tcp_subr.c revision 1.139 1 /* $NetBSD: tcp_subr.c,v 1.139 2003/03/01 04:40:28 thorpej Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
102 */
103
104 #include <sys/cdefs.h>
105 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.139 2003/03/01 04:40:28 thorpej Exp $");
106
107 #include "opt_inet.h"
108 #include "opt_ipsec.h"
109 #include "opt_tcp_compat_42.h"
110 #include "opt_inet_csum.h"
111 #include "rnd.h"
112
113 #include <sys/param.h>
114 #include <sys/proc.h>
115 #include <sys/systm.h>
116 #include <sys/malloc.h>
117 #include <sys/mbuf.h>
118 #include <sys/socket.h>
119 #include <sys/socketvar.h>
120 #include <sys/protosw.h>
121 #include <sys/errno.h>
122 #include <sys/kernel.h>
123 #include <sys/pool.h>
124 #if NRND > 0
125 #include <sys/md5.h>
126 #include <sys/rnd.h>
127 #endif
128
129 #include <net/route.h>
130 #include <net/if.h>
131
132 #include <netinet/in.h>
133 #include <netinet/in_systm.h>
134 #include <netinet/ip.h>
135 #include <netinet/in_pcb.h>
136 #include <netinet/ip_var.h>
137 #include <netinet/ip_icmp.h>
138
139 #ifdef INET6
140 #ifndef INET
141 #include <netinet/in.h>
142 #endif
143 #include <netinet/ip6.h>
144 #include <netinet6/in6_pcb.h>
145 #include <netinet6/ip6_var.h>
146 #include <netinet6/in6_var.h>
147 #include <netinet6/ip6protosw.h>
148 #include <netinet/icmp6.h>
149 #include <netinet6/nd6.h>
150 #endif
151
152 #include <netinet/tcp.h>
153 #include <netinet/tcp_fsm.h>
154 #include <netinet/tcp_seq.h>
155 #include <netinet/tcp_timer.h>
156 #include <netinet/tcp_var.h>
157 #include <netinet/tcpip.h>
158
159 #ifdef IPSEC
160 #include <netinet6/ipsec.h>
161 #endif /*IPSEC*/
162
163 #ifdef INET6
164 struct in6pcb tcb6;
165 #endif
166
167 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
168 struct tcpstat tcpstat; /* tcp statistics */
169 u_int32_t tcp_now; /* for RFC 1323 timestamps */
170
171 /* patchable/settable parameters for tcp */
172 int tcp_mssdflt = TCP_MSS;
173 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
174 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
175 #if NRND > 0
176 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
177 #endif
178 int tcp_do_sack = 1; /* selective acknowledgement */
179 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
180 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
181 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
182 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
183 int tcp_init_win = 1; /* initial slow start window */
184 int tcp_init_win_local = 4; /* initial slow start window for local nets */
185 int tcp_mss_ifmtu = 0;
186 #ifdef TCP_COMPAT_42
187 int tcp_compat_42 = 1;
188 #else
189 int tcp_compat_42 = 0;
190 #endif
191 int tcp_rst_ppslim = 100; /* 100pps */
192
193 /* tcb hash */
194 #ifndef TCBHASHSIZE
195 #define TCBHASHSIZE 128
196 #endif
197 int tcbhashsize = TCBHASHSIZE;
198
199 /* syn hash parameters */
200 #define TCP_SYN_HASH_SIZE 293
201 #define TCP_SYN_BUCKET_SIZE 35
202 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
203 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
204 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
205 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
206
207 int tcp_freeq __P((struct tcpcb *));
208
209 #ifdef INET
210 void tcp_mtudisc_callback __P((struct in_addr));
211 #endif
212 #ifdef INET6
213 void tcp6_mtudisc_callback __P((struct in6_addr *));
214 #endif
215
216 void tcp_mtudisc __P((struct inpcb *, int));
217 #ifdef INET6
218 void tcp6_mtudisc __P((struct in6pcb *, int));
219 #endif
220
221 struct pool tcpcb_pool;
222
223 #ifdef TCP_CSUM_COUNTERS
224 #include <sys/device.h>
225
226 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
227 NULL, "tcp", "hwcsum bad");
228 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
229 NULL, "tcp", "hwcsum ok");
230 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
231 NULL, "tcp", "hwcsum data");
232 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
233 NULL, "tcp", "swcsum");
234 #endif /* TCP_CSUM_COUNTERS */
235
236 #ifdef TCP_OUTPUT_COUNTERS
237 #include <sys/device.h>
238
239 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
240 NULL, "tcp", "output big header");
241 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
242 NULL, "tcp", "output copy small");
243 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
244 NULL, "tcp", "output copy big");
245 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
246 NULL, "tcp", "output reference big");
247 #endif /* TCP_OUTPUT_COUNTERS */
248
249 #ifdef TCP_REASS_COUNTERS
250 #include <sys/device.h>
251
252 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
253 NULL, "tcp_reass", "calls");
254 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
255 &tcp_reass_, "tcp_reass", "insert into empty queue");
256 struct evcnt tcp_reass_iteration[8] = {
257 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
258 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
259 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
260 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
261 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
262 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
263 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
264 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
265 };
266 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
267 &tcp_reass_, "tcp_reass", "prepend to first");
268 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
269 &tcp_reass_, "tcp_reass", "prepend");
270 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
271 &tcp_reass_, "tcp_reass", "insert");
272 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
273 &tcp_reass_, "tcp_reass", "insert at tail");
274 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
275 &tcp_reass_, "tcp_reass", "append");
276 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
277 &tcp_reass_, "tcp_reass", "append to tail fragment");
278 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
279 &tcp_reass_, "tcp_reass", "overlap at end");
280 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
281 &tcp_reass_, "tcp_reass", "overlap at start");
282 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
283 &tcp_reass_, "tcp_reass", "duplicate segment");
284 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
285 &tcp_reass_, "tcp_reass", "duplicate fragment");
286
287 #endif /* TCP_REASS_COUNTERS */
288
289 #ifdef MBUFTRACE
290 struct mowner tcp_mowner = { "tcp" };
291 struct mowner tcp_rx_mowner = { "tcp", "rx" };
292 struct mowner tcp_tx_mowner = { "tcp", "tx" };
293 #endif
294
295 /*
296 * Tcp initialization
297 */
298 void
299 tcp_init()
300 {
301 int hlen;
302
303 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
304 NULL);
305 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
306 #ifdef INET6
307 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
308 #endif
309
310 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
311 #ifdef INET6
312 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
313 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
314 #endif
315 if (max_protohdr < hlen)
316 max_protohdr = hlen;
317 if (max_linkhdr + hlen > MHLEN)
318 panic("tcp_init");
319
320 #ifdef INET
321 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
322 #endif
323 #ifdef INET6
324 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
325 #endif
326
327 /* Initialize timer state. */
328 tcp_timer_init();
329
330 /* Initialize the compressed state engine. */
331 syn_cache_init();
332
333 #ifdef TCP_CSUM_COUNTERS
334 evcnt_attach_static(&tcp_hwcsum_bad);
335 evcnt_attach_static(&tcp_hwcsum_ok);
336 evcnt_attach_static(&tcp_hwcsum_data);
337 evcnt_attach_static(&tcp_swcsum);
338 #endif /* TCP_CSUM_COUNTERS */
339
340 #ifdef TCP_OUTPUT_COUNTERS
341 evcnt_attach_static(&tcp_output_bigheader);
342 evcnt_attach_static(&tcp_output_copysmall);
343 evcnt_attach_static(&tcp_output_copybig);
344 evcnt_attach_static(&tcp_output_refbig);
345 #endif /* TCP_OUTPUT_COUNTERS */
346
347 #ifdef TCP_REASS_COUNTERS
348 evcnt_attach_static(&tcp_reass_);
349 evcnt_attach_static(&tcp_reass_empty);
350 evcnt_attach_static(&tcp_reass_iteration[0]);
351 evcnt_attach_static(&tcp_reass_iteration[1]);
352 evcnt_attach_static(&tcp_reass_iteration[2]);
353 evcnt_attach_static(&tcp_reass_iteration[3]);
354 evcnt_attach_static(&tcp_reass_iteration[4]);
355 evcnt_attach_static(&tcp_reass_iteration[5]);
356 evcnt_attach_static(&tcp_reass_iteration[6]);
357 evcnt_attach_static(&tcp_reass_iteration[7]);
358 evcnt_attach_static(&tcp_reass_prependfirst);
359 evcnt_attach_static(&tcp_reass_prepend);
360 evcnt_attach_static(&tcp_reass_insert);
361 evcnt_attach_static(&tcp_reass_inserttail);
362 evcnt_attach_static(&tcp_reass_append);
363 evcnt_attach_static(&tcp_reass_appendtail);
364 evcnt_attach_static(&tcp_reass_overlaptail);
365 evcnt_attach_static(&tcp_reass_overlapfront);
366 evcnt_attach_static(&tcp_reass_segdup);
367 evcnt_attach_static(&tcp_reass_fragdup);
368 #endif /* TCP_REASS_COUNTERS */
369
370 MOWNER_ATTACH(&tcp_tx_mowner);
371 MOWNER_ATTACH(&tcp_rx_mowner);
372 MOWNER_ATTACH(&tcp_mowner);
373 }
374
375 /*
376 * Create template to be used to send tcp packets on a connection.
