Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.145
      1 /*	$NetBSD: tcp_subr.c,v 1.145 2003/08/07 16:33:18 agc Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.145 2003/08/07 16:33:18 agc Exp $");
    102 
    103 #include "opt_inet.h"
    104 #include "opt_ipsec.h"
    105 #include "opt_tcp_compat_42.h"
    106 #include "opt_inet_csum.h"
    107 #include "opt_mbuftrace.h"
    108 #include "rnd.h"
    109 
    110 #include <sys/param.h>
    111 #include <sys/proc.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/socket.h>
    116 #include <sys/socketvar.h>
    117 #include <sys/protosw.h>
    118 #include <sys/errno.h>
    119 #include <sys/kernel.h>
    120 #include <sys/pool.h>
    121 #if NRND > 0
    122 #include <sys/md5.h>
    123 #include <sys/rnd.h>
    124 #endif
    125 
    126 #include <net/route.h>
    127 #include <net/if.h>
    128 
    129 #include <netinet/in.h>
    130 #include <netinet/in_systm.h>
    131 #include <netinet/ip.h>
    132 #include <netinet/in_pcb.h>
    133 #include <netinet/ip_var.h>
    134 #include <netinet/ip_icmp.h>
    135 
    136 #ifdef INET6
    137 #ifndef INET
    138 #include <netinet/in.h>
    139 #endif
    140 #include <netinet/ip6.h>
    141 #include <netinet6/in6_pcb.h>
    142 #include <netinet6/ip6_var.h>
    143 #include <netinet6/in6_var.h>
    144 #include <netinet6/ip6protosw.h>
    145 #include <netinet/icmp6.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include <netinet/tcp.h>
    150 #include <netinet/tcp_fsm.h>
    151 #include <netinet/tcp_seq.h>
    152 #include <netinet/tcp_timer.h>
    153 #include <netinet/tcp_var.h>
    154 #include <netinet/tcpip.h>
    155 
    156 #ifdef IPSEC
    157 #include <netinet6/ipsec.h>
    158 #endif /*IPSEC*/
    159 
    160 #ifdef INET6
    161 struct in6pcb tcb6;
    162 #endif
    163 
    164 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    165 struct	tcpstat tcpstat;	/* tcp statistics */
    166 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
    167 
    168 /* patchable/settable parameters for tcp */
    169 int 	tcp_mssdflt = TCP_MSS;
    170 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    171 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    172 #if NRND > 0
    173 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    174 #endif
    175 int	tcp_do_sack = 1;	/* selective acknowledgement */
    176 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    177 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    178 int	tcp_do_newreno = 0;	/* Use the New Reno algorithms */
    179 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    180 #ifndef TCP_INIT_WIN
    181 #define	TCP_INIT_WIN	1	/* initial slow start window */
    182 #endif
    183 #ifndef TCP_INIT_WIN_LOCAL
    184 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    185 #endif
    186 int	tcp_init_win = TCP_INIT_WIN;
    187 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    188 int	tcp_mss_ifmtu = 0;
    189 #ifdef TCP_COMPAT_42
    190 int	tcp_compat_42 = 1;
    191 #else
    192 int	tcp_compat_42 = 0;
    193 #endif
    194 int	tcp_rst_ppslim = 100;	/* 100pps */
    195 
    196 /* tcb hash */
    197 #ifndef TCBHASHSIZE
    198 #define	TCBHASHSIZE	128
    199 #endif
    200 int	tcbhashsize = TCBHASHSIZE;
    201 
    202 /* syn hash parameters */
    203 #define	TCP_SYN_HASH_SIZE	293
    204 #define	TCP_SYN_BUCKET_SIZE	35
    205 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    206 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    207 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    208 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    209 
    210 int	tcp_freeq __P((struct tcpcb *));
    211 
    212 #ifdef INET
    213 void	tcp_mtudisc_callback __P((struct in_addr));
    214 #endif
    215 #ifdef INET6
    216 void	tcp6_mtudisc_callback __P((struct in6_addr *));
    217 #endif
    218 
    219 void	tcp_mtudisc __P((struct inpcb *, int));
    220 #ifdef INET6
    221 void	tcp6_mtudisc __P((struct in6pcb *, int));
    222 #endif
    223 
    224 struct pool tcpcb_pool;
    225 
    226 #ifdef TCP_CSUM_COUNTERS
    227 #include <sys/device.h>
    228 
    229 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    230     NULL, "tcp", "hwcsum bad");
    231 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    232     NULL, "tcp", "hwcsum ok");
    233 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    234     NULL, "tcp", "hwcsum data");
    235 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    236     NULL, "tcp", "swcsum");
    237 #endif /* TCP_CSUM_COUNTERS */
    238 
    239 #ifdef TCP_OUTPUT_COUNTERS
    240 #include <sys/device.h>
    241 
    242 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    243     NULL, "tcp", "output big header");
    244 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    245     NULL, "tcp", "output copy small");
    246 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    247     NULL, "tcp", "output copy big");
    248 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    249     NULL, "tcp", "output reference big");
    250 #endif /* TCP_OUTPUT_COUNTERS */
    251 
    252 #ifdef TCP_REASS_COUNTERS
    253 #include <sys/device.h>
    254 
    255 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    256     NULL, "tcp_reass", "calls");
