Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.143
      1 /*	$NetBSD: tcp_subr.c,v 1.143 2003/07/03 08:28:16 ragge Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. All advertising materials mentioning features or use of this software
     82  *    must display the following acknowledgement:
     83  *	This product includes software developed by the University of
     84  *	California, Berkeley and its contributors.
     85  * 4. Neither the name of the University nor the names of its contributors
     86  *    may be used to endorse or promote products derived from this software
     87  *    without specific prior written permission.
     88  *
     89  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     90  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     91  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     92  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     93  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     94  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     95  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     96  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     97  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     98  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     99  * SUCH DAMAGE.
    100  *
    101  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
    102  */
    103 
    104 #include <sys/cdefs.h>
    105 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.143 2003/07/03 08:28:16 ragge Exp $");
    106 
    107 #include "opt_inet.h"
    108 #include "opt_ipsec.h"
    109 #include "opt_tcp_compat_42.h"
    110 #include "opt_inet_csum.h"
    111 #include "opt_mbuftrace.h"
    112 #include "rnd.h"
    113 
    114 #include <sys/param.h>
    115 #include <sys/proc.h>
    116 #include <sys/systm.h>
    117 #include <sys/malloc.h>
    118 #include <sys/mbuf.h>
    119 #include <sys/socket.h>
    120 #include <sys/socketvar.h>
    121 #include <sys/protosw.h>
    122 #include <sys/errno.h>
    123 #include <sys/kernel.h>
    124 #include <sys/pool.h>
    125 #if NRND > 0
    126 #include <sys/md5.h>
    127 #include <sys/rnd.h>
    128 #endif
    129 
    130 #include <net/route.h>
    131 #include <net/if.h>
    132 
    133 #include <netinet/in.h>
    134 #include <netinet/in_systm.h>
    135 #include <netinet/ip.h>
    136 #include <netinet/in_pcb.h>
    137 #include <netinet/ip_var.h>
    138 #include <netinet/ip_icmp.h>
    139 
    140 #ifdef INET6
    141 #ifndef INET
    142 #include <netinet/in.h>
    143 #endif
    144 #include <netinet/ip6.h>
    145 #include <netinet6/in6_pcb.h>
    146 #include <netinet6/ip6_var.h>
    147 #include <netinet6/in6_var.h>
    148 #include <netinet6/ip6protosw.h>
    149 #include <netinet/icmp6.h>
    150 #include <netinet6/nd6.h>
    151 #endif
    152 
    153 #include <netinet/tcp.h>
    154 #include <netinet/tcp_fsm.h>
    155 #include <netinet/tcp_seq.h>
    156 #include <netinet/tcp_timer.h>
    157 #include <netinet/tcp_var.h>
    158 #include <netinet/tcpip.h>
    159 
    160 #ifdef IPSEC
    161 #include <netinet6/ipsec.h>
    162 #endif /*IPSEC*/
    163 
    164 #ifdef INET6
    165 struct in6pcb tcb6;
    166 #endif
    167 
    168 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    169 struct	tcpstat tcpstat;	/* tcp statistics */
    170 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
    171 
    172 /* patchable/settable parameters for tcp */
    173 int 	tcp_mssdflt = TCP_MSS;
    174 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    175 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    176 #if NRND > 0
    177 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    178 #endif
    179 int	tcp_do_sack = 1;	/* selective acknowledgement */
    180 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    181 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    182 int	tcp_do_newreno = 0;	/* Use the New Reno algorithms */
    183 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    184 #ifndef TCP_INIT_WIN
    185 #define	TCP_INIT_WIN	1	/* initial slow start window */
    186 #endif
    187 #ifndef TCP_INIT_WIN_LOCAL
    188 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    189 #endif
    190 int	tcp_init_win = TCP_INIT_WIN;
    191 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    192 int	tcp_mss_ifmtu = 0;
    193 #ifdef TCP_COMPAT_42
    194 int	tcp_compat_42 = 1;
    195 #else
    196 int	tcp_compat_42 = 0;
    197 #endif
    198 int	tcp_rst_ppslim = 100;	/* 100pps */
    199 
    200 /* tcb hash */
    201 #ifndef TCBHASHSIZE
    202 #define	TCBHASHSIZE	128
    203 #endif
    204 int	tcbhashsize = TCBHASHSIZE;
    205 
    206 /* syn hash parameters */
    207 #define	TCP_SYN_HASH_SIZE	293
    208 #define	TCP_SYN_BUCKET_SIZE	35
    209 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    210 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    211 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    212 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    213 
    214 int	tcp_freeq __P((struct tcpcb *));
    215 
    216 #ifdef INET
    217 void	tcp_mtudisc_callback __P((struct in_addr));
    218 #endif
    219 #ifdef INET6
    220 void	tcp6_mtudisc_callback __P((struct in6_addr *));
    221 #endif
    222 
    223 void	tcp_mtudisc __P((struct inpcb *, int));
    224 #ifdef INET6
    225 void	tcp6_mtudisc __P((struct in6pcb *, int));
    226 #endif
    227 
    228 struct pool tcpcb_pool;
    229 
    230 #ifdef TCP_CSUM_COUNTERS
    231 #include <sys/device.h>
    232 
    233 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    234     NULL, "tcp", "hwcsum bad");
    235 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    236     NULL, "tcp", "hwcsum ok");
    237 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    238     NULL, "tcp", "hwcsum data");
    239 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    240     NULL, "tcp", "swcsum");
    241 #endif /* TCP_CSUM_COUNTERS */
    242 
    243 #ifdef TCP_OUTPUT_COUNTERS
    244 #include <sys/device.h>
    245 
    246 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    247     NULL, "tcp", "output big header");
    248 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    249     NULL, "tcp", "output copy small");
    250 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    251     NULL, "tcp", "output copy big");
    252 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    253     NULL, "tcp", "output reference big");
    254 #endif /* TCP_OUTPUT_COUNTERS */
    255 
    256 #ifdef TCP_REASS_COUNTERS
    257 #include <sys/device.h>
    258 
    259 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    260     NULL, "tcp_reass", "calls");
    261 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    262     &tcp_reass_, "tcp_reass", "insert into empty queue");
    263 struct evcnt tcp_reass_iteration[8] = {
    264     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    265     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    266     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    267     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    268     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    269     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    270     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    271     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    272 };
    273 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    274     &tcp_reass_, "tcp_reass", "prepend to first");
    275 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    276     &tcp_reass_, "tcp_reass", "prepend");
    277 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    278     &tcp_reass_, "tcp_reass", "insert");
    279 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    280     &tcp_reass_, "tcp_reass", "insert at tail");
    281 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    282     &tcp_reass_, "tcp_reass", "append");
    283 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    284     &tcp_reass_, "tcp_reass", "append to tail fragment");
    285 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    286     &tcp_reass_, "tcp_reass", "overlap at end");
    287 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    288     &tcp_reass_, "tcp_reass", "overlap at start");
    289 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    290     &tcp_reass_, "tcp_reass", "duplicate segment");
    291 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    292     &tcp_reass_, "tcp_reass", "duplicate fragment");
    293 
    294 #endif /* TCP_REASS_COUNTERS */
    295 
    296 #ifdef MBUFTRACE
    297 struct mowner tcp_mowner = { "tcp" };
    298 struct mowner tcp_rx_mowner = { "tcp", "rx" };
    299 struct mowner tcp_tx_mowner = { "tcp", "tx" };
    300 #endif
    301 
    302 /*
    303  * Tcp initialization
    304  */
    305 void
    306 tcp_init()
    307 {
    308 	int hlen;
    309 
    310 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
    311 	    NULL);
    312 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    313 #ifdef INET6
    314 	tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
    315 #endif
    316 
    317 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    318 #ifdef INET6
    319 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    320 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    321 #endif
    322 	if (max_protohdr < hlen)
    323 		max_protohdr = hlen;
    324 	if (max_linkhdr + hlen > MHLEN)
    325 		panic("tcp_init");
    326 
    327 #ifdef INET
    328 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    329 #endif
    330 #ifdef INET6
    331 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    332 #endif
    333 
    334 	/* Initialize timer state. */
    335 	tcp_timer_init();
    336 
    337 	/* Initialize the compressed state engine. */
    338 	syn_cache_init();
    339 
    340 #ifdef TCP_CSUM_COUNTERS
    341 	evcnt_attach_static(&tcp_hwcsum_bad);
    342 	evcnt_attach_static(&tcp_hwcsum_ok);
    343 	evcnt_attach_static(&tcp_hwcsum_data);
    344 	evcnt_attach_static(&tcp_swcsum);
    345 #endif /* TCP_CSUM_COUNTERS */
    346 
    347 #ifdef TCP_OUTPUT_COUNTERS
    348 	evcnt_attach_static(&tcp_output_bigheader);
    349 	evcnt_attach_static(&tcp_output_copysmall);
    350 	evcnt_attach_static(&tcp_output_copybig);
    351 	evcnt_attach_static(&tcp_output_refbig);
    352 #endif /* TCP_OUTPUT_COUNTERS */
    353 
    354 #ifdef TCP_REASS_COUNTERS
    355 	evcnt_attach_static(&tcp_reass_);
    356 	evcnt_attach_static(&tcp_reass_empty);
    357 	evcnt_attach_static(&tcp_reass_iteration[0]);
    358 	evcnt_attach_static(&tcp_reass_iteration[1]);
    359 	evcnt_attach_static(&tcp_reass_iteration[2]);
    360 	evcnt_attach_static(&tcp_reass_iteration[3]);
    361 	evcnt_attach_static(&tcp_reass_iteration[4]);
    362 	evcnt_attach_static(&tcp_reass_iteration[5]);
    363 	evcnt_attach_static(&tcp_reass_iteration[6]);
    364 	evcnt_attach_static(&tcp_reass_iteration[7]);
    365 	evcnt_attach_static(&tcp_reass_prependfirst);
    366 	evcnt_attach_static(&tcp_reass_prepend);
    367 	evcnt_attach_static(&tcp_reass_insert);
    368 	evcnt_attach_static(&tcp_reass_inserttail);
    369 	evcnt_attach_static(&tcp_reass_append);
    370 	evcnt_attach_static(&tcp_reass_appendtail);
    371 	evcnt_attach_static(&tcp_reass_overlaptail);
    372 	evcnt_attach_static(&tcp_reass_overlapfront);
    373 	evcnt_attach_static(&tcp_reass_segdup);
    374 	evcnt_attach_static(&tcp_reass_fragdup);
    375 #endif /* TCP_REASS_COUNTERS */
    376 
    377 	MOWNER_ATTACH(&tcp_tx_mowner);
    378 	MOWNER_ATTACH(&tcp_rx_mowner);
    379 	MOWNER_ATTACH(&tcp_mowner);
    380 }
    381 
    382 /*
    383  * Create template to be used to send tcp packets on a connection.
