tcp_subr.c revision 1.138 1 /* $NetBSD: tcp_subr.c,v 1.138 2003/02/26 06:31:16 matt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
102 */
103
104 #include <sys/cdefs.h>
105 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.138 2003/02/26 06:31:16 matt Exp $");
106
107 #include "opt_inet.h"
108 #include "opt_ipsec.h"
109 #include "opt_tcp_compat_42.h"
110 #include "opt_inet_csum.h"
111 #include "rnd.h"
112
113 #include <sys/param.h>
114 #include <sys/proc.h>
115 #include <sys/systm.h>
116 #include <sys/malloc.h>
117 #include <sys/mbuf.h>
118 #include <sys/socket.h>
119 #include <sys/socketvar.h>
120 #include <sys/protosw.h>
121 #include <sys/errno.h>
122 #include <sys/kernel.h>
123 #include <sys/pool.h>
124 #if NRND > 0
125 #include <sys/md5.h>
126 #include <sys/rnd.h>
127 #endif
128
129 #include <net/route.h>
130 #include <net/if.h>
131
132 #include <netinet/in.h>
133 #include <netinet/in_systm.h>
134 #include <netinet/ip.h>
135 #include <netinet/in_pcb.h>
136 #include <netinet/ip_var.h>
137 #include <netinet/ip_icmp.h>
138
139 #ifdef INET6
140 #ifndef INET
141 #include <netinet/in.h>
142 #endif
143 #include <netinet/ip6.h>
144 #include <netinet6/in6_pcb.h>
145 #include <netinet6/ip6_var.h>
146 #include <netinet6/in6_var.h>
147 #include <netinet6/ip6protosw.h>
148 #include <netinet/icmp6.h>
149 #include <netinet6/nd6.h>
150 #endif
151
152 #include <netinet/tcp.h>
153 #include <netinet/tcp_fsm.h>
154 #include <netinet/tcp_seq.h>
155 #include <netinet/tcp_timer.h>
156 #include <netinet/tcp_var.h>
157 #include <netinet/tcpip.h>
158
159 #ifdef IPSEC
160 #include <netinet6/ipsec.h>
161 #endif /*IPSEC*/
162
163 #ifdef INET6
164 struct in6pcb tcb6;
165 #endif
166
167 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
168 struct tcpstat tcpstat; /* tcp statistics */
169 u_int32_t tcp_now; /* for RFC 1323 timestamps */
170
171 /* patchable/settable parameters for tcp */
172 int tcp_mssdflt = TCP_MSS;
173 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
174 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
175 #if NRND > 0
176 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
177 #endif
178 int tcp_do_sack = 1; /* selective acknowledgement */
179 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
180 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
181 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
182 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
183 int tcp_init_win = 1;
184 int tcp_mss_ifmtu = 0;
185 #ifdef TCP_COMPAT_42
186 int tcp_compat_42 = 1;
187 #else
188 int tcp_compat_42 = 0;
189 #endif
190 int tcp_rst_ppslim = 100; /* 100pps */
191
192 /* tcb hash */
193 #ifndef TCBHASHSIZE
194 #define TCBHASHSIZE 128
195 #endif
196 int tcbhashsize = TCBHASHSIZE;
197
198 /* syn hash parameters */
199 #define TCP_SYN_HASH_SIZE 293
200 #define TCP_SYN_BUCKET_SIZE 35
201 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
202 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
203 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
204 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
205
206 int tcp_freeq __P((struct tcpcb *));
207
208 #ifdef INET
209 void tcp_mtudisc_callback __P((struct in_addr));
210 #endif
211 #ifdef INET6
212 void tcp6_mtudisc_callback __P((struct in6_addr *));
213 #endif
214
215 void tcp_mtudisc __P((struct inpcb *, int));
216 #ifdef INET6
217 void tcp6_mtudisc __P((struct in6pcb *, int));
218 #endif
219
220 struct pool tcpcb_pool;
221
222 #ifdef TCP_CSUM_COUNTERS
223 #include <sys/device.h>
224
225 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
226 NULL, "tcp", "hwcsum bad");
227 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
228 NULL, "tcp", "hwcsum ok");
229 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
230 NULL, "tcp", "hwcsum data");
231 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
232 NULL, "tcp", "swcsum");
233 #endif /* TCP_CSUM_COUNTERS */
234
235 #ifdef TCP_OUTPUT_COUNTERS
236 #include <sys/device.h>
237
238 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
239 NULL, "tcp", "output big header");
240 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
241 NULL, "tcp", "output copy small");
242 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
243 NULL, "tcp", "output copy big");
244 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
245 NULL, "tcp", "output reference big");
246 #endif /* TCP_OUTPUT_COUNTERS */
247
248 #ifdef TCP_REASS_COUNTERS
249 #include <sys/device.h>
250
251 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
252 NULL, "tcp_reass", "calls");
253 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
254 &tcp_reass_, "tcp_reass", "insert into empty queue");
255 struct evcnt tcp_reass_iteration[8] = {
256 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
257 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
258 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
259 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
260 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
261 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
262 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
263 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
264 };
265 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266 &tcp_reass_, "tcp_reass", "prepend to first");
267 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268 &tcp_reass_, "tcp_reass", "prepend");
269 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
270 &tcp_reass_, "tcp_reass", "insert");
271 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
272 &tcp_reass_, "tcp_reass", "insert at tail");
273 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
274 &tcp_reass_, "tcp_reass", "append");
275 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
276 &tcp_reass_, "tcp_reass", "append to tail fragment");
277 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
278 &tcp_reass_, "tcp_reass", "overlap at end");
279 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
280 &tcp_reass_, "tcp_reass", "overlap at start");
281 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282 &tcp_reass_, "tcp_reass", "duplicate segment");
283 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284 &tcp_reass_, "tcp_reass", "duplicate fragment");
285
286 #endif /* TCP_REASS_COUNTERS */
287
288 #ifdef MBUFTRACE
289 struct mowner tcp_mowner = { "tcp" };
290 struct mowner tcp_rx_mowner = { "tcp", "rx" };
291 struct mowner tcp_tx_mowner = { "tcp", "tx" };
292 #endif
293
294 /*
295 * Tcp initialization
296 */
297 void
298 tcp_init()
299 {
300 int hlen;
301
302 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
303 NULL);
304 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
305 #ifdef INET6
306 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
307 #endif
308
309 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
310 #ifdef INET6
311 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
312 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
313 #endif
314 if (max_protohdr < hlen)
315 max_protohdr = hlen;
316 if (max_linkhdr + hlen > MHLEN)
317 panic("tcp_init");
318
319 #ifdef INET
320 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
321 #endif
322 #ifdef INET6
323 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
324 #endif
325
326 /* Initialize timer state. */
327 tcp_timer_init();
328
329 /* Initialize the compressed state engine. */
330 syn_cache_init();
331
332 #ifdef TCP_CSUM_COUNTERS
333 evcnt_attach_static(&tcp_hwcsum_bad);
334 evcnt_attach_static(&tcp_hwcsum_ok);
335 evcnt_attach_static(&tcp_hwcsum_data);
336 evcnt_attach_static(&tcp_swcsum);
337 #endif /* TCP_CSUM_COUNTERS */
338
339 #ifdef TCP_OUTPUT_COUNTERS
340 evcnt_attach_static(&tcp_output_bigheader);
341 evcnt_attach_static(&tcp_output_copysmall);
342 evcnt_attach_static(&tcp_output_copybig);
343 evcnt_attach_static(&tcp_output_refbig);
344 #endif /* TCP_OUTPUT_COUNTERS */
345
346 #ifdef TCP_REASS_COUNTERS
347 evcnt_attach_static(&tcp_reass_);
348 evcnt_attach_static(&tcp_reass_empty);
349 evcnt_attach_static(&tcp_reass_iteration[0]);
350 evcnt_attach_static(&tcp_reass_iteration[1]);
351 evcnt_attach_static(&tcp_reass_iteration[2]);
352 evcnt_attach_static(&tcp_reass_iteration[3]);
353 evcnt_attach_static(&tcp_reass_iteration[4]);
354 evcnt_attach_static(&tcp_reass_iteration[5]);
355 evcnt_attach_static(&tcp_reass_iteration[6]);
356 evcnt_attach_static(&tcp_reass_iteration[7]);
357 evcnt_attach_static(&tcp_reass_prependfirst);
358 evcnt_attach_static(&tcp_reass_prepend);
359 evcnt_attach_static(&tcp_reass_insert);
360 evcnt_attach_static(&tcp_reass_inserttail);
361 evcnt_attach_static(&tcp_reass_append);
362 evcnt_attach_static(&tcp_reass_appendtail);
363 evcnt_attach_static(&tcp_reass_overlaptail);
364 evcnt_attach_static(&tcp_reass_overlapfront);
365 evcnt_attach_static(&tcp_reass_segdup);
366 evcnt_attach_static(&tcp_reass_fragdup);
367 #endif /* TCP_REASS_COUNTERS */
368
369 MOWNER_ATTACH(&tcp_tx_mowner);
370 MOWNER_ATTACH(&tcp_rx_mowner);
371 MOWNER_ATTACH(&tcp_mowner);
372 }
373
374 /*
375 * Create template to be used to send tcp packets on a connection.
