tcp_subr.c revision 1.125 1 /* $NetBSD: tcp_subr.c,v 1.125 2002/04/27 01:47:58 thorpej Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
102 */
103
104 #include <sys/cdefs.h>
105 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.125 2002/04/27 01:47:58 thorpej Exp $");
106
107 #include "opt_inet.h"
108 #include "opt_ipsec.h"
109 #include "opt_tcp_compat_42.h"
110 #include "opt_inet_csum.h"
111 #include "rnd.h"
112
113 #include <sys/param.h>
114 #include <sys/proc.h>
115 #include <sys/systm.h>
116 #include <sys/malloc.h>
117 #include <sys/mbuf.h>
118 #include <sys/socket.h>
119 #include <sys/socketvar.h>
120 #include <sys/protosw.h>
121 #include <sys/errno.h>
122 #include <sys/kernel.h>
123 #include <sys/pool.h>
124 #if NRND > 0
125 #include <sys/md5.h>
126 #include <sys/rnd.h>
127 #endif
128
129 #include <net/route.h>
130 #include <net/if.h>
131
132 #include <netinet/in.h>
133 #include <netinet/in_systm.h>
134 #include <netinet/ip.h>
135 #include <netinet/in_pcb.h>
136 #include <netinet/ip_var.h>
137 #include <netinet/ip_icmp.h>
138
139 #ifdef INET6
140 #ifndef INET
141 #include <netinet/in.h>
142 #endif
143 #include <netinet/ip6.h>
144 #include <netinet6/in6_pcb.h>
145 #include <netinet6/ip6_var.h>
146 #include <netinet6/in6_var.h>
147 #include <netinet6/ip6protosw.h>
148 #include <netinet/icmp6.h>
149 #endif
150
151 #include <netinet/tcp.h>
152 #include <netinet/tcp_fsm.h>
153 #include <netinet/tcp_seq.h>
154 #include <netinet/tcp_timer.h>
155 #include <netinet/tcp_var.h>
156 #include <netinet/tcpip.h>
157
158 #ifdef IPSEC
159 #include <netinet6/ipsec.h>
160 #endif /*IPSEC*/
161
162 #ifdef INET6
163 struct in6pcb tcb6;
164 #endif
165
166 /* patchable/settable parameters for tcp */
167 int tcp_mssdflt = TCP_MSS;
168 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
169 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
170 #if NRND > 0
171 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
172 #endif
173 int tcp_do_sack = 1; /* selective acknowledgement */
174 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
175 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
176 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
177 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
178 int tcp_init_win = 1;
179 int tcp_mss_ifmtu = 0;
180 #ifdef TCP_COMPAT_42
181 int tcp_compat_42 = 1;
182 #else
183 int tcp_compat_42 = 0;
184 #endif
185 int tcp_rst_ppslim = 100; /* 100pps */
186
187 /* tcb hash */
188 #ifndef TCBHASHSIZE
189 #define TCBHASHSIZE 128
190 #endif
191 int tcbhashsize = TCBHASHSIZE;
192
193 /* syn hash parameters */
194 #define TCP_SYN_HASH_SIZE 293
195 #define TCP_SYN_BUCKET_SIZE 35
196 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
197 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
198 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
199 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
200
201 int tcp_freeq __P((struct tcpcb *));
202
203 #ifdef INET
204 void tcp_mtudisc_callback __P((struct in_addr));
205 #endif
206 #ifdef INET6
207 void tcp6_mtudisc_callback __P((struct in6_addr *));
208 #endif
209
210 void tcp_mtudisc __P((struct inpcb *, int));
211 #ifdef INET6
212 void tcp6_mtudisc __P((struct in6pcb *, int));
213 #endif
214
215 struct pool tcpcb_pool;
216
217 #ifdef TCP_CSUM_COUNTERS
218 #include <sys/device.h>
219
220 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
221 NULL, "tcp", "hwcsum bad");
222 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
223 NULL, "tcp", "hwcsum ok");
224 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
225 NULL, "tcp", "hwcsum data");
226 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
227 NULL, "tcp", "swcsum");
228 #endif /* TCP_CSUM_COUNTERS */
229
230 #ifdef TCP_OUTPUT_COUNTERS
231 #include <sys/device.h>
232
233 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
234 NULL, "tcp", "output big header");
235 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
236 NULL, "tcp", "output copy small");
237 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
238 NULL, "tcp", "output copy big");
239 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
240 NULL, "tcp", "output reference big");
241 #endif /* TCP_OUTPUT_COUNTERS */
242
243 /*
244 * Tcp initialization
245 */
246 void
247 tcp_init()
248 {
249 int hlen;
250
251 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
252 NULL);
253 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
254 #ifdef INET6
255 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
256 #endif
257
258 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
259 #ifdef INET6
260 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
261 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
262 #endif
263 if (max_protohdr < hlen)
264 max_protohdr = hlen;
265 if (max_linkhdr + hlen > MHLEN)
266 panic("tcp_init");
267
268 #ifdef INET
269 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
270 #endif
271 #ifdef INET6
272 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
273 #endif
274
275 /* Initialize timer state. */
276 tcp_timer_init();
277
278 /* Initialize the compressed state engine. */
279 syn_cache_init();
280
281 #ifdef TCP_CSUM_COUNTERS
282 evcnt_attach_static(&tcp_hwcsum_bad);
283 evcnt_attach_static(&tcp_hwcsum_ok);
284 evcnt_attach_static(&tcp_hwcsum_data);
285 evcnt_attach_static(&tcp_swcsum);
286 #endif /* TCP_CSUM_COUNTERS */
287
288 #ifdef TCP_OUTPUT_COUNTERS
289 evcnt_attach_static(&tcp_output_bigheader);
290 evcnt_attach_static(&tcp_output_copysmall);
291 evcnt_attach_static(&tcp_output_copybig);
292 evcnt_attach_static(&tcp_output_refbig);
293 #endif /* TCP_OUTPUT_COUNTERS */
294 }
295
296 /*
297 * Create template to be used to send tcp packets on a connection.
298 * Call after host entry created, allocates an mbuf and fills
299 * in a skeletal tcp/ip header, minimizing the amount of work
300 * necessary when the connection is used.
