tcp_subr.c revision 1.140 1 /* $NetBSD: tcp_subr.c,v 1.140 2003/06/23 11:02:15 martin Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
102 */
103
104 #include <sys/cdefs.h>
105 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.140 2003/06/23 11:02:15 martin Exp $");
106
107 #include "opt_inet.h"
108 #include "opt_ipsec.h"
109 #include "opt_tcp_compat_42.h"
110 #include "opt_inet_csum.h"
111 #include "opt_mbuftrace.h"
112 #include "rnd.h"
113
114 #include <sys/param.h>
115 #include <sys/proc.h>
116 #include <sys/systm.h>
117 #include <sys/malloc.h>
118 #include <sys/mbuf.h>
119 #include <sys/socket.h>
120 #include <sys/socketvar.h>
121 #include <sys/protosw.h>
122 #include <sys/errno.h>
123 #include <sys/kernel.h>
124 #include <sys/pool.h>
125 #if NRND > 0
126 #include <sys/md5.h>
127 #include <sys/rnd.h>
128 #endif
129
130 #include <net/route.h>
131 #include <net/if.h>
132
133 #include <netinet/in.h>
134 #include <netinet/in_systm.h>
135 #include <netinet/ip.h>
136 #include <netinet/in_pcb.h>
137 #include <netinet/ip_var.h>
138 #include <netinet/ip_icmp.h>
139
140 #ifdef INET6
141 #ifndef INET
142 #include <netinet/in.h>
143 #endif
144 #include <netinet/ip6.h>
145 #include <netinet6/in6_pcb.h>
146 #include <netinet6/ip6_var.h>
147 #include <netinet6/in6_var.h>
148 #include <netinet6/ip6protosw.h>
149 #include <netinet/icmp6.h>
150 #include <netinet6/nd6.h>
151 #endif
152
153 #include <netinet/tcp.h>
154 #include <netinet/tcp_fsm.h>
155 #include <netinet/tcp_seq.h>
156 #include <netinet/tcp_timer.h>
157 #include <netinet/tcp_var.h>
158 #include <netinet/tcpip.h>
159
160 #ifdef IPSEC
161 #include <netinet6/ipsec.h>
162 #endif /*IPSEC*/
163
164 #ifdef INET6
165 struct in6pcb tcb6;
166 #endif
167
168 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
169 struct tcpstat tcpstat; /* tcp statistics */
170 u_int32_t tcp_now; /* for RFC 1323 timestamps */
171
172 /* patchable/settable parameters for tcp */
173 int tcp_mssdflt = TCP_MSS;
174 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
175 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
176 #if NRND > 0
177 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
178 #endif
179 int tcp_do_sack = 1; /* selective acknowledgement */
180 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
181 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
182 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
183 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
184 int tcp_init_win = 1; /* initial slow start window */
185 int tcp_init_win_local = 4; /* initial slow start window for local nets */
186 int tcp_mss_ifmtu = 0;
187 #ifdef TCP_COMPAT_42
188 int tcp_compat_42 = 1;
189 #else
190 int tcp_compat_42 = 0;
191 #endif
192 int tcp_rst_ppslim = 100; /* 100pps */
193
194 /* tcb hash */
195 #ifndef TCBHASHSIZE
196 #define TCBHASHSIZE 128
197 #endif
198 int tcbhashsize = TCBHASHSIZE;
199
200 /* syn hash parameters */
201 #define TCP_SYN_HASH_SIZE 293
202 #define TCP_SYN_BUCKET_SIZE 35
203 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
204 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
205 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
206 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
207
208 int tcp_freeq __P((struct tcpcb *));
209
210 #ifdef INET
211 void tcp_mtudisc_callback __P((struct in_addr));
212 #endif
213 #ifdef INET6
214 void tcp6_mtudisc_callback __P((struct in6_addr *));
215 #endif
216
217 void tcp_mtudisc __P((struct inpcb *, int));
218 #ifdef INET6
219 void tcp6_mtudisc __P((struct in6pcb *, int));
220 #endif
221
222 struct pool tcpcb_pool;
223
224 #ifdef TCP_CSUM_COUNTERS
225 #include <sys/device.h>
226
227 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
228 NULL, "tcp", "hwcsum bad");
229 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
230 NULL, "tcp", "hwcsum ok");
231 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
232 NULL, "tcp", "hwcsum data");
233 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
234 NULL, "tcp", "swcsum");
235 #endif /* TCP_CSUM_COUNTERS */
236
237 #ifdef TCP_OUTPUT_COUNTERS
238 #include <sys/device.h>
239
240 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
241 NULL, "tcp", "output big header");
242 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
243 NULL, "tcp", "output copy small");
244 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
245 NULL, "tcp", "output copy big");
246 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
247 NULL, "tcp", "output reference big");
248 #endif /* TCP_OUTPUT_COUNTERS */
249
250 #ifdef TCP_REASS_COUNTERS
251 #include <sys/device.h>
252
253 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
254 NULL, "tcp_reass", "calls");
255 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
256 &tcp_reass_, "tcp_reass", "insert into empty queue");
257 struct evcnt tcp_reass_iteration[8] = {
258 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
259 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
260 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
261 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
262 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
263 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
264 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
265 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
266 };
267 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268 &tcp_reass_, "tcp_reass", "prepend to first");
269 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
270 &tcp_reass_, "tcp_reass", "prepend");
271 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
272 &tcp_reass_, "tcp_reass", "insert");
273 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
274 &tcp_reass_, "tcp_reass", "insert at tail");
275 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
276 &tcp_reass_, "tcp_reass", "append");
277 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
278 &tcp_reass_, "tcp_reass", "append to tail fragment");
279 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
280 &tcp_reass_, "tcp_reass", "overlap at end");
281 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282 &tcp_reass_, "tcp_reass", "overlap at start");
283 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284 &tcp_reass_, "tcp_reass", "duplicate segment");
285 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286 &tcp_reass_, "tcp_reass", "duplicate fragment");
287
288 #endif /* TCP_REASS_COUNTERS */
289
290 #ifdef MBUFTRACE
291 struct mowner tcp_mowner = { "tcp" };
292 struct mowner tcp_rx_mowner = { "tcp", "rx" };
293 struct mowner tcp_tx_mowner = { "tcp", "tx" };
294 #endif
295
296 /*
297 * Tcp initialization
298 */
299 void
300 tcp_init()
301 {
302 int hlen;
303
304 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
305 NULL);
306 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
307 #ifdef INET6
308 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
309 #endif
310
311 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
312 #ifdef INET6
313 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
314 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
315 #endif
316 if (max_protohdr < hlen)
317 max_protohdr = hlen;
318 if (max_linkhdr + hlen > MHLEN)
319 panic("tcp_init");
320
321 #ifdef INET
322 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
323 #endif
324 #ifdef INET6
325 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
326 #endif
327
328 /* Initialize timer state. */
329 tcp_timer_init();
330
331 /* Initialize the compressed state engine. */
332 syn_cache_init();
333
334 #ifdef TCP_CSUM_COUNTERS
335 evcnt_attach_static(&tcp_hwcsum_bad);
336 evcnt_attach_static(&tcp_hwcsum_ok);
337 evcnt_attach_static(&tcp_hwcsum_data);
338 evcnt_attach_static(&tcp_swcsum);
339 #endif /* TCP_CSUM_COUNTERS */
340
341 #ifdef TCP_OUTPUT_COUNTERS
342 evcnt_attach_static(&tcp_output_bigheader);
343 evcnt_attach_static(&tcp_output_copysmall);
344 evcnt_attach_static(&tcp_output_copybig);
345 evcnt_attach_static(&tcp_output_refbig);
346 #endif /* TCP_OUTPUT_COUNTERS */
347
348 #ifdef TCP_REASS_COUNTERS
349 evcnt_attach_static(&tcp_reass_);
350 evcnt_attach_static(&tcp_reass_empty);
351 evcnt_attach_static(&tcp_reass_iteration[0]);
352 evcnt_attach_static(&tcp_reass_iteration[1]);
353 evcnt_attach_static(&tcp_reass_iteration[2]);
354 evcnt_attach_static(&tcp_reass_iteration[3]);
355 evcnt_attach_static(&tcp_reass_iteration[4]);
356 evcnt_attach_static(&tcp_reass_iteration[5]);
357 evcnt_attach_static(&tcp_reass_iteration[6]);
358 evcnt_attach_static(&tcp_reass_iteration[7]);
359 evcnt_attach_static(&tcp_reass_prependfirst);
360 evcnt_attach_static(&tcp_reass_prepend);
361 evcnt_attach_static(&tcp_reass_insert);
362 evcnt_attach_static(&tcp_reass_inserttail);
363 evcnt_attach_static(&tcp_reass_append);
364 evcnt_attach_static(&tcp_reass_appendtail);
365 evcnt_attach_static(&tcp_reass_overlaptail);
366 evcnt_attach_static(&tcp_reass_overlapfront);
367 evcnt_attach_static(&tcp_reass_segdup);
368 evcnt_attach_static(&tcp_reass_fragdup);
369 #endif /* TCP_REASS_COUNTERS */
370
371 MOWNER_ATTACH(&tcp_tx_mowner);
372 MOWNER_ATTACH(&tcp_rx_mowner);
373 MOWNER_ATTACH(&tcp_mowner);
374 }
375
376 /*
377 * Create template to be used to send tcp packets on a connection.
