tcp_subr.c revision 1.144 1 /* $NetBSD: tcp_subr.c,v 1.144 2003/07/20 16:35:08 he Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. All advertising materials mentioning features or use of this software
82 * must display the following acknowledgement:
83 * This product includes software developed by the University of
84 * California, Berkeley and its contributors.
85 * 4. Neither the name of the University nor the names of its contributors
86 * may be used to endorse or promote products derived from this software
87 * without specific prior written permission.
88 *
89 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
90 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
91 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
92 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
93 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
94 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
95 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
96 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
97 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
98 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
99 * SUCH DAMAGE.
100 *
101 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
102 */
103
104 #include <sys/cdefs.h>
105 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.144 2003/07/20 16:35:08 he Exp $");
106
107 #include "opt_inet.h"
108 #include "opt_ipsec.h"
109 #include "opt_tcp_compat_42.h"
110 #include "opt_inet_csum.h"
111 #include "opt_mbuftrace.h"
112 #include "rnd.h"
113
114 #include <sys/param.h>
115 #include <sys/proc.h>
116 #include <sys/systm.h>
117 #include <sys/malloc.h>
118 #include <sys/mbuf.h>
119 #include <sys/socket.h>
120 #include <sys/socketvar.h>
121 #include <sys/protosw.h>
122 #include <sys/errno.h>
123 #include <sys/kernel.h>
124 #include <sys/pool.h>
125 #if NRND > 0
126 #include <sys/md5.h>
127 #include <sys/rnd.h>
128 #endif
129
130 #include <net/route.h>
131 #include <net/if.h>
132
133 #include <netinet/in.h>
134 #include <netinet/in_systm.h>
135 #include <netinet/ip.h>
136 #include <netinet/in_pcb.h>
137 #include <netinet/ip_var.h>
138 #include <netinet/ip_icmp.h>
139
140 #ifdef INET6
141 #ifndef INET
142 #include <netinet/in.h>
143 #endif
144 #include <netinet/ip6.h>
145 #include <netinet6/in6_pcb.h>
146 #include <netinet6/ip6_var.h>
147 #include <netinet6/in6_var.h>
148 #include <netinet6/ip6protosw.h>
149 #include <netinet/icmp6.h>
150 #include <netinet6/nd6.h>
151 #endif
152
153 #include <netinet/tcp.h>
154 #include <netinet/tcp_fsm.h>
155 #include <netinet/tcp_seq.h>
156 #include <netinet/tcp_timer.h>
157 #include <netinet/tcp_var.h>
158 #include <netinet/tcpip.h>
159
160 #ifdef IPSEC
161 #include <netinet6/ipsec.h>
162 #endif /*IPSEC*/
163
164 #ifdef INET6
165 struct in6pcb tcb6;
166 #endif
167
168 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
169 struct tcpstat tcpstat; /* tcp statistics */
170 u_int32_t tcp_now; /* for RFC 1323 timestamps */
171
172 /* patchable/settable parameters for tcp */
173 int tcp_mssdflt = TCP_MSS;
174 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
175 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
176 #if NRND > 0
177 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
178 #endif
179 int tcp_do_sack = 1; /* selective acknowledgement */
180 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
181 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
182 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
183 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
184 #ifndef TCP_INIT_WIN
185 #define TCP_INIT_WIN 1 /* initial slow start window */
186 #endif
187 #ifndef TCP_INIT_WIN_LOCAL
188 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
189 #endif
190 int tcp_init_win = TCP_INIT_WIN;
191 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
192 int tcp_mss_ifmtu = 0;
193 #ifdef TCP_COMPAT_42
194 int tcp_compat_42 = 1;
195 #else
196 int tcp_compat_42 = 0;
197 #endif
198 int tcp_rst_ppslim = 100; /* 100pps */
199
200 /* tcb hash */
201 #ifndef TCBHASHSIZE
202 #define TCBHASHSIZE 128
203 #endif
204 int tcbhashsize = TCBHASHSIZE;
205
206 /* syn hash parameters */
207 #define TCP_SYN_HASH_SIZE 293
208 #define TCP_SYN_BUCKET_SIZE 35
209 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
210 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
211 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
212 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
213
214 int tcp_freeq __P((struct tcpcb *));
215
216 #ifdef INET
217 void tcp_mtudisc_callback __P((struct in_addr));
218 #endif
219 #ifdef INET6
220 void tcp6_mtudisc_callback __P((struct in6_addr *));
221 #endif
222
223 void tcp_mtudisc __P((struct inpcb *, int));
224 #ifdef INET6
225 void tcp6_mtudisc __P((struct in6pcb *, int));
226 #endif
227
228 struct pool tcpcb_pool;
229
230 #ifdef TCP_CSUM_COUNTERS
231 #include <sys/device.h>
232
233 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
234 NULL, "tcp", "hwcsum bad");
235 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
236 NULL, "tcp", "hwcsum ok");
237 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
238 NULL, "tcp", "hwcsum data");
239 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
240 NULL, "tcp", "swcsum");
241 #endif /* TCP_CSUM_COUNTERS */
242
243 #ifdef TCP_OUTPUT_COUNTERS
244 #include <sys/device.h>
245
246 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
247 NULL, "tcp", "output big header");
248 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
249 NULL, "tcp", "output copy small");
250 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
251 NULL, "tcp", "output copy big");
252 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
253 NULL, "tcp", "output reference big");
254 #endif /* TCP_OUTPUT_COUNTERS */
255
256 #ifdef TCP_REASS_COUNTERS
257 #include <sys/device.h>
258
259 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
260 NULL, "tcp_reass", "calls");
261 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
262 &tcp_reass_, "tcp_reass", "insert into empty queue");
263 struct evcnt tcp_reass_iteration[8] = {
264 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
265 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
266 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
267 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
268 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
269 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
270 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
271 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
272 };
273 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
274 &tcp_reass_, "tcp_reass", "prepend to first");
275 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
276 &tcp_reass_, "tcp_reass", "prepend");
277 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
278 &tcp_reass_, "tcp_reass", "insert");
279 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
280 &tcp_reass_, "tcp_reass", "insert at tail");
281 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282 &tcp_reass_, "tcp_reass", "append");
283 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284 &tcp_reass_, "tcp_reass", "append to tail fragment");
285 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286 &tcp_reass_, "tcp_reass", "overlap at end");
287 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288 &tcp_reass_, "tcp_reass", "overlap at start");
289 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
290 &tcp_reass_, "tcp_reass", "duplicate segment");
291 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
292 &tcp_reass_, "tcp_reass", "duplicate fragment");
293
294 #endif /* TCP_REASS_COUNTERS */
295
296 #ifdef MBUFTRACE
297 struct mowner tcp_mowner = { "tcp" };
298 struct mowner tcp_rx_mowner = { "tcp", "rx" };
299 struct mowner tcp_tx_mowner = { "tcp", "tx" };
300 #endif
301
302 /*
303 * Tcp initialization
304 */
305 void
306 tcp_init()
307 {
308 int hlen;
309
310 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
311 NULL);
312 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
313 #ifdef INET6
314 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
315 #endif
316
317 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
318 #ifdef INET6
319 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
320 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
321 #endif
322 if (max_protohdr < hlen)
323 max_protohdr = hlen;
324 if (max_linkhdr + hlen > MHLEN)
325 panic("tcp_init");
326
327 #ifdef INET
328 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
329 #endif
330 #ifdef INET6
331 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
332 #endif
333
334 /* Initialize timer state. */
335 tcp_timer_init();
336
337 /* Initialize the compressed state engine. */
338 syn_cache_init();
339
340 #ifdef TCP_CSUM_COUNTERS
341 evcnt_attach_static(&tcp_hwcsum_bad);
342 evcnt_attach_static(&tcp_hwcsum_ok);
343 evcnt_attach_static(&tcp_hwcsum_data);
344 evcnt_attach_static(&tcp_swcsum);
345 #endif /* TCP_CSUM_COUNTERS */
346
347 #ifdef TCP_OUTPUT_COUNTERS
348 evcnt_attach_static(&tcp_output_bigheader);
349 evcnt_attach_static(&tcp_output_copysmall);
350 evcnt_attach_static(&tcp_output_copybig);
351 evcnt_attach_static(&tcp_output_refbig);
352 #endif /* TCP_OUTPUT_COUNTERS */
353
354 #ifdef TCP_REASS_COUNTERS
355 evcnt_attach_static(&tcp_reass_);
356 evcnt_attach_static(&tcp_reass_empty);
357 evcnt_attach_static(&tcp_reass_iteration[0]);
358 evcnt_attach_static(&tcp_reass_iteration[1]);
359 evcnt_attach_static(&tcp_reass_iteration[2]);
360 evcnt_attach_static(&tcp_reass_iteration[3]);
361 evcnt_attach_static(&tcp_reass_iteration[4]);
362 evcnt_attach_static(&tcp_reass_iteration[5]);
363 evcnt_attach_static(&tcp_reass_iteration[6]);
364 evcnt_attach_static(&tcp_reass_iteration[7]);
365 evcnt_attach_static(&tcp_reass_prependfirst);
366 evcnt_attach_static(&tcp_reass_prepend);
367 evcnt_attach_static(&tcp_reass_insert);
368 evcnt_attach_static(&tcp_reass_inserttail);
369 evcnt_attach_static(&tcp_reass_append);
370 evcnt_attach_static(&tcp_reass_appendtail);
371 evcnt_attach_static(&tcp_reass_overlaptail);
372 evcnt_attach_static(&tcp_reass_overlapfront);
373 evcnt_attach_static(&tcp_reass_segdup);
374 evcnt_attach_static(&tcp_reass_fragdup);
375 #endif /* TCP_REASS_COUNTERS */
376
377 MOWNER_ATTACH(&tcp_tx_mowner);
378 MOWNER_ATTACH(&tcp_rx_mowner);
379 MOWNER_ATTACH(&tcp_mowner);
380 }
381
382 /*
383 * Create template to be used to send tcp packets on a connection.
