Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.128
      1 /*	$NetBSD: tcp_subr.c,v 1.128 2002/05/26 16:05:44 itojun Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. All advertising materials mentioning features or use of this software
     82  *    must display the following acknowledgement:
     83  *	This product includes software developed by the University of
     84  *	California, Berkeley and its contributors.
     85  * 4. Neither the name of the University nor the names of its contributors
     86  *    may be used to endorse or promote products derived from this software
     87  *    without specific prior written permission.
     88  *
     89  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     90  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     91  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     92  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     93  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     94  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     95  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     96  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     97  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     98  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     99  * SUCH DAMAGE.
    100  *
    101  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
    102  */
    103 
    104 #include <sys/cdefs.h>
    105 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.128 2002/05/26 16:05:44 itojun Exp $");
    106 
    107 #include "opt_inet.h"
    108 #include "opt_ipsec.h"
    109 #include "opt_tcp_compat_42.h"
    110 #include "opt_inet_csum.h"
    111 #include "rnd.h"
    112 
    113 #include <sys/param.h>
    114 #include <sys/proc.h>
    115 #include <sys/systm.h>
    116 #include <sys/malloc.h>
    117 #include <sys/mbuf.h>
    118 #include <sys/socket.h>
    119 #include <sys/socketvar.h>
    120 #include <sys/protosw.h>
    121 #include <sys/errno.h>
    122 #include <sys/kernel.h>
    123 #include <sys/pool.h>
    124 #if NRND > 0
    125 #include <sys/md5.h>
    126 #include <sys/rnd.h>
    127 #endif
    128 
    129 #include <net/route.h>
    130 #include <net/if.h>
    131 
    132 #include <netinet/in.h>
    133 #include <netinet/in_systm.h>
    134 #include <netinet/ip.h>
    135 #include <netinet/in_pcb.h>
    136 #include <netinet/ip_var.h>
    137 #include <netinet/ip_icmp.h>
    138 
    139 #ifdef INET6
    140 #ifndef INET
    141 #include <netinet/in.h>
    142 #endif
    143 #include <netinet/ip6.h>
    144 #include <netinet6/in6_pcb.h>
    145 #include <netinet6/ip6_var.h>
    146 #include <netinet6/in6_var.h>
    147 #include <netinet6/ip6protosw.h>
    148 #include <netinet/icmp6.h>
    149 #endif
    150 
    151 #include <netinet/tcp.h>
    152 #include <netinet/tcp_fsm.h>
    153 #include <netinet/tcp_seq.h>
    154 #include <netinet/tcp_timer.h>
    155 #include <netinet/tcp_var.h>
    156 #include <netinet/tcpip.h>
    157 
    158 #ifdef IPSEC
    159 #include <netinet6/ipsec.h>
    160 #endif /*IPSEC*/
    161 
    162 #ifdef INET6
    163 struct in6pcb tcb6;
    164 #endif
    165 
    166 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    167 struct	tcpstat tcpstat;	/* tcp statistics */
    168 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
    169 
    170 /* patchable/settable parameters for tcp */
    171 int 	tcp_mssdflt = TCP_MSS;
    172 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    173 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    174 #if NRND > 0
    175 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    176 #endif
    177 int	tcp_do_sack = 1;	/* selective acknowledgement */
    178 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    179 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    180 int	tcp_do_newreno = 0;	/* Use the New Reno algorithms */
    181 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    182 int	tcp_init_win = 1;
    183 int	tcp_mss_ifmtu = 0;
    184 #ifdef TCP_COMPAT_42
    185 int	tcp_compat_42 = 1;
    186 #else
    187 int	tcp_compat_42 = 0;
    188 #endif
    189 int	tcp_rst_ppslim = 100;	/* 100pps */
    190 
    191 /* tcb hash */
    192 #ifndef TCBHASHSIZE
    193 #define	TCBHASHSIZE	128
    194 #endif
    195 int	tcbhashsize = TCBHASHSIZE;
    196 
    197 /* syn hash parameters */
    198 #define	TCP_SYN_HASH_SIZE	293
    199 #define	TCP_SYN_BUCKET_SIZE	35
    200 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    201 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    202 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    203 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    204 
    205 int	tcp_freeq __P((struct tcpcb *));
    206 
    207 #ifdef INET
    208 void	tcp_mtudisc_callback __P((struct in_addr));
    209 #endif
    210 #ifdef INET6
    211 void	tcp6_mtudisc_callback __P((struct in6_addr *));
    212 #endif
    213 
    214 void	tcp_mtudisc __P((struct inpcb *, int));
    215 #ifdef INET6
    216 void	tcp6_mtudisc __P((struct in6pcb *, int));
    217 #endif
    218 
    219 struct pool tcpcb_pool;
    220 
    221 #ifdef TCP_CSUM_COUNTERS
    222 #include <sys/device.h>
    223 
    224 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    225     NULL, "tcp", "hwcsum bad");
    226 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    227     NULL, "tcp", "hwcsum ok");
    228 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    229     NULL, "tcp", "hwcsum data");
    230 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    231     NULL, "tcp", "swcsum");
    232 #endif /* TCP_CSUM_COUNTERS */
    233 
    234 #ifdef TCP_OUTPUT_COUNTERS
    235 #include <sys/device.h>
    236 
    237 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    238     NULL, "tcp", "output big header");
    239 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    240     NULL, "tcp", "output copy small");
    241 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    242     NULL, "tcp", "output copy big");
    243 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    244     NULL, "tcp", "output reference big");
    245 #endif /* TCP_OUTPUT_COUNTERS */
    246 
    247 #ifdef TCP_REASS_COUNTERS
    248 #include <sys/device.h>
    249 
    250 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    251     NULL, "tcp_reass", "calls");
    252 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    253     &tcp_reass_, "tcp_reass", "insert into empty queue");
    254 struct evcnt tcp_reass_iteration[8] = {
    255     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    256     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    257     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    258     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    259     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    260     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    261     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    262     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    263 };
    264 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    265     &tcp_reass_, "tcp_reass", "prepend to first");
    266 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    267     &tcp_reass_, "tcp_reass", "prepend");
    268 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    269     &tcp_reass_, "tcp_reass", "insert");
    270 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    271     &tcp_reass_, "tcp_reass", "insert at tail");
    272 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    273     &tcp_reass_, "tcp_reass", "append");
    274 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    275     &tcp_reass_, "tcp_reass", "append to tail fragment");
    276 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    277     &tcp_reass_, "tcp_reass", "overlap at end");
    278 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    279     &tcp_reass_, "tcp_reass", "overlap at start");
    280 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    281     &tcp_reass_, "tcp_reass", "duplicate segment");
    282 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    283     &tcp_reass_, "tcp_reass", "duplicate fragment");
    284 
    285 #endif /* TCP_REASS_COUNTERS */
    286 
    287 /*
    288  * Tcp initialization
    289  */
    290 void
    291 tcp_init()
    292 {
    293 	int hlen;
    294 
    295 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
    296 	    NULL);
    297 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    298 #ifdef INET6
    299 	tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
    300 #endif
    301 
    302 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    303 #ifdef INET6
    304 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    305 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    306 #endif
    307 	if (max_protohdr < hlen)
    308 		max_protohdr = hlen;
    309 	if (max_linkhdr + hlen > MHLEN)
    310 		panic("tcp_init");
    311 
    312 #ifdef INET
    313 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    314 #endif
    315 #ifdef INET6
    316 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    317 #endif
    318 
    319 	/* Initialize timer state. */
    320 	tcp_timer_init();
    321 
    322 	/* Initialize the compressed state engine. */
    323 	syn_cache_init();
    324 
    325 #ifdef TCP_CSUM_COUNTERS
    326 	evcnt_attach_static(&tcp_hwcsum_bad);
    327 	evcnt_attach_static(&tcp_hwcsum_ok);
    328 	evcnt_attach_static(&tcp_hwcsum_data);
    329 	evcnt_attach_static(&tcp_swcsum);
    330 #endif /* TCP_CSUM_COUNTERS */
    331 
    332 #ifdef TCP_OUTPUT_COUNTERS
    333 	evcnt_attach_static(&tcp_output_bigheader);
    334 	evcnt_attach_static(&tcp_output_copysmall);
    335 	evcnt_attach_static(&tcp_output_copybig);
    336 	evcnt_attach_static(&tcp_output_refbig);
    337 #endif /* TCP_OUTPUT_COUNTERS */
    338 
    339 #ifdef TCP_REASS_COUNTERS
    340 	evcnt_attach_static(&tcp_reass_);
    341 	evcnt_attach_static(&tcp_reass_empty);
    342 	evcnt_attach_static(&tcp_reass_iteration[0]);
    343 	evcnt_attach_static(&tcp_reass_iteration[1]);
    344 	evcnt_attach_static(&tcp_reass_iteration[2]);
    345 	evcnt_attach_static(&tcp_reass_iteration[3]);
    346 	evcnt_attach_static(&tcp_reass_iteration[4]);
    347 	evcnt_attach_static(&tcp_reass_iteration[5]);
    348 	evcnt_attach_static(&tcp_reass_iteration[6]);
    349 	evcnt_attach_static(&tcp_reass_iteration[7]);
    350 	evcnt_attach_static(&tcp_reass_prependfirst);
    351 	evcnt_attach_static(&tcp_reass_prepend);
    352 	evcnt_attach_static(&tcp_reass_insert);
    353 	evcnt_attach_static(&tcp_reass_inserttail);
    354 	evcnt_attach_static(&tcp_reass_append);
    355 	evcnt_attach_static(&tcp_reass_appendtail);
    356 	evcnt_attach_static(&tcp_reass_overlaptail);
    357 	evcnt_attach_static(&tcp_reass_overlapfront);
    358 	evcnt_attach_static(&tcp_reass_segdup);
    359 	evcnt_attach_static(&tcp_reass_fragdup);
    360 #endif /* TCP_REASS_COUNTERS */
    361 }
    362 
    363 /*
    364  * Create template to be used to send tcp packets on a connection.