    257 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    258     &tcp_reass_, "tcp_reass", "insert into empty queue");
    259 struct evcnt tcp_reass_iteration[8] = {
    260     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    261     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    262     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    263     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    264     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    265     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    266     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    267     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    268 };
    269 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    270     &tcp_reass_, "tcp_reass", "prepend to first");
    271 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    272     &tcp_reass_, "tcp_reass", "prepend");
    273 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    274     &tcp_reass_, "tcp_reass", "insert");
    275 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    276     &tcp_reass_, "tcp_reass", "insert at tail");
    277 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    278     &tcp_reass_, "tcp_reass", "append");
    279 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    280     &tcp_reass_, "tcp_reass", "append to tail fragment");
    281 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    282     &tcp_reass_, "tcp_reass", "overlap at end");
    283 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    284     &tcp_reass_, "tcp_reass", "overlap at start");
    285 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    286     &tcp_reass_, "tcp_reass", "duplicate segment");
    287 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    288     &tcp_reass_, "tcp_reass", "duplicate fragment");
    289 
    290 #endif /* TCP_REASS_COUNTERS */
    291 
    292 #ifdef MBUFTRACE
    293 struct mowner tcp_mowner = { "tcp" };
    294 struct mowner tcp_rx_mowner = { "tcp", "rx" };
    295 struct mowner tcp_tx_mowner = { "tcp", "tx" };
    296 #endif
    297 
    298 /*
    299  * Tcp initialization
    300  */
    301 void
    302 tcp_init()
    303 {
    304 	int hlen;
    305 
    306 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
    307 	    NULL);
    308 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    309 #ifdef INET6
    310 	tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
    311 #endif
    312 
    313 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    314 #ifdef INET6
    315 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    316 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    317 #endif
    318 	if (max_protohdr < hlen)
    319 		max_protohdr = hlen;
    320 	if (max_linkhdr + hlen > MHLEN)
    321 		panic("tcp_init");
    322 
    323 #ifdef INET
    324 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    325 #endif
    326 #ifdef INET6
    327 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    328 #endif
    329 
    330 	/* Initialize timer state. */
    331 	tcp_timer_init();
    332 
    333 	/* Initialize the compressed state engine. */
    334 	syn_cache_init();
    335 
    336 #ifdef TCP_CSUM_COUNTERS
    337 	evcnt_attach_static(&tcp_hwcsum_bad);
    338 	evcnt_attach_static(&tcp_hwcsum_ok);
    339 	evcnt_attach_static(&tcp_hwcsum_data);
    340 	evcnt_attach_static(&tcp_swcsum);
    341 #endif /* TCP_CSUM_COUNTERS */
    342 
    343 #ifdef TCP_OUTPUT_COUNTERS
    344 	evcnt_attach_static(&tcp_output_bigheader);
    345 	evcnt_attach_static(&tcp_output_copysmall);
    346 	evcnt_attach_static(&tcp_output_copybig);
    347 	evcnt_attach_static(&tcp_output_refbig);
    348 #endif /* TCP_OUTPUT_COUNTERS */
    349 
    350 #ifdef TCP_REASS_COUNTERS
    351 	evcnt_attach_static(&tcp_reass_);
    352 	evcnt_attach_static(&tcp_reass_empty);
    353 	evcnt_attach_static(&tcp_reass_iteration[0]);
    354 	evcnt_attach_static(&tcp_reass_iteration[1]);
    355 	evcnt_attach_static(&tcp_reass_iteration[2]);
    356 	evcnt_attach_static(&tcp_reass_iteration[3]);
    357 	evcnt_attach_static(&tcp_reass_iteration[4]);
    358 	evcnt_attach_static(&tcp_reass_iteration[5]);
    359 	evcnt_attach_static(&tcp_reass_iteration[6]);
    360 	evcnt_attach_static(&tcp_reass_iteration[7]);
    361 	evcnt_attach_static(&tcp_reass_prependfirst);
    362 	evcnt_attach_static(&tcp_reass_prepend);
    363 	evcnt_attach_static(&tcp_reass_insert);
    364 	evcnt_attach_static(&tcp_reass_inserttail);
    365 	evcnt_attach_static(&tcp_reass_append);
    366 	evcnt_attach_static(&tcp_reass_appendtail);
    367 	evcnt_attach_static(&tcp_reass_overlaptail);
    368 	evcnt_attach_static(&tcp_reass_overlapfront);
    369 	evcnt_attach_static(&tcp_reass_segdup);
    370 	evcnt_attach_static(&tcp_reass_fragdup);
    371 #endif /* TCP_REASS_COUNTERS */
    372 
    373 	MOWNER_ATTACH(&tcp_tx_mowner);
    374 	MOWNER_ATTACH(&tcp_rx_mowner);
    375 	MOWNER_ATTACH(&tcp_mowner);
    376 }
    377 
    378 /*
    379  * Create template to be used to send tcp packets on a connection.
    380  * Call after host entry created, allocates an mbuf and fills
    381  * in a skeletal tcp/ip header, minimizing the amount of work
    382  * necessary when the connection is used.