378 * Call after host entry created, allocates an mbuf and fills
379 * in a skeletal tcp/ip header, minimizing the amount of work
380 * necessary when the connection is used.
381 */
382 struct mbuf *
383 tcp_template(tp)
384 struct tcpcb *tp;
385 {
386 struct inpcb *inp = tp->t_inpcb;
387 #ifdef INET6
388 struct in6pcb *in6p = tp->t_in6pcb;
389 #endif
390 struct tcphdr *n;
391 struct mbuf *m;
392 int hlen;
393
394 switch (tp->t_family) {
395 case AF_INET:
396 hlen = sizeof(struct ip);
397 if (inp)
398 break;
399 #ifdef INET6
400 if (in6p) {
401 /* mapped addr case */
402 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
403 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
404 break;
405 }
406 #endif
407 return NULL; /*EINVAL*/
408 #ifdef INET6
409 case AF_INET6:
410 hlen = sizeof(struct ip6_hdr);
411 if (in6p) {
412 /* more sainty check? */
413 break;
414 }
415 return NULL; /*EINVAL*/
416 #endif
417 default:
418 hlen = 0; /*pacify gcc*/
419 return NULL; /*EAFNOSUPPORT*/
420 }
421 #ifdef DIAGNOSTIC
422 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
423 panic("mclbytes too small for t_template");
424 #endif
425 m = tp->t_template;
426 if (m && m->m_len == hlen + sizeof(struct tcphdr))
427 ;
428 else {
429 if (m)
430 m_freem(m);
431 m = tp->t_template = NULL;
432 MGETHDR(m, M_DONTWAIT, MT_HEADER);
433 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
434 MCLGET(m, M_DONTWAIT);
435 if ((m->m_flags & M_EXT) == 0) {
436 m_free(m);
437 m = NULL;
438 }
439 }
440 if (m == NULL)
441 return NULL;
442 MCLAIM(m, &tcp_mowner);
443 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
444 }
445
446 bzero(mtod(m, caddr_t), m->m_len);
447
448 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
449
450 switch (tp->t_family) {
451 case AF_INET:
452 {
453 struct ipovly *ipov;
454 mtod(m, struct ip *)->ip_v = 4;
455 ipov = mtod(m, struct ipovly *);
456 ipov->ih_pr = IPPROTO_TCP;
457 ipov->ih_len = htons(sizeof(struct tcphdr));
458 if (inp) {
459 ipov->ih_src = inp->inp_laddr;
460 ipov->ih_dst = inp->inp_faddr;
461 }
462 #ifdef INET6
463 else if (in6p) {
464 /* mapped addr case */
465 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
466 sizeof(ipov->ih_src));
467 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
468 sizeof(ipov->ih_dst));
469 }
470 #endif
471 /*
472 * Compute the pseudo-header portion of the checksum
473 * now. We incrementally add in the TCP option and
474 * payload lengths later, and then compute the TCP
475 * checksum right before the packet is sent off onto
476 * the wire.
477 */
478 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
479 ipov->ih_dst.s_addr,
480 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
481 break;
482 }
483 #ifdef INET6
484 case AF_INET6:
485 {
486 struct ip6_hdr *ip6;
487 mtod(m, struct ip *)->ip_v = 6;
488 ip6 = mtod(m, struct ip6_hdr *);
489 ip6->ip6_nxt = IPPROTO_TCP;
490 ip6->ip6_plen = htons(sizeof(struct tcphdr));
491 ip6->ip6_src = in6p->in6p_laddr;
492 ip6->ip6_dst = in6p->in6p_faddr;
493 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
494 if (ip6_auto_flowlabel) {
495 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
496 ip6->ip6_flow |=
497 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
498 }
499 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
500 ip6->ip6_vfc |= IPV6_VERSION;
501
502 /*
503 * Compute the pseudo-header portion of the checksum
504 * now. We incrementally add in the TCP option and
505 * payload lengths later, and then compute the TCP
506 * checksum right before the packet is sent off onto
507 * the wire.
508 */
509 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
510 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
511 htonl(IPPROTO_TCP));
512 break;
513 }
514 #endif
515 }
516 if (inp) {
517 n->th_sport = inp->inp_lport;
518 n->th_dport = inp->inp_fport;
519 }
520 #ifdef INET6
521 else if (in6p) {
522 n->th_sport = in6p->in6p_lport;
523 n->th_dport = in6p->in6p_fport;
524 }
525 #endif
526 n->th_seq = 0;
527 n->th_ack = 0;
528 n->th_x2 = 0;
529 n->th_off = 5;
530 n->th_flags = 0;
531 n->th_win = 0;
532 n->th_urp = 0;
533 return (m);
534 }
535
536 /*
537 * Send a single message to the TCP at address specified by
538 * the given TCP/IP header. If m == 0, then we make a copy
539 * of the tcpiphdr at ti and send directly to the addressed host.
540 * This is used to force keep alive messages out using the TCP
541 * template for a connection tp->t_template. If flags are given
542 * then we send a message back to the TCP which originated the
543 * segment ti, and discard the mbuf containing it and any other
544 * attached mbufs.
545 *
546 * In any case the ack and sequence number of the transmitted
547 * segment are as specified by the parameters.