    365  * Call after host entry created, allocates an mbuf and fills
    366  * in a skeletal tcp/ip header, minimizing the amount of work
    367  * necessary when the connection is used.
    368  */
    369 struct mbuf *
    370 tcp_template(tp)
    371 	struct tcpcb *tp;
    372 {
    373 	struct inpcb *inp = tp->t_inpcb;
    374 #ifdef INET6
    375 	struct in6pcb *in6p = tp->t_in6pcb;
    376 #endif
    377 	struct tcphdr *n;
    378 	struct mbuf *m;
    379 	int hlen;
    380 
    381 	switch (tp->t_family) {
    382 	case AF_INET:
    383 		hlen = sizeof(struct ip);
    384 		if (inp)
    385 			break;
    386 #ifdef INET6
    387 		if (in6p) {
    388 			/* mapped addr case */
    389 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    390 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    391 				break;
    392 		}
    393 #endif
    394 		return NULL;	/*EINVAL*/
    395 #ifdef INET6
    396 	case AF_INET6:
    397 		hlen = sizeof(struct ip6_hdr);
    398 		if (in6p) {
    399 			/* more sainty check? */
    400 			break;
    401 		}
    402 		return NULL;	/*EINVAL*/
    403 #endif
    404 	default:
    405 		hlen = 0;	/*pacify gcc*/
    406 		return NULL;	/*EAFNOSUPPORT*/
    407 	}
    408 #ifdef DIAGNOSTIC
    409 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    410 		panic("mclbytes too small for t_template");
    411 #endif
    412 	m = tp->t_template;
    413 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    414 		;
    415 	else {
    416 		if (m)
    417 			m_freem(m);
    418 		m = tp->t_template = NULL;
    419 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    420 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    421 			MCLGET(m, M_DONTWAIT);
    422 			if ((m->m_flags & M_EXT) == 0) {
    423 				m_free(m);
    424 				m = NULL;
    425 			}
    426 		}
    427 		if (m == NULL)
    428 			return NULL;
    429 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    430 	}
    431 
    432 	bzero(mtod(m, caddr_t), m->m_len);
    433 
    434 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
    435 
    436 	switch (tp->t_family) {
    437 	case AF_INET:
    438 	    {
    439 		struct ipovly *ipov;
    440 		mtod(m, struct ip *)->ip_v = 4;
    441 		ipov = mtod(m, struct ipovly *);
    442 		ipov->ih_pr = IPPROTO_TCP;
    443 		ipov->ih_len = htons(sizeof(struct tcphdr));
    444 		if (inp) {
    445 			ipov->ih_src = inp->inp_laddr;
    446 			ipov->ih_dst = inp->inp_faddr;
    447 		}
    448 #ifdef INET6
    449 		else if (in6p) {
    450 			/* mapped addr case */
    451 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    452 				sizeof(ipov->ih_src));
    453 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    454 				sizeof(ipov->ih_dst));
    455 		}
    456 #endif
    457 		/*
    458 		 * Compute the pseudo-header portion of the checksum
    459 		 * now.  We incrementally add in the TCP option and
    460 		 * payload lengths later, and then compute the TCP
    461 		 * checksum right before the packet is sent off onto
    462 		 * the wire.
    463 		 */
    464 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    465 		    ipov->ih_dst.s_addr,
    466 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    467 		break;
    468 	    }
    469 #ifdef INET6
    470 	case AF_INET6:
    471 	    {
    472 		struct ip6_hdr *ip6;
    473 		mtod(m, struct ip *)->ip_v = 6;
    474 		ip6 = mtod(m, struct ip6_hdr *);
    475 		ip6->ip6_nxt = IPPROTO_TCP;
    476 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    477 		ip6->ip6_src = in6p->in6p_laddr;
    478 		ip6->ip6_dst = in6p->in6p_faddr;
    479 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    480 		if (ip6_auto_flowlabel) {
    481 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    482 			ip6->ip6_flow |=
    483 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
    484 		}
    485 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    486 		ip6->ip6_vfc |= IPV6_VERSION;
    487 
    488 		/*
    489 		 * Compute the pseudo-header portion of the checksum
    490 		 * now.  We incrementally add in the TCP option and
    491 		 * payload lengths later, and then compute the TCP
    492 		 * checksum right before the packet is sent off onto
    493 		 * the wire.
    494 		 */
    495 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    496 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    497 		    htonl(IPPROTO_TCP));
    498 		break;
    499 	    }
    500 #endif
    501 	}
    502 	if (inp) {
    503 		n->th_sport = inp->inp_lport;
    504 		n->th_dport = inp->inp_fport;
    505 	}
    506 #ifdef INET6
    507 	else if (in6p) {
    508 		n->th_sport = in6p->in6p_lport;
    509 		n->th_dport = in6p->in6p_fport;
    510 	}
    511 #endif
    512 	n->th_seq = 0;
    513 	n->th_ack = 0;
    514 	n->th_x2 = 0;
    515 	n->th_off = 5;
    516 	n->th_flags = 0;
    517 	n->th_win = 0;
    518 	n->th_urp = 0;
    519 	return (m);
    520 }
    521 
    522 /*
    523  * Send a single message to the TCP at address specified by
    524  * the given TCP/IP header.  If m == 0, then we make a copy
    525  * of the tcpiphdr at ti and send directly to the addressed host.
    526  * This is used to force keep alive messages out using the TCP
    527  * template for a connection tp->t_template.  If flags are given
    528  * then we send a message back to the TCP which originated the
    529  * segment ti, and discard the mbuf containing it and any other
    530  * attached mbufs.
    531  *
    532  * In any case the ack and sequence number of the transmitted
    533  * segment are as specified by the parameters.
