tcp_subr.c revision 1.134 1 /* $NetBSD: tcp_subr.c,v 1.134 2002/09/25 11:19:23 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
102 */
103
104 #include <sys/cdefs.h>
105 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.134 2002/09/25 11:19:23 itojun Exp $");
106
107 #include "opt_inet.h"
108 #include "opt_ipsec.h"
109 #include "opt_tcp_compat_42.h"
110 #include "opt_inet_csum.h"
111 #include "rnd.h"
112
113 #include <sys/param.h>
114 #include <sys/proc.h>
115 #include <sys/systm.h>
116 #include <sys/malloc.h>
117 #include <sys/mbuf.h>
118 #include <sys/socket.h>
119 #include <sys/socketvar.h>
120 #include <sys/protosw.h>
121 #include <sys/errno.h>
122 #include <sys/kernel.h>
123 #include <sys/pool.h>
124 #if NRND > 0
125 #include <sys/md5.h>
126 #include <sys/rnd.h>
127 #endif
128
129 #include <net/route.h>
130 #include <net/if.h>
131
132 #include <netinet/in.h>
133 #include <netinet/in_systm.h>
134 #include <netinet/ip.h>
135 #include <netinet/in_pcb.h>
136 #include <netinet/ip_var.h>
137 #include <netinet/ip_icmp.h>
138
139 #ifdef INET6
140 #ifndef INET
141 #include <netinet/in.h>
142 #endif
143 #include <netinet/ip6.h>
144 #include <netinet6/in6_pcb.h>
145 #include <netinet6/ip6_var.h>
146 #include <netinet6/in6_var.h>
147 #include <netinet6/ip6protosw.h>
148 #include <netinet/icmp6.h>
149 #include <netinet6/nd6.h>
150 #endif
151
152 #include <netinet/tcp.h>
153 #include <netinet/tcp_fsm.h>
154 #include <netinet/tcp_seq.h>
155 #include <netinet/tcp_timer.h>
156 #include <netinet/tcp_var.h>
157 #include <netinet/tcpip.h>
158
159 #ifdef IPSEC
160 #include <netinet6/ipsec.h>
161 #endif /*IPSEC*/
162
163 #ifdef INET6
164 struct in6pcb tcb6;
165 #endif
166
167 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
168 struct tcpstat tcpstat; /* tcp statistics */
169 u_int32_t tcp_now; /* for RFC 1323 timestamps */
170
171 /* patchable/settable parameters for tcp */
172 int tcp_mssdflt = TCP_MSS;
173 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
174 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
175 #if NRND > 0
176 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
177 #endif
178 int tcp_do_sack = 1; /* selective acknowledgement */
179 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
180 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
181 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
182 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
183 int tcp_init_win = 1;
184 int tcp_mss_ifmtu = 0;
185 #ifdef TCP_COMPAT_42
186 int tcp_compat_42 = 1;
187 #else
188 int tcp_compat_42 = 0;
189 #endif
190 int tcp_rst_ppslim = 100; /* 100pps */
191
192 /* tcb hash */
193 #ifndef TCBHASHSIZE
194 #define TCBHASHSIZE 128
195 #endif
196 int tcbhashsize = TCBHASHSIZE;
197
198 /* syn hash parameters */
199 #define TCP_SYN_HASH_SIZE 293
200 #define TCP_SYN_BUCKET_SIZE 35
201 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
202 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
203 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
204 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
205
206 int tcp_freeq __P((struct tcpcb *));
207
208 #ifdef INET
209 void tcp_mtudisc_callback __P((struct in_addr));
210 #endif
211 #ifdef INET6
212 void tcp6_mtudisc_callback __P((struct in6_addr *));
213 #endif
214
215 void tcp_mtudisc __P((struct inpcb *, int));
216 #ifdef INET6
217 void tcp6_mtudisc __P((struct in6pcb *, int));
218 #endif
219
220 struct pool tcpcb_pool;
221
222 #ifdef TCP_CSUM_COUNTERS
223 #include <sys/device.h>
224
225 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
226 NULL, "tcp", "hwcsum bad");
227 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
228 NULL, "tcp", "hwcsum ok");
229 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
230 NULL, "tcp", "hwcsum data");
231 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
232 NULL, "tcp", "swcsum");
233 #endif /* TCP_CSUM_COUNTERS */
234
235 #ifdef TCP_OUTPUT_COUNTERS
236 #include <sys/device.h>
237
238 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
239 NULL, "tcp", "output big header");
240 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
241 NULL, "tcp", "output copy small");
242 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
243 NULL, "tcp", "output copy big");
244 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
245 NULL, "tcp", "output reference big");
246 #endif /* TCP_OUTPUT_COUNTERS */
247
248 #ifdef TCP_REASS_COUNTERS
249 #include <sys/device.h>
250
251 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
252 NULL, "tcp_reass", "calls");
253 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
254 &tcp_reass_, "tcp_reass", "insert into empty queue");
255 struct evcnt tcp_reass_iteration[8] = {
256 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
257 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
258 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
259 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
260 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
261 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
262 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
263 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
264 };
265 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266 &tcp_reass_, "tcp_reass", "prepend to first");
267 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268 &tcp_reass_, "tcp_reass", "prepend");
269 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
270 &tcp_reass_, "tcp_reass", "insert");
271 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
272 &tcp_reass_, "tcp_reass", "insert at tail");
273 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
274 &tcp_reass_, "tcp_reass", "append");
275 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
276 &tcp_reass_, "tcp_reass", "append to tail fragment");
277 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
278 &tcp_reass_, "tcp_reass", "overlap at end");
279 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
280 &tcp_reass_, "tcp_reass", "overlap at start");
281 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282 &tcp_reass_, "tcp_reass", "duplicate segment");
283 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284 &tcp_reass_, "tcp_reass", "duplicate fragment");
285
286 #endif /* TCP_REASS_COUNTERS */
287
288 /*
289 * Tcp initialization
290 */
291 void
292 tcp_init()
293 {
294 int hlen;
295
296 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
297 NULL);
298 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
299 #ifdef INET6
300 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
301 #endif
302
303 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
304 #ifdef INET6
305 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
306 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
307 #endif
308 if (max_protohdr < hlen)
309 max_protohdr = hlen;
310 if (max_linkhdr + hlen > MHLEN)
311 panic("tcp_init");
312
313 #ifdef INET
314 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
315 #endif
316 #ifdef INET6
317 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
318 #endif
319
320 /* Initialize timer state. */
321 tcp_timer_init();
322
323 /* Initialize the compressed state engine. */
324 syn_cache_init();
325
326 #ifdef TCP_CSUM_COUNTERS
327 evcnt_attach_static(&tcp_hwcsum_bad);
328 evcnt_attach_static(&tcp_hwcsum_ok);
329 evcnt_attach_static(&tcp_hwcsum_data);
330 evcnt_attach_static(&tcp_swcsum);
331 #endif /* TCP_CSUM_COUNTERS */
332
333 #ifdef TCP_OUTPUT_COUNTERS
334 evcnt_attach_static(&tcp_output_bigheader);
335 evcnt_attach_static(&tcp_output_copysmall);
336 evcnt_attach_static(&tcp_output_copybig);
337 evcnt_attach_static(&tcp_output_refbig);
338 #endif /* TCP_OUTPUT_COUNTERS */
339
340 #ifdef TCP_REASS_COUNTERS
341 evcnt_attach_static(&tcp_reass_);
342 evcnt_attach_static(&tcp_reass_empty);
343 evcnt_attach_static(&tcp_reass_iteration[0]);
344 evcnt_attach_static(&tcp_reass_iteration[1]);
345 evcnt_attach_static(&tcp_reass_iteration[2]);
346 evcnt_attach_static(&tcp_reass_iteration[3]);
347 evcnt_attach_static(&tcp_reass_iteration[4]);
348 evcnt_attach_static(&tcp_reass_iteration[5]);
349 evcnt_attach_static(&tcp_reass_iteration[6]);
350 evcnt_attach_static(&tcp_reass_iteration[7]);
351 evcnt_attach_static(&tcp_reass_prependfirst);
352 evcnt_attach_static(&tcp_reass_prepend);
353 evcnt_attach_static(&tcp_reass_insert);
354 evcnt_attach_static(&tcp_reass_inserttail);
355 evcnt_attach_static(&tcp_reass_append);
356 evcnt_attach_static(&tcp_reass_appendtail);
357 evcnt_attach_static(&tcp_reass_overlaptail);
358 evcnt_attach_static(&tcp_reass_overlapfront);
359 evcnt_attach_static(&tcp_reass_segdup);
360 evcnt_attach_static(&tcp_reass_fragdup);
361 #endif /* TCP_REASS_COUNTERS */
362 }
363
364 /*
365 * Create template to be used to send tcp packets on a connection.
