% of the correct
    981 	 * value; fewer samples and we could save a very bogus rtt.
    982 	 *
    983 	 * Don't update the default route's characteristics and don't
    984 	 * update anything that the user "locked".
    985 	 */
    986 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
    987 	    ro && (rt = ro->ro_rt) &&
    988 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
    989 		u_long i = 0;
    990 
    991 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
    992 			i = tp->t_srtt *
    993 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
    994 			if (rt->rt_rmx.rmx_rtt && i)
    995 				/*
    996 				 * filter this update to half the old & half
    997 				 * the new values, converting scale.
    998 				 * See route.h and tcp_var.h for a
    999 				 * description of the scaling constants.
   1000 				 */
   1001 				rt->rt_rmx.rmx_rtt =
   1002 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1003 			else
   1004 				rt->rt_rmx.rmx_rtt = i;
   1005 		}
   1006 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1007 			i = tp->t_rttvar *
   1008 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1009 			if (rt->rt_rmx.rmx_rttvar && i)
   1010 				rt->rt_rmx.rmx_rttvar =
   1011 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1012 			else
   1013 				rt->rt_rmx.rmx_rttvar = i;
   1014 		}
   1015 		/*
   1016 		 * update the pipelimit (ssthresh) if it has been updated
   1017 		 * already or if a pipesize was specified & the threshhold
   1018 		 * got below half the pipesize.  I.e., wait for bad news
   1019 		 * before we start updating, then update on both good
   1020 		 * and bad news.
   1021 		 */
   1022 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1023 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1024 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1025 			/*
   1026 			 * convert the limit from user data bytes to
   1027 			 * packets then to packet data bytes.
   1028 			 */
   1029 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1030 			if (i < 2)
   1031 				i = 2;
   1032 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1033 			if (rt->rt_rmx.rmx_ssthresh)
   1034 				rt->rt_rmx.rmx_ssthresh =
   1035 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1036 			else
   1037 				rt->rt_rmx.rmx_ssthresh = i;
   1038 		}
   1039 	}
   1040 #endif /* RTV_RTT */
   1041 	/* free the reassembly queue, if any */
   1042 	TCP_REASS_LOCK(tp);
   1043 	(void) tcp_freeq(tp);
   1044 	TCP_REASS_UNLOCK(tp);
   1045 
   1046 	tcp_canceltimers(tp);
   1047 	TCP_CLEAR_DELACK(tp);
   1048 	syn_cache_cleanup(tp);
   1049 
   1050 	if (tp->t_template) {
   1051 		m_free(tp->t_template);
   1052 		tp->t_template = NULL;
   1053 	}
   1054 	pool_put(&tcpcb_pool, tp);
   1055 	if (inp) {
   1056 		inp->inp_ppcb = 0;
   1057 		soisdisconnected(so);
   1058 		in_pcbdetach(inp);
   1059 	}
   1060 #ifdef INET6
   1061 	else if (in6p) {
   1062 		in6p->in6p_ppcb = 0;
   1063 		soisdisconnected(so);
   1064 		in6_pcbdetach(in6p);
   1065 	}
   1066 #endif
   1067 	tcpstat.tcps_closed++;
   1068 	return ((struct tcpcb *)0);
   1069 }
   1070 
   1071 int
   1072 tcp_freeq(tp)
   1073 	struct tcpcb *tp;
   1074 {
   1075 	struct ipqent *qe;
   1076 	int rv = 0;
   1077 #ifdef TCPREASS_DEBUG
   1078 	int i = 0;
   1079 #endif
   1080 
   1081 	TCP_REASS_LOCK_CHECK(tp);
   1082 
   1083 	while ((qe = LIST_FIRST(&tp->segq)) != NULL) {
   1084 #ifdef TCPREASS_DEBUG
   1085 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1086 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1087 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1088 #endif
   1089 		LIST_REMOVE(qe, ipqe_q);
   1090 		LIST_REMOVE(qe, ipqe_timeq);
   1091 		m_freem(qe->ipqe_m);
   1092 		pool_put(&ipqent_pool, qe);
   1093 		rv = 1;
   1094 	}
   1095 	return (rv);
   1096 }
   1097 
   1098 /*
   1099  * Protocol drain routine.  Called when memory is in short supply.
   1100  */
   1101 void
   1102 tcp_drain()
   1103 {
   1104 	struct inpcb *inp;
   1105 	struct tcpcb *tp;
   1106 
   1107 	/*
   1108 	 * Free the sequence queue of all TCP connections.