301 */
302 struct mbuf *
303 tcp_template(tp)
304 struct tcpcb *tp;
305 {
306 struct inpcb *inp = tp->t_inpcb;
307 #ifdef INET6
308 struct in6pcb *in6p = tp->t_in6pcb;
309 #endif
310 struct tcphdr *n;
311 struct mbuf *m;
312 int hlen;
313
314 switch (tp->t_family) {
315 case AF_INET:
316 hlen = sizeof(struct ip);
317 if (inp)
318 break;
319 #ifdef INET6
320 if (in6p) {
321 /* mapped addr case */
322 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
323 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
324 break;
325 }
326 #endif
327 return NULL; /*EINVAL*/
328 #ifdef INET6
329 case AF_INET6:
330 hlen = sizeof(struct ip6_hdr);
331 if (in6p) {
332 /* more sainty check? */
333 break;
334 }
335 return NULL; /*EINVAL*/
336 #endif
337 default:
338 hlen = 0; /*pacify gcc*/
339 return NULL; /*EAFNOSUPPORT*/
340 }
341 #ifdef DIAGNOSTIC
342 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
343 panic("mclbytes too small for t_template");
344 #endif
345 m = tp->t_template;
346 if (m && m->m_len == hlen + sizeof(struct tcphdr))
347 ;
348 else {
349 if (m)
350 m_freem(m);
351 m = tp->t_template = NULL;
352 MGETHDR(m, M_DONTWAIT, MT_HEADER);
353 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
354 MCLGET(m, M_DONTWAIT);
355 if ((m->m_flags & M_EXT) == 0) {
356 m_free(m);
357 m = NULL;
358 }
359 }
360 if (m == NULL)
361 return NULL;
362 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
363 }
364
365 bzero(mtod(m, caddr_t), m->m_len);
366
367 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
368
369 switch (tp->t_family) {
370 case AF_INET:
371 {
372 struct ipovly *ipov;
373 mtod(m, struct ip *)->ip_v = 4;
374 ipov = mtod(m, struct ipovly *);
375 ipov->ih_pr = IPPROTO_TCP;
376 ipov->ih_len = htons(sizeof(struct tcphdr));
377 if (inp) {
378 ipov->ih_src = inp->inp_laddr;
379 ipov->ih_dst = inp->inp_faddr;
380 }
381 #ifdef INET6
382 else if (in6p) {
383 /* mapped addr case */
384 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
385 sizeof(ipov->ih_src));
386 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
387 sizeof(ipov->ih_dst));
388 }
389 #endif
390 /*
391 * Compute the pseudo-header portion of the checksum
392 * now. We incrementally add in the TCP option and
393 * payload lengths later, and then compute the TCP
394 * checksum right before the packet is sent off onto
395 * the wire.
396 */
397 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
398 ipov->ih_dst.s_addr,
399 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
400 break;
401 }
402 #ifdef INET6
403 case AF_INET6:
404 {
405 struct ip6_hdr *ip6;
406 mtod(m, struct ip *)->ip_v = 6;
407 ip6 = mtod(m, struct ip6_hdr *);
408 ip6->ip6_nxt = IPPROTO_TCP;
409 ip6->ip6_plen = htons(sizeof(struct tcphdr));
410 ip6->ip6_src = in6p->in6p_laddr;
411 ip6->ip6_dst = in6p->in6p_faddr;
412 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
413 if (ip6_auto_flowlabel) {
414 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
415 ip6->ip6_flow |=
416 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
417 }
418 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
419 ip6->ip6_vfc |= IPV6_VERSION;
420
421 /*
422 * Compute the pseudo-header portion of the checksum
423 * now. We incrementally add in the TCP option and
424 * payload lengths later, and then compute the TCP
425 * checksum right before the packet is sent off onto
426 * the wire.
427 */
428 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
429 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
430 htonl(IPPROTO_TCP));
431 break;
432 }
433 #endif
434 }
435 if (inp) {
436 n->th_sport = inp->inp_lport;
437 n->th_dport = inp->inp_fport;
438 }
439 #ifdef INET6
440 else if (in6p) {
441 n->th_sport = in6p->in6p_lport;
442 n->th_dport = in6p->in6p_fport;
443 }
444 #endif
445 n->th_seq = 0;
446 n->th_ack = 0;
447 n->th_x2 = 0;
448 n->th_off = 5;
449 n->th_flags = 0;
450 n->th_win = 0;
451 n->th_urp = 0;
452 return (m);
453 }
454
455 /*
456 * Send a single message to the TCP at address specified by
457 * the given TCP/IP header. If m == 0, then we make a copy
458 * of the tcpiphdr at ti and send directly to the addressed host.
459 * This is used to force keep alive messages out using the TCP
460 * template for a connection tp->t_template. If flags are given
461 * then we send a message back to the TCP which originated the
462 * segment ti, and discard the mbuf containing it and any other
463 * attached mbufs.
464 *
465 * In any case the ack and sequence number of the transmitted
466 * segment are as specified by the parameters.
467 */
468 int
469 tcp_respond(tp, template, m, th0, ack, seq, flags)
470 struct tcpcb *tp;
471 struct mbuf *template;
472 struct mbuf *m;
473 struct tcphdr *th0;
474 tcp_seq ack, seq;
475 int flags;
476 {
477 struct route *ro;
478 int error, tlen, win = 0;
479 int hlen;
480 struct ip *ip;
481 #ifdef INET6
482 struct ip6_hdr *ip6;
483 #endif
484 int family; /* family on packet, not inpcb/in6pcb! */
485 struct tcphdr *th;
486
487 if (tp != NULL && (flags & TH_RST) == 0) {
488 #ifdef DIAGNOSTIC
489 if (tp->t_inpcb && tp->t_in6pcb)
490 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
491 #endif
492 #ifdef INET
493 if (tp->t_inpcb)
494 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
495 #endif
496 #ifdef INET6
497 if (tp->t_in6pcb)
498 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
499 #endif
500 }
501
502 ip = NULL;
503 #ifdef INET6
504 ip6 = NULL;
505 #endif
506 if (m == 0) {
507 if (!template)
508 return EINVAL;
509
510 /* get family information from template */
511 switch (mtod(template, struct ip *)->ip_v) {
512 case 4:
513 family = AF_INET;
514 hlen = sizeof(struct ip);
515 break;
516 #ifdef INET6
517 case 6:
518 family = AF_INET6;
519 hlen = sizeof(struct ip6_hdr);
520 break;
521 #endif
522 default:
523 return EAFNOSUPPORT;
524 }
525
526 MGETHDR(m, M_DONTWAIT, MT_HEADER);
527 if (m) {
528 MCLGET(m, M_DONTWAIT);
529 if ((m->m_flags & M_EXT) == 0) {
530 m_free(m);
531 m = NULL;
532 }
533 }
534 if (m == NULL)
535 return (ENOBUFS);
536
537 if (tcp_compat_42)
538 tlen = 1;
539 else
540 tlen = 0;
541
542 m->m_data += max_linkhdr;
543 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
544 template->m_len);
545 switch (family) {
546 case AF_INET:
547 ip = mtod(m, struct ip *);
548 th = (struct tcphdr *)(ip + 1);
549 break;
550 #ifdef INET6
551 case AF_INET6:
552 ip6 = mtod(m, struct ip6_hdr *);
553 th = (struct tcphdr *)(ip6 + 1);
554 break;
555 #endif
556 #if 0
557 default:
558 /* noone will visit here */
559 m_freem(m);
560 return EAFNOSUPPORT;
561 #endif
562 }
563 flags = TH_ACK;
564 } else {
565
566 if ((m->m_flags & M_PKTHDR) == 0) {
567 #if 0
568 printf("non PKTHDR to tcp_respond\n");
569 #endif
570 m_freem(m);
571 return EINVAL;
572 }
573 #ifdef DIAGNOSTIC
574 if (!th0)
575 panic("th0 == NULL in tcp_respond");
576 #endif
577
578 /* get family information from m */
579 switch (mtod(m, struct ip *)->ip_v) {
580 case 4:
581 family = AF_INET;
582 hlen = sizeof(struct ip);