366 * Call after host entry created, allocates an mbuf and fills
367 * in a skeletal tcp/ip header, minimizing the amount of work
368 * necessary when the connection is used.
369 */
370 struct mbuf *
371 tcp_template(tp)
372 struct tcpcb *tp;
373 {
374 struct inpcb *inp = tp->t_inpcb;
375 #ifdef INET6
376 struct in6pcb *in6p = tp->t_in6pcb;
377 #endif
378 struct tcphdr *n;
379 struct mbuf *m;
380 int hlen;
381
382 switch (tp->t_family) {
383 case AF_INET:
384 hlen = sizeof(struct ip);
385 if (inp)
386 break;
387 #ifdef INET6
388 if (in6p) {
389 /* mapped addr case */
390 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
391 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
392 break;
393 }
394 #endif
395 return NULL; /*EINVAL*/
396 #ifdef INET6
397 case AF_INET6:
398 hlen = sizeof(struct ip6_hdr);
399 if (in6p) {
400 /* more sainty check? */
401 break;
402 }
403 return NULL; /*EINVAL*/
404 #endif
405 default:
406 hlen = 0; /*pacify gcc*/
407 return NULL; /*EAFNOSUPPORT*/
408 }
409 #ifdef DIAGNOSTIC
410 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
411 panic("mclbytes too small for t_template");
412 #endif
413 m = tp->t_template;
414 if (m && m->m_len == hlen + sizeof(struct tcphdr))
415 ;
416 else {
417 if (m)
418 m_freem(m);
419 m = tp->t_template = NULL;
420 MGETHDR(m, M_DONTWAIT, MT_HEADER);
421 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
422 MCLGET(m, M_DONTWAIT);
423 if ((m->m_flags & M_EXT) == 0) {
424 m_free(m);
425 m = NULL;
426 }
427 }
428 if (m == NULL)
429 return NULL;
430 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
431 }
432
433 bzero(mtod(m, caddr_t), m->m_len);
434
435 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
436
437 switch (tp->t_family) {
438 case AF_INET:
439 {
440 struct ipovly *ipov;
441 mtod(m, struct ip *)->ip_v = 4;
442 ipov = mtod(m, struct ipovly *);
443 ipov->ih_pr = IPPROTO_TCP;
444 ipov->ih_len = htons(sizeof(struct tcphdr));
445 if (inp) {
446 ipov->ih_src = inp->inp_laddr;
447 ipov->ih_dst = inp->inp_faddr;
448 }
449 #ifdef INET6
450 else if (in6p) {
451 /* mapped addr case */
452 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
453 sizeof(ipov->ih_src));
454 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
455 sizeof(ipov->ih_dst));
456 }
457 #endif
458 /*
459 * Compute the pseudo-header portion of the checksum
460 * now. We incrementally add in the TCP option and
461 * payload lengths later, and then compute the TCP
462 * checksum right before the packet is sent off onto
463 * the wire.
464 */
465 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
466 ipov->ih_dst.s_addr,
467 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
468 break;
469 }
470 #ifdef INET6
471 case AF_INET6:
472 {
473 struct ip6_hdr *ip6;
474 mtod(m, struct ip *)->ip_v = 6;
475 ip6 = mtod(m, struct ip6_hdr *);
476 ip6->ip6_nxt = IPPROTO_TCP;
477 ip6->ip6_plen = htons(sizeof(struct tcphdr));
478 ip6->ip6_src = in6p->in6p_laddr;
479 ip6->ip6_dst = in6p->in6p_faddr;
480 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
481 if (ip6_auto_flowlabel) {
482 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
483 ip6->ip6_flow |=
484 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
485 }
486 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
487 ip6->ip6_vfc |= IPV6_VERSION;
488
489 /*
490 * Compute the pseudo-header portion of the checksum
491 * now. We incrementally add in the TCP option and
492 * payload lengths later, and then compute the TCP
493 * checksum right before the packet is sent off onto
494 * the wire.
495 */
496 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
497 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
498 htonl(IPPROTO_TCP));
499 break;
500 }
501 #endif
502 }
503 if (inp) {
504 n->th_sport = inp->inp_lport;
505 n->th_dport = inp->inp_fport;
506 }
507 #ifdef INET6
508 else if (in6p) {
509 n->th_sport = in6p->in6p_lport;
510 n->th_dport = in6p->in6p_fport;
511 }
512 #endif
513 n->th_seq = 0;
514 n->th_ack = 0;
515 n->th_x2 = 0;
516 n->th_off = 5;
517 n->th_flags = 0;
518 n->th_win = 0;
519 n->th_urp = 0;
520 return (m);
521 }
522
523 /*
524 * Send a single message to the TCP at address specified by
525 * the given TCP/IP header. If m == 0, then we make a copy
526 * of the tcpiphdr at ti and send directly to the addressed host.
527 * This is used to force keep alive messages out using the TCP
528 * template for a connection tp->t_template. If flags are given
529 * then we send a message back to the TCP which originated the
530 * segment ti, and discard the mbuf containing it and any other
531 * attached mbufs.
532 *
533 * In any case the ack and sequence number of the transmitted
534 * segment are as specified by the parameters.