384 * Call after host entry created, allocates an mbuf and fills
385 * in a skeletal tcp/ip header, minimizing the amount of work
386 * necessary when the connection is used.
387 */
388 struct mbuf *
389 tcp_template(tp)
390 struct tcpcb *tp;
391 {
392 struct inpcb *inp = tp->t_inpcb;
393 #ifdef INET6
394 struct in6pcb *in6p = tp->t_in6pcb;
395 #endif
396 struct tcphdr *n;
397 struct mbuf *m;
398 int hlen;
399
400 switch (tp->t_family) {
401 case AF_INET:
402 hlen = sizeof(struct ip);
403 if (inp)
404 break;
405 #ifdef INET6
406 if (in6p) {
407 /* mapped addr case */
408 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
409 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
410 break;
411 }
412 #endif
413 return NULL; /*EINVAL*/
414 #ifdef INET6
415 case AF_INET6:
416 hlen = sizeof(struct ip6_hdr);
417 if (in6p) {
418 /* more sainty check? */
419 break;
420 }
421 return NULL; /*EINVAL*/
422 #endif
423 default:
424 hlen = 0; /*pacify gcc*/
425 return NULL; /*EAFNOSUPPORT*/
426 }
427 #ifdef DIAGNOSTIC
428 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
429 panic("mclbytes too small for t_template");
430 #endif
431 m = tp->t_template;
432 if (m && m->m_len == hlen + sizeof(struct tcphdr))
433 ;
434 else {
435 if (m)
436 m_freem(m);
437 m = tp->t_template = NULL;
438 MGETHDR(m, M_DONTWAIT, MT_HEADER);
439 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
440 MCLGET(m, M_DONTWAIT);
441 if ((m->m_flags & M_EXT) == 0) {
442 m_free(m);
443 m = NULL;
444 }
445 }
446 if (m == NULL)
447 return NULL;
448 MCLAIM(m, &tcp_mowner);
449 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
450 }
451
452 bzero(mtod(m, caddr_t), m->m_len);
453
454 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
455
456 switch (tp->t_family) {
457 case AF_INET:
458 {
459 struct ipovly *ipov;
460 mtod(m, struct ip *)->ip_v = 4;
461 ipov = mtod(m, struct ipovly *);
462 ipov->ih_pr = IPPROTO_TCP;
463 ipov->ih_len = htons(sizeof(struct tcphdr));
464 if (inp) {
465 ipov->ih_src = inp->inp_laddr;
466 ipov->ih_dst = inp->inp_faddr;
467 }
468 #ifdef INET6
469 else if (in6p) {
470 /* mapped addr case */
471 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
472 sizeof(ipov->ih_src));
473 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
474 sizeof(ipov->ih_dst));
475 }
476 #endif
477 /*
478 * Compute the pseudo-header portion of the checksum
479 * now. We incrementally add in the TCP option and
480 * payload lengths later, and then compute the TCP
481 * checksum right before the packet is sent off onto
482 * the wire.
483 */
484 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
485 ipov->ih_dst.s_addr,
486 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
487 break;
488 }
489 #ifdef INET6
490 case AF_INET6:
491 {
492 struct ip6_hdr *ip6;
493 mtod(m, struct ip *)->ip_v = 6;
494 ip6 = mtod(m, struct ip6_hdr *);
495 ip6->ip6_nxt = IPPROTO_TCP;
496 ip6->ip6_plen = htons(sizeof(struct tcphdr));
497 ip6->ip6_src = in6p->in6p_laddr;
498 ip6->ip6_dst = in6p->in6p_faddr;
499 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
500 if (ip6_auto_flowlabel) {
501 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
502 ip6->ip6_flow |=
503 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
504 }
505 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
506 ip6->ip6_vfc |= IPV6_VERSION;
507
508 /*
509 * Compute the pseudo-header portion of the checksum
510 * now. We incrementally add in the TCP option and
511 * payload lengths later, and then compute the TCP
512 * checksum right before the packet is sent off onto
513 * the wire.
514 */
515 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
516 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
517 htonl(IPPROTO_TCP));
518 break;
519 }
520 #endif
521 }
522 if (inp) {
523 n->th_sport = inp->inp_lport;
524 n->th_dport = inp->inp_fport;
525 }
526 #ifdef INET6
527 else if (in6p) {
528 n->th_sport = in6p->in6p_lport;
529 n->th_dport = in6p->in6p_fport;
530 }
531 #endif
532 n->th_seq = 0;
533 n->th_ack = 0;
534 n->th_x2 = 0;
535 n->th_off = 5;
536 n->th_flags = 0;
537 n->th_win = 0;
538 n->th_urp = 0;
539 return (m);
540 }
541
542 /*
543 * Send a single message to the TCP at address specified by
544 * the given TCP/IP header. If m == 0, then we make a copy
545 * of the tcpiphdr at ti and send directly to the addressed host.
546 * This is used to force keep alive messages out using the TCP
547 * template for a connection tp->t_template. If flags are given
548 * then we send a message back to the TCP which originated the
549 * segment ti, and discard the mbuf containing it and any other
550 * attached mbufs.
551 *
552 * In any case the ack and sequence number of the transmitted
553 * segment are as specified by the parameters.
