Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.140
      1 /*	$NetBSD: tcp_subr.c,v 1.140 2003/06/23 11:02:15 martin Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. All advertising materials mentioning features or use of this software
     82  *    must display the following acknowledgement:
     83  *	This product includes software developed by the University of
     84  *	California, Berkeley and its contributors.
     85  * 4. Neither the name of the University nor the names of its contributors
     86  *    may be used to endorse or promote products derived from this software
     87  *    without specific prior written permission.
     88  *
     89  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     90  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     91  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     92  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     93  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     94  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     95  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     96  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     97  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     98  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     99  * SUCH DAMAGE.
    100  *
    101  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
    102  */
    103 
    104 #include <sys/cdefs.h>
    105 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.140 2003/06/23 11:02:15 martin Exp $");
    106 
    107 #include "opt_inet.h"
    108 #include "opt_ipsec.h"
    109 #include "opt_tcp_compat_42.h"
    110 #include "opt_inet_csum.h"
    111 #include "opt_mbuftrace.h"
    112 #include "rnd.h"
    113 
    114 #include <sys/param.h>
    115 #include <sys/proc.h>
    116 #include <sys/systm.h>
    117 #include <sys/malloc.h>
    118 #include <sys/mbuf.h>
    119 #include <sys/socket.h>
    120 #include <sys/socketvar.h>
    121 #include <sys/protosw.h>
    122 #include <sys/errno.h>
    123 #include <sys/kernel.h>
    124 #include <sys/pool.h>
    125 #if NRND > 0
    126 #include <sys/md5.h>
    127 #include <sys/rnd.h>
    128 #endif
    129 
    130 #include <net/route.h>
    131 #include <net/if.h>
    132 
    133 #include <netinet/in.h>
    134 #include <netinet/in_systm.h>
    135 #include <netinet/ip.h>
    136 #include <netinet/in_pcb.h>
    137 #include <netinet/ip_var.h>
    138 #include <netinet/ip_icmp.h>
    139 
    140 #ifdef INET6
    141 #ifndef INET
    142 #include <netinet/in.h>
    143 #endif
    144 #include <netinet/ip6.h>
    145 #include <netinet6/in6_pcb.h>
    146 #include <netinet6/ip6_var.h>
    147 #include <netinet6/in6_var.h>
    148 #include <netinet6/ip6protosw.h>
    149 #include <netinet/icmp6.h>
    150 #include <netinet6/nd6.h>
    151 #endif
    152 
    153 #include <netinet/tcp.h>
    154 #include <netinet/tcp_fsm.h>
    155 #include <netinet/tcp_seq.h>
    156 #include <netinet/tcp_timer.h>
    157 #include <netinet/tcp_var.h>
    158 #include <netinet/tcpip.h>
    159 
    160 #ifdef IPSEC
    161 #include <netinet6/ipsec.h>
    162 #endif /*IPSEC*/
    163 
    164 #ifdef INET6
    165 struct in6pcb tcb6;
    166 #endif
    167 
    168 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    169 struct	tcpstat tcpstat;	/* tcp statistics */
    170 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
    171 
    172 /* patchable/settable parameters for tcp */
    173 int 	tcp_mssdflt = TCP_MSS;
    174 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    175 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    176 #if NRND > 0
    177 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    178 #endif
    179 int	tcp_do_sack = 1;	/* selective acknowledgement */
    180 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    181 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    182 int	tcp_do_newreno = 0;	/* Use the New Reno algorithms */
    183 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    184 int	tcp_init_win = 1;	/* initial slow start window */
    185 int	tcp_init_win_local = 4;	/* initial slow start window for local nets */
    186 int	tcp_mss_ifmtu = 0;
    187 #ifdef TCP_COMPAT_42
    188 int	tcp_compat_42 = 1;
    189 #else
    190 int	tcp_compat_42 = 0;
    191 #endif
    192 int	tcp_rst_ppslim = 100;	/* 100pps */
    193 
    194 /* tcb hash */
    195 #ifndef TCBHASHSIZE
    196 #define	TCBHASHSIZE	128
    197 #endif
    198 int	tcbhashsize = TCBHASHSIZE;
    199 
    200 /* syn hash parameters */
    201 #define	TCP_SYN_HASH_SIZE	293
    202 #define	TCP_SYN_BUCKET_SIZE	35
    203 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    204 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    205 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    206 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    207 
    208 int	tcp_freeq __P((struct tcpcb *));
    209 
    210 #ifdef INET
    211 void	tcp_mtudisc_callback __P((struct in_addr));
    212 #endif
    213 #ifdef INET6
    214 void	tcp6_mtudisc_callback __P((struct in6_addr *));
    215 #endif
    216 
    217 void	tcp_mtudisc __P((struct inpcb *, int));
    218 #ifdef INET6
    219 void	tcp6_mtudisc __P((struct in6pcb *, int));
    220 #endif
    221 
    222 struct pool tcpcb_pool;
    223 
    224 #ifdef TCP_CSUM_COUNTERS
    225 #include <sys/device.h>
    226 
    227 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    228     NULL, "tcp", "hwcsum bad");
    229 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    230     NULL, "tcp", "hwcsum ok");
    231 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    232     NULL, "tcp", "hwcsum data");
    233 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    234     NULL, "tcp", "swcsum");
    235 #endif /* TCP_CSUM_COUNTERS */
    236 
    237 #ifdef TCP_OUTPUT_COUNTERS
    238 #include <sys/device.h>
    239 
    240 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    241     NULL, "tcp", "output big header");
    242 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    243     NULL, "tcp", "output copy small");
    244 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    245     NULL, "tcp", "output copy big");
    246 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    247     NULL, "tcp", "output reference big");
    248 #endif /* TCP_OUTPUT_COUNTERS */
    249 
    250 #ifdef TCP_REASS_COUNTERS
    251 #include <sys/device.h>
    252 
    253 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    254     NULL, "tcp_reass", "calls");
    255 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    256     &tcp_reass_, "tcp_reass", "insert into empty queue");
    257 struct evcnt tcp_reass_iteration[8] = {
    258     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    259     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    260     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    261     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    262     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    263     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    264     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    265     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    266 };
    267 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    268     &tcp_reass_, "tcp_reass", "prepend to first");
    269 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    270     &tcp_reass_, "tcp_reass", "prepend");
    271 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    272     &tcp_reass_, "tcp_reass", "insert");
    273 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    274     &tcp_reass_, "tcp_reass", "insert at tail");
    275 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    276     &tcp_reass_, "tcp_reass", "append");
    277 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    278     &tcp_reass_, "tcp_reass", "append to tail fragment");
    279 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    280     &tcp_reass_, "tcp_reass", "overlap at end");
    281 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    282     &tcp_reass_, "tcp_reass", "overlap at start");
    283 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    284     &tcp_reass_, "tcp_reass", "duplicate segment");
    285 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    286     &tcp_reass_, "tcp_reass", "duplicate fragment");
    287 
    288 #endif /* TCP_REASS_COUNTERS */
    289 
    290 #ifdef MBUFTRACE
    291 struct mowner tcp_mowner = { "tcp" };
    292 struct mowner tcp_rx_mowner = { "tcp", "rx" };
    293 struct mowner tcp_tx_mowner = { "tcp", "tx" };
    294 #endif
    295 
    296 /*
    297  * Tcp initialization
    298  */
    299 void
    300 tcp_init()
    301 {
    302 	int hlen;
    303 
    304 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
    305 	    NULL);
    306 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    307 #ifdef INET6
    308 	tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
    309 #endif
    310 
    311 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    312 #ifdef INET6
    313 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    314 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    315 #endif
    316 	if (max_protohdr < hlen)
    317 		max_protohdr = hlen;
    318 	if (max_linkhdr + hlen > MHLEN)
    319 		panic("tcp_init");
    320 
    321 #ifdef INET
    322 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    323 #endif
    324 #ifdef INET6
    325 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    326 #endif
    327 
    328 	/* Initialize timer state. */
    329 	tcp_timer_init();
    330 
    331 	/* Initialize the compressed state engine. */
    332 	syn_cache_init();
    333 
    334 #ifdef TCP_CSUM_COUNTERS
    335 	evcnt_attach_static(&tcp_hwcsum_bad);
    336 	evcnt_attach_static(&tcp_hwcsum_ok);
    337 	evcnt_attach_static(&tcp_hwcsum_data);
    338 	evcnt_attach_static(&tcp_swcsum);
    339 #endif /* TCP_CSUM_COUNTERS */
    340 
    341 #ifdef TCP_OUTPUT_COUNTERS
    342 	evcnt_attach_static(&tcp_output_bigheader);
    343 	evcnt_attach_static(&tcp_output_copysmall);
    344 	evcnt_attach_static(&tcp_output_copybig);
    345 	evcnt_attach_static(&tcp_output_refbig);
    346 #endif /* TCP_OUTPUT_COUNTERS */
    347 
    348 #ifdef TCP_REASS_COUNTERS
    349 	evcnt_attach_static(&tcp_reass_);
    350 	evcnt_attach_static(&tcp_reass_empty);
    351 	evcnt_attach_static(&tcp_reass_iteration[0]);
    352 	evcnt_attach_static(&tcp_reass_iteration[1]);
    353 	evcnt_attach_static(&tcp_reass_iteration[2]);
    354 	evcnt_attach_static(&tcp_reass_iteration[3]);
    355 	evcnt_attach_static(&tcp_reass_iteration[4]);
    356 	evcnt_attach_static(&tcp_reass_iteration[5]);
    357 	evcnt_attach_static(&tcp_reass_iteration[6]);
    358 	evcnt_attach_static(&tcp_reass_iteration[7]);
    359 	evcnt_attach_static(&tcp_reass_prependfirst);
    360 	evcnt_attach_static(&tcp_reass_prepend);
    361 	evcnt_attach_static(&tcp_reass_insert);
    362 	evcnt_attach_static(&tcp_reass_inserttail);
    363 	evcnt_attach_static(&tcp_reass_append);
    364 	evcnt_attach_static(&tcp_reass_appendtail);
    365 	evcnt_attach_static(&tcp_reass_overlaptail);
    366 	evcnt_attach_static(&tcp_reass_overlapfront);
    367 	evcnt_attach_static(&tcp_reass_segdup);
    368 	evcnt_attach_static(&tcp_reass_fragdup);
    369 #endif /* TCP_REASS_COUNTERS */
    370 
    371 	MOWNER_ATTACH(&tcp_tx_mowner);
    372 	MOWNER_ATTACH(&tcp_rx_mowner);
    373 	MOWNER_ATTACH(&tcp_mowner);
    374 }
    375 
    376 /*
    377  * Create template to be used to send tcp packets on a connection.