    534  */
    535 int
    536 tcp_respond(tp, template, m, th0, ack, seq, flags)
    537 	struct tcpcb *tp;
    538 	struct mbuf *template;
    539 	struct mbuf *m;
    540 	struct tcphdr *th0;
    541 	tcp_seq ack, seq;
    542 	int flags;
    543 {
    544 	struct route *ro;
    545 	int error, tlen, win = 0;
    546 	int hlen;
    547 	struct ip *ip;
    548 #ifdef INET6
    549 	struct ip6_hdr *ip6;
    550 #endif
    551 	int family;	/* family on packet, not inpcb/in6pcb! */
    552 	struct tcphdr *th;
    553 
    554 	if (tp != NULL && (flags & TH_RST) == 0) {
    555 #ifdef DIAGNOSTIC
    556 		if (tp->t_inpcb && tp->t_in6pcb)
    557 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    558 #endif
    559 #ifdef INET
    560 		if (tp->t_inpcb)
    561 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    562 #endif
    563 #ifdef INET6
    564 		if (tp->t_in6pcb)
    565 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    566 #endif
    567 	}
    568 
    569 	ip = NULL;
    570 #ifdef INET6
    571 	ip6 = NULL;
    572 #endif
    573 	if (m == 0) {
    574 		if (!template)
    575 			return EINVAL;
    576 
    577 		/* get family information from template */
    578 		switch (mtod(template, struct ip *)->ip_v) {
    579 		case 4:
    580 			family = AF_INET;
    581 			hlen = sizeof(struct ip);
    582 			break;
    583 #ifdef INET6
    584 		case 6:
    585 			family = AF_INET6;
    586 			hlen = sizeof(struct ip6_hdr);
    587 			break;
    588 #endif
    589 		default:
    590 			return EAFNOSUPPORT;
    591 		}
    592 
    593 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    594 		if (m) {
    595 			MCLGET(m, M_DONTWAIT);
    596 			if ((m->m_flags & M_EXT) == 0) {
    597 				m_free(m);
    598 				m = NULL;
    599 			}
    600 		}
    601 		if (m == NULL)
    602 			return (ENOBUFS);
    603 
    604 		if (tcp_compat_42)
    605 			tlen = 1;
    606 		else
    607 			tlen = 0;
    608 
    609 		m->m_data += max_linkhdr;
    610 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
    611 			template->m_len);
    612 		switch (family) {
    613 		case AF_INET:
    614 			ip = mtod(m, struct ip *);
    615 			th = (struct tcphdr *)(ip + 1);
    616 			break;
    617 #ifdef INET6
    618 		case AF_INET6:
    619 			ip6 = mtod(m, struct ip6_hdr *);
    620 			th = (struct tcphdr *)(ip6 + 1);
    621 			break;
    622 #endif
    623 #if 0
    624 		default:
    625 			/* noone will visit here */
    626 			m_freem(m);
    627 			return EAFNOSUPPORT;
    628 #endif
    629 		}
    630 		flags = TH_ACK;
    631 	} else {
    632 
    633 		if ((m->m_flags & M_PKTHDR) == 0) {
    634 #if 0
    635 			printf("non PKTHDR to tcp_respond\n");
    636 #endif
    637 			m_freem(m);
    638 			return EINVAL;
    639 		}
    640 #ifdef DIAGNOSTIC
    641 		if (!th0)
    642 			panic("th0 == NULL in tcp_respond");
    643 #endif
    644 
    645 		/* get family information from m */
    646 		switch (mtod(m, struct ip *)->ip_v) {
    647 		case 4:
    648 			family = AF_INET;
    649 			hlen = sizeof(struct ip);
    650 			ip = mtod(m, struct ip *);
    651 			break;
    652 #ifdef INET6
    653 		case 6:
    654 			family = AF_INET6;
    655 			hlen = sizeof(struct ip6_hdr);
    656 			ip6 = mtod(m, struct ip6_hdr *);
    657 			break;
    658 #endif
    659 		default:
    660 			m_freem(m);
    661 			return EAFNOSUPPORT;
    662 		}
    663 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    664 			tlen = sizeof(*th0);
    665 		else
    666 			tlen = th0->th_off << 2;
    667 
    668 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    669 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
    670 			m->m_len = hlen + tlen;
    671 			m_freem(m->m_next);
    672 			m->m_next = NULL;
    673 		} else {
    674 			struct mbuf *n;
    675 
    676 #ifdef DIAGNOSTIC
    677 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    678 				m_freem(m);
    679 				return EMSGSIZE;
    680 			}
    681 #endif
    682 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    683 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    684 				MCLGET(n, M_DONTWAIT);
    685 				if ((n->m_flags & M_EXT) == 0) {
    686 					m_freem(n);
    687 					n = NULL;
    688 				}
    689 			}
    690 			if (!n) {
    691 				m_freem(m);
    692 				return ENOBUFS;
    693 			}
    694 
    695 			n->m_data += max_linkhdr;
    696 			n->m_len = hlen + tlen;
    697 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
    698 			m_copyback(n, hlen, tlen, (caddr_t)th0);
    699 
    700 			m_freem(m);
    701 			m = n;
    702 			n = NULL;
    703 		}
    704 
    705 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    706 		switch (family) {
    707 		case AF_INET:
    708 			ip = mtod(m, struct ip *);
    709 			th = (struct tcphdr *)(ip + 1);
    710 			ip->ip_p = IPPROTO_TCP;
    711 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    712 			ip->ip_p = IPPROTO_TCP;
    713 			break;
    714 #ifdef INET6
    715 		case AF_INET6:
    716 			ip6 = mtod(m, struct ip6_hdr *);
    717 			th = (struct tcphdr *)(ip6 + 1);
    718 			ip6->ip6_nxt = IPPROTO_TCP;
    719 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    720 			ip6->ip6_nxt = IPPROTO_TCP;
    721 			break;
    722 #endif
    723 #if 0
    724 		default:
    725 			/* noone will visit here */
    726 			m_freem(m);
    727 			return EAFNOSUPPORT;
    728 #endif
    729 		}
    730 		xchg(th->th_dport, th->th_sport, u_int16_t);
    731 #undef xchg
    732 		tlen = 0;	/*be friendly with the following code*/
    733 	}
    734 	th->th_seq = htonl(seq);
    735 	th->th_ack = htonl(ack);
    736 	th->th_x2 = 0;
    737 	if ((flags & TH_SYN) == 0) {
    738 		if (tp)
    739 			win >>= tp->rcv_scale;
    740 		if (win > TCP_MAXWIN)
    741 			win = TCP_MAXWIN;
    742 		th->th_win = htons((u_int16_t)win);
    743 		th->th_off = sizeof (struct tcphdr) >> 2;
    744 		tlen += sizeof(*th);
    745 	} else
    746 		tlen += th->th_off << 2;
    747 	m->m_len = hlen + tlen;
    748 	m->m_pkthdr.len = hlen + tlen;
    749 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    750 	th->th_flags = flags;
    751 	th->th_urp = 0;
    752 
    753 	switch (family) {
    754 #ifdef INET
    755 	case AF_INET:
    756 	    {
    757 		struct ipovly *ipov = (struct ipovly *)ip;
    758 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    759 		ipov->ih_len = htons((u_int16_t)tlen);
    760 
    761 		th->th_sum = 0;
    762 		th->th_sum = in_cksum(m, hlen + tlen);
    763 		ip->ip_len = hlen + tlen;	/*will be flipped on output*/
    764 		ip->ip_ttl = ip_defttl;
    765 		break;
    766 	    }
    767 #endif
    768 #ifdef INET6
    769 	case AF_INET6:
    770 	    {
    771 		th->th_sum = 0;
    772 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    773 				tlen);
    774 		ip6->ip6_plen = ntohs(tlen);
    775 		if (tp && tp->t_in6pcb) {
    776 			struct ifnet *oifp;
    777 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    778 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    779 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    780 		} else
    781 			ip6->ip6_hlim = ip6_defhlim;
    782 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    783 		if (ip6_auto_flowlabel) {
    784 			ip6->ip6_flow |=
    785 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
    786 		}
    787 		break;
    788 	    }
    789 #endif
    790 	}
    791 
    792 #ifdef IPSEC
    793 	(void)ipsec_setsocket(m, NULL);
    794 #endif /*IPSEC*/
    795 
    796 	if (tp != NULL && tp->t_inpcb != NULL) {
    797 		ro = &tp->t_inpcb->inp_route;
    798 #ifdef IPSEC
    799 		if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
    800 			m_freem(m);
    801 			return ENOBUFS;
    802 		}
    803 #endif
    804 #ifdef DIAGNOSTIC
    805 		if (family != AF_INET)
    806 			panic("tcp_respond: address family mismatch");
    807 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    808 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    809 			    ntohl(ip->ip_dst.s_addr),
    810 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    811 		}
    812 #endif
    813 	}
    814 #ifdef INET6
    815 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    816 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    817 #ifdef IPSEC
    818 		if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
    819 			m_freem(m);
    820 			return ENOBUFS;
    821 		}
    822 #endif
    823 #ifdef DIAGNOSTIC
    824 		if (family == AF_INET) {
    825 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    826 				panic("tcp_respond: not mapped addr");
    827 			if (bcmp(&ip->ip_dst,
    828 					&tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    829 					sizeof(ip->ip_dst)) != 0) {
    830 				panic("tcp_respond: ip_dst != in6p_faddr");
    831 			}
    832 		} else if (family == AF_INET6) {
    833 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst, &tp->t_in6pcb->in6p_faddr))
    834 				panic("tcp_respond: ip6_dst != in6p_faddr");
    835 		} else
    836 			panic("tcp_respond: address family mismatch");
    837 #endif
    838 	}
    839 #endif
    840 	else
    841 		ro = NULL;
    842 
    843 	switch (family) {
    844 #ifdef INET
    845 	case AF_INET:
    846 		error = ip_output(m, NULL, ro,
    847 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    848 		    NULL);
    849 		break;
    850 #endif
    851 #ifdef INET6
    852 	case AF_INET6:
    853 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
    854 			NULL);
    855 		break;
    856 #endif
    857 	default:
    858 		error = EAFNOSUPPORT;
    859 		break;
    860 	}
    861 
    862 	return (error);
    863 }
    864 
    865 /*
    866  * Create a new TCP control block, making an
    867  * empty reassembly queue and hooking it to the argument
    868  * protocol control block.