376 * Call after host entry created, allocates an mbuf and fills
377 * in a skeletal tcp/ip header, minimizing the amount of work
378 * necessary when the connection is used.
379 */
380 struct mbuf *
381 tcp_template(tp)
382 struct tcpcb *tp;
383 {
384 struct inpcb *inp = tp->t_inpcb;
385 #ifdef INET6
386 struct in6pcb *in6p = tp->t_in6pcb;
387 #endif
388 struct tcphdr *n;
389 struct mbuf *m;
390 int hlen;
391
392 switch (tp->t_family) {
393 case AF_INET:
394 hlen = sizeof(struct ip);
395 if (inp)
396 break;
397 #ifdef INET6
398 if (in6p) {
399 /* mapped addr case */
400 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
401 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
402 break;
403 }
404 #endif
405 return NULL; /*EINVAL*/
406 #ifdef INET6
407 case AF_INET6:
408 hlen = sizeof(struct ip6_hdr);
409 if (in6p) {
410 /* more sainty check? */
411 break;
412 }
413 return NULL; /*EINVAL*/
414 #endif
415 default:
416 hlen = 0; /*pacify gcc*/
417 return NULL; /*EAFNOSUPPORT*/
418 }
419 #ifdef DIAGNOSTIC
420 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
421 panic("mclbytes too small for t_template");
422 #endif
423 m = tp->t_template;
424 if (m && m->m_len == hlen + sizeof(struct tcphdr))
425 ;
426 else {
427 if (m)
428 m_freem(m);
429 m = tp->t_template = NULL;
430 MGETHDR(m, M_DONTWAIT, MT_HEADER);
431 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
432 MCLGET(m, M_DONTWAIT);
433 if ((m->m_flags & M_EXT) == 0) {
434 m_free(m);
435 m = NULL;
436 }
437 }
438 if (m == NULL)
439 return NULL;
440 MCLAIM(m, &tcp_mowner);
441 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
442 }
443
444 bzero(mtod(m, caddr_t), m->m_len);
445
446 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
447
448 switch (tp->t_family) {
449 case AF_INET:
450 {
451 struct ipovly *ipov;
452 mtod(m, struct ip *)->ip_v = 4;
453 ipov = mtod(m, struct ipovly *);
454 ipov->ih_pr = IPPROTO_TCP;
455 ipov->ih_len = htons(sizeof(struct tcphdr));
456 if (inp) {
457 ipov->ih_src = inp->inp_laddr;
458 ipov->ih_dst = inp->inp_faddr;
459 }
460 #ifdef INET6
461 else if (in6p) {
462 /* mapped addr case */
463 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
464 sizeof(ipov->ih_src));
465 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
466 sizeof(ipov->ih_dst));
467 }
468 #endif
469 /*
470 * Compute the pseudo-header portion of the checksum
471 * now. We incrementally add in the TCP option and
472 * payload lengths later, and then compute the TCP
473 * checksum right before the packet is sent off onto
474 * the wire.
475 */
476 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
477 ipov->ih_dst.s_addr,
478 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
479 break;
480 }
481 #ifdef INET6
482 case AF_INET6:
483 {
484 struct ip6_hdr *ip6;
485 mtod(m, struct ip *)->ip_v = 6;
486 ip6 = mtod(m, struct ip6_hdr *);
487 ip6->ip6_nxt = IPPROTO_TCP;
488 ip6->ip6_plen = htons(sizeof(struct tcphdr));
489 ip6->ip6_src = in6p->in6p_laddr;
490 ip6->ip6_dst = in6p->in6p_faddr;
491 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
492 if (ip6_auto_flowlabel) {
493 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
494 ip6->ip6_flow |=
495 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
496 }
497 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
498 ip6->ip6_vfc |= IPV6_VERSION;
499
500 /*
501 * Compute the pseudo-header portion of the checksum
502 * now. We incrementally add in the TCP option and
503 * payload lengths later, and then compute the TCP
504 * checksum right before the packet is sent off onto
505 * the wire.
506 */
507 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
508 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
509 htonl(IPPROTO_TCP));
510 break;
511 }
512 #endif
513 }
514 if (inp) {
515 n->th_sport = inp->inp_lport;
516 n->th_dport = inp->inp_fport;
517 }
518 #ifdef INET6
519 else if (in6p) {
520 n->th_sport = in6p->in6p_lport;
521 n->th_dport = in6p->in6p_fport;
522 }
523 #endif
524 n->th_seq = 0;
525 n->th_ack = 0;
526 n->th_x2 = 0;
527 n->th_off = 5;
528 n->th_flags = 0;
529 n->th_win = 0;
530 n->th_urp = 0;
531 return (m);
532 }
533
534 /*
535 * Send a single message to the TCP at address specified by
536 * the given TCP/IP header. If m == 0, then we make a copy
537 * of the tcpiphdr at ti and send directly to the addressed host.
538 * This is used to force keep alive messages out using the TCP
539 * template for a connection tp->t_template. If flags are given
540 * then we send a message back to the TCP which originated the
541 * segment ti, and discard the mbuf containing it and any other
542 * attached mbufs.
543 *
544 * In any case the ack and sequence number of the transmitted
545 * segment are as specified by the parameters.