548 */
549 int
550 tcp_respond(tp, template, m, th0, ack, seq, flags)
551 struct tcpcb *tp;
552 struct mbuf *template;
553 struct mbuf *m;
554 struct tcphdr *th0;
555 tcp_seq ack, seq;
556 int flags;
557 {
558 struct route *ro;
559 int error, tlen, win = 0;
560 int hlen;
561 struct ip *ip;
562 #ifdef INET6
563 struct ip6_hdr *ip6;
564 #endif
565 int family; /* family on packet, not inpcb/in6pcb! */
566 struct tcphdr *th;
567
568 if (tp != NULL && (flags & TH_RST) == 0) {
569 #ifdef DIAGNOSTIC
570 if (tp->t_inpcb && tp->t_in6pcb)
571 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
572 #endif
573 #ifdef INET
574 if (tp->t_inpcb)
575 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
576 #endif
577 #ifdef INET6
578 if (tp->t_in6pcb)
579 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
580 #endif
581 }
582
583 th = NULL; /* Quell uninitialized warning */
584 ip = NULL;
585 #ifdef INET6
586 ip6 = NULL;
587 #endif
588 if (m == 0) {
589 if (!template)
590 return EINVAL;
591
592 /* get family information from template */
593 switch (mtod(template, struct ip *)->ip_v) {
594 case 4:
595 family = AF_INET;
596 hlen = sizeof(struct ip);
597 break;
598 #ifdef INET6
599 case 6:
600 family = AF_INET6;
601 hlen = sizeof(struct ip6_hdr);
602 break;
603 #endif
604 default:
605 return EAFNOSUPPORT;
606 }
607
608 MGETHDR(m, M_DONTWAIT, MT_HEADER);
609 if (m) {
610 MCLAIM(m, &tcp_tx_mowner);
611 MCLGET(m, M_DONTWAIT);
612 if ((m->m_flags & M_EXT) == 0) {
613 m_free(m);
614 m = NULL;
615 }
616 }
617 if (m == NULL)
618 return (ENOBUFS);
619
620 if (tcp_compat_42)
621 tlen = 1;
622 else
623 tlen = 0;
624
625 m->m_data += max_linkhdr;
626 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
627 template->m_len);
628 switch (family) {
629 case AF_INET:
630 ip = mtod(m, struct ip *);
631 th = (struct tcphdr *)(ip + 1);
632 break;
633 #ifdef INET6
634 case AF_INET6:
635 ip6 = mtod(m, struct ip6_hdr *);
636 th = (struct tcphdr *)(ip6 + 1);
637 break;
638 #endif
639 #if 0
640 default:
641 /* noone will visit here */
642 m_freem(m);
643 return EAFNOSUPPORT;
644 #endif
645 }
646 flags = TH_ACK;
647 } else {
648
649 if ((m->m_flags & M_PKTHDR) == 0) {
650 #if 0
651 printf("non PKTHDR to tcp_respond\n");
652 #endif
653 m_freem(m);
654 return EINVAL;
655 }
656 #ifdef DIAGNOSTIC
657 if (!th0)
658 panic("th0 == NULL in tcp_respond");
659 #endif
660
661 /* get family information from m */
662 switch (mtod(m, struct ip *)->ip_v) {
663 case 4:
664 family = AF_INET;
665 hlen = sizeof(struct ip);
666 ip = mtod(m, struct ip *);
667 break;
668 #ifdef INET6
669 case 6:
670 family = AF_INET6;
671 hlen = sizeof(struct ip6_hdr);
672 ip6 = mtod(m, struct ip6_hdr *);
673 break;
674 #endif
675 default:
676 m_freem(m);
677 return EAFNOSUPPORT;
678 }
679 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
680 tlen = sizeof(*th0);
681 else
682 tlen = th0->th_off << 2;
683
684 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
685 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
686 m->m_len = hlen + tlen;
687 m_freem(m->m_next);
688 m->m_next = NULL;
689 } else {
690 struct mbuf *n;
691
692 #ifdef DIAGNOSTIC
693 if (max_linkhdr + hlen + tlen > MCLBYTES) {
694 m_freem(m);
695 return EMSGSIZE;
696 }
697 #endif
698 MGETHDR(n, M_DONTWAIT, MT_HEADER);
699 if (n && max_linkhdr + hlen + tlen > MHLEN) {
700 MCLGET(n, M_DONTWAIT);
701 if ((n->m_flags & M_EXT) == 0) {
702 m_freem(n);
703 n = NULL;
704 }
705 }
706 if (!n) {
707 m_freem(m);
708 return ENOBUFS;
709 }
710
711 MCLAIM(n, &tcp_tx_mowner);
712 n->m_data += max_linkhdr;
713 n->m_len = hlen + tlen;
714 m_copyback(n, 0, hlen, mtod(m, caddr_t));
715 m_copyback(n, hlen, tlen, (caddr_t)th0);
716
717 m_freem(m);
718 m = n;
719 n = NULL;
720 }
721
722 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
723 switch (family) {
724 case AF_INET:
725 ip = mtod(m, struct ip *);
726 th = (struct tcphdr *)(ip + 1);
727 ip->ip_p = IPPROTO_TCP;
728 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
729 ip->ip_p = IPPROTO_TCP;
730 break;
731 #ifdef INET6
732 case AF_INET6:
733 ip6 = mtod(m, struct ip6_hdr *);
734 th = (struct tcphdr *)(ip6 + 1);
735 ip6->ip6_nxt = IPPROTO_TCP;
736 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
737 ip6->ip6_nxt = IPPROTO_TCP;
738 break;
739 #endif
740 #if 0
741 default:
742 /* noone will visit here */
743 m_freem(m);
744 return EAFNOSUPPORT;
745 #endif
746 }
747 xchg(th->th_dport, th->th_sport, u_int16_t);
748 #undef xchg
749 tlen = 0; /*be friendly with the following code*/
750 }
751 th->th_seq = htonl(seq);
752 th->th_ack = htonl(ack);
753 th->th_x2 = 0;
754 if ((flags & TH_SYN) == 0) {
755 if (tp)
756 win >>= tp->rcv_scale;
757 if (win > TCP_MAXWIN)
758 win = TCP_MAXWIN;
759 th->th_win = htons((u_int16_t)win);
760 th->th_off = sizeof (struct tcphdr) >> 2;
761 tlen += sizeof(*th);
762 } else
763 tlen += th->th_off << 2;
764 m->m_len = hlen + tlen;
765 m->m_pkthdr.len = hlen + tlen;
766 m->m_pkthdr.rcvif = (struct ifnet *) 0;
767 th->th_flags = flags;
768 th->th_urp = 0;
769
770 switch (family) {
771 #ifdef INET
772 case AF_INET:
773 {
774 struct ipovly *ipov = (struct ipovly *)ip;
775 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
776 ipov->ih_len = htons((u_int16_t)tlen);
777
778 th->th_sum = 0;
779 th->th_sum = in_cksum(m, hlen + tlen);
780 ip->ip_len = htons(hlen + tlen);
781 ip->ip_ttl = ip_defttl;
782 break;
783 }
784 #endif
785 #ifdef INET6
786 case AF_INET6:
787 {
788 th->th_sum = 0;
789 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
790 tlen);
791 ip6->ip6_plen = ntohs(tlen);
792 if (tp && tp->t_in6pcb) {
793 struct ifnet *oifp;
794 ro = (struct route *)&tp->t_in6pcb->in6p_route;
795 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
796 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
797 } else
798 ip6->ip6_hlim = ip6_defhlim;
799 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
800 if (ip6_auto_flowlabel) {
801 ip6->ip6_flow |=
802 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
803 }
804 break;
805 }
806 #endif
807 }
808
809 #ifdef IPSEC
810 (void)ipsec_setsocket(m, NULL);
811 #endif /*IPSEC*/
812
813 if (tp != NULL && tp->t_inpcb != NULL) {
814 ro = &tp->t_inpcb->inp_route;
815 #ifdef IPSEC
816 if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
817 m_freem(m);
818 return ENOBUFS;
819 }
820 #endif
821 #ifdef DIAGNOSTIC
822 if (family != AF_INET)
823 panic("tcp_respond: address family mismatch");
824 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
825 panic("tcp_respond: ip_dst %x != inp_faddr %x",
826 ntohl(ip->ip_dst.s_addr),
827 ntohl(tp->t_inpcb->inp_faddr.s_addr));
828 }
829 #endif
830 }
831 #ifdef INET6
832 else if (tp != NULL && tp->t_in6pcb != NULL) {
833 ro = (struct route *)&tp->t_in6pcb->in6p_route;
834 #ifdef IPSEC
835 if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
836 m_freem(m);
837 return ENOBUFS;
838 }
839 #endif
840 #ifdef DIAGNOSTIC
841 if (family == AF_INET) {
842 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
843 panic("tcp_respond: not mapped addr");
844 if (bcmp(&ip->ip_dst,
845 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
846 sizeof(ip->ip_dst)) != 0) {
847 panic("tcp_respond: ip_dst != in6p_faddr");
848 }
849 } else if (family == AF_INET6) {
850 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
851 &tp->t_in6pcb->in6p_faddr))
852 panic("tcp_respond: ip6_dst != in6p_faddr");
853 } else
854 panic("tcp_respond: address family mismatch");
855 #endif
856 }
857 #endif
858 else
859 ro = NULL;
860
861 switch (family) {
862 #ifdef INET
863 case AF_INET:
864 error = ip_output(m, NULL, ro,
865 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
866 NULL);
867 break;
868 #endif
869 #ifdef INET6
870 case AF_INET6:
871 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
872 NULL);
873 break;
874 #endif
875 default:
876 error = EAFNOSUPPORT;
877 break;
878 }
879
880 return (error);
881 }
882
883 /*
884 * Create a new TCP control block, making an
885 * empty reassembly queue and hooking it to the argument
886 * protocol control block.