535 */
536 int
537 tcp_respond(tp, template, m, th0, ack, seq, flags)
538 struct tcpcb *tp;
539 struct mbuf *template;
540 struct mbuf *m;
541 struct tcphdr *th0;
542 tcp_seq ack, seq;
543 int flags;
544 {
545 struct route *ro;
546 int error, tlen, win = 0;
547 int hlen;
548 struct ip *ip;
549 #ifdef INET6
550 struct ip6_hdr *ip6;
551 #endif
552 int family; /* family on packet, not inpcb/in6pcb! */
553 struct tcphdr *th;
554
555 if (tp != NULL && (flags & TH_RST) == 0) {
556 #ifdef DIAGNOSTIC
557 if (tp->t_inpcb && tp->t_in6pcb)
558 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
559 #endif
560 #ifdef INET
561 if (tp->t_inpcb)
562 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
563 #endif
564 #ifdef INET6
565 if (tp->t_in6pcb)
566 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
567 #endif
568 }
569
570 ip = NULL;
571 #ifdef INET6
572 ip6 = NULL;
573 #endif
574 if (m == 0) {
575 if (!template)
576 return EINVAL;
577
578 /* get family information from template */
579 switch (mtod(template, struct ip *)->ip_v) {
580 case 4:
581 family = AF_INET;
582 hlen = sizeof(struct ip);
583 break;
584 #ifdef INET6
585 case 6:
586 family = AF_INET6;
587 hlen = sizeof(struct ip6_hdr);
588 break;
589 #endif
590 default:
591 return EAFNOSUPPORT;
592 }
593
594 MGETHDR(m, M_DONTWAIT, MT_HEADER);
595 if (m) {
596 MCLGET(m, M_DONTWAIT);
597 if ((m->m_flags & M_EXT) == 0) {
598 m_free(m);
599 m = NULL;
600 }
601 }
602 if (m == NULL)
603 return (ENOBUFS);
604
605 if (tcp_compat_42)
606 tlen = 1;
607 else
608 tlen = 0;
609
610 m->m_data += max_linkhdr;
611 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
612 template->m_len);
613 switch (family) {
614 case AF_INET:
615 ip = mtod(m, struct ip *);
616 th = (struct tcphdr *)(ip + 1);
617 break;
618 #ifdef INET6
619 case AF_INET6:
620 ip6 = mtod(m, struct ip6_hdr *);
621 th = (struct tcphdr *)(ip6 + 1);
622 break;
623 #endif
624 #if 0
625 default:
626 /* noone will visit here */
627 m_freem(m);
628 return EAFNOSUPPORT;
629 #endif
630 }
631 flags = TH_ACK;
632 } else {
633
634 if ((m->m_flags & M_PKTHDR) == 0) {
635 #if 0
636 printf("non PKTHDR to tcp_respond\n");
637 #endif
638 m_freem(m);
639 return EINVAL;
640 }
641 #ifdef DIAGNOSTIC
642 if (!th0)
643 panic("th0 == NULL in tcp_respond");
644 #endif
645
646 /* get family information from m */
647 switch (mtod(m, struct ip *)->ip_v) {
648 case 4:
649 family = AF_INET;
650 hlen = sizeof(struct ip);
651 ip = mtod(m, struct ip *);
652 break;
653 #ifdef INET6
654 case 6:
655 family = AF_INET6;
656 hlen = sizeof(struct ip6_hdr);
657 ip6 = mtod(m, struct ip6_hdr *);
658 break;
659 #endif
660 default:
661 m_freem(m);
662 return EAFNOSUPPORT;
663 }
664 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
665 tlen = sizeof(*th0);
666 else
667 tlen = th0->th_off << 2;
668
669 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
670 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
671 m->m_len = hlen + tlen;
672 m_freem(m->m_next);
673 m->m_next = NULL;
674 } else {
675 struct mbuf *n;
676
677 #ifdef DIAGNOSTIC
678 if (max_linkhdr + hlen + tlen > MCLBYTES) {
679 m_freem(m);
680 return EMSGSIZE;
681 }
682 #endif
683 MGETHDR(n, M_DONTWAIT, MT_HEADER);
684 if (n && max_linkhdr + hlen + tlen > MHLEN) {
685 MCLGET(n, M_DONTWAIT);
686 if ((n->m_flags & M_EXT) == 0) {
687 m_freem(n);
688 n = NULL;
689 }
690 }
691 if (!n) {
692 m_freem(m);
693 return ENOBUFS;
694 }
695
696 n->m_data += max_linkhdr;
697 n->m_len = hlen + tlen;
698 m_copyback(n, 0, hlen, mtod(m, caddr_t));
699 m_copyback(n, hlen, tlen, (caddr_t)th0);
700
701 m_freem(m);
702 m = n;
703 n = NULL;
704 }
705
706 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
707 switch (family) {
708 case AF_INET:
709 ip = mtod(m, struct ip *);
710 th = (struct tcphdr *)(ip + 1);
711 ip->ip_p = IPPROTO_TCP;
712 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
713 ip->ip_p = IPPROTO_TCP;
714 break;
715 #ifdef INET6
716 case AF_INET6:
717 ip6 = mtod(m, struct ip6_hdr *);
718 th = (struct tcphdr *)(ip6 + 1);
719 ip6->ip6_nxt = IPPROTO_TCP;
720 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
721 ip6->ip6_nxt = IPPROTO_TCP;
722 break;
723 #endif
724 #if 0
725 default:
726 /* noone will visit here */
727 m_freem(m);
728 return EAFNOSUPPORT;
729 #endif
730 }
731 xchg(th->th_dport, th->th_sport, u_int16_t);
732 #undef xchg
733 tlen = 0; /*be friendly with the following code*/
734 }
735 th->th_seq = htonl(seq);
736 th->th_ack = htonl(ack);
737 th->th_x2 = 0;
738 if ((flags & TH_SYN) == 0) {
739 if (tp)
740 win >>= tp->rcv_scale;
741 if (win > TCP_MAXWIN)
742 win = TCP_MAXWIN;
743 th->th_win = htons((u_int16_t)win);
744 th->th_off = sizeof (struct tcphdr) >> 2;
745 tlen += sizeof(*th);
746 } else
747 tlen += th->th_off << 2;
748 m->m_len = hlen + tlen;
749 m->m_pkthdr.len = hlen + tlen;
750 m->m_pkthdr.rcvif = (struct ifnet *) 0;
751 th->th_flags = flags;
752 th->th_urp = 0;
753
754 switch (family) {
755 #ifdef INET
756 case AF_INET:
757 {
758 struct ipovly *ipov = (struct ipovly *)ip;
759 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
760 ipov->ih_len = htons((u_int16_t)tlen);
761
762 th->th_sum = 0;
763 th->th_sum = in_cksum(m, hlen + tlen);
764 ip->ip_len = htons(hlen + tlen);
765 ip->ip_ttl = ip_defttl;
766 break;
767 }
768 #endif
769 #ifdef INET6
770 case AF_INET6:
771 {
772 th->th_sum = 0;
773 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
774 tlen);
775 ip6->ip6_plen = ntohs(tlen);
776 if (tp && tp->t_in6pcb) {
777 struct ifnet *oifp;
778 ro = (struct route *)&tp->t_in6pcb->in6p_route;
779 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
780 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
781 } else
782 ip6->ip6_hlim = ip6_defhlim;
783 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
784 if (ip6_auto_flowlabel) {
785 ip6->ip6_flow |=
786 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
787 }
788 break;
789 }
790 #endif
791 }
792
793 #ifdef IPSEC
794 (void)ipsec_setsocket(m, NULL);
795 #endif /*IPSEC*/
796
797 if (tp != NULL && tp->t_inpcb != NULL) {
798 ro = &tp->t_inpcb->inp_route;
799 #ifdef IPSEC
800 if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
801 m_freem(m);
802 return ENOBUFS;
803 }
804 #endif
805 #ifdef DIAGNOSTIC
806 if (family != AF_INET)
807 panic("tcp_respond: address family mismatch");
808 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
809 panic("tcp_respond: ip_dst %x != inp_faddr %x",
810 ntohl(ip->ip_dst.s_addr),
811 ntohl(tp->t_inpcb->inp_faddr.s_addr));
812 }
813 #endif
814 }
815 #ifdef INET6
816 else if (tp != NULL && tp->t_in6pcb != NULL) {
817 ro = (struct route *)&tp->t_in6pcb->in6p_route;
818 #ifdef IPSEC
819 if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
820 m_freem(m);
821 return ENOBUFS;
822 }
823 #endif
824 #ifdef DIAGNOSTIC
825 if (family == AF_INET) {
826 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
827 panic("tcp_respond: not mapped addr");
828 if (bcmp(&ip->ip_dst,
829 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
830 sizeof(ip->ip_dst)) != 0) {
831 panic("tcp_respond: ip_dst != in6p_faddr");
832 }
833 } else if (family == AF_INET6) {
834 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
835 &tp->t_in6pcb->in6p_faddr))
836 panic("tcp_respond: ip6_dst != in6p_faddr");
837 } else
838 panic("tcp_respond: address family mismatch");
839 #endif
840 }
841 #endif
842 else
843 ro = NULL;
844
845 switch (family) {
846 #ifdef INET
847 case AF_INET:
848 error = ip_output(m, NULL, ro,
849 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
850 NULL);
851 break;
852 #endif
853 #ifdef INET6
854 case AF_INET6:
855 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
856 NULL);
857 break;
858 #endif
859 default:
860 error = EAFNOSUPPORT;
861 break;
862 }
863
864 return (error);
865 }
866
867 /*
868 * Create a new TCP control block, making an
869 * empty reassembly queue and hooking it to the argument
870 * protocol control block.