546 */
547 int
548 tcp_respond(tp, template, m, th0, ack, seq, flags)
549 struct tcpcb *tp;
550 struct mbuf *template;
551 struct mbuf *m;
552 struct tcphdr *th0;
553 tcp_seq ack, seq;
554 int flags;
555 {
556 struct route *ro;
557 int error, tlen, win = 0;
558 int hlen;
559 struct ip *ip;
560 #ifdef INET6
561 struct ip6_hdr *ip6;
562 #endif
563 int family; /* family on packet, not inpcb/in6pcb! */
564 struct tcphdr *th;
565
566 if (tp != NULL && (flags & TH_RST) == 0) {
567 #ifdef DIAGNOSTIC
568 if (tp->t_inpcb && tp->t_in6pcb)
569 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
570 #endif
571 #ifdef INET
572 if (tp->t_inpcb)
573 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
574 #endif
575 #ifdef INET6
576 if (tp->t_in6pcb)
577 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
578 #endif
579 }
580
581 th = NULL; /* Quell uninitialized warning */
582 ip = NULL;
583 #ifdef INET6
584 ip6 = NULL;
585 #endif
586 if (m == 0) {
587 if (!template)
588 return EINVAL;
589
590 /* get family information from template */
591 switch (mtod(template, struct ip *)->ip_v) {
592 case 4:
593 family = AF_INET;
594 hlen = sizeof(struct ip);
595 break;
596 #ifdef INET6
597 case 6:
598 family = AF_INET6;
599 hlen = sizeof(struct ip6_hdr);
600 break;
601 #endif
602 default:
603 return EAFNOSUPPORT;
604 }
605
606 MGETHDR(m, M_DONTWAIT, MT_HEADER);
607 if (m) {
608 MCLAIM(m, &tcp_tx_mowner);
609 MCLGET(m, M_DONTWAIT);
610 if ((m->m_flags & M_EXT) == 0) {
611 m_free(m);
612 m = NULL;
613 }
614 }
615 if (m == NULL)
616 return (ENOBUFS);
617
618 if (tcp_compat_42)
619 tlen = 1;
620 else
621 tlen = 0;
622
623 m->m_data += max_linkhdr;
624 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
625 template->m_len);
626 switch (family) {
627 case AF_INET:
628 ip = mtod(m, struct ip *);
629 th = (struct tcphdr *)(ip + 1);
630 break;
631 #ifdef INET6
632 case AF_INET6:
633 ip6 = mtod(m, struct ip6_hdr *);
634 th = (struct tcphdr *)(ip6 + 1);
635 break;
636 #endif
637 #if 0
638 default:
639 /* noone will visit here */
640 m_freem(m);
641 return EAFNOSUPPORT;
642 #endif
643 }
644 flags = TH_ACK;
645 } else {
646
647 if ((m->m_flags & M_PKTHDR) == 0) {
648 #if 0
649 printf("non PKTHDR to tcp_respond\n");
650 #endif
651 m_freem(m);
652 return EINVAL;
653 }
654 #ifdef DIAGNOSTIC
655 if (!th0)
656 panic("th0 == NULL in tcp_respond");
657 #endif
658
659 /* get family information from m */
660 switch (mtod(m, struct ip *)->ip_v) {
661 case 4:
662 family = AF_INET;
663 hlen = sizeof(struct ip);
664 ip = mtod(m, struct ip *);
665 break;
666 #ifdef INET6
667 case 6:
668 family = AF_INET6;
669 hlen = sizeof(struct ip6_hdr);
670 ip6 = mtod(m, struct ip6_hdr *);
671 break;
672 #endif
673 default:
674 m_freem(m);
675 return EAFNOSUPPORT;
676 }
677 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
678 tlen = sizeof(*th0);
679 else
680 tlen = th0->th_off << 2;
681
682 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
683 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
684 m->m_len = hlen + tlen;
685 m_freem(m->m_next);
686 m->m_next = NULL;
687 } else {
688 struct mbuf *n;
689
690 #ifdef DIAGNOSTIC
691 if (max_linkhdr + hlen + tlen > MCLBYTES) {
692 m_freem(m);
693 return EMSGSIZE;
694 }
695 #endif
696 MGETHDR(n, M_DONTWAIT, MT_HEADER);
697 if (n && max_linkhdr + hlen + tlen > MHLEN) {
698 MCLGET(n, M_DONTWAIT);
699 if ((n->m_flags & M_EXT) == 0) {
700 m_freem(n);
701 n = NULL;
702 }
703 }
704 if (!n) {
705 m_freem(m);
706 return ENOBUFS;
707 }
708
709 MCLAIM(n, &tcp_tx_mowner);
710 n->m_data += max_linkhdr;
711 n->m_len = hlen + tlen;
712 m_copyback(n, 0, hlen, mtod(m, caddr_t));
713 m_copyback(n, hlen, tlen, (caddr_t)th0);
714
715 m_freem(m);
716 m = n;
717 n = NULL;
718 }
719
720 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
721 switch (family) {
722 case AF_INET:
723 ip = mtod(m, struct ip *);
724 th = (struct tcphdr *)(ip + 1);
725 ip->ip_p = IPPROTO_TCP;
726 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
727 ip->ip_p = IPPROTO_TCP;
728 break;
729 #ifdef INET6
730 case AF_INET6:
731 ip6 = mtod(m, struct ip6_hdr *);
732 th = (struct tcphdr *)(ip6 + 1);
733 ip6->ip6_nxt = IPPROTO_TCP;
734 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
735 ip6->ip6_nxt = IPPROTO_TCP;
736 break;
737 #endif
738 #if 0
739 default:
740 /* noone will visit here */
741 m_freem(m);
742 return EAFNOSUPPORT;
743 #endif
744 }
745 xchg(th->th_dport, th->th_sport, u_int16_t);
746 #undef xchg
747 tlen = 0; /*be friendly with the following code*/
748 }
749 th->th_seq = htonl(seq);
750 th->th_ack = htonl(ack);
751 th->th_x2 = 0;
752 if ((flags & TH_SYN) == 0) {
753 if (tp)
754 win >>= tp->rcv_scale;
755 if (win > TCP_MAXWIN)
756 win = TCP_MAXWIN;
757 th->th_win = htons((u_int16_t)win);
758 th->th_off = sizeof (struct tcphdr) >> 2;
759 tlen += sizeof(*th);
760 } else
761 tlen += th->th_off << 2;
762 m->m_len = hlen + tlen;
763 m->m_pkthdr.len = hlen + tlen;
764 m->m_pkthdr.rcvif = (struct ifnet *) 0;
765 th->th_flags = flags;
766 th->th_urp = 0;
767
768 switch (family) {
769 #ifdef INET
770 case AF_INET:
771 {
772 struct ipovly *ipov = (struct ipovly *)ip;
773 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
774 ipov->ih_len = htons((u_int16_t)tlen);
775
776 th->th_sum = 0;
777 th->th_sum = in_cksum(m, hlen + tlen);
778 ip->ip_len = htons(hlen + tlen);
779 ip->ip_ttl = ip_defttl;
780 break;
781 }
782 #endif
783 #ifdef INET6
784 case AF_INET6:
785 {
786 th->th_sum = 0;
787 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
788 tlen);
789 ip6->ip6_plen = ntohs(tlen);
790 if (tp && tp->t_in6pcb) {
791 struct ifnet *oifp;
792 ro = (struct route *)&tp->t_in6pcb->in6p_route;
793 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
794 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
795 } else
796 ip6->ip6_hlim = ip6_defhlim;
797 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
798 if (ip6_auto_flowlabel) {
799 ip6->ip6_flow |=
800 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
801 }
802 break;
803 }
804 #endif
805 }
806
807 #ifdef IPSEC
808 (void)ipsec_setsocket(m, NULL);
809 #endif /*IPSEC*/
810
811 if (tp != NULL && tp->t_inpcb != NULL) {
812 ro = &tp->t_inpcb->inp_route;
813 #ifdef IPSEC
814 if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
815 m_freem(m);
816 return ENOBUFS;
817 }
818 #endif
819 #ifdef DIAGNOSTIC
820 if (family != AF_INET)
821 panic("tcp_respond: address family mismatch");
822 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
823 panic("tcp_respond: ip_dst %x != inp_faddr %x",
824 ntohl(ip->ip_dst.s_addr),
825 ntohl(tp->t_inpcb->inp_faddr.s_addr));
826 }
827 #endif
828 }
829 #ifdef INET6
830 else if (tp != NULL && tp->t_in6pcb != NULL) {
831 ro = (struct route *)&tp->t_in6pcb->in6p_route;
832 #ifdef IPSEC
833 if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
834 m_freem(m);
835 return ENOBUFS;
836 }
837 #endif
838 #ifdef DIAGNOSTIC
839 if (family == AF_INET) {
840 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
841 panic("tcp_respond: not mapped addr");
842 if (bcmp(&ip->ip_dst,
843 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
844 sizeof(ip->ip_dst)) != 0) {
845 panic("tcp_respond: ip_dst != in6p_faddr");
846 }
847 } else if (family == AF_INET6) {
848 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
849 &tp->t_in6pcb->in6p_faddr))
850 panic("tcp_respond: ip6_dst != in6p_faddr");
851 } else
852 panic("tcp_respond: address family mismatch");
853 #endif
854 }
855 #endif
856 else
857 ro = NULL;
858
859 switch (family) {
860 #ifdef INET
861 case AF_INET:
862 error = ip_output(m, NULL, ro,
863 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
864 NULL);
865 break;
866 #endif
867 #ifdef INET6
868 case AF_INET6:
869 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
870 NULL);
871 break;
872 #endif
873 default:
874 error = EAFNOSUPPORT;
875 break;
876 }
877
878 return (error);
879 }
880
881 /*
882 * Create a new TCP control block, making an
883 * empty reassembly queue and hooking it to the argument
884 * protocol control block.