377 * Call after host entry created, allocates an mbuf and fills
378 * in a skeletal tcp/ip header, minimizing the amount of work
379 * necessary when the connection is used.
380 */
381 struct mbuf *
382 tcp_template(tp)
383 struct tcpcb *tp;
384 {
385 struct inpcb *inp = tp->t_inpcb;
386 #ifdef INET6
387 struct in6pcb *in6p = tp->t_in6pcb;
388 #endif
389 struct tcphdr *n;
390 struct mbuf *m;
391 int hlen;
392
393 switch (tp->t_family) {
394 case AF_INET:
395 hlen = sizeof(struct ip);
396 if (inp)
397 break;
398 #ifdef INET6
399 if (in6p) {
400 /* mapped addr case */
401 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
402 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
403 break;
404 }
405 #endif
406 return NULL; /*EINVAL*/
407 #ifdef INET6
408 case AF_INET6:
409 hlen = sizeof(struct ip6_hdr);
410 if (in6p) {
411 /* more sainty check? */
412 break;
413 }
414 return NULL; /*EINVAL*/
415 #endif
416 default:
417 hlen = 0; /*pacify gcc*/
418 return NULL; /*EAFNOSUPPORT*/
419 }
420 #ifdef DIAGNOSTIC
421 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
422 panic("mclbytes too small for t_template");
423 #endif
424 m = tp->t_template;
425 if (m && m->m_len == hlen + sizeof(struct tcphdr))
426 ;
427 else {
428 if (m)
429 m_freem(m);
430 m = tp->t_template = NULL;
431 MGETHDR(m, M_DONTWAIT, MT_HEADER);
432 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
433 MCLGET(m, M_DONTWAIT);
434 if ((m->m_flags & M_EXT) == 0) {
435 m_free(m);
436 m = NULL;
437 }
438 }
439 if (m == NULL)
440 return NULL;
441 MCLAIM(m, &tcp_mowner);
442 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
443 }
444
445 bzero(mtod(m, caddr_t), m->m_len);
446
447 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
448
449 switch (tp->t_family) {
450 case AF_INET:
451 {
452 struct ipovly *ipov;
453 mtod(m, struct ip *)->ip_v = 4;
454 ipov = mtod(m, struct ipovly *);
455 ipov->ih_pr = IPPROTO_TCP;
456 ipov->ih_len = htons(sizeof(struct tcphdr));
457 if (inp) {
458 ipov->ih_src = inp->inp_laddr;
459 ipov->ih_dst = inp->inp_faddr;
460 }
461 #ifdef INET6
462 else if (in6p) {
463 /* mapped addr case */
464 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
465 sizeof(ipov->ih_src));
466 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
467 sizeof(ipov->ih_dst));
468 }
469 #endif
470 /*
471 * Compute the pseudo-header portion of the checksum
472 * now. We incrementally add in the TCP option and
473 * payload lengths later, and then compute the TCP
474 * checksum right before the packet is sent off onto
475 * the wire.
476 */
477 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
478 ipov->ih_dst.s_addr,
479 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
480 break;
481 }
482 #ifdef INET6
483 case AF_INET6:
484 {
485 struct ip6_hdr *ip6;
486 mtod(m, struct ip *)->ip_v = 6;
487 ip6 = mtod(m, struct ip6_hdr *);
488 ip6->ip6_nxt = IPPROTO_TCP;
489 ip6->ip6_plen = htons(sizeof(struct tcphdr));
490 ip6->ip6_src = in6p->in6p_laddr;
491 ip6->ip6_dst = in6p->in6p_faddr;
492 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
493 if (ip6_auto_flowlabel) {
494 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
495 ip6->ip6_flow |=
496 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
497 }
498 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
499 ip6->ip6_vfc |= IPV6_VERSION;
500
501 /*
502 * Compute the pseudo-header portion of the checksum
503 * now. We incrementally add in the TCP option and
504 * payload lengths later, and then compute the TCP
505 * checksum right before the packet is sent off onto
506 * the wire.
507 */
508 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
509 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
510 htonl(IPPROTO_TCP));
511 break;
512 }
513 #endif
514 }
515 if (inp) {
516 n->th_sport = inp->inp_lport;
517 n->th_dport = inp->inp_fport;
518 }
519 #ifdef INET6
520 else if (in6p) {
521 n->th_sport = in6p->in6p_lport;
522 n->th_dport = in6p->in6p_fport;
523 }
524 #endif
525 n->th_seq = 0;
526 n->th_ack = 0;
527 n->th_x2 = 0;
528 n->th_off = 5;
529 n->th_flags = 0;
530 n->th_win = 0;
531 n->th_urp = 0;
532 return (m);
533 }
534
535 /*
536 * Send a single message to the TCP at address specified by
537 * the given TCP/IP header. If m == 0, then we make a copy
538 * of the tcpiphdr at ti and send directly to the addressed host.
539 * This is used to force keep alive messages out using the TCP
540 * template for a connection tp->t_template. If flags are given
541 * then we send a message back to the TCP which originated the
542 * segment ti, and discard the mbuf containing it and any other
543 * attached mbufs.
544 *
545 * In any case the ack and sequence number of the transmitted
546 * segment are as specified by the parameters.