583 ip = mtod(m, struct ip *);
584 break;
585 #ifdef INET6
586 case 6:
587 family = AF_INET6;
588 hlen = sizeof(struct ip6_hdr);
589 ip6 = mtod(m, struct ip6_hdr *);
590 break;
591 #endif
592 default:
593 m_freem(m);
594 return EAFNOSUPPORT;
595 }
596 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
597 tlen = sizeof(*th0);
598 else
599 tlen = th0->th_off << 2;
600
601 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
602 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
603 m->m_len = hlen + tlen;
604 m_freem(m->m_next);
605 m->m_next = NULL;
606 } else {
607 struct mbuf *n;
608
609 #ifdef DIAGNOSTIC
610 if (max_linkhdr + hlen + tlen > MCLBYTES) {
611 m_freem(m);
612 return EMSGSIZE;
613 }
614 #endif
615 MGETHDR(n, M_DONTWAIT, MT_HEADER);
616 if (n && max_linkhdr + hlen + tlen > MHLEN) {
617 MCLGET(n, M_DONTWAIT);
618 if ((n->m_flags & M_EXT) == 0) {
619 m_freem(n);
620 n = NULL;
621 }
622 }
623 if (!n) {
624 m_freem(m);
625 return ENOBUFS;
626 }
627
628 n->m_data += max_linkhdr;
629 n->m_len = hlen + tlen;
630 m_copyback(n, 0, hlen, mtod(m, caddr_t));
631 m_copyback(n, hlen, tlen, (caddr_t)th0);
632
633 m_freem(m);
634 m = n;
635 n = NULL;
636 }
637
638 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
639 switch (family) {
640 case AF_INET:
641 ip = mtod(m, struct ip *);
642 th = (struct tcphdr *)(ip + 1);
643 ip->ip_p = IPPROTO_TCP;
644 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
645 ip->ip_p = IPPROTO_TCP;
646 break;
647 #ifdef INET6
648 case AF_INET6:
649 ip6 = mtod(m, struct ip6_hdr *);
650 th = (struct tcphdr *)(ip6 + 1);
651 ip6->ip6_nxt = IPPROTO_TCP;
652 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
653 ip6->ip6_nxt = IPPROTO_TCP;
654 break;
655 #endif
656 #if 0
657 default:
658 /* noone will visit here */
659 m_freem(m);
660 return EAFNOSUPPORT;
661 #endif
662 }
663 xchg(th->th_dport, th->th_sport, u_int16_t);
664 #undef xchg
665 tlen = 0; /*be friendly with the following code*/
666 }
667 th->th_seq = htonl(seq);
668 th->th_ack = htonl(ack);
669 th->th_x2 = 0;
670 if ((flags & TH_SYN) == 0) {
671 if (tp)
672 win >>= tp->rcv_scale;
673 if (win > TCP_MAXWIN)
674 win = TCP_MAXWIN;
675 th->th_win = htons((u_int16_t)win);
676 th->th_off = sizeof (struct tcphdr) >> 2;
677 tlen += sizeof(*th);
678 } else
679 tlen += th->th_off << 2;
680 m->m_len = hlen + tlen;
681 m->m_pkthdr.len = hlen + tlen;
682 m->m_pkthdr.rcvif = (struct ifnet *) 0;
683 th->th_flags = flags;
684 th->th_urp = 0;
685
686 switch (family) {
687 #ifdef INET
688 case AF_INET:
689 {
690 struct ipovly *ipov = (struct ipovly *)ip;
691 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
692 ipov->ih_len = htons((u_int16_t)tlen);
693
694 th->th_sum = 0;
695 th->th_sum = in_cksum(m, hlen + tlen);
696 ip->ip_len = hlen + tlen; /*will be flipped on output*/
697 ip->ip_ttl = ip_defttl;
698 break;
699 }
700 #endif
701 #ifdef INET6
702 case AF_INET6:
703 {
704 th->th_sum = 0;
705 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
706 tlen);
707 ip6->ip6_plen = ntohs(tlen);
708 if (tp && tp->t_in6pcb) {
709 struct ifnet *oifp;
710 ro = (struct route *)&tp->t_in6pcb->in6p_route;
711 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
712 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
713 } else
714 ip6->ip6_hlim = ip6_defhlim;
715 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
716 if (ip6_auto_flowlabel) {
717 ip6->ip6_flow |=
718 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
719 }
720 break;
721 }
722 #endif
723 }
724
725 #ifdef IPSEC
726 (void)ipsec_setsocket(m, NULL);
727 #endif /*IPSEC*/
728
729 if (tp != NULL && tp->t_inpcb != NULL) {
730 ro = &tp->t_inpcb->inp_route;
731 #ifdef IPSEC
732 if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
733 m_freem(m);
734 return ENOBUFS;
735 }
736 #endif
737 #ifdef DIAGNOSTIC
738 if (family != AF_INET)
739 panic("tcp_respond: address family mismatch");
740 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
741 panic("tcp_respond: ip_dst %x != inp_faddr %x",
742 ntohl(ip->ip_dst.s_addr),
743 ntohl(tp->t_inpcb->inp_faddr.s_addr));
744 }
745 #endif
746 }
747 #ifdef INET6
748 else if (tp != NULL && tp->t_in6pcb != NULL) {
749 ro = (struct route *)&tp->t_in6pcb->in6p_route;
750 #ifdef IPSEC
751 if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
752 m_freem(m);
753 return ENOBUFS;
754 }
755 #endif
756 #ifdef DIAGNOSTIC
757 if (family == AF_INET) {
758 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
759 panic("tcp_respond: not mapped addr");
760 if (bcmp(&ip->ip_dst,
761 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
762 sizeof(ip->ip_dst)) != 0) {
763 panic("tcp_respond: ip_dst != in6p_faddr");
764 }
765 } else if (family == AF_INET6) {
766 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
767 panic("tcp_respond: ip6_dst != in6p_faddr");
768 } else
769 panic("tcp_respond: address family mismatch");
770 #endif
771 }
772 #endif
773 else
774 ro = NULL;
775
776 switch (family) {
777 #ifdef INET
778 case AF_INET:
779 error = ip_output(m, NULL, ro,
780 (ip_mtudisc ? IP_MTUDISC : 0),
781 NULL);
782 break;
783 #endif
784 #ifdef INET6
785 case AF_INET6:
786 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
787 NULL);
788 break;
789 #endif
790 default:
791 error = EAFNOSUPPORT;
792 break;
793 }
794
795 return (error);
796 }
797
798 /*
799 * Create a new TCP control block, making an
800 * empty reassembly queue and hooking it to the argument
801 * protocol control block.
802 */
803 struct tcpcb *
804 tcp_newtcpcb(family, aux)
805 int family; /* selects inpcb, or in6pcb */
806 void *aux;
807 {
808 struct tcpcb *tp;
809 int i;
810
811 switch (family) {
812 case PF_INET:
813 break;
814 #ifdef INET6
815 case PF_INET6:
816 break;
817 #endif
818 default:
819 return NULL;
820 }
821
822 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
823 if (tp == NULL)
824 return (NULL);
825 bzero((caddr_t)tp, sizeof(struct tcpcb));
826 LIST_INIT(&tp->segq);
827 LIST_INIT(&tp->timeq);
828 tp->t_family = family; /* may be overridden later on */
829 tp->t_peermss = tcp_mssdflt;
830 tp->t_ourmss = tcp_mssdflt;
831 tp->t_segsz = tcp_mssdflt;
832 LIST_INIT(&tp->t_sc);
833
834 callout_init(&tp->t_delack_ch);
835 for (i = 0; i < TCPT_NTIMERS; i++)
836 TCP_TIMER_INIT(tp, i);
837
838 tp->t_flags = 0;
839 if (tcp_do_rfc1323 && tcp_do_win_scale)
840 tp->t_flags |= TF_REQ_SCALE;
841 if (tcp_do_rfc1323 && tcp_do_timestamps)
842 tp->t_flags |= TF_REQ_TSTMP;
843 if (tcp_do_sack == 2)
844 tp->t_flags |= TF_WILL_SACK;
845 else if (tcp_do_sack == 1)
846 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
847 tp->t_flags |= TF_CANT_TXSACK;
848 switch (family) {
849 case PF_INET:
850 tp->t_inpcb = (struct inpcb *)aux;
851 break;
852 #ifdef INET6
853 case PF_INET6:
854 tp->t_in6pcb = (struct in6pcb *)aux;
855 break;
856 #endif
857 }
858 /*
859 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
860 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
861 * reasonable initial retransmit time.