    383  */
    384 struct mbuf *
    385 tcp_template(tp)
    386 	struct tcpcb *tp;
    387 {
    388 	struct inpcb *inp = tp->t_inpcb;
    389 #ifdef INET6
    390 	struct in6pcb *in6p = tp->t_in6pcb;
    391 #endif
    392 	struct tcphdr *n;
    393 	struct mbuf *m;
    394 	int hlen;
    395 
    396 	switch (tp->t_family) {
    397 	case AF_INET:
    398 		hlen = sizeof(struct ip);
    399 		if (inp)
    400 			break;
    401 #ifdef INET6
    402 		if (in6p) {
    403 			/* mapped addr case */
    404 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    405 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    406 				break;
    407 		}
    408 #endif
    409 		return NULL;	/*EINVAL*/
    410 #ifdef INET6
    411 	case AF_INET6:
    412 		hlen = sizeof(struct ip6_hdr);
    413 		if (in6p) {
    414 			/* more sainty check? */
    415 			break;
    416 		}
    417 		return NULL;	/*EINVAL*/
    418 #endif
    419 	default:
    420 		hlen = 0;	/*pacify gcc*/
    421 		return NULL;	/*EAFNOSUPPORT*/
    422 	}
    423 #ifdef DIAGNOSTIC
    424 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    425 		panic("mclbytes too small for t_template");
    426 #endif
    427 	m = tp->t_template;
    428 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    429 		;
    430 	else {
    431 		if (m)
    432 			m_freem(m);
    433 		m = tp->t_template = NULL;
    434 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    435 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    436 			MCLGET(m, M_DONTWAIT);
    437 			if ((m->m_flags & M_EXT) == 0) {
    438 				m_free(m);
    439 				m = NULL;
    440 			}
    441 		}
    442 		if (m == NULL)
    443 			return NULL;
    444 		MCLAIM(m, &tcp_mowner);
    445 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    446 	}
    447 
    448 	bzero(mtod(m, caddr_t), m->m_len);
    449 
    450 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
    451 
    452 	switch (tp->t_family) {
    453 	case AF_INET:
    454 	    {
    455 		struct ipovly *ipov;
    456 		mtod(m, struct ip *)->ip_v = 4;
    457 		ipov = mtod(m, struct ipovly *);
    458 		ipov->ih_pr = IPPROTO_TCP;
    459 		ipov->ih_len = htons(sizeof(struct tcphdr));
    460 		if (inp) {
    461 			ipov->ih_src = inp->inp_laddr;
    462 			ipov->ih_dst = inp->inp_faddr;
    463 		}
    464 #ifdef INET6
    465 		else if (in6p) {
    466 			/* mapped addr case */
    467 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    468 				sizeof(ipov->ih_src));
    469 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    470 				sizeof(ipov->ih_dst));
    471 		}
    472 #endif
    473 		/*
    474 		 * Compute the pseudo-header portion of the checksum
    475 		 * now.  We incrementally add in the TCP option and
    476 		 * payload lengths later, and then compute the TCP
    477 		 * checksum right before the packet is sent off onto
    478 		 * the wire.
    479 		 */
    480 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    481 		    ipov->ih_dst.s_addr,
    482 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    483 		break;
    484 	    }
    485 #ifdef INET6
    486 	case AF_INET6:
    487 	    {
    488 		struct ip6_hdr *ip6;
    489 		mtod(m, struct ip *)->ip_v = 6;
    490 		ip6 = mtod(m, struct ip6_hdr *);
    491 		ip6->ip6_nxt = IPPROTO_TCP;
    492 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    493 		ip6->ip6_src = in6p->in6p_laddr;
    494 		ip6->ip6_dst = in6p->in6p_faddr;
    495 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    496 		if (ip6_auto_flowlabel) {
    497 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    498 			ip6->ip6_flow |=
    499 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
    500 		}
    501 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    502 		ip6->ip6_vfc |= IPV6_VERSION;
    503 
    504 		/*
    505 		 * Compute the pseudo-header portion of the checksum
    506 		 * now.  We incrementally add in the TCP option and
    507 		 * payload lengths later, and then compute the TCP
    508 		 * checksum right before the packet is sent off onto
    509 		 * the wire.
    510 		 */
    511 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    512 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    513 		    htonl(IPPROTO_TCP));
    514 		break;
    515 	    }
    516 #endif
    517 	}
    518 	if (inp) {
    519 		n->th_sport = inp->inp_lport;
    520 		n->th_dport = inp->inp_fport;
    521 	}
    522 #ifdef INET6
    523 	else if (in6p) {
    524 		n->th_sport = in6p->in6p_lport;
    525 		n->th_dport = in6p->in6p_fport;
    526 	}
    527 #endif
    528 	n->th_seq = 0;
    529 	n->th_ack = 0;
    530 	n->th_x2 = 0;
    531 	n->th_off = 5;
    532 	n->th_flags = 0;
    533 	n->th_win = 0;
    534 	n->th_urp = 0;
    535 	return (m);
    536 }
    537 
    538 /*
    539  * Send a single message to the TCP at address specified by
    540  * the given TCP/IP header.  If m == 0, then we make a copy
    541  * of the tcpiphdr at ti and send directly to the addressed host.
    542  * This is used to force keep alive messages out using the TCP
    543  * template for a connection tp->t_template.  If flags are given
    544  * then we send a message back to the TCP which originated the
    545  * segment ti, and discard the mbuf containing it and any other
    546  * attached mbufs.
    547  *
    548  * In any case the ack and sequence number of the transmitted
    549  * segment are as specified by the parameters.