    384  * Call after host entry created, allocates an mbuf and fills
    385  * in a skeletal tcp/ip header, minimizing the amount of work
    386  * necessary when the connection is used.
    387  */
    388 struct mbuf *
    389 tcp_template(tp)
    390 	struct tcpcb *tp;
    391 {
    392 	struct inpcb *inp = tp->t_inpcb;
    393 #ifdef INET6
    394 	struct in6pcb *in6p = tp->t_in6pcb;
    395 #endif
    396 	struct tcphdr *n;
    397 	struct mbuf *m;
    398 	int hlen;
    399 
    400 	switch (tp->t_family) {
    401 	case AF_INET:
    402 		hlen = sizeof(struct ip);
    403 		if (inp)
    404 			break;
    405 #ifdef INET6
    406 		if (in6p) {
    407 			/* mapped addr case */
    408 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    409 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    410 				break;
    411 		}
    412 #endif
    413 		return NULL;	/*EINVAL*/
    414 #ifdef INET6
    415 	case AF_INET6:
    416 		hlen = sizeof(struct ip6_hdr);
    417 		if (in6p) {
    418 			/* more sainty check? */
    419 			break;
    420 		}
    421 		return NULL;	/*EINVAL*/
    422 #endif
    423 	default:
    424 		hlen = 0;	/*pacify gcc*/
    425 		return NULL;	/*EAFNOSUPPORT*/
    426 	}
    427 #ifdef DIAGNOSTIC
    428 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    429 		panic("mclbytes too small for t_template");
    430 #endif
    431 	m = tp->t_template;
    432 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    433 		;
    434 	else {
    435 		if (m)
    436 			m_freem(m);
    437 		m = tp->t_template = NULL;
    438 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    439 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    440 			MCLGET(m, M_DONTWAIT);
    441 			if ((m->m_flags & M_EXT) == 0) {
    442 				m_free(m);
    443 				m = NULL;
    444 			}
    445 		}
    446 		if (m == NULL)
    447 			return NULL;
    448 		MCLAIM(m, &tcp_mowner);
    449 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    450 	}
    451 
    452 	bzero(mtod(m, caddr_t), m->m_len);
    453 
    454 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
    455 
    456 	switch (tp->t_family) {
    457 	case AF_INET:
    458 	    {
    459 		struct ipovly *ipov;
    460 		mtod(m, struct ip *)->ip_v = 4;
    461 		ipov = mtod(m, struct ipovly *);
    462 		ipov->ih_pr = IPPROTO_TCP;
    463 		ipov->ih_len = htons(sizeof(struct tcphdr));
    464 		if (inp) {
    465 			ipov->ih_src = inp->inp_laddr;
    466 			ipov->ih_dst = inp->inp_faddr;
    467 		}
    468 #ifdef INET6
    469 		else if (in6p) {
    470 			/* mapped addr case */
    471 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    472 				sizeof(ipov->ih_src));
    473 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    474 				sizeof(ipov->ih_dst));
    475 		}
    476 #endif
    477 		/*
    478 		 * Compute the pseudo-header portion of the checksum
    479 		 * now.  We incrementally add in the TCP option and
    480 		 * payload lengths later, and then compute the TCP
    481 		 * checksum right before the packet is sent off onto
    482 		 * the wire.
    483 		 */
    484 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    485 		    ipov->ih_dst.s_addr,
    486 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    487 		break;
    488 	    }
    489 #ifdef INET6
    490 	case AF_INET6:
    491 	    {
    492 		struct ip6_hdr *ip6;
    493 		mtod(m, struct ip *)->ip_v = 6;
    494 		ip6 = mtod(m, struct ip6_hdr *);
    495 		ip6->ip6_nxt = IPPROTO_TCP;
    496 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    497 		ip6->ip6_src = in6p->in6p_laddr;
    498 		ip6->ip6_dst = in6p->in6p_faddr;
    499 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    500 		if (ip6_auto_flowlabel) {
    501 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    502 			ip6->ip6_flow |=
    503 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
    504 		}
    505 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    506 		ip6->ip6_vfc |= IPV6_VERSION;
    507 
    508 		/*
    509 		 * Compute the pseudo-header portion of the checksum
    510 		 * now.  We incrementally add in the TCP option and
    511 		 * payload lengths later, and then compute the TCP
    512 		 * checksum right before the packet is sent off onto
    513 		 * the wire.
    514 		 */
    515 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    516 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    517 		    htonl(IPPROTO_TCP));
    518 		break;
    519 	    }
    520 #endif
    521 	}
    522 	if (inp) {
    523 		n->th_sport = inp->inp_lport;
    524 		n->th_dport = inp->inp_fport;
    525 	}
    526 #ifdef INET6
    527 	else if (in6p) {
    528 		n->th_sport = in6p->in6p_lport;
    529 		n->th_dport = in6p->in6p_fport;
    530 	}
    531 #endif
    532 	n->th_seq = 0;
    533 	n->th_ack = 0;
    534 	n->th_x2 = 0;
    535 	n->th_off = 5;
    536 	n->th_flags = 0;
    537 	n->th_win = 0;
    538 	n->th_urp = 0;
    539 	return (m);
    540 }
    541 
    542 /*
    543  * Send a single message to the TCP at address specified by
    544  * the given TCP/IP header.  If m == 0, then we make a copy
    545  * of the tcpiphdr at ti and send directly to the addressed host.
    546  * This is used to force keep alive messages out using the TCP
    547  * template for a connection tp->t_template.  If flags are given
    548  * then we send a message back to the TCP which originated the
    549  * segment ti, and discard the mbuf containing it and any other
    550  * attached mbufs.
    551  *
    552  * In any case the ack and sequence number of the transmitted
    553  * segment are as specified by the parameters.