    869  */
    870 struct tcpcb *
    871 tcp_newtcpcb(family, aux)
    872 	int family;	/* selects inpcb, or in6pcb */
    873 	void *aux;
    874 {
    875 	struct tcpcb *tp;
    876 	int i;
    877 
    878 	switch (family) {
    879 	case PF_INET:
    880 		break;
    881 #ifdef INET6
    882 	case PF_INET6:
    883 		break;
    884 #endif
    885 	default:
    886 		return NULL;
    887 	}
    888 
    889 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    890 	if (tp == NULL)
    891 		return (NULL);
    892 	bzero((caddr_t)tp, sizeof(struct tcpcb));
    893 	TAILQ_INIT(&tp->segq);
    894 	TAILQ_INIT(&tp->timeq);
    895 	tp->t_family = family;		/* may be overridden later on */
    896 	tp->t_peermss = tcp_mssdflt;
    897 	tp->t_ourmss = tcp_mssdflt;
    898 	tp->t_segsz = tcp_mssdflt;
    899 	LIST_INIT(&tp->t_sc);
    900 
    901 	callout_init(&tp->t_delack_ch);
    902 	for (i = 0; i < TCPT_NTIMERS; i++)
    903 		TCP_TIMER_INIT(tp, i);
    904 
    905 	tp->t_flags = 0;
    906 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    907 		tp->t_flags |= TF_REQ_SCALE;
    908 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    909 		tp->t_flags |= TF_REQ_TSTMP;
    910 	if (tcp_do_sack == 2)
    911 		tp->t_flags |= TF_WILL_SACK;
    912 	else if (tcp_do_sack == 1)
    913 		tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
    914 	tp->t_flags |= TF_CANT_TXSACK;
    915 	switch (family) {
    916 	case PF_INET:
    917 		tp->t_inpcb = (struct inpcb *)aux;
    918 		tp->t_mtudisc = ip_mtudisc;
    919 		break;
    920 #ifdef INET6
    921 	case PF_INET6:
    922 		tp->t_in6pcb = (struct in6pcb *)aux;
    923 		/* for IPv6, always try to run path MTU discovery */
    924 		tp->t_mtudisc = 1;
    925 		break;
    926 #endif
    927 	}
    928 	/*
    929 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    930 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    931 	 * reasonable initial retransmit time.
    932 	 */
    933 	tp->t_srtt = TCPTV_SRTTBASE;
    934 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    935 	tp->t_rttmin = TCPTV_MIN;
    936 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    937 	    TCPTV_MIN, TCPTV_REXMTMAX);
    938 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    939 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    940 	if (family == AF_INET) {
    941 		struct inpcb *inp = (struct inpcb *)aux;
    942 		inp->inp_ip.ip_ttl = ip_defttl;
    943 		inp->inp_ppcb = (caddr_t)tp;
    944 	}
    945 #ifdef INET6
    946 	else if (family == AF_INET6) {
    947 		struct in6pcb *in6p = (struct in6pcb *)aux;
    948 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
    949 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
    950 					       : NULL);
    951 		in6p->in6p_ppcb = (caddr_t)tp;
    952 	}
    953 #endif
    954 
    955 	/*
    956 	 * Initialize our timebase.  When we send timestamps, we take
    957 	 * the delta from tcp_now -- this means each connection always
    958 	 * gets a timebase of 0, which makes it, among other things,
    959 	 * more difficult to determine how long a system has been up,
    960 	 * and thus how many TCP sequence increments have occurred.
    961 	 */
    962 	tp->ts_timebase = tcp_now;
    963 
    964 	return (tp);
    965 }
    966 
    967 /*
    968  * Drop a TCP connection, reporting
    969  * the specified error.  If connection is synchronized,
    970  * then send a RST to peer.
    971  */
    972 struct tcpcb *
    973 tcp_drop(tp, errno)
    974 	struct tcpcb *tp;
    975 	int errno;
    976 {
    977 	struct socket *so = NULL;
    978 
    979 #ifdef DIAGNOSTIC
    980 	if (tp->t_inpcb && tp->t_in6pcb)
    981 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
    982 #endif
    983 #ifdef INET
    984 	if (tp->t_inpcb)
    985 		so = tp->t_inpcb->inp_socket;
    986 #endif
    987 #ifdef INET6
    988 	if (tp->t_in6pcb)
    989 		so = tp->t_in6pcb->in6p_socket;
    990 #endif
    991 	if (!so)
    992 		return NULL;
    993 
    994 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
    995 		tp->t_state = TCPS_CLOSED;
    996 		(void) tcp_output(tp);
    997 		tcpstat.tcps_drops++;
    998 	} else
    999 		tcpstat.tcps_conndrops++;
   1000 	if (errno == ETIMEDOUT && tp->t_softerror)
   1001 		errno = tp->t_softerror;
   1002 	so->so_error = errno;
   1003 	return (tcp_close(tp));
   1004 }
   1005 
   1006 /*
   1007  * Close a TCP control block:
   1008  *	discard all space held by the tcp
   1009  *	discard internet protocol block
   1010  *	wake up any sleepers
   1011  */
   1012 struct tcpcb *
   1013 tcp_close(tp)
   1014 	struct tcpcb *tp;
   1015 {
   1016 	struct inpcb *inp;
   1017 #ifdef INET6
   1018 	struct in6pcb *in6p;
   1019 #endif
   1020 	struct socket *so;
   1021 #ifdef RTV_RTT
   1022 	struct rtentry *rt;
   1023 #endif
   1024 	struct route *ro;
   1025 
   1026 	inp = tp->t_inpcb;
   1027 #ifdef INET6
   1028 	in6p = tp->t_in6pcb;
   1029 #endif
   1030 	so = NULL;
   1031 	ro = NULL;
   1032 	if (inp) {
   1033 		so = inp->inp_socket;
   1034 		ro = &inp->inp_route;
   1035 	}
   1036 #ifdef INET6
   1037 	else if (in6p) {
   1038 		so = in6p->in6p_socket;
   1039 		ro = (struct route *)&in6p->in6p_route;
   1040 	}
   1041 #endif
   1042 
   1043 #ifdef RTV_RTT
   1044 	/*
   1045 	 * If we sent enough data to get some meaningful characteristics,
   1046 	 * save them in the routing entry.  'Enough' is arbitrarily
   1047 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1048 	 * give us 16 rtt samples assuming we only get one sample per
   1049 	 * window (the usual case on a long haul net).  16 samples is
   1050 	 * enough for the srtt filter to converge to within 5% of the correct
   1051 	 * value; fewer samples and we could save a very bogus rtt.
   1052 	 *
   1053 	 * Don't update the default route's characteristics and don't
   1054 	 * update anything that the user "locked".
   1055 	 */
   1056 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1057 	    ro && (rt = ro->ro_rt) &&
   1058 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
   1059 		u_long i = 0;
   1060 
   1061 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1062 			i = tp->t_srtt *
   1063 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1064 			if (rt->rt_rmx.rmx_rtt && i)
   1065 				/*
   1066 				 * filter this update to half the old & half
   1067 				 * the new values, converting scale.
   1068 				 * See route.h and tcp_var.h for a
   1069 				 * description of the scaling constants.
   1070 				 */
   1071 				rt->rt_rmx.rmx_rtt =
   1072 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1073 			else
   1074 				rt->rt_rmx.rmx_rtt = i;
   1075 		}
   1076 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1077 			i = tp->t_rttvar *
   1078 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1079 			if (rt->rt_rmx.rmx_rttvar && i)
   1080 				rt->rt_rmx.rmx_rttvar =
   1081 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1082 			else
   1083 				rt->rt_rmx.rmx_rttvar = i;
   1084 		}
   1085 		/*
   1086 		 * update the pipelimit (ssthresh) if it has been updated
   1087 		 * already or if a pipesize was specified & the threshhold
   1088 		 * got below half the pipesize.  I.e., wait for bad news
   1089 		 * before we start updating, then update on both good
   1090 		 * and bad news.
   1091 		 */
   1092 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1093 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1094 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1095 			/*
   1096 			 * convert the limit from user data bytes to
   1097 			 * packets then to packet data bytes.