    550  */
    551 int
    552 tcp_respond(tp, template, m, th0, ack, seq, flags)
    553 	struct tcpcb *tp;
    554 	struct mbuf *template;
    555 	struct mbuf *m;
    556 	struct tcphdr *th0;
    557 	tcp_seq ack, seq;
    558 	int flags;
    559 {
    560 	struct route *ro;
    561 	int error, tlen, win = 0;
    562 	int hlen;
    563 	struct ip *ip;
    564 #ifdef INET6
    565 	struct ip6_hdr *ip6;
    566 #endif
    567 	int family;	/* family on packet, not inpcb/in6pcb! */
    568 	struct tcphdr *th;
    569 
    570 	if (tp != NULL && (flags & TH_RST) == 0) {
    571 #ifdef DIAGNOSTIC
    572 		if (tp->t_inpcb && tp->t_in6pcb)
    573 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    574 #endif
    575 #ifdef INET
    576 		if (tp->t_inpcb)
    577 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    578 #endif
    579 #ifdef INET6
    580 		if (tp->t_in6pcb)
    581 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    582 #endif
    583 	}
    584 
    585 	th = NULL;	/* Quell uninitialized warning */
    586 	ip = NULL;
    587 #ifdef INET6
    588 	ip6 = NULL;
    589 #endif
    590 	if (m == 0) {
    591 		if (!template)
    592 			return EINVAL;
    593 
    594 		/* get family information from template */
    595 		switch (mtod(template, struct ip *)->ip_v) {
    596 		case 4:
    597 			family = AF_INET;
    598 			hlen = sizeof(struct ip);
    599 			break;
    600 #ifdef INET6
    601 		case 6:
    602 			family = AF_INET6;
    603 			hlen = sizeof(struct ip6_hdr);
    604 			break;
    605 #endif
    606 		default:
    607 			return EAFNOSUPPORT;
    608 		}
    609 
    610 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    611 		if (m) {
    612 			MCLAIM(m, &tcp_tx_mowner);
    613 			MCLGET(m, M_DONTWAIT);
    614 			if ((m->m_flags & M_EXT) == 0) {
    615 				m_free(m);
    616 				m = NULL;
    617 			}
    618 		}
    619 		if (m == NULL)
    620 			return (ENOBUFS);
    621 
    622 		if (tcp_compat_42)
    623 			tlen = 1;
    624 		else
    625 			tlen = 0;
    626 
    627 		m->m_data += max_linkhdr;
    628 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
    629 			template->m_len);
    630 		switch (family) {
    631 		case AF_INET:
    632 			ip = mtod(m, struct ip *);
    633 			th = (struct tcphdr *)(ip + 1);
    634 			break;
    635 #ifdef INET6
    636 		case AF_INET6:
    637 			ip6 = mtod(m, struct ip6_hdr *);
    638 			th = (struct tcphdr *)(ip6 + 1);
    639 			break;
    640 #endif
    641 #if 0
    642 		default:
    643 			/* noone will visit here */
    644 			m_freem(m);
    645 			return EAFNOSUPPORT;
    646 #endif
    647 		}
    648 		flags = TH_ACK;
    649 	} else {
    650 
    651 		if ((m->m_flags & M_PKTHDR) == 0) {
    652 #if 0
    653 			printf("non PKTHDR to tcp_respond\n");
    654 #endif
    655 			m_freem(m);
    656 			return EINVAL;
    657 		}
    658 #ifdef DIAGNOSTIC
    659 		if (!th0)
    660 			panic("th0 == NULL in tcp_respond");
    661 #endif
    662 
    663 		/* get family information from m */
    664 		switch (mtod(m, struct ip *)->ip_v) {
    665 		case 4:
    666 			family = AF_INET;
    667 			hlen = sizeof(struct ip);
    668 			ip = mtod(m, struct ip *);
    669 			break;
    670 #ifdef INET6
    671 		case 6:
    672 			family = AF_INET6;
    673 			hlen = sizeof(struct ip6_hdr);
    674 			ip6 = mtod(m, struct ip6_hdr *);
    675 			break;
    676 #endif
    677 		default:
    678 			m_freem(m);
    679 			return EAFNOSUPPORT;
    680 		}
    681 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    682 			tlen = sizeof(*th0);
    683 		else
    684 			tlen = th0->th_off << 2;
    685 
    686 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    687 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
    688 			m->m_len = hlen + tlen;
    689 			m_freem(m->m_next);
    690 			m->m_next = NULL;
    691 		} else {
    692 			struct mbuf *n;
    693 
    694 #ifdef DIAGNOSTIC
    695 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    696 				m_freem(m);
    697 				return EMSGSIZE;
    698 			}
    699 #endif
    700 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    701 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    702 				MCLGET(n, M_DONTWAIT);
    703 				if ((n->m_flags & M_EXT) == 0) {
    704 					m_freem(n);
    705 					n = NULL;
    706 				}
    707 			}
    708 			if (!n) {
    709 				m_freem(m);
    710 				return ENOBUFS;
    711 			}
    712 
    713 			MCLAIM(n, &tcp_tx_mowner);
    714 			n->m_data += max_linkhdr;
    715 			n->m_len = hlen + tlen;
    716 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
    717 			m_copyback(n, hlen, tlen, (caddr_t)th0);
    718 
    719 			m_freem(m);
    720 			m = n;
    721 			n = NULL;
    722 		}
    723 
    724 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    725 		switch (family) {
    726 		case AF_INET:
    727 			ip = mtod(m, struct ip *);
    728 			th = (struct tcphdr *)(ip + 1);
    729 			ip->ip_p = IPPROTO_TCP;
    730 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    731 			ip->ip_p = IPPROTO_TCP;
    732 			break;
    733 #ifdef INET6
    734 		case AF_INET6:
    735 			ip6 = mtod(m, struct ip6_hdr *);
    736 			th = (struct tcphdr *)(ip6 + 1);
    737 			ip6->ip6_nxt = IPPROTO_TCP;
    738 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    739 			ip6->ip6_nxt = IPPROTO_TCP;
    740 			break;
    741 #endif
    742 #if 0
    743 		default:
    744 			/* noone will visit here */
    745 			m_freem(m);
    746 			return EAFNOSUPPORT;
    747 #endif
    748 		}
    749 		xchg(th->th_dport, th->th_sport, u_int16_t);
    750 #undef xchg
    751 		tlen = 0;	/*be friendly with the following code*/
    752 	}
    753 	th->th_seq = htonl(seq);
    754 	th->th_ack = htonl(ack);
    755 	th->th_x2 = 0;
    756 	if ((flags & TH_SYN) == 0) {
    757 		if (tp)
    758 			win >>= tp->rcv_scale;
    759 		if (win > TCP_MAXWIN)
    760 			win = TCP_MAXWIN;
    761 		th->th_win = htons((u_int16_t)win);