    378  * Call after host entry created, allocates an mbuf and fills
    379  * in a skeletal tcp/ip header, minimizing the amount of work
    380  * necessary when the connection is used.
    381  */
    382 struct mbuf *
    383 tcp_template(tp)
    384 	struct tcpcb *tp;
    385 {
    386 	struct inpcb *inp = tp->t_inpcb;
    387 #ifdef INET6
    388 	struct in6pcb *in6p = tp->t_in6pcb;
    389 #endif
    390 	struct tcphdr *n;
    391 	struct mbuf *m;
    392 	int hlen;
    393 
    394 	switch (tp->t_family) {
    395 	case AF_INET:
    396 		hlen = sizeof(struct ip);
    397 		if (inp)
    398 			break;
    399 #ifdef INET6
    400 		if (in6p) {
    401 			/* mapped addr case */
    402 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    403 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    404 				break;
    405 		}
    406 #endif
    407 		return NULL;	/*EINVAL*/
    408 #ifdef INET6
    409 	case AF_INET6:
    410 		hlen = sizeof(struct ip6_hdr);
    411 		if (in6p) {
    412 			/* more sainty check? */
    413 			break;
    414 		}
    415 		return NULL;	/*EINVAL*/
    416 #endif
    417 	default:
    418 		hlen = 0;	/*pacify gcc*/
    419 		return NULL;	/*EAFNOSUPPORT*/
    420 	}
    421 #ifdef DIAGNOSTIC
    422 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    423 		panic("mclbytes too small for t_template");
    424 #endif
    425 	m = tp->t_template;
    426 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    427 		;
    428 	else {
    429 		if (m)
    430 			m_freem(m);
    431 		m = tp->t_template = NULL;
    432 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    433 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    434 			MCLGET(m, M_DONTWAIT);
    435 			if ((m->m_flags & M_EXT) == 0) {
    436 				m_free(m);
    437 				m = NULL;
    438 			}
    439 		}
    440 		if (m == NULL)
    441 			return NULL;
    442 		MCLAIM(m, &tcp_mowner);
    443 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    444 	}
    445 
    446 	bzero(mtod(m, caddr_t), m->m_len);
    447 
    448 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
    449 
    450 	switch (tp->t_family) {
    451 	case AF_INET:
    452 	    {
    453 		struct ipovly *ipov;
    454 		mtod(m, struct ip *)->ip_v = 4;
    455 		ipov = mtod(m, struct ipovly *);
    456 		ipov->ih_pr = IPPROTO_TCP;
    457 		ipov->ih_len = htons(sizeof(struct tcphdr));
    458 		if (inp) {
    459 			ipov->ih_src = inp->inp_laddr;
    460 			ipov->ih_dst = inp->inp_faddr;
    461 		}
    462 #ifdef INET6
    463 		else if (in6p) {
    464 			/* mapped addr case */
    465 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    466 				sizeof(ipov->ih_src));
    467 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    468 				sizeof(ipov->ih_dst));
    469 		}
    470 #endif
    471 		/*
    472 		 * Compute the pseudo-header portion of the checksum
    473 		 * now.  We incrementally add in the TCP option and
    474 		 * payload lengths later, and then compute the TCP
    475 		 * checksum right before the packet is sent off onto
    476 		 * the wire.
    477 		 */
    478 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    479 		    ipov->ih_dst.s_addr,
    480 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    481 		break;
    482 	    }
    483 #ifdef INET6
    484 	case AF_INET6:
    485 	    {
    486 		struct ip6_hdr *ip6;
    487 		mtod(m, struct ip *)->ip_v = 6;
    488 		ip6 = mtod(m, struct ip6_hdr *);
    489 		ip6->ip6_nxt = IPPROTO_TCP;
    490 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    491 		ip6->ip6_src = in6p->in6p_laddr;
    492 		ip6->ip6_dst = in6p->in6p_faddr;
    493 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    494 		if (ip6_auto_flowlabel) {
    495 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    496 			ip6->ip6_flow |=
    497 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
    498 		}
    499 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    500 		ip6->ip6_vfc |= IPV6_VERSION;
    501 
    502 		/*
    503 		 * Compute the pseudo-header portion of the checksum
    504 		 * now.  We incrementally add in the TCP option and
    505 		 * payload lengths later, and then compute the TCP
    506 		 * checksum right before the packet is sent off onto
    507 		 * the wire.
    508 		 */
    509 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    510 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    511 		    htonl(IPPROTO_TCP));
    512 		break;
    513 	    }
    514 #endif
    515 	}
    516 	if (inp) {
    517 		n->th_sport = inp->inp_lport;
    518 		n->th_dport = inp->inp_fport;
    519 	}
    520 #ifdef INET6
    521 	else if (in6p) {
    522 		n->th_sport = in6p->in6p_lport;
    523 		n->th_dport = in6p->in6p_fport;
    524 	}
    525 #endif
    526 	n->th_seq = 0;
    527 	n->th_ack = 0;
    528 	n->th_x2 = 0;
    529 	n->th_off = 5;
    530 	n->th_flags = 0;
    531 	n->th_win = 0;
    532 	n->th_urp = 0;
    533 	return (m);
    534 }
    535 
    536 /*
    537  * Send a single message to the TCP at address specified by
    538  * the given TCP/IP header.  If m == 0, then we make a copy
    539  * of the tcpiphdr at ti and send directly to the addressed host.
    540  * This is used to force keep alive messages out using the TCP
    541  * template for a connection tp->t_template.  If flags are given
    542  * then we send a message back to the TCP which originated the
    543  * segment ti, and discard the mbuf containing it and any other
    544  * attached mbufs.
    545  *
    546  * In any case the ack and sequence number of the transmitted
    547  * segment are as specified by the parameters.