   1098 			 */
   1099 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1100 			if (i < 2)
   1101 				i = 2;
   1102 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1103 			if (rt->rt_rmx.rmx_ssthresh)
   1104 				rt->rt_rmx.rmx_ssthresh =
   1105 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1106 			else
   1107 				rt->rt_rmx.rmx_ssthresh = i;
   1108 		}
   1109 	}
   1110 #endif /* RTV_RTT */
   1111 	/* free the reassembly queue, if any */
   1112 	TCP_REASS_LOCK(tp);
   1113 	(void) tcp_freeq(tp);
   1114 	TCP_REASS_UNLOCK(tp);
   1115 
   1116 	tcp_canceltimers(tp);
   1117 	TCP_CLEAR_DELACK(tp);
   1118 	syn_cache_cleanup(tp);
   1119 
   1120 	if (tp->t_template) {
   1121 		m_free(tp->t_template);
   1122 		tp->t_template = NULL;
   1123 	}
   1124 	pool_put(&tcpcb_pool, tp);
   1125 	if (inp) {
   1126 		inp->inp_ppcb = 0;
   1127 		soisdisconnected(so);
   1128 		in_pcbdetach(inp);
   1129 	}
   1130 #ifdef INET6
   1131 	else if (in6p) {
   1132 		in6p->in6p_ppcb = 0;
   1133 		soisdisconnected(so);
   1134 		in6_pcbdetach(in6p);
   1135 	}
   1136 #endif
   1137 	tcpstat.tcps_closed++;
   1138 	return ((struct tcpcb *)0);
   1139 }
   1140 
   1141 int
   1142 tcp_freeq(tp)
   1143 	struct tcpcb *tp;
   1144 {
   1145 	struct ipqent *qe;
   1146 	int rv = 0;
   1147 #ifdef TCPREASS_DEBUG
   1148 	int i = 0;
   1149 #endif
   1150 
   1151 	TCP_REASS_LOCK_CHECK(tp);
   1152 
   1153 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1154 #ifdef TCPREASS_DEBUG
   1155 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1156 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1157 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1158 #endif
   1159 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1160 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1161 		m_freem(qe->ipqe_m);
   1162 		pool_put(&ipqent_pool, qe);
   1163 		rv = 1;
   1164 	}
   1165 	return (rv);
   1166 }
   1167 
   1168 /*
   1169  * Protocol drain routine.  Called when memory is in short supply.
   1170  */
   1171 void
   1172 tcp_drain()
   1173 {
   1174 	struct inpcb *inp;
   1175 	struct tcpcb *tp;
   1176 
   1177 	/*
   1178 	 * Free the sequence queue of all TCP connections.
   1179 	 */
   1180 	inp = CIRCLEQ_FIRST(&tcbtable.inpt_queue);
   1181 	if (inp)						/* XXX */
   1182 	CIRCLEQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue) {
   1183 		if ((tp = intotcpcb(inp)) != NULL) {
   1184 			/*
   1185 			 * We may be called from a device's interrupt
   1186 			 * context.  If the tcpcb is already busy,
   1187 			 * just bail out now.
   1188 			 */
   1189 			if (tcp_reass_lock_try(tp) == 0)
   1190 				continue;
   1191 			if (tcp_freeq(tp))
   1192 				tcpstat.tcps_connsdrained++;
   1193 			TCP_REASS_UNLOCK(tp);
   1194 		}
   1195 	}
   1196 }
   1197 
   1198 #ifdef INET6
   1199 void
   1200 tcp6_drain()
   1201 {
   1202 	struct in6pcb *in6p;
   1203 	struct tcpcb *tp;
   1204 	struct in6pcb *head = &tcb6;
   1205 
   1206 	/*
   1207 	 * Free the sequence queue of all TCP connections.
   1208 	 */
   1209 	for (in6p = head->in6p_next; in6p != head; in6p = in6p->in6p_next) {
   1210 		if ((tp = in6totcpcb(in6p)) != NULL) {
   1211 			/*
   1212 			 * We may be called from a device's interrupt
   1213 			 * context.  If the tcpcb is already busy,
   1214 			 * just bail out now.
   1215 			 */
   1216 			if (tcp_reass_lock_try(tp) == 0)
   1217 				continue;
   1218 			if (tcp_freeq(tp))
   1219 				tcpstat.tcps_connsdrained++;
   1220 			TCP_REASS_UNLOCK(tp);
   1221 		}
   1222 	}
   1223 }
   1224 #endif
   1225 
   1226 /*
   1227  * Notify a tcp user of an asynchronous error;
   1228  * store error as soft error, but wake up user
   1229  * (for now, won't do anything until can select for soft error).
   1230  */
   1231 void
   1232 tcp_notify(inp, error)
   1233 	struct inpcb *inp;
   1234 	int error;
   1235 {
   1236 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1237 	struct socket *so = inp->inp_socket;
   1238 
   1239 	/*
   1240 	 * Ignore some errors if we are hooked up.
   1241 	 * If connection hasn't completed, has retransmitted several times,
   1242 	 * and receives a second error, give up now.  This is better
   1243 	 * than waiting a long time to establish a connection that
   1244 	 * can never complete.
   1245 	 */
   1246 	if (tp->t_state == TCPS_ESTABLISHED &&
   1247 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1248 	      error == EHOSTDOWN)) {
   1249 		return;
   1250 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1251 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1252 		so->so_error = error;
   1253 	else
   1254 		tp->t_softerror = error;
   1255 	wakeup((caddr_t) &so->so_timeo);
   1256 	sorwakeup(so);
   1257 	sowwakeup(so);
   1258 }
   1259 
   1260 #ifdef INET6
   1261 void
   1262 tcp6_notify(in6p, error)
   1263 	struct in6pcb *in6p;
   1264 	int error;
   1265 {
   1266 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1267 	struct socket *so = in6p->in6p_socket;
   1268 
   1269 	/*
   1270 	 * Ignore some errors if we are hooked up.
   1271 	 * If connection hasn't completed, has retransmitted several times,
   1272 	 * and receives a second error, give up now.  This is better
   1273 	 * than waiting a long time to establish a connection that
   1274 	 * can never complete.
   1275 	 */
   1276 	if (tp->t_state == TCPS_ESTABLISHED &&
   1277 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1278 	      error == EHOSTDOWN)) {
   1279 		return;
   1280 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1281 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1282 		so->so_error = error;
   1283 	else
   1284 		tp->t_softerror = error;
   1285 	wakeup((caddr_t) &so->so_timeo);
   1286 	sorwakeup(so);
   1287 	sowwakeup(so);
   1288 }
   1289 #endif
   1290 
   1291 #ifdef INET6
   1292 void
   1293 tcp6_ctlinput(cmd, sa, d)
   1294 	int cmd;
   1295 	struct sockaddr *sa;
   1296 	void *d;
   1297 {
   1298 	struct tcphdr th;
   1299 	void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
   1300 	int nmatch;
   1301 	struct ip6_hdr *ip6;
   1302 	const struct sockaddr_in6 *sa6_src = NULL;
   1303 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
   1304 	struct mbuf *m;
   1305 	int off;
   1306 
   1307 	if (sa->sa_family != AF_INET6 ||
   1308 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1309 		return;
   1310 	if ((unsigned)cmd >= PRC_NCMDS)
   1311 		return;
   1312 	else if (cmd == PRC_QUENCH) {
   1313 		/* XXX there's no PRC_QUENCH in IPv6 */
   1314 		notify = tcp6_quench;
   1315 	} else if (PRC_IS_REDIRECT(cmd))
   1316 		notify = in6_rtchange, d = NULL;
   1317 	else if (cmd == PRC_MSGSIZE)
   1318 		; /* special code is present, see below */
   1319 	else if (cmd == PRC_HOSTDEAD)
   1320 		d = NULL;
   1321 	else if (inet6ctlerrmap[cmd] == 0)
   1322 		return;
   1323 
   1324 	/* if the parameter is from icmp6, decode it. */
   1325 	if (d != NULL) {
   1326 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1327 		m = ip6cp->ip6c_m;
   1328 		ip6 = ip6cp->ip6c_ip6;
   1329 		off = ip6cp->ip6c_off;
   1330 		sa6_src = ip6cp->ip6c_src;
   1331 	} else {
   1332 		m = NULL;
   1333 		ip6 = NULL;
   1334 		sa6_src = &sa6_any;
   1335 	}
   1336 
   1337 	if (ip6) {
   1338 		/*
   1339 		 * XXX: We assume that when ip6 is non NULL,
   1340 		 * M and OFF are valid.