   1109 	 */
   1110 	inp = CIRCLEQ_FIRST(&tcbtable.inpt_queue);
   1111 	if (inp)						/* XXX */
   1112 	CIRCLEQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue) {
   1113 		if ((tp = intotcpcb(inp)) != NULL) {
   1114 			/*
   1115 			 * We may be called from a device's interrupt
   1116 			 * context.  If the tcpcb is already busy,
   1117 			 * just bail out now.
   1118 			 */
   1119 			if (tcp_reass_lock_try(tp) == 0)
   1120 				continue;
   1121 			if (tcp_freeq(tp))
   1122 				tcpstat.tcps_connsdrained++;
   1123 			TCP_REASS_UNLOCK(tp);
   1124 		}
   1125 	}
   1126 }
   1127 
   1128 #ifdef INET6
   1129 void
   1130 tcp6_drain()
   1131 {
   1132 	struct in6pcb *in6p;
   1133 	struct tcpcb *tp;
   1134 	struct in6pcb *head = &tcb6;
   1135 
   1136 	/*
   1137 	 * Free the sequence queue of all TCP connections.
   1138 	 */
   1139 	for (in6p = head->in6p_next; in6p != head; in6p = in6p->in6p_next) {
   1140 		if ((tp = in6totcpcb(in6p)) != NULL) {
   1141 			/*
   1142 			 * We may be called from a device's interrupt
   1143 			 * context.  If the tcpcb is already busy,
   1144 			 * just bail out now.
   1145 			 */
   1146 			if (tcp_reass_lock_try(tp) == 0)
   1147 				continue;
   1148 			if (tcp_freeq(tp))
   1149 				tcpstat.tcps_connsdrained++;
   1150 			TCP_REASS_UNLOCK(tp);
   1151 		}
   1152 	}
   1153 }
   1154 #endif
   1155 
   1156 /*
   1157  * Notify a tcp user of an asynchronous error;
   1158  * store error as soft error, but wake up user
   1159  * (for now, won't do anything until can select for soft error).
   1160  */
   1161 void
   1162 tcp_notify(inp, error)
   1163 	struct inpcb *inp;
   1164 	int error;
   1165 {
   1166 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1167 	struct socket *so = inp->inp_socket;
   1168 
   1169 	/*
   1170 	 * Ignore some errors if we are hooked up.
   1171 	 * If connection hasn't completed, has retransmitted several times,
   1172 	 * and receives a second error, give up now.  This is better
   1173 	 * than waiting a long time to establish a connection that
   1174 	 * can never complete.
   1175 	 */
   1176 	if (tp->t_state == TCPS_ESTABLISHED &&
   1177 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1178 	      error == EHOSTDOWN)) {
   1179 		return;
   1180 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1181 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1182 		so->so_error = error;
   1183 	else
   1184 		tp->t_softerror = error;
   1185 	wakeup((caddr_t) &so->so_timeo);
   1186 	sorwakeup(so);
   1187 	sowwakeup(so);
   1188 }
   1189 
   1190 #ifdef INET6
   1191 void
   1192 tcp6_notify(in6p, error)
   1193 	struct in6pcb *in6p;
   1194 	int error;
   1195 {
   1196 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1197 	struct socket *so = in6p->in6p_socket;
   1198 
   1199 	/*
   1200 	 * Ignore some errors if we are hooked up.
   1201 	 * If connection hasn't completed, has retransmitted several times,
   1202 	 * and receives a second error, give up now.  This is better
   1203 	 * than waiting a long time to establish a connection that
   1204 	 * can never complete.