    548  */
    549 int
    550 tcp_respond(tp, template, m, th0, ack, seq, flags)
    551 	struct tcpcb *tp;
    552 	struct mbuf *template;
    553 	struct mbuf *m;
    554 	struct tcphdr *th0;
    555 	tcp_seq ack, seq;
    556 	int flags;
    557 {
    558 	struct route *ro;
    559 	int error, tlen, win = 0;
    560 	int hlen;
    561 	struct ip *ip;
    562 #ifdef INET6
    563 	struct ip6_hdr *ip6;
    564 #endif
    565 	int family;	/* family on packet, not inpcb/in6pcb! */
    566 	struct tcphdr *th;
    567 
    568 	if (tp != NULL && (flags & TH_RST) == 0) {
    569 #ifdef DIAGNOSTIC
    570 		if (tp->t_inpcb && tp->t_in6pcb)
    571 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    572 #endif
    573 #ifdef INET
    574 		if (tp->t_inpcb)
    575 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    576 #endif
    577 #ifdef INET6
    578 		if (tp->t_in6pcb)
    579 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    580 #endif
    581 	}
    582 
    583 	th = NULL;	/* Quell uninitialized warning */
    584 	ip = NULL;
    585 #ifdef INET6
    586 	ip6 = NULL;
    587 #endif
    588 	if (m == 0) {
    589 		if (!template)
    590 			return EINVAL;
    591 
    592 		/* get family information from template */
    593 		switch (mtod(template, struct ip *)->ip_v) {
    594 		case 4:
    595 			family = AF_INET;
    596 			hlen = sizeof(struct ip);
    597 			break;
    598 #ifdef INET6
    599 		case 6:
    600 			family = AF_INET6;
    601 			hlen = sizeof(struct ip6_hdr);
    602 			break;
    603 #endif
    604 		default:
    605 			return EAFNOSUPPORT;
    606 		}
    607 
    608 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    609 		if (m) {
    610 			MCLAIM(m, &tcp_tx_mowner);
    611 			MCLGET(m, M_DONTWAIT);
    612 			if ((m->m_flags & M_EXT) == 0) {
    613 				m_free(m);
    614 				m = NULL;
    615 			}
    616 		}
    617 		if (m == NULL)
    618 			return (ENOBUFS);
    619 
    620 		if (tcp_compat_42)
    621 			tlen = 1;
    622 		else
    623 			tlen = 0;
    624 
    625 		m->m_data += max_linkhdr;
    626 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
    627 			template->m_len);
    628 		switch (family) {
    629 		case AF_INET:
    630 			ip = mtod(m, struct ip *);
    631 			th = (struct tcphdr *)(ip + 1);
    632 			break;
    633 #ifdef INET6
    634 		case AF_INET6:
    635 			ip6 = mtod(m, struct ip6_hdr *);
    636 			th = (struct tcphdr *)(ip6 + 1);
    637 			break;
    638 #endif
    639 #if 0
    640 		default:
    641 			/* noone will visit here */
    642 			m_freem(m);
    643 			return EAFNOSUPPORT;
    644 #endif
    645 		}
    646 		flags = TH_ACK;
    647 	} else {
    648 
    649 		if ((m->m_flags & M_PKTHDR) == 0) {
    650 #if 0
    651 			printf("non PKTHDR to tcp_respond\n");
    652 #endif
    653 			m_freem(m);
    654 			return EINVAL;
    655 		}
    656 #ifdef DIAGNOSTIC
    657 		if (!th0)
    658 			panic("th0 == NULL in tcp_respond");
    659 #endif
    660 
    661 		/* get family information from m */
    662 		switch (mtod(m, struct ip *)->ip_v) {
    663 		case 4:
    664 			family = AF_INET;
    665 			hlen = sizeof(struct ip);
    666 			ip = mtod(m, struct ip *);
    667 			break;
    668 #ifdef INET6
    669 		case 6:
    670 			family = AF_INET6;
    671 			hlen = sizeof(struct ip6_hdr);
    672 			ip6 = mtod(m, struct ip6_hdr *);
    673 			break;
    674 #endif
    675 		default:
    676 			m_freem(m);
    677 			return EAFNOSUPPORT;
    678 		}
    679 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    680 			tlen = sizeof(*th0);
    681 		else
    682 			tlen = th0->th_off << 2;
    683 
    684 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    685 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
    686 			m->m_len = hlen + tlen;
    687 			m_freem(m->m_next);
    688 			m->m_next = NULL;
    689 		} else {
    690 			struct mbuf *n;
    691 
    692 #ifdef DIAGNOSTIC
    693 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    694 				m_freem(m);
    695 				return EMSGSIZE;
    696 			}
    697 #endif
    698 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    699 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    700 				MCLGET(n, M_DONTWAIT);
    701 				if ((n->m_flags & M_EXT) == 0) {
    702 					m_freem(n);
    703 					n = NULL;
    704 				}
    705 			}
    706 			if (!n) {
    707 				m_freem(m);
    708 				return ENOBUFS;
    709 			}
    710 
    711 			MCLAIM(n, &tcp_tx_mowner);
    712 			n->m_data += max_linkhdr;
    713 			n->m_len = hlen + tlen;
    714 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
    715 			m_copyback(n, hlen, tlen, (caddr_t)th0);
    716 
    717 			m_freem(m);
    718 			m = n;
    719 			n = NULL;
    720 		}
    721 
    722 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    723 		switch (family) {
    724 		case AF_INET:
    725 			ip = mtod(m, struct ip *);
    726 			th = (struct tcphdr *)(ip + 1);
    727 			ip->ip_p = IPPROTO_TCP;
    728 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    729 			ip->ip_p = IPPROTO_TCP;
    730 			break;
    731 #ifdef INET6
    732 		case AF_INET6:
    733 			ip6 = mtod(m, struct ip6_hdr *);
    734 			th = (struct tcphdr *)(ip6 + 1);
    735 			ip6->ip6_nxt = IPPROTO_TCP;
    736 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    737 			ip6->ip6_nxt = IPPROTO_TCP;
    738 			break;
    739 #endif
    740 #if 0
    741 		default:
    742 			/* noone will visit here */
    743 			m_freem(m);
    744 			return EAFNOSUPPORT;
    745 #endif
    746 		}
    747 		xchg(th->th_dport, th->th_sport, u_int16_t);
    748 #undef xchg
    749 		tlen = 0;	/*be friendly with the following code*/
    750 	}
    751 	th->th_seq = htonl(seq);
    752 	th->th_ack = htonl(ack);
    753 	th->th_x2 = 0;
    754 	if ((flags & TH_SYN) == 0) {
    755 		if (tp)
    756 			win >>= tp->rcv_scale;
    757 		if (win > TCP_MAXWIN)
    758 			win = TCP_MAXWIN;
    759 		th->th_win = htons((u_int16_t)win);
    760 		th->th_off = sizeof (struct tcphdr) >> 2;
    761 		tlen += sizeof(*th);
    762 	} else
    763 		tlen += th->th_off << 2;
    764 	m->m_len = hlen + tlen;
    765 	m->m_pkthdr.len = hlen + tlen;
    766 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    767 	th->th_flags = flags;
    768 	th->th_urp = 0;
    769 
    770 	switch (family) {
    771 #ifdef INET
    772 	case AF_INET:
    773 	    {
    774 		struct ipovly *ipov = (struct ipovly *)ip;
    775 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    776 		ipov->ih_len = htons((u_int16_t)tlen);
    777 
    778 		th->th_sum = 0;
    779 		th->th_sum = in_cksum(m, hlen + tlen);
    780 		ip->ip_len = htons(hlen + tlen);
    781 		ip->ip_ttl = ip_defttl;
    782 		break;
    783 	    }
    784 #endif
    785 #ifdef INET6
    786 	case AF_INET6:
    787 	    {
    788 		th->th_sum = 0;
    789 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    790 				tlen);
    791 		ip6->ip6_plen = ntohs(tlen);
    792 		if (tp && tp->t_in6pcb) {
    793 			struct ifnet *oifp;
    794 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    795 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    796 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    797 		} else
    798 			ip6->ip6_hlim = ip6_defhlim;
    799 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    800 		if (ip6_auto_flowlabel) {
    801 			ip6->ip6_flow |=
    802 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
    803 		}
    804 		break;
    805 	    }
    806 #endif
    807 	}
    808 
    809 #ifdef IPSEC
    810 	(void)ipsec_setsocket(m, NULL);
    811 #endif /*IPSEC*/
    812 
    813 	if (tp != NULL && tp->t_inpcb != NULL) {
    814 		ro = &tp->t_inpcb->inp_route;
    815 #ifdef IPSEC
    816 		if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
    817 			m_freem(m);
    818 			return ENOBUFS;
    819 		}
    820 #endif
    821 #ifdef DIAGNOSTIC
    822 		if (family != AF_INET)
    823 			panic("tcp_respond: address family mismatch");
    824 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    825 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    826 			    ntohl(ip->ip_dst.s_addr),
    827 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    828 		}
    829 #endif
    830 	}
    831 #ifdef INET6
    832 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    833 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    834 #ifdef IPSEC
    835 		if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
    836 			m_freem(m);
    837 			return ENOBUFS;
    838 		}
    839 #endif
    840 #ifdef DIAGNOSTIC
    841 		if (family == AF_INET) {
    842 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    843 				panic("tcp_respond: not mapped addr");
    844 			if (bcmp(&ip->ip_dst,
    845 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    846 			    sizeof(ip->ip_dst)) != 0) {
    847 				panic("tcp_respond: ip_dst != in6p_faddr");
    848 			}
    849 		} else if (family == AF_INET6) {
    850 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    851 			    &tp->t_in6pcb->in6p_faddr))
    852 				panic("tcp_respond: ip6_dst != in6p_faddr");
    853 		} else
    854 			panic("tcp_respond: address family mismatch");
    855 #endif
    856 	}
    857 #endif
    858 	else
    859 		ro = NULL;
    860 
    861 	switch (family) {
    862 #ifdef INET
    863 	case AF_INET:
    864 		error = ip_output(m, NULL, ro,
    865 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    866 		    NULL);
    867 		break;
    868 #endif
    869 #ifdef INET6
    870 	case AF_INET6:
    871 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
    872 		    NULL);
    873 		break;
    874 #endif
    875 	default:
    876 		error = EAFNOSUPPORT;
    877 		break;
    878 	}
    879 
    880 	return (error);
    881 }
    882 
    883 /*
    884  * Create a new TCP control block, making an
    885  * empty reassembly queue and hooking it to the argument
    886  * protocol control block.
