tcp_subr.c revision 1.137 1 /* $NetBSD: tcp_subr.c,v 1.137 2002/11/24 10:52:47 scw Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
102 */
103
104 #include <sys/cdefs.h>
105 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.137 2002/11/24 10:52:47 scw Exp $");
106
107 #include "opt_inet.h"
108 #include "opt_ipsec.h"
109 #include "opt_tcp_compat_42.h"
110 #include "opt_inet_csum.h"
111 #include "rnd.h"
112
113 #include <sys/param.h>
114 #include <sys/proc.h>
115 #include <sys/systm.h>
116 #include <sys/malloc.h>
117 #include <sys/mbuf.h>
118 #include <sys/socket.h>
119 #include <sys/socketvar.h>
120 #include <sys/protosw.h>
121 #include <sys/errno.h>
122 #include <sys/kernel.h>
123 #include <sys/pool.h>
124 #if NRND > 0
125 #include <sys/md5.h>
126 #include <sys/rnd.h>
127 #endif
128
129 #include <net/route.h>
130 #include <net/if.h>
131
132 #include <netinet/in.h>
133 #include <netinet/in_systm.h>
134 #include <netinet/ip.h>
135 #include <netinet/in_pcb.h>
136 #include <netinet/ip_var.h>
137 #include <netinet/ip_icmp.h>
138
139 #ifdef INET6
140 #ifndef INET
141 #include <netinet/in.h>
142 #endif
143 #include <netinet/ip6.h>
144 #include <netinet6/in6_pcb.h>
145 #include <netinet6/ip6_var.h>
146 #include <netinet6/in6_var.h>
147 #include <netinet6/ip6protosw.h>
148 #include <netinet/icmp6.h>
149 #include <netinet6/nd6.h>
150 #endif
151
152 #include <netinet/tcp.h>
153 #include <netinet/tcp_fsm.h>
154 #include <netinet/tcp_seq.h>
155 #include <netinet/tcp_timer.h>
156 #include <netinet/tcp_var.h>
157 #include <netinet/tcpip.h>
158
159 #ifdef IPSEC
160 #include <netinet6/ipsec.h>
161 #endif /*IPSEC*/
162
163 #ifdef INET6
164 struct in6pcb tcb6;
165 #endif
166
167 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
168 struct tcpstat tcpstat; /* tcp statistics */
169 u_int32_t tcp_now; /* for RFC 1323 timestamps */
170
171 /* patchable/settable parameters for tcp */
172 int tcp_mssdflt = TCP_MSS;
173 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
174 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
175 #if NRND > 0
176 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
177 #endif
178 int tcp_do_sack = 1; /* selective acknowledgement */
179 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
180 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
181 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
182 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
183 int tcp_init_win = 1;
184 int tcp_mss_ifmtu = 0;
185 #ifdef TCP_COMPAT_42
186 int tcp_compat_42 = 1;
187 #else
188 int tcp_compat_42 = 0;
189 #endif
190 int tcp_rst_ppslim = 100; /* 100pps */
191
192 /* tcb hash */
193 #ifndef TCBHASHSIZE
194 #define TCBHASHSIZE 128
195 #endif
196 int tcbhashsize = TCBHASHSIZE;
197
198 /* syn hash parameters */
199 #define TCP_SYN_HASH_SIZE 293
200 #define TCP_SYN_BUCKET_SIZE 35
201 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
202 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
203 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
204 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
205
206 int tcp_freeq __P((struct tcpcb *));
207
208 #ifdef INET
209 void tcp_mtudisc_callback __P((struct in_addr));
210 #endif
211 #ifdef INET6
212 void tcp6_mtudisc_callback __P((struct in6_addr *));
213 #endif
214
215 void tcp_mtudisc __P((struct inpcb *, int));
216 #ifdef INET6
217 void tcp6_mtudisc __P((struct in6pcb *, int));
218 #endif
219
220 struct pool tcpcb_pool;
221
222 #ifdef TCP_CSUM_COUNTERS
223 #include <sys/device.h>
224
225 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
226 NULL, "tcp", "hwcsum bad");
227 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
228 NULL, "tcp", "hwcsum ok");
229 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
230 NULL, "tcp", "hwcsum data");
231 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
232 NULL, "tcp", "swcsum");
233 #endif /* TCP_CSUM_COUNTERS */
234
235 #ifdef TCP_OUTPUT_COUNTERS
236 #include <sys/device.h>
237
238 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
239 NULL, "tcp", "output big header");
240 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
241 NULL, "tcp", "output copy small");
242 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
243 NULL, "tcp", "output copy big");
244 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
245 NULL, "tcp", "output reference big");
246 #endif /* TCP_OUTPUT_COUNTERS */
247
248 #ifdef TCP_REASS_COUNTERS
249 #include <sys/device.h>
250
251 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
252 NULL, "tcp_reass", "calls");
253 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
254 &tcp_reass_, "tcp_reass", "insert into empty queue");
255 struct evcnt tcp_reass_iteration[8] = {
256 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
257 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
258 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
259 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
260 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
261 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
262 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
263 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
264 };
265 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266 &tcp_reass_, "tcp_reass", "prepend to first");
267 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268 &tcp_reass_, "tcp_reass", "prepend");
269 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
270 &tcp_reass_, "tcp_reass", "insert");
271 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
272 &tcp_reass_, "tcp_reass", "insert at tail");
273 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
274 &tcp_reass_, "tcp_reass", "append");
275 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
276 &tcp_reass_, "tcp_reass", "append to tail fragment");
277 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
278 &tcp_reass_, "tcp_reass", "overlap at end");
279 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
280 &tcp_reass_, "tcp_reass", "overlap at start");
281 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282 &tcp_reass_, "tcp_reass", "duplicate segment");
283 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284 &tcp_reass_, "tcp_reass", "duplicate fragment");
285
286 #endif /* TCP_REASS_COUNTERS */
287
288 /*
289 * Tcp initialization
290 */
291 void
292 tcp_init()
293 {
294 int hlen;
295
296 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
297 NULL);
298 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
299 #ifdef INET6
300 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
301 #endif
302
303 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
304 #ifdef INET6
305 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
306 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
307 #endif
308 if (max_protohdr < hlen)
309 max_protohdr = hlen;
310 if (max_linkhdr + hlen > MHLEN)
311 panic("tcp_init");
312
313 #ifdef INET
314 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
315 #endif
316 #ifdef INET6
317 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
318 #endif
319
320 /* Initialize timer state. */
321 tcp_timer_init();
322
323 /* Initialize the compressed state engine. */
324 syn_cache_init();
325
326 #ifdef TCP_CSUM_COUNTERS
327 evcnt_attach_static(&tcp_hwcsum_bad);
328 evcnt_attach_static(&tcp_hwcsum_ok);
329 evcnt_attach_static(&tcp_hwcsum_data);
330 evcnt_attach_static(&tcp_swcsum);
331 #endif /* TCP_CSUM_COUNTERS */
332
333 #ifdef TCP_OUTPUT_COUNTERS
334 evcnt_attach_static(&tcp_output_bigheader);
335 evcnt_attach_static(&tcp_output_copysmall);
336 evcnt_attach_static(&tcp_output_copybig);
337 evcnt_attach_static(&tcp_output_refbig);
338 #endif /* TCP_OUTPUT_COUNTERS */
339
340 #ifdef TCP_REASS_COUNTERS
341 evcnt_attach_static(&tcp_reass_);
342 evcnt_attach_static(&tcp_reass_empty);
343 evcnt_attach_static(&tcp_reass_iteration[0]);
344 evcnt_attach_static(&tcp_reass_iteration[1]);
345 evcnt_attach_static(&tcp_reass_iteration[2]);
346 evcnt_attach_static(&tcp_reass_iteration[3]);
347 evcnt_attach_static(&tcp_reass_iteration[4]);
348 evcnt_attach_static(&tcp_reass_iteration[5]);
349 evcnt_attach_static(&tcp_reass_iteration[6]);
350 evcnt_attach_static(&tcp_reass_iteration[7]);
351 evcnt_attach_static(&tcp_reass_prependfirst);
352 evcnt_attach_static(&tcp_reass_prepend);
353 evcnt_attach_static(&tcp_reass_insert);
354 evcnt_attach_static(&tcp_reass_inserttail);
355 evcnt_attach_static(&tcp_reass_append);
356 evcnt_attach_static(&tcp_reass_appendtail);
357 evcnt_attach_static(&tcp_reass_overlaptail);
358 evcnt_attach_static(&tcp_reass_overlapfront);
359 evcnt_attach_static(&tcp_reass_segdup);
360 evcnt_attach_static(&tcp_reass_fragdup);
361 #endif /* TCP_REASS_COUNTERS */
362 }
363
364 /*
365 * Create template to be used to send tcp packets on a connection.