547 */
548 int
549 tcp_respond(tp, template, m, th0, ack, seq, flags)
550 struct tcpcb *tp;
551 struct mbuf *template;
552 struct mbuf *m;
553 struct tcphdr *th0;
554 tcp_seq ack, seq;
555 int flags;
556 {
557 struct route *ro;
558 int error, tlen, win = 0;
559 int hlen;
560 struct ip *ip;
561 #ifdef INET6
562 struct ip6_hdr *ip6;
563 #endif
564 int family; /* family on packet, not inpcb/in6pcb! */
565 struct tcphdr *th;
566
567 if (tp != NULL && (flags & TH_RST) == 0) {
568 #ifdef DIAGNOSTIC
569 if (tp->t_inpcb && tp->t_in6pcb)
570 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
571 #endif
572 #ifdef INET
573 if (tp->t_inpcb)
574 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
575 #endif
576 #ifdef INET6
577 if (tp->t_in6pcb)
578 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
579 #endif
580 }
581
582 th = NULL; /* Quell uninitialized warning */
583 ip = NULL;
584 #ifdef INET6
585 ip6 = NULL;
586 #endif
587 if (m == 0) {
588 if (!template)
589 return EINVAL;
590
591 /* get family information from template */
592 switch (mtod(template, struct ip *)->ip_v) {
593 case 4:
594 family = AF_INET;
595 hlen = sizeof(struct ip);
596 break;
597 #ifdef INET6
598 case 6:
599 family = AF_INET6;
600 hlen = sizeof(struct ip6_hdr);
601 break;
602 #endif
603 default:
604 return EAFNOSUPPORT;
605 }
606
607 MGETHDR(m, M_DONTWAIT, MT_HEADER);
608 if (m) {
609 MCLAIM(m, &tcp_tx_mowner);
610 MCLGET(m, M_DONTWAIT);
611 if ((m->m_flags & M_EXT) == 0) {
612 m_free(m);
613 m = NULL;
614 }
615 }
616 if (m == NULL)
617 return (ENOBUFS);
618
619 if (tcp_compat_42)
620 tlen = 1;
621 else
622 tlen = 0;
623
624 m->m_data += max_linkhdr;
625 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
626 template->m_len);
627 switch (family) {
628 case AF_INET:
629 ip = mtod(m, struct ip *);
630 th = (struct tcphdr *)(ip + 1);
631 break;
632 #ifdef INET6
633 case AF_INET6:
634 ip6 = mtod(m, struct ip6_hdr *);
635 th = (struct tcphdr *)(ip6 + 1);
636 break;
637 #endif
638 #if 0
639 default:
640 /* noone will visit here */
641 m_freem(m);
642 return EAFNOSUPPORT;
643 #endif
644 }
645 flags = TH_ACK;
646 } else {
647
648 if ((m->m_flags & M_PKTHDR) == 0) {
649 #if 0
650 printf("non PKTHDR to tcp_respond\n");
651 #endif
652 m_freem(m);
653 return EINVAL;
654 }
655 #ifdef DIAGNOSTIC
656 if (!th0)
657 panic("th0 == NULL in tcp_respond");
658 #endif
659
660 /* get family information from m */
661 switch (mtod(m, struct ip *)->ip_v) {
662 case 4:
663 family = AF_INET;
664 hlen = sizeof(struct ip);
665 ip = mtod(m, struct ip *);
666 break;
667 #ifdef INET6
668 case 6:
669 family = AF_INET6;
670 hlen = sizeof(struct ip6_hdr);
671 ip6 = mtod(m, struct ip6_hdr *);
672 break;
673 #endif
674 default:
675 m_freem(m);
676 return EAFNOSUPPORT;
677 }
678 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
679 tlen = sizeof(*th0);
680 else
681 tlen = th0->th_off << 2;
682
683 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
684 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
685 m->m_len = hlen + tlen;
686 m_freem(m->m_next);
687 m->m_next = NULL;
688 } else {
689 struct mbuf *n;
690
691 #ifdef DIAGNOSTIC
692 if (max_linkhdr + hlen + tlen > MCLBYTES) {
693 m_freem(m);
694 return EMSGSIZE;
695 }
696 #endif
697 MGETHDR(n, M_DONTWAIT, MT_HEADER);
698 if (n && max_linkhdr + hlen + tlen > MHLEN) {
699 MCLGET(n, M_DONTWAIT);
700 if ((n->m_flags & M_EXT) == 0) {
701 m_freem(n);
702 n = NULL;
703 }
704 }
705 if (!n) {
706 m_freem(m);
707 return ENOBUFS;
708 }
709
710 MCLAIM(n, &tcp_tx_mowner);
711 n->m_data += max_linkhdr;
712 n->m_len = hlen + tlen;
713 m_copyback(n, 0, hlen, mtod(m, caddr_t));
714 m_copyback(n, hlen, tlen, (caddr_t)th0);
715
716 m_freem(m);
717 m = n;
718 n = NULL;
719 }
720
721 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
722 switch (family) {
723 case AF_INET:
724 ip = mtod(m, struct ip *);
725 th = (struct tcphdr *)(ip + 1);
726 ip->ip_p = IPPROTO_TCP;
727 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
728 ip->ip_p = IPPROTO_TCP;
729 break;
730 #ifdef INET6
731 case AF_INET6:
732 ip6 = mtod(m, struct ip6_hdr *);
733 th = (struct tcphdr *)(ip6 + 1);
734 ip6->ip6_nxt = IPPROTO_TCP;
735 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
736 ip6->ip6_nxt = IPPROTO_TCP;
737 break;
738 #endif
739 #if 0
740 default:
741 /* noone will visit here */
742 m_freem(m);
743 return EAFNOSUPPORT;
744 #endif
745 }
746 xchg(th->th_dport, th->th_sport, u_int16_t);
747 #undef xchg
748 tlen = 0; /*be friendly with the following code*/
749 }
750 th->th_seq = htonl(seq);
751 th->th_ack = htonl(ack);
752 th->th_x2 = 0;
753 if ((flags & TH_SYN) == 0) {
754 if (tp)
755 win >>= tp->rcv_scale;
756 if (win > TCP_MAXWIN)
757 win = TCP_MAXWIN;
758 th->th_win = htons((u_int16_t)win);
759 th->th_off = sizeof (struct tcphdr) >> 2;
760 tlen += sizeof(*th);
761 } else
762 tlen += th->th_off << 2;
763 m->m_len = hlen + tlen;
764 m->m_pkthdr.len = hlen + tlen;
765 m->m_pkthdr.rcvif = (struct ifnet *) 0;
766 th->th_flags = flags;
767 th->th_urp = 0;
768
769 switch (family) {
770 #ifdef INET
771 case AF_INET:
772 {
773 struct ipovly *ipov = (struct ipovly *)ip;
774 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
775 ipov->ih_len = htons((u_int16_t)tlen);
776
777 th->th_sum = 0;
778 th->th_sum = in_cksum(m, hlen + tlen);
779 ip->ip_len = htons(hlen + tlen);
780 ip->ip_ttl = ip_defttl;
781 break;
782 }
783 #endif
784 #ifdef INET6
785 case AF_INET6:
786 {
787 th->th_sum = 0;
788 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
789 tlen);
790 ip6->ip6_plen = ntohs(tlen);
791 if (tp && tp->t_in6pcb) {
792 struct ifnet *oifp;
793 ro = (struct route *)&tp->t_in6pcb->in6p_route;
794 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
795 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
796 } else
797 ip6->ip6_hlim = ip6_defhlim;
798 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
799 if (ip6_auto_flowlabel) {
800 ip6->ip6_flow |=
801 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
802 }
803 break;
804 }
805 #endif
806 }
807
808 #ifdef IPSEC
809 (void)ipsec_setsocket(m, NULL);
810 #endif /*IPSEC*/
811
812 if (tp != NULL && tp->t_inpcb != NULL) {
813 ro = &tp->t_inpcb->inp_route;
814 #ifdef IPSEC
815 if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
816 m_freem(m);
817 return ENOBUFS;
818 }
819 #endif
820 #ifdef DIAGNOSTIC
821 if (family != AF_INET)
822 panic("tcp_respond: address family mismatch");
823 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
824 panic("tcp_respond: ip_dst %x != inp_faddr %x",
825 ntohl(ip->ip_dst.s_addr),
826 ntohl(tp->t_inpcb->inp_faddr.s_addr));
827 }
828 #endif
829 }
830 #ifdef INET6
831 else if (tp != NULL && tp->t_in6pcb != NULL) {
832 ro = (struct route *)&tp->t_in6pcb->in6p_route;
833 #ifdef IPSEC
834 if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
835 m_freem(m);
836 return ENOBUFS;
837 }
838 #endif
839 #ifdef DIAGNOSTIC
840 if (family == AF_INET) {
841 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
842 panic("tcp_respond: not mapped addr");
843 if (bcmp(&ip->ip_dst,
844 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
845 sizeof(ip->ip_dst)) != 0) {
846 panic("tcp_respond: ip_dst != in6p_faddr");
847 }
848 } else if (family == AF_INET6) {
849 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
850 &tp->t_in6pcb->in6p_faddr))
851 panic("tcp_respond: ip6_dst != in6p_faddr");
852 } else
853 panic("tcp_respond: address family mismatch");
854 #endif
855 }
856 #endif
857 else
858 ro = NULL;
859
860 switch (family) {
861 #ifdef INET
862 case AF_INET:
863 error = ip_output(m, NULL, ro,
864 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
865 NULL);
866 break;
867 #endif
868 #ifdef INET6
869 case AF_INET6:
870 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
871 NULL);
872 break;
873 #endif
874 default:
875 error = EAFNOSUPPORT;
876 break;
877 }
878
879 return (error);
880 }
881
882 /*
883 * Create a new TCP control block, making an
884 * empty reassembly queue and hooking it to the argument
885 * protocol control block.