    887  */
    888 struct tcpcb *
    889 tcp_newtcpcb(family, aux)
    890 	int family;	/* selects inpcb, or in6pcb */
    891 	void *aux;
    892 {
    893 	struct tcpcb *tp;
    894 	int i;
    895 
    896 	switch (family) {
    897 	case PF_INET:
    898 		break;
    899 #ifdef INET6
    900 	case PF_INET6:
    901 		break;
    902 #endif
    903 	default:
    904 		return NULL;
    905 	}
    906 
    907 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    908 	if (tp == NULL)
    909 		return (NULL);
    910 	bzero((caddr_t)tp, sizeof(struct tcpcb));
    911 	TAILQ_INIT(&tp->segq);
    912 	TAILQ_INIT(&tp->timeq);
    913 	tp->t_family = family;		/* may be overridden later on */
    914 	tp->t_peermss = tcp_mssdflt;
    915 	tp->t_ourmss = tcp_mssdflt;
    916 	tp->t_segsz = tcp_mssdflt;
    917 	LIST_INIT(&tp->t_sc);
    918 
    919 	callout_init(&tp->t_delack_ch);
    920 	for (i = 0; i < TCPT_NTIMERS; i++)
    921 		TCP_TIMER_INIT(tp, i);
    922 
    923 	tp->t_flags = 0;
    924 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    925 		tp->t_flags |= TF_REQ_SCALE;
    926 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    927 		tp->t_flags |= TF_REQ_TSTMP;
    928 	if (tcp_do_sack == 2)
    929 		tp->t_flags |= TF_WILL_SACK;
    930 	else if (tcp_do_sack == 1)
    931 		tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
    932 	tp->t_flags |= TF_CANT_TXSACK;
    933 	switch (family) {
    934 	case PF_INET:
    935 		tp->t_inpcb = (struct inpcb *)aux;
    936 		tp->t_mtudisc = ip_mtudisc;
    937 		break;
    938 #ifdef INET6
    939 	case PF_INET6:
    940 		tp->t_in6pcb = (struct in6pcb *)aux;
    941 		/* for IPv6, always try to run path MTU discovery */
    942 		tp->t_mtudisc = 1;
    943 		break;
    944 #endif
    945 	}
    946 	/*
    947 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    948 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    949 	 * reasonable initial retransmit time.
    950 	 */
    951 	tp->t_srtt = TCPTV_SRTTBASE;
    952 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    953 	tp->t_rttmin = TCPTV_MIN;
    954 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    955 	    TCPTV_MIN, TCPTV_REXMTMAX);
    956 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    957 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    958 	if (family == AF_INET) {
    959 		struct inpcb *inp = (struct inpcb *)aux;
    960 		inp->inp_ip.ip_ttl = ip_defttl;
    961 		inp->inp_ppcb = (caddr_t)tp;
    962 	}
    963 #ifdef INET6
    964 	else if (family == AF_INET6) {
    965 		struct in6pcb *in6p = (struct in6pcb *)aux;
    966 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
    967 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
    968 					       : NULL);
    969 		in6p->in6p_ppcb = (caddr_t)tp;
    970 	}
    971 #endif
    972 
    973 	/*
    974 	 * Initialize our timebase.  When we send timestamps, we take
    975 	 * the delta from tcp_now -- this means each connection always
    976 	 * gets a timebase of 0, which makes it, among other things,
    977 	 * more difficult to determine how long a system has been up,
    978 	 * and thus how many TCP sequence increments have occurred.
    979 	 */
    980 	tp->ts_timebase = tcp_now;
    981 
    982 	return (tp);
    983 }
    984 
    985 /*
    986  * Drop a TCP connection, reporting
    987  * the specified error.  If connection is synchronized,
    988  * then send a RST to peer.
    989  */
    990 struct tcpcb *
    991 tcp_drop(tp, errno)
    992 	struct tcpcb *tp;
    993 	int errno;
    994 {
    995 	struct socket *so = NULL;
    996 
    997 #ifdef DIAGNOSTIC
    998 	if (tp->t_inpcb && tp->t_in6pcb)
    999 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1000 #endif
   1001 #ifdef INET
   1002 	if (tp->t_inpcb)
   1003 		so = tp->t_inpcb->inp_socket;
   1004 #endif
   1005 #ifdef INET6
   1006 	if (tp->t_in6pcb)
   1007 		so = tp->t_in6pcb->in6p_socket;
   1008 #endif
   1009 	if (!so)
   1010 		return NULL;
   1011 
   1012 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1013 		tp->t_state = TCPS_CLOSED;
   1014 		(void) tcp_output(tp);
   1015 		tcpstat.tcps_drops++;
   1016 	} else
   1017 		tcpstat.tcps_conndrops++;
   1018 	if (errno == ETIMEDOUT && tp->t_softerror)
   1019 		errno = tp->t_softerror;
   1020 	so->so_error = errno;
   1021 	return (tcp_close(tp));
   1022 }
   1023 
   1024 /*
   1025  * Close a TCP control block:
   1026  *	discard all space held by the tcp
   1027  *	discard internet protocol block
   1028  *	wake up any sleepers
   1029  */
   1030 struct tcpcb *
   1031 tcp_close(tp)
   1032 	struct tcpcb *tp;
   1033 {
   1034 	struct inpcb *inp;
   1035 #ifdef INET6
   1036 	struct in6pcb *in6p;
   1037 #endif
   1038 	struct socket *so;
   1039 #ifdef RTV_RTT
   1040 	struct rtentry *rt;
   1041 #endif
   1042 	struct route *ro;
   1043 
   1044 	inp = tp->t_inpcb;
   1045 #ifdef INET6
   1046 	in6p = tp->t_in6pcb;
   1047 #endif
   1048 	so = NULL;
   1049 	ro = NULL;
   1050 	if (inp) {
   1051 		so = inp->inp_socket;
   1052 		ro = &inp->inp_route;
   1053 	}
   1054 #ifdef INET6
   1055 	else if (in6p) {
   1056 		so = in6p->in6p_socket;
   1057 		ro = (struct route *)&in6p->in6p_route;
   1058 	}
   1059 #endif
   1060 
   1061 #ifdef RTV_RTT
   1062 	/*
   1063 	 * If we sent enough data to get some meaningful characteristics,
   1064 	 * save them in the routing entry.  'Enough' is arbitrarily
   1065 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1066 	 * give us 16 rtt samples assuming we only get one sample per
   1067 	 * window (the usual case on a long haul net).  16 samples is
   1068 	 * enough for the srtt filter to converge to within 5% of the correct
   1069 	 * value; fewer samples and we could save a very bogus rtt.
   1070 	 *
   1071 	 * Don't update the default route's characteristics and don't
   1072 	 * update anything that the user "locked".
   1073 	 */
   1074 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1075 	    ro && (rt = ro->ro_rt) &&
   1076 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
   1077 		u_long i = 0;
   1078 
   1079 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1080 			i = tp->t_srtt *
   1081 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1082 			if (rt->rt_rmx.rmx_rtt && i)
   1083 				/*
   1084 				 * filter this update to half the old & half
   1085 				 * the new values, converting scale.
   1086 				 * See route.h and tcp_var.h for a
   1087 				 * description of the scaling constants.
   1088 				 */
   1089 				rt->rt_rmx.rmx_rtt =
   1090 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1091 			else
   1092 				rt->rt_rmx.rmx_rtt = i;
   1093 		}
   1094 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1095 			i = tp->t_rttvar *
   1096 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1097 			if (rt->rt_rmx.rmx_rttvar && i)
   1098 				rt->rt_rmx.rmx_rttvar =
   1099 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1100 			else
   1101 				rt->rt_rmx.rmx_rttvar = i;
   1102 		}
   1103 		/*
   1104 		 * update the pipelimit (ssthresh) if it has been updated
   1105 		 * already or if a pipesize was specified & the threshhold
   1106 		 * got below half the pipesize.  I.e., wait for bad news
   1107 		 * before we start updating, then update on both good
   1108 		 * and bad news.
   1109 		 */
   1110 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1111 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1112 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1113 			/*
   1114 			 * convert the limit from user data bytes to
   1115 			 * packets then to packet data bytes.