    554  */
    555 int
    556 tcp_respond(tp, template, m, th0, ack, seq, flags)
    557 	struct tcpcb *tp;
    558 	struct mbuf *template;
    559 	struct mbuf *m;
    560 	struct tcphdr *th0;
    561 	tcp_seq ack, seq;
    562 	int flags;
    563 {
    564 	struct route *ro;
    565 	int error, tlen, win = 0;
    566 	int hlen;
    567 	struct ip *ip;
    568 #ifdef INET6
    569 	struct ip6_hdr *ip6;
    570 #endif
    571 	int family;	/* family on packet, not inpcb/in6pcb! */
    572 	struct tcphdr *th;
    573 
    574 	if (tp != NULL && (flags & TH_RST) == 0) {
    575 #ifdef DIAGNOSTIC
    576 		if (tp->t_inpcb && tp->t_in6pcb)
    577 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    578 #endif
    579 #ifdef INET
    580 		if (tp->t_inpcb)
    581 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    582 #endif
    583 #ifdef INET6
    584 		if (tp->t_in6pcb)
    585 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    586 #endif
    587 	}
    588 
    589 	th = NULL;	/* Quell uninitialized warning */
    590 	ip = NULL;
    591 #ifdef INET6
    592 	ip6 = NULL;
    593 #endif
    594 	if (m == 0) {
    595 		if (!template)
    596 			return EINVAL;
    597 
    598 		/* get family information from template */
    599 		switch (mtod(template, struct ip *)->ip_v) {
    600 		case 4:
    601 			family = AF_INET;
    602 			hlen = sizeof(struct ip);
    603 			break;
    604 #ifdef INET6
    605 		case 6:
    606 			family = AF_INET6;
    607 			hlen = sizeof(struct ip6_hdr);
    608 			break;
    609 #endif
    610 		default:
    611 			return EAFNOSUPPORT;
    612 		}
    613 
    614 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    615 		if (m) {
    616 			MCLAIM(m, &tcp_tx_mowner);
    617 			MCLGET(m, M_DONTWAIT);
    618 			if ((m->m_flags & M_EXT) == 0) {
    619 				m_free(m);
    620 				m = NULL;
    621 			}
    622 		}
    623 		if (m == NULL)
    624 			return (ENOBUFS);
    625 
    626 		if (tcp_compat_42)
    627 			tlen = 1;
    628 		else
    629 			tlen = 0;
    630 
    631 		m->m_data += max_linkhdr;
    632 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
    633 			template->m_len);
    634 		switch (family) {
    635 		case AF_INET:
    636 			ip = mtod(m, struct ip *);
    637 			th = (struct tcphdr *)(ip + 1);
    638 			break;
    639 #ifdef INET6
    640 		case AF_INET6:
    641 			ip6 = mtod(m, struct ip6_hdr *);
    642 			th = (struct tcphdr *)(ip6 + 1);
    643 			break;
    644 #endif
    645 #if 0
    646 		default:
    647 			/* noone will visit here */
    648 			m_freem(m);
    649 			return EAFNOSUPPORT;
    650 #endif
    651 		}
    652 		flags = TH_ACK;
    653 	} else {
    654 
    655 		if ((m->m_flags & M_PKTHDR) == 0) {
    656 #if 0
    657 			printf("non PKTHDR to tcp_respond\n");
    658 #endif
    659 			m_freem(m);
    660 			return EINVAL;
    661 		}
    662 #ifdef DIAGNOSTIC
    663 		if (!th0)
    664 			panic("th0 == NULL in tcp_respond");
    665 #endif
    666 
    667 		/* get family information from m */
    668 		switch (mtod(m, struct ip *)->ip_v) {
    669 		case 4:
    670 			family = AF_INET;
    671 			hlen = sizeof(struct ip);
    672 			ip = mtod(m, struct ip *);
    673 			break;
    674 #ifdef INET6
    675 		case 6:
    676 			family = AF_INET6;
    677 			hlen = sizeof(struct ip6_hdr);
    678 			ip6 = mtod(m, struct ip6_hdr *);
    679 			break;
    680 #endif
    681 		default:
    682 			m_freem(m);
    683 			return EAFNOSUPPORT;
    684 		}
    685 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    686 			tlen = sizeof(*th0);
    687 		else
    688 			tlen = th0->th_off << 2;
    689 
    690 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    691 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
    692 			m->m_len = hlen + tlen;
    693 			m_freem(m->m_next);
    694 			m->m_next = NULL;
    695 		} else {
    696 			struct mbuf *n;
    697 
    698 #ifdef DIAGNOSTIC
    699 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    700 				m_freem(m);
    701 				return EMSGSIZE;
    702 			}
    703 #endif
    704 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    705 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    706 				MCLGET(n, M_DONTWAIT);
    707 				if ((n->m_flags & M_EXT) == 0) {
    708 					m_freem(n);
    709 					n = NULL;
    710 				}
    711 			}
    712 			if (!n) {
    713 				m_freem(m);
    714 				return ENOBUFS;
    715 			}
    716 
    717 			MCLAIM(n, &tcp_tx_mowner);
    718 			n->m_data += max_linkhdr;
    719 			n->m_len = hlen + tlen;
    720 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
    721 			m_copyback(n, hlen, tlen, (caddr_t)th0);
    722 
    723 			m_freem(m);
    724 			m = n;
    725 			n = NULL;
    726 		}
    727 
    728 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    729 		switch (family) {
    730 		case AF_INET:
    731 			ip = mtod(m, struct ip *);
    732 			th = (struct tcphdr *)(ip + 1);
    733 			ip->ip_p = IPPROTO_TCP;
    734 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    735 			ip->ip_p = IPPROTO_TCP;
    736 			break;
    737 #ifdef INET6
    738 		case AF_INET6:
    739 			ip6 = mtod(m, struct ip6_hdr *);
    740 			th = (struct tcphdr *)(ip6 + 1);
    741 			ip6->ip6_nxt = IPPROTO_TCP;
    742 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    743 			ip6->ip6_nxt = IPPROTO_TCP;
    744 			break;
    745 #endif
    746 #if 0
    747 		default:
    748 			/* noone will visit here */
    749 			m_freem(m);
    750 			return EAFNOSUPPORT;
    751 #endif
    752 		}
    753 		xchg(th->th_dport, th->th_sport, u_int16_t);
    754 #undef xchg
    755 		tlen = 0;	/*be friendly with the following code*/
    756 	}
    757 	th->th_seq = htonl(seq);
    758 	th->th_ack = htonl(ack);
    759 	th->th_x2 = 0;
    760 	if ((flags & TH_SYN) == 0) {
    761 		if (tp)
    762 			win >>= tp->rcv_scale;
    763 		if (win > TCP_MAXWIN)
    764 			win = TCP_MAXWIN;
    765 		th->th_win = htons((u_int16_t)win);
    766 		th->th_off = sizeof (struct tcphdr) >> 2;
    767 		tlen += sizeof(*th);
    768 	} else
    769 		tlen += th->th_off << 2;
    770 	m->m_len = hlen + tlen;
    771 	m->m_pkthdr.len = hlen + tlen;
    772 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    773 	th->th_flags = flags;
    774 	th->th_urp = 0;
    775 
    776 	switch (family) {
    777 #ifdef INET
    778 	case AF_INET:
    779 	    {
    780 		struct ipovly *ipov = (struct ipovly *)ip;
    781 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    782 		ipov->ih_len = htons((u_int16_t)tlen);
    783 
    784 		th->th_sum = 0;
    785 		th->th_sum = in_cksum(m, hlen + tlen);
    786 		ip->ip_len = htons(hlen + tlen);
    787 		ip->ip_ttl = ip_defttl;
    788 		break;
    789 	    }
    790 #endif
    791 #ifdef INET6
    792 	case AF_INET6:
    793 	    {
    794 		th->th_sum = 0;
    795 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    796 				tlen);
    797 		ip6->ip6_plen = ntohs(tlen);
    798 		if (tp && tp->t_in6pcb) {
    799 			struct ifnet *oifp;
    800 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    801 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    802 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    803 		} else
    804 			ip6->ip6_hlim = ip6_defhlim;
    805 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    806 		if (ip6_auto_flowlabel) {
    807 			ip6->ip6_flow |=
    808 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
    809 		}
    810 		break;
    811 	    }
    812 #endif
    813 	}
    814 
    815 #ifdef IPSEC
    816 	(void)ipsec_setsocket(m, NULL);
    817 #endif /*IPSEC*/
    818 
    819 	if (tp != NULL && tp->t_inpcb != NULL) {
    820 		ro = &tp->t_inpcb->inp_route;
    821 #ifdef IPSEC
    822 		if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
    823 			m_freem(m);
    824 			return ENOBUFS;
    825 		}
    826 #endif
    827 #ifdef DIAGNOSTIC
    828 		if (family != AF_INET)
    829 			panic("tcp_respond: address family mismatch");
    830 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    831 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    832 			    ntohl(ip->ip_dst.s_addr),
    833 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    834 		}
    835 #endif
    836 	}
    837 #ifdef INET6
    838 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    839 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    840 #ifdef IPSEC
    841 		if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
    842 			m_freem(m);
    843 			return ENOBUFS;
    844 		}
    845 #endif
    846 #ifdef DIAGNOSTIC
    847 		if (family == AF_INET) {
    848 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    849 				panic("tcp_respond: not mapped addr");
    850 			if (bcmp(&ip->ip_dst,
    851 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    852 			    sizeof(ip->ip_dst)) != 0) {
    853 				panic("tcp_respond: ip_dst != in6p_faddr");
    854 			}
    855 		} else if (family == AF_INET6) {
    856 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    857 			    &tp->t_in6pcb->in6p_faddr))
    858 				panic("tcp_respond: ip6_dst != in6p_faddr");
    859 		} else
    860 			panic("tcp_respond: address family mismatch");
    861 #endif
    862 	}
    863 #endif
    864 	else
    865 		ro = NULL;
    866 
    867 	switch (family) {
    868 #ifdef INET
    869 	case AF_INET:
    870 		error = ip_output(m, NULL, ro,
    871 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    872 		    NULL);
    873 		break;
    874 #endif
    875 #ifdef INET6
    876 	case AF_INET6:
    877 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
    878 		    NULL);
    879 		break;
    880 #endif
    881 	default:
    882 		error = EAFNOSUPPORT;
    883 		break;
    884 	}
    885 
    886 	return (error);
    887 }
    888 
    889 /*
    890  * Create a new TCP control block, making an
    891  * empty reassembly queue and hooking it to the argument
    892  * protocol control block.