885 */
886 struct tcpcb *
887 tcp_newtcpcb(family, aux)
888 int family; /* selects inpcb, or in6pcb */
889 void *aux;
890 {
891 struct tcpcb *tp;
892 int i;
893
894 switch (family) {
895 case PF_INET:
896 break;
897 #ifdef INET6
898 case PF_INET6:
899 break;
900 #endif
901 default:
902 return NULL;
903 }
904
905 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
906 if (tp == NULL)
907 return (NULL);
908 bzero((caddr_t)tp, sizeof(struct tcpcb));
909 TAILQ_INIT(&tp->segq);
910 TAILQ_INIT(&tp->timeq);
911 tp->t_family = family; /* may be overridden later on */
912 tp->t_peermss = tcp_mssdflt;
913 tp->t_ourmss = tcp_mssdflt;
914 tp->t_segsz = tcp_mssdflt;
915 LIST_INIT(&tp->t_sc);
916
917 callout_init(&tp->t_delack_ch);
918 for (i = 0; i < TCPT_NTIMERS; i++)
919 TCP_TIMER_INIT(tp, i);
920
921 tp->t_flags = 0;
922 if (tcp_do_rfc1323 && tcp_do_win_scale)
923 tp->t_flags |= TF_REQ_SCALE;
924 if (tcp_do_rfc1323 && tcp_do_timestamps)
925 tp->t_flags |= TF_REQ_TSTMP;
926 if (tcp_do_sack == 2)
927 tp->t_flags |= TF_WILL_SACK;
928 else if (tcp_do_sack == 1)
929 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
930 tp->t_flags |= TF_CANT_TXSACK;
931 switch (family) {
932 case PF_INET:
933 tp->t_inpcb = (struct inpcb *)aux;
934 tp->t_mtudisc = ip_mtudisc;
935 break;
936 #ifdef INET6
937 case PF_INET6:
938 tp->t_in6pcb = (struct in6pcb *)aux;
939 /* for IPv6, always try to run path MTU discovery */
940 tp->t_mtudisc = 1;
941 break;
942 #endif
943 }
944 /*
945 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
946 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
947 * reasonable initial retransmit time.
948 */
949 tp->t_srtt = TCPTV_SRTTBASE;
950 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
951 tp->t_rttmin = TCPTV_MIN;
952 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
953 TCPTV_MIN, TCPTV_REXMTMAX);
954 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
955 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
956 if (family == AF_INET) {
957 struct inpcb *inp = (struct inpcb *)aux;
958 inp->inp_ip.ip_ttl = ip_defttl;
959 inp->inp_ppcb = (caddr_t)tp;
960 }
961 #ifdef INET6
962 else if (family == AF_INET6) {
963 struct in6pcb *in6p = (struct in6pcb *)aux;
964 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
965 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
966 : NULL);
967 in6p->in6p_ppcb = (caddr_t)tp;
968 }
969 #endif
970
971 /*
972 * Initialize our timebase. When we send timestamps, we take
973 * the delta from tcp_now -- this means each connection always
974 * gets a timebase of 0, which makes it, among other things,
975 * more difficult to determine how long a system has been up,
976 * and thus how many TCP sequence increments have occurred.
977 */
978 tp->ts_timebase = tcp_now;
979
980 return (tp);
981 }
982
983 /*
984 * Drop a TCP connection, reporting
985 * the specified error. If connection is synchronized,
986 * then send a RST to peer.
987 */
988 struct tcpcb *
989 tcp_drop(tp, errno)
990 struct tcpcb *tp;
991 int errno;
992 {
993 struct socket *so = NULL;
994
995 #ifdef DIAGNOSTIC
996 if (tp->t_inpcb && tp->t_in6pcb)
997 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
998 #endif
999 #ifdef INET
1000 if (tp->t_inpcb)
1001 so = tp->t_inpcb->inp_socket;
1002 #endif
1003 #ifdef INET6
1004 if (tp->t_in6pcb)
1005 so = tp->t_in6pcb->in6p_socket;
1006 #endif
1007 if (!so)
1008 return NULL;
1009
1010 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1011 tp->t_state = TCPS_CLOSED;
1012 (void) tcp_output(tp);
1013 tcpstat.tcps_drops++;
1014 } else
1015 tcpstat.tcps_conndrops++;
1016 if (errno == ETIMEDOUT && tp->t_softerror)
1017 errno = tp->t_softerror;
1018 so->so_error = errno;
1019 return (tcp_close(tp));
1020 }
1021
1022 /*
1023 * Close a TCP control block:
1024 * discard all space held by the tcp
1025 * discard internet protocol block
1026 * wake up any sleepers
1027 */
1028 struct tcpcb *
1029 tcp_close(tp)
1030 struct tcpcb *tp;
1031 {
1032 struct inpcb *inp;
1033 #ifdef INET6
1034 struct in6pcb *in6p;
1035 #endif
1036 struct socket *so;
1037 #ifdef RTV_RTT
1038 struct rtentry *rt;
1039 #endif
1040 struct route *ro;
1041
1042 inp = tp->t_inpcb;
1043 #ifdef INET6
1044 in6p = tp->t_in6pcb;
1045 #endif
1046 so = NULL;
1047 ro = NULL;
1048 if (inp) {
1049 so = inp->inp_socket;
1050 ro = &inp->inp_route;
1051 }
1052 #ifdef INET6
1053 else if (in6p) {
1054 so = in6p->in6p_socket;
1055 ro = (struct route *)&in6p->in6p_route;
1056 }
1057 #endif
1058
1059 #ifdef RTV_RTT
1060 /*
1061 * If we sent enough data to get some meaningful characteristics,
1062 * save them in the routing entry. 'Enough' is arbitrarily
1063 * defined as the sendpipesize (default 4K) * 16. This would
1064 * give us 16 rtt samples assuming we only get one sample per
1065 * window (the usual case on a long haul net). 16 samples is
1066 * enough for the srtt filter to converge to within 5% of the correct
1067 * value; fewer samples and we could save a very bogus rtt.
1068 *
1069 * Don't update the default route's characteristics and don't
1070 * update anything that the user "locked".
1071 */
1072 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1073 ro && (rt = ro->ro_rt) &&
1074 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1075 u_long i = 0;
1076
1077 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1078 i = tp->t_srtt *
1079 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1080 if (rt->rt_rmx.rmx_rtt && i)
1081 /*
1082 * filter this update to half the old & half
1083 * the new values, converting scale.
1084 * See route.h and tcp_var.h for a
1085 * description of the scaling constants.
1086 */
1087 rt->rt_rmx.rmx_rtt =
1088 (rt->rt_rmx.rmx_rtt + i) / 2;
1089 else
1090 rt->rt_rmx.rmx_rtt = i;
1091 }
1092 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1093 i = tp->t_rttvar *
1094 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1095 if (rt->rt_rmx.rmx_rttvar && i)
1096 rt->rt_rmx.rmx_rttvar =
1097 (rt->rt_rmx.rmx_rttvar + i) / 2;
1098 else
1099 rt->rt_rmx.rmx_rttvar = i;
1100 }
1101 /*
1102 * update the pipelimit (ssthresh) if it has been updated
1103 * already or if a pipesize was specified & the threshhold
1104 * got below half the pipesize. I.e., wait for bad news
1105 * before we start updating, then update on both good
1106 * and bad news.
1107 */
1108 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1109 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1110 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1111 /*
1112 * convert the limit from user data bytes to
1113 * packets then to packet data bytes.