886 */
887 struct tcpcb *
888 tcp_newtcpcb(family, aux)
889 int family; /* selects inpcb, or in6pcb */
890 void *aux;
891 {
892 struct tcpcb *tp;
893 int i;
894
895 switch (family) {
896 case PF_INET:
897 break;
898 #ifdef INET6
899 case PF_INET6:
900 break;
901 #endif
902 default:
903 return NULL;
904 }
905
906 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
907 if (tp == NULL)
908 return (NULL);
909 bzero((caddr_t)tp, sizeof(struct tcpcb));
910 TAILQ_INIT(&tp->segq);
911 TAILQ_INIT(&tp->timeq);
912 tp->t_family = family; /* may be overridden later on */
913 tp->t_peermss = tcp_mssdflt;
914 tp->t_ourmss = tcp_mssdflt;
915 tp->t_segsz = tcp_mssdflt;
916 LIST_INIT(&tp->t_sc);
917
918 callout_init(&tp->t_delack_ch);
919 for (i = 0; i < TCPT_NTIMERS; i++)
920 TCP_TIMER_INIT(tp, i);
921
922 tp->t_flags = 0;
923 if (tcp_do_rfc1323 && tcp_do_win_scale)
924 tp->t_flags |= TF_REQ_SCALE;
925 if (tcp_do_rfc1323 && tcp_do_timestamps)
926 tp->t_flags |= TF_REQ_TSTMP;
927 if (tcp_do_sack == 2)
928 tp->t_flags |= TF_WILL_SACK;
929 else if (tcp_do_sack == 1)
930 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
931 tp->t_flags |= TF_CANT_TXSACK;
932 switch (family) {
933 case PF_INET:
934 tp->t_inpcb = (struct inpcb *)aux;
935 tp->t_mtudisc = ip_mtudisc;
936 break;
937 #ifdef INET6
938 case PF_INET6:
939 tp->t_in6pcb = (struct in6pcb *)aux;
940 /* for IPv6, always try to run path MTU discovery */
941 tp->t_mtudisc = 1;
942 break;
943 #endif
944 }
945 /*
946 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
947 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
948 * reasonable initial retransmit time.
949 */
950 tp->t_srtt = TCPTV_SRTTBASE;
951 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
952 tp->t_rttmin = TCPTV_MIN;
953 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
954 TCPTV_MIN, TCPTV_REXMTMAX);
955 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
956 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
957 if (family == AF_INET) {
958 struct inpcb *inp = (struct inpcb *)aux;
959 inp->inp_ip.ip_ttl = ip_defttl;
960 inp->inp_ppcb = (caddr_t)tp;
961 }
962 #ifdef INET6
963 else if (family == AF_INET6) {
964 struct in6pcb *in6p = (struct in6pcb *)aux;
965 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
966 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
967 : NULL);
968 in6p->in6p_ppcb = (caddr_t)tp;
969 }
970 #endif
971
972 /*
973 * Initialize our timebase. When we send timestamps, we take
974 * the delta from tcp_now -- this means each connection always
975 * gets a timebase of 0, which makes it, among other things,
976 * more difficult to determine how long a system has been up,
977 * and thus how many TCP sequence increments have occurred.
978 */
979 tp->ts_timebase = tcp_now;
980
981 return (tp);
982 }
983
984 /*
985 * Drop a TCP connection, reporting
986 * the specified error. If connection is synchronized,
987 * then send a RST to peer.
988 */
989 struct tcpcb *
990 tcp_drop(tp, errno)
991 struct tcpcb *tp;
992 int errno;
993 {
994 struct socket *so = NULL;
995
996 #ifdef DIAGNOSTIC
997 if (tp->t_inpcb && tp->t_in6pcb)
998 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
999 #endif
1000 #ifdef INET
1001 if (tp->t_inpcb)
1002 so = tp->t_inpcb->inp_socket;
1003 #endif
1004 #ifdef INET6
1005 if (tp->t_in6pcb)
1006 so = tp->t_in6pcb->in6p_socket;
1007 #endif
1008 if (!so)
1009 return NULL;
1010
1011 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1012 tp->t_state = TCPS_CLOSED;
1013 (void) tcp_output(tp);
1014 tcpstat.tcps_drops++;
1015 } else
1016 tcpstat.tcps_conndrops++;
1017 if (errno == ETIMEDOUT && tp->t_softerror)
1018 errno = tp->t_softerror;
1019 so->so_error = errno;
1020 return (tcp_close(tp));
1021 }
1022
1023 /*
1024 * Close a TCP control block:
1025 * discard all space held by the tcp
1026 * discard internet protocol block
1027 * wake up any sleepers
1028 */
1029 struct tcpcb *
1030 tcp_close(tp)
1031 struct tcpcb *tp;
1032 {
1033 struct inpcb *inp;
1034 #ifdef INET6
1035 struct in6pcb *in6p;
1036 #endif
1037 struct socket *so;
1038 #ifdef RTV_RTT
1039 struct rtentry *rt;
1040 #endif
1041 struct route *ro;
1042
1043 inp = tp->t_inpcb;
1044 #ifdef INET6
1045 in6p = tp->t_in6pcb;
1046 #endif
1047 so = NULL;
1048 ro = NULL;
1049 if (inp) {
1050 so = inp->inp_socket;
1051 ro = &inp->inp_route;
1052 }
1053 #ifdef INET6
1054 else if (in6p) {
1055 so = in6p->in6p_socket;
1056 ro = (struct route *)&in6p->in6p_route;
1057 }
1058 #endif
1059
1060 #ifdef RTV_RTT
1061 /*
1062 * If we sent enough data to get some meaningful characteristics,
1063 * save them in the routing entry. 'Enough' is arbitrarily
1064 * defined as the sendpipesize (default 4K) * 16. This would
1065 * give us 16 rtt samples assuming we only get one sample per
1066 * window (the usual case on a long haul net). 16 samples is
1067 * enough for the srtt filter to converge to within 5% of the correct
1068 * value; fewer samples and we could save a very bogus rtt.
1069 *
1070 * Don't update the default route's characteristics and don't
1071 * update anything that the user "locked".
1072 */
1073 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1074 ro && (rt = ro->ro_rt) &&
1075 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1076 u_long i = 0;
1077
1078 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1079 i = tp->t_srtt *
1080 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1081 if (rt->rt_rmx.rmx_rtt && i)
1082 /*
1083 * filter this update to half the old & half
1084 * the new values, converting scale.
1085 * See route.h and tcp_var.h for a
1086 * description of the scaling constants.
1087 */
1088 rt->rt_rmx.rmx_rtt =
1089 (rt->rt_rmx.rmx_rtt + i) / 2;
1090 else
1091 rt->rt_rmx.rmx_rtt = i;
1092 }
1093 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1094 i = tp->t_rttvar *
1095 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1096 if (rt->rt_rmx.rmx_rttvar && i)
1097 rt->rt_rmx.rmx_rttvar =
1098 (rt->rt_rmx.rmx_rttvar + i) / 2;
1099 else
1100 rt->rt_rmx.rmx_rttvar = i;
1101 }
1102 /*
1103 * update the pipelimit (ssthresh) if it has been updated
1104 * already or if a pipesize was specified & the threshhold
1105 * got below half the pipesize. I.e., wait for bad news
1106 * before we start updating, then update on both good
1107 * and bad news.
1108 */
1109 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1110 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1111 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1112 /*
1113 * convert the limit from user data bytes to
1114 * packets then to packet data bytes.