554 */
555 int
556 tcp_respond(tp, template, m, th0, ack, seq, flags)
557 struct tcpcb *tp;
558 struct mbuf *template;
559 struct mbuf *m;
560 struct tcphdr *th0;
561 tcp_seq ack, seq;
562 int flags;
563 {
564 struct route *ro;
565 int error, tlen, win = 0;
566 int hlen;
567 struct ip *ip;
568 #ifdef INET6
569 struct ip6_hdr *ip6;
570 #endif
571 int family; /* family on packet, not inpcb/in6pcb! */
572 struct tcphdr *th;
573
574 if (tp != NULL && (flags & TH_RST) == 0) {
575 #ifdef DIAGNOSTIC
576 if (tp->t_inpcb && tp->t_in6pcb)
577 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
578 #endif
579 #ifdef INET
580 if (tp->t_inpcb)
581 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
582 #endif
583 #ifdef INET6
584 if (tp->t_in6pcb)
585 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
586 #endif
587 }
588
589 th = NULL; /* Quell uninitialized warning */
590 ip = NULL;
591 #ifdef INET6
592 ip6 = NULL;
593 #endif
594 if (m == 0) {
595 if (!template)
596 return EINVAL;
597
598 /* get family information from template */
599 switch (mtod(template, struct ip *)->ip_v) {
600 case 4:
601 family = AF_INET;
602 hlen = sizeof(struct ip);
603 break;
604 #ifdef INET6
605 case 6:
606 family = AF_INET6;
607 hlen = sizeof(struct ip6_hdr);
608 break;
609 #endif
610 default:
611 return EAFNOSUPPORT;
612 }
613
614 MGETHDR(m, M_DONTWAIT, MT_HEADER);
615 if (m) {
616 MCLAIM(m, &tcp_tx_mowner);
617 MCLGET(m, M_DONTWAIT);
618 if ((m->m_flags & M_EXT) == 0) {
619 m_free(m);
620 m = NULL;
621 }
622 }
623 if (m == NULL)
624 return (ENOBUFS);
625
626 if (tcp_compat_42)
627 tlen = 1;
628 else
629 tlen = 0;
630
631 m->m_data += max_linkhdr;
632 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
633 template->m_len);
634 switch (family) {
635 case AF_INET:
636 ip = mtod(m, struct ip *);
637 th = (struct tcphdr *)(ip + 1);
638 break;
639 #ifdef INET6
640 case AF_INET6:
641 ip6 = mtod(m, struct ip6_hdr *);
642 th = (struct tcphdr *)(ip6 + 1);
643 break;
644 #endif
645 #if 0
646 default:
647 /* noone will visit here */
648 m_freem(m);
649 return EAFNOSUPPORT;
650 #endif
651 }
652 flags = TH_ACK;
653 } else {
654
655 if ((m->m_flags & M_PKTHDR) == 0) {
656 #if 0
657 printf("non PKTHDR to tcp_respond\n");
658 #endif
659 m_freem(m);
660 return EINVAL;
661 }
662 #ifdef DIAGNOSTIC
663 if (!th0)
664 panic("th0 == NULL in tcp_respond");
665 #endif
666
667 /* get family information from m */
668 switch (mtod(m, struct ip *)->ip_v) {
669 case 4:
670 family = AF_INET;
671 hlen = sizeof(struct ip);
672 ip = mtod(m, struct ip *);
673 break;
674 #ifdef INET6
675 case 6:
676 family = AF_INET6;
677 hlen = sizeof(struct ip6_hdr);
678 ip6 = mtod(m, struct ip6_hdr *);
679 break;
680 #endif
681 default:
682 m_freem(m);
683 return EAFNOSUPPORT;
684 }
685 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
686 tlen = sizeof(*th0);
687 else
688 tlen = th0->th_off << 2;
689
690 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
691 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
692 m->m_len = hlen + tlen;
693 m_freem(m->m_next);
694 m->m_next = NULL;
695 } else {
696 struct mbuf *n;
697
698 #ifdef DIAGNOSTIC
699 if (max_linkhdr + hlen + tlen > MCLBYTES) {
700 m_freem(m);
701 return EMSGSIZE;
702 }
703 #endif
704 MGETHDR(n, M_DONTWAIT, MT_HEADER);
705 if (n && max_linkhdr + hlen + tlen > MHLEN) {
706 MCLGET(n, M_DONTWAIT);
707 if ((n->m_flags & M_EXT) == 0) {
708 m_freem(n);
709 n = NULL;
710 }
711 }
712 if (!n) {
713 m_freem(m);
714 return ENOBUFS;
715 }
716
717 MCLAIM(n, &tcp_tx_mowner);
718 n->m_data += max_linkhdr;
719 n->m_len = hlen + tlen;
720 m_copyback(n, 0, hlen, mtod(m, caddr_t));
721 m_copyback(n, hlen, tlen, (caddr_t)th0);
722
723 m_freem(m);
724 m = n;
725 n = NULL;
726 }
727
728 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
729 switch (family) {
730 case AF_INET:
731 ip = mtod(m, struct ip *);
732 th = (struct tcphdr *)(ip + 1);
733 ip->ip_p = IPPROTO_TCP;
734 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
735 ip->ip_p = IPPROTO_TCP;
736 break;
737 #ifdef INET6
738 case AF_INET6:
739 ip6 = mtod(m, struct ip6_hdr *);
740 th = (struct tcphdr *)(ip6 + 1);
741 ip6->ip6_nxt = IPPROTO_TCP;
742 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
743 ip6->ip6_nxt = IPPROTO_TCP;
744 break;
745 #endif
746 #if 0
747 default:
748 /* noone will visit here */
749 m_freem(m);
750 return EAFNOSUPPORT;
751 #endif
752 }
753 xchg(th->th_dport, th->th_sport, u_int16_t);
754 #undef xchg
755 tlen = 0; /*be friendly with the following code*/
756 }
757 th->th_seq = htonl(seq);
758 th->th_ack = htonl(ack);
759 th->th_x2 = 0;
760 if ((flags & TH_SYN) == 0) {
761 if (tp)
762 win >>= tp->rcv_scale;
763 if (win > TCP_MAXWIN)
764 win = TCP_MAXWIN;
765 th->th_win = htons((u_int16_t)win);
766 th->th_off = sizeof (struct tcphdr) >> 2;
767 tlen += sizeof(*th);
768 } else
769 tlen += th->th_off << 2;
770 m->m_len = hlen + tlen;
771 m->m_pkthdr.len = hlen + tlen;
772 m->m_pkthdr.rcvif = (struct ifnet *) 0;
773 th->th_flags = flags;
774 th->th_urp = 0;
775
776 switch (family) {
777 #ifdef INET
778 case AF_INET:
779 {
780 struct ipovly *ipov = (struct ipovly *)ip;
781 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
782 ipov->ih_len = htons((u_int16_t)tlen);
783
784 th->th_sum = 0;
785 th->th_sum = in_cksum(m, hlen + tlen);
786 ip->ip_len = htons(hlen + tlen);
787 ip->ip_ttl = ip_defttl;
788 break;
789 }
790 #endif
791 #ifdef INET6
792 case AF_INET6:
793 {
794 th->th_sum = 0;
795 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
796 tlen);
797 ip6->ip6_plen = ntohs(tlen);
798 if (tp && tp->t_in6pcb) {
799 struct ifnet *oifp;
800 ro = (struct route *)&tp->t_in6pcb->in6p_route;
801 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
802 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
803 } else
804 ip6->ip6_hlim = ip6_defhlim;
805 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
806 if (ip6_auto_flowlabel) {
807 ip6->ip6_flow |=
808 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
809 }
810 break;
811 }
812 #endif
813 }
814
815 #ifdef IPSEC
816 (void)ipsec_setsocket(m, NULL);
817 #endif /*IPSEC*/
818
819 if (tp != NULL && tp->t_inpcb != NULL) {
820 ro = &tp->t_inpcb->inp_route;
821 #ifdef IPSEC
822 if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
823 m_freem(m);
824 return ENOBUFS;
825 }
826 #endif
827 #ifdef DIAGNOSTIC
828 if (family != AF_INET)
829 panic("tcp_respond: address family mismatch");
830 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
831 panic("tcp_respond: ip_dst %x != inp_faddr %x",
832 ntohl(ip->ip_dst.s_addr),
833 ntohl(tp->t_inpcb->inp_faddr.s_addr));
834 }
835 #endif
836 }
837 #ifdef INET6
838 else if (tp != NULL && tp->t_in6pcb != NULL) {
839 ro = (struct route *)&tp->t_in6pcb->in6p_route;
840 #ifdef IPSEC
841 if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
842 m_freem(m);
843 return ENOBUFS;
844 }
845 #endif
846 #ifdef DIAGNOSTIC
847 if (family == AF_INET) {
848 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
849 panic("tcp_respond: not mapped addr");
850 if (bcmp(&ip->ip_dst,
851 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
852 sizeof(ip->ip_dst)) != 0) {
853 panic("tcp_respond: ip_dst != in6p_faddr");
854 }
855 } else if (family == AF_INET6) {
856 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
857 &tp->t_in6pcb->in6p_faddr))
858 panic("tcp_respond: ip6_dst != in6p_faddr");
859 } else
860 panic("tcp_respond: address family mismatch");
861 #endif
862 }
863 #endif
864 else
865 ro = NULL;
866
867 switch (family) {
868 #ifdef INET
869 case AF_INET:
870 error = ip_output(m, NULL, ro,
871 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
872 NULL);
873 break;
874 #endif
875 #ifdef INET6
876 case AF_INET6:
877 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
878 NULL);
879 break;
880 #endif
881 default:
882 error = EAFNOSUPPORT;
883 break;
884 }
885
886 return (error);
887 }
888
889 /*
890 * Create a new TCP control block, making an
891 * empty reassembly queue and hooking it to the argument
892 * protocol control block.