    762 		th->th_off = sizeof (struct tcphdr) >> 2;
    763 		tlen += sizeof(*th);
    764 	} else
    765 		tlen += th->th_off << 2;
    766 	m->m_len = hlen + tlen;
    767 	m->m_pkthdr.len = hlen + tlen;
    768 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    769 	th->th_flags = flags;
    770 	th->th_urp = 0;
    771 
    772 	switch (family) {
    773 #ifdef INET
    774 	case AF_INET:
    775 	    {
    776 		struct ipovly *ipov = (struct ipovly *)ip;
    777 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    778 		ipov->ih_len = htons((u_int16_t)tlen);
    779 
    780 		th->th_sum = 0;
    781 		th->th_sum = in_cksum(m, hlen + tlen);
    782 		ip->ip_len = htons(hlen + tlen);
    783 		ip->ip_ttl = ip_defttl;
    784 		break;
    785 	    }
    786 #endif
    787 #ifdef INET6
    788 	case AF_INET6:
    789 	    {
    790 		th->th_sum = 0;
    791 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    792 				tlen);
    793 		ip6->ip6_plen = ntohs(tlen);
    794 		if (tp && tp->t_in6pcb) {
    795 			struct ifnet *oifp;
    796 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    797 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    798 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    799 		} else
    800 			ip6->ip6_hlim = ip6_defhlim;
    801 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    802 		if (ip6_auto_flowlabel) {
    803 			ip6->ip6_flow |=
    804 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
    805 		}
    806 		break;
    807 	    }
    808 #endif
    809 	}
    810 
    811 #ifdef IPSEC
    812 	(void)ipsec_setsocket(m, NULL);
    813 #endif /*IPSEC*/
    814 
    815 	if (tp != NULL && tp->t_inpcb != NULL) {
    816 		ro = &tp->t_inpcb->inp_route;
    817 #ifdef IPSEC
    818 		if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
    819 			m_freem(m);
    820 			return ENOBUFS;
    821 		}
    822 #endif
    823 #ifdef DIAGNOSTIC
    824 		if (family != AF_INET)
    825 			panic("tcp_respond: address family mismatch");
    826 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    827 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    828 			    ntohl(ip->ip_dst.s_addr),
    829 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    830 		}
    831 #endif
    832 	}
    833 #ifdef INET6
    834 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    835 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    836 #ifdef IPSEC
    837 		if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
    838 			m_freem(m);
    839 			return ENOBUFS;
    840 		}
    841 #endif
    842 #ifdef DIAGNOSTIC
    843 		if (family == AF_INET) {
    844 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    845 				panic("tcp_respond: not mapped addr");
    846 			if (bcmp(&ip->ip_dst,
    847 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    848 			    sizeof(ip->ip_dst)) != 0) {
    849 				panic("tcp_respond: ip_dst != in6p_faddr");
    850 			}
    851 		} else if (family == AF_INET6) {
    852 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    853 			    &tp->t_in6pcb->in6p_faddr))
    854 				panic("tcp_respond: ip6_dst != in6p_faddr");
    855 		} else
    856 			panic("tcp_respond: address family mismatch");
    857 #endif
    858 	}
    859 #endif
    860 	else
    861 		ro = NULL;
    862 
    863 	switch (family) {
    864 #ifdef INET
    865 	case AF_INET:
    866 		error = ip_output(m, NULL, ro,
    867 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    868 		    NULL);
    869 		break;
    870 #endif
    871 #ifdef INET6
    872 	case AF_INET6:
    873 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0, NULL,
    874 		    NULL);
    875 		break;
    876 #endif
    877 	default:
    878 		error = EAFNOSUPPORT;
    879 		break;
    880 	}
    881 
    882 	return (error);
    883 }
    884 
    885 /*
    886  * Create a new TCP control block, making an
    887  * empty reassembly queue and hooking it to the argument
    888  * protocol control block.
    889  */
    890 struct tcpcb *
    891 tcp_newtcpcb(family, aux)
    892 	int family;	/* selects inpcb, or in6pcb */
    893 	void *aux;
    894 {
    895 	struct tcpcb *tp;
    896 	int i;
    897 
    898 	switch (family) {
    899 	case PF_INET:
    900 		break;
    901 #ifdef INET6
    902 	case PF_INET6:
    903 		break;
    904 #endif
    905 	default:
    906 		return NULL;
    907 	}
    908 
    909 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    910 	if (tp == NULL)
    911 		return (NULL);
    912 	bzero((caddr_t)tp, sizeof(struct tcpcb));
    913 	TAILQ_INIT(&tp->segq);
    914 	TAILQ_INIT(&tp->timeq);
    915 	tp->t_family = family;		/* may be overridden later on */
    916 	tp->t_peermss = tcp_mssdflt;
    917 	tp->t_ourmss = tcp_mssdflt;
    918 	tp->t_segsz = tcp_mssdflt;
    919 	LIST_INIT(&tp->t_sc);
    920 
    921 	tp->t_lastm = NULL;
    922 	tp->t_lastoff = 0;
    923 
    924 	callout_init(&tp->t_delack_ch);
    925 	for (i = 0; i < TCPT_NTIMERS; i++)
    926 		TCP_TIMER_INIT(tp, i);
    927 
    928 	tp->t_flags = 0;
    929 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    930 		tp->t_flags |= TF_REQ_SCALE;
    931 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    932 		tp->t_flags |= TF_REQ_TSTMP;
    933 	if (tcp_do_sack == 2)
    934 		tp->t_flags |= TF_WILL_SACK;
    935 	else if (tcp_do_sack == 1)
    936 		tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
    937 	tp->t_flags |= TF_CANT_TXSACK;
    938 	switch (family) {
    939 	case PF_INET:
    940 		tp->t_inpcb = (struct inpcb *)aux;
    941 		tp->t_mtudisc = ip_mtudisc;
    942 		break;
    943 #ifdef INET6
    944 	case PF_INET6:
    945 		tp->t_in6pcb = (struct in6pcb *)aux;
    946 		/* for IPv6, always try to run path MTU discovery */
    947 		tp->t_mtudisc = 1;
    948 		break;
    949 #endif
    950 	}
    951 	/*
    952 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    953 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    954 	 * reasonable initial retransmit time.