366 * Call after host entry created, allocates an mbuf and fills
367 * in a skeletal tcp/ip header, minimizing the amount of work
368 * necessary when the connection is used.
369 */
370 struct mbuf *
371 tcp_template(tp)
372 struct tcpcb *tp;
373 {
374 struct inpcb *inp = tp->t_inpcb;
375 #ifdef INET6
376 struct in6pcb *in6p = tp->t_in6pcb;
377 #endif
378 struct tcphdr *n;
379 struct mbuf *m;
380 int hlen;
381
382 switch (tp->t_family) {
383 case AF_INET:
384 hlen = sizeof(struct ip);
385 if (inp)
386 break;
387 #ifdef INET6
388 if (in6p) {
389 /* mapped addr case */
390 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
391 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
392 break;
393 }
394 #endif
395 return NULL; /*EINVAL*/
396 #ifdef INET6
397 case AF_INET6:
398 hlen = sizeof(struct ip6_hdr);
399 if (in6p) {
400 /* more sainty check? */
401 break;
402 }
403 return NULL; /*EINVAL*/
404 #endif
405 default:
406 hlen = 0; /*pacify gcc*/
407 return NULL; /*EAFNOSUPPORT*/
408 }
409 #ifdef DIAGNOSTIC
410 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
411 panic("mclbytes too small for t_template");
412 #endif
413 m = tp->t_template;
414 if (m && m->m_len == hlen + sizeof(struct tcphdr))
415 ;
416 else {
417 if (m)
418 m_freem(m);
419 m = tp->t_template = NULL;
420 MGETHDR(m, M_DONTWAIT, MT_HEADER);
421 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
422 MCLGET(m, M_DONTWAIT);
423 if ((m->m_flags & M_EXT) == 0) {
424 m_free(m);
425 m = NULL;
426 }
427 }
428 if (m == NULL)
429 return NULL;
430 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
431 }
432
433 bzero(mtod(m, caddr_t), m->m_len);
434
435 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
436
437 switch (tp->t_family) {
438 case AF_INET:
439 {
440 struct ipovly *ipov;
441 mtod(m, struct ip *)->ip_v = 4;
442 ipov = mtod(m, struct ipovly *);
443 ipov->ih_pr = IPPROTO_TCP;
444 ipov->ih_len = htons(sizeof(struct tcphdr));
445 if (inp) {
446 ipov->ih_src = inp->inp_laddr;
447 ipov->ih_dst = inp->inp_faddr;
448 }
449 #ifdef INET6
450 else if (in6p) {
451 /* mapped addr case */
452 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
453 sizeof(ipov->ih_src));
454 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
455 sizeof(ipov->ih_dst));
456 }
457 #endif
458 /*
459 * Compute the pseudo-header portion of the checksum
460 * now. We incrementally add in the TCP option and
461 * payload lengths later, and then compute the TCP
462 * checksum right before the packet is sent off onto
463 * the wire.
464 */
465 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
466 ipov->ih_dst.s_addr,
467 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
468 break;
469 }
470 #ifdef INET6
471 case AF_INET6:
472 {
473 struct ip6_hdr *ip6;
474 mtod(m, struct ip *)->ip_v = 6;
475 ip6 = mtod(m, struct ip6_hdr *);
476 ip6->ip6_nxt = IPPROTO_TCP;
477 ip6->ip6_plen = htons(sizeof(struct tcphdr));
478 ip6->ip6_src = in6p->in6p_laddr;
479 ip6->ip6_dst = in6p->in6p_faddr;
480 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
481 if (ip6_auto_flowlabel) {
482 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
483 ip6->ip6_flow |=
484 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
485 }
486 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
487 ip6->ip6_vfc |= IPV6_VERSION;
488
489 /*
490 * Compute the pseudo-header portion of the checksum
491 * now. We incrementally add in the TCP option and
492 * payload lengths later, and then compute the TCP
493 * checksum right before the packet is sent off onto
494 * the wire.
495 */
496 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
497 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
498 htonl(IPPROTO_TCP));
499 break;
500 }
501 #endif
502 }
503 if (inp) {
504 n->th_sport = inp->inp_lport;
505 n->th_dport = inp->inp_fport;
506 }
507 #ifdef INET6
508 else if (in6p) {
509 n->th_sport = in6p->in6p_lport;
510 n->th_dport = in6p->in6p_fport;
511 }
512 #endif
513 n->th_seq = 0;
514 n->th_ack = 0;
515 n->th_x2 = 0;
516 n->th_off = 5;
517 n->th_flags = 0;
518 n->th_win = 0;
519 n->th_urp = 0;
520 return (m);
521 }
522
523 /*
524 * Send a single message to the TCP at address specified by
525 * the given TCP/IP header. If m == 0, then we make a copy
526 * of the tcpiphdr at ti and send directly to the addressed host.
527 * This is used to force keep alive messages out using the TCP
528 * template for a connection tp->t_template. If flags are given
529 * then we send a message back to the TCP which originated the
530 * segment ti, and discard the mbuf containing it and any other
531 * attached mbufs.
532 *
533 * In any case the ack and sequence number of the transmitted
534 * segment are as specified by the parameters.