871 */
872 struct tcpcb *
873 tcp_newtcpcb(family, aux)
874 int family; /* selects inpcb, or in6pcb */
875 void *aux;
876 {
877 struct tcpcb *tp;
878 int i;
879
880 switch (family) {
881 case PF_INET:
882 break;
883 #ifdef INET6
884 case PF_INET6:
885 break;
886 #endif
887 default:
888 return NULL;
889 }
890
891 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
892 if (tp == NULL)
893 return (NULL);
894 bzero((caddr_t)tp, sizeof(struct tcpcb));
895 TAILQ_INIT(&tp->segq);
896 TAILQ_INIT(&tp->timeq);
897 tp->t_family = family; /* may be overridden later on */
898 tp->t_peermss = tcp_mssdflt;
899 tp->t_ourmss = tcp_mssdflt;
900 tp->t_segsz = tcp_mssdflt;
901 LIST_INIT(&tp->t_sc);
902
903 callout_init(&tp->t_delack_ch);
904 for (i = 0; i < TCPT_NTIMERS; i++)
905 TCP_TIMER_INIT(tp, i);
906
907 tp->t_flags = 0;
908 if (tcp_do_rfc1323 && tcp_do_win_scale)
909 tp->t_flags |= TF_REQ_SCALE;
910 if (tcp_do_rfc1323 && tcp_do_timestamps)
911 tp->t_flags |= TF_REQ_TSTMP;
912 if (tcp_do_sack == 2)
913 tp->t_flags |= TF_WILL_SACK;
914 else if (tcp_do_sack == 1)
915 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
916 tp->t_flags |= TF_CANT_TXSACK;
917 switch (family) {
918 case PF_INET:
919 tp->t_inpcb = (struct inpcb *)aux;
920 tp->t_mtudisc = ip_mtudisc;
921 break;
922 #ifdef INET6
923 case PF_INET6:
924 tp->t_in6pcb = (struct in6pcb *)aux;
925 /* for IPv6, always try to run path MTU discovery */
926 tp->t_mtudisc = 1;
927 break;
928 #endif
929 }
930 /*
931 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
932 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
933 * reasonable initial retransmit time.
934 */
935 tp->t_srtt = TCPTV_SRTTBASE;
936 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
937 tp->t_rttmin = TCPTV_MIN;
938 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
939 TCPTV_MIN, TCPTV_REXMTMAX);
940 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
941 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
942 if (family == AF_INET) {
943 struct inpcb *inp = (struct inpcb *)aux;
944 inp->inp_ip.ip_ttl = ip_defttl;
945 inp->inp_ppcb = (caddr_t)tp;
946 }
947 #ifdef INET6
948 else if (family == AF_INET6) {
949 struct in6pcb *in6p = (struct in6pcb *)aux;
950 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
951 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
952 : NULL);
953 in6p->in6p_ppcb = (caddr_t)tp;
954 }
955 #endif
956
957 /*
958 * Initialize our timebase. When we send timestamps, we take
959 * the delta from tcp_now -- this means each connection always
960 * gets a timebase of 0, which makes it, among other things,
961 * more difficult to determine how long a system has been up,
962 * and thus how many TCP sequence increments have occurred.
963 */
964 tp->ts_timebase = tcp_now;
965
966 return (tp);
967 }
968
969 /*
970 * Drop a TCP connection, reporting
971 * the specified error. If connection is synchronized,
972 * then send a RST to peer.
973 */
974 struct tcpcb *
975 tcp_drop(tp, errno)
976 struct tcpcb *tp;
977 int errno;
978 {
979 struct socket *so = NULL;
980
981 #ifdef DIAGNOSTIC
982 if (tp->t_inpcb && tp->t_in6pcb)
983 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
984 #endif
985 #ifdef INET
986 if (tp->t_inpcb)
987 so = tp->t_inpcb->inp_socket;
988 #endif
989 #ifdef INET6
990 if (tp->t_in6pcb)
991 so = tp->t_in6pcb->in6p_socket;
992 #endif
993 if (!so)
994 return NULL;
995
996 if (TCPS_HAVERCVDSYN(tp->t_state)) {
997 tp->t_state = TCPS_CLOSED;
998 (void) tcp_output(tp);
999 tcpstat.tcps_drops++;
1000 } else
1001 tcpstat.tcps_conndrops++;
1002 if (errno == ETIMEDOUT && tp->t_softerror)
1003 errno = tp->t_softerror;
1004 so->so_error = errno;
1005 return (tcp_close(tp));
1006 }
1007
1008 /*
1009 * Close a TCP control block:
1010 * discard all space held by the tcp
1011 * discard internet protocol block
1012 * wake up any sleepers
1013 */
1014 struct tcpcb *
1015 tcp_close(tp)
1016 struct tcpcb *tp;
1017 {
1018 struct inpcb *inp;
1019 #ifdef INET6
1020 struct in6pcb *in6p;
1021 #endif
1022 struct socket *so;
1023 #ifdef RTV_RTT
1024 struct rtentry *rt;
1025 #endif
1026 struct route *ro;
1027
1028 inp = tp->t_inpcb;
1029 #ifdef INET6
1030 in6p = tp->t_in6pcb;
1031 #endif
1032 so = NULL;
1033 ro = NULL;
1034 if (inp) {
1035 so = inp->inp_socket;
1036 ro = &inp->inp_route;
1037 }
1038 #ifdef INET6
1039 else if (in6p) {
1040 so = in6p->in6p_socket;
1041 ro = (struct route *)&in6p->in6p_route;
1042 }
1043 #endif
1044
1045 #ifdef RTV_RTT
1046 /*
1047 * If we sent enough data to get some meaningful characteristics,
1048 * save them in the routing entry. 'Enough' is arbitrarily
1049 * defined as the sendpipesize (default 4K) * 16. This would
1050 * give us 16 rtt samples assuming we only get one sample per
1051 * window (the usual case on a long haul net). 16 samples is
1052 * enough for the srtt filter to converge to within 5% of the correct
1053 * value; fewer samples and we could save a very bogus rtt.
1054 *
1055 * Don't update the default route's characteristics and don't
1056 * update anything that the user "locked".
1057 */
1058 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1059 ro && (rt = ro->ro_rt) &&
1060 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1061 u_long i = 0;
1062
1063 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1064 i = tp->t_srtt *
1065 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1066 if (rt->rt_rmx.rmx_rtt && i)
1067 /*
1068 * filter this update to half the old & half
1069 * the new values, converting scale.
1070 * See route.h and tcp_var.h for a
1071 * description of the scaling constants.
1072 */
1073 rt->rt_rmx.rmx_rtt =
1074 (rt->rt_rmx.rmx_rtt + i) / 2;
1075 else
1076 rt->rt_rmx.rmx_rtt = i;
1077 }
1078 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1079 i = tp->t_rttvar *
1080 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1081 if (rt->rt_rmx.rmx_rttvar && i)
1082 rt->rt_rmx.rmx_rttvar =
1083 (rt->rt_rmx.rmx_rttvar + i) / 2;
1084 else
1085 rt->rt_rmx.rmx_rttvar = i;
1086 }
1087 /*
1088 * update the pipelimit (ssthresh) if it has been updated
1089 * already or if a pipesize was specified & the threshhold
1090 * got below half the pipesize. I.e., wait for bad news
1091 * before we start updating, then update on both good
1092 * and bad news.
1093 */
1094 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1095 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1096 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1097 /*
1098 * convert the limit from user data bytes to
1099 * packets then to packet data bytes.