   1341 		 */
   1342 
   1343 		/* check if we can safely examine src and dst ports */
   1344 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1345 			if (cmd == PRC_MSGSIZE)
   1346 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1347 			return;
   1348 		}
   1349 
   1350 		bzero(&th, sizeof(th));
   1351 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
   1352 
   1353 		if (cmd == PRC_MSGSIZE) {
   1354 			int valid = 0;
   1355 
   1356 			/*
   1357 			 * Check to see if we have a valid TCP connection
   1358 			 * corresponding to the address in the ICMPv6 message
   1359 			 * payload.
   1360 			 */
   1361 			if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
   1362 			    th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
   1363 			    th.th_sport, 0))
   1364 				valid++;
   1365 
   1366 			/*
   1367 			 * Depending on the value of "valid" and routing table
   1368 			 * size (mtudisc_{hi,lo}wat), we will:
   1369 			 * - recalcurate the new MTU and create the
   1370 			 *   corresponding routing entry, or
   1371 			 * - ignore the MTU change notification.
   1372 			 */
   1373 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1374 
   1375 			/*
   1376 			 * no need to call in6_pcbnotify, it should have been
   1377 			 * called via callback if necessary
   1378 			 */
   1379 			return;
   1380 		}
   1381 
   1382 		nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
   1383 		    (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1384 		if (nmatch == 0 && syn_cache_count &&
   1385 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1386 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1387 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1388 			syn_cache_unreach((struct sockaddr *)sa6_src,
   1389 					  sa, &th);
   1390 	} else {
   1391 		(void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
   1392 		    0, cmd, NULL, notify);
   1393 	}
   1394 }
   1395 #endif
   1396 
   1397 #ifdef INET
   1398 /* assumes that ip header and tcp header are contiguous on mbuf */
   1399 void *
   1400 tcp_ctlinput(cmd, sa, v)
   1401 	int cmd;
   1402 	struct sockaddr *sa;
   1403 	void *v;
   1404 {
   1405 	struct ip *ip = v;
   1406 	struct tcphdr *th;
   1407 	struct icmp *icp;
   1408 	extern const int inetctlerrmap[];
   1409 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
   1410 	int errno;
   1411 	int nmatch;
   1412 
   1413 	if (sa->sa_family != AF_INET ||
   1414 	    sa->sa_len != sizeof(struct sockaddr_in))
   1415 		return NULL;
   1416 	if ((unsigned)cmd >= PRC_NCMDS)
   1417 		return NULL;
   1418 	errno = inetctlerrmap[cmd];
   1419 	if (cmd == PRC_QUENCH)
   1420 		notify = tcp_quench;
   1421 	else if (PRC_IS_REDIRECT(cmd))
   1422 		notify = in_rtchange, ip = 0;
   1423 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1424 		/*
   1425 		 * Check to see if we have a valid TCP connection
   1426 		 * corresponding to the address in the ICMP message
   1427 		 * payload.
   1428 		 *
   1429 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1430 		 */
   1431 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1432 		if (in_pcblookup_connect(&tcbtable,
   1433 					 ip->ip_dst, th->th_dport,
   1434 					 ip->ip_src, th->th_sport) == NULL)
   1435 			return NULL;
   1436 
   1437 		/*
   1438 		 * Now that we've validated that we are actually communicating
   1439 		 * with the host indicated in the ICMP message, locate the
   1440 		 * ICMP header, recalculate the new MTU, and create the
   1441 		 * corresponding routing entry.
   1442 		 */
   1443 		icp = (struct icmp *)((caddr_t)ip -
   1444 		    offsetof(struct icmp, icmp_ip));
   1445 		icmp_mtudisc(icp, ip->ip_dst);
   1446 
   1447 		return NULL;
   1448 	} else if (cmd == PRC_HOSTDEAD)
   1449 		ip = 0;
   1450 	else if (errno == 0)
   1451 		return NULL;
   1452 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1453 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1454 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
   1455 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1456 		if (nmatch == 0 && syn_cache_count &&
   1457 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1458 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1459 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1460 			struct sockaddr_in sin;
   1461 			bzero(&sin, sizeof(sin));
   1462 			sin.sin_len = sizeof(sin);
   1463 			sin.sin_family = AF_INET;
   1464 			sin.sin_port = th->th_sport;
   1465 			sin.sin_addr = ip->ip_src;
   1466 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1467 		}
   1468 
   1469 		/* XXX mapped address case */
   1470 	} else
   1471 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
   1472 		    notify);
   1473 	return NULL;
   1474 }
   1475 
   1476 /*
   1477  * When a source quence is received, we are being notifed of congestion.
   1478  * Close the congestion window down to the Loss Window (one segment).
   1479  * We will gradually open it again as we proceed.
   1480  */
   1481 void
   1482 tcp_quench(inp, errno)
   1483 	struct inpcb *inp;
   1484 	int errno;
   1485 {
   1486 	struct tcpcb *tp = intotcpcb(inp);
   1487 
   1488 	if (tp)
   1489 		tp->snd_cwnd = tp->t_segsz;
   1490 }
   1491 #endif
   1492 
   1493 #ifdef INET6
   1494 void
   1495 tcp6_quench(in6p, errno)
   1496 	struct in6pcb *in6p;
   1497 	int errno;
   1498 {
   1499 	struct tcpcb *tp = in6totcpcb(in6p);
   1500 
   1501 	if (tp)
   1502 		tp->snd_cwnd = tp->t_segsz;
   1503 }
   1504 #endif
   1505 
   1506 #ifdef INET
   1507 /*
   1508  * Path MTU Discovery handlers.
   1509  */
   1510 void
   1511 tcp_mtudisc_callback(faddr)
   1512 	struct in_addr faddr;
   1513 {
   1514 
   1515 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1516 }
   1517 
   1518 /*
   1519  * On receipt of path MTU corrections, flush old route and replace it
   1520  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1521  * that all packets will be received.
   1522  */
   1523 void
   1524 tcp_mtudisc(inp, errno)
   1525 	struct inpcb *inp;
   1526 	int errno;
   1527 {
   1528 	struct tcpcb *tp = intotcpcb(inp);
   1529 	struct rtentry *rt = in_pcbrtentry(inp);
   1530 
   1531 	if (tp != 0) {
   1532 		if (rt != 0) {
   1533 			/*
   1534 			 * If this was not a host route, remove and realloc.
   1535 			 */
   1536 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1537 				in_rtchange(inp, errno);
   1538 				if ((rt = in_pcbrtentry(inp)) == 0)
   1539 					return;
   1540 			}
   1541 
   1542 			/*
   1543 			 * Slow start out of the error condition.  We
   1544 			 * use the MTU because we know it's smaller
   1545 			 * than the previously transmitted segment.
   1546 			 *
   1547 			 * Note: This is more conservative than the
   1548 			 * suggestion in draft-floyd-incr-init-win-03.
   1549 			 */
   1550 			if (rt->rt_rmx.rmx_mtu != 0)
   1551 				tp->snd_cwnd =
   1552 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1553 				    rt->rt_rmx.rmx_mtu);
   1554 		}
   1555 
   1556 		/*
   1557 		 * Resend unacknowledged packets.
   1558 		 */
   1559 		tp->snd_nxt = tp->snd_una;
   1560 		tcp_output(tp);
   1561 	}
   1562 }
   1563 #endif
   1564 
   1565 #ifdef INET6
   1566 /*
   1567  * Path MTU Discovery handlers.
   1568  */
   1569 void
   1570 tcp6_mtudisc_callback(faddr)
   1571 	struct in6_addr *faddr;
   1572 {
   1573 	struct sockaddr_in6 sin6;
   1574 
   1575 	bzero(&sin6, sizeof(sin6));
   1576 	sin6.sin6_family = AF_INET6;
   1577 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1578 	sin6.sin6_addr = *faddr;
   1579 	(void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
   1580 	    (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1581 }
   1582 
   1583 void
   1584 tcp6_mtudisc(in6p, errno)
   1585 	struct in6pcb *in6p;
   1586 	int errno;
   1587 {
   1588 	struct tcpcb *tp = in6totcpcb(in6p);
   1589 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1590 
   1591 	if (tp != 0) {
   1592 		if (rt != 0) {
   1593 			/*
   1594 			 * If this was not a host route, remove and realloc.
   1595 			 */
   1596 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1597 				in6_rtchange(in6p, errno);
   1598 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1599 					return;
   1600 			}
   1601 
   1602 			/*
   1603 			 * Slow start out of the error condition.  We
   1604 			 * use the MTU because we know it's smaller
   1605 			 * than the previously transmitted segment.