    893  */
    894 struct tcpcb *
    895 tcp_newtcpcb(family, aux)
    896 	int family;	/* selects inpcb, or in6pcb */
    897 	void *aux;
    898 {
    899 	struct tcpcb *tp;
    900 	int i;
    901 
    902 	switch (family) {
    903 	case PF_INET:
    904 		break;
    905 #ifdef INET6
    906 	case PF_INET6:
    907 		break;
    908 #endif
    909 	default:
    910 		return NULL;
    911 	}
    912 
    913 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    914 	if (tp == NULL)
    915 		return (NULL);
    916 	bzero((caddr_t)tp, sizeof(struct tcpcb));
    917 	TAILQ_INIT(&tp->segq);
    918 	TAILQ_INIT(&tp->timeq);
    919 	tp->t_family = family;		/* may be overridden later on */
    920 	tp->t_peermss = tcp_mssdflt;
    921 	tp->t_ourmss = tcp_mssdflt;
    922 	tp->t_segsz = tcp_mssdflt;
    923 	LIST_INIT(&tp->t_sc);
    924 
    925 	tp->t_lastm = NULL;
    926 	tp->t_lastoff = 0;
    927 
    928 	callout_init(&tp->t_delack_ch);
    929 	for (i = 0; i < TCPT_NTIMERS; i++)
    930 		TCP_TIMER_INIT(tp, i);
    931 
    932 	tp->t_flags = 0;
    933 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    934 		tp->t_flags |= TF_REQ_SCALE;
    935 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    936 		tp->t_flags |= TF_REQ_TSTMP;
    937 	if (tcp_do_sack == 2)
    938 		tp->t_flags |= TF_WILL_SACK;
    939 	else if (tcp_do_sack == 1)
    940 		tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
    941 	tp->t_flags |= TF_CANT_TXSACK;
    942 	switch (family) {
    943 	case PF_INET:
    944 		tp->t_inpcb = (struct inpcb *)aux;
    945 		tp->t_mtudisc = ip_mtudisc;
    946 		break;
    947 #ifdef INET6
    948 	case PF_INET6:
    949 		tp->t_in6pcb = (struct in6pcb *)aux;
    950 		/* for IPv6, always try to run path MTU discovery */
    951 		tp->t_mtudisc = 1;
    952 		break;
    953 #endif
    954 	}
    955 	/*
    956 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    957 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    958 	 * reasonable initial retransmit time.
    959 	 */
    960 	tp->t_srtt = TCPTV_SRTTBASE;
    961 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    962 	tp->t_rttmin = TCPTV_MIN;
    963 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    964 	    TCPTV_MIN, TCPTV_REXMTMAX);
    965 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    966 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    967 	if (family == AF_INET) {
    968 		struct inpcb *inp = (struct inpcb *)aux;
    969 		inp->inp_ip.ip_ttl = ip_defttl;
    970 		inp->inp_ppcb = (caddr_t)tp;
    971 	}
    972 #ifdef INET6
    973 	else if (family == AF_INET6) {
    974 		struct in6pcb *in6p = (struct in6pcb *)aux;
    975 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
    976 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
    977 					       : NULL);
    978 		in6p->in6p_ppcb = (caddr_t)tp;
    979 	}
    980 #endif
    981 
    982 	/*
    983 	 * Initialize our timebase.  When we send timestamps, we take
    984 	 * the delta from tcp_now -- this means each connection always
    985 	 * gets a timebase of 0, which makes it, among other things,
    986 	 * more difficult to determine how long a system has been up,
    987 	 * and thus how many TCP sequence increments have occurred.
    988 	 */
    989 	tp->ts_timebase = tcp_now;
    990 
    991 	return (tp);
    992 }
    993 
    994 /*
    995  * Drop a TCP connection, reporting
    996  * the specified error.  If connection is synchronized,
    997  * then send a RST to peer.
    998  */
    999 struct tcpcb *
   1000 tcp_drop(tp, errno)
   1001 	struct tcpcb *tp;
   1002 	int errno;
   1003 {
   1004 	struct socket *so = NULL;
   1005 
   1006 #ifdef DIAGNOSTIC
   1007 	if (tp->t_inpcb && tp->t_in6pcb)
   1008 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1009 #endif
   1010 #ifdef INET
   1011 	if (tp->t_inpcb)
   1012 		so = tp->t_inpcb->inp_socket;
   1013 #endif
   1014 #ifdef INET6
   1015 	if (tp->t_in6pcb)
   1016 		so = tp->t_in6pcb->in6p_socket;
   1017 #endif
   1018 	if (!so)
   1019 		return NULL;
   1020 
   1021 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1022 		tp->t_state = TCPS_CLOSED;
   1023 		(void) tcp_output(tp);
   1024 		tcpstat.tcps_drops++;
   1025 	} else
   1026 		tcpstat.tcps_conndrops++;
   1027 	if (errno == ETIMEDOUT && tp->t_softerror)
   1028 		errno = tp->t_softerror;
   1029 	so->so_error = errno;
   1030 	return (tcp_close(tp));
   1031 }
   1032 
   1033 /*
   1034  * Close a TCP control block:
   1035  *	discard all space held by the tcp
   1036  *	discard internet protocol block
   1037  *	wake up any sleepers
   1038  */
   1039 struct tcpcb *
   1040 tcp_close(tp)
   1041 	struct tcpcb *tp;
   1042 {
   1043 	struct inpcb *inp;
   1044 #ifdef INET6
   1045 	struct in6pcb *in6p;
   1046 #endif
   1047 	struct socket *so;
   1048 #ifdef RTV_RTT
   1049 	struct rtentry *rt;
   1050 #endif
   1051 	struct route *ro;
   1052 
   1053 	inp = tp->t_inpcb;
   1054 #ifdef INET6
   1055 	in6p = tp->t_in6pcb;
   1056 #endif
   1057 	so = NULL;
   1058 	ro = NULL;
   1059 	if (inp) {
   1060 		so = inp->inp_socket;
   1061 		ro = &inp->inp_route;
   1062 	}
   1063 #ifdef INET6
   1064 	else if (in6p) {
   1065 		so = in6p->in6p_socket;
   1066 		ro = (struct route *)&in6p->in6p_route;
   1067 	}
   1068 #endif
   1069 
   1070 #ifdef RTV_RTT
   1071 	/*
   1072 	 * If we sent enough data to get some meaningful characteristics,
   1073 	 * save them in the routing entry.  'Enough' is arbitrarily
   1074 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1075 	 * give us 16 rtt samples assuming we only get one sample per
   1076 	 * window (the usual case on a long haul net).  16 samples is
   1077 	 * enough for the srtt filter to converge to within 5% of the correct
   1078 	 * value; fewer samples and we could save a very bogus rtt.
   1079 	 *
   1080 	 * Don't update the default route's characteristics and don't
   1081 	 * update anything that the user "locked".
   1082 	 */
   1083 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1084 	    ro && (rt = ro->ro_rt) &&
   1085 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
   1086 		u_long i = 0;
   1087 
   1088 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1089 			i = tp->t_srtt *
   1090 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1091 			if (rt->rt_rmx.rmx_rtt && i)
   1092 				/*
   1093 				 * filter this update to half the old & half
   1094 				 * the new values, converting scale.
   1095 				 * See route.h and tcp_var.h for a
   1096 				 * description of the scaling constants.
   1097 				 */
   1098 				rt->rt_rmx.rmx_rtt =
   1099 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1100 			else
   1101 				rt->rt_rmx.rmx_rtt = i;
   1102 		}
   1103 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1104 			i = tp->t_rttvar *
   1105 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1106 			if (rt->rt_rmx.rmx_rttvar && i)
   1107 				rt->rt_rmx.rmx_rttvar =
   1108 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1109 			else
   1110 				rt->rt_rmx.rmx_rttvar = i;
   1111 		}
   1112 		/*
   1113 		 * update the pipelimit (ssthresh) if it has been updated
   1114 		 * already or if a pipesize was specified & the threshhold
   1115 		 * got below half the pipesize.  I.e., wait for bad news
   1116 		 * before we start updating, then update on both good
   1117 		 * and bad news.