1115 */
1116 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1117 if (i < 2)
1118 i = 2;
1119 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1120 if (rt->rt_rmx.rmx_ssthresh)
1121 rt->rt_rmx.rmx_ssthresh =
1122 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1123 else
1124 rt->rt_rmx.rmx_ssthresh = i;
1125 }
1126 }
1127 #endif /* RTV_RTT */
1128 /* free the reassembly queue, if any */
1129 TCP_REASS_LOCK(tp);
1130 (void) tcp_freeq(tp);
1131 TCP_REASS_UNLOCK(tp);
1132
1133 tcp_canceltimers(tp);
1134 TCP_CLEAR_DELACK(tp);
1135 syn_cache_cleanup(tp);
1136
1137 if (tp->t_template) {
1138 m_free(tp->t_template);
1139 tp->t_template = NULL;
1140 }
1141 pool_put(&tcpcb_pool, tp);
1142 if (inp) {
1143 inp->inp_ppcb = 0;
1144 soisdisconnected(so);
1145 in_pcbdetach(inp);
1146 }
1147 #ifdef INET6
1148 else if (in6p) {
1149 in6p->in6p_ppcb = 0;
1150 soisdisconnected(so);
1151 in6_pcbdetach(in6p);
1152 }
1153 #endif
1154 tcpstat.tcps_closed++;
1155 return ((struct tcpcb *)0);
1156 }
1157
1158 int
1159 tcp_freeq(tp)
1160 struct tcpcb *tp;
1161 {
1162 struct ipqent *qe;
1163 int rv = 0;
1164 #ifdef TCPREASS_DEBUG
1165 int i = 0;
1166 #endif
1167
1168 TCP_REASS_LOCK_CHECK(tp);
1169
1170 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1171 #ifdef TCPREASS_DEBUG
1172 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1173 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1174 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1175 #endif
1176 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1177 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1178 m_freem(qe->ipqe_m);
1179 pool_put(&ipqent_pool, qe);
1180 rv = 1;
1181 }
1182 return (rv);
1183 }
1184
1185 /*
1186 * Protocol drain routine. Called when memory is in short supply.
1187 */
1188 void
1189 tcp_drain()
1190 {
1191 struct inpcb *inp;
1192 struct tcpcb *tp;
1193
1194 /*
1195 * Free the sequence queue of all TCP connections.
1196 */
1197 inp = CIRCLEQ_FIRST(&tcbtable.inpt_queue);
1198 if (inp) /* XXX */
1199 CIRCLEQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue) {
1200 if ((tp = intotcpcb(inp)) != NULL) {
1201 /*
1202 * We may be called from a device's interrupt
1203 * context. If the tcpcb is already busy,
1204 * just bail out now.
1205 */
1206 if (tcp_reass_lock_try(tp) == 0)
1207 continue;
1208 if (tcp_freeq(tp))
1209 tcpstat.tcps_connsdrained++;
1210 TCP_REASS_UNLOCK(tp);
1211 }
1212 }
1213 }
1214
1215 #ifdef INET6
1216 void
1217 tcp6_drain()
1218 {
1219 struct in6pcb *in6p;
1220 struct tcpcb *tp;
1221 struct in6pcb *head = &tcb6;
1222
1223 /*
1224 * Free the sequence queue of all TCP connections.
1225 */
1226 for (in6p = head->in6p_next; in6p != head; in6p = in6p->in6p_next) {
1227 if ((tp = in6totcpcb(in6p)) != NULL) {
1228 /*
1229 * We may be called from a device's interrupt
1230 * context. If the tcpcb is already busy,
1231 * just bail out now.
1232 */
1233 if (tcp_reass_lock_try(tp) == 0)
1234 continue;
1235 if (tcp_freeq(tp))
1236 tcpstat.tcps_connsdrained++;
1237 TCP_REASS_UNLOCK(tp);
1238 }
1239 }
1240 }
1241 #endif
1242
1243 /*
1244 * Notify a tcp user of an asynchronous error;
1245 * store error as soft error, but wake up user
1246 * (for now, won't do anything until can select for soft error).
1247 */
1248 void
1249 tcp_notify(inp, error)
1250 struct inpcb *inp;
1251 int error;
1252 {
1253 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1254 struct socket *so = inp->inp_socket;
1255
1256 /*
1257 * Ignore some errors if we are hooked up.
1258 * If connection hasn't completed, has retransmitted several times,
1259 * and receives a second error, give up now. This is better
1260 * than waiting a long time to establish a connection that
1261 * can never complete.
1262 */
1263 if (tp->t_state == TCPS_ESTABLISHED &&
1264 (error == EHOSTUNREACH || error == ENETUNREACH ||
1265 error == EHOSTDOWN)) {
1266 return;
1267 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1268 tp->t_rxtshift > 3 && tp->t_softerror)
1269 so->so_error = error;
1270 else
1271 tp->t_softerror = error;
1272 wakeup((caddr_t) &so->so_timeo);
1273 sorwakeup(so);
1274 sowwakeup(so);
1275 }
1276
1277 #ifdef INET6
1278 void
1279 tcp6_notify(in6p, error)
1280 struct in6pcb *in6p;
1281 int error;
1282 {
1283 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1284 struct socket *so = in6p->in6p_socket;
1285
1286 /*
1287 * Ignore some errors if we are hooked up.
1288 * If connection hasn't completed, has retransmitted several times,
1289 * and receives a second error, give up now. This is better
1290 * than waiting a long time to establish a connection that
1291 * can never complete.
1292 */
1293 if (tp->t_state == TCPS_ESTABLISHED &&
1294 (error == EHOSTUNREACH || error == ENETUNREACH ||
1295 error == EHOSTDOWN)) {
1296 return;
1297 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1298 tp->t_rxtshift > 3 && tp->t_softerror)
1299 so->so_error = error;
1300 else
1301 tp->t_softerror = error;
1302 wakeup((caddr_t) &so->so_timeo);
1303 sorwakeup(so);
1304 sowwakeup(so);
1305 }
1306 #endif
1307
1308 #ifdef INET6
1309 void
1310 tcp6_ctlinput(cmd, sa, d)
1311 int cmd;
1312 struct sockaddr *sa;
1313 void *d;
1314 {
1315 struct tcphdr th;
1316 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1317 int nmatch;
1318 struct ip6_hdr *ip6;
1319 const struct sockaddr_in6 *sa6_src = NULL;
1320 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1321 struct mbuf *m;
1322 int off;
1323
1324 if (sa->sa_family != AF_INET6 ||
1325 sa->sa_len != sizeof(struct sockaddr_in6))
1326 return;
1327 if ((unsigned)cmd >= PRC_NCMDS)
1328 return;
1329 else if (cmd == PRC_QUENCH) {
1330 /* XXX there's no PRC_QUENCH in IPv6 */
1331 notify = tcp6_quench;
1332 } else if (PRC_IS_REDIRECT(cmd))
1333 notify = in6_rtchange, d = NULL;
1334 else if (cmd == PRC_MSGSIZE)
1335 ; /* special code is present, see below */
1336 else if (cmd == PRC_HOSTDEAD)
1337 d = NULL;
1338 else if (inet6ctlerrmap[cmd] == 0)
1339 return;
1340
1341 /* if the parameter is from icmp6, decode it. */
1342 if (d != NULL) {
1343 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1344 m = ip6cp->ip6c_m;
1345 ip6 = ip6cp->ip6c_ip6;
1346 off = ip6cp->ip6c_off;
1347 sa6_src = ip6cp->ip6c_src;
1348 } else {
1349 m = NULL;
1350 ip6 = NULL;
1351 sa6_src = &sa6_any;
1352 }
1353
1354 if (ip6) {
1355 /*
1356 * XXX: We assume that when ip6 is non NULL,
1357 * M and OFF are valid.
1358 */
1359
1360 /* check if we can safely examine src and dst ports */
1361 if (m->m_pkthdr.len < off + sizeof(th)) {
1362 if (cmd == PRC_MSGSIZE)
1363 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1364 return;
1365 }
1366
1367 bzero(&th, sizeof(th));
1368 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1369
1370 if (cmd == PRC_MSGSIZE) {
1371 int valid = 0;
1372
1373 /*
1374 * Check to see if we have a valid TCP connection
1375 * corresponding to the address in the ICMPv6 message
1376 * payload.