862 */
863 tp->t_srtt = TCPTV_SRTTBASE;
864 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
865 tp->t_rttmin = TCPTV_MIN;
866 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
867 TCPTV_MIN, TCPTV_REXMTMAX);
868 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
869 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
870 if (family == AF_INET) {
871 struct inpcb *inp = (struct inpcb *)aux;
872 inp->inp_ip.ip_ttl = ip_defttl;
873 inp->inp_ppcb = (caddr_t)tp;
874 }
875 #ifdef INET6
876 else if (family == AF_INET6) {
877 struct in6pcb *in6p = (struct in6pcb *)aux;
878 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
879 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
880 : NULL);
881 in6p->in6p_ppcb = (caddr_t)tp;
882 }
883 #endif
884
885 /*
886 * Initialize our timebase. When we send timestamps, we take
887 * the delta from tcp_now -- this means each connection always
888 * gets a timebase of 0, which makes it, among other things,
889 * more difficult to determine how long a system has been up,
890 * and thus how many TCP sequence increments have occurred.
891 */
892 tp->ts_timebase = tcp_now;
893
894 return (tp);
895 }
896
897 /*
898 * Drop a TCP connection, reporting
899 * the specified error. If connection is synchronized,
900 * then send a RST to peer.
901 */
902 struct tcpcb *
903 tcp_drop(tp, errno)
904 struct tcpcb *tp;
905 int errno;
906 {
907 struct socket *so = NULL;
908
909 #ifdef DIAGNOSTIC
910 if (tp->t_inpcb && tp->t_in6pcb)
911 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
912 #endif
913 #ifdef INET
914 if (tp->t_inpcb)
915 so = tp->t_inpcb->inp_socket;
916 #endif
917 #ifdef INET6
918 if (tp->t_in6pcb)
919 so = tp->t_in6pcb->in6p_socket;
920 #endif
921 if (!so)
922 return NULL;
923
924 if (TCPS_HAVERCVDSYN(tp->t_state)) {
925 tp->t_state = TCPS_CLOSED;
926 (void) tcp_output(tp);
927 tcpstat.tcps_drops++;
928 } else
929 tcpstat.tcps_conndrops++;
930 if (errno == ETIMEDOUT && tp->t_softerror)
931 errno = tp->t_softerror;
932 so->so_error = errno;
933 return (tcp_close(tp));
934 }
935
936 /*
937 * Close a TCP control block:
938 * discard all space held by the tcp
939 * discard internet protocol block
940 * wake up any sleepers
941 */
942 struct tcpcb *
943 tcp_close(tp)
944 struct tcpcb *tp;
945 {
946 struct inpcb *inp;
947 #ifdef INET6
948 struct in6pcb *in6p;
949 #endif
950 struct socket *so;
951 #ifdef RTV_RTT
952 struct rtentry *rt;
953 #endif
954 struct route *ro;
955
956 inp = tp->t_inpcb;
957 #ifdef INET6
958 in6p = tp->t_in6pcb;
959 #endif
960 so = NULL;
961 ro = NULL;
962 if (inp) {
963 so = inp->inp_socket;
964 ro = &inp->inp_route;
965 }
966 #ifdef INET6
967 else if (in6p) {
968 so = in6p->in6p_socket;
969 ro = (struct route *)&in6p->in6p_route;
970 }
971 #endif
972
973 #ifdef RTV_RTT
974 /*
975 * If we sent enough data to get some meaningful characteristics,
976 * save them in the routing entry. 'Enough' is arbitrarily
977 * defined as the sendpipesize (default 4K) * 16. This would
978 * give us 16 rtt samples assuming we only get one sample per
979 * window (the usual case on a long haul net). 16 samples is
980 * enough for the srtt filter to converge to within 5% of the correct
981 * value; fewer samples and we could save a very bogus rtt.
982 *
983 * Don't update the default route's characteristics and don't
984 * update anything that the user "locked".
985 */
986 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
987 ro && (rt = ro->ro_rt) &&
988 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
989 u_long i = 0;
990
991 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
992 i = tp->t_srtt *
993 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
994 if (rt->rt_rmx.rmx_rtt && i)
995 /*
996 * filter this update to half the old & half
997 * the new values, converting scale.
998 * See route.h and tcp_var.h for a
999 * description of the scaling constants.
1000 */
1001 rt->rt_rmx.rmx_rtt =
1002 (rt->rt_rmx.rmx_rtt + i) / 2;
1003 else
1004 rt->rt_rmx.rmx_rtt = i;
1005 }
1006 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1007 i = tp->t_rttvar *
1008 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1009 if (rt->rt_rmx.rmx_rttvar && i)
1010 rt->rt_rmx.rmx_rttvar =
1011 (rt->rt_rmx.rmx_rttvar + i) / 2;
1012 else
1013 rt->rt_rmx.rmx_rttvar = i;
1014 }
1015 /*
1016 * update the pipelimit (ssthresh) if it has been updated
1017 * already or if a pipesize was specified & the threshhold
1018 * got below half the pipesize. I.e., wait for bad news
1019 * before we start updating, then update on both good
1020 * and bad news.
1021 */
1022 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1023 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1024 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1025 /*
1026 * convert the limit from user data bytes to
1027 * packets then to packet data bytes.
1028 */
1029 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1030 if (i < 2)
1031 i = 2;
1032 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1033 if (rt->rt_rmx.rmx_ssthresh)
1034 rt->rt_rmx.rmx_ssthresh =
1035 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1036 else
1037 rt->rt_rmx.rmx_ssthresh = i;
1038 }
1039 }
1040 #endif /* RTV_RTT */
1041 /* free the reassembly queue, if any */
1042 TCP_REASS_LOCK(tp);
1043 (void) tcp_freeq(tp);
1044 TCP_REASS_UNLOCK(tp);
1045
1046 tcp_canceltimers(tp);
1047 TCP_CLEAR_DELACK(tp);
1048 syn_cache_cleanup(tp);
1049
1050 if (tp->t_template) {
1051 m_free(tp->t_template);
1052 tp->t_template = NULL;
1053 }
1054 pool_put(&tcpcb_pool, tp);
1055 if (inp) {
1056 inp->inp_ppcb = 0;
1057 soisdisconnected(so);
1058 in_pcbdetach(inp);
1059 }
1060 #ifdef INET6
1061 else if (in6p) {
1062 in6p->in6p_ppcb = 0;
1063 soisdisconnected(so);
1064 in6_pcbdetach(in6p);
1065 }
1066 #endif
1067 tcpstat.tcps_closed++;
1068 return ((struct tcpcb *)0);
1069 }
1070
1071 int
1072 tcp_freeq(tp)
1073 struct tcpcb *tp;
1074 {
1075 struct ipqent *qe;
1076 int rv = 0;
1077 #ifdef TCPREASS_DEBUG
1078 int i = 0;
1079 #endif
1080
1081 TCP_REASS_LOCK_CHECK(tp);
1082
1083 while ((qe = LIST_FIRST(&tp->segq)) != NULL) {
1084 #ifdef TCPREASS_DEBUG
1085 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1086 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1087 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1088 #endif
1089 LIST_REMOVE(qe, ipqe_q);
1090 LIST_REMOVE(qe, ipqe_timeq);
1091 m_freem(qe->ipqe_m);
1092 pool_put(&ipqent_pool, qe);
1093 rv = 1;
1094 }
1095 return (rv);
1096 }
1097
1098 /*
1099 * Protocol drain routine. Called when memory is in short supply.