893 */
894 struct tcpcb *
895 tcp_newtcpcb(family, aux)
896 int family; /* selects inpcb, or in6pcb */
897 void *aux;
898 {
899 struct tcpcb *tp;
900 int i;
901
902 switch (family) {
903 case PF_INET:
904 break;
905 #ifdef INET6
906 case PF_INET6:
907 break;
908 #endif
909 default:
910 return NULL;
911 }
912
913 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
914 if (tp == NULL)
915 return (NULL);
916 bzero((caddr_t)tp, sizeof(struct tcpcb));
917 TAILQ_INIT(&tp->segq);
918 TAILQ_INIT(&tp->timeq);
919 tp->t_family = family; /* may be overridden later on */
920 tp->t_peermss = tcp_mssdflt;
921 tp->t_ourmss = tcp_mssdflt;
922 tp->t_segsz = tcp_mssdflt;
923 LIST_INIT(&tp->t_sc);
924
925 tp->t_lastm = NULL;
926 tp->t_lastoff = 0;
927
928 callout_init(&tp->t_delack_ch);
929 for (i = 0; i < TCPT_NTIMERS; i++)
930 TCP_TIMER_INIT(tp, i);
931
932 tp->t_flags = 0;
933 if (tcp_do_rfc1323 && tcp_do_win_scale)
934 tp->t_flags |= TF_REQ_SCALE;
935 if (tcp_do_rfc1323 && tcp_do_timestamps)
936 tp->t_flags |= TF_REQ_TSTMP;
937 if (tcp_do_sack == 2)
938 tp->t_flags |= TF_WILL_SACK;
939 else if (tcp_do_sack == 1)
940 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
941 tp->t_flags |= TF_CANT_TXSACK;
942 switch (family) {
943 case PF_INET:
944 tp->t_inpcb = (struct inpcb *)aux;
945 tp->t_mtudisc = ip_mtudisc;
946 break;
947 #ifdef INET6
948 case PF_INET6:
949 tp->t_in6pcb = (struct in6pcb *)aux;
950 /* for IPv6, always try to run path MTU discovery */
951 tp->t_mtudisc = 1;
952 break;
953 #endif
954 }
955 /*
956 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
957 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
958 * reasonable initial retransmit time.
959 */
960 tp->t_srtt = TCPTV_SRTTBASE;
961 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
962 tp->t_rttmin = TCPTV_MIN;
963 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
964 TCPTV_MIN, TCPTV_REXMTMAX);
965 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
966 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
967 if (family == AF_INET) {
968 struct inpcb *inp = (struct inpcb *)aux;
969 inp->inp_ip.ip_ttl = ip_defttl;
970 inp->inp_ppcb = (caddr_t)tp;
971 }
972 #ifdef INET6
973 else if (family == AF_INET6) {
974 struct in6pcb *in6p = (struct in6pcb *)aux;
975 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
976 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
977 : NULL);
978 in6p->in6p_ppcb = (caddr_t)tp;
979 }
980 #endif
981
982 /*
983 * Initialize our timebase. When we send timestamps, we take
984 * the delta from tcp_now -- this means each connection always
985 * gets a timebase of 0, which makes it, among other things,
986 * more difficult to determine how long a system has been up,
987 * and thus how many TCP sequence increments have occurred.
988 */
989 tp->ts_timebase = tcp_now;
990
991 return (tp);
992 }
993
994 /*
995 * Drop a TCP connection, reporting
996 * the specified error. If connection is synchronized,
997 * then send a RST to peer.
998 */
999 struct tcpcb *
1000 tcp_drop(tp, errno)
1001 struct tcpcb *tp;
1002 int errno;
1003 {
1004 struct socket *so = NULL;
1005
1006 #ifdef DIAGNOSTIC
1007 if (tp->t_inpcb && tp->t_in6pcb)
1008 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1009 #endif
1010 #ifdef INET
1011 if (tp->t_inpcb)
1012 so = tp->t_inpcb->inp_socket;
1013 #endif
1014 #ifdef INET6
1015 if (tp->t_in6pcb)
1016 so = tp->t_in6pcb->in6p_socket;
1017 #endif
1018 if (!so)
1019 return NULL;
1020
1021 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1022 tp->t_state = TCPS_CLOSED;
1023 (void) tcp_output(tp);
1024 tcpstat.tcps_drops++;
1025 } else
1026 tcpstat.tcps_conndrops++;
1027 if (errno == ETIMEDOUT && tp->t_softerror)
1028 errno = tp->t_softerror;
1029 so->so_error = errno;
1030 return (tcp_close(tp));
1031 }
1032
1033 /*
1034 * Return whether this tcpcb is marked as dead, indicating
1035 * to the calling timer function that no further action should
1036 * be taken, as we are about to release this tcpcb. The release
1037 * of the storage will be done if this is the last timer running.
1038 *
1039 * This is typically called from the callout handler function before
1040 * callout_ack() is done, therefore we need to test the number of
1041 * running timer functions against 1 below, not 0.
1042 */
1043 int
1044 tcp_isdead(tp)
1045 struct tcpcb *tp;
1046 {
1047 int dead = (tp->t_flags & TF_DEAD);
1048
1049 if (__predict_false(dead)) {
1050 if (tcp_timers_invoking(tp) > 1)
1051 /* not quite there yet -- count separately? */
1052 return dead;
1053 tcpstat.tcps_delayed_free++;
1054 pool_put(&tcpcb_pool, tp);
1055 }
1056 return dead;
1057 }
1058
1059 /*
1060 * Close a TCP control block:
1061 * discard all space held by the tcp
1062 * discard internet protocol block
1063 * wake up any sleepers
1064 */
1065 struct tcpcb *
1066 tcp_close(tp)
1067 struct tcpcb *tp;
1068 {
1069 struct inpcb *inp;
1070 #ifdef INET6
1071 struct in6pcb *in6p;
1072 #endif
1073 struct socket *so;
1074 #ifdef RTV_RTT
1075 struct rtentry *rt;
1076 #endif
1077 struct route *ro;
1078
1079 inp = tp->t_inpcb;
1080 #ifdef INET6
1081 in6p = tp->t_in6pcb;
1082 #endif
1083 so = NULL;
1084 ro = NULL;
1085 if (inp) {
1086 so = inp->inp_socket;
1087 ro = &inp->inp_route;
1088 }
1089 #ifdef INET6
1090 else if (in6p) {
1091 so = in6p->in6p_socket;
1092 ro = (struct route *)&in6p->in6p_route;
1093 }
1094 #endif
1095
1096 #ifdef RTV_RTT
1097 /*
1098 * If we sent enough data to get some meaningful characteristics,
1099 * save them in the routing entry. 'Enough' is arbitrarily
1100 * defined as the sendpipesize (default 4K) * 16. This would
1101 * give us 16 rtt samples assuming we only get one sample per
1102 * window (the usual case on a long haul net). 16 samples is
1103 * enough for the srtt filter to converge to within 5% of the correct
1104 * value; fewer samples and we could save a very bogus rtt.
1105 *
1106 * Don't update the default route's characteristics and don't
1107 * update anything that the user "locked".
1108 */
1109 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1110 ro && (rt = ro->ro_rt) &&
1111 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1112 u_long i = 0;
1113
1114 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1115 i = tp->t_srtt *
1116 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1117 if (rt->rt_rmx.rmx_rtt && i)
1118 /*
1119 * filter this update to half the old & half
1120 * the new values, converting scale.
1121 * See route.h and tcp_var.h for a
1122 * description of the scaling constants.
1123 */
1124 rt->rt_rmx.rmx_rtt =
1125 (rt->rt_rmx.rmx_rtt + i) / 2;
1126 else
1127 rt->rt_rmx.rmx_rtt = i;
1128 }
1129 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1130 i = tp->t_rttvar *
1131 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1132 if (rt->rt_rmx.rmx_rttvar && i)
1133 rt->rt_rmx.rmx_rttvar =
1134 (rt->rt_rmx.rmx_rttvar + i) / 2;
1135 else
1136 rt->rt_rmx.rmx_rttvar = i;
1137 }
1138 /*
1139 * update the pipelimit (ssthresh) if it has been updated
1140 * already or if a pipesize was specified & the threshhold
1141 * got below half the pipesize. I.e., wait for bad news
1142 * before we start updating, then update on both good
1143 * and bad news.