887 */
888 struct tcpcb *
889 tcp_newtcpcb(family, aux)
890 int family; /* selects inpcb, or in6pcb */
891 void *aux;
892 {
893 struct tcpcb *tp;
894 int i;
895
896 switch (family) {
897 case PF_INET:
898 break;
899 #ifdef INET6
900 case PF_INET6:
901 break;
902 #endif
903 default:
904 return NULL;
905 }
906
907 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
908 if (tp == NULL)
909 return (NULL);
910 bzero((caddr_t)tp, sizeof(struct tcpcb));
911 TAILQ_INIT(&tp->segq);
912 TAILQ_INIT(&tp->timeq);
913 tp->t_family = family; /* may be overridden later on */
914 tp->t_peermss = tcp_mssdflt;
915 tp->t_ourmss = tcp_mssdflt;
916 tp->t_segsz = tcp_mssdflt;
917 LIST_INIT(&tp->t_sc);
918
919 callout_init(&tp->t_delack_ch);
920 for (i = 0; i < TCPT_NTIMERS; i++)
921 TCP_TIMER_INIT(tp, i);
922
923 tp->t_flags = 0;
924 if (tcp_do_rfc1323 && tcp_do_win_scale)
925 tp->t_flags |= TF_REQ_SCALE;
926 if (tcp_do_rfc1323 && tcp_do_timestamps)
927 tp->t_flags |= TF_REQ_TSTMP;
928 if (tcp_do_sack == 2)
929 tp->t_flags |= TF_WILL_SACK;
930 else if (tcp_do_sack == 1)
931 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
932 tp->t_flags |= TF_CANT_TXSACK;
933 switch (family) {
934 case PF_INET:
935 tp->t_inpcb = (struct inpcb *)aux;
936 tp->t_mtudisc = ip_mtudisc;
937 break;
938 #ifdef INET6
939 case PF_INET6:
940 tp->t_in6pcb = (struct in6pcb *)aux;
941 /* for IPv6, always try to run path MTU discovery */
942 tp->t_mtudisc = 1;
943 break;
944 #endif
945 }
946 /*
947 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
948 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
949 * reasonable initial retransmit time.
950 */
951 tp->t_srtt = TCPTV_SRTTBASE;
952 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
953 tp->t_rttmin = TCPTV_MIN;
954 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
955 TCPTV_MIN, TCPTV_REXMTMAX);
956 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
957 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
958 if (family == AF_INET) {
959 struct inpcb *inp = (struct inpcb *)aux;
960 inp->inp_ip.ip_ttl = ip_defttl;
961 inp->inp_ppcb = (caddr_t)tp;
962 }
963 #ifdef INET6
964 else if (family == AF_INET6) {
965 struct in6pcb *in6p = (struct in6pcb *)aux;
966 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
967 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
968 : NULL);
969 in6p->in6p_ppcb = (caddr_t)tp;
970 }
971 #endif
972
973 /*
974 * Initialize our timebase. When we send timestamps, we take
975 * the delta from tcp_now -- this means each connection always
976 * gets a timebase of 0, which makes it, among other things,
977 * more difficult to determine how long a system has been up,
978 * and thus how many TCP sequence increments have occurred.
979 */
980 tp->ts_timebase = tcp_now;
981
982 return (tp);
983 }
984
985 /*
986 * Drop a TCP connection, reporting
987 * the specified error. If connection is synchronized,
988 * then send a RST to peer.
989 */
990 struct tcpcb *
991 tcp_drop(tp, errno)
992 struct tcpcb *tp;
993 int errno;
994 {
995 struct socket *so = NULL;
996
997 #ifdef DIAGNOSTIC
998 if (tp->t_inpcb && tp->t_in6pcb)
999 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1000 #endif
1001 #ifdef INET
1002 if (tp->t_inpcb)
1003 so = tp->t_inpcb->inp_socket;
1004 #endif
1005 #ifdef INET6
1006 if (tp->t_in6pcb)
1007 so = tp->t_in6pcb->in6p_socket;
1008 #endif
1009 if (!so)
1010 return NULL;
1011
1012 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1013 tp->t_state = TCPS_CLOSED;
1014 (void) tcp_output(tp);
1015 tcpstat.tcps_drops++;
1016 } else
1017 tcpstat.tcps_conndrops++;
1018 if (errno == ETIMEDOUT && tp->t_softerror)
1019 errno = tp->t_softerror;
1020 so->so_error = errno;
1021 return (tcp_close(tp));
1022 }
1023
1024 /*
1025 * Close a TCP control block:
1026 * discard all space held by the tcp
1027 * discard internet protocol block
1028 * wake up any sleepers
1029 */
1030 struct tcpcb *
1031 tcp_close(tp)
1032 struct tcpcb *tp;
1033 {
1034 struct inpcb *inp;
1035 #ifdef INET6
1036 struct in6pcb *in6p;
1037 #endif
1038 struct socket *so;
1039 #ifdef RTV_RTT
1040 struct rtentry *rt;
1041 #endif
1042 struct route *ro;
1043
1044 inp = tp->t_inpcb;
1045 #ifdef INET6
1046 in6p = tp->t_in6pcb;
1047 #endif
1048 so = NULL;
1049 ro = NULL;
1050 if (inp) {
1051 so = inp->inp_socket;
1052 ro = &inp->inp_route;
1053 }
1054 #ifdef INET6
1055 else if (in6p) {
1056 so = in6p->in6p_socket;
1057 ro = (struct route *)&in6p->in6p_route;
1058 }
1059 #endif
1060
1061 #ifdef RTV_RTT
1062 /*
1063 * If we sent enough data to get some meaningful characteristics,
1064 * save them in the routing entry. 'Enough' is arbitrarily
1065 * defined as the sendpipesize (default 4K) * 16. This would
1066 * give us 16 rtt samples assuming we only get one sample per
1067 * window (the usual case on a long haul net). 16 samples is
1068 * enough for the srtt filter to converge to within 5% of the correct
1069 * value; fewer samples and we could save a very bogus rtt.
1070 *
1071 * Don't update the default route's characteristics and don't
1072 * update anything that the user "locked".
1073 */
1074 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1075 ro && (rt = ro->ro_rt) &&
1076 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1077 u_long i = 0;
1078
1079 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1080 i = tp->t_srtt *
1081 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1082 if (rt->rt_rmx.rmx_rtt && i)
1083 /*
1084 * filter this update to half the old & half
1085 * the new values, converting scale.
1086 * See route.h and tcp_var.h for a
1087 * description of the scaling constants.
1088 */
1089 rt->rt_rmx.rmx_rtt =
1090 (rt->rt_rmx.rmx_rtt + i) / 2;
1091 else
1092 rt->rt_rmx.rmx_rtt = i;
1093 }
1094 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1095 i = tp->t_rttvar *
1096 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1097 if (rt->rt_rmx.rmx_rttvar && i)
1098 rt->rt_rmx.rmx_rttvar =
1099 (rt->rt_rmx.rmx_rttvar + i) / 2;
1100 else
1101 rt->rt_rmx.rmx_rttvar = i;
1102 }
1103 /*
1104 * update the pipelimit (ssthresh) if it has been updated
1105 * already or if a pipesize was specified & the threshhold
1106 * got below half the pipesize. I.e., wait for bad news
1107 * before we start updating, then update on both good
1108 * and bad news.
1109 */
1110 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1111 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1112 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1113 /*
1114 * convert the limit from user data bytes to
1115 * packets then to packet data bytes.