   1205 	 */
   1206 	if (tp->t_state == TCPS_ESTABLISHED &&
   1207 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1208 	      error == EHOSTDOWN)) {
   1209 		return;
   1210 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1211 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1212 		so->so_error = error;
   1213 	else
   1214 		tp->t_softerror = error;
   1215 	wakeup((caddr_t) &so->so_timeo);
   1216 	sorwakeup(so);
   1217 	sowwakeup(so);
   1218 }
   1219 #endif
   1220 
   1221 #ifdef INET6
   1222 void
   1223 tcp6_ctlinput(cmd, sa, d)
   1224 	int cmd;
   1225 	struct sockaddr *sa;
   1226 	void *d;
   1227 {
   1228 	struct tcphdr th;
   1229 	void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
   1230 	int nmatch;
   1231 	struct ip6_hdr *ip6;
   1232 	const struct sockaddr_in6 *sa6_src = NULL;
   1233 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
   1234 	struct mbuf *m;
   1235 	int off;
   1236 
   1237 	if (sa->sa_family != AF_INET6 ||
   1238 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1239 		return;
   1240 	if ((unsigned)cmd >= PRC_NCMDS)
   1241 		return;
   1242 	else if (cmd == PRC_QUENCH) {
   1243 		/* XXX there's no PRC_QUENCH in IPv6 */
   1244 		notify = tcp6_quench;
   1245 	} else if (PRC_IS_REDIRECT(cmd))
   1246 		notify = in6_rtchange, d = NULL;
   1247 	else if (cmd == PRC_MSGSIZE)
   1248 		; /* special code is present, see below */
   1249 	else if (cmd == PRC_HOSTDEAD)
   1250 		d = NULL;
   1251 	else if (inet6ctlerrmap[cmd] == 0)
   1252 		return;
   1253 
   1254 	/* if the parameter is from icmp6, decode it. */
   1255 	if (d != NULL) {
   1256 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1257 		m = ip6cp->ip6c_m;
   1258 		ip6 = ip6cp->ip6c_ip6;
   1259 		off = ip6cp->ip6c_off;
   1260 		sa6_src = ip6cp->ip6c_src;
   1261 	} else {
   1262 		m = NULL;
   1263 		ip6 = NULL;
   1264 		sa6_src = &sa6_any;
   1265 	}
   1266 
   1267 	if (ip6) {
   1268 		/*
   1269 		 * XXX: We assume that when ip6 is non NULL,
   1270 		 * M and OFF are valid.
   1271 		 */
   1272 
   1273 		/* check if we can safely examine src and dst ports */
   1274 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1275 			if (cmd == PRC_MSGSIZE)
   1276 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1277 			return;
   1278 		}
   1279 
   1280 		bzero(&th, sizeof(th));
   1281 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
   1282 
   1283 		if (cmd == PRC_MSGSIZE) {
   1284 			int valid = 0;
   1285 
   1286 			/*
   1287 			 * Check to see if we have a valid TCP connection
   1288 			 * corresponding to the address in the ICMPv6 message
   1289 			 * payload.
   1290 			 */
   1291 			if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
   1292 			    th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
   1293 			    th.th_sport, 0))
   1294 				valid++;
   1295 
   1296 			/*
   1297 			 * Depending on the value of "valid" and routing table
   1298 			 * size (mtudisc_{hi,lo}wat), we will:
   1299 			 * - recalcurate the new MTU and create the
   1300 			 *   corresponding routing entry, or
   1301 			 * - ignore the MTU change notification.
   1302 			 */
   1303 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1304 
   1305 			/*
   1306 			 * no need to call in6_pcbnotify, it should have been
   1307 			 * called via callback if necessary
   1308 			 */
   1309 			return;
   1310 		}
   1311 
   1312 		nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
   1313 		    (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1314 		if (nmatch == 0 && syn_cache_count &&
   1315 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1316 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1317 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1318 			syn_cache_unreach((struct sockaddr *)sa6_src,
   1319 					  sa, &th);
   1320 	} else {
   1321 		(void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
   1322 		    0, cmd, NULL, notify);
   1323 	}
   1324 }
   1325 #endif
   1326 
   1327 #ifdef INET
   1328 /* assumes that ip header and tcp header are contiguous on mbuf */
   1329 void *
   1330 tcp_ctlinput(cmd, sa, v)
   1331 	int cmd;
   1332 	struct sockaddr *sa;
   1333 	void *v;
   1334 {
   1335 	struct ip *ip = v;
   1336 	struct tcphdr *th;
   1337 	struct icmp *icp;
   1338 	extern const int inetctlerrmap[];
   1339 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
   1340 	int errno;
   1341 	int nmatch;
   1342 
   1343 	if (sa->sa_family != AF_INET ||
   1344 	    sa->sa_len != sizeof(struct sockaddr_in))
   1345 		return NULL;
   1346 	if ((unsigned)cmd >= PRC_NCMDS)
   1347 		return NULL;
   1348 	errno = inetctlerrmap[cmd];
   1349 	if (cmd == PRC_QUENCH)
   1350 		notify = tcp_quench;
   1351 	else if (PRC_IS_REDIRECT(cmd))
   1352 		notify = in_rtchange, ip = 0;
   1353 	else if (cmd == PRC_MSGSIZE && ip_mtudisc && ip && ip->ip_v == 4) {
   1354 		/*
   1355 		 * Check to see if we have a valid TCP connection
   1356 		 * corresponding to the address in the ICMP message
   1357 		 * payload.