535 */
536 int
537 tcp_respond(tp, template, m, th0, ack, seq, flags)
538 struct tcpcb *tp;
539 struct mbuf *template;
540 struct mbuf *m;
541 struct tcphdr *th0;
542 tcp_seq ack, seq;
543 int flags;
544 {
545 struct route *ro;
546 int error, tlen, win = 0;
547 int hlen;
548 struct ip *ip;
549 #ifdef INET6
550 struct ip6_hdr *ip6;
551 #endif
552 int family; /* family on packet, not inpcb/in6pcb! */
553 struct tcphdr *th;
554
555 if (tp != NULL && (flags & TH_RST) == 0) {
556 #ifdef DIAGNOSTIC
557 if (tp->t_inpcb && tp->t_in6pcb)
558 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
559 #endif
560 #ifdef INET
561 if (tp->t_inpcb)
562 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
563 #endif
564 #ifdef INET6
565 if (tp->t_in6pcb)
566 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
567 #endif
568 }
569
570 th = NULL; /* Quell uninitialized warning */
571 ip = NULL;
572 #ifdef INET6
573 ip6 = NULL;
574 #endif
575 if (m == 0) {
576 if (!template)
577 return EINVAL;
578
579 /* get family information from template */
580 switch (mtod(template, struct ip *)->ip_v) {
581 case 4:
582 family = AF_INET;
583 hlen = sizeof(struct ip);
584 break;
585 #ifdef INET6
586 case 6:
587 family = AF_INET6;
588 hlen = sizeof(struct ip6_hdr);
589 break;
590 #endif
591 default:
592 return EAFNOSUPPORT;
593 }
594
595 MGETHDR(m, M_DONTWAIT, MT_HEADER);
596 if (m) {
597 MCLGET(m, M_DONTWAIT);
598 if ((m->m_flags & M_EXT) == 0) {
599 m_free(m);
600 m = NULL;
601 }
602 }
603 if (m == NULL)
604 return (ENOBUFS);
605
606 if (tcp_compat_42)
607 tlen = 1;
608 else
609 tlen = 0;
610
611 m->m_data += max_linkhdr;
612 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
613 template->m_len);
614 switch (family) {
615 case AF_INET:
616 ip = mtod(m, struct ip *);
617 th = (struct tcphdr *)(ip + 1);
618 break;
619 #ifdef INET6
620 case AF_INET6:
621 ip6 = mtod(m, struct ip6_hdr *);
622 th = (struct tcphdr *)(ip6 + 1);
623 break;
624 #endif
625 #if 0
626 default:
627 /* noone will visit here */
628 m_freem(m);
629 return EAFNOSUPPORT;
630 #endif
631 }
632 flags = TH_ACK;
633 } else {
634
635 if ((m->m_flags & M_PKTHDR) == 0) {
636 #if 0
637 printf("non PKTHDR to tcp_respond\n");
638 #endif
639 m_freem(m);
640 return EINVAL;
641 }
642 #ifdef DIAGNOSTIC
643 if (!th0)
644 panic("th0 == NULL in tcp_respond");
645 #endif
646
647 /* get family information from m */
648 switch (mtod(m, struct ip *)->ip_v) {
649 case 4:
650 family = AF_INET;
651 hlen = sizeof(struct ip);
652 ip = mtod(m, struct ip *);
653 break;
654 #ifdef INET6
655 case 6:
656 family = AF_INET6;
657 hlen = sizeof(struct ip6_hdr);
658 ip6 = mtod(m, struct ip6_hdr *);
659 break;
660 #endif
661 default:
662 m_freem(m);
663 return EAFNOSUPPORT;
664 }
665 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
666 tlen = sizeof(*th0);
667 else
668 tlen = th0->th_off << 2;
669
670 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
671 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
672 m->m_len = hlen + tlen;
673 m_freem(m->m_next);
674 m->m_next = NULL;
675 } else {
676 struct mbuf *n;
677
678 #ifdef DIAGNOSTIC
679 if (max_linkhdr + hlen + tlen > MCLBYTES) {
680 m_freem(m);
681 return EMSGSIZE;
682 }
683 #endif
684 MGETHDR(n, M_DONTWAIT, MT_HEADER);
685 if (n && max_linkhdr + hlen + tlen > MHLEN) {
686 MCLGET(n, M_DONTWAIT);
687 if ((n->m_flags & M_EXT) == 0) {
688 m_freem(n);
689 n = NULL;
690 }
691 }
692 if (!n) {
693 m_freem(m);
694 return ENOBUFS;
695 }
696
697 n->m_data += max_linkhdr;
698 n->m_len = hlen + tlen;
699 m_copyback(n, 0, hlen, mtod(m, caddr_t));
700 m_copyback(n, hlen, tlen, (caddr_t)th0);
701
702 m_freem(m);
703 m = n;
704 n = NULL;
705 }
706
707 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
708 switch (family) {
709 case AF_INET:
710 ip = mtod(m, struct ip *);
711 th = (struct tcphdr *)(ip + 1);
712 ip->ip_p = IPPROTO_TCP;
713 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
714 ip->ip_p = IPPROTO_TCP;
715 break;
716 #ifdef INET6
717 case AF_INET6:
718 ip6 = mtod(m, struct ip6_hdr *);
719 th = (struct tcphdr *)(ip6 + 1);
720 ip6->ip6_nxt = IPPROTO_TCP;
721 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
722 ip6->ip6_nxt = IPPROTO_TCP;
723 break;
724 #endif
725 #if 0
726 default:
727 /* noone will visit here */
728 m_freem(m);
729 return EAFNOSUPPORT;
730 #endif
731 }
732 xchg(th->th_dport, th->th_sport, u_int16_t);
733 #undef xchg
734 tlen = 0; /*be friendly with the following code*/
735 }
736 th->th_seq = htonl(seq);
737 th->th_ack = htonl(ack);
738 th->th_x2 = 0;
739 if ((flags & TH_SYN) == 0) {
740 if (tp)
741 win >>= tp->rcv_scale;
742 if (win > TCP_MAXWIN)
743 win = TCP_MAXWIN;
744 th->th_win = htons((u_int16_t)win);
745 th->th_off = sizeof (struct tcphdr) >> 2;
746 tlen += sizeof(*th);
747 } else
748 tlen += th->th_off << 2;
749 m->m_len = hlen + tlen;
750 m->m_pkthdr.len = hlen + tlen;
751 m->m_pkthdr.rcvif = (struct ifnet *) 0;
752 th->th_flags = flags;
753 th->th_urp = 0;
754
755 switch (family) {
756 #ifdef INET
757 case AF_INET:
758 {
759 struct ipovly *ipov = (struct ipovly *)ip;
760 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
761 ipov->ih_len = htons((u_int16_t)tlen);
762
763 th->th_sum = 0;
764 th->th_sum = in_cksum(m, hlen + tlen);
765 ip->ip_len = htons(hlen + tlen);
766 ip->ip_ttl = ip_defttl;
767 break;
768 }
769 #endif
770 #ifdef INET6
771 case AF_INET6:
772 {
773 th->th_sum = 0;
774 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
775 tlen);
776 ip6->ip6_plen = ntohs(tlen);
777 if (tp && tp->t_in6pcb) {
778 struct ifnet *oifp;
779 ro = (struct route *)&tp->t_in6pcb->in6p_route;
780 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
781 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
782 } else
783 ip6->ip6_hlim = ip6_defhlim;
784 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
785 if (ip6_auto_flowlabel) {
786 ip6->ip6_flow |=
787 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
788 }
789 break;
790 }
791 #endif
792 }
793
794 #ifdef IPSEC
795 (void)ipsec_setsocket(m, NULL);
796 #endif /*IPSEC*/
797
798 if (tp != NULL && tp->t_inpcb != NULL) {
799 ro = &tp->t_inpcb->inp_route;
800 #ifdef IPSEC
801 if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
802 m_freem(m);
803 return ENOBUFS;
804 }
805 #endif
806 #ifdef DIAGNOSTIC
807 if (family != AF_INET)
808 panic("tcp_respond: address family mismatch");
809 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
810 panic("tcp_respond: ip_dst %x != inp_faddr %x",
811 ntohl(ip->ip_dst.s_addr),
812 ntohl(tp->t_inpcb->inp_faddr.s_addr));
813 }
814 #endif
815 }
816 #ifdef INET6
817 else if (tp != NULL && tp->t_in6pcb != NULL) {
818 ro = (struct route *)&tp->t_in6pcb->in6p_route;
819 #ifdef IPSEC
820 if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
821 m_freem(m);
822 return ENOBUFS;
823 }
824 #endif
825 #ifdef DIAGNOSTIC
826 if (family == AF_INET) {
827 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
828 panic("tcp_respond: not mapped addr");
829 if (bcmp(&ip->ip_dst,
830 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
831 sizeof(ip->ip_dst)) != 0) {
832 panic("tcp_respond: ip_dst != in6p_faddr");
833 }
834 } else if (family == AF_INET6) {
835 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
836 &tp->t_in6pcb->in6p_faddr))
837 panic("tcp_respond: ip6_dst != in6p_faddr");
838 } else
839 panic("tcp_respond: address family mismatch");
840 #endif
841 }
842 #endif
843 else
844 ro = NULL;
845
846 switch (family) {
847 #ifdef INET
848 case AF_INET:
849 error = ip_output(m, NULL, ro,
850 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
851 NULL);
852 break;
853 #endif
854 #ifdef INET6
855 case AF_INET6:
856 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
857 NULL);
858 break;
859 #endif
860 default:
861 error = EAFNOSUPPORT;
862 break;
863 }
864
865 return (error);
866 }
867
868 /*
869 * Create a new TCP control block, making an
870 * empty reassembly queue and hooking it to the argument
871 * protocol control block.