1144 */
1145 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1146 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1147 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1148 /*
1149 * convert the limit from user data bytes to
1150 * packets then to packet data bytes.
1151 */
1152 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1153 if (i < 2)
1154 i = 2;
1155 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1156 if (rt->rt_rmx.rmx_ssthresh)
1157 rt->rt_rmx.rmx_ssthresh =
1158 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1159 else
1160 rt->rt_rmx.rmx_ssthresh = i;
1161 }
1162 }
1163 #endif /* RTV_RTT */
1164 /* free the reassembly queue, if any */
1165 TCP_REASS_LOCK(tp);
1166 (void) tcp_freeq(tp);
1167 TCP_REASS_UNLOCK(tp);
1168
1169 tcp_canceltimers(tp);
1170 TCP_CLEAR_DELACK(tp);
1171 syn_cache_cleanup(tp);
1172
1173 if (tp->t_template) {
1174 m_free(tp->t_template);
1175 tp->t_template = NULL;
1176 }
1177 if (tcp_timers_invoking(tp))
1178 tp->t_flags |= TF_DEAD;
1179 else
1180 pool_put(&tcpcb_pool, tp);
1181
1182 if (inp) {
1183 inp->inp_ppcb = 0;
1184 soisdisconnected(so);
1185 in_pcbdetach(inp);
1186 }
1187 #ifdef INET6
1188 else if (in6p) {
1189 in6p->in6p_ppcb = 0;
1190 soisdisconnected(so);
1191 in6_pcbdetach(in6p);
1192 }
1193 #endif
1194 tcpstat.tcps_closed++;
1195 return ((struct tcpcb *)0);
1196 }
1197
1198 int
1199 tcp_freeq(tp)
1200 struct tcpcb *tp;
1201 {
1202 struct ipqent *qe;
1203 int rv = 0;
1204 #ifdef TCPREASS_DEBUG
1205 int i = 0;
1206 #endif
1207
1208 TCP_REASS_LOCK_CHECK(tp);
1209
1210 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1211 #ifdef TCPREASS_DEBUG
1212 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1213 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1214 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1215 #endif
1216 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1217 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1218 m_freem(qe->ipqe_m);
1219 pool_put(&ipqent_pool, qe);
1220 rv = 1;
1221 }
1222 return (rv);
1223 }
1224
1225 /*
1226 * Protocol drain routine. Called when memory is in short supply.
1227 */
1228 void
1229 tcp_drain()
1230 {
1231 struct inpcb *inp;
1232 struct tcpcb *tp;
1233
1234 /*
1235 * Free the sequence queue of all TCP connections.
1236 */
1237 inp = CIRCLEQ_FIRST(&tcbtable.inpt_queue);
1238 if (inp) /* XXX */
1239 CIRCLEQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue) {
1240 if ((tp = intotcpcb(inp)) != NULL) {
1241 /*
1242 * We may be called from a device's interrupt
1243 * context. If the tcpcb is already busy,
1244 * just bail out now.
1245 */
1246 if (tcp_reass_lock_try(tp) == 0)
1247 continue;
1248 if (tcp_freeq(tp))
1249 tcpstat.tcps_connsdrained++;
1250 TCP_REASS_UNLOCK(tp);
1251 }
1252 }
1253 }
1254
1255 #ifdef INET6
1256 void
1257 tcp6_drain()
1258 {
1259 struct in6pcb *in6p;
1260 struct tcpcb *tp;
1261 struct in6pcb *head = &tcb6;
1262
1263 /*
1264 * Free the sequence queue of all TCP connections.
1265 */
1266 for (in6p = head->in6p_next; in6p != head; in6p = in6p->in6p_next) {
1267 if ((tp = in6totcpcb(in6p)) != NULL) {
1268 /*
1269 * We may be called from a device's interrupt
1270 * context. If the tcpcb is already busy,
1271 * just bail out now.
1272 */
1273 if (tcp_reass_lock_try(tp) == 0)
1274 continue;
1275 if (tcp_freeq(tp))
1276 tcpstat.tcps_connsdrained++;
1277 TCP_REASS_UNLOCK(tp);
1278 }
1279 }
1280 }
1281 #endif
1282
1283 /*
1284 * Notify a tcp user of an asynchronous error;
1285 * store error as soft error, but wake up user
1286 * (for now, won't do anything until can select for soft error).
1287 */
1288 void
1289 tcp_notify(inp, error)
1290 struct inpcb *inp;
1291 int error;
1292 {
1293 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1294 struct socket *so = inp->inp_socket;
1295
1296 /*
1297 * Ignore some errors if we are hooked up.
1298 * If connection hasn't completed, has retransmitted several times,
1299 * and receives a second error, give up now. This is better
1300 * than waiting a long time to establish a connection that
1301 * can never complete.
1302 */
1303 if (tp->t_state == TCPS_ESTABLISHED &&
1304 (error == EHOSTUNREACH || error == ENETUNREACH ||
1305 error == EHOSTDOWN)) {
1306 return;
1307 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1308 tp->t_rxtshift > 3 && tp->t_softerror)
1309 so->so_error = error;
1310 else
1311 tp->t_softerror = error;
1312 wakeup((caddr_t) &so->so_timeo);
1313 sorwakeup(so);
1314 sowwakeup(so);
1315 }
1316
1317 #ifdef INET6
1318 void
1319 tcp6_notify(in6p, error)
1320 struct in6pcb *in6p;
1321 int error;
1322 {
1323 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1324 struct socket *so = in6p->in6p_socket;
1325
1326 /*
1327 * Ignore some errors if we are hooked up.
1328 * If connection hasn't completed, has retransmitted several times,
1329 * and receives a second error, give up now. This is better
1330 * than waiting a long time to establish a connection that
1331 * can never complete.
1332 */
1333 if (tp->t_state == TCPS_ESTABLISHED &&
1334 (error == EHOSTUNREACH || error == ENETUNREACH ||
1335 error == EHOSTDOWN)) {
1336 return;
1337 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1338 tp->t_rxtshift > 3 && tp->t_softerror)
1339 so->so_error = error;
1340 else
1341 tp->t_softerror = error;
1342 wakeup((caddr_t) &so->so_timeo);
1343 sorwakeup(so);
1344 sowwakeup(so);
1345 }
1346 #endif
1347
1348 #ifdef INET6
1349 void
1350 tcp6_ctlinput(cmd, sa, d)
1351 int cmd;
1352 struct sockaddr *sa;
1353 void *d;
1354 {
1355 struct tcphdr th;
1356 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1357 int nmatch;
1358 struct ip6_hdr *ip6;
1359 const struct sockaddr_in6 *sa6_src = NULL;
1360 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1361 struct mbuf *m;
1362 int off;
1363
1364 if (sa->sa_family != AF_INET6 ||
1365 sa->sa_len != sizeof(struct sockaddr_in6))
1366 return;
1367 if ((unsigned)cmd >= PRC_NCMDS)
1368 return;
1369 else if (cmd == PRC_QUENCH) {
1370 /* XXX there's no PRC_QUENCH in IPv6 */
1371 notify = tcp6_quench;
1372 } else if (PRC_IS_REDIRECT(cmd))
1373 notify = in6_rtchange, d = NULL;
1374 else if (cmd == PRC_MSGSIZE)
1375 ; /* special code is present, see below */
1376 else if (cmd == PRC_HOSTDEAD)
1377 d = NULL;
1378 else if (inet6ctlerrmap[cmd] == 0)
1379 return;
1380
1381 /* if the parameter is from icmp6, decode it. */
1382 if (d != NULL) {
1383 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1384 m = ip6cp->ip6c_m;
1385 ip6 = ip6cp->ip6c_ip6;
1386 off = ip6cp->ip6c_off;
1387 sa6_src = ip6cp->ip6c_src;
1388 } else {
1389 m = NULL;
1390 ip6 = NULL;
1391 sa6_src = &sa6_any;
1392 }
1393
1394 if (ip6) {
1395 /*
1396 * XXX: We assume that when ip6 is non NULL,
1397 * M and OFF are valid.