   1116 			 */
   1117 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1118 			if (i < 2)
   1119 				i = 2;
   1120 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1121 			if (rt->rt_rmx.rmx_ssthresh)
   1122 				rt->rt_rmx.rmx_ssthresh =
   1123 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1124 			else
   1125 				rt->rt_rmx.rmx_ssthresh = i;
   1126 		}
   1127 	}
   1128 #endif /* RTV_RTT */
   1129 	/* free the reassembly queue, if any */
   1130 	TCP_REASS_LOCK(tp);
   1131 	(void) tcp_freeq(tp);
   1132 	TCP_REASS_UNLOCK(tp);
   1133 
   1134 	tcp_canceltimers(tp);
   1135 	TCP_CLEAR_DELACK(tp);
   1136 	syn_cache_cleanup(tp);
   1137 
   1138 	if (tp->t_template) {
   1139 		m_free(tp->t_template);
   1140 		tp->t_template = NULL;
   1141 	}
   1142 	pool_put(&tcpcb_pool, tp);
   1143 	if (inp) {
   1144 		inp->inp_ppcb = 0;
   1145 		soisdisconnected(so);
   1146 		in_pcbdetach(inp);
   1147 	}
   1148 #ifdef INET6
   1149 	else if (in6p) {
   1150 		in6p->in6p_ppcb = 0;
   1151 		soisdisconnected(so);
   1152 		in6_pcbdetach(in6p);
   1153 	}
   1154 #endif
   1155 	tcpstat.tcps_closed++;
   1156 	return ((struct tcpcb *)0);
   1157 }
   1158 
   1159 int
   1160 tcp_freeq(tp)
   1161 	struct tcpcb *tp;
   1162 {
   1163 	struct ipqent *qe;
   1164 	int rv = 0;
   1165 #ifdef TCPREASS_DEBUG
   1166 	int i = 0;
   1167 #endif
   1168 
   1169 	TCP_REASS_LOCK_CHECK(tp);
   1170 
   1171 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1172 #ifdef TCPREASS_DEBUG
   1173 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1174 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1175 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1176 #endif
   1177 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1178 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1179 		m_freem(qe->ipqe_m);
   1180 		pool_put(&ipqent_pool, qe);
   1181 		rv = 1;
   1182 	}
   1183 	return (rv);
   1184 }
   1185 
   1186 /*
   1187  * Protocol drain routine.  Called when memory is in short supply.
   1188  */
   1189 void
   1190 tcp_drain()
   1191 {
   1192 	struct inpcb *inp;
   1193 	struct tcpcb *tp;
   1194 
   1195 	/*
   1196 	 * Free the sequence queue of all TCP connections.
   1197 	 */
   1198 	inp = CIRCLEQ_FIRST(&tcbtable.inpt_queue);
   1199 	if (inp)						/* XXX */
   1200 	CIRCLEQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue) {
   1201 		if ((tp = intotcpcb(inp)) != NULL) {
   1202 			/*
   1203 			 * We may be called from a device's interrupt
   1204 			 * context.  If the tcpcb is already busy,
   1205 			 * just bail out now.
   1206 			 */
   1207 			if (tcp_reass_lock_try(tp) == 0)
   1208 				continue;
   1209 			if (tcp_freeq(tp))
   1210 				tcpstat.tcps_connsdrained++;
   1211 			TCP_REASS_UNLOCK(tp);
   1212 		}
   1213 	}
   1214 }
   1215 
   1216 #ifdef INET6
   1217 void
   1218 tcp6_drain()
   1219 {
   1220 	struct in6pcb *in6p;
   1221 	struct tcpcb *tp;
   1222 	struct in6pcb *head = &tcb6;
   1223 
   1224 	/*
   1225 	 * Free the sequence queue of all TCP connections.
   1226 	 */
   1227 	for (in6p = head->in6p_next; in6p != head; in6p = in6p->in6p_next) {
   1228 		if ((tp = in6totcpcb(in6p)) != NULL) {
   1229 			/*
   1230 			 * We may be called from a device's interrupt
   1231 			 * context.  If the tcpcb is already busy,
   1232 			 * just bail out now.
   1233 			 */
   1234 			if (tcp_reass_lock_try(tp) == 0)
   1235 				continue;
   1236 			if (tcp_freeq(tp))
   1237 				tcpstat.tcps_connsdrained++;
   1238 			TCP_REASS_UNLOCK(tp);
   1239 		}
   1240 	}
   1241 }
   1242 #endif
   1243 
   1244 /*
   1245  * Notify a tcp user of an asynchronous error;
   1246  * store error as soft error, but wake up user
   1247  * (for now, won't do anything until can select for soft error).
   1248  */
   1249 void
   1250 tcp_notify(inp, error)
   1251 	struct inpcb *inp;
   1252 	int error;
   1253 {
   1254 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1255 	struct socket *so = inp->inp_socket;
   1256 
   1257 	/*
   1258 	 * Ignore some errors if we are hooked up.
   1259 	 * If connection hasn't completed, has retransmitted several times,
   1260 	 * and receives a second error, give up now.  This is better
   1261 	 * than waiting a long time to establish a connection that
   1262 	 * can never complete.
   1263 	 */
   1264 	if (tp->t_state == TCPS_ESTABLISHED &&
   1265 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1266 	      error == EHOSTDOWN)) {
   1267 		return;
   1268 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1269 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1270 		so->so_error = error;
   1271 	else
   1272 		tp->t_softerror = error;
   1273 	wakeup((caddr_t) &so->so_timeo);
   1274 	sorwakeup(so);
   1275 	sowwakeup(so);
   1276 }
   1277 
   1278 #ifdef INET6
   1279 void
   1280 tcp6_notify(in6p, error)
   1281 	struct in6pcb *in6p;
   1282 	int error;
   1283 {
   1284 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1285 	struct socket *so = in6p->in6p_socket;
   1286 
   1287 	/*
   1288 	 * Ignore some errors if we are hooked up.
   1289 	 * If connection hasn't completed, has retransmitted several times,
   1290 	 * and receives a second error, give up now.  This is better
   1291 	 * than waiting a long time to establish a connection that
   1292 	 * can never complete.
   1293 	 */
   1294 	if (tp->t_state == TCPS_ESTABLISHED &&
   1295 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1296 	      error == EHOSTDOWN)) {
   1297 		return;
   1298 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1299 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1300 		so->so_error = error;
   1301 	else
   1302 		tp->t_softerror = error;
   1303 	wakeup((caddr_t) &so->so_timeo);
   1304 	sorwakeup(so);
   1305 	sowwakeup(so);
   1306 }
   1307 #endif
   1308 
   1309 #ifdef INET6
   1310 void
   1311 tcp6_ctlinput(cmd, sa, d)
   1312 	int cmd;
   1313 	struct sockaddr *sa;
   1314 	void *d;
   1315 {
   1316 	struct tcphdr th;
   1317 	void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
   1318 	int nmatch;
   1319 	struct ip6_hdr *ip6;
   1320 	const struct sockaddr_in6 *sa6_src = NULL;
   1321 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
   1322 	struct mbuf *m;
   1323 	int off;
   1324 
   1325 	if (sa->sa_family != AF_INET6 ||
   1326 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1327 		return;
   1328 	if ((unsigned)cmd >= PRC_NCMDS)
   1329 		return;
   1330 	else if (cmd == PRC_QUENCH) {
   1331 		/* XXX there's no PRC_QUENCH in IPv6 */
   1332 		notify = tcp6_quench;
   1333 	} else if (PRC_IS_REDIRECT(cmd))
   1334 		notify = in6_rtchange, d = NULL;
   1335 	else if (cmd == PRC_MSGSIZE)
   1336 		; /* special code is present, see below */
   1337 	else if (cmd == PRC_HOSTDEAD)
   1338 		d = NULL;
   1339 	else if (inet6ctlerrmap[cmd] == 0)
   1340 		return;
   1341 
   1342 	/* if the parameter is from icmp6, decode it. */
   1343 	if (d != NULL) {
   1344 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1345 		m = ip6cp->ip6c_m;
   1346 		ip6 = ip6cp->ip6c_ip6;
   1347 		off = ip6cp->ip6c_off;
   1348 		sa6_src = ip6cp->ip6c_src;
   1349 	} else {
   1350 		m = NULL;
   1351 		ip6 = NULL;
   1352 		sa6_src = &sa6_any;
   1353 	}
   1354 
   1355 	if (ip6) {
   1356 		/*
   1357 		 * XXX: We assume that when ip6 is non NULL,
   1358 		 * M and OFF are valid.
   1359 		 */
   1360 
   1361 		/* check if we can safely examine src and dst ports */
   1362 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1363 			if (cmd == PRC_MSGSIZE)
   1364 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1365 			return;
   1366 		}
   1367 
   1368 		bzero(&th, sizeof(th));
   1369 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
   1370 
   1371 		if (cmd == PRC_MSGSIZE) {
   1372 			int valid = 0;
   1373 
   1374 			/*
   1375 			 * Check to see if we have a valid TCP connection
   1376 			 * corresponding to the address in the ICMPv6 message
   1377 			 * payload.