1377 */
1378 if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
1379 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1380 th.th_sport, 0))
1381 valid++;
1382
1383 /*
1384 * Depending on the value of "valid" and routing table
1385 * size (mtudisc_{hi,lo}wat), we will:
1386 * - recalcurate the new MTU and create the
1387 * corresponding routing entry, or
1388 * - ignore the MTU change notification.
1389 */
1390 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1391
1392 /*
1393 * no need to call in6_pcbnotify, it should have been
1394 * called via callback if necessary
1395 */
1396 return;
1397 }
1398
1399 nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
1400 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1401 if (nmatch == 0 && syn_cache_count &&
1402 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1403 inet6ctlerrmap[cmd] == ENETUNREACH ||
1404 inet6ctlerrmap[cmd] == EHOSTDOWN))
1405 syn_cache_unreach((struct sockaddr *)sa6_src,
1406 sa, &th);
1407 } else {
1408 (void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
1409 0, cmd, NULL, notify);
1410 }
1411 }
1412 #endif
1413
1414 #ifdef INET
1415 /* assumes that ip header and tcp header are contiguous on mbuf */
1416 void *
1417 tcp_ctlinput(cmd, sa, v)
1418 int cmd;
1419 struct sockaddr *sa;
1420 void *v;
1421 {
1422 struct ip *ip = v;
1423 struct tcphdr *th;
1424 struct icmp *icp;
1425 extern const int inetctlerrmap[];
1426 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1427 int errno;
1428 int nmatch;
1429 #ifdef INET6
1430 struct in6_addr src6, dst6;
1431 #endif
1432
1433 if (sa->sa_family != AF_INET ||
1434 sa->sa_len != sizeof(struct sockaddr_in))
1435 return NULL;
1436 if ((unsigned)cmd >= PRC_NCMDS)
1437 return NULL;
1438 errno = inetctlerrmap[cmd];
1439 if (cmd == PRC_QUENCH)
1440 notify = tcp_quench;
1441 else if (PRC_IS_REDIRECT(cmd))
1442 notify = in_rtchange, ip = 0;
1443 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1444 /*
1445 * Check to see if we have a valid TCP connection
1446 * corresponding to the address in the ICMP message
1447 * payload.
1448 *
1449 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1450 */
1451 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1452 #ifdef INET6
1453 memset(&src6, 0, sizeof(src6));
1454 memset(&dst6, 0, sizeof(dst6));
1455 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1456 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1457 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1458 #endif
1459 if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
1460 ip->ip_src, th->th_sport) != NULL)
1461 ;
1462 #ifdef INET6
1463 else if (in6_pcblookup_connect(&tcb6, &dst6,
1464 th->th_dport, &src6, th->th_sport, 0) != NULL)
1465 ;
1466 #endif
1467 else
1468 return NULL;
1469
1470 /*
1471 * Now that we've validated that we are actually communicating
1472 * with the host indicated in the ICMP message, locate the
1473 * ICMP header, recalculate the new MTU, and create the
1474 * corresponding routing entry.
1475 */
1476 icp = (struct icmp *)((caddr_t)ip -
1477 offsetof(struct icmp, icmp_ip));
1478 icmp_mtudisc(icp, ip->ip_dst);
1479
1480 return NULL;
1481 } else if (cmd == PRC_HOSTDEAD)
1482 ip = 0;
1483 else if (errno == 0)
1484 return NULL;
1485 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1486 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1487 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1488 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1489 if (nmatch == 0 && syn_cache_count &&
1490 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1491 inetctlerrmap[cmd] == ENETUNREACH ||
1492 inetctlerrmap[cmd] == EHOSTDOWN)) {
1493 struct sockaddr_in sin;
1494 bzero(&sin, sizeof(sin));
1495 sin.sin_len = sizeof(sin);
1496 sin.sin_family = AF_INET;
1497 sin.sin_port = th->th_sport;
1498 sin.sin_addr = ip->ip_src;
1499 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1500 }
1501
1502 /* XXX mapped address case */
1503 } else
1504 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1505 notify);
1506 return NULL;
1507 }
1508
1509 /*
1510 * When a source quence is received, we are being notifed of congestion.
1511 * Close the congestion window down to the Loss Window (one segment).
1512 * We will gradually open it again as we proceed.
1513 */
1514 void
1515 tcp_quench(inp, errno)
1516 struct inpcb *inp;
1517 int errno;
1518 {
1519 struct tcpcb *tp = intotcpcb(inp);
1520
1521 if (tp)
1522 tp->snd_cwnd = tp->t_segsz;
1523 }
1524 #endif
1525
1526 #ifdef INET6
1527 void
1528 tcp6_quench(in6p, errno)
1529 struct in6pcb *in6p;
1530 int errno;
1531 {
1532 struct tcpcb *tp = in6totcpcb(in6p);
1533
1534 if (tp)
1535 tp->snd_cwnd = tp->t_segsz;
1536 }
1537 #endif
1538
1539 #ifdef INET
1540 /*
1541 * Path MTU Discovery handlers.
1542 */
1543 void
1544 tcp_mtudisc_callback(faddr)
1545 struct in_addr faddr;
1546 {
1547 #ifdef INET6
1548 struct in6_addr in6;
1549 #endif
1550
1551 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1552 #ifdef INET6
1553 memset(&in6, 0, sizeof(in6));
1554 in6.s6_addr16[5] = 0xffff;
1555 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1556 tcp6_mtudisc_callback(&in6);
1557 #endif
1558 }
1559
1560 /*
1561 * On receipt of path MTU corrections, flush old route and replace it
1562 * with the new one. Retransmit all unacknowledged packets, to ensure
1563 * that all packets will be received.
1564 */
1565 void
1566 tcp_mtudisc(inp, errno)
1567 struct inpcb *inp;
1568 int errno;
1569 {
1570 struct tcpcb *tp = intotcpcb(inp);
1571 struct rtentry *rt = in_pcbrtentry(inp);
1572
1573 if (tp != 0) {
1574 if (rt != 0) {
1575 /*
1576 * If this was not a host route, remove and realloc.
1577 */
1578 if ((rt->rt_flags & RTF_HOST) == 0) {
1579 in_rtchange(inp, errno);
1580 if ((rt = in_pcbrtentry(inp)) == 0)
1581 return;
1582 }
1583
1584 /*
1585 * Slow start out of the error condition. We
1586 * use the MTU because we know it's smaller
1587 * than the previously transmitted segment.
1588 *
1589 * Note: This is more conservative than the
1590 * suggestion in draft-floyd-incr-init-win-03.
1591 */
1592 if (rt->rt_rmx.rmx_mtu != 0)
1593 tp->snd_cwnd =
1594 TCP_INITIAL_WINDOW(tcp_init_win,
1595 rt->rt_rmx.rmx_mtu);
1596 }
1597
1598 /*
1599 * Resend unacknowledged packets.
1600 */
1601 tp->snd_nxt = tp->snd_una;
1602 tcp_output(tp);
1603 }
1604 }
1605 #endif
1606
1607 #ifdef INET6
1608 /*
1609 * Path MTU Discovery handlers.
1610 */
1611 void
1612 tcp6_mtudisc_callback(faddr)
1613 struct in6_addr *faddr;
1614 {
1615 struct sockaddr_in6 sin6;
1616
1617 bzero(&sin6, sizeof(sin6));
1618 sin6.sin6_family = AF_INET6;
1619 sin6.sin6_len = sizeof(struct sockaddr_in6);
1620 sin6.sin6_addr = *faddr;
1621 (void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
1622 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1623 }
1624
1625 void
1626 tcp6_mtudisc(in6p, errno)
1627 struct in6pcb *in6p;
1628 int errno;
1629 {
1630 struct tcpcb *tp = in6totcpcb(in6p);
1631 struct rtentry *rt = in6_pcbrtentry(in6p);
1632
1633 if (tp != 0) {
1634 if (rt != 0) {
1635 /*
1636 * If this was not a host route, remove and realloc.
1637 */
1638 if ((rt->rt_flags & RTF_HOST) == 0) {
1639 in6_rtchange(in6p, errno);
1640 if ((rt = in6_pcbrtentry(in6p)) == 0)
1641 return;
1642 }
1643
1644 /*
1645 * Slow start out of the error condition. We
1646 * use the MTU because we know it's smaller
1647 * than the previously transmitted segment.