   1358 		 *
   1359 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1360 		 */
   1361 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1362 		if (in_pcblookup_connect(&tcbtable,
   1363 					 ip->ip_dst, th->th_dport,
   1364 					 ip->ip_src, th->th_sport) == NULL)
   1365 			return NULL;
   1366 
   1367 		/*
   1368 		 * Now that we've validated that we are actually communicating
   1369 		 * with the host indicated in the ICMP message, locate the
   1370 		 * ICMP header, recalculate the new MTU, and create the
   1371 		 * corresponding routing entry.
   1372 		 */
   1373 		icp = (struct icmp *)((caddr_t)ip -
   1374 		    offsetof(struct icmp, icmp_ip));
   1375 		icmp_mtudisc(icp, ip->ip_dst);
   1376 
   1377 		return NULL;
   1378 	} else if (cmd == PRC_HOSTDEAD)
   1379 		ip = 0;
   1380 	else if (errno == 0)
   1381 		return NULL;
   1382 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1383 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1384 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
   1385 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1386 		if (nmatch == 0 && syn_cache_count &&
   1387 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1388 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1389 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1390 			struct sockaddr_in sin;
   1391 			bzero(&sin, sizeof(sin));
   1392 			sin.sin_len = sizeof(sin);
   1393 			sin.sin_family = AF_INET;
   1394 			sin.sin_port = th->th_sport;
   1395 			sin.sin_addr = ip->ip_src;
   1396 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1397 		}
   1398 
   1399 		/* XXX mapped address case */
   1400 	} else
   1401 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
   1402 		    notify);
   1403 	return NULL;
   1404 }
   1405 
   1406 /*
   1407  * When a source quence is received, we are being notifed of congestion.
   1408  * Close the congestion window down to the Loss Window (one segment).
   1409  * We will gradually open it again as we proceed.
   1410  */
   1411 void
   1412 tcp_quench(inp, errno)
   1413 	struct inpcb *inp;
   1414 	int errno;
   1415 {
   1416 	struct tcpcb *tp = intotcpcb(inp);
   1417 
   1418 	if (tp)
   1419 		tp->snd_cwnd = tp->t_segsz;
   1420 }
   1421 #endif
   1422 
   1423 #ifdef INET6
   1424 void
   1425 tcp6_quench(in6p, errno)
   1426 	struct in6pcb *in6p;
   1427 	int errno;
   1428 {
   1429 	struct tcpcb *tp = in6totcpcb(in6p);
   1430 
   1431 	if (tp)
   1432 		tp->snd_cwnd = tp->t_segsz;
   1433 }
   1434 #endif
   1435 
   1436 #ifdef INET
   1437 /*
   1438  * Path MTU Discovery handlers.
   1439  */
   1440 void
   1441 tcp_mtudisc_callback(faddr)
   1442 	struct in_addr faddr;
   1443 {
   1444 
   1445 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1446 }
   1447 
   1448 /*
   1449  * On receipt of path MTU corrections, flush old route and replace it
   1450  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1451  * that all packets will be received.
   1452  */
   1453 void
   1454 tcp_mtudisc(inp, errno)
   1455 	struct inpcb *inp;
   1456 	int errno;
   1457 {
   1458 	struct tcpcb *tp = intotcpcb(inp);
   1459 	struct rtentry *rt = in_pcbrtentry(inp);
   1460 
   1461 	if (tp != 0) {
   1462 		if (rt != 0) {
   1463 			/*
   1464 			 * If this was not a host route, remove and realloc.
   1465 			 */
   1466 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1467 				in_rtchange(inp, errno);
   1468 				if ((rt = in_pcbrtentry(inp)) == 0)
   1469 					return;
   1470 			}
   1471 
   1472 			/*
   1473 			 * Slow start out of the error condition.  We
   1474 			 * use the MTU because we know it's smaller
   1475 			 * than the previously transmitted segment.
   1476 			 *
   1477 			 * Note: This is more conservative than the
   1478 			 * suggestion in draft-floyd-incr-init-win-03.
   1479 			 */
   1480 			if (rt->rt_rmx.rmx_mtu != 0)
   1481 				tp->snd_cwnd =
   1482 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1483 				    rt->rt_rmx.rmx_mtu);
   1484 		}
   1485 
   1486 		/*
   1487 		 * Resend unacknowledged packets.
   1488 		 */
   1489 		tp->snd_nxt = tp->snd_una;
   1490 		tcp_output(tp);
   1491 	}
   1492 }
   1493 #endif
   1494 
   1495 #ifdef INET6
   1496 /*
   1497  * Path MTU Discovery handlers.