1116 */
1117 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1118 if (i < 2)
1119 i = 2;
1120 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1121 if (rt->rt_rmx.rmx_ssthresh)
1122 rt->rt_rmx.rmx_ssthresh =
1123 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1124 else
1125 rt->rt_rmx.rmx_ssthresh = i;
1126 }
1127 }
1128 #endif /* RTV_RTT */
1129 /* free the reassembly queue, if any */
1130 TCP_REASS_LOCK(tp);
1131 (void) tcp_freeq(tp);
1132 TCP_REASS_UNLOCK(tp);
1133
1134 tcp_canceltimers(tp);
1135 TCP_CLEAR_DELACK(tp);
1136 syn_cache_cleanup(tp);
1137
1138 if (tp->t_template) {
1139 m_free(tp->t_template);
1140 tp->t_template = NULL;
1141 }
1142 pool_put(&tcpcb_pool, tp);
1143 if (inp) {
1144 inp->inp_ppcb = 0;
1145 soisdisconnected(so);
1146 in_pcbdetach(inp);
1147 }
1148 #ifdef INET6
1149 else if (in6p) {
1150 in6p->in6p_ppcb = 0;
1151 soisdisconnected(so);
1152 in6_pcbdetach(in6p);
1153 }
1154 #endif
1155 tcpstat.tcps_closed++;
1156 return ((struct tcpcb *)0);
1157 }
1158
1159 int
1160 tcp_freeq(tp)
1161 struct tcpcb *tp;
1162 {
1163 struct ipqent *qe;
1164 int rv = 0;
1165 #ifdef TCPREASS_DEBUG
1166 int i = 0;
1167 #endif
1168
1169 TCP_REASS_LOCK_CHECK(tp);
1170
1171 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1172 #ifdef TCPREASS_DEBUG
1173 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1174 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1175 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1176 #endif
1177 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1178 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1179 m_freem(qe->ipqe_m);
1180 pool_put(&ipqent_pool, qe);
1181 rv = 1;
1182 }
1183 return (rv);
1184 }
1185
1186 /*
1187 * Protocol drain routine. Called when memory is in short supply.
1188 */
1189 void
1190 tcp_drain()
1191 {
1192 struct inpcb *inp;
1193 struct tcpcb *tp;
1194
1195 /*
1196 * Free the sequence queue of all TCP connections.
1197 */
1198 inp = CIRCLEQ_FIRST(&tcbtable.inpt_queue);
1199 if (inp) /* XXX */
1200 CIRCLEQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue) {
1201 if ((tp = intotcpcb(inp)) != NULL) {
1202 /*
1203 * We may be called from a device's interrupt
1204 * context. If the tcpcb is already busy,
1205 * just bail out now.
1206 */
1207 if (tcp_reass_lock_try(tp) == 0)
1208 continue;
1209 if (tcp_freeq(tp))
1210 tcpstat.tcps_connsdrained++;
1211 TCP_REASS_UNLOCK(tp);
1212 }
1213 }
1214 }
1215
1216 #ifdef INET6
1217 void
1218 tcp6_drain()
1219 {
1220 struct in6pcb *in6p;
1221 struct tcpcb *tp;
1222 struct in6pcb *head = &tcb6;
1223
1224 /*
1225 * Free the sequence queue of all TCP connections.
1226 */
1227 for (in6p = head->in6p_next; in6p != head; in6p = in6p->in6p_next) {
1228 if ((tp = in6totcpcb(in6p)) != NULL) {
1229 /*
1230 * We may be called from a device's interrupt
1231 * context. If the tcpcb is already busy,
1232 * just bail out now.
1233 */
1234 if (tcp_reass_lock_try(tp) == 0)
1235 continue;
1236 if (tcp_freeq(tp))
1237 tcpstat.tcps_connsdrained++;
1238 TCP_REASS_UNLOCK(tp);
1239 }
1240 }
1241 }
1242 #endif
1243
1244 /*
1245 * Notify a tcp user of an asynchronous error;
1246 * store error as soft error, but wake up user
1247 * (for now, won't do anything until can select for soft error).
1248 */
1249 void
1250 tcp_notify(inp, error)
1251 struct inpcb *inp;
1252 int error;
1253 {
1254 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1255 struct socket *so = inp->inp_socket;
1256
1257 /*
1258 * Ignore some errors if we are hooked up.
1259 * If connection hasn't completed, has retransmitted several times,
1260 * and receives a second error, give up now. This is better
1261 * than waiting a long time to establish a connection that
1262 * can never complete.
1263 */
1264 if (tp->t_state == TCPS_ESTABLISHED &&
1265 (error == EHOSTUNREACH || error == ENETUNREACH ||
1266 error == EHOSTDOWN)) {
1267 return;
1268 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1269 tp->t_rxtshift > 3 && tp->t_softerror)
1270 so->so_error = error;
1271 else
1272 tp->t_softerror = error;
1273 wakeup((caddr_t) &so->so_timeo);
1274 sorwakeup(so);
1275 sowwakeup(so);
1276 }
1277
1278 #ifdef INET6
1279 void
1280 tcp6_notify(in6p, error)
1281 struct in6pcb *in6p;
1282 int error;
1283 {
1284 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1285 struct socket *so = in6p->in6p_socket;
1286
1287 /*
1288 * Ignore some errors if we are hooked up.
1289 * If connection hasn't completed, has retransmitted several times,
1290 * and receives a second error, give up now. This is better
1291 * than waiting a long time to establish a connection that
1292 * can never complete.
1293 */
1294 if (tp->t_state == TCPS_ESTABLISHED &&
1295 (error == EHOSTUNREACH || error == ENETUNREACH ||
1296 error == EHOSTDOWN)) {
1297 return;
1298 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1299 tp->t_rxtshift > 3 && tp->t_softerror)
1300 so->so_error = error;
1301 else
1302 tp->t_softerror = error;
1303 wakeup((caddr_t) &so->so_timeo);
1304 sorwakeup(so);
1305 sowwakeup(so);
1306 }
1307 #endif
1308
1309 #ifdef INET6
1310 void
1311 tcp6_ctlinput(cmd, sa, d)
1312 int cmd;
1313 struct sockaddr *sa;
1314 void *d;
1315 {
1316 struct tcphdr th;
1317 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1318 int nmatch;
1319 struct ip6_hdr *ip6;
1320 const struct sockaddr_in6 *sa6_src = NULL;
1321 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1322 struct mbuf *m;
1323 int off;
1324
1325 if (sa->sa_family != AF_INET6 ||
1326 sa->sa_len != sizeof(struct sockaddr_in6))
1327 return;
1328 if ((unsigned)cmd >= PRC_NCMDS)
1329 return;
1330 else if (cmd == PRC_QUENCH) {
1331 /* XXX there's no PRC_QUENCH in IPv6 */
1332 notify = tcp6_quench;
1333 } else if (PRC_IS_REDIRECT(cmd))
1334 notify = in6_rtchange, d = NULL;
1335 else if (cmd == PRC_MSGSIZE)
1336 ; /* special code is present, see below */
1337 else if (cmd == PRC_HOSTDEAD)
1338 d = NULL;
1339 else if (inet6ctlerrmap[cmd] == 0)
1340 return;
1341
1342 /* if the parameter is from icmp6, decode it. */
1343 if (d != NULL) {
1344 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1345 m = ip6cp->ip6c_m;
1346 ip6 = ip6cp->ip6c_ip6;
1347 off = ip6cp->ip6c_off;
1348 sa6_src = ip6cp->ip6c_src;
1349 } else {
1350 m = NULL;
1351 ip6 = NULL;
1352 sa6_src = &sa6_any;
1353 }
1354
1355 if (ip6) {
1356 /*
1357 * XXX: We assume that when ip6 is non NULL,
1358 * M and OFF are valid.
1359 */
1360
1361 /* check if we can safely examine src and dst ports */
1362 if (m->m_pkthdr.len < off + sizeof(th)) {
1363 if (cmd == PRC_MSGSIZE)
1364 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1365 return;
1366 }
1367
1368 bzero(&th, sizeof(th));
1369 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1370
1371 if (cmd == PRC_MSGSIZE) {
1372 int valid = 0;
1373
1374 /*
1375 * Check to see if we have a valid TCP connection
1376 * corresponding to the address in the ICMPv6 message
1377 * payload.