1648 *
1649 * Note: This is more conservative than the
1650 * suggestion in draft-floyd-incr-init-win-03.
1651 */
1652 if (rt->rt_rmx.rmx_mtu != 0)
1653 tp->snd_cwnd =
1654 TCP_INITIAL_WINDOW(tcp_init_win,
1655 rt->rt_rmx.rmx_mtu);
1656 }
1657
1658 /*
1659 * Resend unacknowledged packets.
1660 */
1661 tp->snd_nxt = tp->snd_una;
1662 tcp_output(tp);
1663 }
1664 }
1665 #endif /* INET6 */
1666
1667 /*
1668 * Compute the MSS to advertise to the peer. Called only during
1669 * the 3-way handshake. If we are the server (peer initiated
1670 * connection), we are called with a pointer to the interface
1671 * on which the SYN packet arrived. If we are the client (we
1672 * initiated connection), we are called with a pointer to the
1673 * interface out which this connection should go.
1674 *
1675 * NOTE: Do not subtract IP option/extension header size nor IPsec
1676 * header size from MSS advertisement. MSS option must hold the maximum
1677 * segment size we can accept, so it must always be:
1678 * max(if mtu) - ip header - tcp header
1679 */
1680 u_long
1681 tcp_mss_to_advertise(ifp, af)
1682 const struct ifnet *ifp;
1683 int af;
1684 {
1685 extern u_long in_maxmtu;
1686 u_long mss = 0;
1687 u_long hdrsiz;
1688
1689 /*
1690 * In order to avoid defeating path MTU discovery on the peer,
1691 * we advertise the max MTU of all attached networks as our MSS,
1692 * per RFC 1191, section 3.1.
1693 *
1694 * We provide the option to advertise just the MTU of
1695 * the interface on which we hope this connection will
1696 * be receiving. If we are responding to a SYN, we
1697 * will have a pretty good idea about this, but when
1698 * initiating a connection there is a bit more doubt.
1699 *
1700 * We also need to ensure that loopback has a large enough
1701 * MSS, as the loopback MTU is never included in in_maxmtu.
1702 */
1703
1704 if (ifp != NULL)
1705 switch (af) {
1706 case AF_INET:
1707 mss = ifp->if_mtu;
1708 break;
1709 #ifdef INET6
1710 case AF_INET6:
1711 mss = IN6_LINKMTU(ifp);
1712 break;
1713 #endif
1714 }
1715
1716 if (tcp_mss_ifmtu == 0)
1717 switch (af) {
1718 case AF_INET:
1719 mss = max(in_maxmtu, mss);
1720 break;
1721 #ifdef INET6
1722 case AF_INET6:
1723 mss = max(in6_maxmtu, mss);
1724 break;
1725 #endif
1726 }
1727
1728 switch (af) {
1729 case AF_INET:
1730 hdrsiz = sizeof(struct ip);
1731 break;
1732 #ifdef INET6
1733 case AF_INET6:
1734 hdrsiz = sizeof(struct ip6_hdr);
1735 break;
1736 #endif
1737 default:
1738 hdrsiz = 0;
1739 break;
1740 }
1741 hdrsiz += sizeof(struct tcphdr);
1742 if (mss > hdrsiz)
1743 mss -= hdrsiz;
1744
1745 mss = max(tcp_mssdflt, mss);
1746 return (mss);
1747 }
1748
1749 /*
1750 * Set connection variables based on the peer's advertised MSS.
1751 * We are passed the TCPCB for the actual connection. If we
1752 * are the server, we are called by the compressed state engine
1753 * when the 3-way handshake is complete. If we are the client,
1754 * we are called when we receive the SYN,ACK from the server.
1755 *
1756 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1757 * before this routine is called!
1758 */
1759 void
1760 tcp_mss_from_peer(tp, offer)
1761 struct tcpcb *tp;
1762 int offer;
1763 {
1764 struct socket *so;
1765 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1766 struct rtentry *rt;
1767 #endif
1768 u_long bufsize;
1769 int mss;
1770
1771 #ifdef DIAGNOSTIC
1772 if (tp->t_inpcb && tp->t_in6pcb)
1773 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1774 #endif
1775 so = NULL;
1776 rt = NULL;
1777 #ifdef INET
1778 if (tp->t_inpcb) {
1779 so = tp->t_inpcb->inp_socket;
1780 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1781 rt = in_pcbrtentry(tp->t_inpcb);
1782 #endif
1783 }
1784 #endif
1785 #ifdef INET6
1786 if (tp->t_in6pcb) {
1787 so = tp->t_in6pcb->in6p_socket;
1788 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1789 rt = in6_pcbrtentry(tp->t_in6pcb);
1790 #endif
1791 }
1792 #endif
1793
1794 /*
1795 * As per RFC1122, use the default MSS value, unless they
1796 * sent us an offer. Do not accept offers less than 32 bytes.
1797 */
1798 mss = tcp_mssdflt;
1799 if (offer)
1800 mss = offer;
1801 mss = max(mss, 32); /* sanity */
1802 tp->t_peermss = mss;
1803 mss -= tcp_optlen(tp);
1804 #ifdef INET
1805 if (tp->t_inpcb)
1806 mss -= ip_optlen(tp->t_inpcb);
1807 #endif
1808 #ifdef INET6
1809 if (tp->t_in6pcb)
1810 mss -= ip6_optlen(tp->t_in6pcb);
1811 #endif
1812
1813 /*
1814 * If there's a pipesize, change the socket buffer to that size.
1815 * Make the socket buffer an integral number of MSS units. If
1816 * the MSS is larger than the socket buffer, artificially decrease
1817 * the MSS.
1818 */
1819 #ifdef RTV_SPIPE
1820 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1821 bufsize = rt->rt_rmx.rmx_sendpipe;
1822 else
1823 #endif
1824 bufsize = so->so_snd.sb_hiwat;
1825 if (bufsize < mss)
1826 mss = bufsize;
1827 else {
1828 bufsize = roundup(bufsize, mss);
1829 if (bufsize > sb_max)
1830 bufsize = sb_max;
1831 (void) sbreserve(&so->so_snd, bufsize);
1832 }
1833 tp->t_segsz = mss;
1834
1835 #ifdef RTV_SSTHRESH
1836 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1837 /*
1838 * There's some sort of gateway or interface buffer
1839 * limit on the path. Use this to set the slow
1840 * start threshold, but set the threshold to no less
1841 * than 2 * MSS.
1842 */
1843 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1844 }
1845 #endif
1846 }
1847
1848 /*
1849 * Processing necessary when a TCP connection is established.
1850 */
1851 void
1852 tcp_established(tp)
1853 struct tcpcb *tp;
1854 {
1855 struct socket *so;
1856 #ifdef RTV_RPIPE
1857 struct rtentry *rt;
1858 #endif
1859 u_long bufsize;
1860
1861 #ifdef DIAGNOSTIC
1862 if (tp->t_inpcb && tp->t_in6pcb)
1863 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1864 #endif
1865 so = NULL;
1866 rt = NULL;
1867 #ifdef INET
1868 if (tp->t_inpcb) {
1869 so = tp->t_inpcb->inp_socket;
1870 #if defined(RTV_RPIPE)
1871 rt = in_pcbrtentry(tp->t_inpcb);
1872 #endif
1873 }
1874 #endif
1875 #ifdef INET6
1876 if (tp->t_in6pcb) {
1877 so = tp->t_in6pcb->in6p_socket;
1878 #if defined(RTV_RPIPE)
1879 rt = in6_pcbrtentry(tp->t_in6pcb);
1880 #endif
1881 }
1882 #endif
1883
1884 tp->t_state = TCPS_ESTABLISHED;
1885 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1886
1887 #ifdef RTV_RPIPE
1888 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1889 bufsize = rt->rt_rmx.rmx_recvpipe;
1890 else
1891 #endif
1892 bufsize = so->so_rcv.sb_hiwat;
1893 if (bufsize > tp->t_ourmss) {
1894 bufsize = roundup(bufsize, tp->t_ourmss);
1895 if (bufsize > sb_max)
1896 bufsize = sb_max;
1897 (void) sbreserve(&so->so_rcv, bufsize);
1898 }
1899 }
1900
1901 /*
1902 * Check if there's an initial rtt or rttvar. Convert from the
1903 * route-table units to scaled multiples of the slow timeout timer.