872 */
873 struct tcpcb *
874 tcp_newtcpcb(family, aux)
875 int family; /* selects inpcb, or in6pcb */
876 void *aux;
877 {
878 struct tcpcb *tp;
879 int i;
880
881 switch (family) {
882 case PF_INET:
883 break;
884 #ifdef INET6
885 case PF_INET6:
886 break;
887 #endif
888 default:
889 return NULL;
890 }
891
892 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
893 if (tp == NULL)
894 return (NULL);
895 bzero((caddr_t)tp, sizeof(struct tcpcb));
896 TAILQ_INIT(&tp->segq);
897 TAILQ_INIT(&tp->timeq);
898 tp->t_family = family; /* may be overridden later on */
899 tp->t_peermss = tcp_mssdflt;
900 tp->t_ourmss = tcp_mssdflt;
901 tp->t_segsz = tcp_mssdflt;
902 LIST_INIT(&tp->t_sc);
903
904 callout_init(&tp->t_delack_ch);
905 for (i = 0; i < TCPT_NTIMERS; i++)
906 TCP_TIMER_INIT(tp, i);
907
908 tp->t_flags = 0;
909 if (tcp_do_rfc1323 && tcp_do_win_scale)
910 tp->t_flags |= TF_REQ_SCALE;
911 if (tcp_do_rfc1323 && tcp_do_timestamps)
912 tp->t_flags |= TF_REQ_TSTMP;
913 if (tcp_do_sack == 2)
914 tp->t_flags |= TF_WILL_SACK;
915 else if (tcp_do_sack == 1)
916 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
917 tp->t_flags |= TF_CANT_TXSACK;
918 switch (family) {
919 case PF_INET:
920 tp->t_inpcb = (struct inpcb *)aux;
921 tp->t_mtudisc = ip_mtudisc;
922 break;
923 #ifdef INET6
924 case PF_INET6:
925 tp->t_in6pcb = (struct in6pcb *)aux;
926 /* for IPv6, always try to run path MTU discovery */
927 tp->t_mtudisc = 1;
928 break;
929 #endif
930 }
931 /*
932 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
933 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
934 * reasonable initial retransmit time.
935 */
936 tp->t_srtt = TCPTV_SRTTBASE;
937 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
938 tp->t_rttmin = TCPTV_MIN;
939 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
940 TCPTV_MIN, TCPTV_REXMTMAX);
941 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
942 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
943 if (family == AF_INET) {
944 struct inpcb *inp = (struct inpcb *)aux;
945 inp->inp_ip.ip_ttl = ip_defttl;
946 inp->inp_ppcb = (caddr_t)tp;
947 }
948 #ifdef INET6
949 else if (family == AF_INET6) {
950 struct in6pcb *in6p = (struct in6pcb *)aux;
951 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
952 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
953 : NULL);
954 in6p->in6p_ppcb = (caddr_t)tp;
955 }
956 #endif
957
958 /*
959 * Initialize our timebase. When we send timestamps, we take
960 * the delta from tcp_now -- this means each connection always
961 * gets a timebase of 0, which makes it, among other things,
962 * more difficult to determine how long a system has been up,
963 * and thus how many TCP sequence increments have occurred.
964 */
965 tp->ts_timebase = tcp_now;
966
967 return (tp);
968 }
969
970 /*
971 * Drop a TCP connection, reporting
972 * the specified error. If connection is synchronized,
973 * then send a RST to peer.
974 */
975 struct tcpcb *
976 tcp_drop(tp, errno)
977 struct tcpcb *tp;
978 int errno;
979 {
980 struct socket *so = NULL;
981
982 #ifdef DIAGNOSTIC
983 if (tp->t_inpcb && tp->t_in6pcb)
984 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
985 #endif
986 #ifdef INET
987 if (tp->t_inpcb)
988 so = tp->t_inpcb->inp_socket;
989 #endif
990 #ifdef INET6
991 if (tp->t_in6pcb)
992 so = tp->t_in6pcb->in6p_socket;
993 #endif
994 if (!so)
995 return NULL;
996
997 if (TCPS_HAVERCVDSYN(tp->t_state)) {
998 tp->t_state = TCPS_CLOSED;
999 (void) tcp_output(tp);
1000 tcpstat.tcps_drops++;
1001 } else
1002 tcpstat.tcps_conndrops++;
1003 if (errno == ETIMEDOUT && tp->t_softerror)
1004 errno = tp->t_softerror;
1005 so->so_error = errno;
1006 return (tcp_close(tp));
1007 }
1008
1009 /*
1010 * Close a TCP control block:
1011 * discard all space held by the tcp
1012 * discard internet protocol block
1013 * wake up any sleepers
1014 */
1015 struct tcpcb *
1016 tcp_close(tp)
1017 struct tcpcb *tp;
1018 {
1019 struct inpcb *inp;
1020 #ifdef INET6
1021 struct in6pcb *in6p;
1022 #endif
1023 struct socket *so;
1024 #ifdef RTV_RTT
1025 struct rtentry *rt;
1026 #endif
1027 struct route *ro;
1028
1029 inp = tp->t_inpcb;
1030 #ifdef INET6
1031 in6p = tp->t_in6pcb;
1032 #endif
1033 so = NULL;
1034 ro = NULL;
1035 if (inp) {
1036 so = inp->inp_socket;
1037 ro = &inp->inp_route;
1038 }
1039 #ifdef INET6
1040 else if (in6p) {
1041 so = in6p->in6p_socket;
1042 ro = (struct route *)&in6p->in6p_route;
1043 }
1044 #endif
1045
1046 #ifdef RTV_RTT
1047 /*
1048 * If we sent enough data to get some meaningful characteristics,
1049 * save them in the routing entry. 'Enough' is arbitrarily
1050 * defined as the sendpipesize (default 4K) * 16. This would
1051 * give us 16 rtt samples assuming we only get one sample per
1052 * window (the usual case on a long haul net). 16 samples is
1053 * enough for the srtt filter to converge to within 5% of the correct
1054 * value; fewer samples and we could save a very bogus rtt.
1055 *
1056 * Don't update the default route's characteristics and don't
1057 * update anything that the user "locked".
1058 */
1059 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1060 ro && (rt = ro->ro_rt) &&
1061 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1062 u_long i = 0;
1063
1064 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1065 i = tp->t_srtt *
1066 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1067 if (rt->rt_rmx.rmx_rtt && i)
1068 /*
1069 * filter this update to half the old & half
1070 * the new values, converting scale.
1071 * See route.h and tcp_var.h for a
1072 * description of the scaling constants.
1073 */
1074 rt->rt_rmx.rmx_rtt =
1075 (rt->rt_rmx.rmx_rtt + i) / 2;
1076 else
1077 rt->rt_rmx.rmx_rtt = i;
1078 }
1079 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1080 i = tp->t_rttvar *
1081 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1082 if (rt->rt_rmx.rmx_rttvar && i)
1083 rt->rt_rmx.rmx_rttvar =
1084 (rt->rt_rmx.rmx_rttvar + i) / 2;
1085 else
1086 rt->rt_rmx.rmx_rttvar = i;
1087 }
1088 /*
1089 * update the pipelimit (ssthresh) if it has been updated
1090 * already or if a pipesize was specified & the threshhold
1091 * got below half the pipesize. I.e., wait for bad news
1092 * before we start updating, then update on both good
1093 * and bad news.
1094 */
1095 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1096 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1097 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1098 /*
1099 * convert the limit from user data bytes to
1100 * packets then to packet data bytes.