1398 */
1399
1400 /* check if we can safely examine src and dst ports */
1401 if (m->m_pkthdr.len < off + sizeof(th)) {
1402 if (cmd == PRC_MSGSIZE)
1403 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1404 return;
1405 }
1406
1407 bzero(&th, sizeof(th));
1408 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1409
1410 if (cmd == PRC_MSGSIZE) {
1411 int valid = 0;
1412
1413 /*
1414 * Check to see if we have a valid TCP connection
1415 * corresponding to the address in the ICMPv6 message
1416 * payload.
1417 */
1418 if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
1419 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1420 th.th_sport, 0))
1421 valid++;
1422
1423 /*
1424 * Depending on the value of "valid" and routing table
1425 * size (mtudisc_{hi,lo}wat), we will:
1426 * - recalcurate the new MTU and create the
1427 * corresponding routing entry, or
1428 * - ignore the MTU change notification.
1429 */
1430 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1431
1432 /*
1433 * no need to call in6_pcbnotify, it should have been
1434 * called via callback if necessary
1435 */
1436 return;
1437 }
1438
1439 nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
1440 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1441 if (nmatch == 0 && syn_cache_count &&
1442 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1443 inet6ctlerrmap[cmd] == ENETUNREACH ||
1444 inet6ctlerrmap[cmd] == EHOSTDOWN))
1445 syn_cache_unreach((struct sockaddr *)sa6_src,
1446 sa, &th);
1447 } else {
1448 (void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
1449 0, cmd, NULL, notify);
1450 }
1451 }
1452 #endif
1453
1454 #ifdef INET
1455 /* assumes that ip header and tcp header are contiguous on mbuf */
1456 void *
1457 tcp_ctlinput(cmd, sa, v)
1458 int cmd;
1459 struct sockaddr *sa;
1460 void *v;
1461 {
1462 struct ip *ip = v;
1463 struct tcphdr *th;
1464 struct icmp *icp;
1465 extern const int inetctlerrmap[];
1466 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1467 int errno;
1468 int nmatch;
1469 #ifdef INET6
1470 struct in6_addr src6, dst6;
1471 #endif
1472
1473 if (sa->sa_family != AF_INET ||
1474 sa->sa_len != sizeof(struct sockaddr_in))
1475 return NULL;
1476 if ((unsigned)cmd >= PRC_NCMDS)
1477 return NULL;
1478 errno = inetctlerrmap[cmd];
1479 if (cmd == PRC_QUENCH)
1480 notify = tcp_quench;
1481 else if (PRC_IS_REDIRECT(cmd))
1482 notify = in_rtchange, ip = 0;
1483 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1484 /*
1485 * Check to see if we have a valid TCP connection
1486 * corresponding to the address in the ICMP message
1487 * payload.
1488 *
1489 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1490 */
1491 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1492 #ifdef INET6
1493 memset(&src6, 0, sizeof(src6));
1494 memset(&dst6, 0, sizeof(dst6));
1495 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1496 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1497 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1498 #endif
1499 if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
1500 ip->ip_src, th->th_sport) != NULL)
1501 ;
1502 #ifdef INET6
1503 else if (in6_pcblookup_connect(&tcb6, &dst6,
1504 th->th_dport, &src6, th->th_sport, 0) != NULL)
1505 ;
1506 #endif
1507 else
1508 return NULL;
1509
1510 /*
1511 * Now that we've validated that we are actually communicating
1512 * with the host indicated in the ICMP message, locate the
1513 * ICMP header, recalculate the new MTU, and create the
1514 * corresponding routing entry.
1515 */
1516 icp = (struct icmp *)((caddr_t)ip -
1517 offsetof(struct icmp, icmp_ip));
1518 icmp_mtudisc(icp, ip->ip_dst);
1519
1520 return NULL;
1521 } else if (cmd == PRC_HOSTDEAD)
1522 ip = 0;
1523 else if (errno == 0)
1524 return NULL;
1525 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1526 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1527 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1528 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1529 if (nmatch == 0 && syn_cache_count &&
1530 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1531 inetctlerrmap[cmd] == ENETUNREACH ||
1532 inetctlerrmap[cmd] == EHOSTDOWN)) {
1533 struct sockaddr_in sin;
1534 bzero(&sin, sizeof(sin));
1535 sin.sin_len = sizeof(sin);
1536 sin.sin_family = AF_INET;
1537 sin.sin_port = th->th_sport;
1538 sin.sin_addr = ip->ip_src;
1539 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1540 }
1541
1542 /* XXX mapped address case */
1543 } else
1544 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1545 notify);
1546 return NULL;
1547 }
1548
1549 /*
1550 * When a source quence is received, we are being notifed of congestion.
1551 * Close the congestion window down to the Loss Window (one segment).
1552 * We will gradually open it again as we proceed.
1553 */
1554 void
1555 tcp_quench(inp, errno)
1556 struct inpcb *inp;
1557 int errno;
1558 {
1559 struct tcpcb *tp = intotcpcb(inp);
1560
1561 if (tp)
1562 tp->snd_cwnd = tp->t_segsz;
1563 }
1564 #endif
1565
1566 #ifdef INET6
1567 void
1568 tcp6_quench(in6p, errno)
1569 struct in6pcb *in6p;
1570 int errno;
1571 {
1572 struct tcpcb *tp = in6totcpcb(in6p);
1573
1574 if (tp)
1575 tp->snd_cwnd = tp->t_segsz;
1576 }
1577 #endif
1578
1579 #ifdef INET
1580 /*
1581 * Path MTU Discovery handlers.
1582 */
1583 void
1584 tcp_mtudisc_callback(faddr)
1585 struct in_addr faddr;
1586 {
1587 #ifdef INET6
1588 struct in6_addr in6;
1589 #endif
1590
1591 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1592 #ifdef INET6
1593 memset(&in6, 0, sizeof(in6));
1594 in6.s6_addr16[5] = 0xffff;
1595 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1596 tcp6_mtudisc_callback(&in6);
1597 #endif
1598 }
1599
1600 /*
1601 * On receipt of path MTU corrections, flush old route and replace it
1602 * with the new one. Retransmit all unacknowledged packets, to ensure
1603 * that all packets will be received.
1604 */
1605 void
1606 tcp_mtudisc(inp, errno)
1607 struct inpcb *inp;
1608 int errno;
1609 {
1610 struct tcpcb *tp = intotcpcb(inp);
1611 struct rtentry *rt = in_pcbrtentry(inp);
1612
1613 if (tp != 0) {
1614 if (rt != 0) {
1615 /*
1616 * If this was not a host route, remove and realloc.
1617 */
1618 if ((rt->rt_flags & RTF_HOST) == 0) {
1619 in_rtchange(inp, errno);
1620 if ((rt = in_pcbrtentry(inp)) == 0)
1621 return;
1622 }
1623
1624 /*
1625 * Slow start out of the error condition. We
1626 * use the MTU because we know it's smaller
1627 * than the previously transmitted segment.
1628 *
1629 * Note: This is more conservative than the
1630 * suggestion in draft-floyd-incr-init-win-03.
1631 */
1632 if (rt->rt_rmx.rmx_mtu != 0)
1633 tp->snd_cwnd =
1634 TCP_INITIAL_WINDOW(tcp_init_win,
1635 rt->rt_rmx.rmx_mtu);
1636 }
1637
1638 /*
1639 * Resend unacknowledged packets.
1640 */
1641 tp->snd_nxt = tp->snd_una;
1642 tcp_output(tp);
1643 }
1644 }
1645 #endif
1646
1647 #ifdef INET6
1648 /*
1649 * Path MTU Discovery handlers.
1650 */
1651 void
1652 tcp6_mtudisc_callback(faddr)
1653 struct in6_addr *faddr;
1654 {
1655 struct sockaddr_in6 sin6;
1656
1657 bzero(&sin6, sizeof(sin6));
1658 sin6.sin6_family = AF_INET6;
1659 sin6.sin6_len = sizeof(struct sockaddr_in6);
1660 sin6.sin6_addr = *faddr;
1661 (void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
1662 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1663 }
1664
1665 void
1666 tcp6_mtudisc(in6p, errno)
1667 struct in6pcb *in6p;
1668 int errno;
1669 {
1670 struct tcpcb *tp = in6totcpcb(in6p);
1671 struct rtentry *rt = in6_pcbrtentry(in6p);
1672
1673 if (tp != 0) {
1674 if (rt != 0) {
1675 /*
1676 * If this was not a host route, remove and realloc.