   1118 		 */
   1119 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1120 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1121 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1122 			/*
   1123 			 * convert the limit from user data bytes to
   1124 			 * packets then to packet data bytes.
   1125 			 */
   1126 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1127 			if (i < 2)
   1128 				i = 2;
   1129 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1130 			if (rt->rt_rmx.rmx_ssthresh)
   1131 				rt->rt_rmx.rmx_ssthresh =
   1132 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1133 			else
   1134 				rt->rt_rmx.rmx_ssthresh = i;
   1135 		}
   1136 	}
   1137 #endif /* RTV_RTT */
   1138 	/* free the reassembly queue, if any */
   1139 	TCP_REASS_LOCK(tp);
   1140 	(void) tcp_freeq(tp);
   1141 	TCP_REASS_UNLOCK(tp);
   1142 
   1143 	tcp_canceltimers(tp);
   1144 	TCP_CLEAR_DELACK(tp);
   1145 	syn_cache_cleanup(tp);
   1146 
   1147 	if (tp->t_template) {
   1148 		m_free(tp->t_template);
   1149 		tp->t_template = NULL;
   1150 	}
   1151 	pool_put(&tcpcb_pool, tp);
   1152 	if (inp) {
   1153 		inp->inp_ppcb = 0;
   1154 		soisdisconnected(so);
   1155 		in_pcbdetach(inp);
   1156 	}
   1157 #ifdef INET6
   1158 	else if (in6p) {
   1159 		in6p->in6p_ppcb = 0;
   1160 		soisdisconnected(so);
   1161 		in6_pcbdetach(in6p);
   1162 	}
   1163 #endif
   1164 	tcpstat.tcps_closed++;
   1165 	return ((struct tcpcb *)0);
   1166 }
   1167 
   1168 int
   1169 tcp_freeq(tp)
   1170 	struct tcpcb *tp;
   1171 {
   1172 	struct ipqent *qe;
   1173 	int rv = 0;
   1174 #ifdef TCPREASS_DEBUG
   1175 	int i = 0;
   1176 #endif
   1177 
   1178 	TCP_REASS_LOCK_CHECK(tp);
   1179 
   1180 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1181 #ifdef TCPREASS_DEBUG
   1182 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1183 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1184 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1185 #endif
   1186 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1187 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1188 		m_freem(qe->ipqe_m);
   1189 		pool_put(&ipqent_pool, qe);
   1190 		rv = 1;
   1191 	}
   1192 	return (rv);
   1193 }
   1194 
   1195 /*
   1196  * Protocol drain routine.  Called when memory is in short supply.
   1197  */
   1198 void
   1199 tcp_drain()
   1200 {
   1201 	struct inpcb *inp;
   1202 	struct tcpcb *tp;
   1203 
   1204 	/*
   1205 	 * Free the sequence queue of all TCP connections.
   1206 	 */
   1207 	inp = CIRCLEQ_FIRST(&tcbtable.inpt_queue);
   1208 	if (inp)						/* XXX */
   1209 	CIRCLEQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue) {
   1210 		if ((tp = intotcpcb(inp)) != NULL) {
   1211 			/*
   1212 			 * We may be called from a device's interrupt
   1213 			 * context.  If the tcpcb is already busy,
   1214 			 * just bail out now.
   1215 			 */
   1216 			if (tcp_reass_lock_try(tp) == 0)
   1217 				continue;
   1218 			if (tcp_freeq(tp))
   1219 				tcpstat.tcps_connsdrained++;
   1220 			TCP_REASS_UNLOCK(tp);
   1221 		}
   1222 	}
   1223 }
   1224 
   1225 #ifdef INET6
   1226 void
   1227 tcp6_drain()
   1228 {
   1229 	struct in6pcb *in6p;
   1230 	struct tcpcb *tp;
   1231 	struct in6pcb *head = &tcb6;
   1232 
   1233 	/*
   1234 	 * Free the sequence queue of all TCP connections.
   1235 	 */
   1236 	for (in6p = head->in6p_next; in6p != head; in6p = in6p->in6p_next) {
   1237 		if ((tp = in6totcpcb(in6p)) != NULL) {
   1238 			/*
   1239 			 * We may be called from a device's interrupt
   1240 			 * context.  If the tcpcb is already busy,
   1241 			 * just bail out now.
   1242 			 */
   1243 			if (tcp_reass_lock_try(tp) == 0)
   1244 				continue;
   1245 			if (tcp_freeq(tp))
   1246 				tcpstat.tcps_connsdrained++;
   1247 			TCP_REASS_UNLOCK(tp);
   1248 		}
   1249 	}
   1250 }
   1251 #endif
   1252 
   1253 /*
   1254  * Notify a tcp user of an asynchronous error;
   1255  * store error as soft error, but wake up user
   1256  * (for now, won't do anything until can select for soft error).
   1257  */
   1258 void
   1259 tcp_notify(inp, error)
   1260 	struct inpcb *inp;
   1261 	int error;
   1262 {
   1263 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1264 	struct socket *so = inp->inp_socket;
   1265 
   1266 	/*
   1267 	 * Ignore some errors if we are hooked up.
   1268 	 * If connection hasn't completed, has retransmitted several times,
   1269 	 * and receives a second error, give up now.  This is better
   1270 	 * than waiting a long time to establish a connection that
   1271 	 * can never complete.
   1272 	 */
   1273 	if (tp->t_state == TCPS_ESTABLISHED &&
   1274 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1275 	      error == EHOSTDOWN)) {
   1276 		return;
   1277 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1278 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1279 		so->so_error = error;
   1280 	else
   1281 		tp->t_softerror = error;
   1282 	wakeup((caddr_t) &so->so_timeo);
   1283 	sorwakeup(so);
   1284 	sowwakeup(so);
   1285 }
   1286 
   1287 #ifdef INET6
   1288 void
   1289 tcp6_notify(in6p, error)
   1290 	struct in6pcb *in6p;
   1291 	int error;
   1292 {
   1293 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1294 	struct socket *so = in6p->in6p_socket;
   1295 
   1296 	/*
   1297 	 * Ignore some errors if we are hooked up.
   1298 	 * If connection hasn't completed, has retransmitted several times,
   1299 	 * and receives a second error, give up now.  This is better
   1300 	 * than waiting a long time to establish a connection that
   1301 	 * can never complete.
   1302 	 */
   1303 	if (tp->t_state == TCPS_ESTABLISHED &&
   1304 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1305 	      error == EHOSTDOWN)) {
   1306 		return;
   1307 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1308 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1309 		so->so_error = error;
   1310 	else
   1311 		tp->t_softerror = error;
   1312 	wakeup((caddr_t) &so->so_timeo);
   1313 	sorwakeup(so);
   1314 	sowwakeup(so);
   1315 }
   1316 #endif
   1317 
   1318 #ifdef INET6
   1319 void
   1320 tcp6_ctlinput(cmd, sa, d)
   1321 	int cmd;
   1322 	struct sockaddr *sa;
   1323 	void *d;
   1324 {
   1325 	struct tcphdr th;
   1326 	void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
   1327 	int nmatch;
   1328 	struct ip6_hdr *ip6;
   1329 	const struct sockaddr_in6 *sa6_src = NULL;
   1330 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
   1331 	struct mbuf *m;
   1332 	int off;
   1333 
   1334 	if (sa->sa_family != AF_INET6 ||
   1335 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1336 		return;
   1337 	if ((unsigned)cmd >= PRC_NCMDS)
   1338 		return;
   1339 	else if (cmd == PRC_QUENCH) {
   1340 		/* XXX there's no PRC_QUENCH in IPv6 */
   1341 		notify = tcp6_quench;
   1342 	} else if (PRC_IS_REDIRECT(cmd))
   1343 		notify = in6_rtchange, d = NULL;
   1344 	else if (cmd == PRC_MSGSIZE)
   1345 		; /* special code is present, see below */
   1346 	else if (cmd == PRC_HOSTDEAD)
   1347 		d = NULL;
   1348 	else if (inet6ctlerrmap[cmd] == 0)
   1349 		return;
   1350 
   1351 	/* if the parameter is from icmp6, decode it. */
   1352 	if (d != NULL) {
   1353 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1354 		m = ip6cp->ip6c_m;
   1355 		ip6 = ip6cp->ip6c_ip6;
   1356 		off = ip6cp->ip6c_off;
   1357 		sa6_src = ip6cp->ip6c_src;
   1358 	} else {
   1359 		m = NULL;
   1360 		ip6 = NULL;
   1361 		sa6_src = &sa6_any;
   1362 	}
   1363 
   1364 	if (ip6) {
   1365 		/*
   1366 		 * XXX: We assume that when ip6 is non NULL,
   1367 		 * M and OFF are valid.