1101 */
1102 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1103 if (i < 2)
1104 i = 2;
1105 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1106 if (rt->rt_rmx.rmx_ssthresh)
1107 rt->rt_rmx.rmx_ssthresh =
1108 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1109 else
1110 rt->rt_rmx.rmx_ssthresh = i;
1111 }
1112 }
1113 #endif /* RTV_RTT */
1114 /* free the reassembly queue, if any */
1115 TCP_REASS_LOCK(tp);
1116 (void) tcp_freeq(tp);
1117 TCP_REASS_UNLOCK(tp);
1118
1119 tcp_canceltimers(tp);
1120 TCP_CLEAR_DELACK(tp);
1121 syn_cache_cleanup(tp);
1122
1123 if (tp->t_template) {
1124 m_free(tp->t_template);
1125 tp->t_template = NULL;
1126 }
1127 pool_put(&tcpcb_pool, tp);
1128 if (inp) {
1129 inp->inp_ppcb = 0;
1130 soisdisconnected(so);
1131 in_pcbdetach(inp);
1132 }
1133 #ifdef INET6
1134 else if (in6p) {
1135 in6p->in6p_ppcb = 0;
1136 soisdisconnected(so);
1137 in6_pcbdetach(in6p);
1138 }
1139 #endif
1140 tcpstat.tcps_closed++;
1141 return ((struct tcpcb *)0);
1142 }
1143
1144 int
1145 tcp_freeq(tp)
1146 struct tcpcb *tp;
1147 {
1148 struct ipqent *qe;
1149 int rv = 0;
1150 #ifdef TCPREASS_DEBUG
1151 int i = 0;
1152 #endif
1153
1154 TCP_REASS_LOCK_CHECK(tp);
1155
1156 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1157 #ifdef TCPREASS_DEBUG
1158 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1159 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1160 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1161 #endif
1162 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1163 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1164 m_freem(qe->ipqe_m);
1165 pool_put(&ipqent_pool, qe);
1166 rv = 1;
1167 }
1168 return (rv);
1169 }
1170
1171 /*
1172 * Protocol drain routine. Called when memory is in short supply.
1173 */
1174 void
1175 tcp_drain()
1176 {
1177 struct inpcb *inp;
1178 struct tcpcb *tp;
1179
1180 /*
1181 * Free the sequence queue of all TCP connections.
1182 */
1183 inp = CIRCLEQ_FIRST(&tcbtable.inpt_queue);
1184 if (inp) /* XXX */
1185 CIRCLEQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue) {
1186 if ((tp = intotcpcb(inp)) != NULL) {
1187 /*
1188 * We may be called from a device's interrupt
1189 * context. If the tcpcb is already busy,
1190 * just bail out now.
1191 */
1192 if (tcp_reass_lock_try(tp) == 0)
1193 continue;
1194 if (tcp_freeq(tp))
1195 tcpstat.tcps_connsdrained++;
1196 TCP_REASS_UNLOCK(tp);
1197 }
1198 }
1199 }
1200
1201 #ifdef INET6
1202 void
1203 tcp6_drain()
1204 {
1205 struct in6pcb *in6p;
1206 struct tcpcb *tp;
1207 struct in6pcb *head = &tcb6;
1208
1209 /*
1210 * Free the sequence queue of all TCP connections.
1211 */
1212 for (in6p = head->in6p_next; in6p != head; in6p = in6p->in6p_next) {
1213 if ((tp = in6totcpcb(in6p)) != NULL) {
1214 /*
1215 * We may be called from a device's interrupt
1216 * context. If the tcpcb is already busy,
1217 * just bail out now.
1218 */
1219 if (tcp_reass_lock_try(tp) == 0)
1220 continue;
1221 if (tcp_freeq(tp))
1222 tcpstat.tcps_connsdrained++;
1223 TCP_REASS_UNLOCK(tp);
1224 }
1225 }
1226 }
1227 #endif
1228
1229 /*
1230 * Notify a tcp user of an asynchronous error;
1231 * store error as soft error, but wake up user
1232 * (for now, won't do anything until can select for soft error).
1233 */
1234 void
1235 tcp_notify(inp, error)
1236 struct inpcb *inp;
1237 int error;
1238 {
1239 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1240 struct socket *so = inp->inp_socket;
1241
1242 /*
1243 * Ignore some errors if we are hooked up.
1244 * If connection hasn't completed, has retransmitted several times,
1245 * and receives a second error, give up now. This is better
1246 * than waiting a long time to establish a connection that
1247 * can never complete.
1248 */
1249 if (tp->t_state == TCPS_ESTABLISHED &&
1250 (error == EHOSTUNREACH || error == ENETUNREACH ||
1251 error == EHOSTDOWN)) {
1252 return;
1253 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1254 tp->t_rxtshift > 3 && tp->t_softerror)
1255 so->so_error = error;
1256 else
1257 tp->t_softerror = error;
1258 wakeup((caddr_t) &so->so_timeo);
1259 sorwakeup(so);
1260 sowwakeup(so);
1261 }
1262
1263 #ifdef INET6
1264 void
1265 tcp6_notify(in6p, error)
1266 struct in6pcb *in6p;
1267 int error;
1268 {
1269 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1270 struct socket *so = in6p->in6p_socket;
1271
1272 /*
1273 * Ignore some errors if we are hooked up.
1274 * If connection hasn't completed, has retransmitted several times,
1275 * and receives a second error, give up now. This is better
1276 * than waiting a long time to establish a connection that
1277 * can never complete.
1278 */
1279 if (tp->t_state == TCPS_ESTABLISHED &&
1280 (error == EHOSTUNREACH || error == ENETUNREACH ||
1281 error == EHOSTDOWN)) {
1282 return;
1283 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1284 tp->t_rxtshift > 3 && tp->t_softerror)
1285 so->so_error = error;
1286 else
1287 tp->t_softerror = error;
1288 wakeup((caddr_t) &so->so_timeo);
1289 sorwakeup(so);
1290 sowwakeup(so);
1291 }
1292 #endif
1293
1294 #ifdef INET6
1295 void
1296 tcp6_ctlinput(cmd, sa, d)
1297 int cmd;
1298 struct sockaddr *sa;
1299 void *d;
1300 {
1301 struct tcphdr th;
1302 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1303 int nmatch;
1304 struct ip6_hdr *ip6;
1305 const struct sockaddr_in6 *sa6_src = NULL;
1306 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1307 struct mbuf *m;
1308 int off;
1309
1310 if (sa->sa_family != AF_INET6 ||
1311 sa->sa_len != sizeof(struct sockaddr_in6))
1312 return;
1313 if ((unsigned)cmd >= PRC_NCMDS)
1314 return;
1315 else if (cmd == PRC_QUENCH) {
1316 /* XXX there's no PRC_QUENCH in IPv6 */
1317 notify = tcp6_quench;
1318 } else if (PRC_IS_REDIRECT(cmd))
1319 notify = in6_rtchange, d = NULL;
1320 else if (cmd == PRC_MSGSIZE)
1321 ; /* special code is present, see below */
1322 else if (cmd == PRC_HOSTDEAD)
1323 d = NULL;
1324 else if (inet6ctlerrmap[cmd] == 0)
1325 return;
1326
1327 /* if the parameter is from icmp6, decode it. */
1328 if (d != NULL) {
1329 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1330 m = ip6cp->ip6c_m;
1331 ip6 = ip6cp->ip6c_ip6;
1332 off = ip6cp->ip6c_off;
1333 sa6_src = ip6cp->ip6c_src;
1334 } else {
1335 m = NULL;
1336 ip6 = NULL;
1337 sa6_src = &sa6_any;
1338 }
1339
1340 if (ip6) {
1341 /*
1342 * XXX: We assume that when ip6 is non NULL,
1343 * M and OFF are valid.
1344 */
1345
1346 /* check if we can safely examine src and dst ports */
1347 if (m->m_pkthdr.len < off + sizeof(th)) {
1348 if (cmd == PRC_MSGSIZE)
1349 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1350 return;
1351 }
1352
1353 bzero(&th, sizeof(th));
1354 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1355
1356 if (cmd == PRC_MSGSIZE) {
1357 int valid = 0;
1358
1359 /*
1360 * Check to see if we have a valid TCP connection
1361 * corresponding to the address in the ICMPv6 message
1362 * payload.
1363 */
1364 if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
1365 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1366 th.th_sport, 0))
1367 valid++;
1368
1369 /*
1370 * Depending on the value of "valid" and routing table
1371 * size (mtudisc_{hi,lo}wat), we will:
1372 * - recalcurate the new MTU and create the
1373 * corresponding routing entry, or
1374 * - ignore the MTU change notification.