1100 */
1101 void
1102 tcp_drain()
1103 {
1104 struct inpcb *inp;
1105 struct tcpcb *tp;
1106
1107 /*
1108 * Free the sequence queue of all TCP connections.
1109 */
1110 inp = CIRCLEQ_FIRST(&tcbtable.inpt_queue);
1111 if (inp) /* XXX */
1112 CIRCLEQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue) {
1113 if ((tp = intotcpcb(inp)) != NULL) {
1114 /*
1115 * We may be called from a device's interrupt
1116 * context. If the tcpcb is already busy,
1117 * just bail out now.
1118 */
1119 if (tcp_reass_lock_try(tp) == 0)
1120 continue;
1121 if (tcp_freeq(tp))
1122 tcpstat.tcps_connsdrained++;
1123 TCP_REASS_UNLOCK(tp);
1124 }
1125 }
1126 }
1127
1128 #ifdef INET6
1129 void
1130 tcp6_drain()
1131 {
1132 struct in6pcb *in6p;
1133 struct tcpcb *tp;
1134 struct in6pcb *head = &tcb6;
1135
1136 /*
1137 * Free the sequence queue of all TCP connections.
1138 */
1139 for (in6p = head->in6p_next; in6p != head; in6p = in6p->in6p_next) {
1140 if ((tp = in6totcpcb(in6p)) != NULL) {
1141 /*
1142 * We may be called from a device's interrupt
1143 * context. If the tcpcb is already busy,
1144 * just bail out now.
1145 */
1146 if (tcp_reass_lock_try(tp) == 0)
1147 continue;
1148 if (tcp_freeq(tp))
1149 tcpstat.tcps_connsdrained++;
1150 TCP_REASS_UNLOCK(tp);
1151 }
1152 }
1153 }
1154 #endif
1155
1156 /*
1157 * Notify a tcp user of an asynchronous error;
1158 * store error as soft error, but wake up user
1159 * (for now, won't do anything until can select for soft error).
1160 */
1161 void
1162 tcp_notify(inp, error)
1163 struct inpcb *inp;
1164 int error;
1165 {
1166 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1167 struct socket *so = inp->inp_socket;
1168
1169 /*
1170 * Ignore some errors if we are hooked up.
1171 * If connection hasn't completed, has retransmitted several times,
1172 * and receives a second error, give up now. This is better
1173 * than waiting a long time to establish a connection that
1174 * can never complete.
1175 */
1176 if (tp->t_state == TCPS_ESTABLISHED &&
1177 (error == EHOSTUNREACH || error == ENETUNREACH ||
1178 error == EHOSTDOWN)) {
1179 return;
1180 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1181 tp->t_rxtshift > 3 && tp->t_softerror)
1182 so->so_error = error;
1183 else
1184 tp->t_softerror = error;
1185 wakeup((caddr_t) &so->so_timeo);
1186 sorwakeup(so);
1187 sowwakeup(so);
1188 }
1189
1190 #ifdef INET6
1191 void
1192 tcp6_notify(in6p, error)
1193 struct in6pcb *in6p;
1194 int error;
1195 {
1196 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1197 struct socket *so = in6p->in6p_socket;
1198
1199 /*
1200 * Ignore some errors if we are hooked up.
1201 * If connection hasn't completed, has retransmitted several times,
1202 * and receives a second error, give up now. This is better
1203 * than waiting a long time to establish a connection that
1204 * can never complete.
1205 */
1206 if (tp->t_state == TCPS_ESTABLISHED &&
1207 (error == EHOSTUNREACH || error == ENETUNREACH ||
1208 error == EHOSTDOWN)) {
1209 return;
1210 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1211 tp->t_rxtshift > 3 && tp->t_softerror)
1212 so->so_error = error;
1213 else
1214 tp->t_softerror = error;
1215 wakeup((caddr_t) &so->so_timeo);
1216 sorwakeup(so);
1217 sowwakeup(so);
1218 }
1219 #endif
1220
1221 #ifdef INET6
1222 void
1223 tcp6_ctlinput(cmd, sa, d)
1224 int cmd;
1225 struct sockaddr *sa;
1226 void *d;
1227 {
1228 struct tcphdr th;
1229 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1230 int nmatch;
1231 struct ip6_hdr *ip6;
1232 const struct sockaddr_in6 *sa6_src = NULL;
1233 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1234 struct mbuf *m;
1235 int off;
1236
1237 if (sa->sa_family != AF_INET6 ||
1238 sa->sa_len != sizeof(struct sockaddr_in6))
1239 return;
1240 if ((unsigned)cmd >= PRC_NCMDS)
1241 return;
1242 else if (cmd == PRC_QUENCH) {
1243 /* XXX there's no PRC_QUENCH in IPv6 */
1244 notify = tcp6_quench;
1245 } else if (PRC_IS_REDIRECT(cmd))
1246 notify = in6_rtchange, d = NULL;
1247 else if (cmd == PRC_MSGSIZE)
1248 ; /* special code is present, see below */
1249 else if (cmd == PRC_HOSTDEAD)
1250 d = NULL;
1251 else if (inet6ctlerrmap[cmd] == 0)
1252 return;
1253
1254 /* if the parameter is from icmp6, decode it. */
1255 if (d != NULL) {
1256 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1257 m = ip6cp->ip6c_m;
1258 ip6 = ip6cp->ip6c_ip6;
1259 off = ip6cp->ip6c_off;
1260 sa6_src = ip6cp->ip6c_src;
1261 } else {
1262 m = NULL;
1263 ip6 = NULL;
1264 sa6_src = &sa6_any;
1265 }
1266
1267 if (ip6) {
1268 /*
1269 * XXX: We assume that when ip6 is non NULL,
1270 * M and OFF are valid.
1271 */
1272
1273 /* check if we can safely examine src and dst ports */
1274 if (m->m_pkthdr.len < off + sizeof(th)) {
1275 if (cmd == PRC_MSGSIZE)
1276 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1277 return;
1278 }
1279
1280 bzero(&th, sizeof(th));
1281 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1282
1283 if (cmd == PRC_MSGSIZE) {
1284 int valid = 0;
1285
1286 /*
1287 * Check to see if we have a valid TCP connection
1288 * corresponding to the address in the ICMPv6 message
1289 * payload.
1290 */
1291 if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
1292 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1293 th.th_sport, 0))
1294 valid++;
1295
1296 /*
1297 * Depending on the value of "valid" and routing table
1298 * size (mtudisc_{hi,lo}wat), we will:
1299 * - recalcurate the new MTU and create the
1300 * corresponding routing entry, or
1301 * - ignore the MTU change notification.