1100 */
1101 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1102 if (i < 2)
1103 i = 2;
1104 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1105 if (rt->rt_rmx.rmx_ssthresh)
1106 rt->rt_rmx.rmx_ssthresh =
1107 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1108 else
1109 rt->rt_rmx.rmx_ssthresh = i;
1110 }
1111 }
1112 #endif /* RTV_RTT */
1113 /* free the reassembly queue, if any */
1114 TCP_REASS_LOCK(tp);
1115 (void) tcp_freeq(tp);
1116 TCP_REASS_UNLOCK(tp);
1117
1118 tcp_canceltimers(tp);
1119 TCP_CLEAR_DELACK(tp);
1120 syn_cache_cleanup(tp);
1121
1122 if (tp->t_template) {
1123 m_free(tp->t_template);
1124 tp->t_template = NULL;
1125 }
1126 pool_put(&tcpcb_pool, tp);
1127 if (inp) {
1128 inp->inp_ppcb = 0;
1129 soisdisconnected(so);
1130 in_pcbdetach(inp);
1131 }
1132 #ifdef INET6
1133 else if (in6p) {
1134 in6p->in6p_ppcb = 0;
1135 soisdisconnected(so);
1136 in6_pcbdetach(in6p);
1137 }
1138 #endif
1139 tcpstat.tcps_closed++;
1140 return ((struct tcpcb *)0);
1141 }
1142
1143 int
1144 tcp_freeq(tp)
1145 struct tcpcb *tp;
1146 {
1147 struct ipqent *qe;
1148 int rv = 0;
1149 #ifdef TCPREASS_DEBUG
1150 int i = 0;
1151 #endif
1152
1153 TCP_REASS_LOCK_CHECK(tp);
1154
1155 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1156 #ifdef TCPREASS_DEBUG
1157 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1158 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1159 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1160 #endif
1161 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1162 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1163 m_freem(qe->ipqe_m);
1164 pool_put(&ipqent_pool, qe);
1165 rv = 1;
1166 }
1167 return (rv);
1168 }
1169
1170 /*
1171 * Protocol drain routine. Called when memory is in short supply.
1172 */
1173 void
1174 tcp_drain()
1175 {
1176 struct inpcb *inp;
1177 struct tcpcb *tp;
1178
1179 /*
1180 * Free the sequence queue of all TCP connections.
1181 */
1182 inp = CIRCLEQ_FIRST(&tcbtable.inpt_queue);
1183 if (inp) /* XXX */
1184 CIRCLEQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue) {
1185 if ((tp = intotcpcb(inp)) != NULL) {
1186 /*
1187 * We may be called from a device's interrupt
1188 * context. If the tcpcb is already busy,
1189 * just bail out now.
1190 */
1191 if (tcp_reass_lock_try(tp) == 0)
1192 continue;
1193 if (tcp_freeq(tp))
1194 tcpstat.tcps_connsdrained++;
1195 TCP_REASS_UNLOCK(tp);
1196 }
1197 }
1198 }
1199
1200 #ifdef INET6
1201 void
1202 tcp6_drain()
1203 {
1204 struct in6pcb *in6p;
1205 struct tcpcb *tp;
1206 struct in6pcb *head = &tcb6;
1207
1208 /*
1209 * Free the sequence queue of all TCP connections.
1210 */
1211 for (in6p = head->in6p_next; in6p != head; in6p = in6p->in6p_next) {
1212 if ((tp = in6totcpcb(in6p)) != NULL) {
1213 /*
1214 * We may be called from a device's interrupt
1215 * context. If the tcpcb is already busy,
1216 * just bail out now.
1217 */
1218 if (tcp_reass_lock_try(tp) == 0)
1219 continue;
1220 if (tcp_freeq(tp))
1221 tcpstat.tcps_connsdrained++;
1222 TCP_REASS_UNLOCK(tp);
1223 }
1224 }
1225 }
1226 #endif
1227
1228 /*
1229 * Notify a tcp user of an asynchronous error;
1230 * store error as soft error, but wake up user
1231 * (for now, won't do anything until can select for soft error).
1232 */
1233 void
1234 tcp_notify(inp, error)
1235 struct inpcb *inp;
1236 int error;
1237 {
1238 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1239 struct socket *so = inp->inp_socket;
1240
1241 /*
1242 * Ignore some errors if we are hooked up.
1243 * If connection hasn't completed, has retransmitted several times,
1244 * and receives a second error, give up now. This is better
1245 * than waiting a long time to establish a connection that
1246 * can never complete.
1247 */
1248 if (tp->t_state == TCPS_ESTABLISHED &&
1249 (error == EHOSTUNREACH || error == ENETUNREACH ||
1250 error == EHOSTDOWN)) {
1251 return;
1252 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1253 tp->t_rxtshift > 3 && tp->t_softerror)
1254 so->so_error = error;
1255 else
1256 tp->t_softerror = error;
1257 wakeup((caddr_t) &so->so_timeo);
1258 sorwakeup(so);
1259 sowwakeup(so);
1260 }
1261
1262 #ifdef INET6
1263 void
1264 tcp6_notify(in6p, error)
1265 struct in6pcb *in6p;
1266 int error;
1267 {
1268 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1269 struct socket *so = in6p->in6p_socket;
1270
1271 /*
1272 * Ignore some errors if we are hooked up.
1273 * If connection hasn't completed, has retransmitted several times,
1274 * and receives a second error, give up now. This is better
1275 * than waiting a long time to establish a connection that
1276 * can never complete.
1277 */
1278 if (tp->t_state == TCPS_ESTABLISHED &&
1279 (error == EHOSTUNREACH || error == ENETUNREACH ||
1280 error == EHOSTDOWN)) {
1281 return;
1282 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1283 tp->t_rxtshift > 3 && tp->t_softerror)
1284 so->so_error = error;
1285 else
1286 tp->t_softerror = error;
1287 wakeup((caddr_t) &so->so_timeo);
1288 sorwakeup(so);
1289 sowwakeup(so);
1290 }
1291 #endif
1292
1293 #ifdef INET6
1294 void
1295 tcp6_ctlinput(cmd, sa, d)
1296 int cmd;
1297 struct sockaddr *sa;
1298 void *d;
1299 {
1300 struct tcphdr th;
1301 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1302 int nmatch;
1303 struct ip6_hdr *ip6;
1304 const struct sockaddr_in6 *sa6_src = NULL;
1305 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1306 struct mbuf *m;
1307 int off;
1308
1309 if (sa->sa_family != AF_INET6 ||
1310 sa->sa_len != sizeof(struct sockaddr_in6))
1311 return;
1312 if ((unsigned)cmd >= PRC_NCMDS)
1313 return;
1314 else if (cmd == PRC_QUENCH) {
1315 /* XXX there's no PRC_QUENCH in IPv6 */
1316 notify = tcp6_quench;
1317 } else if (PRC_IS_REDIRECT(cmd))
1318 notify = in6_rtchange, d = NULL;
1319 else if (cmd == PRC_MSGSIZE)
1320 ; /* special code is present, see below */
1321 else if (cmd == PRC_HOSTDEAD)
1322 d = NULL;
1323 else if (inet6ctlerrmap[cmd] == 0)
1324 return;
1325
1326 /* if the parameter is from icmp6, decode it. */
1327 if (d != NULL) {
1328 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1329 m = ip6cp->ip6c_m;
1330 ip6 = ip6cp->ip6c_ip6;
1331 off = ip6cp->ip6c_off;
1332 sa6_src = ip6cp->ip6c_src;
1333 } else {
1334 m = NULL;
1335 ip6 = NULL;
1336 sa6_src = &sa6_any;
1337 }
1338
1339 if (ip6) {
1340 /*
1341 * XXX: We assume that when ip6 is non NULL,
1342 * M and OFF are valid.
1343 */
1344
1345 /* check if we can safely examine src and dst ports */
1346 if (m->m_pkthdr.len < off + sizeof(th)) {
1347 if (cmd == PRC_MSGSIZE)
1348 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1349 return;
1350 }
1351
1352 bzero(&th, sizeof(th));
1353 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1354
1355 if (cmd == PRC_MSGSIZE) {
1356 int valid = 0;
1357
1358 /*
1359 * Check to see if we have a valid TCP connection
1360 * corresponding to the address in the ICMPv6 message
1361 * payload.
1362 */
1363 if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
1364 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1365 th.th_sport, 0))
1366 valid++;
1367
1368 /*
1369 * Depending on the value of "valid" and routing table
1370 * size (mtudisc_{hi,lo}wat), we will:
1371 * - recalcurate the new MTU and create the
1372 * corresponding routing entry, or
1373 * - ignore the MTU change notification.