   1368 		 */
   1369 
   1370 		/* check if we can safely examine src and dst ports */
   1371 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1372 			if (cmd == PRC_MSGSIZE)
   1373 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1374 			return;
   1375 		}
   1376 
   1377 		bzero(&th, sizeof(th));
   1378 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
   1379 
   1380 		if (cmd == PRC_MSGSIZE) {
   1381 			int valid = 0;
   1382 
   1383 			/*
   1384 			 * Check to see if we have a valid TCP connection
   1385 			 * corresponding to the address in the ICMPv6 message
   1386 			 * payload.
   1387 			 */
   1388 			if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
   1389 			    th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
   1390 			    th.th_sport, 0))
   1391 				valid++;
   1392 
   1393 			/*
   1394 			 * Depending on the value of "valid" and routing table
   1395 			 * size (mtudisc_{hi,lo}wat), we will:
   1396 			 * - recalcurate the new MTU and create the
   1397 			 *   corresponding routing entry, or
   1398 			 * - ignore the MTU change notification.
   1399 			 */
   1400 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1401 
   1402 			/*
   1403 			 * no need to call in6_pcbnotify, it should have been
   1404 			 * called via callback if necessary
   1405 			 */
   1406 			return;
   1407 		}
   1408 
   1409 		nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
   1410 		    (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1411 		if (nmatch == 0 && syn_cache_count &&
   1412 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1413 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1414 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1415 			syn_cache_unreach((struct sockaddr *)sa6_src,
   1416 					  sa, &th);
   1417 	} else {
   1418 		(void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
   1419 		    0, cmd, NULL, notify);
   1420 	}
   1421 }
   1422 #endif
   1423 
   1424 #ifdef INET
   1425 /* assumes that ip header and tcp header are contiguous on mbuf */
   1426 void *
   1427 tcp_ctlinput(cmd, sa, v)
   1428 	int cmd;
   1429 	struct sockaddr *sa;
   1430 	void *v;
   1431 {
   1432 	struct ip *ip = v;
   1433 	struct tcphdr *th;
   1434 	struct icmp *icp;
   1435 	extern const int inetctlerrmap[];
   1436 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
   1437 	int errno;
   1438 	int nmatch;
   1439 #ifdef INET6
   1440 	struct in6_addr src6, dst6;
   1441 #endif
   1442 
   1443 	if (sa->sa_family != AF_INET ||
   1444 	    sa->sa_len != sizeof(struct sockaddr_in))
   1445 		return NULL;
   1446 	if ((unsigned)cmd >= PRC_NCMDS)
   1447 		return NULL;
   1448 	errno = inetctlerrmap[cmd];
   1449 	if (cmd == PRC_QUENCH)
   1450 		notify = tcp_quench;
   1451 	else if (PRC_IS_REDIRECT(cmd))
   1452 		notify = in_rtchange, ip = 0;
   1453 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1454 		/*
   1455 		 * Check to see if we have a valid TCP connection
   1456 		 * corresponding to the address in the ICMP message
   1457 		 * payload.
   1458 		 *
   1459 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1460 		 */
   1461 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1462 #ifdef INET6
   1463 		memset(&src6, 0, sizeof(src6));
   1464 		memset(&dst6, 0, sizeof(dst6));
   1465 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1466 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1467 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1468 #endif
   1469 		if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
   1470 		    ip->ip_src, th->th_sport) != NULL)
   1471 			;
   1472 #ifdef INET6
   1473 		else if (in6_pcblookup_connect(&tcb6, &dst6,
   1474 		    th->th_dport, &src6, th->th_sport, 0) != NULL)
   1475 			;
   1476 #endif
   1477 		else
   1478 			return NULL;
   1479 
   1480 		/*
   1481 		 * Now that we've validated that we are actually communicating
   1482 		 * with the host indicated in the ICMP message, locate the
   1483 		 * ICMP header, recalculate the new MTU, and create the
   1484 		 * corresponding routing entry.
   1485 		 */
   1486 		icp = (struct icmp *)((caddr_t)ip -
   1487 		    offsetof(struct icmp, icmp_ip));
   1488 		icmp_mtudisc(icp, ip->ip_dst);
   1489 
   1490 		return NULL;
   1491 	} else if (cmd == PRC_HOSTDEAD)
   1492 		ip = 0;
   1493 	else if (errno == 0)
   1494 		return NULL;
   1495 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1496 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1497 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
   1498 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1499 		if (nmatch == 0 && syn_cache_count &&
   1500 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1501 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1502 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1503 			struct sockaddr_in sin;
   1504 			bzero(&sin, sizeof(sin));
   1505 			sin.sin_len = sizeof(sin);
   1506 			sin.sin_family = AF_INET;
   1507 			sin.sin_port = th->th_sport;
   1508 			sin.sin_addr = ip->ip_src;
   1509 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1510 		}
   1511 
   1512 		/* XXX mapped address case */
   1513 	} else
   1514 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
   1515 		    notify);
   1516 	return NULL;
   1517 }
   1518 
   1519 /*
   1520  * When a source quence is received, we are being notifed of congestion.
   1521  * Close the congestion window down to the Loss Window (one segment).
   1522  * We will gradually open it again as we proceed.
   1523  */
   1524 void
   1525 tcp_quench(inp, errno)
   1526 	struct inpcb *inp;
   1527 	int errno;
   1528 {
   1529 	struct tcpcb *tp = intotcpcb(inp);
   1530 
   1531 	if (tp)
   1532 		tp->snd_cwnd = tp->t_segsz;
   1533 }
   1534 #endif
   1535 
   1536 #ifdef INET6
   1537 void
   1538 tcp6_quench(in6p, errno)
   1539 	struct in6pcb *in6p;
   1540 	int errno;
   1541 {
   1542 	struct tcpcb *tp = in6totcpcb(in6p);
   1543 
   1544 	if (tp)
   1545 		tp->snd_cwnd = tp->t_segsz;
   1546 }
   1547 #endif
   1548 
   1549 #ifdef INET
   1550 /*
   1551  * Path MTU Discovery handlers.
   1552  */
   1553 void
   1554 tcp_mtudisc_callback(faddr)
   1555 	struct in_addr faddr;
   1556 {
   1557 #ifdef INET6
   1558 	struct in6_addr in6;
   1559 #endif
   1560 
   1561 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1562 #ifdef INET6
   1563 	memset(&in6, 0, sizeof(in6));
   1564 	in6.s6_addr16[5] = 0xffff;
   1565 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1566 	tcp6_mtudisc_callback(&in6);
   1567 #endif
   1568 }
   1569 
   1570 /*
   1571  * On receipt of path MTU corrections, flush old route and replace it
   1572  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1573  * that all packets will be received.
   1574  */
   1575 void
   1576 tcp_mtudisc(inp, errno)
   1577 	struct inpcb *inp;
   1578 	int errno;
   1579 {
   1580 	struct tcpcb *tp = intotcpcb(inp);
   1581 	struct rtentry *rt = in_pcbrtentry(inp);
   1582 
   1583 	if (tp != 0) {
   1584 		if (rt != 0) {
   1585 			/*
   1586 			 * If this was not a host route, remove and realloc.
   1587 			 */
   1588 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1589 				in_rtchange(inp, errno);
   1590 				if ((rt = in_pcbrtentry(inp)) == 0)
   1591 					return;
   1592 			}
   1593 
   1594 			/*
   1595 			 * Slow start out of the error condition.  We
   1596 			 * use the MTU because we know it's smaller
   1597 			 * than the previously transmitted segment.
   1598 			 *
   1599 			 * Note: This is more conservative than the
   1600 			 * suggestion in draft-floyd-incr-init-win-03.
   1601 			 */
   1602 			if (rt->rt_rmx.rmx_mtu != 0)
   1603 				tp->snd_cwnd =
   1604 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1605 				    rt->rt_rmx.rmx_mtu);
   1606 		}
   1607 
   1608 		/*
   1609 		 * Resend unacknowledged packets.
   1610 		 */
   1611 		tp->snd_nxt = tp->snd_una;
   1612 		tcp_output(tp);
   1613 	}
   1614 }
   1615 #endif
   1616 
   1617 #ifdef INET6
   1618 /*
   1619  * Path MTU Discovery handlers.
   1620  */
   1621 void
   1622 tcp6_mtudisc_callback(faddr)
   1623 	struct in6_addr *faddr;
   1624 {
   1625 	struct sockaddr_in6 sin6;
   1626 
   1627 	bzero(&sin6, sizeof(sin6));
   1628 	sin6.sin6_family = AF_INET6;
   1629 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1630 	sin6.sin6_addr = *faddr;
   1631 	(void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
   1632 	    (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1633 }
   1634 
   1635 void
   1636 tcp6_mtudisc(in6p, errno)
   1637 	struct in6pcb *in6p;
   1638 	int errno;
   1639 {
   1640 	struct tcpcb *tp = in6totcpcb(in6p);
   1641 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1642 
   1643 	if (tp != 0) {
   1644 		if (rt != 0) {
   1645 			/*
   1646 			 * If this was not a host route, remove and realloc.