1677 */
1678 if ((rt->rt_flags & RTF_HOST) == 0) {
1679 in6_rtchange(in6p, errno);
1680 if ((rt = in6_pcbrtentry(in6p)) == 0)
1681 return;
1682 }
1683
1684 /*
1685 * Slow start out of the error condition. We
1686 * use the MTU because we know it's smaller
1687 * than the previously transmitted segment.
1688 *
1689 * Note: This is more conservative than the
1690 * suggestion in draft-floyd-incr-init-win-03.
1691 */
1692 if (rt->rt_rmx.rmx_mtu != 0)
1693 tp->snd_cwnd =
1694 TCP_INITIAL_WINDOW(tcp_init_win,
1695 rt->rt_rmx.rmx_mtu);
1696 }
1697
1698 /*
1699 * Resend unacknowledged packets.
1700 */
1701 tp->snd_nxt = tp->snd_una;
1702 tcp_output(tp);
1703 }
1704 }
1705 #endif /* INET6 */
1706
1707 /*
1708 * Compute the MSS to advertise to the peer. Called only during
1709 * the 3-way handshake. If we are the server (peer initiated
1710 * connection), we are called with a pointer to the interface
1711 * on which the SYN packet arrived. If we are the client (we
1712 * initiated connection), we are called with a pointer to the
1713 * interface out which this connection should go.
1714 *
1715 * NOTE: Do not subtract IP option/extension header size nor IPsec
1716 * header size from MSS advertisement. MSS option must hold the maximum
1717 * segment size we can accept, so it must always be:
1718 * max(if mtu) - ip header - tcp header
1719 */
1720 u_long
1721 tcp_mss_to_advertise(ifp, af)
1722 const struct ifnet *ifp;
1723 int af;
1724 {
1725 extern u_long in_maxmtu;
1726 u_long mss = 0;
1727 u_long hdrsiz;
1728
1729 /*
1730 * In order to avoid defeating path MTU discovery on the peer,
1731 * we advertise the max MTU of all attached networks as our MSS,
1732 * per RFC 1191, section 3.1.
1733 *
1734 * We provide the option to advertise just the MTU of
1735 * the interface on which we hope this connection will
1736 * be receiving. If we are responding to a SYN, we
1737 * will have a pretty good idea about this, but when
1738 * initiating a connection there is a bit more doubt.
1739 *
1740 * We also need to ensure that loopback has a large enough
1741 * MSS, as the loopback MTU is never included in in_maxmtu.
1742 */
1743
1744 if (ifp != NULL)
1745 switch (af) {
1746 case AF_INET:
1747 mss = ifp->if_mtu;
1748 break;
1749 #ifdef INET6
1750 case AF_INET6:
1751 mss = IN6_LINKMTU(ifp);
1752 break;
1753 #endif
1754 }
1755
1756 if (tcp_mss_ifmtu == 0)
1757 switch (af) {
1758 case AF_INET:
1759 mss = max(in_maxmtu, mss);
1760 break;
1761 #ifdef INET6
1762 case AF_INET6:
1763 mss = max(in6_maxmtu, mss);
1764 break;
1765 #endif
1766 }
1767
1768 switch (af) {
1769 case AF_INET:
1770 hdrsiz = sizeof(struct ip);
1771 break;
1772 #ifdef INET6
1773 case AF_INET6:
1774 hdrsiz = sizeof(struct ip6_hdr);
1775 break;
1776 #endif
1777 default:
1778 hdrsiz = 0;
1779 break;
1780 }
1781 hdrsiz += sizeof(struct tcphdr);
1782 if (mss > hdrsiz)
1783 mss -= hdrsiz;
1784
1785 mss = max(tcp_mssdflt, mss);
1786 return (mss);
1787 }
1788
1789 /*
1790 * Set connection variables based on the peer's advertised MSS.
1791 * We are passed the TCPCB for the actual connection. If we
1792 * are the server, we are called by the compressed state engine
1793 * when the 3-way handshake is complete. If we are the client,
1794 * we are called when we receive the SYN,ACK from the server.
1795 *
1796 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1797 * before this routine is called!
1798 */
1799 void
1800 tcp_mss_from_peer(tp, offer)
1801 struct tcpcb *tp;
1802 int offer;
1803 {
1804 struct socket *so;
1805 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1806 struct rtentry *rt;
1807 #endif
1808 u_long bufsize;
1809 int mss;
1810
1811 #ifdef DIAGNOSTIC
1812 if (tp->t_inpcb && tp->t_in6pcb)
1813 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1814 #endif
1815 so = NULL;
1816 rt = NULL;
1817 #ifdef INET
1818 if (tp->t_inpcb) {
1819 so = tp->t_inpcb->inp_socket;
1820 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1821 rt = in_pcbrtentry(tp->t_inpcb);
1822 #endif
1823 }
1824 #endif
1825 #ifdef INET6
1826 if (tp->t_in6pcb) {
1827 so = tp->t_in6pcb->in6p_socket;
1828 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1829 rt = in6_pcbrtentry(tp->t_in6pcb);
1830 #endif
1831 }
1832 #endif
1833
1834 /*
1835 * As per RFC1122, use the default MSS value, unless they
1836 * sent us an offer. Do not accept offers less than 32 bytes.
1837 */
1838 mss = tcp_mssdflt;
1839 if (offer)
1840 mss = offer;
1841 mss = max(mss, 32); /* sanity */
1842 tp->t_peermss = mss;
1843 mss -= tcp_optlen(tp);
1844 #ifdef INET
1845 if (tp->t_inpcb)
1846 mss -= ip_optlen(tp->t_inpcb);
1847 #endif
1848 #ifdef INET6
1849 if (tp->t_in6pcb)
1850 mss -= ip6_optlen(tp->t_in6pcb);
1851 #endif
1852
1853 /*
1854 * If there's a pipesize, change the socket buffer to that size.
1855 * Make the socket buffer an integral number of MSS units. If
1856 * the MSS is larger than the socket buffer, artificially decrease
1857 * the MSS.
1858 */
1859 #ifdef RTV_SPIPE
1860 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1861 bufsize = rt->rt_rmx.rmx_sendpipe;
1862 else
1863 #endif
1864 bufsize = so->so_snd.sb_hiwat;
1865 if (bufsize < mss)
1866 mss = bufsize;
1867 else {
1868 bufsize = roundup(bufsize, mss);
1869 if (bufsize > sb_max)
1870 bufsize = sb_max;
1871 (void) sbreserve(&so->so_snd, bufsize);
1872 }
1873 tp->t_segsz = mss;
1874
1875 #ifdef RTV_SSTHRESH
1876 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1877 /*
1878 * There's some sort of gateway or interface buffer
1879 * limit on the path. Use this to set the slow
1880 * start threshold, but set the threshold to no less
1881 * than 2 * MSS.
1882 */
1883 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1884 }
1885 #endif
1886 }
1887
1888 /*
1889 * Processing necessary when a TCP connection is established.
1890 */
1891 void
1892 tcp_established(tp)
1893 struct tcpcb *tp;
1894 {
1895 struct socket *so;
1896 #ifdef RTV_RPIPE
1897 struct rtentry *rt;
1898 #endif
1899 u_long bufsize;
1900
1901 #ifdef DIAGNOSTIC
1902 if (tp->t_inpcb && tp->t_in6pcb)
1903 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1904 #endif
1905 so = NULL;
1906 rt = NULL;
1907 #ifdef INET
1908 if (tp->t_inpcb) {
1909 so = tp->t_inpcb->inp_socket;
1910 #if defined(RTV_RPIPE)
1911 rt = in_pcbrtentry(tp->t_inpcb);
1912 #endif
1913 }
1914 #endif
1915 #ifdef INET6
1916 if (tp->t_in6pcb) {
1917 so = tp->t_in6pcb->in6p_socket;
1918 #if defined(RTV_RPIPE)
1919 rt = in6_pcbrtentry(tp->t_in6pcb);
1920 #endif
1921 }
1922 #endif
1923
1924 tp->t_state = TCPS_ESTABLISHED;
1925 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1926
1927 #ifdef RTV_RPIPE
1928 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1929 bufsize = rt->rt_rmx.rmx_recvpipe;
1930 else
1931 #endif
1932 bufsize = so->so_rcv.sb_hiwat;
1933 if (bufsize > tp->t_ourmss) {
1934 bufsize = roundup(bufsize, tp->t_ourmss);
1935 if (bufsize > sb_max)
1936 bufsize = sb_max;
1937 (void) sbreserve(&so->so_rcv, bufsize);
1938 }
1939 }
1940
1941 /*
1942 * Check if there's an initial rtt or rttvar. Convert from the
1943 * route-table units to scaled multiples of the slow timeout timer.