1302 */
1303 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1304
1305 /*
1306 * no need to call in6_pcbnotify, it should have been
1307 * called via callback if necessary
1308 */
1309 return;
1310 }
1311
1312 nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
1313 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1314 if (nmatch == 0 && syn_cache_count &&
1315 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1316 inet6ctlerrmap[cmd] == ENETUNREACH ||
1317 inet6ctlerrmap[cmd] == EHOSTDOWN))
1318 syn_cache_unreach((struct sockaddr *)sa6_src,
1319 sa, &th);
1320 } else {
1321 (void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
1322 0, cmd, NULL, notify);
1323 }
1324 }
1325 #endif
1326
1327 #ifdef INET
1328 /* assumes that ip header and tcp header are contiguous on mbuf */
1329 void *
1330 tcp_ctlinput(cmd, sa, v)
1331 int cmd;
1332 struct sockaddr *sa;
1333 void *v;
1334 {
1335 struct ip *ip = v;
1336 struct tcphdr *th;
1337 struct icmp *icp;
1338 extern const int inetctlerrmap[];
1339 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1340 int errno;
1341 int nmatch;
1342
1343 if (sa->sa_family != AF_INET ||
1344 sa->sa_len != sizeof(struct sockaddr_in))
1345 return NULL;
1346 if ((unsigned)cmd >= PRC_NCMDS)
1347 return NULL;
1348 errno = inetctlerrmap[cmd];
1349 if (cmd == PRC_QUENCH)
1350 notify = tcp_quench;
1351 else if (PRC_IS_REDIRECT(cmd))
1352 notify = in_rtchange, ip = 0;
1353 else if (cmd == PRC_MSGSIZE && ip_mtudisc && ip && ip->ip_v == 4) {
1354 /*
1355 * Check to see if we have a valid TCP connection
1356 * corresponding to the address in the ICMP message
1357 * payload.
1358 *
1359 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1360 */
1361 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1362 if (in_pcblookup_connect(&tcbtable,
1363 ip->ip_dst, th->th_dport,
1364 ip->ip_src, th->th_sport) == NULL)
1365 return NULL;
1366
1367 /*
1368 * Now that we've validated that we are actually communicating
1369 * with the host indicated in the ICMP message, locate the
1370 * ICMP header, recalculate the new MTU, and create the
1371 * corresponding routing entry.
1372 */
1373 icp = (struct icmp *)((caddr_t)ip -
1374 offsetof(struct icmp, icmp_ip));
1375 icmp_mtudisc(icp, ip->ip_dst);
1376
1377 return NULL;
1378 } else if (cmd == PRC_HOSTDEAD)
1379 ip = 0;
1380 else if (errno == 0)
1381 return NULL;
1382 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1383 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1384 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1385 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1386 if (nmatch == 0 && syn_cache_count &&
1387 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1388 inetctlerrmap[cmd] == ENETUNREACH ||
1389 inetctlerrmap[cmd] == EHOSTDOWN)) {
1390 struct sockaddr_in sin;
1391 bzero(&sin, sizeof(sin));
1392 sin.sin_len = sizeof(sin);
1393 sin.sin_family = AF_INET;
1394 sin.sin_port = th->th_sport;
1395 sin.sin_addr = ip->ip_src;
1396 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1397 }
1398
1399 /* XXX mapped address case */
1400 } else
1401 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1402 notify);
1403 return NULL;
1404 }
1405
1406 /*
1407 * When a source quence is received, we are being notifed of congestion.
1408 * Close the congestion window down to the Loss Window (one segment).
1409 * We will gradually open it again as we proceed.
1410 */
1411 void
1412 tcp_quench(inp, errno)
1413 struct inpcb *inp;
1414 int errno;
1415 {
1416 struct tcpcb *tp = intotcpcb(inp);
1417
1418 if (tp)
1419 tp->snd_cwnd = tp->t_segsz;
1420 }
1421 #endif
1422
1423 #ifdef INET6
1424 void
1425 tcp6_quench(in6p, errno)
1426 struct in6pcb *in6p;
1427 int errno;
1428 {
1429 struct tcpcb *tp = in6totcpcb(in6p);
1430
1431 if (tp)
1432 tp->snd_cwnd = tp->t_segsz;
1433 }
1434 #endif
1435
1436 #ifdef INET
1437 /*
1438 * Path MTU Discovery handlers.
1439 */
1440 void
1441 tcp_mtudisc_callback(faddr)
1442 struct in_addr faddr;
1443 {
1444
1445 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1446 }
1447
1448 /*
1449 * On receipt of path MTU corrections, flush old route and replace it
1450 * with the new one. Retransmit all unacknowledged packets, to ensure
1451 * that all packets will be received.
1452 */
1453 void
1454 tcp_mtudisc(inp, errno)
1455 struct inpcb *inp;
1456 int errno;
1457 {
1458 struct tcpcb *tp = intotcpcb(inp);
1459 struct rtentry *rt = in_pcbrtentry(inp);
1460
1461 if (tp != 0) {
1462 if (rt != 0) {
1463 /*
1464 * If this was not a host route, remove and realloc.
1465 */
1466 if ((rt->rt_flags & RTF_HOST) == 0) {
1467 in_rtchange(inp, errno);
1468 if ((rt = in_pcbrtentry(inp)) == 0)
1469 return;
1470 }
1471
1472 /*
1473 * Slow start out of the error condition. We
1474 * use the MTU because we know it's smaller
1475 * than the previously transmitted segment.
1476 *
1477 * Note: This is more conservative than the
1478 * suggestion in draft-floyd-incr-init-win-03.
1479 */
1480 if (rt->rt_rmx.rmx_mtu != 0)
1481 tp->snd_cwnd =
1482 TCP_INITIAL_WINDOW(tcp_init_win,
1483 rt->rt_rmx.rmx_mtu);
1484 }
1485
1486 /*
1487 * Resend unacknowledged packets.
1488 */
1489 tp->snd_nxt = tp->snd_una;
1490 tcp_output(tp);
1491 }
1492 }
1493 #endif
1494
1495 #ifdef INET6
1496 /*
1497 * Path MTU Discovery handlers.
1498 */
1499 void
1500 tcp6_mtudisc_callback(faddr)
1501 struct in6_addr *faddr;
1502 {
1503 struct sockaddr_in6 sin6;
1504
1505 bzero(&sin6, sizeof(sin6));
1506 sin6.sin6_family = AF_INET6;
1507 sin6.sin6_len = sizeof(struct sockaddr_in6);
1508 sin6.sin6_addr = *faddr;
1509 (void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
1510 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1511 }
1512
1513 void
1514 tcp6_mtudisc(in6p, errno)
1515 struct in6pcb *in6p;
1516 int errno;
1517 {
1518 struct tcpcb *tp = in6totcpcb(in6p);
1519 struct rtentry *rt = in6_pcbrtentry(in6p);
1520
1521 if (tp != 0) {
1522 if (rt != 0) {
1523 /*
1524 * If this was not a host route, remove and realloc.
1525 */
1526 if ((rt->rt_flags & RTF_HOST) == 0) {
1527 in6_rtchange(in6p, errno);
1528 if ((rt = in6_pcbrtentry(in6p)) == 0)
1529 return;
1530 }
1531
1532 /*
1533 * Slow start out of the error condition. We
1534 * use the MTU because we know it's smaller
1535 * than the previously transmitted segment.
1536 *
1537 * Note: This is more conservative than the
1538 * suggestion in draft-floyd-incr-init-win-03.
1539 */
1540 if (rt->rt_rmx.rmx_mtu != 0)
1541 tp->snd_cwnd =
1542 TCP_INITIAL_WINDOW(tcp_init_win,
1543 rt->rt_rmx.rmx_mtu);
1544 }
1545
1546 /*
1547 * Resend unacknowledged packets.
1548 */
1549 tp->snd_nxt = tp->snd_una;
1550 tcp_output(tp);
1551 }
1552 }
1553 #endif /* INET6 */
1554
1555 /*
1556 * Compute the MSS to advertise to the peer. Called only during
1557 * the 3-way handshake. If we are the server (peer initiated
1558 * connection), we are called with a pointer to the interface
1559 * on which the SYN packet arrived. If we are the client (we
1560 * initiated connection), we are called with a pointer to the
1561 * interface out which this connection should go.