1114 */
1115 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1116 if (i < 2)
1117 i = 2;
1118 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1119 if (rt->rt_rmx.rmx_ssthresh)
1120 rt->rt_rmx.rmx_ssthresh =
1121 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1122 else
1123 rt->rt_rmx.rmx_ssthresh = i;
1124 }
1125 }
1126 #endif /* RTV_RTT */
1127 /* free the reassembly queue, if any */
1128 TCP_REASS_LOCK(tp);
1129 (void) tcp_freeq(tp);
1130 TCP_REASS_UNLOCK(tp);
1131
1132 tcp_canceltimers(tp);
1133 TCP_CLEAR_DELACK(tp);
1134 syn_cache_cleanup(tp);
1135
1136 if (tp->t_template) {
1137 m_free(tp->t_template);
1138 tp->t_template = NULL;
1139 }
1140 pool_put(&tcpcb_pool, tp);
1141 if (inp) {
1142 inp->inp_ppcb = 0;
1143 soisdisconnected(so);
1144 in_pcbdetach(inp);
1145 }
1146 #ifdef INET6
1147 else if (in6p) {
1148 in6p->in6p_ppcb = 0;
1149 soisdisconnected(so);
1150 in6_pcbdetach(in6p);
1151 }
1152 #endif
1153 tcpstat.tcps_closed++;
1154 return ((struct tcpcb *)0);
1155 }
1156
1157 int
1158 tcp_freeq(tp)
1159 struct tcpcb *tp;
1160 {
1161 struct ipqent *qe;
1162 int rv = 0;
1163 #ifdef TCPREASS_DEBUG
1164 int i = 0;
1165 #endif
1166
1167 TCP_REASS_LOCK_CHECK(tp);
1168
1169 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1170 #ifdef TCPREASS_DEBUG
1171 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1172 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1173 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1174 #endif
1175 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1176 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1177 m_freem(qe->ipqe_m);
1178 pool_put(&ipqent_pool, qe);
1179 rv = 1;
1180 }
1181 return (rv);
1182 }
1183
1184 /*
1185 * Protocol drain routine. Called when memory is in short supply.
1186 */
1187 void
1188 tcp_drain()
1189 {
1190 struct inpcb *inp;
1191 struct tcpcb *tp;
1192
1193 /*
1194 * Free the sequence queue of all TCP connections.
1195 */
1196 inp = CIRCLEQ_FIRST(&tcbtable.inpt_queue);
1197 if (inp) /* XXX */
1198 CIRCLEQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue) {
1199 if ((tp = intotcpcb(inp)) != NULL) {
1200 /*
1201 * We may be called from a device's interrupt
1202 * context. If the tcpcb is already busy,
1203 * just bail out now.
1204 */
1205 if (tcp_reass_lock_try(tp) == 0)
1206 continue;
1207 if (tcp_freeq(tp))
1208 tcpstat.tcps_connsdrained++;
1209 TCP_REASS_UNLOCK(tp);
1210 }
1211 }
1212 }
1213
1214 #ifdef INET6
1215 void
1216 tcp6_drain()
1217 {
1218 struct in6pcb *in6p;
1219 struct tcpcb *tp;
1220 struct in6pcb *head = &tcb6;
1221
1222 /*
1223 * Free the sequence queue of all TCP connections.
1224 */
1225 for (in6p = head->in6p_next; in6p != head; in6p = in6p->in6p_next) {
1226 if ((tp = in6totcpcb(in6p)) != NULL) {
1227 /*
1228 * We may be called from a device's interrupt
1229 * context. If the tcpcb is already busy,
1230 * just bail out now.
1231 */
1232 if (tcp_reass_lock_try(tp) == 0)
1233 continue;
1234 if (tcp_freeq(tp))
1235 tcpstat.tcps_connsdrained++;
1236 TCP_REASS_UNLOCK(tp);
1237 }
1238 }
1239 }
1240 #endif
1241
1242 /*
1243 * Notify a tcp user of an asynchronous error;
1244 * store error as soft error, but wake up user
1245 * (for now, won't do anything until can select for soft error).
1246 */
1247 void
1248 tcp_notify(inp, error)
1249 struct inpcb *inp;
1250 int error;
1251 {
1252 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1253 struct socket *so = inp->inp_socket;
1254
1255 /*
1256 * Ignore some errors if we are hooked up.
1257 * If connection hasn't completed, has retransmitted several times,
1258 * and receives a second error, give up now. This is better
1259 * than waiting a long time to establish a connection that
1260 * can never complete.
1261 */
1262 if (tp->t_state == TCPS_ESTABLISHED &&
1263 (error == EHOSTUNREACH || error == ENETUNREACH ||
1264 error == EHOSTDOWN)) {
1265 return;
1266 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1267 tp->t_rxtshift > 3 && tp->t_softerror)
1268 so->so_error = error;
1269 else
1270 tp->t_softerror = error;
1271 wakeup((caddr_t) &so->so_timeo);
1272 sorwakeup(so);
1273 sowwakeup(so);
1274 }
1275
1276 #ifdef INET6
1277 void
1278 tcp6_notify(in6p, error)
1279 struct in6pcb *in6p;
1280 int error;
1281 {
1282 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1283 struct socket *so = in6p->in6p_socket;
1284
1285 /*
1286 * Ignore some errors if we are hooked up.
1287 * If connection hasn't completed, has retransmitted several times,
1288 * and receives a second error, give up now. This is better
1289 * than waiting a long time to establish a connection that
1290 * can never complete.
1291 */
1292 if (tp->t_state == TCPS_ESTABLISHED &&
1293 (error == EHOSTUNREACH || error == ENETUNREACH ||
1294 error == EHOSTDOWN)) {
1295 return;
1296 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1297 tp->t_rxtshift > 3 && tp->t_softerror)
1298 so->so_error = error;
1299 else
1300 tp->t_softerror = error;
1301 wakeup((caddr_t) &so->so_timeo);
1302 sorwakeup(so);
1303 sowwakeup(so);
1304 }
1305 #endif
1306
1307 #ifdef INET6
1308 void
1309 tcp6_ctlinput(cmd, sa, d)
1310 int cmd;
1311 struct sockaddr *sa;
1312 void *d;
1313 {
1314 struct tcphdr th;
1315 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1316 int nmatch;
1317 struct ip6_hdr *ip6;
1318 const struct sockaddr_in6 *sa6_src = NULL;
1319 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1320 struct mbuf *m;
1321 int off;
1322
1323 if (sa->sa_family != AF_INET6 ||
1324 sa->sa_len != sizeof(struct sockaddr_in6))
1325 return;
1326 if ((unsigned)cmd >= PRC_NCMDS)
1327 return;
1328 else if (cmd == PRC_QUENCH) {
1329 /* XXX there's no PRC_QUENCH in IPv6 */
1330 notify = tcp6_quench;
1331 } else if (PRC_IS_REDIRECT(cmd))
1332 notify = in6_rtchange, d = NULL;
1333 else if (cmd == PRC_MSGSIZE)
1334 ; /* special code is present, see below */
1335 else if (cmd == PRC_HOSTDEAD)
1336 d = NULL;
1337 else if (inet6ctlerrmap[cmd] == 0)
1338 return;
1339
1340 /* if the parameter is from icmp6, decode it. */
1341 if (d != NULL) {
1342 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1343 m = ip6cp->ip6c_m;
1344 ip6 = ip6cp->ip6c_ip6;
1345 off = ip6cp->ip6c_off;
1346 sa6_src = ip6cp->ip6c_src;
1347 } else {
1348 m = NULL;
1349 ip6 = NULL;
1350 sa6_src = &sa6_any;
1351 }
1352
1353 if (ip6) {
1354 /*
1355 * XXX: We assume that when ip6 is non NULL,
1356 * M and OFF are valid.
1357 */
1358
1359 /* check if we can safely examine src and dst ports */
1360 if (m->m_pkthdr.len < off + sizeof(th)) {
1361 if (cmd == PRC_MSGSIZE)
1362 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1363 return;
1364 }
1365
1366 bzero(&th, sizeof(th));
1367 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1368
1369 if (cmd == PRC_MSGSIZE) {
1370 int valid = 0;
1371
1372 /*
1373 * Check to see if we have a valid TCP connection
1374 * corresponding to the address in the ICMPv6 message
1375 * payload.