1375 */
1376 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1377
1378 /*
1379 * no need to call in6_pcbnotify, it should have been
1380 * called via callback if necessary
1381 */
1382 return;
1383 }
1384
1385 nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
1386 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1387 if (nmatch == 0 && syn_cache_count &&
1388 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1389 inet6ctlerrmap[cmd] == ENETUNREACH ||
1390 inet6ctlerrmap[cmd] == EHOSTDOWN))
1391 syn_cache_unreach((struct sockaddr *)sa6_src,
1392 sa, &th);
1393 } else {
1394 (void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
1395 0, cmd, NULL, notify);
1396 }
1397 }
1398 #endif
1399
1400 #ifdef INET
1401 /* assumes that ip header and tcp header are contiguous on mbuf */
1402 void *
1403 tcp_ctlinput(cmd, sa, v)
1404 int cmd;
1405 struct sockaddr *sa;
1406 void *v;
1407 {
1408 struct ip *ip = v;
1409 struct tcphdr *th;
1410 struct icmp *icp;
1411 extern const int inetctlerrmap[];
1412 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1413 int errno;
1414 int nmatch;
1415 #ifdef INET6
1416 struct in6_addr src6, dst6;
1417 #endif
1418
1419 if (sa->sa_family != AF_INET ||
1420 sa->sa_len != sizeof(struct sockaddr_in))
1421 return NULL;
1422 if ((unsigned)cmd >= PRC_NCMDS)
1423 return NULL;
1424 errno = inetctlerrmap[cmd];
1425 if (cmd == PRC_QUENCH)
1426 notify = tcp_quench;
1427 else if (PRC_IS_REDIRECT(cmd))
1428 notify = in_rtchange, ip = 0;
1429 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1430 /*
1431 * Check to see if we have a valid TCP connection
1432 * corresponding to the address in the ICMP message
1433 * payload.
1434 *
1435 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1436 */
1437 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1438 #ifdef INET6
1439 memset(&src6, 0, sizeof(src6));
1440 memset(&dst6, 0, sizeof(dst6));
1441 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1442 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1443 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1444 #endif
1445 if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
1446 ip->ip_src, th->th_sport) != NULL)
1447 ;
1448 #ifdef INET6
1449 else if (in6_pcblookup_connect(&tcb6, &dst6,
1450 th->th_dport, &src6, th->th_sport, 0) != NULL)
1451 ;
1452 #endif
1453 else
1454 return NULL;
1455
1456 /*
1457 * Now that we've validated that we are actually communicating
1458 * with the host indicated in the ICMP message, locate the
1459 * ICMP header, recalculate the new MTU, and create the
1460 * corresponding routing entry.
1461 */
1462 icp = (struct icmp *)((caddr_t)ip -
1463 offsetof(struct icmp, icmp_ip));
1464 icmp_mtudisc(icp, ip->ip_dst);
1465
1466 return NULL;
1467 } else if (cmd == PRC_HOSTDEAD)
1468 ip = 0;
1469 else if (errno == 0)
1470 return NULL;
1471 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1472 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1473 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1474 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1475 if (nmatch == 0 && syn_cache_count &&
1476 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1477 inetctlerrmap[cmd] == ENETUNREACH ||
1478 inetctlerrmap[cmd] == EHOSTDOWN)) {
1479 struct sockaddr_in sin;
1480 bzero(&sin, sizeof(sin));
1481 sin.sin_len = sizeof(sin);
1482 sin.sin_family = AF_INET;
1483 sin.sin_port = th->th_sport;
1484 sin.sin_addr = ip->ip_src;
1485 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1486 }
1487
1488 /* XXX mapped address case */
1489 } else
1490 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1491 notify);
1492 return NULL;
1493 }
1494
1495 /*
1496 * When a source quence is received, we are being notifed of congestion.
1497 * Close the congestion window down to the Loss Window (one segment).
1498 * We will gradually open it again as we proceed.
1499 */
1500 void
1501 tcp_quench(inp, errno)
1502 struct inpcb *inp;
1503 int errno;
1504 {
1505 struct tcpcb *tp = intotcpcb(inp);
1506
1507 if (tp)
1508 tp->snd_cwnd = tp->t_segsz;
1509 }
1510 #endif
1511
1512 #ifdef INET6
1513 void
1514 tcp6_quench(in6p, errno)
1515 struct in6pcb *in6p;
1516 int errno;
1517 {
1518 struct tcpcb *tp = in6totcpcb(in6p);
1519
1520 if (tp)
1521 tp->snd_cwnd = tp->t_segsz;
1522 }
1523 #endif
1524
1525 #ifdef INET
1526 /*
1527 * Path MTU Discovery handlers.
1528 */
1529 void
1530 tcp_mtudisc_callback(faddr)
1531 struct in_addr faddr;
1532 {
1533 #ifdef INET6
1534 struct in6_addr in6;
1535 #endif
1536
1537 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1538 #ifdef INET6
1539 memset(&in6, 0, sizeof(in6));
1540 in6.s6_addr16[5] = 0xffff;
1541 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1542 tcp6_mtudisc_callback(&in6);
1543 #endif
1544 }
1545
1546 /*
1547 * On receipt of path MTU corrections, flush old route and replace it
1548 * with the new one. Retransmit all unacknowledged packets, to ensure
1549 * that all packets will be received.
1550 */
1551 void
1552 tcp_mtudisc(inp, errno)
1553 struct inpcb *inp;
1554 int errno;
1555 {
1556 struct tcpcb *tp = intotcpcb(inp);
1557 struct rtentry *rt = in_pcbrtentry(inp);
1558
1559 if (tp != 0) {
1560 if (rt != 0) {
1561 /*
1562 * If this was not a host route, remove and realloc.
1563 */
1564 if ((rt->rt_flags & RTF_HOST) == 0) {
1565 in_rtchange(inp, errno);
1566 if ((rt = in_pcbrtentry(inp)) == 0)
1567 return;
1568 }
1569
1570 /*
1571 * Slow start out of the error condition. We
1572 * use the MTU because we know it's smaller
1573 * than the previously transmitted segment.
1574 *
1575 * Note: This is more conservative than the
1576 * suggestion in draft-floyd-incr-init-win-03.
1577 */
1578 if (rt->rt_rmx.rmx_mtu != 0)
1579 tp->snd_cwnd =
1580 TCP_INITIAL_WINDOW(tcp_init_win,
1581 rt->rt_rmx.rmx_mtu);
1582 }
1583
1584 /*
1585 * Resend unacknowledged packets.
1586 */
1587 tp->snd_nxt = tp->snd_una;
1588 tcp_output(tp);
1589 }
1590 }
1591 #endif
1592
1593 #ifdef INET6
1594 /*
1595 * Path MTU Discovery handlers.
1596 */
1597 void
1598 tcp6_mtudisc_callback(faddr)
1599 struct in6_addr *faddr;
1600 {
1601 struct sockaddr_in6 sin6;
1602
1603 bzero(&sin6, sizeof(sin6));
1604 sin6.sin6_family = AF_INET6;
1605 sin6.sin6_len = sizeof(struct sockaddr_in6);
1606 sin6.sin6_addr = *faddr;
1607 (void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
1608 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1609 }
1610
1611 void
1612 tcp6_mtudisc(in6p, errno)
1613 struct in6pcb *in6p;
1614 int errno;
1615 {
1616 struct tcpcb *tp = in6totcpcb(in6p);
1617 struct rtentry *rt = in6_pcbrtentry(in6p);
1618
1619 if (tp != 0) {
1620 if (rt != 0) {
1621 /*
1622 * If this was not a host route, remove and realloc.
1623 */
1624 if ((rt->rt_flags & RTF_HOST) == 0) {
1625 in6_rtchange(in6p, errno);
1626 if ((rt = in6_pcbrtentry(in6p)) == 0)
1627 return;
1628 }
1629
1630 /*
1631 * Slow start out of the error condition. We
1632 * use the MTU because we know it's smaller
1633 * than the previously transmitted segment.