   1498  */
   1499 void
   1500 tcp6_mtudisc_callback(faddr)
   1501 	struct in6_addr *faddr;
   1502 {
   1503 	struct sockaddr_in6 sin6;
   1504 
   1505 	bzero(&sin6, sizeof(sin6));
   1506 	sin6.sin6_family = AF_INET6;
   1507 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1508 	sin6.sin6_addr = *faddr;
   1509 	(void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
   1510 	    (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1511 }
   1512 
   1513 void
   1514 tcp6_mtudisc(in6p, errno)
   1515 	struct in6pcb *in6p;
   1516 	int errno;
   1517 {
   1518 	struct tcpcb *tp = in6totcpcb(in6p);
   1519 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1520 
   1521 	if (tp != 0) {
   1522 		if (rt != 0) {
   1523 			/*
   1524 			 * If this was not a host route, remove and realloc.
   1525 			 */
   1526 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1527 				in6_rtchange(in6p, errno);
   1528 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1529 					return;
   1530 			}
   1531 
   1532 			/*
   1533 			 * Slow start out of the error condition.  We
   1534 			 * use the MTU because we know it's smaller
   1535 			 * than the previously transmitted segment.
   1536 			 *
   1537 			 * Note: This is more conservative than the
   1538 			 * suggestion in draft-floyd-incr-init-win-03.
   1539 			 */
   1540 			if (rt->rt_rmx.rmx_mtu != 0)
   1541 				tp->snd_cwnd =
   1542 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1543 				    rt->rt_rmx.rmx_mtu);
   1544 		}
   1545 
   1546 		/*
   1547 		 * Resend unacknowledged packets.
   1548 		 */
   1549 		tp->snd_nxt = tp->snd_una;
   1550 		tcp_output(tp);
   1551 	}
   1552 }
   1553 #endif /* INET6 */
   1554 
   1555 /*
   1556  * Compute the MSS to advertise to the peer.  Called only during
   1557  * the 3-way handshake.  If we are the server (peer initiated
   1558  * connection), we are called with a pointer to the interface
   1559  * on which the SYN packet arrived.  If we are the client (we
   1560  * initiated connection), we are called with a pointer to the
   1561  * interface out which this connection should go.
   1562  *
   1563  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1564  * header size from MSS advertisement.  MSS option must hold the maximum
   1565  * segment size we can accept, so it must always be:
   1566  *	 max(if mtu) - ip header - tcp header
   1567  */
   1568 u_long
   1569 tcp_mss_to_advertise(ifp, af)
   1570 	const struct ifnet *ifp;
   1571 	int af;
   1572 {
   1573 	extern u_long in_maxmtu;
   1574 	u_long mss = 0;
   1575 	u_long hdrsiz;
   1576 
   1577 	/*
   1578 	 * In order to avoid defeating path MTU discovery on the peer,
   1579 	 * we advertise the max MTU of all attached networks as our MSS,
   1580 	 * per RFC 1191, section 3.1.
   1581 	 *
   1582 	 * We provide the option to advertise just the MTU of
   1583 	 * the interface on which we hope this connection will
   1584 	 * be receiving.  If we are responding to a SYN, we
   1585 	 * will have a pretty good idea about this, but when
   1586 	 * initiating a connection there is a bit more doubt.
   1587 	 *
   1588 	 * We also need to ensure that loopback has a large enough
   1589 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1590 	 */
   1591 
   1592 	if (ifp != NULL)
   1593 		mss = ifp->if_mtu;
   1594 
   1595 	if (tcp_mss_ifmtu == 0)
   1596 		switch (af) {
   1597 		case AF_INET:
   1598 			mss = max(in_maxmtu, mss);
   1599 			break;
   1600 #ifdef INET6
   1601 		case AF_INET6:
   1602 			mss = max(in6_maxmtu, mss);
   1603 			break;
   1604 #endif
   1605 		}
   1606 
   1607 	switch (af) {
   1608 	case AF_INET:
   1609 		hdrsiz = sizeof(struct ip);
   1610 		break;
   1611 #ifdef INET6
   1612 	case AF_INET6:
   1613 		hdrsiz = sizeof(struct ip6_hdr);
   1614 		break;
   1615 #endif
   1616 	default:
   1617 		hdrsiz = 0;
   1618 		break;
   1619 	}
   1620 	hdrsiz += sizeof(struct tcphdr);
   1621 	if (mss > hdrsiz)
   1622 		mss -= hdrsiz;
   1623 
   1624 	mss = max(tcp_mssdflt, mss);
   1625 	return (mss);
   1626 }
   1627 
   1628 /*
   1629  * Set connection variables based on the peer's advertised MSS.