1944 * Called only during the 3-way handshake.
1945 */
1946 void
1947 tcp_rmx_rtt(tp)
1948 struct tcpcb *tp;
1949 {
1950 #ifdef RTV_RTT
1951 struct rtentry *rt = NULL;
1952 int rtt;
1953
1954 #ifdef DIAGNOSTIC
1955 if (tp->t_inpcb && tp->t_in6pcb)
1956 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1957 #endif
1958 #ifdef INET
1959 if (tp->t_inpcb)
1960 rt = in_pcbrtentry(tp->t_inpcb);
1961 #endif
1962 #ifdef INET6
1963 if (tp->t_in6pcb)
1964 rt = in6_pcbrtentry(tp->t_in6pcb);
1965 #endif
1966 if (rt == NULL)
1967 return;
1968
1969 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1970 /*
1971 * XXX The lock bit for MTU indicates that the value
1972 * is also a minimum value; this is subject to time.
1973 */
1974 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1975 TCPT_RANGESET(tp->t_rttmin,
1976 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1977 TCPTV_MIN, TCPTV_REXMTMAX);
1978 tp->t_srtt = rtt /
1979 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1980 if (rt->rt_rmx.rmx_rttvar) {
1981 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1982 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1983 (TCP_RTTVAR_SHIFT + 2));
1984 } else {
1985 /* Default variation is +- 1 rtt */
1986 tp->t_rttvar =
1987 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1988 }
1989 TCPT_RANGESET(tp->t_rxtcur,
1990 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1991 tp->t_rttmin, TCPTV_REXMTMAX);
1992 }
1993 #endif
1994 }
1995
1996 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1997 #if NRND > 0
1998 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
1999 #endif
2000
2001 /*
2002 * Get a new sequence value given a tcp control block
2003 */
2004 tcp_seq
2005 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2006 {
2007
2008 #ifdef INET
2009 if (tp->t_inpcb != NULL) {
2010 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2011 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2012 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2013 addin));
2014 }
2015 #endif
2016 #ifdef INET6
2017 if (tp->t_in6pcb != NULL) {
2018 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2019 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2020 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2021 addin));
2022 }
2023 #endif
2024 /* Not possible. */
2025 panic("tcp_new_iss");
2026 }
2027
2028 /*
2029 * This routine actually generates a new TCP initial sequence number.
2030 */
2031 tcp_seq
2032 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2033 size_t addrsz, tcp_seq addin)
2034 {
2035 tcp_seq tcp_iss;
2036
2037 #if NRND > 0
2038 static int beenhere;
2039
2040 /*
2041 * If we haven't been here before, initialize our cryptographic
2042 * hash secret.
2043 */
2044 if (beenhere == 0) {
2045 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2046 RND_EXTRACT_ANY);
2047 beenhere = 1;
2048 }
2049
2050 if (tcp_do_rfc1948) {
2051 MD5_CTX ctx;
2052 u_int8_t hash[16]; /* XXX MD5 knowledge */
2053
2054 /*
2055 * Compute the base value of the ISS. It is a hash
2056 * of (saddr, sport, daddr, dport, secret).
2057 */
2058 MD5Init(&ctx);
2059
2060 MD5Update(&ctx, (u_char *) laddr, addrsz);
2061 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2062
2063 MD5Update(&ctx, (u_char *) faddr, addrsz);
2064 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2065
2066 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2067
2068 MD5Final(hash, &ctx);
2069
2070 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2071
2072 /*
2073 * Now increment our "timer", and add it in to
2074 * the computed value.
2075 *
2076 * XXX Use `addin'?
2077 * XXX TCP_ISSINCR too large to use?
2078 */
2079 tcp_iss_seq += TCP_ISSINCR;
2080 #ifdef TCPISS_DEBUG
2081 printf("ISS hash 0x%08x, ", tcp_iss);
2082 #endif
2083 tcp_iss += tcp_iss_seq + addin;
2084 #ifdef TCPISS_DEBUG
2085 printf("new ISS 0x%08x\n", tcp_iss);
2086 #endif
2087 } else
2088 #endif /* NRND > 0 */
2089 {
2090 /*
2091 * Randomize.
2092 */
2093 #if NRND > 0
2094 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2095 #else
2096 tcp_iss = arc4random();
2097 #endif
2098
2099 /*
2100 * If we were asked to add some amount to a known value,
2101 * we will take a random value obtained above, mask off
2102 * the upper bits, and add in the known value. We also
2103 * add in a constant to ensure that we are at least a
2104 * certain distance from the original value.
2105 *
2106 * This is used when an old connection is in timed wait
2107 * and we have a new one coming in, for instance.
2108 */
2109 if (addin != 0) {
2110 #ifdef TCPISS_DEBUG
2111 printf("Random %08x, ", tcp_iss);
2112 #endif
2113 tcp_iss &= TCP_ISS_RANDOM_MASK;
2114 tcp_iss += addin + TCP_ISSINCR;
2115 #ifdef TCPISS_DEBUG
2116 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2117 #endif
2118 } else {
2119 tcp_iss &= TCP_ISS_RANDOM_MASK;
2120 tcp_iss += tcp_iss_seq;
2121 tcp_iss_seq += TCP_ISSINCR;
2122 #ifdef TCPISS_DEBUG
2123 printf("ISS %08x\n", tcp_iss);
2124 #endif
2125 }
2126 }
2127
2128 if (tcp_compat_42) {
2129 /*
2130 * Limit it to the positive range for really old TCP
2131 * implementations.
2132 * Just AND off the top bit instead of checking if
2133 * is set first - saves a branch 50% of the time.
2134 */
2135 tcp_iss &= 0x7fffffff; /* XXX */
2136 }
2137
2138 return (tcp_iss);
2139 }
2140
2141 #ifdef IPSEC
2142 /* compute ESP/AH header size for TCP, including outer IP header. */
2143 size_t
2144 ipsec4_hdrsiz_tcp(tp)
2145 struct tcpcb *tp;
2146 {
2147 struct inpcb *inp;
2148 size_t hdrsiz;
2149
2150 /* XXX mapped addr case (tp->t_in6pcb) */
2151 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2152 return 0;
2153 switch (tp->t_family) {
2154 case AF_INET:
2155 /* XXX: should use currect direction. */
2156 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2157 break;
2158 default:
2159 hdrsiz = 0;
2160 break;
2161 }
2162
2163 return hdrsiz;
2164 }
2165
2166 #ifdef INET6
2167 size_t
2168 ipsec6_hdrsiz_tcp(tp)
2169 struct tcpcb *tp;
2170 {
2171 struct in6pcb *in6p;
2172 size_t hdrsiz;
2173
2174 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2175 return 0;
2176 switch (tp->t_family) {
2177 case AF_INET6:
2178 /* XXX: should use currect direction. */
2179 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2180 break;
2181 case AF_INET:
2182 /* mapped address case - tricky */
2183 default:
2184 hdrsiz = 0;
2185 break;
2186 }
2187
2188 return hdrsiz;
2189 }
2190 #endif
2191 #endif /*IPSEC*/
2192
2193 /*
2194 * Determine the length of the TCP options for this connection.
2195 *
2196 * XXX: What do we do for SACK, when we add that? Just reserve
2197 * all of the space? Otherwise we can't exactly be incrementing
2198 * cwnd by an amount that varies depending on the amount we last
2199 * had to SACK!
2200 */
2201
2202 u_int
2203 tcp_optlen(tp)
2204 struct tcpcb *tp;
2205 {
2206 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2207 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2208 return TCPOLEN_TSTAMP_APPA;
2209 else
2210 return 0;
2211 }
2212