1562 *
1563 * NOTE: Do not subtract IP option/extension header size nor IPsec
1564 * header size from MSS advertisement. MSS option must hold the maximum
1565 * segment size we can accept, so it must always be:
1566 * max(if mtu) - ip header - tcp header
1567 */
1568 u_long
1569 tcp_mss_to_advertise(ifp, af)
1570 const struct ifnet *ifp;
1571 int af;
1572 {
1573 extern u_long in_maxmtu;
1574 u_long mss = 0;
1575 u_long hdrsiz;
1576
1577 /*
1578 * In order to avoid defeating path MTU discovery on the peer,
1579 * we advertise the max MTU of all attached networks as our MSS,
1580 * per RFC 1191, section 3.1.
1581 *
1582 * We provide the option to advertise just the MTU of
1583 * the interface on which we hope this connection will
1584 * be receiving. If we are responding to a SYN, we
1585 * will have a pretty good idea about this, but when
1586 * initiating a connection there is a bit more doubt.
1587 *
1588 * We also need to ensure that loopback has a large enough
1589 * MSS, as the loopback MTU is never included in in_maxmtu.
1590 */
1591
1592 if (ifp != NULL)
1593 mss = ifp->if_mtu;
1594
1595 if (tcp_mss_ifmtu == 0)
1596 switch (af) {
1597 case AF_INET:
1598 mss = max(in_maxmtu, mss);
1599 break;
1600 #ifdef INET6
1601 case AF_INET6:
1602 mss = max(in6_maxmtu, mss);
1603 break;
1604 #endif
1605 }
1606
1607 switch (af) {
1608 case AF_INET:
1609 hdrsiz = sizeof(struct ip);
1610 break;
1611 #ifdef INET6
1612 case AF_INET6:
1613 hdrsiz = sizeof(struct ip6_hdr);
1614 break;
1615 #endif
1616 default:
1617 hdrsiz = 0;
1618 break;
1619 }
1620 hdrsiz += sizeof(struct tcphdr);
1621 if (mss > hdrsiz)
1622 mss -= hdrsiz;
1623
1624 mss = max(tcp_mssdflt, mss);
1625 return (mss);
1626 }
1627
1628 /*
1629 * Set connection variables based on the peer's advertised MSS.
1630 * We are passed the TCPCB for the actual connection. If we
1631 * are the server, we are called by the compressed state engine
1632 * when the 3-way handshake is complete. If we are the client,
1633 * we are called when we receive the SYN,ACK from the server.
1634 *
1635 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1636 * before this routine is called!
1637 */
1638 void
1639 tcp_mss_from_peer(tp, offer)
1640 struct tcpcb *tp;
1641 int offer;
1642 {
1643 struct socket *so;
1644 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1645 struct rtentry *rt;
1646 #endif
1647 u_long bufsize;
1648 int mss;
1649
1650 #ifdef DIAGNOSTIC
1651 if (tp->t_inpcb && tp->t_in6pcb)
1652 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1653 #endif
1654 so = NULL;
1655 rt = NULL;
1656 #ifdef INET
1657 if (tp->t_inpcb) {
1658 so = tp->t_inpcb->inp_socket;
1659 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1660 rt = in_pcbrtentry(tp->t_inpcb);
1661 #endif
1662 }
1663 #endif
1664 #ifdef INET6
1665 if (tp->t_in6pcb) {
1666 so = tp->t_in6pcb->in6p_socket;
1667 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1668 rt = in6_pcbrtentry(tp->t_in6pcb);
1669 #endif
1670 }
1671 #endif
1672
1673 /*
1674 * As per RFC1122, use the default MSS value, unless they
1675 * sent us an offer. Do not accept offers less than 32 bytes.
1676 */
1677 mss = tcp_mssdflt;
1678 if (offer)
1679 mss = offer;
1680 mss = max(mss, 32); /* sanity */
1681 tp->t_peermss = mss;
1682 mss -= tcp_optlen(tp);
1683 #ifdef INET
1684 if (tp->t_inpcb)
1685 mss -= ip_optlen(tp->t_inpcb);
1686 #endif
1687 #ifdef INET6
1688 if (tp->t_in6pcb)
1689 mss -= ip6_optlen(tp->t_in6pcb);
1690 #endif
1691
1692 /*
1693 * If there's a pipesize, change the socket buffer to that size.
1694 * Make the socket buffer an integral number of MSS units. If
1695 * the MSS is larger than the socket buffer, artificially decrease
1696 * the MSS.
1697 */
1698 #ifdef RTV_SPIPE
1699 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1700 bufsize = rt->rt_rmx.rmx_sendpipe;
1701 else
1702 #endif
1703 bufsize = so->so_snd.sb_hiwat;
1704 if (bufsize < mss)
1705 mss = bufsize;
1706 else {
1707 bufsize = roundup(bufsize, mss);
1708 if (bufsize > sb_max)
1709 bufsize = sb_max;
1710 (void) sbreserve(&so->so_snd, bufsize);
1711 }
1712 tp->t_segsz = mss;
1713
1714 #ifdef RTV_SSTHRESH
1715 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1716 /*
1717 * There's some sort of gateway or interface buffer
1718 * limit on the path. Use this to set the slow
1719 * start threshold, but set the threshold to no less
1720 * than 2 * MSS.
1721 */
1722 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1723 }
1724 #endif
1725 }
1726
1727 /*
1728 * Processing necessary when a TCP connection is established.
1729 */
1730 void
1731 tcp_established(tp)
1732 struct tcpcb *tp;
1733 {
1734 struct socket *so;
1735 #ifdef RTV_RPIPE
1736 struct rtentry *rt;
1737 #endif
1738 u_long bufsize;
1739
1740 #ifdef DIAGNOSTIC
1741 if (tp->t_inpcb && tp->t_in6pcb)
1742 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1743 #endif
1744 so = NULL;
1745 rt = NULL;
1746 #ifdef INET
1747 if (tp->t_inpcb) {
1748 so = tp->t_inpcb->inp_socket;
1749 #if defined(RTV_RPIPE)
1750 rt = in_pcbrtentry(tp->t_inpcb);
1751 #endif
1752 }
1753 #endif
1754 #ifdef INET6
1755 if (tp->t_in6pcb) {
1756 so = tp->t_in6pcb->in6p_socket;
1757 #if defined(RTV_RPIPE)
1758 rt = in6_pcbrtentry(tp->t_in6pcb);
1759 #endif
1760 }
1761 #endif
1762
1763 tp->t_state = TCPS_ESTABLISHED;
1764 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1765
1766 #ifdef RTV_RPIPE
1767 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1768 bufsize = rt->rt_rmx.rmx_recvpipe;
1769 else
1770 #endif
1771 bufsize = so->so_rcv.sb_hiwat;
1772 if (bufsize > tp->t_ourmss) {
1773 bufsize = roundup(bufsize, tp->t_ourmss);
1774 if (bufsize > sb_max)
1775 bufsize = sb_max;
1776 (void) sbreserve(&so->so_rcv, bufsize);
1777 }
1778 }
1779
1780 /*
1781 * Check if there's an initial rtt or rttvar. Convert from the
1782 * route-table units to scaled multiples of the slow timeout timer.
1783 * Called only during the 3-way handshake.