   1606 			 *
   1607 			 * Note: This is more conservative than the
   1608 			 * suggestion in draft-floyd-incr-init-win-03.
   1609 			 */
   1610 			if (rt->rt_rmx.rmx_mtu != 0)
   1611 				tp->snd_cwnd =
   1612 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1613 				    rt->rt_rmx.rmx_mtu);
   1614 		}
   1615 
   1616 		/*
   1617 		 * Resend unacknowledged packets.
   1618 		 */
   1619 		tp->snd_nxt = tp->snd_una;
   1620 		tcp_output(tp);
   1621 	}
   1622 }
   1623 #endif /* INET6 */
   1624 
   1625 /*
   1626  * Compute the MSS to advertise to the peer.  Called only during
   1627  * the 3-way handshake.  If we are the server (peer initiated
   1628  * connection), we are called with a pointer to the interface
   1629  * on which the SYN packet arrived.  If we are the client (we
   1630  * initiated connection), we are called with a pointer to the
   1631  * interface out which this connection should go.
   1632  *
   1633  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1634  * header size from MSS advertisement.  MSS option must hold the maximum
   1635  * segment size we can accept, so it must always be:
   1636  *	 max(if mtu) - ip header - tcp header
   1637  */
   1638 u_long
   1639 tcp_mss_to_advertise(ifp, af)
   1640 	const struct ifnet *ifp;
   1641 	int af;
   1642 {
   1643 	extern u_long in_maxmtu;
   1644 	u_long mss = 0;
   1645 	u_long hdrsiz;
   1646 
   1647 	/*
   1648 	 * In order to avoid defeating path MTU discovery on the peer,
   1649 	 * we advertise the max MTU of all attached networks as our MSS,
   1650 	 * per RFC 1191, section 3.1.
   1651 	 *
   1652 	 * We provide the option to advertise just the MTU of
   1653 	 * the interface on which we hope this connection will
   1654 	 * be receiving.  If we are responding to a SYN, we
   1655 	 * will have a pretty good idea about this, but when
   1656 	 * initiating a connection there is a bit more doubt.
   1657 	 *
   1658 	 * We also need to ensure that loopback has a large enough
   1659 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1660 	 */
   1661 
   1662 	if (ifp != NULL)
   1663 		mss = ifp->if_mtu;
   1664 
   1665 	if (tcp_mss_ifmtu == 0)
   1666 		switch (af) {
   1667 		case AF_INET:
   1668 			mss = max(in_maxmtu, mss);
   1669 			break;
   1670 #ifdef INET6
   1671 		case AF_INET6:
   1672 			mss = max(in6_maxmtu, mss);
   1673 			break;
   1674 #endif
   1675 		}
   1676 
   1677 	switch (af) {
   1678 	case AF_INET:
   1679 		hdrsiz = sizeof(struct ip);
   1680 		break;
   1681 #ifdef INET6
   1682 	case AF_INET6:
   1683 		hdrsiz = sizeof(struct ip6_hdr);
   1684 		break;
   1685 #endif
   1686 	default:
   1687 		hdrsiz = 0;
   1688 		break;
   1689 	}
   1690 	hdrsiz += sizeof(struct tcphdr);
   1691 	if (mss > hdrsiz)
   1692 		mss -= hdrsiz;
   1693 
   1694 	mss = max(tcp_mssdflt, mss);
   1695 	return (mss);
   1696 }
   1697 
   1698 /*
   1699  * Set connection variables based on the peer's advertised MSS.
   1700  * We are passed the TCPCB for the actual connection.  If we
   1701  * are the server, we are called by the compressed state engine
   1702  * when the 3-way handshake is complete.  If we are the client,
   1703  * we are called when we receive the SYN,ACK from the server.
   1704  *
   1705  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1706  * before this routine is called!
   1707  */
   1708 void
   1709 tcp_mss_from_peer(tp, offer)
   1710 	struct tcpcb *tp;
   1711 	int offer;
   1712 {
   1713 	struct socket *so;
   1714 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1715 	struct rtentry *rt;
   1716 #endif
   1717 	u_long bufsize;
   1718 	int mss;
   1719 
   1720 #ifdef DIAGNOSTIC
   1721 	if (tp->t_inpcb && tp->t_in6pcb)
   1722 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1723 #endif
   1724 	so = NULL;
   1725 	rt = NULL;
   1726 #ifdef INET
   1727 	if (tp->t_inpcb) {
   1728 		so = tp->t_inpcb->inp_socket;
   1729 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1730 		rt = in_pcbrtentry(tp->t_inpcb);
   1731 #endif
   1732 	}
   1733 #endif
   1734 #ifdef INET6
   1735 	if (tp->t_in6pcb) {
   1736 		so = tp->t_in6pcb->in6p_socket;
   1737 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1738 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1739 #endif
   1740 	}
   1741 #endif
   1742 
   1743 	/*
   1744 	 * As per RFC1122, use the default MSS value, unless they
   1745 	 * sent us an offer.  Do not accept offers less than 32 bytes.
   1746 	 */
   1747 	mss = tcp_mssdflt;
   1748 	if (offer)
   1749 		mss = offer;
   1750 	mss = max(mss, 32);		/* sanity */
   1751 	tp->t_peermss = mss;
   1752 	mss -= tcp_optlen(tp);
   1753 #ifdef INET
   1754 	if (tp->t_inpcb)
   1755 		mss -= ip_optlen(tp->t_inpcb);
   1756 #endif
   1757 #ifdef INET6
   1758 	if (tp->t_in6pcb)
   1759 		mss -= ip6_optlen(tp->t_in6pcb);
   1760 #endif
   1761 
   1762 	/*
   1763 	 * If there's a pipesize, change the socket buffer to that size.
   1764 	 * Make the socket buffer an integral number of MSS units.  If
   1765 	 * the MSS is larger than the socket buffer, artificially decrease
   1766 	 * the MSS.
   1767 	 */
   1768 #ifdef RTV_SPIPE
   1769 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1770 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1771 	else
   1772 #endif
   1773 		bufsize = so->so_snd.sb_hiwat;
   1774 	if (bufsize < mss)
   1775 		mss = bufsize;
   1776 	else {
   1777 		bufsize = roundup(bufsize, mss);
   1778 		if (bufsize > sb_max)
   1779 			bufsize = sb_max;
   1780 		(void) sbreserve(&so->so_snd, bufsize);
   1781 	}
   1782 	tp->t_segsz = mss;
   1783 
   1784 #ifdef RTV_SSTHRESH
   1785 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1786 		/*
   1787 		 * There's some sort of gateway or interface buffer
   1788 		 * limit on the path.  Use this to set the slow
   1789 		 * start threshold, but set the threshold to no less
   1790 		 * than 2 * MSS.
   1791 		 */
   1792 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1793 	}
   1794 #endif
   1795 }
   1796 
   1797 /*
   1798  * Processing necessary when a TCP connection is established.
   1799  */
   1800 void
   1801 tcp_established(tp)
   1802 	struct tcpcb *tp;
   1803 {
   1804 	struct socket *so;
   1805 #ifdef RTV_RPIPE
   1806 	struct rtentry *rt;
   1807 #endif
   1808 	u_long bufsize;
   1809 
   1810 #ifdef DIAGNOSTIC
   1811 	if (tp->t_inpcb && tp->t_in6pcb)
   1812 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   1813 #endif
   1814 	so = NULL;
   1815 	rt = NULL;
   1816 #ifdef INET
   1817 	if (tp->t_inpcb) {
   1818 		so = tp->t_inpcb->inp_socket;
   1819 #if defined(RTV_RPIPE)
   1820 		rt = in_pcbrtentry(tp->t_inpcb);
   1821 #endif
   1822 	}
   1823 #endif
   1824 #ifdef INET6
   1825 	if (tp->t_in6pcb) {
   1826 		so = tp->t_in6pcb->in6p_socket;
   1827 #if defined(RTV_RPIPE)
   1828 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1829 #endif
   1830 	}
   1831 #endif
   1832 
   1833 	tp->t_state = TCPS_ESTABLISHED;
   1834 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1835 
   1836 #ifdef RTV_RPIPE
   1837 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   1838 		bufsize = rt->rt_rmx.rmx_recvpipe;
   1839 	else
   1840 #endif
   1841 		bufsize = so->so_rcv.sb_hiwat;
   1842 	if (bufsize > tp->t_ourmss) {
   1843 		bufsize = roundup(bufsize, tp->t_ourmss);
   1844 		if (bufsize > sb_max)
   1845 			bufsize = sb_max;
   1846 		(void) sbreserve(&so->so_rcv, bufsize);
   1847 	}
   1848 }
   1849 
   1850 /*
   1851  * Check if there's an initial rtt or rttvar.  Convert from the
   1852  * route-table units to scaled multiples of the slow timeout timer.