   1378 			 */
   1379 			if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
   1380 			    th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
   1381 			    th.th_sport, 0))
   1382 				valid++;
   1383 
   1384 			/*
   1385 			 * Depending on the value of "valid" and routing table
   1386 			 * size (mtudisc_{hi,lo}wat), we will:
   1387 			 * - recalcurate the new MTU and create the
   1388 			 *   corresponding routing entry, or
   1389 			 * - ignore the MTU change notification.
   1390 			 */
   1391 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1392 
   1393 			/*
   1394 			 * no need to call in6_pcbnotify, it should have been
   1395 			 * called via callback if necessary
   1396 			 */
   1397 			return;
   1398 		}
   1399 
   1400 		nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
   1401 		    (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1402 		if (nmatch == 0 && syn_cache_count &&
   1403 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1404 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1405 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1406 			syn_cache_unreach((struct sockaddr *)sa6_src,
   1407 					  sa, &th);
   1408 	} else {
   1409 		(void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
   1410 		    0, cmd, NULL, notify);
   1411 	}
   1412 }
   1413 #endif
   1414 
   1415 #ifdef INET
   1416 /* assumes that ip header and tcp header are contiguous on mbuf */
   1417 void *
   1418 tcp_ctlinput(cmd, sa, v)
   1419 	int cmd;
   1420 	struct sockaddr *sa;
   1421 	void *v;
   1422 {
   1423 	struct ip *ip = v;
   1424 	struct tcphdr *th;
   1425 	struct icmp *icp;
   1426 	extern const int inetctlerrmap[];
   1427 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
   1428 	int errno;
   1429 	int nmatch;
   1430 #ifdef INET6
   1431 	struct in6_addr src6, dst6;
   1432 #endif
   1433 
   1434 	if (sa->sa_family != AF_INET ||
   1435 	    sa->sa_len != sizeof(struct sockaddr_in))
   1436 		return NULL;
   1437 	if ((unsigned)cmd >= PRC_NCMDS)
   1438 		return NULL;
   1439 	errno = inetctlerrmap[cmd];
   1440 	if (cmd == PRC_QUENCH)
   1441 		notify = tcp_quench;
   1442 	else if (PRC_IS_REDIRECT(cmd))
   1443 		notify = in_rtchange, ip = 0;
   1444 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1445 		/*
   1446 		 * Check to see if we have a valid TCP connection
   1447 		 * corresponding to the address in the ICMP message
   1448 		 * payload.
   1449 		 *
   1450 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1451 		 */
   1452 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1453 #ifdef INET6
   1454 		memset(&src6, 0, sizeof(src6));
   1455 		memset(&dst6, 0, sizeof(dst6));
   1456 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1457 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1458 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1459 #endif
   1460 		if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
   1461 		    ip->ip_src, th->th_sport) != NULL)
   1462 			;
   1463 #ifdef INET6
   1464 		else if (in6_pcblookup_connect(&tcb6, &dst6,
   1465 		    th->th_dport, &src6, th->th_sport, 0) != NULL)
   1466 			;
   1467 #endif
   1468 		else
   1469 			return NULL;
   1470 
   1471 		/*
   1472 		 * Now that we've validated that we are actually communicating
   1473 		 * with the host indicated in the ICMP message, locate the
   1474 		 * ICMP header, recalculate the new MTU, and create the
   1475 		 * corresponding routing entry.
   1476 		 */
   1477 		icp = (struct icmp *)((caddr_t)ip -
   1478 		    offsetof(struct icmp, icmp_ip));
   1479 		icmp_mtudisc(icp, ip->ip_dst);
   1480 
   1481 		return NULL;
   1482 	} else if (cmd == PRC_HOSTDEAD)
   1483 		ip = 0;
   1484 	else if (errno == 0)
   1485 		return NULL;
   1486 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1487 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1488 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
   1489 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1490 		if (nmatch == 0 && syn_cache_count &&
   1491 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1492 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1493 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1494 			struct sockaddr_in sin;
   1495 			bzero(&sin, sizeof(sin));
   1496 			sin.sin_len = sizeof(sin);
   1497 			sin.sin_family = AF_INET;
   1498 			sin.sin_port = th->th_sport;
   1499 			sin.sin_addr = ip->ip_src;
   1500 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1501 		}
   1502 
   1503 		/* XXX mapped address case */
   1504 	} else
   1505 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
   1506 		    notify);
   1507 	return NULL;
   1508 }
   1509 
   1510 /*
   1511  * When a source quence is received, we are being notifed of congestion.
   1512  * Close the congestion window down to the Loss Window (one segment).
   1513  * We will gradually open it again as we proceed.
   1514  */
   1515 void
   1516 tcp_quench(inp, errno)
   1517 	struct inpcb *inp;
   1518 	int errno;
   1519 {
   1520 	struct tcpcb *tp = intotcpcb(inp);
   1521 
   1522 	if (tp)
   1523 		tp->snd_cwnd = tp->t_segsz;
   1524 }
   1525 #endif
   1526 
   1527 #ifdef INET6
   1528 void
   1529 tcp6_quench(in6p, errno)
   1530 	struct in6pcb *in6p;
   1531 	int errno;
   1532 {
   1533 	struct tcpcb *tp = in6totcpcb(in6p);
   1534 
   1535 	if (tp)
   1536 		tp->snd_cwnd = tp->t_segsz;
   1537 }
   1538 #endif
   1539 
   1540 #ifdef INET
   1541 /*
   1542  * Path MTU Discovery handlers.
   1543  */
   1544 void
   1545 tcp_mtudisc_callback(faddr)
   1546 	struct in_addr faddr;
   1547 {
   1548 #ifdef INET6
   1549 	struct in6_addr in6;
   1550 #endif
   1551 
   1552 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1553 #ifdef INET6
   1554 	memset(&in6, 0, sizeof(in6));
   1555 	in6.s6_addr16[5] = 0xffff;
   1556 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1557 	tcp6_mtudisc_callback(&in6);
   1558 #endif
   1559 }
   1560 
   1561 /*
   1562  * On receipt of path MTU corrections, flush old route and replace it
   1563  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1564  * that all packets will be received.
   1565  */
   1566 void
   1567 tcp_mtudisc(inp, errno)
   1568 	struct inpcb *inp;
   1569 	int errno;
   1570 {
   1571 	struct tcpcb *tp = intotcpcb(inp);
   1572 	struct rtentry *rt = in_pcbrtentry(inp);
   1573 
   1574 	if (tp != 0) {
   1575 		if (rt != 0) {
   1576 			/*
   1577 			 * If this was not a host route, remove and realloc.
   1578 			 */
   1579 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1580 				in_rtchange(inp, errno);
   1581 				if ((rt = in_pcbrtentry(inp)) == 0)
   1582 					return;
   1583 			}
   1584 
   1585 			/*
   1586 			 * Slow start out of the error condition.  We
   1587 			 * use the MTU because we know it's smaller
   1588 			 * than the previously transmitted segment.
   1589 			 *
   1590 			 * Note: This is more conservative than the
   1591 			 * suggestion in draft-floyd-incr-init-win-03.
   1592 			 */
   1593 			if (rt->rt_rmx.rmx_mtu != 0)
   1594 				tp->snd_cwnd =
   1595 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1596 				    rt->rt_rmx.rmx_mtu);
   1597 		}
   1598 
   1599 		/*
   1600 		 * Resend unacknowledged packets.
   1601 		 */
   1602 		tp->snd_nxt = tp->snd_una;
   1603 		tcp_output(tp);
   1604 	}
   1605 }
   1606 #endif
   1607 
   1608 #ifdef INET6
   1609 /*
   1610  * Path MTU Discovery handlers.
   1611  */
   1612 void
   1613 tcp6_mtudisc_callback(faddr)
   1614 	struct in6_addr *faddr;
   1615 {
   1616 	struct sockaddr_in6 sin6;
   1617 
   1618 	bzero(&sin6, sizeof(sin6));
   1619 	sin6.sin6_family = AF_INET6;
   1620 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1621 	sin6.sin6_addr = *faddr;
   1622 	(void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
   1623 	    (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1624 }
   1625 
   1626 void
   1627 tcp6_mtudisc(in6p, errno)
   1628 	struct in6pcb *in6p;
   1629 	int errno;
   1630 {
   1631 	struct tcpcb *tp = in6totcpcb(in6p);
   1632 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1633 
   1634 	if (tp != 0) {
   1635 		if (rt != 0) {
   1636 			/*
   1637 			 * If this was not a host route, remove and realloc.