   1630  * We are passed the TCPCB for the actual connection.  If we
   1631  * are the server, we are called by the compressed state engine
   1632  * when the 3-way handshake is complete.  If we are the client,
   1633  * we are called when we receive the SYN,ACK from the server.
   1634  *
   1635  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1636  * before this routine is called!
   1637  */
   1638 void
   1639 tcp_mss_from_peer(tp, offer)
   1640 	struct tcpcb *tp;
   1641 	int offer;
   1642 {
   1643 	struct socket *so;
   1644 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1645 	struct rtentry *rt;
   1646 #endif
   1647 	u_long bufsize;
   1648 	int mss;
   1649 
   1650 #ifdef DIAGNOSTIC
   1651 	if (tp->t_inpcb && tp->t_in6pcb)
   1652 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1653 #endif
   1654 	so = NULL;
   1655 	rt = NULL;
   1656 #ifdef INET
   1657 	if (tp->t_inpcb) {
   1658 		so = tp->t_inpcb->inp_socket;
   1659 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1660 		rt = in_pcbrtentry(tp->t_inpcb);
   1661 #endif
   1662 	}
   1663 #endif
   1664 #ifdef INET6
   1665 	if (tp->t_in6pcb) {
   1666 		so = tp->t_in6pcb->in6p_socket;
   1667 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1668 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1669 #endif
   1670 	}
   1671 #endif
   1672 
   1673 	/*
   1674 	 * As per RFC1122, use the default MSS value, unless they
   1675 	 * sent us an offer.  Do not accept offers less than 32 bytes.
   1676 	 */
   1677 	mss = tcp_mssdflt;
   1678 	if (offer)
   1679 		mss = offer;
   1680 	mss = max(mss, 32);		/* sanity */
   1681 	tp->t_peermss = mss;
   1682 	mss -= tcp_optlen(tp);
   1683 #ifdef INET
   1684 	if (tp->t_inpcb)
   1685 		mss -= ip_optlen(tp->t_inpcb);
   1686 #endif
   1687 #ifdef INET6
   1688 	if (tp->t_in6pcb)
   1689 		mss -= ip6_optlen(tp->t_in6pcb);
   1690 #endif
   1691 
   1692 	/*
   1693 	 * If there's a pipesize, change the socket buffer to that size.
   1694 	 * Make the socket buffer an integral number of MSS units.  If
   1695 	 * the MSS is larger than the socket buffer, artificially decrease
   1696 	 * the MSS.
   1697 	 */
   1698 #ifdef RTV_SPIPE
   1699 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1700 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1701 	else
   1702 #endif
   1703 		bufsize = so->so_snd.sb_hiwat;
   1704 	if (bufsize < mss)
   1705 		mss = bufsize;
   1706 	else {
   1707 		bufsize = roundup(bufsize, mss);
   1708 		if (bufsize > sb_max)
   1709 			bufsize = sb_max;
   1710 		(void) sbreserve(&so->so_snd, bufsize);
   1711 	}
   1712 	tp->t_segsz = mss;
   1713 
   1714 #ifdef RTV_SSTHRESH
   1715 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1716 		/*
   1717 		 * There's some sort of gateway or interface buffer
   1718 		 * limit on the path.  Use this to set the slow
   1719 		 * start threshold, but set the threshold to no less
   1720 		 * than 2 * MSS.
   1721 		 */
   1722 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1723 	}
   1724 #endif
   1725 }
   1726 
   1727 /*
   1728  * Processing necessary when a TCP connection is established.
   1729  */
   1730 void
   1731 tcp_established(tp)
   1732 	struct tcpcb *tp;
   1733 {
   1734 	struct socket *so;
   1735 #ifdef RTV_RPIPE
   1736 	struct rtentry *rt;
   1737 #endif
   1738 	u_long bufsize;
   1739 
   1740 #ifdef DIAGNOSTIC
   1741 	if (tp->t_inpcb && tp->t_in6pcb)
   1742 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   1743 #endif
   1744 	so = NULL;
   1745 	rt = NULL;
   1746 #ifdef INET
   1747 	if (tp->t_inpcb) {
   1748 		so = tp->t_inpcb->inp_socket;
   1749 #if defined(RTV_RPIPE)
   1750 		rt = in_pcbrtentry(tp->t_inpcb);
   1751 #endif
   1752 	}
   1753 #endif
   1754 #ifdef INET6
   1755 	if (tp->t_in6pcb) {
   1756 		so = tp->t_in6pcb->in6p_socket;
   1757 #if defined(RTV_RPIPE)
   1758 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1759 #endif
   1760 	}
   1761 #endif
   1762 
   1763 	tp->t_state = TCPS_ESTABLISHED;
   1764 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1765 
   1766 #ifdef RTV_RPIPE
   1767 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   1768 		bufsize = rt->rt_rmx.rmx_recvpipe;
   1769 	else
   1770 #endif
   1771 		bufsize = so->so_rcv.sb_hiwat;
   1772 	if (bufsize > tp->t_ourmss) {
   1773 		bufsize = roundup(bufsize, tp->t_ourmss);
   1774 		if (bufsize > sb_max)
   1775 			bufsize = sb_max;
   1776 		(void) sbreserve(&so->so_rcv, bufsize);
   1777 	}
   1778 }
   1779 
   1780 /*
   1781  * Check if there's an initial rtt or rttvar.  Convert from the
   1782  * route-table units to scaled multiples of the slow timeout timer.