   1853  * Called only during the 3-way handshake.
   1854  */
   1855 void
   1856 tcp_rmx_rtt(tp)
   1857 	struct tcpcb *tp;
   1858 {
   1859 #ifdef RTV_RTT
   1860 	struct rtentry *rt = NULL;
   1861 	int rtt;
   1862 
   1863 #ifdef DIAGNOSTIC
   1864 	if (tp->t_inpcb && tp->t_in6pcb)
   1865 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   1866 #endif
   1867 #ifdef INET
   1868 	if (tp->t_inpcb)
   1869 		rt = in_pcbrtentry(tp->t_inpcb);
   1870 #endif
   1871 #ifdef INET6
   1872 	if (tp->t_in6pcb)
   1873 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1874 #endif
   1875 	if (rt == NULL)
   1876 		return;
   1877 
   1878 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   1879 		/*
   1880 		 * XXX The lock bit for MTU indicates that the value
   1881 		 * is also a minimum value; this is subject to time.
   1882 		 */
   1883 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   1884 			TCPT_RANGESET(tp->t_rttmin,
   1885 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   1886 			    TCPTV_MIN, TCPTV_REXMTMAX);
   1887 		tp->t_srtt = rtt /
   1888 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1889 		if (rt->rt_rmx.rmx_rttvar) {
   1890 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   1891 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   1892 				(TCP_RTTVAR_SHIFT + 2));
   1893 		} else {
   1894 			/* Default variation is +- 1 rtt */
   1895 			tp->t_rttvar =
   1896 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   1897 		}
   1898 		TCPT_RANGESET(tp->t_rxtcur,
   1899 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   1900 		    tp->t_rttmin, TCPTV_REXMTMAX);
   1901 	}
   1902 #endif
   1903 }
   1904 
   1905 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   1906 #if NRND > 0
   1907 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   1908 #endif
   1909 
   1910 /*
   1911  * Get a new sequence value given a tcp control block
   1912  */
   1913 tcp_seq
   1914 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   1915 {
   1916 
   1917 #ifdef INET
   1918 	if (tp->t_inpcb != NULL) {
   1919 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   1920 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   1921 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   1922 		    addin));
   1923 	}
   1924 #endif
   1925 #ifdef INET6
   1926 	if (tp->t_in6pcb != NULL) {
   1927 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   1928 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   1929 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   1930 		    addin));
   1931 	}
   1932 #endif
   1933 	/* Not possible. */
   1934 	panic("tcp_new_iss");
   1935 }
   1936 
   1937 /*
   1938  * This routine actually generates a new TCP initial sequence number.
   1939  */
   1940 tcp_seq
   1941 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   1942     size_t addrsz, tcp_seq addin)
   1943 {
   1944 	tcp_seq tcp_iss;
   1945 
   1946 #if NRND > 0
   1947 	static int beenhere;
   1948 
   1949 	/*
   1950 	 * If we haven't been here before, initialize our cryptographic
   1951 	 * hash secret.
   1952 	 */
   1953 	if (beenhere == 0) {
   1954 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   1955 		    RND_EXTRACT_ANY);
   1956 		beenhere = 1;
   1957 	}
   1958 
   1959 	if (tcp_do_rfc1948) {
   1960 		MD5_CTX ctx;
   1961 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   1962 
   1963 		/*
   1964 		 * Compute the base value of the ISS.  It is a hash
   1965 		 * of (saddr, sport, daddr, dport, secret).
   1966 		 */
   1967 		MD5Init(&ctx);
   1968 
   1969 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   1970 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   1971 
   1972 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   1973 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   1974 
   1975 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   1976 
   1977 		MD5Final(hash, &ctx);
   1978 
   1979 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   1980 
   1981 		/*
   1982 		 * Now increment our "timer", and add it in to
   1983 		 * the computed value.
   1984 		 *
   1985 		 * XXX Use `addin'?
   1986 		 * XXX TCP_ISSINCR too large to use?
   1987 		 */
   1988 		tcp_iss_seq += TCP_ISSINCR;
   1989 #ifdef TCPISS_DEBUG
   1990 		printf("ISS hash 0x%08x, ", tcp_iss);
   1991 #endif
   1992 		tcp_iss += tcp_iss_seq + addin;
   1993 #ifdef TCPISS_DEBUG
   1994 		printf("new ISS 0x%08x\n", tcp_iss);
   1995 #endif
   1996 	} else
   1997 #endif /* NRND > 0 */
   1998 	{
   1999 		/*
   2000 		 * Randomize.
   2001 		 */
   2002 #if NRND > 0
   2003 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2004 #else
   2005 		tcp_iss = random();
   2006 #endif
   2007 
   2008 		/*
   2009 		 * If we were asked to add some amount to a known value,
   2010 		 * we will take a random value obtained above, mask off
   2011 		 * the upper bits, and add in the known value.  We also
   2012 		 * add in a constant to ensure that we are at least a
   2013 		 * certain distance from the original value.
   2014 		 *
   2015 		 * This is used when an old connection is in timed wait
   2016 		 * and we have a new one coming in, for instance.
   2017 		 */
   2018 		if (addin != 0) {
   2019 #ifdef TCPISS_DEBUG
   2020 			printf("Random %08x, ", tcp_iss);
   2021 #endif
   2022 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2023 			tcp_iss += addin + TCP_ISSINCR;
   2024 #ifdef TCPISS_DEBUG
   2025 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2026 #endif
   2027 		} else {
   2028 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2029 			tcp_iss += tcp_iss_seq;
   2030 			tcp_iss_seq += TCP_ISSINCR;
   2031 #ifdef TCPISS_DEBUG
   2032 			printf("ISS %08x\n", tcp_iss);
   2033 #endif
   2034 		}
   2035 	}
   2036 
   2037 	if (tcp_compat_42) {
   2038 		/*
   2039 		 * Limit it to the positive range for really old TCP
   2040 		 * implementations.
   2041 		 */
   2042 		if (tcp_iss >= 0x80000000)
   2043 			tcp_iss &= 0x7fffffff;		/* XXX */
   2044 	}
   2045 
   2046 	return (tcp_iss);
   2047 }
   2048 
   2049 #ifdef IPSEC
   2050 /* compute ESP/AH header size for TCP, including outer IP header. */
   2051 size_t
   2052 ipsec4_hdrsiz_tcp(tp)
   2053 	struct tcpcb *tp;
   2054 {
   2055 	struct inpcb *inp;
   2056 	size_t hdrsiz;
   2057 
   2058 	/* XXX mapped addr case (tp->t_in6pcb) */
   2059 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2060 		return 0;
   2061 	switch (tp->t_family) {
   2062 	case AF_INET:
   2063 		/* XXX: should use currect direction. */
   2064 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2065 		break;
   2066 	default:
   2067 		hdrsiz = 0;
   2068 		break;
   2069 	}
   2070 
   2071 	return hdrsiz;
   2072 }
   2073 
   2074 #ifdef INET6
   2075 size_t
   2076 ipsec6_hdrsiz_tcp(tp)
   2077 	struct tcpcb *tp;
   2078 {
   2079 	struct in6pcb *in6p;
   2080 	size_t hdrsiz;
   2081 
   2082 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2083 		return 0;
   2084 	switch (tp->t_family) {
   2085 	case AF_INET6:
   2086 		/* XXX: should use currect direction. */
   2087 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2088 		break;
   2089 	case AF_INET:
   2090 		/* mapped address case - tricky */
   2091 	default:
   2092 		hdrsiz = 0;
   2093 		break;
   2094 	}
   2095 
   2096 	return hdrsiz;
   2097 }
   2098 #endif
   2099 #endif /*IPSEC*/
   2100 
   2101 /*
   2102  * Determine the length of the TCP options for this connection.
   2103  *
   2104  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2105  *       all of the space?  Otherwise we can't exactly be incrementing
   2106  *       cwnd by an amount that varies depending on the amount we last
   2107  *       had to SACK!
   2108  */
   2109 
   2110 u_int
   2111 tcp_optlen(tp)
   2112 	struct tcpcb *tp;
   2113 {
   2114 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2115 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2116 		return TCPOLEN_TSTAMP_APPA;
   2117 	else
   2118 		return 0;
   2119 }
   2120