1378 */
1379 if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
1380 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1381 th.th_sport, 0))
1382 valid++;
1383
1384 /*
1385 * Depending on the value of "valid" and routing table
1386 * size (mtudisc_{hi,lo}wat), we will:
1387 * - recalcurate the new MTU and create the
1388 * corresponding routing entry, or
1389 * - ignore the MTU change notification.
1390 */
1391 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1392
1393 /*
1394 * no need to call in6_pcbnotify, it should have been
1395 * called via callback if necessary
1396 */
1397 return;
1398 }
1399
1400 nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
1401 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1402 if (nmatch == 0 && syn_cache_count &&
1403 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1404 inet6ctlerrmap[cmd] == ENETUNREACH ||
1405 inet6ctlerrmap[cmd] == EHOSTDOWN))
1406 syn_cache_unreach((struct sockaddr *)sa6_src,
1407 sa, &th);
1408 } else {
1409 (void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
1410 0, cmd, NULL, notify);
1411 }
1412 }
1413 #endif
1414
1415 #ifdef INET
1416 /* assumes that ip header and tcp header are contiguous on mbuf */
1417 void *
1418 tcp_ctlinput(cmd, sa, v)
1419 int cmd;
1420 struct sockaddr *sa;
1421 void *v;
1422 {
1423 struct ip *ip = v;
1424 struct tcphdr *th;
1425 struct icmp *icp;
1426 extern const int inetctlerrmap[];
1427 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1428 int errno;
1429 int nmatch;
1430 #ifdef INET6
1431 struct in6_addr src6, dst6;
1432 #endif
1433
1434 if (sa->sa_family != AF_INET ||
1435 sa->sa_len != sizeof(struct sockaddr_in))
1436 return NULL;
1437 if ((unsigned)cmd >= PRC_NCMDS)
1438 return NULL;
1439 errno = inetctlerrmap[cmd];
1440 if (cmd == PRC_QUENCH)
1441 notify = tcp_quench;
1442 else if (PRC_IS_REDIRECT(cmd))
1443 notify = in_rtchange, ip = 0;
1444 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1445 /*
1446 * Check to see if we have a valid TCP connection
1447 * corresponding to the address in the ICMP message
1448 * payload.
1449 *
1450 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1451 */
1452 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1453 #ifdef INET6
1454 memset(&src6, 0, sizeof(src6));
1455 memset(&dst6, 0, sizeof(dst6));
1456 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1457 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1458 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1459 #endif
1460 if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
1461 ip->ip_src, th->th_sport) != NULL)
1462 ;
1463 #ifdef INET6
1464 else if (in6_pcblookup_connect(&tcb6, &dst6,
1465 th->th_dport, &src6, th->th_sport, 0) != NULL)
1466 ;
1467 #endif
1468 else
1469 return NULL;
1470
1471 /*
1472 * Now that we've validated that we are actually communicating
1473 * with the host indicated in the ICMP message, locate the
1474 * ICMP header, recalculate the new MTU, and create the
1475 * corresponding routing entry.
1476 */
1477 icp = (struct icmp *)((caddr_t)ip -
1478 offsetof(struct icmp, icmp_ip));
1479 icmp_mtudisc(icp, ip->ip_dst);
1480
1481 return NULL;
1482 } else if (cmd == PRC_HOSTDEAD)
1483 ip = 0;
1484 else if (errno == 0)
1485 return NULL;
1486 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1487 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1488 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1489 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1490 if (nmatch == 0 && syn_cache_count &&
1491 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1492 inetctlerrmap[cmd] == ENETUNREACH ||
1493 inetctlerrmap[cmd] == EHOSTDOWN)) {
1494 struct sockaddr_in sin;
1495 bzero(&sin, sizeof(sin));
1496 sin.sin_len = sizeof(sin);
1497 sin.sin_family = AF_INET;
1498 sin.sin_port = th->th_sport;
1499 sin.sin_addr = ip->ip_src;
1500 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1501 }
1502
1503 /* XXX mapped address case */
1504 } else
1505 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1506 notify);
1507 return NULL;
1508 }
1509
1510 /*
1511 * When a source quence is received, we are being notifed of congestion.
1512 * Close the congestion window down to the Loss Window (one segment).
1513 * We will gradually open it again as we proceed.
1514 */
1515 void
1516 tcp_quench(inp, errno)
1517 struct inpcb *inp;
1518 int errno;
1519 {
1520 struct tcpcb *tp = intotcpcb(inp);
1521
1522 if (tp)
1523 tp->snd_cwnd = tp->t_segsz;
1524 }
1525 #endif
1526
1527 #ifdef INET6
1528 void
1529 tcp6_quench(in6p, errno)
1530 struct in6pcb *in6p;
1531 int errno;
1532 {
1533 struct tcpcb *tp = in6totcpcb(in6p);
1534
1535 if (tp)
1536 tp->snd_cwnd = tp->t_segsz;
1537 }
1538 #endif
1539
1540 #ifdef INET
1541 /*
1542 * Path MTU Discovery handlers.
1543 */
1544 void
1545 tcp_mtudisc_callback(faddr)
1546 struct in_addr faddr;
1547 {
1548 #ifdef INET6
1549 struct in6_addr in6;
1550 #endif
1551
1552 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1553 #ifdef INET6
1554 memset(&in6, 0, sizeof(in6));
1555 in6.s6_addr16[5] = 0xffff;
1556 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1557 tcp6_mtudisc_callback(&in6);
1558 #endif
1559 }
1560
1561 /*
1562 * On receipt of path MTU corrections, flush old route and replace it
1563 * with the new one. Retransmit all unacknowledged packets, to ensure
1564 * that all packets will be received.
1565 */
1566 void
1567 tcp_mtudisc(inp, errno)
1568 struct inpcb *inp;
1569 int errno;
1570 {
1571 struct tcpcb *tp = intotcpcb(inp);
1572 struct rtentry *rt = in_pcbrtentry(inp);
1573
1574 if (tp != 0) {
1575 if (rt != 0) {
1576 /*
1577 * If this was not a host route, remove and realloc.
1578 */
1579 if ((rt->rt_flags & RTF_HOST) == 0) {
1580 in_rtchange(inp, errno);
1581 if ((rt = in_pcbrtentry(inp)) == 0)
1582 return;
1583 }
1584
1585 /*
1586 * Slow start out of the error condition. We
1587 * use the MTU because we know it's smaller
1588 * than the previously transmitted segment.
1589 *
1590 * Note: This is more conservative than the
1591 * suggestion in draft-floyd-incr-init-win-03.
1592 */
1593 if (rt->rt_rmx.rmx_mtu != 0)
1594 tp->snd_cwnd =
1595 TCP_INITIAL_WINDOW(tcp_init_win,
1596 rt->rt_rmx.rmx_mtu);
1597 }
1598
1599 /*
1600 * Resend unacknowledged packets.
1601 */
1602 tp->snd_nxt = tp->snd_una;
1603 tcp_output(tp);
1604 }
1605 }
1606 #endif
1607
1608 #ifdef INET6
1609 /*
1610 * Path MTU Discovery handlers.
1611 */
1612 void
1613 tcp6_mtudisc_callback(faddr)
1614 struct in6_addr *faddr;
1615 {
1616 struct sockaddr_in6 sin6;
1617
1618 bzero(&sin6, sizeof(sin6));
1619 sin6.sin6_family = AF_INET6;
1620 sin6.sin6_len = sizeof(struct sockaddr_in6);
1621 sin6.sin6_addr = *faddr;
1622 (void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
1623 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1624 }
1625
1626 void
1627 tcp6_mtudisc(in6p, errno)
1628 struct in6pcb *in6p;
1629 int errno;
1630 {
1631 struct tcpcb *tp = in6totcpcb(in6p);
1632 struct rtentry *rt = in6_pcbrtentry(in6p);
1633
1634 if (tp != 0) {
1635 if (rt != 0) {
1636 /*
1637 * If this was not a host route, remove and realloc.
1638 */
1639 if ((rt->rt_flags & RTF_HOST) == 0) {
1640 in6_rtchange(in6p, errno);
1641 if ((rt = in6_pcbrtentry(in6p)) == 0)
1642 return;
1643 }
1644
1645 /*
1646 * Slow start out of the error condition. We
1647 * use the MTU because we know it's smaller
1648 * than the previously transmitted segment.