1376 */
1377 if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
1378 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1379 th.th_sport, 0))
1380 valid++;
1381
1382 /*
1383 * Depending on the value of "valid" and routing table
1384 * size (mtudisc_{hi,lo}wat), we will:
1385 * - recalcurate the new MTU and create the
1386 * corresponding routing entry, or
1387 * - ignore the MTU change notification.
1388 */
1389 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1390
1391 /*
1392 * no need to call in6_pcbnotify, it should have been
1393 * called via callback if necessary
1394 */
1395 return;
1396 }
1397
1398 nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
1399 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1400 if (nmatch == 0 && syn_cache_count &&
1401 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1402 inet6ctlerrmap[cmd] == ENETUNREACH ||
1403 inet6ctlerrmap[cmd] == EHOSTDOWN))
1404 syn_cache_unreach((struct sockaddr *)sa6_src,
1405 sa, &th);
1406 } else {
1407 (void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
1408 0, cmd, NULL, notify);
1409 }
1410 }
1411 #endif
1412
1413 #ifdef INET
1414 /* assumes that ip header and tcp header are contiguous on mbuf */
1415 void *
1416 tcp_ctlinput(cmd, sa, v)
1417 int cmd;
1418 struct sockaddr *sa;
1419 void *v;
1420 {
1421 struct ip *ip = v;
1422 struct tcphdr *th;
1423 struct icmp *icp;
1424 extern const int inetctlerrmap[];
1425 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1426 int errno;
1427 int nmatch;
1428 #ifdef INET6
1429 struct in6_addr src6, dst6;
1430 #endif
1431
1432 if (sa->sa_family != AF_INET ||
1433 sa->sa_len != sizeof(struct sockaddr_in))
1434 return NULL;
1435 if ((unsigned)cmd >= PRC_NCMDS)
1436 return NULL;
1437 errno = inetctlerrmap[cmd];
1438 if (cmd == PRC_QUENCH)
1439 notify = tcp_quench;
1440 else if (PRC_IS_REDIRECT(cmd))
1441 notify = in_rtchange, ip = 0;
1442 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1443 /*
1444 * Check to see if we have a valid TCP connection
1445 * corresponding to the address in the ICMP message
1446 * payload.
1447 *
1448 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1449 */
1450 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1451 #ifdef INET6
1452 memset(&src6, 0, sizeof(src6));
1453 memset(&dst6, 0, sizeof(dst6));
1454 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1455 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1456 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1457 #endif
1458 if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
1459 ip->ip_src, th->th_sport) != NULL)
1460 ;
1461 #ifdef INET6
1462 else if (in6_pcblookup_connect(&tcb6, &dst6,
1463 th->th_dport, &src6, th->th_sport, 0) != NULL)
1464 ;
1465 #endif
1466 else
1467 return NULL;
1468
1469 /*
1470 * Now that we've validated that we are actually communicating
1471 * with the host indicated in the ICMP message, locate the
1472 * ICMP header, recalculate the new MTU, and create the
1473 * corresponding routing entry.
1474 */
1475 icp = (struct icmp *)((caddr_t)ip -
1476 offsetof(struct icmp, icmp_ip));
1477 icmp_mtudisc(icp, ip->ip_dst);
1478
1479 return NULL;
1480 } else if (cmd == PRC_HOSTDEAD)
1481 ip = 0;
1482 else if (errno == 0)
1483 return NULL;
1484 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1485 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1486 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1487 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1488 if (nmatch == 0 && syn_cache_count &&
1489 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1490 inetctlerrmap[cmd] == ENETUNREACH ||
1491 inetctlerrmap[cmd] == EHOSTDOWN)) {
1492 struct sockaddr_in sin;
1493 bzero(&sin, sizeof(sin));
1494 sin.sin_len = sizeof(sin);
1495 sin.sin_family = AF_INET;
1496 sin.sin_port = th->th_sport;
1497 sin.sin_addr = ip->ip_src;
1498 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1499 }
1500
1501 /* XXX mapped address case */
1502 } else
1503 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1504 notify);
1505 return NULL;
1506 }
1507
1508 /*
1509 * When a source quence is received, we are being notifed of congestion.
1510 * Close the congestion window down to the Loss Window (one segment).
1511 * We will gradually open it again as we proceed.
1512 */
1513 void
1514 tcp_quench(inp, errno)
1515 struct inpcb *inp;
1516 int errno;
1517 {
1518 struct tcpcb *tp = intotcpcb(inp);
1519
1520 if (tp)
1521 tp->snd_cwnd = tp->t_segsz;
1522 }
1523 #endif
1524
1525 #ifdef INET6
1526 void
1527 tcp6_quench(in6p, errno)
1528 struct in6pcb *in6p;
1529 int errno;
1530 {
1531 struct tcpcb *tp = in6totcpcb(in6p);
1532
1533 if (tp)
1534 tp->snd_cwnd = tp->t_segsz;
1535 }
1536 #endif
1537
1538 #ifdef INET
1539 /*
1540 * Path MTU Discovery handlers.
1541 */
1542 void
1543 tcp_mtudisc_callback(faddr)
1544 struct in_addr faddr;
1545 {
1546 #ifdef INET6
1547 struct in6_addr in6;
1548 #endif
1549
1550 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1551 #ifdef INET6
1552 memset(&in6, 0, sizeof(in6));
1553 in6.s6_addr16[5] = 0xffff;
1554 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1555 tcp6_mtudisc_callback(&in6);
1556 #endif
1557 }
1558
1559 /*
1560 * On receipt of path MTU corrections, flush old route and replace it
1561 * with the new one. Retransmit all unacknowledged packets, to ensure
1562 * that all packets will be received.
1563 */
1564 void
1565 tcp_mtudisc(inp, errno)
1566 struct inpcb *inp;
1567 int errno;
1568 {
1569 struct tcpcb *tp = intotcpcb(inp);
1570 struct rtentry *rt = in_pcbrtentry(inp);
1571
1572 if (tp != 0) {
1573 if (rt != 0) {
1574 /*
1575 * If this was not a host route, remove and realloc.
1576 */
1577 if ((rt->rt_flags & RTF_HOST) == 0) {
1578 in_rtchange(inp, errno);
1579 if ((rt = in_pcbrtentry(inp)) == 0)
1580 return;
1581 }
1582
1583 /*
1584 * Slow start out of the error condition. We
1585 * use the MTU because we know it's smaller
1586 * than the previously transmitted segment.
1587 *
1588 * Note: This is more conservative than the
1589 * suggestion in draft-floyd-incr-init-win-03.
1590 */
1591 if (rt->rt_rmx.rmx_mtu != 0)
1592 tp->snd_cwnd =
1593 TCP_INITIAL_WINDOW(tcp_init_win,
1594 rt->rt_rmx.rmx_mtu);
1595 }
1596
1597 /*
1598 * Resend unacknowledged packets.
1599 */
1600 tp->snd_nxt = tp->snd_una;
1601 tcp_output(tp);
1602 }
1603 }
1604 #endif
1605
1606 #ifdef INET6
1607 /*
1608 * Path MTU Discovery handlers.
1609 */
1610 void
1611 tcp6_mtudisc_callback(faddr)
1612 struct in6_addr *faddr;
1613 {
1614 struct sockaddr_in6 sin6;
1615
1616 bzero(&sin6, sizeof(sin6));
1617 sin6.sin6_family = AF_INET6;
1618 sin6.sin6_len = sizeof(struct sockaddr_in6);
1619 sin6.sin6_addr = *faddr;
1620 (void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
1621 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1622 }
1623
1624 void
1625 tcp6_mtudisc(in6p, errno)
1626 struct in6pcb *in6p;
1627 int errno;
1628 {
1629 struct tcpcb *tp = in6totcpcb(in6p);
1630 struct rtentry *rt = in6_pcbrtentry(in6p);
1631
1632 if (tp != 0) {
1633 if (rt != 0) {
1634 /*
1635 * If this was not a host route, remove and realloc.
1636 */
1637 if ((rt->rt_flags & RTF_HOST) == 0) {
1638 in6_rtchange(in6p, errno);
1639 if ((rt = in6_pcbrtentry(in6p)) == 0)
1640 return;
1641 }
1642
1643 /*
1644 * Slow start out of the error condition. We
1645 * use the MTU because we know it's smaller
1646 * than the previously transmitted segment.