1374 */
1375 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1376
1377 /*
1378 * no need to call in6_pcbnotify, it should have been
1379 * called via callback if necessary
1380 */
1381 return;
1382 }
1383
1384 nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
1385 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1386 if (nmatch == 0 && syn_cache_count &&
1387 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1388 inet6ctlerrmap[cmd] == ENETUNREACH ||
1389 inet6ctlerrmap[cmd] == EHOSTDOWN))
1390 syn_cache_unreach((struct sockaddr *)sa6_src,
1391 sa, &th);
1392 } else {
1393 (void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
1394 0, cmd, NULL, notify);
1395 }
1396 }
1397 #endif
1398
1399 #ifdef INET
1400 /* assumes that ip header and tcp header are contiguous on mbuf */
1401 void *
1402 tcp_ctlinput(cmd, sa, v)
1403 int cmd;
1404 struct sockaddr *sa;
1405 void *v;
1406 {
1407 struct ip *ip = v;
1408 struct tcphdr *th;
1409 struct icmp *icp;
1410 extern const int inetctlerrmap[];
1411 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1412 int errno;
1413 int nmatch;
1414 #ifdef INET6
1415 struct in6_addr src6, dst6;
1416 #endif
1417
1418 if (sa->sa_family != AF_INET ||
1419 sa->sa_len != sizeof(struct sockaddr_in))
1420 return NULL;
1421 if ((unsigned)cmd >= PRC_NCMDS)
1422 return NULL;
1423 errno = inetctlerrmap[cmd];
1424 if (cmd == PRC_QUENCH)
1425 notify = tcp_quench;
1426 else if (PRC_IS_REDIRECT(cmd))
1427 notify = in_rtchange, ip = 0;
1428 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1429 /*
1430 * Check to see if we have a valid TCP connection
1431 * corresponding to the address in the ICMP message
1432 * payload.
1433 *
1434 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1435 */
1436 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1437 #ifdef INET6
1438 memset(&src6, 0, sizeof(src6));
1439 memset(&dst6, 0, sizeof(dst6));
1440 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1441 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1442 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1443 #endif
1444 if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
1445 ip->ip_src, th->th_sport) != NULL)
1446 ;
1447 #ifdef INET6
1448 else if (in6_pcblookup_connect(&tcb6, &dst6,
1449 th->th_dport, &src6, th->th_sport, 0) != NULL)
1450 ;
1451 #endif
1452 else
1453 return NULL;
1454
1455 /*
1456 * Now that we've validated that we are actually communicating
1457 * with the host indicated in the ICMP message, locate the
1458 * ICMP header, recalculate the new MTU, and create the
1459 * corresponding routing entry.
1460 */
1461 icp = (struct icmp *)((caddr_t)ip -
1462 offsetof(struct icmp, icmp_ip));
1463 icmp_mtudisc(icp, ip->ip_dst);
1464
1465 return NULL;
1466 } else if (cmd == PRC_HOSTDEAD)
1467 ip = 0;
1468 else if (errno == 0)
1469 return NULL;
1470 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1471 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1472 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1473 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1474 if (nmatch == 0 && syn_cache_count &&
1475 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1476 inetctlerrmap[cmd] == ENETUNREACH ||
1477 inetctlerrmap[cmd] == EHOSTDOWN)) {
1478 struct sockaddr_in sin;
1479 bzero(&sin, sizeof(sin));
1480 sin.sin_len = sizeof(sin);
1481 sin.sin_family = AF_INET;
1482 sin.sin_port = th->th_sport;
1483 sin.sin_addr = ip->ip_src;
1484 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1485 }
1486
1487 /* XXX mapped address case */
1488 } else
1489 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1490 notify);
1491 return NULL;
1492 }
1493
1494 /*
1495 * When a source quence is received, we are being notifed of congestion.
1496 * Close the congestion window down to the Loss Window (one segment).
1497 * We will gradually open it again as we proceed.
1498 */
1499 void
1500 tcp_quench(inp, errno)
1501 struct inpcb *inp;
1502 int errno;
1503 {
1504 struct tcpcb *tp = intotcpcb(inp);
1505
1506 if (tp)
1507 tp->snd_cwnd = tp->t_segsz;
1508 }
1509 #endif
1510
1511 #ifdef INET6
1512 void
1513 tcp6_quench(in6p, errno)
1514 struct in6pcb *in6p;
1515 int errno;
1516 {
1517 struct tcpcb *tp = in6totcpcb(in6p);
1518
1519 if (tp)
1520 tp->snd_cwnd = tp->t_segsz;
1521 }
1522 #endif
1523
1524 #ifdef INET
1525 /*
1526 * Path MTU Discovery handlers.
1527 */
1528 void
1529 tcp_mtudisc_callback(faddr)
1530 struct in_addr faddr;
1531 {
1532 #ifdef INET6
1533 struct in6_addr in6;
1534 #endif
1535
1536 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1537 #ifdef INET6
1538 memset(&in6, 0, sizeof(in6));
1539 in6.s6_addr16[5] = 0xffff;
1540 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1541 tcp6_mtudisc_callback(&in6);
1542 #endif
1543 }
1544
1545 /*
1546 * On receipt of path MTU corrections, flush old route and replace it
1547 * with the new one. Retransmit all unacknowledged packets, to ensure
1548 * that all packets will be received.
1549 */
1550 void
1551 tcp_mtudisc(inp, errno)
1552 struct inpcb *inp;
1553 int errno;
1554 {
1555 struct tcpcb *tp = intotcpcb(inp);
1556 struct rtentry *rt = in_pcbrtentry(inp);
1557
1558 if (tp != 0) {
1559 if (rt != 0) {
1560 /*
1561 * If this was not a host route, remove and realloc.
1562 */
1563 if ((rt->rt_flags & RTF_HOST) == 0) {
1564 in_rtchange(inp, errno);
1565 if ((rt = in_pcbrtentry(inp)) == 0)
1566 return;
1567 }
1568
1569 /*
1570 * Slow start out of the error condition. We
1571 * use the MTU because we know it's smaller
1572 * than the previously transmitted segment.
1573 *
1574 * Note: This is more conservative than the
1575 * suggestion in draft-floyd-incr-init-win-03.
1576 */
1577 if (rt->rt_rmx.rmx_mtu != 0)
1578 tp->snd_cwnd =
1579 TCP_INITIAL_WINDOW(tcp_init_win,
1580 rt->rt_rmx.rmx_mtu);
1581 }
1582
1583 /*
1584 * Resend unacknowledged packets.
1585 */
1586 tp->snd_nxt = tp->snd_una;
1587 tcp_output(tp);
1588 }
1589 }
1590 #endif
1591
1592 #ifdef INET6
1593 /*
1594 * Path MTU Discovery handlers.
1595 */
1596 void
1597 tcp6_mtudisc_callback(faddr)
1598 struct in6_addr *faddr;
1599 {
1600 struct sockaddr_in6 sin6;
1601
1602 bzero(&sin6, sizeof(sin6));
1603 sin6.sin6_family = AF_INET6;
1604 sin6.sin6_len = sizeof(struct sockaddr_in6);
1605 sin6.sin6_addr = *faddr;
1606 (void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
1607 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1608 }
1609
1610 void
1611 tcp6_mtudisc(in6p, errno)
1612 struct in6pcb *in6p;
1613 int errno;
1614 {
1615 struct tcpcb *tp = in6totcpcb(in6p);
1616 struct rtentry *rt = in6_pcbrtentry(in6p);
1617
1618 if (tp != 0) {
1619 if (rt != 0) {
1620 /*
1621 * If this was not a host route, remove and realloc.
1622 */
1623 if ((rt->rt_flags & RTF_HOST) == 0) {
1624 in6_rtchange(in6p, errno);
1625 if ((rt = in6_pcbrtentry(in6p)) == 0)
1626 return;
1627 }
1628
1629 /*
1630 * Slow start out of the error condition. We
1631 * use the MTU because we know it's smaller
1632 * than the previously transmitted segment.