   1783  * Called only during the 3-way handshake.
   1784  */
   1785 void
   1786 tcp_rmx_rtt(tp)
   1787 	struct tcpcb *tp;
   1788 {
   1789 #ifdef RTV_RTT
   1790 	struct rtentry *rt = NULL;
   1791 	int rtt;
   1792 
   1793 #ifdef DIAGNOSTIC
   1794 	if (tp->t_inpcb && tp->t_in6pcb)
   1795 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   1796 #endif
   1797 #ifdef INET
   1798 	if (tp->t_inpcb)
   1799 		rt = in_pcbrtentry(tp->t_inpcb);
   1800 #endif
   1801 #ifdef INET6
   1802 	if (tp->t_in6pcb)
   1803 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1804 #endif
   1805 	if (rt == NULL)
   1806 		return;
   1807 
   1808 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   1809 		/*
   1810 		 * XXX The lock bit for MTU indicates that the value
   1811 		 * is also a minimum value; this is subject to time.
   1812 		 */
   1813 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   1814 			TCPT_RANGESET(tp->t_rttmin,
   1815 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   1816 			    TCPTV_MIN, TCPTV_REXMTMAX);
   1817 		tp->t_srtt = rtt /
   1818 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1819 		if (rt->rt_rmx.rmx_rttvar) {
   1820 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   1821 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   1822 				(TCP_RTTVAR_SHIFT + 2));
   1823 		} else {
   1824 			/* Default variation is +- 1 rtt */
   1825 			tp->t_rttvar =
   1826 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   1827 		}
   1828 		TCPT_RANGESET(tp->t_rxtcur,
   1829 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   1830 		    tp->t_rttmin, TCPTV_REXMTMAX);
   1831 	}
   1832 #endif
   1833 }
   1834 
   1835 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   1836 #if NRND > 0
   1837 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   1838 #endif
   1839 
   1840 /*
   1841  * Get a new sequence value given a tcp control block
   1842  */
   1843 tcp_seq
   1844 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   1845 {
   1846 
   1847 #ifdef INET
   1848 	if (tp->t_inpcb != NULL) {
   1849 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   1850 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   1851 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   1852 		    addin));
   1853 	}
   1854 #endif
   1855 #ifdef INET6
   1856 	if (tp->t_in6pcb != NULL) {
   1857 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   1858 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   1859 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   1860 		    addin));
   1861 	}
   1862 #endif
   1863 	/* Not possible. */
   1864 	panic("tcp_new_iss");
   1865 }
   1866 
   1867 /*
   1868  * This routine actually generates a new TCP initial sequence number.
   1869  */
   1870 tcp_seq
   1871 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   1872     size_t addrsz, tcp_seq addin)
   1873 {
   1874 	tcp_seq tcp_iss;
   1875 
   1876 #if NRND > 0
   1877 	static int beenhere;
   1878 
   1879 	/*
   1880 	 * If we haven't been here before, initialize our cryptographic
   1881 	 * hash secret.
   1882 	 */
   1883 	if (beenhere == 0) {
   1884 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   1885 		    RND_EXTRACT_ANY);
   1886 		beenhere = 1;
   1887 	}
   1888 
   1889 	if (tcp_do_rfc1948) {
   1890 		MD5_CTX ctx;
   1891 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   1892 
   1893 		/*
   1894 		 * Compute the base value of the ISS.  It is a hash
   1895 		 * of (saddr, sport, daddr, dport, secret).
   1896 		 */
   1897 		MD5Init(&ctx);
   1898 
   1899 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   1900 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   1901 
   1902 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   1903 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   1904 
   1905 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   1906 
   1907 		MD5Final(hash, &ctx);
   1908 
   1909 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   1910 
   1911 		/*
   1912 		 * Now increment our "timer", and add it in to
   1913 		 * the computed value.