   1647 			 */
   1648 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1649 				in6_rtchange(in6p, errno);
   1650 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1651 					return;
   1652 			}
   1653 
   1654 			/*
   1655 			 * Slow start out of the error condition.  We
   1656 			 * use the MTU because we know it's smaller
   1657 			 * than the previously transmitted segment.
   1658 			 *
   1659 			 * Note: This is more conservative than the
   1660 			 * suggestion in draft-floyd-incr-init-win-03.
   1661 			 */
   1662 			if (rt->rt_rmx.rmx_mtu != 0)
   1663 				tp->snd_cwnd =
   1664 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1665 				    rt->rt_rmx.rmx_mtu);
   1666 		}
   1667 
   1668 		/*
   1669 		 * Resend unacknowledged packets.
   1670 		 */
   1671 		tp->snd_nxt = tp->snd_una;
   1672 		tcp_output(tp);
   1673 	}
   1674 }
   1675 #endif /* INET6 */
   1676 
   1677 /*
   1678  * Compute the MSS to advertise to the peer.  Called only during
   1679  * the 3-way handshake.  If we are the server (peer initiated
   1680  * connection), we are called with a pointer to the interface
   1681  * on which the SYN packet arrived.  If we are the client (we
   1682  * initiated connection), we are called with a pointer to the
   1683  * interface out which this connection should go.
   1684  *
   1685  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1686  * header size from MSS advertisement.  MSS option must hold the maximum
   1687  * segment size we can accept, so it must always be:
   1688  *	 max(if mtu) - ip header - tcp header
   1689  */
   1690 u_long
   1691 tcp_mss_to_advertise(ifp, af)
   1692 	const struct ifnet *ifp;
   1693 	int af;
   1694 {
   1695 	extern u_long in_maxmtu;
   1696 	u_long mss = 0;
   1697 	u_long hdrsiz;
   1698 
   1699 	/*
   1700 	 * In order to avoid defeating path MTU discovery on the peer,
   1701 	 * we advertise the max MTU of all attached networks as our MSS,
   1702 	 * per RFC 1191, section 3.1.
   1703 	 *
   1704 	 * We provide the option to advertise just the MTU of
   1705 	 * the interface on which we hope this connection will
   1706 	 * be receiving.  If we are responding to a SYN, we
   1707 	 * will have a pretty good idea about this, but when
   1708 	 * initiating a connection there is a bit more doubt.
   1709 	 *
   1710 	 * We also need to ensure that loopback has a large enough
   1711 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1712 	 */
   1713 
   1714 	if (ifp != NULL)
   1715 		switch (af) {
   1716 		case AF_INET:
   1717 			mss = ifp->if_mtu;
   1718 			break;
   1719 #ifdef INET6
   1720 		case AF_INET6:
   1721 			mss = IN6_LINKMTU(ifp);
   1722 			break;
   1723 #endif
   1724 		}
   1725 
   1726 	if (tcp_mss_ifmtu == 0)
   1727 		switch (af) {
   1728 		case AF_INET:
   1729 			mss = max(in_maxmtu, mss);
   1730 			break;
   1731 #ifdef INET6
   1732 		case AF_INET6:
   1733 			mss = max(in6_maxmtu, mss);
   1734 			break;
   1735 #endif
   1736 		}
   1737 
   1738 	switch (af) {
   1739 	case AF_INET:
   1740 		hdrsiz = sizeof(struct ip);
   1741 		break;
   1742 #ifdef INET6
   1743 	case AF_INET6:
   1744 		hdrsiz = sizeof(struct ip6_hdr);
   1745 		break;
   1746 #endif
   1747 	default:
   1748 		hdrsiz = 0;
   1749 		break;
   1750 	}
   1751 	hdrsiz += sizeof(struct tcphdr);
   1752 	if (mss > hdrsiz)
   1753 		mss -= hdrsiz;
   1754 
   1755 	mss = max(tcp_mssdflt, mss);
   1756 	return (mss);
   1757 }
   1758 
   1759 /*
   1760  * Set connection variables based on the peer's advertised MSS.
   1761  * We are passed the TCPCB for the actual connection.  If we
   1762  * are the server, we are called by the compressed state engine
   1763  * when the 3-way handshake is complete.  If we are the client,
   1764  * we are called when we receive the SYN,ACK from the server.
   1765  *
   1766  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1767  * before this routine is called!
   1768  */
   1769 void
   1770 tcp_mss_from_peer(tp, offer)
   1771 	struct tcpcb *tp;
   1772 	int offer;
   1773 {
   1774 	struct socket *so;
   1775 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1776 	struct rtentry *rt;
   1777 #endif
   1778 	u_long bufsize;
   1779 	int mss;
   1780 
   1781 #ifdef DIAGNOSTIC
   1782 	if (tp->t_inpcb && tp->t_in6pcb)
   1783 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1784 #endif
   1785 	so = NULL;
   1786 	rt = NULL;
   1787 #ifdef INET
   1788 	if (tp->t_inpcb) {
   1789 		so = tp->t_inpcb->inp_socket;
   1790 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1791 		rt = in_pcbrtentry(tp->t_inpcb);
   1792 #endif
   1793 	}
   1794 #endif
   1795 #ifdef INET6
   1796 	if (tp->t_in6pcb) {
   1797 		so = tp->t_in6pcb->in6p_socket;
   1798 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1799 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1800 #endif
   1801 	}
   1802 #endif
   1803 
   1804 	/*
   1805 	 * As per RFC1122, use the default MSS value, unless they
   1806 	 * sent us an offer.  Do not accept offers less than 32 bytes.
   1807 	 */
   1808 	mss = tcp_mssdflt;
   1809 	if (offer)
   1810 		mss = offer;
   1811 	mss = max(mss, 32);		/* sanity */
   1812 	tp->t_peermss = mss;
   1813 	mss -= tcp_optlen(tp);
   1814 #ifdef INET
   1815 	if (tp->t_inpcb)
   1816 		mss -= ip_optlen(tp->t_inpcb);
   1817 #endif
   1818 #ifdef INET6
   1819 	if (tp->t_in6pcb)
   1820 		mss -= ip6_optlen(tp->t_in6pcb);
   1821 #endif
   1822 
   1823 	/*
   1824 	 * If there's a pipesize, change the socket buffer to that size.
   1825 	 * Make the socket buffer an integral number of MSS units.  If
   1826 	 * the MSS is larger than the socket buffer, artificially decrease
   1827 	 * the MSS.
   1828 	 */
   1829 #ifdef RTV_SPIPE
   1830 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1831 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1832 	else
   1833 #endif
   1834 		bufsize = so->so_snd.sb_hiwat;
   1835 	if (bufsize < mss)
   1836 		mss = bufsize;
   1837 	else {
   1838 		bufsize = roundup(bufsize, mss);
   1839 		if (bufsize > sb_max)
   1840 			bufsize = sb_max;
   1841 		(void) sbreserve(&so->so_snd, bufsize);
   1842 	}
   1843 	tp->t_segsz = mss;
   1844 
   1845 #ifdef RTV_SSTHRESH
   1846 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1847 		/*
   1848 		 * There's some sort of gateway or interface buffer
   1849 		 * limit on the path.  Use this to set the slow
   1850 		 * start threshold, but set the threshold to no less
   1851 		 * than 2 * MSS.
   1852 		 */
   1853 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1854 	}
   1855 #endif
   1856 }
   1857 
   1858 /*
   1859  * Processing necessary when a TCP connection is established.
   1860  */
   1861 void
   1862 tcp_established(tp)
   1863 	struct tcpcb *tp;
   1864 {
   1865 	struct socket *so;
   1866 #ifdef RTV_RPIPE
   1867 	struct rtentry *rt;
   1868 #endif
   1869 	u_long bufsize;
   1870 
   1871 #ifdef DIAGNOSTIC
   1872 	if (tp->t_inpcb && tp->t_in6pcb)
   1873 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   1874 #endif
   1875 	so = NULL;
   1876 	rt = NULL;
   1877 #ifdef INET
   1878 	if (tp->t_inpcb) {
   1879 		so = tp->t_inpcb->inp_socket;
   1880 #if defined(RTV_RPIPE)
   1881 		rt = in_pcbrtentry(tp->t_inpcb);
   1882 #endif
   1883 	}
   1884 #endif
   1885 #ifdef INET6
   1886 	if (tp->t_in6pcb) {
   1887 		so = tp->t_in6pcb->in6p_socket;
   1888 #if defined(RTV_RPIPE)
   1889 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1890 #endif
   1891 	}
   1892 #endif
   1893 
   1894 	tp->t_state = TCPS_ESTABLISHED;
   1895 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1896 
   1897 #ifdef RTV_RPIPE
   1898 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   1899 		bufsize = rt->rt_rmx.rmx_recvpipe;
   1900 	else
   1901 #endif
   1902 		bufsize = so->so_rcv.sb_hiwat;
   1903 	if (bufsize > tp->t_ourmss) {
   1904 		bufsize = roundup(bufsize, tp->t_ourmss);
   1905 		if (bufsize > sb_max)
   1906 			bufsize = sb_max;
   1907 		(void) sbreserve(&so->so_rcv, bufsize);
   1908 	}
   1909 }
   1910 
   1911 /*
   1912  * Check if there's an initial rtt or rttvar.  Convert from the
   1913  * route-table units to scaled multiples of the slow timeout timer.