1647 *
1648 * Note: This is more conservative than the
1649 * suggestion in draft-floyd-incr-init-win-03.
1650 */
1651 if (rt->rt_rmx.rmx_mtu != 0)
1652 tp->snd_cwnd =
1653 TCP_INITIAL_WINDOW(tcp_init_win,
1654 rt->rt_rmx.rmx_mtu);
1655 }
1656
1657 /*
1658 * Resend unacknowledged packets.
1659 */
1660 tp->snd_nxt = tp->snd_una;
1661 tcp_output(tp);
1662 }
1663 }
1664 #endif /* INET6 */
1665
1666 /*
1667 * Compute the MSS to advertise to the peer. Called only during
1668 * the 3-way handshake. If we are the server (peer initiated
1669 * connection), we are called with a pointer to the interface
1670 * on which the SYN packet arrived. If we are the client (we
1671 * initiated connection), we are called with a pointer to the
1672 * interface out which this connection should go.
1673 *
1674 * NOTE: Do not subtract IP option/extension header size nor IPsec
1675 * header size from MSS advertisement. MSS option must hold the maximum
1676 * segment size we can accept, so it must always be:
1677 * max(if mtu) - ip header - tcp header
1678 */
1679 u_long
1680 tcp_mss_to_advertise(ifp, af)
1681 const struct ifnet *ifp;
1682 int af;
1683 {
1684 extern u_long in_maxmtu;
1685 u_long mss = 0;
1686 u_long hdrsiz;
1687
1688 /*
1689 * In order to avoid defeating path MTU discovery on the peer,
1690 * we advertise the max MTU of all attached networks as our MSS,
1691 * per RFC 1191, section 3.1.
1692 *
1693 * We provide the option to advertise just the MTU of
1694 * the interface on which we hope this connection will
1695 * be receiving. If we are responding to a SYN, we
1696 * will have a pretty good idea about this, but when
1697 * initiating a connection there is a bit more doubt.
1698 *
1699 * We also need to ensure that loopback has a large enough
1700 * MSS, as the loopback MTU is never included in in_maxmtu.
1701 */
1702
1703 if (ifp != NULL)
1704 switch (af) {
1705 case AF_INET:
1706 mss = ifp->if_mtu;
1707 break;
1708 #ifdef INET6
1709 case AF_INET6:
1710 mss = IN6_LINKMTU(ifp);
1711 break;
1712 #endif
1713 }
1714
1715 if (tcp_mss_ifmtu == 0)
1716 switch (af) {
1717 case AF_INET:
1718 mss = max(in_maxmtu, mss);
1719 break;
1720 #ifdef INET6
1721 case AF_INET6:
1722 mss = max(in6_maxmtu, mss);
1723 break;
1724 #endif
1725 }
1726
1727 switch (af) {
1728 case AF_INET:
1729 hdrsiz = sizeof(struct ip);
1730 break;
1731 #ifdef INET6
1732 case AF_INET6:
1733 hdrsiz = sizeof(struct ip6_hdr);
1734 break;
1735 #endif
1736 default:
1737 hdrsiz = 0;
1738 break;
1739 }
1740 hdrsiz += sizeof(struct tcphdr);
1741 if (mss > hdrsiz)
1742 mss -= hdrsiz;
1743
1744 mss = max(tcp_mssdflt, mss);
1745 return (mss);
1746 }
1747
1748 /*
1749 * Set connection variables based on the peer's advertised MSS.
1750 * We are passed the TCPCB for the actual connection. If we
1751 * are the server, we are called by the compressed state engine
1752 * when the 3-way handshake is complete. If we are the client,
1753 * we are called when we receive the SYN,ACK from the server.
1754 *
1755 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1756 * before this routine is called!
1757 */
1758 void
1759 tcp_mss_from_peer(tp, offer)
1760 struct tcpcb *tp;
1761 int offer;
1762 {
1763 struct socket *so;
1764 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1765 struct rtentry *rt;
1766 #endif
1767 u_long bufsize;
1768 int mss;
1769
1770 #ifdef DIAGNOSTIC
1771 if (tp->t_inpcb && tp->t_in6pcb)
1772 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1773 #endif
1774 so = NULL;
1775 rt = NULL;
1776 #ifdef INET
1777 if (tp->t_inpcb) {
1778 so = tp->t_inpcb->inp_socket;
1779 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1780 rt = in_pcbrtentry(tp->t_inpcb);
1781 #endif
1782 }
1783 #endif
1784 #ifdef INET6
1785 if (tp->t_in6pcb) {
1786 so = tp->t_in6pcb->in6p_socket;
1787 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1788 rt = in6_pcbrtentry(tp->t_in6pcb);
1789 #endif
1790 }
1791 #endif
1792
1793 /*
1794 * As per RFC1122, use the default MSS value, unless they
1795 * sent us an offer. Do not accept offers less than 32 bytes.
1796 */
1797 mss = tcp_mssdflt;
1798 if (offer)
1799 mss = offer;
1800 mss = max(mss, 32); /* sanity */
1801 tp->t_peermss = mss;
1802 mss -= tcp_optlen(tp);
1803 #ifdef INET
1804 if (tp->t_inpcb)
1805 mss -= ip_optlen(tp->t_inpcb);
1806 #endif
1807 #ifdef INET6
1808 if (tp->t_in6pcb)
1809 mss -= ip6_optlen(tp->t_in6pcb);
1810 #endif
1811
1812 /*
1813 * If there's a pipesize, change the socket buffer to that size.
1814 * Make the socket buffer an integral number of MSS units. If
1815 * the MSS is larger than the socket buffer, artificially decrease
1816 * the MSS.
1817 */
1818 #ifdef RTV_SPIPE
1819 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1820 bufsize = rt->rt_rmx.rmx_sendpipe;
1821 else
1822 #endif
1823 bufsize = so->so_snd.sb_hiwat;
1824 if (bufsize < mss)
1825 mss = bufsize;
1826 else {
1827 bufsize = roundup(bufsize, mss);
1828 if (bufsize > sb_max)
1829 bufsize = sb_max;
1830 (void) sbreserve(&so->so_snd, bufsize);
1831 }
1832 tp->t_segsz = mss;
1833
1834 #ifdef RTV_SSTHRESH
1835 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1836 /*
1837 * There's some sort of gateway or interface buffer
1838 * limit on the path. Use this to set the slow
1839 * start threshold, but set the threshold to no less
1840 * than 2 * MSS.
1841 */
1842 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1843 }
1844 #endif
1845 }
1846
1847 /*
1848 * Processing necessary when a TCP connection is established.
1849 */
1850 void
1851 tcp_established(tp)
1852 struct tcpcb *tp;
1853 {
1854 struct socket *so;
1855 #ifdef RTV_RPIPE
1856 struct rtentry *rt;
1857 #endif
1858 u_long bufsize;
1859
1860 #ifdef DIAGNOSTIC
1861 if (tp->t_inpcb && tp->t_in6pcb)
1862 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1863 #endif
1864 so = NULL;
1865 rt = NULL;
1866 #ifdef INET
1867 if (tp->t_inpcb) {
1868 so = tp->t_inpcb->inp_socket;
1869 #if defined(RTV_RPIPE)
1870 rt = in_pcbrtentry(tp->t_inpcb);
1871 #endif
1872 }
1873 #endif
1874 #ifdef INET6
1875 if (tp->t_in6pcb) {
1876 so = tp->t_in6pcb->in6p_socket;
1877 #if defined(RTV_RPIPE)
1878 rt = in6_pcbrtentry(tp->t_in6pcb);
1879 #endif
1880 }
1881 #endif
1882
1883 tp->t_state = TCPS_ESTABLISHED;
1884 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1885
1886 #ifdef RTV_RPIPE
1887 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1888 bufsize = rt->rt_rmx.rmx_recvpipe;
1889 else
1890 #endif
1891 bufsize = so->so_rcv.sb_hiwat;
1892 if (bufsize > tp->t_ourmss) {
1893 bufsize = roundup(bufsize, tp->t_ourmss);
1894 if (bufsize > sb_max)
1895 bufsize = sb_max;
1896 (void) sbreserve(&so->so_rcv, bufsize);
1897 }
1898 }
1899
1900 /*
1901 * Check if there's an initial rtt or rttvar. Convert from the
1902 * route-table units to scaled multiples of the slow timeout timer.