1633 *
1634 * Note: This is more conservative than the
1635 * suggestion in draft-floyd-incr-init-win-03.
1636 */
1637 if (rt->rt_rmx.rmx_mtu != 0)
1638 tp->snd_cwnd =
1639 TCP_INITIAL_WINDOW(tcp_init_win,
1640 rt->rt_rmx.rmx_mtu);
1641 }
1642
1643 /*
1644 * Resend unacknowledged packets.
1645 */
1646 tp->snd_nxt = tp->snd_una;
1647 tcp_output(tp);
1648 }
1649 }
1650 #endif /* INET6 */
1651
1652 /*
1653 * Compute the MSS to advertise to the peer. Called only during
1654 * the 3-way handshake. If we are the server (peer initiated
1655 * connection), we are called with a pointer to the interface
1656 * on which the SYN packet arrived. If we are the client (we
1657 * initiated connection), we are called with a pointer to the
1658 * interface out which this connection should go.
1659 *
1660 * NOTE: Do not subtract IP option/extension header size nor IPsec
1661 * header size from MSS advertisement. MSS option must hold the maximum
1662 * segment size we can accept, so it must always be:
1663 * max(if mtu) - ip header - tcp header
1664 */
1665 u_long
1666 tcp_mss_to_advertise(ifp, af)
1667 const struct ifnet *ifp;
1668 int af;
1669 {
1670 extern u_long in_maxmtu;
1671 u_long mss = 0;
1672 u_long hdrsiz;
1673
1674 /*
1675 * In order to avoid defeating path MTU discovery on the peer,
1676 * we advertise the max MTU of all attached networks as our MSS,
1677 * per RFC 1191, section 3.1.
1678 *
1679 * We provide the option to advertise just the MTU of
1680 * the interface on which we hope this connection will
1681 * be receiving. If we are responding to a SYN, we
1682 * will have a pretty good idea about this, but when
1683 * initiating a connection there is a bit more doubt.
1684 *
1685 * We also need to ensure that loopback has a large enough
1686 * MSS, as the loopback MTU is never included in in_maxmtu.
1687 */
1688
1689 if (ifp != NULL)
1690 switch (af) {
1691 case AF_INET:
1692 mss = ifp->if_mtu;
1693 break;
1694 #ifdef INET6
1695 case AF_INET6:
1696 mss = IN6_LINKMTU(ifp);
1697 break;
1698 #endif
1699 }
1700
1701 if (tcp_mss_ifmtu == 0)
1702 switch (af) {
1703 case AF_INET:
1704 mss = max(in_maxmtu, mss);
1705 break;
1706 #ifdef INET6
1707 case AF_INET6:
1708 mss = max(in6_maxmtu, mss);
1709 break;
1710 #endif
1711 }
1712
1713 switch (af) {
1714 case AF_INET:
1715 hdrsiz = sizeof(struct ip);
1716 break;
1717 #ifdef INET6
1718 case AF_INET6:
1719 hdrsiz = sizeof(struct ip6_hdr);
1720 break;
1721 #endif
1722 default:
1723 hdrsiz = 0;
1724 break;
1725 }
1726 hdrsiz += sizeof(struct tcphdr);
1727 if (mss > hdrsiz)
1728 mss -= hdrsiz;
1729
1730 mss = max(tcp_mssdflt, mss);
1731 return (mss);
1732 }
1733
1734 /*
1735 * Set connection variables based on the peer's advertised MSS.
1736 * We are passed the TCPCB for the actual connection. If we
1737 * are the server, we are called by the compressed state engine
1738 * when the 3-way handshake is complete. If we are the client,
1739 * we are called when we receive the SYN,ACK from the server.
1740 *
1741 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1742 * before this routine is called!
1743 */
1744 void
1745 tcp_mss_from_peer(tp, offer)
1746 struct tcpcb *tp;
1747 int offer;
1748 {
1749 struct socket *so;
1750 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1751 struct rtentry *rt;
1752 #endif
1753 u_long bufsize;
1754 int mss;
1755
1756 #ifdef DIAGNOSTIC
1757 if (tp->t_inpcb && tp->t_in6pcb)
1758 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1759 #endif
1760 so = NULL;
1761 rt = NULL;
1762 #ifdef INET
1763 if (tp->t_inpcb) {
1764 so = tp->t_inpcb->inp_socket;
1765 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1766 rt = in_pcbrtentry(tp->t_inpcb);
1767 #endif
1768 }
1769 #endif
1770 #ifdef INET6
1771 if (tp->t_in6pcb) {
1772 so = tp->t_in6pcb->in6p_socket;
1773 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1774 rt = in6_pcbrtentry(tp->t_in6pcb);
1775 #endif
1776 }
1777 #endif
1778
1779 /*
1780 * As per RFC1122, use the default MSS value, unless they
1781 * sent us an offer. Do not accept offers less than 32 bytes.
1782 */
1783 mss = tcp_mssdflt;
1784 if (offer)
1785 mss = offer;
1786 mss = max(mss, 32); /* sanity */
1787 tp->t_peermss = mss;
1788 mss -= tcp_optlen(tp);
1789 #ifdef INET
1790 if (tp->t_inpcb)
1791 mss -= ip_optlen(tp->t_inpcb);
1792 #endif
1793 #ifdef INET6
1794 if (tp->t_in6pcb)
1795 mss -= ip6_optlen(tp->t_in6pcb);
1796 #endif
1797
1798 /*
1799 * If there's a pipesize, change the socket buffer to that size.
1800 * Make the socket buffer an integral number of MSS units. If
1801 * the MSS is larger than the socket buffer, artificially decrease
1802 * the MSS.
1803 */
1804 #ifdef RTV_SPIPE
1805 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1806 bufsize = rt->rt_rmx.rmx_sendpipe;
1807 else
1808 #endif
1809 bufsize = so->so_snd.sb_hiwat;
1810 if (bufsize < mss)
1811 mss = bufsize;
1812 else {
1813 bufsize = roundup(bufsize, mss);
1814 if (bufsize > sb_max)
1815 bufsize = sb_max;
1816 (void) sbreserve(&so->so_snd, bufsize);
1817 }
1818 tp->t_segsz = mss;
1819
1820 #ifdef RTV_SSTHRESH
1821 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1822 /*
1823 * There's some sort of gateway or interface buffer
1824 * limit on the path. Use this to set the slow
1825 * start threshold, but set the threshold to no less
1826 * than 2 * MSS.
1827 */
1828 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1829 }
1830 #endif
1831 }
1832
1833 /*
1834 * Processing necessary when a TCP connection is established.
1835 */
1836 void
1837 tcp_established(tp)
1838 struct tcpcb *tp;
1839 {
1840 struct socket *so;
1841 #ifdef RTV_RPIPE
1842 struct rtentry *rt;
1843 #endif
1844 u_long bufsize;
1845
1846 #ifdef DIAGNOSTIC
1847 if (tp->t_inpcb && tp->t_in6pcb)
1848 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1849 #endif
1850 so = NULL;
1851 rt = NULL;
1852 #ifdef INET
1853 if (tp->t_inpcb) {
1854 so = tp->t_inpcb->inp_socket;
1855 #if defined(RTV_RPIPE)
1856 rt = in_pcbrtentry(tp->t_inpcb);
1857 #endif
1858 }
1859 #endif
1860 #ifdef INET6
1861 if (tp->t_in6pcb) {
1862 so = tp->t_in6pcb->in6p_socket;
1863 #if defined(RTV_RPIPE)
1864 rt = in6_pcbrtentry(tp->t_in6pcb);
1865 #endif
1866 }
1867 #endif
1868
1869 tp->t_state = TCPS_ESTABLISHED;
1870 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1871
1872 #ifdef RTV_RPIPE
1873 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1874 bufsize = rt->rt_rmx.rmx_recvpipe;
1875 else
1876 #endif
1877 bufsize = so->so_rcv.sb_hiwat;
1878 if (bufsize > tp->t_ourmss) {
1879 bufsize = roundup(bufsize, tp->t_ourmss);
1880 if (bufsize > sb_max)
1881 bufsize = sb_max;
1882 (void) sbreserve(&so->so_rcv, bufsize);
1883 }
1884 }
1885
1886 /*
1887 * Check if there's an initial rtt or rttvar. Convert from the
1888 * route-table units to scaled multiples of the slow timeout timer.