   1638 			 */
   1639 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1640 				in6_rtchange(in6p, errno);
   1641 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1642 					return;
   1643 			}
   1644 
   1645 			/*
   1646 			 * Slow start out of the error condition.  We
   1647 			 * use the MTU because we know it's smaller
   1648 			 * than the previously transmitted segment.
   1649 			 *
   1650 			 * Note: This is more conservative than the
   1651 			 * suggestion in draft-floyd-incr-init-win-03.
   1652 			 */
   1653 			if (rt->rt_rmx.rmx_mtu != 0)
   1654 				tp->snd_cwnd =
   1655 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1656 				    rt->rt_rmx.rmx_mtu);
   1657 		}
   1658 
   1659 		/*
   1660 		 * Resend unacknowledged packets.
   1661 		 */
   1662 		tp->snd_nxt = tp->snd_una;
   1663 		tcp_output(tp);
   1664 	}
   1665 }
   1666 #endif /* INET6 */
   1667 
   1668 /*
   1669  * Compute the MSS to advertise to the peer.  Called only during
   1670  * the 3-way handshake.  If we are the server (peer initiated
   1671  * connection), we are called with a pointer to the interface
   1672  * on which the SYN packet arrived.  If we are the client (we
   1673  * initiated connection), we are called with a pointer to the
   1674  * interface out which this connection should go.
   1675  *
   1676  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1677  * header size from MSS advertisement.  MSS option must hold the maximum
   1678  * segment size we can accept, so it must always be:
   1679  *	 max(if mtu) - ip header - tcp header
   1680  */
   1681 u_long
   1682 tcp_mss_to_advertise(ifp, af)
   1683 	const struct ifnet *ifp;
   1684 	int af;
   1685 {
   1686 	extern u_long in_maxmtu;
   1687 	u_long mss = 0;
   1688 	u_long hdrsiz;
   1689 
   1690 	/*
   1691 	 * In order to avoid defeating path MTU discovery on the peer,
   1692 	 * we advertise the max MTU of all attached networks as our MSS,
   1693 	 * per RFC 1191, section 3.1.
   1694 	 *
   1695 	 * We provide the option to advertise just the MTU of
   1696 	 * the interface on which we hope this connection will
   1697 	 * be receiving.  If we are responding to a SYN, we
   1698 	 * will have a pretty good idea about this, but when
   1699 	 * initiating a connection there is a bit more doubt.
   1700 	 *
   1701 	 * We also need to ensure that loopback has a large enough
   1702 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1703 	 */
   1704 
   1705 	if (ifp != NULL)
   1706 		switch (af) {
   1707 		case AF_INET:
   1708 			mss = ifp->if_mtu;
   1709 			break;
   1710 #ifdef INET6
   1711 		case AF_INET6:
   1712 			mss = IN6_LINKMTU(ifp);
   1713 			break;
   1714 #endif
   1715 		}
   1716 
   1717 	if (tcp_mss_ifmtu == 0)
   1718 		switch (af) {
   1719 		case AF_INET:
   1720 			mss = max(in_maxmtu, mss);
   1721 			break;
   1722 #ifdef INET6
   1723 		case AF_INET6:
   1724 			mss = max(in6_maxmtu, mss);
   1725 			break;
   1726 #endif
   1727 		}
   1728 
   1729 	switch (af) {
   1730 	case AF_INET:
   1731 		hdrsiz = sizeof(struct ip);
   1732 		break;
   1733 #ifdef INET6
   1734 	case AF_INET6:
   1735 		hdrsiz = sizeof(struct ip6_hdr);
   1736 		break;
   1737 #endif
   1738 	default:
   1739 		hdrsiz = 0;
   1740 		break;
   1741 	}
   1742 	hdrsiz += sizeof(struct tcphdr);
   1743 	if (mss > hdrsiz)
   1744 		mss -= hdrsiz;
   1745 
   1746 	mss = max(tcp_mssdflt, mss);
   1747 	return (mss);
   1748 }
   1749 
   1750 /*
   1751  * Set connection variables based on the peer's advertised MSS.
   1752  * We are passed the TCPCB for the actual connection.  If we
   1753  * are the server, we are called by the compressed state engine
   1754  * when the 3-way handshake is complete.  If we are the client,
   1755  * we are called when we receive the SYN,ACK from the server.
   1756  *
   1757  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1758  * before this routine is called!
   1759  */
   1760 void
   1761 tcp_mss_from_peer(tp, offer)
   1762 	struct tcpcb *tp;
   1763 	int offer;
   1764 {
   1765 	struct socket *so;
   1766 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1767 	struct rtentry *rt;
   1768 #endif
   1769 	u_long bufsize;
   1770 	int mss;
   1771 
   1772 #ifdef DIAGNOSTIC
   1773 	if (tp->t_inpcb && tp->t_in6pcb)
   1774 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1775 #endif
   1776 	so = NULL;
   1777 	rt = NULL;
   1778 #ifdef INET
   1779 	if (tp->t_inpcb) {
   1780 		so = tp->t_inpcb->inp_socket;
   1781 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1782 		rt = in_pcbrtentry(tp->t_inpcb);
   1783 #endif
   1784 	}
   1785 #endif
   1786 #ifdef INET6
   1787 	if (tp->t_in6pcb) {
   1788 		so = tp->t_in6pcb->in6p_socket;
   1789 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1790 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1791 #endif
   1792 	}
   1793 #endif
   1794 
   1795 	/*
   1796 	 * As per RFC1122, use the default MSS value, unless they
   1797 	 * sent us an offer.  Do not accept offers less than 32 bytes.
   1798 	 */
   1799 	mss = tcp_mssdflt;
   1800 	if (offer)
   1801 		mss = offer;
   1802 	mss = max(mss, 32);		/* sanity */
   1803 	tp->t_peermss = mss;
   1804 	mss -= tcp_optlen(tp);
   1805 #ifdef INET
   1806 	if (tp->t_inpcb)
   1807 		mss -= ip_optlen(tp->t_inpcb);
   1808 #endif
   1809 #ifdef INET6
   1810 	if (tp->t_in6pcb)
   1811 		mss -= ip6_optlen(tp->t_in6pcb);
   1812 #endif
   1813 
   1814 	/*
   1815 	 * If there's a pipesize, change the socket buffer to that size.
   1816 	 * Make the socket buffer an integral number of MSS units.  If
   1817 	 * the MSS is larger than the socket buffer, artificially decrease
   1818 	 * the MSS.
   1819 	 */
   1820 #ifdef RTV_SPIPE
   1821 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1822 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1823 	else
   1824 #endif
   1825 		bufsize = so->so_snd.sb_hiwat;
   1826 	if (bufsize < mss)
   1827 		mss = bufsize;
   1828 	else {
   1829 		bufsize = roundup(bufsize, mss);
   1830 		if (bufsize > sb_max)
   1831 			bufsize = sb_max;
   1832 		(void) sbreserve(&so->so_snd, bufsize);
   1833 	}
   1834 	tp->t_segsz = mss;
   1835 
   1836 #ifdef RTV_SSTHRESH
   1837 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1838 		/*
   1839 		 * There's some sort of gateway or interface buffer
   1840 		 * limit on the path.  Use this to set the slow
   1841 		 * start threshold, but set the threshold to no less
   1842 		 * than 2 * MSS.
   1843 		 */
   1844 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1845 	}
   1846 #endif
   1847 }
   1848 
   1849 /*
   1850  * Processing necessary when a TCP connection is established.
   1851  */
   1852 void
   1853 tcp_established(tp)
   1854 	struct tcpcb *tp;
   1855 {
   1856 	struct socket *so;
   1857 #ifdef RTV_RPIPE
   1858 	struct rtentry *rt;
   1859 #endif
   1860 	u_long bufsize;
   1861 
   1862 #ifdef DIAGNOSTIC
   1863 	if (tp->t_inpcb && tp->t_in6pcb)
   1864 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   1865 #endif
   1866 	so = NULL;
   1867 	rt = NULL;
   1868 #ifdef INET
   1869 	if (tp->t_inpcb) {
   1870 		so = tp->t_inpcb->inp_socket;
   1871 #if defined(RTV_RPIPE)
   1872 		rt = in_pcbrtentry(tp->t_inpcb);
   1873 #endif
   1874 	}
   1875 #endif
   1876 #ifdef INET6
   1877 	if (tp->t_in6pcb) {
   1878 		so = tp->t_in6pcb->in6p_socket;
   1879 #if defined(RTV_RPIPE)
   1880 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1881 #endif
   1882 	}
   1883 #endif
   1884 
   1885 	tp->t_state = TCPS_ESTABLISHED;
   1886 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1887 
   1888 #ifdef RTV_RPIPE
   1889 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   1890 		bufsize = rt->rt_rmx.rmx_recvpipe;
   1891 	else
   1892 #endif
   1893 		bufsize = so->so_rcv.sb_hiwat;
   1894 	if (bufsize > tp->t_ourmss) {
   1895 		bufsize = roundup(bufsize, tp->t_ourmss);
   1896 		if (bufsize > sb_max)
   1897 			bufsize = sb_max;
   1898 		(void) sbreserve(&so->so_rcv, bufsize);
   1899 	}
   1900 }
   1901 
   1902 /*
   1903  * Check if there's an initial rtt or rttvar.  Convert from the
   1904  * route-table units to scaled multiples of the slow timeout timer.