    955 	 */
    956 	tp->t_srtt = TCPTV_SRTTBASE;
    957 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    958 	tp->t_rttmin = TCPTV_MIN;
    959 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    960 	    TCPTV_MIN, TCPTV_REXMTMAX);
    961 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    962 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    963 	if (family == AF_INET) {
    964 		struct inpcb *inp = (struct inpcb *)aux;
    965 		inp->inp_ip.ip_ttl = ip_defttl;
    966 		inp->inp_ppcb = (caddr_t)tp;
    967 	}
    968 #ifdef INET6
    969 	else if (family == AF_INET6) {
    970 		struct in6pcb *in6p = (struct in6pcb *)aux;
    971 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
    972 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
    973 					       : NULL);
    974 		in6p->in6p_ppcb = (caddr_t)tp;
    975 	}
    976 #endif
    977 
    978 	/*
    979 	 * Initialize our timebase.  When we send timestamps, we take
    980 	 * the delta from tcp_now -- this means each connection always
    981 	 * gets a timebase of 0, which makes it, among other things,
    982 	 * more difficult to determine how long a system has been up,
    983 	 * and thus how many TCP sequence increments have occurred.
    984 	 */
    985 	tp->ts_timebase = tcp_now;
    986 
    987 	return (tp);
    988 }
    989 
    990 /*
    991  * Drop a TCP connection, reporting
    992  * the specified error.  If connection is synchronized,
    993  * then send a RST to peer.
    994  */
    995 struct tcpcb *
    996 tcp_drop(tp, errno)
    997 	struct tcpcb *tp;
    998 	int errno;
    999 {
   1000 	struct socket *so = NULL;
   1001 
   1002 #ifdef DIAGNOSTIC
   1003 	if (tp->t_inpcb && tp->t_in6pcb)
   1004 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1005 #endif
   1006 #ifdef INET
   1007 	if (tp->t_inpcb)
   1008 		so = tp->t_inpcb->inp_socket;
   1009 #endif
   1010 #ifdef INET6
   1011 	if (tp->t_in6pcb)
   1012 		so = tp->t_in6pcb->in6p_socket;
   1013 #endif
   1014 	if (!so)
   1015 		return NULL;
   1016 
   1017 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1018 		tp->t_state = TCPS_CLOSED;
   1019 		(void) tcp_output(tp);
   1020 		tcpstat.tcps_drops++;
   1021 	} else
   1022 		tcpstat.tcps_conndrops++;
   1023 	if (errno == ETIMEDOUT && tp->t_softerror)
   1024 		errno = tp->t_softerror;
   1025 	so->so_error = errno;
   1026 	return (tcp_close(tp));
   1027 }
   1028 
   1029 /*
   1030  * Return whether this tcpcb is marked as dead, indicating
   1031  * to the calling timer function that no further action should
   1032  * be taken, as we are about to release this tcpcb.  The release
   1033  * of the storage will be done if this is the last timer running.
   1034  *
   1035  * This is typically called from the callout handler function before
   1036  * callout_ack() is done, therefore we need to test the number of
   1037  * running timer functions against 1 below, not 0.
   1038  */
   1039 int
   1040 tcp_isdead(tp)
   1041 	struct tcpcb *tp;
   1042 {
   1043 	int dead = (tp->t_flags & TF_DEAD);
   1044 
   1045 	if (__predict_false(dead)) {
   1046 		if (tcp_timers_invoking(tp) > 1)
   1047 				/* not quite there yet -- count separately? */
   1048 			return dead;
   1049 		tcpstat.tcps_delayed_free++;
   1050 		pool_put(&tcpcb_pool, tp);
   1051 	}
   1052 	return dead;
   1053 }
   1054 
   1055 /*
   1056  * Close a TCP control block:
   1057  *	discard all space held by the tcp
   1058  *	discard internet protocol block
   1059  *	wake up any sleepers
   1060  */
   1061 struct tcpcb *
   1062 tcp_close(tp)
   1063 	struct tcpcb *tp;
   1064 {
   1065 	struct inpcb *inp;
   1066 #ifdef INET6
   1067 	struct in6pcb *in6p;
   1068 #endif
   1069 	struct socket *so;
   1070 #ifdef RTV_RTT
   1071 	struct rtentry *rt;
   1072 #endif
   1073 	struct route *ro;
   1074 
   1075 	inp = tp->t_inpcb;
   1076 #ifdef INET6
   1077 	in6p = tp->t_in6pcb;
   1078 #endif
   1079 	so = NULL;
   1080 	ro = NULL;
   1081 	if (inp) {
   1082 		so = inp->inp_socket;
   1083 		ro = &inp->inp_route;
   1084 	}
   1085 #ifdef INET6
   1086 	else if (in6p) {
   1087 		so = in6p->in6p_socket;
   1088 		ro = (struct route *)&in6p->in6p_route;
   1089 	}
   1090 #endif
   1091 
   1092 #ifdef RTV_RTT
   1093 	/*
   1094 	 * If we sent enough data to get some meaningful characteristics,
   1095 	 * save them in the routing entry.  'Enough' is arbitrarily
   1096 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1097 	 * give us 16 rtt samples assuming we only get one sample per
   1098 	 * window (the usual case on a long haul net).  16 samples is
   1099 	 * enough for the srtt filter to converge to within 5% of the correct
   1100 	 * value; fewer samples and we could save a very bogus rtt.