1634 *
1635 * Note: This is more conservative than the
1636 * suggestion in draft-floyd-incr-init-win-03.
1637 */
1638 if (rt->rt_rmx.rmx_mtu != 0)
1639 tp->snd_cwnd =
1640 TCP_INITIAL_WINDOW(tcp_init_win,
1641 rt->rt_rmx.rmx_mtu);
1642 }
1643
1644 /*
1645 * Resend unacknowledged packets.
1646 */
1647 tp->snd_nxt = tp->snd_una;
1648 tcp_output(tp);
1649 }
1650 }
1651 #endif /* INET6 */
1652
1653 /*
1654 * Compute the MSS to advertise to the peer. Called only during
1655 * the 3-way handshake. If we are the server (peer initiated
1656 * connection), we are called with a pointer to the interface
1657 * on which the SYN packet arrived. If we are the client (we
1658 * initiated connection), we are called with a pointer to the
1659 * interface out which this connection should go.
1660 *
1661 * NOTE: Do not subtract IP option/extension header size nor IPsec
1662 * header size from MSS advertisement. MSS option must hold the maximum
1663 * segment size we can accept, so it must always be:
1664 * max(if mtu) - ip header - tcp header
1665 */
1666 u_long
1667 tcp_mss_to_advertise(ifp, af)
1668 const struct ifnet *ifp;
1669 int af;
1670 {
1671 extern u_long in_maxmtu;
1672 u_long mss = 0;
1673 u_long hdrsiz;
1674
1675 /*
1676 * In order to avoid defeating path MTU discovery on the peer,
1677 * we advertise the max MTU of all attached networks as our MSS,
1678 * per RFC 1191, section 3.1.
1679 *
1680 * We provide the option to advertise just the MTU of
1681 * the interface on which we hope this connection will
1682 * be receiving. If we are responding to a SYN, we
1683 * will have a pretty good idea about this, but when
1684 * initiating a connection there is a bit more doubt.
1685 *
1686 * We also need to ensure that loopback has a large enough
1687 * MSS, as the loopback MTU is never included in in_maxmtu.
1688 */
1689
1690 if (ifp != NULL)
1691 switch (af) {
1692 case AF_INET:
1693 mss = ifp->if_mtu;
1694 break;
1695 #ifdef INET6
1696 case AF_INET6:
1697 mss = IN6_LINKMTU(ifp);
1698 break;
1699 #endif
1700 }
1701
1702 if (tcp_mss_ifmtu == 0)
1703 switch (af) {
1704 case AF_INET:
1705 mss = max(in_maxmtu, mss);
1706 break;
1707 #ifdef INET6
1708 case AF_INET6:
1709 mss = max(in6_maxmtu, mss);
1710 break;
1711 #endif
1712 }
1713
1714 switch (af) {
1715 case AF_INET:
1716 hdrsiz = sizeof(struct ip);
1717 break;
1718 #ifdef INET6
1719 case AF_INET6:
1720 hdrsiz = sizeof(struct ip6_hdr);
1721 break;
1722 #endif
1723 default:
1724 hdrsiz = 0;
1725 break;
1726 }
1727 hdrsiz += sizeof(struct tcphdr);
1728 if (mss > hdrsiz)
1729 mss -= hdrsiz;
1730
1731 mss = max(tcp_mssdflt, mss);
1732 return (mss);
1733 }
1734
1735 /*
1736 * Set connection variables based on the peer's advertised MSS.
1737 * We are passed the TCPCB for the actual connection. If we
1738 * are the server, we are called by the compressed state engine
1739 * when the 3-way handshake is complete. If we are the client,
1740 * we are called when we receive the SYN,ACK from the server.
1741 *
1742 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1743 * before this routine is called!
1744 */
1745 void
1746 tcp_mss_from_peer(tp, offer)
1747 struct tcpcb *tp;
1748 int offer;
1749 {
1750 struct socket *so;
1751 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1752 struct rtentry *rt;
1753 #endif
1754 u_long bufsize;
1755 int mss;
1756
1757 #ifdef DIAGNOSTIC
1758 if (tp->t_inpcb && tp->t_in6pcb)
1759 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1760 #endif
1761 so = NULL;
1762 rt = NULL;
1763 #ifdef INET
1764 if (tp->t_inpcb) {
1765 so = tp->t_inpcb->inp_socket;
1766 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1767 rt = in_pcbrtentry(tp->t_inpcb);
1768 #endif
1769 }
1770 #endif
1771 #ifdef INET6
1772 if (tp->t_in6pcb) {
1773 so = tp->t_in6pcb->in6p_socket;
1774 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1775 rt = in6_pcbrtentry(tp->t_in6pcb);
1776 #endif
1777 }
1778 #endif
1779
1780 /*
1781 * As per RFC1122, use the default MSS value, unless they
1782 * sent us an offer. Do not accept offers less than 32 bytes.
1783 */
1784 mss = tcp_mssdflt;
1785 if (offer)
1786 mss = offer;
1787 mss = max(mss, 32); /* sanity */
1788 tp->t_peermss = mss;
1789 mss -= tcp_optlen(tp);
1790 #ifdef INET
1791 if (tp->t_inpcb)
1792 mss -= ip_optlen(tp->t_inpcb);
1793 #endif
1794 #ifdef INET6
1795 if (tp->t_in6pcb)
1796 mss -= ip6_optlen(tp->t_in6pcb);
1797 #endif
1798
1799 /*
1800 * If there's a pipesize, change the socket buffer to that size.
1801 * Make the socket buffer an integral number of MSS units. If
1802 * the MSS is larger than the socket buffer, artificially decrease
1803 * the MSS.
1804 */
1805 #ifdef RTV_SPIPE
1806 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1807 bufsize = rt->rt_rmx.rmx_sendpipe;
1808 else
1809 #endif
1810 bufsize = so->so_snd.sb_hiwat;
1811 if (bufsize < mss)
1812 mss = bufsize;
1813 else {
1814 bufsize = roundup(bufsize, mss);
1815 if (bufsize > sb_max)
1816 bufsize = sb_max;
1817 (void) sbreserve(&so->so_snd, bufsize);
1818 }
1819 tp->t_segsz = mss;
1820
1821 #ifdef RTV_SSTHRESH
1822 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1823 /*
1824 * There's some sort of gateway or interface buffer
1825 * limit on the path. Use this to set the slow
1826 * start threshold, but set the threshold to no less
1827 * than 2 * MSS.
1828 */
1829 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1830 }
1831 #endif
1832 }
1833
1834 /*
1835 * Processing necessary when a TCP connection is established.
1836 */
1837 void
1838 tcp_established(tp)
1839 struct tcpcb *tp;
1840 {
1841 struct socket *so;
1842 #ifdef RTV_RPIPE
1843 struct rtentry *rt;
1844 #endif
1845 u_long bufsize;
1846
1847 #ifdef DIAGNOSTIC
1848 if (tp->t_inpcb && tp->t_in6pcb)
1849 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1850 #endif
1851 so = NULL;
1852 rt = NULL;
1853 #ifdef INET
1854 if (tp->t_inpcb) {
1855 so = tp->t_inpcb->inp_socket;
1856 #if defined(RTV_RPIPE)
1857 rt = in_pcbrtentry(tp->t_inpcb);
1858 #endif
1859 }
1860 #endif
1861 #ifdef INET6
1862 if (tp->t_in6pcb) {
1863 so = tp->t_in6pcb->in6p_socket;
1864 #if defined(RTV_RPIPE)
1865 rt = in6_pcbrtentry(tp->t_in6pcb);
1866 #endif
1867 }
1868 #endif
1869
1870 tp->t_state = TCPS_ESTABLISHED;
1871 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1872
1873 #ifdef RTV_RPIPE
1874 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1875 bufsize = rt->rt_rmx.rmx_recvpipe;
1876 else
1877 #endif
1878 bufsize = so->so_rcv.sb_hiwat;
1879 if (bufsize > tp->t_ourmss) {
1880 bufsize = roundup(bufsize, tp->t_ourmss);
1881 if (bufsize > sb_max)
1882 bufsize = sb_max;
1883 (void) sbreserve(&so->so_rcv, bufsize);
1884 }
1885 }
1886
1887 /*
1888 * Check if there's an initial rtt or rttvar. Convert from the
1889 * route-table units to scaled multiples of the slow timeout timer.