   1905  * Called only during the 3-way handshake.
   1906  */
   1907 void
   1908 tcp_rmx_rtt(tp)
   1909 	struct tcpcb *tp;
   1910 {
   1911 #ifdef RTV_RTT
   1912 	struct rtentry *rt = NULL;
   1913 	int rtt;
   1914 
   1915 #ifdef DIAGNOSTIC
   1916 	if (tp->t_inpcb && tp->t_in6pcb)
   1917 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   1918 #endif
   1919 #ifdef INET
   1920 	if (tp->t_inpcb)
   1921 		rt = in_pcbrtentry(tp->t_inpcb);
   1922 #endif
   1923 #ifdef INET6
   1924 	if (tp->t_in6pcb)
   1925 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1926 #endif
   1927 	if (rt == NULL)
   1928 		return;
   1929 
   1930 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   1931 		/*
   1932 		 * XXX The lock bit for MTU indicates that the value
   1933 		 * is also a minimum value; this is subject to time.
   1934 		 */
   1935 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   1936 			TCPT_RANGESET(tp->t_rttmin,
   1937 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   1938 			    TCPTV_MIN, TCPTV_REXMTMAX);
   1939 		tp->t_srtt = rtt /
   1940 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1941 		if (rt->rt_rmx.rmx_rttvar) {
   1942 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   1943 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   1944 				(TCP_RTTVAR_SHIFT + 2));
   1945 		} else {
   1946 			/* Default variation is +- 1 rtt */
   1947 			tp->t_rttvar =
   1948 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   1949 		}
   1950 		TCPT_RANGESET(tp->t_rxtcur,
   1951 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   1952 		    tp->t_rttmin, TCPTV_REXMTMAX);
   1953 	}
   1954 #endif
   1955 }
   1956 
   1957 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   1958 #if NRND > 0
   1959 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   1960 #endif
   1961 
   1962 /*
   1963  * Get a new sequence value given a tcp control block
   1964  */
   1965 tcp_seq
   1966 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   1967 {
   1968 
   1969 #ifdef INET
   1970 	if (tp->t_inpcb != NULL) {
   1971 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   1972 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   1973 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   1974 		    addin));
   1975 	}
   1976 #endif
   1977 #ifdef INET6
   1978 	if (tp->t_in6pcb != NULL) {
   1979 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   1980 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   1981 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   1982 		    addin));
   1983 	}
   1984 #endif
   1985 	/* Not possible. */
   1986 	panic("tcp_new_iss");
   1987 }
   1988 
   1989 /*
   1990  * This routine actually generates a new TCP initial sequence number.
   1991  */
   1992 tcp_seq
   1993 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   1994     size_t addrsz, tcp_seq addin)
   1995 {
   1996 	tcp_seq tcp_iss;
   1997 
   1998 #if NRND > 0
   1999 	static int beenhere;
   2000 
   2001 	/*
   2002 	 * If we haven't been here before, initialize our cryptographic
   2003 	 * hash secret.
   2004 	 */
   2005 	if (beenhere == 0) {
   2006 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   2007 		    RND_EXTRACT_ANY);
   2008 		beenhere = 1;
   2009 	}
   2010 
   2011 	if (tcp_do_rfc1948) {
   2012 		MD5_CTX ctx;
   2013 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2014 
   2015 		/*
   2016 		 * Compute the base value of the ISS.  It is a hash
   2017 		 * of (saddr, sport, daddr, dport, secret).
   2018 		 */
   2019 		MD5Init(&ctx);
   2020 
   2021 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2022 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2023 
   2024 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2025 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2026 
   2027 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2028 
   2029 		MD5Final(hash, &ctx);
   2030 
   2031 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2032 
   2033 		/*
   2034 		 * Now increment our "timer", and add it in to
   2035 		 * the computed value.
   2036 		 *
   2037 		 * XXX Use `addin'?
   2038 		 * XXX TCP_ISSINCR too large to use?
   2039 		 */
   2040 		tcp_iss_seq += TCP_ISSINCR;
   2041 #ifdef TCPISS_DEBUG
   2042 		printf("ISS hash 0x%08x, ", tcp_iss);
   2043 #endif
   2044 		tcp_iss += tcp_iss_seq + addin;
   2045 #ifdef TCPISS_DEBUG
   2046 		printf("new ISS 0x%08x\n", tcp_iss);
   2047 #endif
   2048 	} else
   2049 #endif /* NRND > 0 */
   2050 	{
   2051 		/*
   2052 		 * Randomize.
   2053 		 */
   2054 #if NRND > 0
   2055 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2056 #else
   2057 		tcp_iss = arc4random();
   2058 #endif
   2059 
   2060 		/*
   2061 		 * If we were asked to add some amount to a known value,
   2062 		 * we will take a random value obtained above, mask off
   2063 		 * the upper bits, and add in the known value.  We also
   2064 		 * add in a constant to ensure that we are at least a
   2065 		 * certain distance from the original value.
   2066 		 *
   2067 		 * This is used when an old connection is in timed wait
   2068 		 * and we have a new one coming in, for instance.
   2069 		 */
   2070 		if (addin != 0) {
   2071 #ifdef TCPISS_DEBUG
   2072 			printf("Random %08x, ", tcp_iss);
   2073 #endif
   2074 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2075 			tcp_iss += addin + TCP_ISSINCR;
   2076 #ifdef TCPISS_DEBUG
   2077 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2078 #endif
   2079 		} else {
   2080 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2081 			tcp_iss += tcp_iss_seq;
   2082 			tcp_iss_seq += TCP_ISSINCR;
   2083 #ifdef TCPISS_DEBUG
   2084 			printf("ISS %08x\n", tcp_iss);
   2085 #endif
   2086 		}
   2087 	}
   2088 
   2089 	if (tcp_compat_42) {
   2090 		/*
   2091 		 * Limit it to the positive range for really old TCP
   2092 		 * implementations.
   2093 		 * Just AND off the top bit instead of checking if
   2094 		 * is set first - saves a branch 50% of the time.
   2095 		 */
   2096 		tcp_iss &= 0x7fffffff;		/* XXX */
   2097 	}
   2098 
   2099 	return (tcp_iss);
   2100 }
   2101 
   2102 #ifdef IPSEC
   2103 /* compute ESP/AH header size for TCP, including outer IP header. */
   2104 size_t
   2105 ipsec4_hdrsiz_tcp(tp)
   2106 	struct tcpcb *tp;
   2107 {
   2108 	struct inpcb *inp;
   2109 	size_t hdrsiz;
   2110 
   2111 	/* XXX mapped addr case (tp->t_in6pcb) */
   2112 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2113 		return 0;
   2114 	switch (tp->t_family) {
   2115 	case AF_INET:
   2116 		/* XXX: should use currect direction. */
   2117 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2118 		break;
   2119 	default:
   2120 		hdrsiz = 0;
   2121 		break;
   2122 	}
   2123 
   2124 	return hdrsiz;
   2125 }
   2126 
   2127 #ifdef INET6
   2128 size_t
   2129 ipsec6_hdrsiz_tcp(tp)
   2130 	struct tcpcb *tp;
   2131 {
   2132 	struct in6pcb *in6p;
   2133 	size_t hdrsiz;
   2134 
   2135 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2136 		return 0;
   2137 	switch (tp->t_family) {
   2138 	case AF_INET6:
   2139 		/* XXX: should use currect direction. */
   2140 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2141 		break;
   2142 	case AF_INET:
   2143 		/* mapped address case - tricky */
   2144 	default:
   2145 		hdrsiz = 0;
   2146 		break;
   2147 	}
   2148 
   2149 	return hdrsiz;
   2150 }
   2151 #endif
   2152 #endif /*IPSEC*/
   2153 
   2154 /*
   2155  * Determine the length of the TCP options for this connection.
   2156  *
   2157  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2158  *       all of the space?  Otherwise we can't exactly be incrementing
   2159  *       cwnd by an amount that varies depending on the amount we last
   2160  *       had to SACK!
   2161  */
   2162 
   2163 u_int
   2164 tcp_optlen(tp)
   2165 	struct tcpcb *tp;
   2166 {
   2167 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2168 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2169 		return TCPOLEN_TSTAMP_APPA;
   2170 	else
   2171 		return 0;
   2172 }
   2173