1649 *
1650 * Note: This is more conservative than the
1651 * suggestion in draft-floyd-incr-init-win-03.
1652 */
1653 if (rt->rt_rmx.rmx_mtu != 0)
1654 tp->snd_cwnd =
1655 TCP_INITIAL_WINDOW(tcp_init_win,
1656 rt->rt_rmx.rmx_mtu);
1657 }
1658
1659 /*
1660 * Resend unacknowledged packets.
1661 */
1662 tp->snd_nxt = tp->snd_una;
1663 tcp_output(tp);
1664 }
1665 }
1666 #endif /* INET6 */
1667
1668 /*
1669 * Compute the MSS to advertise to the peer. Called only during
1670 * the 3-way handshake. If we are the server (peer initiated
1671 * connection), we are called with a pointer to the interface
1672 * on which the SYN packet arrived. If we are the client (we
1673 * initiated connection), we are called with a pointer to the
1674 * interface out which this connection should go.
1675 *
1676 * NOTE: Do not subtract IP option/extension header size nor IPsec
1677 * header size from MSS advertisement. MSS option must hold the maximum
1678 * segment size we can accept, so it must always be:
1679 * max(if mtu) - ip header - tcp header
1680 */
1681 u_long
1682 tcp_mss_to_advertise(ifp, af)
1683 const struct ifnet *ifp;
1684 int af;
1685 {
1686 extern u_long in_maxmtu;
1687 u_long mss = 0;
1688 u_long hdrsiz;
1689
1690 /*
1691 * In order to avoid defeating path MTU discovery on the peer,
1692 * we advertise the max MTU of all attached networks as our MSS,
1693 * per RFC 1191, section 3.1.
1694 *
1695 * We provide the option to advertise just the MTU of
1696 * the interface on which we hope this connection will
1697 * be receiving. If we are responding to a SYN, we
1698 * will have a pretty good idea about this, but when
1699 * initiating a connection there is a bit more doubt.
1700 *
1701 * We also need to ensure that loopback has a large enough
1702 * MSS, as the loopback MTU is never included in in_maxmtu.
1703 */
1704
1705 if (ifp != NULL)
1706 switch (af) {
1707 case AF_INET:
1708 mss = ifp->if_mtu;
1709 break;
1710 #ifdef INET6
1711 case AF_INET6:
1712 mss = IN6_LINKMTU(ifp);
1713 break;
1714 #endif
1715 }
1716
1717 if (tcp_mss_ifmtu == 0)
1718 switch (af) {
1719 case AF_INET:
1720 mss = max(in_maxmtu, mss);
1721 break;
1722 #ifdef INET6
1723 case AF_INET6:
1724 mss = max(in6_maxmtu, mss);
1725 break;
1726 #endif
1727 }
1728
1729 switch (af) {
1730 case AF_INET:
1731 hdrsiz = sizeof(struct ip);
1732 break;
1733 #ifdef INET6
1734 case AF_INET6:
1735 hdrsiz = sizeof(struct ip6_hdr);
1736 break;
1737 #endif
1738 default:
1739 hdrsiz = 0;
1740 break;
1741 }
1742 hdrsiz += sizeof(struct tcphdr);
1743 if (mss > hdrsiz)
1744 mss -= hdrsiz;
1745
1746 mss = max(tcp_mssdflt, mss);
1747 return (mss);
1748 }
1749
1750 /*
1751 * Set connection variables based on the peer's advertised MSS.
1752 * We are passed the TCPCB for the actual connection. If we
1753 * are the server, we are called by the compressed state engine
1754 * when the 3-way handshake is complete. If we are the client,
1755 * we are called when we receive the SYN,ACK from the server.
1756 *
1757 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1758 * before this routine is called!
1759 */
1760 void
1761 tcp_mss_from_peer(tp, offer)
1762 struct tcpcb *tp;
1763 int offer;
1764 {
1765 struct socket *so;
1766 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1767 struct rtentry *rt;
1768 #endif
1769 u_long bufsize;
1770 int mss;
1771
1772 #ifdef DIAGNOSTIC
1773 if (tp->t_inpcb && tp->t_in6pcb)
1774 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1775 #endif
1776 so = NULL;
1777 rt = NULL;
1778 #ifdef INET
1779 if (tp->t_inpcb) {
1780 so = tp->t_inpcb->inp_socket;
1781 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1782 rt = in_pcbrtentry(tp->t_inpcb);
1783 #endif
1784 }
1785 #endif
1786 #ifdef INET6
1787 if (tp->t_in6pcb) {
1788 so = tp->t_in6pcb->in6p_socket;
1789 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1790 rt = in6_pcbrtentry(tp->t_in6pcb);
1791 #endif
1792 }
1793 #endif
1794
1795 /*
1796 * As per RFC1122, use the default MSS value, unless they
1797 * sent us an offer. Do not accept offers less than 32 bytes.
1798 */
1799 mss = tcp_mssdflt;
1800 if (offer)
1801 mss = offer;
1802 mss = max(mss, 32); /* sanity */
1803 tp->t_peermss = mss;
1804 mss -= tcp_optlen(tp);
1805 #ifdef INET
1806 if (tp->t_inpcb)
1807 mss -= ip_optlen(tp->t_inpcb);
1808 #endif
1809 #ifdef INET6
1810 if (tp->t_in6pcb)
1811 mss -= ip6_optlen(tp->t_in6pcb);
1812 #endif
1813
1814 /*
1815 * If there's a pipesize, change the socket buffer to that size.
1816 * Make the socket buffer an integral number of MSS units. If
1817 * the MSS is larger than the socket buffer, artificially decrease
1818 * the MSS.
1819 */
1820 #ifdef RTV_SPIPE
1821 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1822 bufsize = rt->rt_rmx.rmx_sendpipe;
1823 else
1824 #endif
1825 bufsize = so->so_snd.sb_hiwat;
1826 if (bufsize < mss)
1827 mss = bufsize;
1828 else {
1829 bufsize = roundup(bufsize, mss);
1830 if (bufsize > sb_max)
1831 bufsize = sb_max;
1832 (void) sbreserve(&so->so_snd, bufsize);
1833 }
1834 tp->t_segsz = mss;
1835
1836 #ifdef RTV_SSTHRESH
1837 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1838 /*
1839 * There's some sort of gateway or interface buffer
1840 * limit on the path. Use this to set the slow
1841 * start threshold, but set the threshold to no less
1842 * than 2 * MSS.
1843 */
1844 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1845 }
1846 #endif
1847 }
1848
1849 /*
1850 * Processing necessary when a TCP connection is established.
1851 */
1852 void
1853 tcp_established(tp)
1854 struct tcpcb *tp;
1855 {
1856 struct socket *so;
1857 #ifdef RTV_RPIPE
1858 struct rtentry *rt;
1859 #endif
1860 u_long bufsize;
1861
1862 #ifdef DIAGNOSTIC
1863 if (tp->t_inpcb && tp->t_in6pcb)
1864 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1865 #endif
1866 so = NULL;
1867 rt = NULL;
1868 #ifdef INET
1869 if (tp->t_inpcb) {
1870 so = tp->t_inpcb->inp_socket;
1871 #if defined(RTV_RPIPE)
1872 rt = in_pcbrtentry(tp->t_inpcb);
1873 #endif
1874 }
1875 #endif
1876 #ifdef INET6
1877 if (tp->t_in6pcb) {
1878 so = tp->t_in6pcb->in6p_socket;
1879 #if defined(RTV_RPIPE)
1880 rt = in6_pcbrtentry(tp->t_in6pcb);
1881 #endif
1882 }
1883 #endif
1884
1885 tp->t_state = TCPS_ESTABLISHED;
1886 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1887
1888 #ifdef RTV_RPIPE
1889 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1890 bufsize = rt->rt_rmx.rmx_recvpipe;
1891 else
1892 #endif
1893 bufsize = so->so_rcv.sb_hiwat;
1894 if (bufsize > tp->t_ourmss) {
1895 bufsize = roundup(bufsize, tp->t_ourmss);
1896 if (bufsize > sb_max)
1897 bufsize = sb_max;
1898 (void) sbreserve(&so->so_rcv, bufsize);
1899 }
1900 }
1901
1902 /*
1903 * Check if there's an initial rtt or rttvar. Convert from the
1904 * route-table units to scaled multiples of the slow timeout timer.