1890 * Called only during the 3-way handshake.
1891 */
1892 void
1893 tcp_rmx_rtt(tp)
1894 struct tcpcb *tp;
1895 {
1896 #ifdef RTV_RTT
1897 struct rtentry *rt = NULL;
1898 int rtt;
1899
1900 #ifdef DIAGNOSTIC
1901 if (tp->t_inpcb && tp->t_in6pcb)
1902 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1903 #endif
1904 #ifdef INET
1905 if (tp->t_inpcb)
1906 rt = in_pcbrtentry(tp->t_inpcb);
1907 #endif
1908 #ifdef INET6
1909 if (tp->t_in6pcb)
1910 rt = in6_pcbrtentry(tp->t_in6pcb);
1911 #endif
1912 if (rt == NULL)
1913 return;
1914
1915 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1916 /*
1917 * XXX The lock bit for MTU indicates that the value
1918 * is also a minimum value; this is subject to time.
1919 */
1920 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1921 TCPT_RANGESET(tp->t_rttmin,
1922 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1923 TCPTV_MIN, TCPTV_REXMTMAX);
1924 tp->t_srtt = rtt /
1925 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1926 if (rt->rt_rmx.rmx_rttvar) {
1927 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1928 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1929 (TCP_RTTVAR_SHIFT + 2));
1930 } else {
1931 /* Default variation is +- 1 rtt */
1932 tp->t_rttvar =
1933 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1934 }
1935 TCPT_RANGESET(tp->t_rxtcur,
1936 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1937 tp->t_rttmin, TCPTV_REXMTMAX);
1938 }
1939 #endif
1940 }
1941
1942 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1943 #if NRND > 0
1944 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
1945 #endif
1946
1947 /*
1948 * Get a new sequence value given a tcp control block
1949 */
1950 tcp_seq
1951 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
1952 {
1953
1954 #ifdef INET
1955 if (tp->t_inpcb != NULL) {
1956 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
1957 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
1958 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
1959 addin));
1960 }
1961 #endif
1962 #ifdef INET6
1963 if (tp->t_in6pcb != NULL) {
1964 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
1965 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
1966 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
1967 addin));
1968 }
1969 #endif
1970 /* Not possible. */
1971 panic("tcp_new_iss");
1972 }
1973
1974 /*
1975 * This routine actually generates a new TCP initial sequence number.
1976 */
1977 tcp_seq
1978 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
1979 size_t addrsz, tcp_seq addin)
1980 {
1981 tcp_seq tcp_iss;
1982
1983 #if NRND > 0
1984 static int beenhere;
1985
1986 /*
1987 * If we haven't been here before, initialize our cryptographic
1988 * hash secret.
1989 */
1990 if (beenhere == 0) {
1991 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
1992 RND_EXTRACT_ANY);
1993 beenhere = 1;
1994 }
1995
1996 if (tcp_do_rfc1948) {
1997 MD5_CTX ctx;
1998 u_int8_t hash[16]; /* XXX MD5 knowledge */
1999
2000 /*
2001 * Compute the base value of the ISS. It is a hash
2002 * of (saddr, sport, daddr, dport, secret).
2003 */
2004 MD5Init(&ctx);
2005
2006 MD5Update(&ctx, (u_char *) laddr, addrsz);
2007 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2008
2009 MD5Update(&ctx, (u_char *) faddr, addrsz);
2010 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2011
2012 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2013
2014 MD5Final(hash, &ctx);
2015
2016 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2017
2018 /*
2019 * Now increment our "timer", and add it in to
2020 * the computed value.
2021 *
2022 * XXX Use `addin'?
2023 * XXX TCP_ISSINCR too large to use?
2024 */
2025 tcp_iss_seq += TCP_ISSINCR;
2026 #ifdef TCPISS_DEBUG
2027 printf("ISS hash 0x%08x, ", tcp_iss);
2028 #endif
2029 tcp_iss += tcp_iss_seq + addin;
2030 #ifdef TCPISS_DEBUG
2031 printf("new ISS 0x%08x\n", tcp_iss);
2032 #endif
2033 } else
2034 #endif /* NRND > 0 */
2035 {
2036 /*
2037 * Randomize.
2038 */
2039 #if NRND > 0
2040 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2041 #else
2042 tcp_iss = arc4random();
2043 #endif
2044
2045 /*
2046 * If we were asked to add some amount to a known value,
2047 * we will take a random value obtained above, mask off
2048 * the upper bits, and add in the known value. We also
2049 * add in a constant to ensure that we are at least a
2050 * certain distance from the original value.
2051 *
2052 * This is used when an old connection is in timed wait
2053 * and we have a new one coming in, for instance.
2054 */
2055 if (addin != 0) {
2056 #ifdef TCPISS_DEBUG
2057 printf("Random %08x, ", tcp_iss);
2058 #endif
2059 tcp_iss &= TCP_ISS_RANDOM_MASK;
2060 tcp_iss += addin + TCP_ISSINCR;
2061 #ifdef TCPISS_DEBUG
2062 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2063 #endif
2064 } else {
2065 tcp_iss &= TCP_ISS_RANDOM_MASK;
2066 tcp_iss += tcp_iss_seq;
2067 tcp_iss_seq += TCP_ISSINCR;
2068 #ifdef TCPISS_DEBUG
2069 printf("ISS %08x\n", tcp_iss);
2070 #endif
2071 }
2072 }
2073
2074 if (tcp_compat_42) {
2075 /*
2076 * Limit it to the positive range for really old TCP
2077 * implementations.
2078 * Just AND off the top bit instead of checking if
2079 * is set first - saves a branch 50% of the time.
2080 */
2081 tcp_iss &= 0x7fffffff; /* XXX */
2082 }
2083
2084 return (tcp_iss);
2085 }
2086
2087 #ifdef IPSEC
2088 /* compute ESP/AH header size for TCP, including outer IP header. */
2089 size_t
2090 ipsec4_hdrsiz_tcp(tp)
2091 struct tcpcb *tp;
2092 {
2093 struct inpcb *inp;
2094 size_t hdrsiz;
2095
2096 /* XXX mapped addr case (tp->t_in6pcb) */
2097 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2098 return 0;
2099 switch (tp->t_family) {
2100 case AF_INET:
2101 /* XXX: should use currect direction. */
2102 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2103 break;
2104 default:
2105 hdrsiz = 0;
2106 break;
2107 }
2108
2109 return hdrsiz;
2110 }
2111
2112 #ifdef INET6
2113 size_t
2114 ipsec6_hdrsiz_tcp(tp)
2115 struct tcpcb *tp;
2116 {
2117 struct in6pcb *in6p;
2118 size_t hdrsiz;
2119
2120 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2121 return 0;
2122 switch (tp->t_family) {
2123 case AF_INET6:
2124 /* XXX: should use currect direction. */
2125 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2126 break;
2127 case AF_INET:
2128 /* mapped address case - tricky */
2129 default:
2130 hdrsiz = 0;
2131 break;
2132 }
2133
2134 return hdrsiz;
2135 }
2136 #endif
2137 #endif /*IPSEC*/
2138
2139 /*
2140 * Determine the length of the TCP options for this connection.
2141 *
2142 * XXX: What do we do for SACK, when we add that? Just reserve
2143 * all of the space? Otherwise we can't exactly be incrementing
2144 * cwnd by an amount that varies depending on the amount we last
2145 * had to SACK!
2146 */
2147
2148 u_int
2149 tcp_optlen(tp)
2150 struct tcpcb *tp;
2151 {
2152 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2153 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2154 return TCPOLEN_TSTAMP_APPA;
2155 else
2156 return 0;
2157 }
2158