1904 * Called only during the 3-way handshake.
1905 */
1906 void
1907 tcp_rmx_rtt(tp)
1908 struct tcpcb *tp;
1909 {
1910 #ifdef RTV_RTT
1911 struct rtentry *rt = NULL;
1912 int rtt;
1913
1914 #ifdef DIAGNOSTIC
1915 if (tp->t_inpcb && tp->t_in6pcb)
1916 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1917 #endif
1918 #ifdef INET
1919 if (tp->t_inpcb)
1920 rt = in_pcbrtentry(tp->t_inpcb);
1921 #endif
1922 #ifdef INET6
1923 if (tp->t_in6pcb)
1924 rt = in6_pcbrtentry(tp->t_in6pcb);
1925 #endif
1926 if (rt == NULL)
1927 return;
1928
1929 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1930 /*
1931 * XXX The lock bit for MTU indicates that the value
1932 * is also a minimum value; this is subject to time.
1933 */
1934 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1935 TCPT_RANGESET(tp->t_rttmin,
1936 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1937 TCPTV_MIN, TCPTV_REXMTMAX);
1938 tp->t_srtt = rtt /
1939 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1940 if (rt->rt_rmx.rmx_rttvar) {
1941 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1942 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1943 (TCP_RTTVAR_SHIFT + 2));
1944 } else {
1945 /* Default variation is +- 1 rtt */
1946 tp->t_rttvar =
1947 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1948 }
1949 TCPT_RANGESET(tp->t_rxtcur,
1950 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1951 tp->t_rttmin, TCPTV_REXMTMAX);
1952 }
1953 #endif
1954 }
1955
1956 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1957 #if NRND > 0
1958 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
1959 #endif
1960
1961 /*
1962 * Get a new sequence value given a tcp control block
1963 */
1964 tcp_seq
1965 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
1966 {
1967
1968 #ifdef INET
1969 if (tp->t_inpcb != NULL) {
1970 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
1971 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
1972 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
1973 addin));
1974 }
1975 #endif
1976 #ifdef INET6
1977 if (tp->t_in6pcb != NULL) {
1978 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
1979 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
1980 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
1981 addin));
1982 }
1983 #endif
1984 /* Not possible. */
1985 panic("tcp_new_iss");
1986 }
1987
1988 /*
1989 * This routine actually generates a new TCP initial sequence number.
1990 */
1991 tcp_seq
1992 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
1993 size_t addrsz, tcp_seq addin)
1994 {
1995 tcp_seq tcp_iss;
1996
1997 #if NRND > 0
1998 static int beenhere;
1999
2000 /*
2001 * If we haven't been here before, initialize our cryptographic
2002 * hash secret.
2003 */
2004 if (beenhere == 0) {
2005 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2006 RND_EXTRACT_ANY);
2007 beenhere = 1;
2008 }
2009
2010 if (tcp_do_rfc1948) {
2011 MD5_CTX ctx;
2012 u_int8_t hash[16]; /* XXX MD5 knowledge */
2013
2014 /*
2015 * Compute the base value of the ISS. It is a hash
2016 * of (saddr, sport, daddr, dport, secret).
2017 */
2018 MD5Init(&ctx);
2019
2020 MD5Update(&ctx, (u_char *) laddr, addrsz);
2021 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2022
2023 MD5Update(&ctx, (u_char *) faddr, addrsz);
2024 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2025
2026 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2027
2028 MD5Final(hash, &ctx);
2029
2030 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2031
2032 /*
2033 * Now increment our "timer", and add it in to
2034 * the computed value.
2035 *
2036 * XXX Use `addin'?
2037 * XXX TCP_ISSINCR too large to use?
2038 */
2039 tcp_iss_seq += TCP_ISSINCR;
2040 #ifdef TCPISS_DEBUG
2041 printf("ISS hash 0x%08x, ", tcp_iss);
2042 #endif
2043 tcp_iss += tcp_iss_seq + addin;
2044 #ifdef TCPISS_DEBUG
2045 printf("new ISS 0x%08x\n", tcp_iss);
2046 #endif
2047 } else
2048 #endif /* NRND > 0 */
2049 {
2050 /*
2051 * Randomize.
2052 */
2053 #if NRND > 0
2054 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2055 #else
2056 tcp_iss = arc4random();
2057 #endif
2058
2059 /*
2060 * If we were asked to add some amount to a known value,
2061 * we will take a random value obtained above, mask off
2062 * the upper bits, and add in the known value. We also
2063 * add in a constant to ensure that we are at least a
2064 * certain distance from the original value.
2065 *
2066 * This is used when an old connection is in timed wait
2067 * and we have a new one coming in, for instance.
2068 */
2069 if (addin != 0) {
2070 #ifdef TCPISS_DEBUG
2071 printf("Random %08x, ", tcp_iss);
2072 #endif
2073 tcp_iss &= TCP_ISS_RANDOM_MASK;
2074 tcp_iss += addin + TCP_ISSINCR;
2075 #ifdef TCPISS_DEBUG
2076 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2077 #endif
2078 } else {
2079 tcp_iss &= TCP_ISS_RANDOM_MASK;
2080 tcp_iss += tcp_iss_seq;
2081 tcp_iss_seq += TCP_ISSINCR;
2082 #ifdef TCPISS_DEBUG
2083 printf("ISS %08x\n", tcp_iss);
2084 #endif
2085 }
2086 }
2087
2088 if (tcp_compat_42) {
2089 /*
2090 * Limit it to the positive range for really old TCP
2091 * implementations.
2092 * Just AND off the top bit instead of checking if
2093 * is set first - saves a branch 50% of the time.
2094 */
2095 tcp_iss &= 0x7fffffff; /* XXX */
2096 }
2097
2098 return (tcp_iss);
2099 }
2100
2101 #ifdef IPSEC
2102 /* compute ESP/AH header size for TCP, including outer IP header. */
2103 size_t
2104 ipsec4_hdrsiz_tcp(tp)
2105 struct tcpcb *tp;
2106 {
2107 struct inpcb *inp;
2108 size_t hdrsiz;
2109
2110 /* XXX mapped addr case (tp->t_in6pcb) */
2111 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2112 return 0;
2113 switch (tp->t_family) {
2114 case AF_INET:
2115 /* XXX: should use currect direction. */
2116 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2117 break;
2118 default:
2119 hdrsiz = 0;
2120 break;
2121 }
2122
2123 return hdrsiz;
2124 }
2125
2126 #ifdef INET6
2127 size_t
2128 ipsec6_hdrsiz_tcp(tp)
2129 struct tcpcb *tp;
2130 {
2131 struct in6pcb *in6p;
2132 size_t hdrsiz;
2133
2134 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2135 return 0;
2136 switch (tp->t_family) {
2137 case AF_INET6:
2138 /* XXX: should use currect direction. */
2139 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2140 break;
2141 case AF_INET:
2142 /* mapped address case - tricky */
2143 default:
2144 hdrsiz = 0;
2145 break;
2146 }
2147
2148 return hdrsiz;
2149 }
2150 #endif
2151 #endif /*IPSEC*/
2152
2153 /*
2154 * Determine the length of the TCP options for this connection.
2155 *
2156 * XXX: What do we do for SACK, when we add that? Just reserve
2157 * all of the space? Otherwise we can't exactly be incrementing
2158 * cwnd by an amount that varies depending on the amount we last
2159 * had to SACK!
2160 */
2161
2162 u_int
2163 tcp_optlen(tp)
2164 struct tcpcb *tp;
2165 {
2166 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2167 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2168 return TCPOLEN_TSTAMP_APPA;
2169 else
2170 return 0;
2171 }
2172