1905 * Called only during the 3-way handshake.
1906 */
1907 void
1908 tcp_rmx_rtt(tp)
1909 struct tcpcb *tp;
1910 {
1911 #ifdef RTV_RTT
1912 struct rtentry *rt = NULL;
1913 int rtt;
1914
1915 #ifdef DIAGNOSTIC
1916 if (tp->t_inpcb && tp->t_in6pcb)
1917 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1918 #endif
1919 #ifdef INET
1920 if (tp->t_inpcb)
1921 rt = in_pcbrtentry(tp->t_inpcb);
1922 #endif
1923 #ifdef INET6
1924 if (tp->t_in6pcb)
1925 rt = in6_pcbrtentry(tp->t_in6pcb);
1926 #endif
1927 if (rt == NULL)
1928 return;
1929
1930 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1931 /*
1932 * XXX The lock bit for MTU indicates that the value
1933 * is also a minimum value; this is subject to time.
1934 */
1935 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1936 TCPT_RANGESET(tp->t_rttmin,
1937 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1938 TCPTV_MIN, TCPTV_REXMTMAX);
1939 tp->t_srtt = rtt /
1940 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1941 if (rt->rt_rmx.rmx_rttvar) {
1942 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1943 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1944 (TCP_RTTVAR_SHIFT + 2));
1945 } else {
1946 /* Default variation is +- 1 rtt */
1947 tp->t_rttvar =
1948 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1949 }
1950 TCPT_RANGESET(tp->t_rxtcur,
1951 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1952 tp->t_rttmin, TCPTV_REXMTMAX);
1953 }
1954 #endif
1955 }
1956
1957 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1958 #if NRND > 0
1959 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
1960 #endif
1961
1962 /*
1963 * Get a new sequence value given a tcp control block
1964 */
1965 tcp_seq
1966 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
1967 {
1968
1969 #ifdef INET
1970 if (tp->t_inpcb != NULL) {
1971 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
1972 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
1973 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
1974 addin));
1975 }
1976 #endif
1977 #ifdef INET6
1978 if (tp->t_in6pcb != NULL) {
1979 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
1980 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
1981 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
1982 addin));
1983 }
1984 #endif
1985 /* Not possible. */
1986 panic("tcp_new_iss");
1987 }
1988
1989 /*
1990 * This routine actually generates a new TCP initial sequence number.
1991 */
1992 tcp_seq
1993 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
1994 size_t addrsz, tcp_seq addin)
1995 {
1996 tcp_seq tcp_iss;
1997
1998 #if NRND > 0
1999 static int beenhere;
2000
2001 /*
2002 * If we haven't been here before, initialize our cryptographic
2003 * hash secret.
2004 */
2005 if (beenhere == 0) {
2006 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2007 RND_EXTRACT_ANY);
2008 beenhere = 1;
2009 }
2010
2011 if (tcp_do_rfc1948) {
2012 MD5_CTX ctx;
2013 u_int8_t hash[16]; /* XXX MD5 knowledge */
2014
2015 /*
2016 * Compute the base value of the ISS. It is a hash
2017 * of (saddr, sport, daddr, dport, secret).
2018 */
2019 MD5Init(&ctx);
2020
2021 MD5Update(&ctx, (u_char *) laddr, addrsz);
2022 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2023
2024 MD5Update(&ctx, (u_char *) faddr, addrsz);
2025 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2026
2027 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2028
2029 MD5Final(hash, &ctx);
2030
2031 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2032
2033 /*
2034 * Now increment our "timer", and add it in to
2035 * the computed value.
2036 *
2037 * XXX Use `addin'?
2038 * XXX TCP_ISSINCR too large to use?
2039 */
2040 tcp_iss_seq += TCP_ISSINCR;
2041 #ifdef TCPISS_DEBUG
2042 printf("ISS hash 0x%08x, ", tcp_iss);
2043 #endif
2044 tcp_iss += tcp_iss_seq + addin;
2045 #ifdef TCPISS_DEBUG
2046 printf("new ISS 0x%08x\n", tcp_iss);
2047 #endif
2048 } else
2049 #endif /* NRND > 0 */
2050 {
2051 /*
2052 * Randomize.
2053 */
2054 #if NRND > 0
2055 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2056 #else
2057 tcp_iss = arc4random();
2058 #endif
2059
2060 /*
2061 * If we were asked to add some amount to a known value,
2062 * we will take a random value obtained above, mask off
2063 * the upper bits, and add in the known value. We also
2064 * add in a constant to ensure that we are at least a
2065 * certain distance from the original value.
2066 *
2067 * This is used when an old connection is in timed wait
2068 * and we have a new one coming in, for instance.
2069 */
2070 if (addin != 0) {
2071 #ifdef TCPISS_DEBUG
2072 printf("Random %08x, ", tcp_iss);
2073 #endif
2074 tcp_iss &= TCP_ISS_RANDOM_MASK;
2075 tcp_iss += addin + TCP_ISSINCR;
2076 #ifdef TCPISS_DEBUG
2077 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2078 #endif
2079 } else {
2080 tcp_iss &= TCP_ISS_RANDOM_MASK;
2081 tcp_iss += tcp_iss_seq;
2082 tcp_iss_seq += TCP_ISSINCR;
2083 #ifdef TCPISS_DEBUG
2084 printf("ISS %08x\n", tcp_iss);
2085 #endif
2086 }
2087 }
2088
2089 if (tcp_compat_42) {
2090 /*
2091 * Limit it to the positive range for really old TCP
2092 * implementations.
2093 * Just AND off the top bit instead of checking if
2094 * is set first - saves a branch 50% of the time.
2095 */
2096 tcp_iss &= 0x7fffffff; /* XXX */
2097 }
2098
2099 return (tcp_iss);
2100 }
2101
2102 #ifdef IPSEC
2103 /* compute ESP/AH header size for TCP, including outer IP header. */
2104 size_t
2105 ipsec4_hdrsiz_tcp(tp)
2106 struct tcpcb *tp;
2107 {
2108 struct inpcb *inp;
2109 size_t hdrsiz;
2110
2111 /* XXX mapped addr case (tp->t_in6pcb) */
2112 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2113 return 0;
2114 switch (tp->t_family) {
2115 case AF_INET:
2116 /* XXX: should use currect direction. */
2117 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2118 break;
2119 default:
2120 hdrsiz = 0;
2121 break;
2122 }
2123
2124 return hdrsiz;
2125 }
2126
2127 #ifdef INET6
2128 size_t
2129 ipsec6_hdrsiz_tcp(tp)
2130 struct tcpcb *tp;
2131 {
2132 struct in6pcb *in6p;
2133 size_t hdrsiz;
2134
2135 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2136 return 0;
2137 switch (tp->t_family) {
2138 case AF_INET6:
2139 /* XXX: should use currect direction. */
2140 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2141 break;
2142 case AF_INET:
2143 /* mapped address case - tricky */
2144 default:
2145 hdrsiz = 0;
2146 break;
2147 }
2148
2149 return hdrsiz;
2150 }
2151 #endif
2152 #endif /*IPSEC*/
2153
2154 /*
2155 * Determine the length of the TCP options for this connection.
2156 *
2157 * XXX: What do we do for SACK, when we add that? Just reserve
2158 * all of the space? Otherwise we can't exactly be incrementing
2159 * cwnd by an amount that varies depending on the amount we last
2160 * had to SACK!
2161 */
2162
2163 u_int
2164 tcp_optlen(tp)
2165 struct tcpcb *tp;
2166 {
2167 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2168 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2169 return TCPOLEN_TSTAMP_APPA;
2170 else
2171 return 0;
2172 }
2173