1889 * Called only during the 3-way handshake.
1890 */
1891 void
1892 tcp_rmx_rtt(tp)
1893 struct tcpcb *tp;
1894 {
1895 #ifdef RTV_RTT
1896 struct rtentry *rt = NULL;
1897 int rtt;
1898
1899 #ifdef DIAGNOSTIC
1900 if (tp->t_inpcb && tp->t_in6pcb)
1901 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1902 #endif
1903 #ifdef INET
1904 if (tp->t_inpcb)
1905 rt = in_pcbrtentry(tp->t_inpcb);
1906 #endif
1907 #ifdef INET6
1908 if (tp->t_in6pcb)
1909 rt = in6_pcbrtentry(tp->t_in6pcb);
1910 #endif
1911 if (rt == NULL)
1912 return;
1913
1914 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1915 /*
1916 * XXX The lock bit for MTU indicates that the value
1917 * is also a minimum value; this is subject to time.
1918 */
1919 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1920 TCPT_RANGESET(tp->t_rttmin,
1921 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1922 TCPTV_MIN, TCPTV_REXMTMAX);
1923 tp->t_srtt = rtt /
1924 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1925 if (rt->rt_rmx.rmx_rttvar) {
1926 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1927 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1928 (TCP_RTTVAR_SHIFT + 2));
1929 } else {
1930 /* Default variation is +- 1 rtt */
1931 tp->t_rttvar =
1932 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1933 }
1934 TCPT_RANGESET(tp->t_rxtcur,
1935 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1936 tp->t_rttmin, TCPTV_REXMTMAX);
1937 }
1938 #endif
1939 }
1940
1941 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1942 #if NRND > 0
1943 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
1944 #endif
1945
1946 /*
1947 * Get a new sequence value given a tcp control block
1948 */
1949 tcp_seq
1950 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
1951 {
1952
1953 #ifdef INET
1954 if (tp->t_inpcb != NULL) {
1955 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
1956 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
1957 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
1958 addin));
1959 }
1960 #endif
1961 #ifdef INET6
1962 if (tp->t_in6pcb != NULL) {
1963 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
1964 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
1965 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
1966 addin));
1967 }
1968 #endif
1969 /* Not possible. */
1970 panic("tcp_new_iss");
1971 }
1972
1973 /*
1974 * This routine actually generates a new TCP initial sequence number.
1975 */
1976 tcp_seq
1977 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
1978 size_t addrsz, tcp_seq addin)
1979 {
1980 tcp_seq tcp_iss;
1981
1982 #if NRND > 0
1983 static int beenhere;
1984
1985 /*
1986 * If we haven't been here before, initialize our cryptographic
1987 * hash secret.
1988 */
1989 if (beenhere == 0) {
1990 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
1991 RND_EXTRACT_ANY);
1992 beenhere = 1;
1993 }
1994
1995 if (tcp_do_rfc1948) {
1996 MD5_CTX ctx;
1997 u_int8_t hash[16]; /* XXX MD5 knowledge */
1998
1999 /*
2000 * Compute the base value of the ISS. It is a hash
2001 * of (saddr, sport, daddr, dport, secret).
2002 */
2003 MD5Init(&ctx);
2004
2005 MD5Update(&ctx, (u_char *) laddr, addrsz);
2006 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2007
2008 MD5Update(&ctx, (u_char *) faddr, addrsz);
2009 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2010
2011 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2012
2013 MD5Final(hash, &ctx);
2014
2015 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2016
2017 /*
2018 * Now increment our "timer", and add it in to
2019 * the computed value.
2020 *
2021 * XXX Use `addin'?
2022 * XXX TCP_ISSINCR too large to use?
2023 */
2024 tcp_iss_seq += TCP_ISSINCR;
2025 #ifdef TCPISS_DEBUG
2026 printf("ISS hash 0x%08x, ", tcp_iss);
2027 #endif
2028 tcp_iss += tcp_iss_seq + addin;
2029 #ifdef TCPISS_DEBUG
2030 printf("new ISS 0x%08x\n", tcp_iss);
2031 #endif
2032 } else
2033 #endif /* NRND > 0 */
2034 {
2035 /*
2036 * Randomize.
2037 */
2038 #if NRND > 0
2039 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2040 #else
2041 tcp_iss = arc4random();
2042 #endif
2043
2044 /*
2045 * If we were asked to add some amount to a known value,
2046 * we will take a random value obtained above, mask off
2047 * the upper bits, and add in the known value. We also
2048 * add in a constant to ensure that we are at least a
2049 * certain distance from the original value.
2050 *
2051 * This is used when an old connection is in timed wait
2052 * and we have a new one coming in, for instance.
2053 */
2054 if (addin != 0) {
2055 #ifdef TCPISS_DEBUG
2056 printf("Random %08x, ", tcp_iss);
2057 #endif
2058 tcp_iss &= TCP_ISS_RANDOM_MASK;
2059 tcp_iss += addin + TCP_ISSINCR;
2060 #ifdef TCPISS_DEBUG
2061 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2062 #endif
2063 } else {
2064 tcp_iss &= TCP_ISS_RANDOM_MASK;
2065 tcp_iss += tcp_iss_seq;
2066 tcp_iss_seq += TCP_ISSINCR;
2067 #ifdef TCPISS_DEBUG
2068 printf("ISS %08x\n", tcp_iss);
2069 #endif
2070 }
2071 }
2072
2073 if (tcp_compat_42) {
2074 /*
2075 * Limit it to the positive range for really old TCP
2076 * implementations.
2077 */
2078 if (tcp_iss >= 0x80000000)
2079 tcp_iss &= 0x7fffffff; /* XXX */
2080 }
2081
2082 return (tcp_iss);
2083 }
2084
2085 #ifdef IPSEC
2086 /* compute ESP/AH header size for TCP, including outer IP header. */
2087 size_t
2088 ipsec4_hdrsiz_tcp(tp)
2089 struct tcpcb *tp;
2090 {
2091 struct inpcb *inp;
2092 size_t hdrsiz;
2093
2094 /* XXX mapped addr case (tp->t_in6pcb) */
2095 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2096 return 0;
2097 switch (tp->t_family) {
2098 case AF_INET:
2099 /* XXX: should use currect direction. */
2100 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2101 break;
2102 default:
2103 hdrsiz = 0;
2104 break;
2105 }
2106
2107 return hdrsiz;
2108 }
2109
2110 #ifdef INET6
2111 size_t
2112 ipsec6_hdrsiz_tcp(tp)
2113 struct tcpcb *tp;
2114 {
2115 struct in6pcb *in6p;
2116 size_t hdrsiz;
2117
2118 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2119 return 0;
2120 switch (tp->t_family) {
2121 case AF_INET6:
2122 /* XXX: should use currect direction. */
2123 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2124 break;
2125 case AF_INET:
2126 /* mapped address case - tricky */
2127 default:
2128 hdrsiz = 0;
2129 break;
2130 }
2131
2132 return hdrsiz;
2133 }
2134 #endif
2135 #endif /*IPSEC*/
2136
2137 /*
2138 * Determine the length of the TCP options for this connection.
2139 *
2140 * XXX: What do we do for SACK, when we add that? Just reserve
2141 * all of the space? Otherwise we can't exactly be incrementing
2142 * cwnd by an amount that varies depending on the amount we last
2143 * had to SACK!
2144 */
2145
2146 u_int
2147 tcp_optlen(tp)
2148 struct tcpcb *tp;
2149 {
2150 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2151 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2152 return TCPOLEN_TSTAMP_APPA;
2153 else
2154 return 0;
2155 }
2156