   1101 	 *
   1102 	 * Don't update the default route's characteristics and don't
   1103 	 * update anything that the user "locked".
   1104 	 */
   1105 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1106 	    ro && (rt = ro->ro_rt) &&
   1107 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
   1108 		u_long i = 0;
   1109 
   1110 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1111 			i = tp->t_srtt *
   1112 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1113 			if (rt->rt_rmx.rmx_rtt && i)
   1114 				/*
   1115 				 * filter this update to half the old & half
   1116 				 * the new values, converting scale.
   1117 				 * See route.h and tcp_var.h for a
   1118 				 * description of the scaling constants.
   1119 				 */
   1120 				rt->rt_rmx.rmx_rtt =
   1121 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1122 			else
   1123 				rt->rt_rmx.rmx_rtt = i;
   1124 		}
   1125 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1126 			i = tp->t_rttvar *
   1127 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1128 			if (rt->rt_rmx.rmx_rttvar && i)
   1129 				rt->rt_rmx.rmx_rttvar =
   1130 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1131 			else
   1132 				rt->rt_rmx.rmx_rttvar = i;
   1133 		}
   1134 		/*
   1135 		 * update the pipelimit (ssthresh) if it has been updated
   1136 		 * already or if a pipesize was specified & the threshhold
   1137 		 * got below half the pipesize.  I.e., wait for bad news
   1138 		 * before we start updating, then update on both good
   1139 		 * and bad news.
   1140 		 */
   1141 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1142 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1143 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1144 			/*
   1145 			 * convert the limit from user data bytes to
   1146 			 * packets then to packet data bytes.
   1147 			 */
   1148 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1149 			if (i < 2)
   1150 				i = 2;
   1151 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1152 			if (rt->rt_rmx.rmx_ssthresh)
   1153 				rt->rt_rmx.rmx_ssthresh =
   1154 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1155 			else
   1156 				rt->rt_rmx.rmx_ssthresh = i;
   1157 		}
   1158 	}
   1159 #endif /* RTV_RTT */
   1160 	/* free the reassembly queue, if any */
   1161 	TCP_REASS_LOCK(tp);
   1162 	(void) tcp_freeq(tp);
   1163 	TCP_REASS_UNLOCK(tp);
   1164 
   1165 	tcp_canceltimers(tp);
   1166 	TCP_CLEAR_DELACK(tp);
   1167 	syn_cache_cleanup(tp);
   1168 
   1169 	if (tp->t_template) {
   1170 		m_free(tp->t_template);
   1171 		tp->t_template = NULL;
   1172 	}
   1173 	if (tcp_timers_invoking(tp))
   1174 		tp->t_flags |= TF_DEAD;
   1175 	else
   1176 		pool_put(&tcpcb_pool, tp);
   1177 
   1178 	if (inp) {
   1179 		inp->inp_ppcb = 0;
   1180 		soisdisconnected(so);
   1181 		in_pcbdetach(inp);
   1182 	}
   1183 #ifdef INET6
   1184 	else if (in6p) {
   1185 		in6p->in6p_ppcb = 0;
   1186 		soisdisconnected(so);
   1187 		in6_pcbdetach(in6p);
   1188 	}
   1189 #endif
   1190 	tcpstat.tcps_closed++;
   1191 	return ((struct tcpcb *)0);
   1192 }
   1193 
   1194 int
   1195 tcp_freeq(tp)
   1196 	struct tcpcb *tp;
   1197 {
   1198 	struct ipqent *qe;
   1199 	int rv = 0;
   1200 #ifdef TCPREASS_DEBUG
   1201 	int i = 0;
   1202 #endif
   1203 
   1204 	TCP_REASS_LOCK_CHECK(tp);
   1205 
   1206 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1207 #ifdef TCPREASS_DEBUG
   1208 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1209 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1210 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1211 #endif
   1212 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1213 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1214 		m_freem(qe->ipqe_m);
   1215 		pool_put(&ipqent_pool, qe);
   1216 		rv = 1;
   1217 	}
   1218 	return (rv);
   1219 }
   1220 
   1221 /*
   1222  * Protocol drain routine.  Called when memory is in short supply.
   1223  */
   1224 void
   1225 tcp_drain()
   1226 {
   1227 	struct inpcb *inp;
   1228 	struct tcpcb *tp;
   1229 
   1230 	/*
   1231 	 * Free the sequence queue of all TCP connections.
   1232 	 */
   1233 	inp = CIRCLEQ_FIRST(&tcbtable.inpt_queue);
   1234 	if (inp)						/* XXX */
   1235 	CIRCLEQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue) {
   1236 		if ((tp = intotcpcb(inp)) != NULL) {
   1237 			/*
   1238 			 * We may be called from a device's interrupt
   1239 			 * context.  If the tcpcb is already busy,
   1240 			 * just bail out now.