   1914 		 *
   1915 		 * XXX Use `addin'?
   1916 		 * XXX TCP_ISSINCR too large to use?
   1917 		 */
   1918 		tcp_iss_seq += TCP_ISSINCR;
   1919 #ifdef TCPISS_DEBUG
   1920 		printf("ISS hash 0x%08x, ", tcp_iss);
   1921 #endif
   1922 		tcp_iss += tcp_iss_seq + addin;
   1923 #ifdef TCPISS_DEBUG
   1924 		printf("new ISS 0x%08x\n", tcp_iss);
   1925 #endif
   1926 	} else
   1927 #endif /* NRND > 0 */
   1928 	{
   1929 		/*
   1930 		 * Randomize.
   1931 		 */
   1932 #if NRND > 0
   1933 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   1934 #else
   1935 		tcp_iss = random();
   1936 #endif
   1937 
   1938 		/*
   1939 		 * If we were asked to add some amount to a known value,
   1940 		 * we will take a random value obtained above, mask off
   1941 		 * the upper bits, and add in the known value.  We also
   1942 		 * add in a constant to ensure that we are at least a
   1943 		 * certain distance from the original value.
   1944 		 *
   1945 		 * This is used when an old connection is in timed wait
   1946 		 * and we have a new one coming in, for instance.
   1947 		 */
   1948 		if (addin != 0) {
   1949 #ifdef TCPISS_DEBUG
   1950 			printf("Random %08x, ", tcp_iss);
   1951 #endif
   1952 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   1953 			tcp_iss += addin + TCP_ISSINCR;
   1954 #ifdef TCPISS_DEBUG
   1955 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   1956 #endif
   1957 		} else {
   1958 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   1959 			tcp_iss += tcp_iss_seq;
   1960 			tcp_iss_seq += TCP_ISSINCR;
   1961 #ifdef TCPISS_DEBUG
   1962 			printf("ISS %08x\n", tcp_iss);
   1963 #endif
   1964 		}
   1965 	}
   1966 
   1967 	if (tcp_compat_42) {
   1968 		/*
   1969 		 * Limit it to the positive range for really old TCP
   1970 		 * implementations.
   1971 		 */
   1972 		if (tcp_iss >= 0x80000000)
   1973 			tcp_iss &= 0x7fffffff;		/* XXX */
   1974 	}
   1975 
   1976 	return (tcp_iss);
   1977 }
   1978 
   1979 #ifdef IPSEC
   1980 /* compute ESP/AH header size for TCP, including outer IP header. */
   1981 size_t
   1982 ipsec4_hdrsiz_tcp(tp)
   1983 	struct tcpcb *tp;
   1984 {
   1985 	struct inpcb *inp;
   1986 	size_t hdrsiz;
   1987 
   1988 	/* XXX mapped addr case (tp->t_in6pcb) */
   1989 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   1990 		return 0;
   1991 	switch (tp->t_family) {
   1992 	case AF_INET:
   1993 		/* XXX: should use currect direction. */
   1994 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   1995 		break;
   1996 	default:
   1997 		hdrsiz = 0;
   1998 		break;
   1999 	}
   2000 
   2001 	return hdrsiz;
   2002 }
   2003 
   2004 #ifdef INET6
   2005 size_t
   2006 ipsec6_hdrsiz_tcp(tp)
   2007 	struct tcpcb *tp;
   2008 {
   2009 	struct in6pcb *in6p;
   2010 	size_t hdrsiz;
   2011 
   2012 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2013 		return 0;
   2014 	switch (tp->t_family) {
   2015 	case AF_INET6:
   2016 		/* XXX: should use currect direction. */
   2017 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2018 		break;
   2019 	case AF_INET:
   2020 		/* mapped address case - tricky */
   2021 	default:
   2022 		hdrsiz = 0;
   2023 		break;
   2024 	}
   2025 
   2026 	return hdrsiz;
   2027 }
   2028 #endif
   2029 #endif /*IPSEC*/
   2030 
   2031 /*
   2032  * Determine the length of the TCP options for this connection.
   2033  *
   2034  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2035  *       all of the space?  Otherwise we can't exactly be incrementing
   2036  *       cwnd by an amount that varies depending on the amount we last
   2037  *       had to SACK!
   2038  */
   2039 
   2040 u_int
   2041 tcp_optlen(tp)
   2042 	struct tcpcb *tp;
   2043 {
   2044 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2045 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2046 		return TCPOLEN_TSTAMP_APPA;
   2047 	else
   2048 		return 0;
   2049 }
   2050