1784 */
1785 void
1786 tcp_rmx_rtt(tp)
1787 struct tcpcb *tp;
1788 {
1789 #ifdef RTV_RTT
1790 struct rtentry *rt = NULL;
1791 int rtt;
1792
1793 #ifdef DIAGNOSTIC
1794 if (tp->t_inpcb && tp->t_in6pcb)
1795 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1796 #endif
1797 #ifdef INET
1798 if (tp->t_inpcb)
1799 rt = in_pcbrtentry(tp->t_inpcb);
1800 #endif
1801 #ifdef INET6
1802 if (tp->t_in6pcb)
1803 rt = in6_pcbrtentry(tp->t_in6pcb);
1804 #endif
1805 if (rt == NULL)
1806 return;
1807
1808 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1809 /*
1810 * XXX The lock bit for MTU indicates that the value
1811 * is also a minimum value; this is subject to time.
1812 */
1813 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1814 TCPT_RANGESET(tp->t_rttmin,
1815 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1816 TCPTV_MIN, TCPTV_REXMTMAX);
1817 tp->t_srtt = rtt /
1818 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1819 if (rt->rt_rmx.rmx_rttvar) {
1820 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1821 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1822 (TCP_RTTVAR_SHIFT + 2));
1823 } else {
1824 /* Default variation is +- 1 rtt */
1825 tp->t_rttvar =
1826 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1827 }
1828 TCPT_RANGESET(tp->t_rxtcur,
1829 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1830 tp->t_rttmin, TCPTV_REXMTMAX);
1831 }
1832 #endif
1833 }
1834
1835 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1836 #if NRND > 0
1837 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
1838 #endif
1839
1840 /*
1841 * Get a new sequence value given a tcp control block
1842 */
1843 tcp_seq
1844 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
1845 {
1846
1847 #ifdef INET
1848 if (tp->t_inpcb != NULL) {
1849 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
1850 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
1851 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
1852 addin));
1853 }
1854 #endif
1855 #ifdef INET6
1856 if (tp->t_in6pcb != NULL) {
1857 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
1858 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
1859 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
1860 addin));
1861 }
1862 #endif
1863 /* Not possible. */
1864 panic("tcp_new_iss");
1865 }
1866
1867 /*
1868 * This routine actually generates a new TCP initial sequence number.
1869 */
1870 tcp_seq
1871 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
1872 size_t addrsz, tcp_seq addin)
1873 {
1874 tcp_seq tcp_iss;
1875
1876 #if NRND > 0
1877 static int beenhere;
1878
1879 /*
1880 * If we haven't been here before, initialize our cryptographic
1881 * hash secret.
1882 */
1883 if (beenhere == 0) {
1884 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
1885 RND_EXTRACT_ANY);
1886 beenhere = 1;
1887 }
1888
1889 if (tcp_do_rfc1948) {
1890 MD5_CTX ctx;
1891 u_int8_t hash[16]; /* XXX MD5 knowledge */
1892
1893 /*
1894 * Compute the base value of the ISS. It is a hash
1895 * of (saddr, sport, daddr, dport, secret).
1896 */
1897 MD5Init(&ctx);
1898
1899 MD5Update(&ctx, (u_char *) laddr, addrsz);
1900 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
1901
1902 MD5Update(&ctx, (u_char *) faddr, addrsz);
1903 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
1904
1905 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
1906
1907 MD5Final(hash, &ctx);
1908
1909 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
1910
1911 /*
1912 * Now increment our "timer", and add it in to
1913 * the computed value.
1914 *
1915 * XXX Use `addin'?
1916 * XXX TCP_ISSINCR too large to use?
1917 */
1918 tcp_iss_seq += TCP_ISSINCR;
1919 #ifdef TCPISS_DEBUG
1920 printf("ISS hash 0x%08x, ", tcp_iss);
1921 #endif
1922 tcp_iss += tcp_iss_seq + addin;
1923 #ifdef TCPISS_DEBUG
1924 printf("new ISS 0x%08x\n", tcp_iss);
1925 #endif
1926 } else
1927 #endif /* NRND > 0 */
1928 {
1929 /*
1930 * Randomize.
1931 */
1932 #if NRND > 0
1933 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
1934 #else
1935 tcp_iss = random();
1936 #endif
1937
1938 /*
1939 * If we were asked to add some amount to a known value,
1940 * we will take a random value obtained above, mask off
1941 * the upper bits, and add in the known value. We also
1942 * add in a constant to ensure that we are at least a
1943 * certain distance from the original value.
1944 *
1945 * This is used when an old connection is in timed wait
1946 * and we have a new one coming in, for instance.
1947 */
1948 if (addin != 0) {
1949 #ifdef TCPISS_DEBUG
1950 printf("Random %08x, ", tcp_iss);
1951 #endif
1952 tcp_iss &= TCP_ISS_RANDOM_MASK;
1953 tcp_iss += addin + TCP_ISSINCR;
1954 #ifdef TCPISS_DEBUG
1955 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
1956 #endif
1957 } else {
1958 tcp_iss &= TCP_ISS_RANDOM_MASK;
1959 tcp_iss += tcp_iss_seq;
1960 tcp_iss_seq += TCP_ISSINCR;
1961 #ifdef TCPISS_DEBUG
1962 printf("ISS %08x\n", tcp_iss);
1963 #endif
1964 }
1965 }
1966
1967 if (tcp_compat_42) {
1968 /*
1969 * Limit it to the positive range for really old TCP
1970 * implementations.
1971 */
1972 if (tcp_iss >= 0x80000000)
1973 tcp_iss &= 0x7fffffff; /* XXX */
1974 }
1975
1976 return (tcp_iss);
1977 }
1978
1979 #ifdef IPSEC
1980 /* compute ESP/AH header size for TCP, including outer IP header. */
1981 size_t
1982 ipsec4_hdrsiz_tcp(tp)
1983 struct tcpcb *tp;
1984 {
1985 struct inpcb *inp;
1986 size_t hdrsiz;
1987
1988 /* XXX mapped addr case (tp->t_in6pcb) */
1989 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
1990 return 0;
1991 switch (tp->t_family) {
1992 case AF_INET:
1993 /* XXX: should use currect direction. */
1994 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
1995 break;
1996 default:
1997 hdrsiz = 0;
1998 break;
1999 }
2000
2001 return hdrsiz;
2002 }
2003
2004 #ifdef INET6
2005 size_t
2006 ipsec6_hdrsiz_tcp(tp)
2007 struct tcpcb *tp;
2008 {
2009 struct in6pcb *in6p;
2010 size_t hdrsiz;
2011
2012 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2013 return 0;
2014 switch (tp->t_family) {
2015 case AF_INET6:
2016 /* XXX: should use currect direction. */
2017 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2018 break;
2019 case AF_INET:
2020 /* mapped address case - tricky */
2021 default:
2022 hdrsiz = 0;
2023 break;
2024 }
2025
2026 return hdrsiz;
2027 }
2028 #endif
2029 #endif /*IPSEC*/
2030
2031 /*
2032 * Determine the length of the TCP options for this connection.
2033 *
2034 * XXX: What do we do for SACK, when we add that? Just reserve
2035 * all of the space? Otherwise we can't exactly be incrementing
2036 * cwnd by an amount that varies depending on the amount we last
2037 * had to SACK!
2038 */
2039
2040 u_int
2041 tcp_optlen(tp)
2042 struct tcpcb *tp;
2043 {
2044 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2045 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2046 return TCPOLEN_TSTAMP_APPA;
2047 else
2048 return 0;
2049 }
2050