1903 * Called only during the 3-way handshake.
1904 */
1905 void
1906 tcp_rmx_rtt(tp)
1907 struct tcpcb *tp;
1908 {
1909 #ifdef RTV_RTT
1910 struct rtentry *rt = NULL;
1911 int rtt;
1912
1913 #ifdef DIAGNOSTIC
1914 if (tp->t_inpcb && tp->t_in6pcb)
1915 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1916 #endif
1917 #ifdef INET
1918 if (tp->t_inpcb)
1919 rt = in_pcbrtentry(tp->t_inpcb);
1920 #endif
1921 #ifdef INET6
1922 if (tp->t_in6pcb)
1923 rt = in6_pcbrtentry(tp->t_in6pcb);
1924 #endif
1925 if (rt == NULL)
1926 return;
1927
1928 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1929 /*
1930 * XXX The lock bit for MTU indicates that the value
1931 * is also a minimum value; this is subject to time.
1932 */
1933 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1934 TCPT_RANGESET(tp->t_rttmin,
1935 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1936 TCPTV_MIN, TCPTV_REXMTMAX);
1937 tp->t_srtt = rtt /
1938 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1939 if (rt->rt_rmx.rmx_rttvar) {
1940 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1941 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1942 (TCP_RTTVAR_SHIFT + 2));
1943 } else {
1944 /* Default variation is +- 1 rtt */
1945 tp->t_rttvar =
1946 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1947 }
1948 TCPT_RANGESET(tp->t_rxtcur,
1949 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1950 tp->t_rttmin, TCPTV_REXMTMAX);
1951 }
1952 #endif
1953 }
1954
1955 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1956 #if NRND > 0
1957 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
1958 #endif
1959
1960 /*
1961 * Get a new sequence value given a tcp control block
1962 */
1963 tcp_seq
1964 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
1965 {
1966
1967 #ifdef INET
1968 if (tp->t_inpcb != NULL) {
1969 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
1970 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
1971 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
1972 addin));
1973 }
1974 #endif
1975 #ifdef INET6
1976 if (tp->t_in6pcb != NULL) {
1977 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
1978 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
1979 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
1980 addin));
1981 }
1982 #endif
1983 /* Not possible. */
1984 panic("tcp_new_iss");
1985 }
1986
1987 /*
1988 * This routine actually generates a new TCP initial sequence number.
1989 */
1990 tcp_seq
1991 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
1992 size_t addrsz, tcp_seq addin)
1993 {
1994 tcp_seq tcp_iss;
1995
1996 #if NRND > 0
1997 static int beenhere;
1998
1999 /*
2000 * If we haven't been here before, initialize our cryptographic
2001 * hash secret.
2002 */
2003 if (beenhere == 0) {
2004 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2005 RND_EXTRACT_ANY);
2006 beenhere = 1;
2007 }
2008
2009 if (tcp_do_rfc1948) {
2010 MD5_CTX ctx;
2011 u_int8_t hash[16]; /* XXX MD5 knowledge */
2012
2013 /*
2014 * Compute the base value of the ISS. It is a hash
2015 * of (saddr, sport, daddr, dport, secret).
2016 */
2017 MD5Init(&ctx);
2018
2019 MD5Update(&ctx, (u_char *) laddr, addrsz);
2020 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2021
2022 MD5Update(&ctx, (u_char *) faddr, addrsz);
2023 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2024
2025 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2026
2027 MD5Final(hash, &ctx);
2028
2029 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2030
2031 /*
2032 * Now increment our "timer", and add it in to
2033 * the computed value.
2034 *
2035 * XXX Use `addin'?
2036 * XXX TCP_ISSINCR too large to use?
2037 */
2038 tcp_iss_seq += TCP_ISSINCR;
2039 #ifdef TCPISS_DEBUG
2040 printf("ISS hash 0x%08x, ", tcp_iss);
2041 #endif
2042 tcp_iss += tcp_iss_seq + addin;
2043 #ifdef TCPISS_DEBUG
2044 printf("new ISS 0x%08x\n", tcp_iss);
2045 #endif
2046 } else
2047 #endif /* NRND > 0 */
2048 {
2049 /*
2050 * Randomize.
2051 */
2052 #if NRND > 0
2053 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2054 #else
2055 tcp_iss = arc4random();
2056 #endif
2057
2058 /*
2059 * If we were asked to add some amount to a known value,
2060 * we will take a random value obtained above, mask off
2061 * the upper bits, and add in the known value. We also
2062 * add in a constant to ensure that we are at least a
2063 * certain distance from the original value.
2064 *
2065 * This is used when an old connection is in timed wait
2066 * and we have a new one coming in, for instance.
2067 */
2068 if (addin != 0) {
2069 #ifdef TCPISS_DEBUG
2070 printf("Random %08x, ", tcp_iss);
2071 #endif
2072 tcp_iss &= TCP_ISS_RANDOM_MASK;
2073 tcp_iss += addin + TCP_ISSINCR;
2074 #ifdef TCPISS_DEBUG
2075 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2076 #endif
2077 } else {
2078 tcp_iss &= TCP_ISS_RANDOM_MASK;
2079 tcp_iss += tcp_iss_seq;
2080 tcp_iss_seq += TCP_ISSINCR;
2081 #ifdef TCPISS_DEBUG
2082 printf("ISS %08x\n", tcp_iss);
2083 #endif
2084 }
2085 }
2086
2087 if (tcp_compat_42) {
2088 /*
2089 * Limit it to the positive range for really old TCP
2090 * implementations.
2091 * Just AND off the top bit instead of checking if
2092 * is set first - saves a branch 50% of the time.
2093 */
2094 tcp_iss &= 0x7fffffff; /* XXX */
2095 }
2096
2097 return (tcp_iss);
2098 }
2099
2100 #ifdef IPSEC
2101 /* compute ESP/AH header size for TCP, including outer IP header. */
2102 size_t
2103 ipsec4_hdrsiz_tcp(tp)
2104 struct tcpcb *tp;
2105 {
2106 struct inpcb *inp;
2107 size_t hdrsiz;
2108
2109 /* XXX mapped addr case (tp->t_in6pcb) */
2110 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2111 return 0;
2112 switch (tp->t_family) {
2113 case AF_INET:
2114 /* XXX: should use currect direction. */
2115 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2116 break;
2117 default:
2118 hdrsiz = 0;
2119 break;
2120 }
2121
2122 return hdrsiz;
2123 }
2124
2125 #ifdef INET6
2126 size_t
2127 ipsec6_hdrsiz_tcp(tp)
2128 struct tcpcb *tp;
2129 {
2130 struct in6pcb *in6p;
2131 size_t hdrsiz;
2132
2133 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2134 return 0;
2135 switch (tp->t_family) {
2136 case AF_INET6:
2137 /* XXX: should use currect direction. */
2138 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2139 break;
2140 case AF_INET:
2141 /* mapped address case - tricky */
2142 default:
2143 hdrsiz = 0;
2144 break;
2145 }
2146
2147 return hdrsiz;
2148 }
2149 #endif
2150 #endif /*IPSEC*/
2151
2152 /*
2153 * Determine the length of the TCP options for this connection.
2154 *
2155 * XXX: What do we do for SACK, when we add that? Just reserve
2156 * all of the space? Otherwise we can't exactly be incrementing
2157 * cwnd by an amount that varies depending on the amount we last
2158 * had to SACK!
2159 */
2160
2161 u_int
2162 tcp_optlen(tp)
2163 struct tcpcb *tp;
2164 {
2165 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2166 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2167 return TCPOLEN_TSTAMP_APPA;
2168 else
2169 return 0;
2170 }
2171