   1914  * Called only during the 3-way handshake.
   1915  */
   1916 void
   1917 tcp_rmx_rtt(tp)
   1918 	struct tcpcb *tp;
   1919 {
   1920 #ifdef RTV_RTT
   1921 	struct rtentry *rt = NULL;
   1922 	int rtt;
   1923 
   1924 #ifdef DIAGNOSTIC
   1925 	if (tp->t_inpcb && tp->t_in6pcb)
   1926 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   1927 #endif
   1928 #ifdef INET
   1929 	if (tp->t_inpcb)
   1930 		rt = in_pcbrtentry(tp->t_inpcb);
   1931 #endif
   1932 #ifdef INET6
   1933 	if (tp->t_in6pcb)
   1934 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1935 #endif
   1936 	if (rt == NULL)
   1937 		return;
   1938 
   1939 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   1940 		/*
   1941 		 * XXX The lock bit for MTU indicates that the value
   1942 		 * is also a minimum value; this is subject to time.
   1943 		 */
   1944 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   1945 			TCPT_RANGESET(tp->t_rttmin,
   1946 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   1947 			    TCPTV_MIN, TCPTV_REXMTMAX);
   1948 		tp->t_srtt = rtt /
   1949 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1950 		if (rt->rt_rmx.rmx_rttvar) {
   1951 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   1952 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   1953 				(TCP_RTTVAR_SHIFT + 2));
   1954 		} else {
   1955 			/* Default variation is +- 1 rtt */
   1956 			tp->t_rttvar =
   1957 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   1958 		}
   1959 		TCPT_RANGESET(tp->t_rxtcur,
   1960 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   1961 		    tp->t_rttmin, TCPTV_REXMTMAX);
   1962 	}
   1963 #endif
   1964 }
   1965 
   1966 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   1967 #if NRND > 0
   1968 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   1969 #endif
   1970 
   1971 /*
   1972  * Get a new sequence value given a tcp control block
   1973  */
   1974 tcp_seq
   1975 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   1976 {
   1977 
   1978 #ifdef INET
   1979 	if (tp->t_inpcb != NULL) {
   1980 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   1981 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   1982 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   1983 		    addin));
   1984 	}
   1985 #endif
   1986 #ifdef INET6
   1987 	if (tp->t_in6pcb != NULL) {
   1988 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   1989 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   1990 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   1991 		    addin));
   1992 	}
   1993 #endif
   1994 	/* Not possible. */
   1995 	panic("tcp_new_iss");
   1996 }
   1997 
   1998 /*
   1999  * This routine actually generates a new TCP initial sequence number.
   2000  */
   2001 tcp_seq
   2002 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2003     size_t addrsz, tcp_seq addin)
   2004 {
   2005 	tcp_seq tcp_iss;
   2006 
   2007 #if NRND > 0
   2008 	static int beenhere;
   2009 
   2010 	/*
   2011 	 * If we haven't been here before, initialize our cryptographic
   2012 	 * hash secret.
   2013 	 */
   2014 	if (beenhere == 0) {
   2015 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   2016 		    RND_EXTRACT_ANY);
   2017 		beenhere = 1;
   2018 	}
   2019 
   2020 	if (tcp_do_rfc1948) {
   2021 		MD5_CTX ctx;
   2022 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2023 
   2024 		/*
   2025 		 * Compute the base value of the ISS.  It is a hash
   2026 		 * of (saddr, sport, daddr, dport, secret).
   2027 		 */
   2028 		MD5Init(&ctx);
   2029 
   2030 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2031 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2032 
   2033 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2034 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2035 
   2036 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2037 
   2038 		MD5Final(hash, &ctx);
   2039 
   2040 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2041 
   2042 		/*
   2043 		 * Now increment our "timer", and add it in to
   2044 		 * the computed value.
   2045 		 *
   2046 		 * XXX Use `addin'?
   2047 		 * XXX TCP_ISSINCR too large to use?
   2048 		 */
   2049 		tcp_iss_seq += TCP_ISSINCR;
   2050 #ifdef TCPISS_DEBUG
   2051 		printf("ISS hash 0x%08x, ", tcp_iss);
   2052 #endif
   2053 		tcp_iss += tcp_iss_seq + addin;
   2054 #ifdef TCPISS_DEBUG
   2055 		printf("new ISS 0x%08x\n", tcp_iss);
   2056 #endif
   2057 	} else
   2058 #endif /* NRND > 0 */
   2059 	{
   2060 		/*
   2061 		 * Randomize.
   2062 		 */
   2063 #if NRND > 0
   2064 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2065 #else
   2066 		tcp_iss = arc4random();
   2067 #endif
   2068 
   2069 		/*
   2070 		 * If we were asked to add some amount to a known value,
   2071 		 * we will take a random value obtained above, mask off
   2072 		 * the upper bits, and add in the known value.  We also
   2073 		 * add in a constant to ensure that we are at least a
   2074 		 * certain distance from the original value.
   2075 		 *
   2076 		 * This is used when an old connection is in timed wait
   2077 		 * and we have a new one coming in, for instance.
   2078 		 */
   2079 		if (addin != 0) {
   2080 #ifdef TCPISS_DEBUG
   2081 			printf("Random %08x, ", tcp_iss);
   2082 #endif
   2083 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2084 			tcp_iss += addin + TCP_ISSINCR;
   2085 #ifdef TCPISS_DEBUG
   2086 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2087 #endif
   2088 		} else {
   2089 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2090 			tcp_iss += tcp_iss_seq;
   2091 			tcp_iss_seq += TCP_ISSINCR;
   2092 #ifdef TCPISS_DEBUG
   2093 			printf("ISS %08x\n", tcp_iss);
   2094 #endif
   2095 		}
   2096 	}
   2097 
   2098 	if (tcp_compat_42) {
   2099 		/*
   2100 		 * Limit it to the positive range for really old TCP
   2101 		 * implementations.
   2102 		 * Just AND off the top bit instead of checking if
   2103 		 * is set first - saves a branch 50% of the time.
   2104 		 */
   2105 		tcp_iss &= 0x7fffffff;		/* XXX */
   2106 	}
   2107 
   2108 	return (tcp_iss);
   2109 }
   2110 
   2111 #ifdef IPSEC
   2112 /* compute ESP/AH header size for TCP, including outer IP header. */
   2113 size_t
   2114 ipsec4_hdrsiz_tcp(tp)
   2115 	struct tcpcb *tp;
   2116 {
   2117 	struct inpcb *inp;
   2118 	size_t hdrsiz;
   2119 
   2120 	/* XXX mapped addr case (tp->t_in6pcb) */
   2121 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2122 		return 0;
   2123 	switch (tp->t_family) {
   2124 	case AF_INET:
   2125 		/* XXX: should use currect direction. */
   2126 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2127 		break;
   2128 	default:
   2129 		hdrsiz = 0;
   2130 		break;
   2131 	}
   2132 
   2133 	return hdrsiz;
   2134 }
   2135 
   2136 #ifdef INET6
   2137 size_t
   2138 ipsec6_hdrsiz_tcp(tp)
   2139 	struct tcpcb *tp;
   2140 {
   2141 	struct in6pcb *in6p;
   2142 	size_t hdrsiz;
   2143 
   2144 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2145 		return 0;
   2146 	switch (tp->t_family) {
   2147 	case AF_INET6:
   2148 		/* XXX: should use currect direction. */
   2149 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2150 		break;
   2151 	case AF_INET:
   2152 		/* mapped address case - tricky */
   2153 	default:
   2154 		hdrsiz = 0;
   2155 		break;
   2156 	}
   2157 
   2158 	return hdrsiz;
   2159 }
   2160 #endif
   2161 #endif /*IPSEC*/
   2162 
   2163 /*
   2164  * Determine the length of the TCP options for this connection.
   2165  *
   2166  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2167  *       all of the space?  Otherwise we can't exactly be incrementing
   2168  *       cwnd by an amount that varies depending on the amount we last
   2169  *       had to SACK!
   2170  */
   2171 
   2172 u_int
   2173 tcp_optlen(tp)
   2174 	struct tcpcb *tp;
   2175 {
   2176 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2177 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2178 		return TCPOLEN_TSTAMP_APPA;
   2179 	else
   2180 		return 0;
   2181 }
   2182