   1241 			 */
   1242 			if (tcp_reass_lock_try(tp) == 0)
   1243 				continue;
   1244 			if (tcp_freeq(tp))
   1245 				tcpstat.tcps_connsdrained++;
   1246 			TCP_REASS_UNLOCK(tp);
   1247 		}
   1248 	}
   1249 }
   1250 
   1251 #ifdef INET6
   1252 void
   1253 tcp6_drain()
   1254 {
   1255 	struct in6pcb *in6p;
   1256 	struct tcpcb *tp;
   1257 	struct in6pcb *head = &tcb6;
   1258 
   1259 	/*
   1260 	 * Free the sequence queue of all TCP connections.
   1261 	 */
   1262 	for (in6p = head->in6p_next; in6p != head; in6p = in6p->in6p_next) {
   1263 		if ((tp = in6totcpcb(in6p)) != NULL) {
   1264 			/*
   1265 			 * We may be called from a device's interrupt
   1266 			 * context.  If the tcpcb is already busy,
   1267 			 * just bail out now.
   1268 			 */
   1269 			if (tcp_reass_lock_try(tp) == 0)
   1270 				continue;
   1271 			if (tcp_freeq(tp))
   1272 				tcpstat.tcps_connsdrained++;
   1273 			TCP_REASS_UNLOCK(tp);
   1274 		}
   1275 	}
   1276 }
   1277 #endif
   1278 
   1279 /*
   1280  * Notify a tcp user of an asynchronous error;
   1281  * store error as soft error, but wake up user
   1282  * (for now, won't do anything until can select for soft error).
   1283  */
   1284 void
   1285 tcp_notify(inp, error)
   1286 	struct inpcb *inp;
   1287 	int error;
   1288 {
   1289 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1290 	struct socket *so = inp->inp_socket;
   1291 
   1292 	/*
   1293 	 * Ignore some errors if we are hooked up.
   1294 	 * If connection hasn't completed, has retransmitted several times,
   1295 	 * and receives a second error, give up now.  This is better
   1296 	 * than waiting a long time to establish a connection that
   1297 	 * can never complete.
   1298 	 */
   1299 	if (tp->t_state == TCPS_ESTABLISHED &&
   1300 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1301 	      error == EHOSTDOWN)) {
   1302 		return;
   1303 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1304 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1305 		so->so_error = error;
   1306 	else
   1307 		tp->t_softerror = error;
   1308 	wakeup((caddr_t) &so->so_timeo);
   1309 	sorwakeup(so);
   1310 	sowwakeup(so);
   1311 }
   1312 
   1313 #ifdef INET6
   1314 void
   1315 tcp6_notify(in6p, error)
   1316 	struct in6pcb *in6p;
   1317 	int error;
   1318 {
   1319 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1320 	struct socket *so = in6p->in6p_socket;
   1321 
   1322 	/*
   1323 	 * Ignore some errors if we are hooked up.
   1324 	 * If connection hasn't completed, has retransmitted several times,
   1325 	 * and receives a second error, give up now.  This is better
   1326 	 * than waiting a long time to establish a connection that
   1327 	 * can never complete.
   1328 	 */
   1329 	if (tp->t_state == TCPS_ESTABLISHED &&
   1330 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1331 	      error == EHOSTDOWN)) {
   1332 		return;
   1333 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1334 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1335 		so->so_error = error;
   1336 	else
   1337 		tp->t_softerror = error;
   1338 	wakeup((caddr_t) &so->so_timeo);
   1339 	sorwakeup(so);
   1340 	sowwakeup(so);
   1341 }
   1342 #endif
   1343 
   1344 #ifdef INET6
   1345 void
   1346 tcp6_ctlinput(cmd, sa, d)
   1347 	int cmd;
   1348 	struct sockaddr *sa;
   1349 	void *d;
   1350 {
   1351 	struct tcphdr th;
   1352 	void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
   1353 	int nmatch;
   1354 	struct ip6_hdr *ip6;
   1355 	const struct sockaddr_in6 *sa6_src = NULL;
   1356 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
   1357 	struct mbuf *m;
   1358 	int off;
   1359 
   1360 	if (sa->sa_family != AF_INET6 ||
   1361 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1362 		return;
   1363 	if ((unsigned)cmd >= PRC_NCMDS)
   1364 		return;
   1365 	else if (cmd == PRC_QUENCH) {
   1366 		/* XXX there's no PRC_QUENCH in IPv6 */
   1367 		notify = tcp6_quench;
   1368 	} else if (PRC_IS_REDIRECT(cmd))
   1369 		notify = in6_rtchange, d = NULL;
   1370 	else if (cmd == PRC_MSGSIZE)
   1371 		; /* special code is present, see below */
   1372 	else if (cmd == PRC_HOSTDEAD)
   1373 		d = NULL;
   1374 	else if (inet6ctlerrmap[cmd] == 0)
   1375 		return;
   1376 
   1377 	/* if the parameter is from icmp6, decode it. */
   1378 	if (d != NULL) {
   1379 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1380 		m = ip6cp->ip6c_m;
   1381 		ip6 = ip6cp->ip6c_ip6;
   1382 		off = ip6cp->ip6c_off;
   1383 		sa6_src = ip6cp->ip6c_src;
   1384 	} else {
   1385 		m = NULL;
   1386 		ip6 = NULL;
   1387 		sa6_src = &sa6_any;
   1388 	}
   1389 
   1390 	if (ip6) {
   1391 		/*
   1392 		 * XXX: We assume that when ip6 is non NULL,
   1393 		 * M and OFF are valid.
   1394 		 */
   1395 
   1396 		/* check if we can safely examine src and dst ports */
   1397 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1398 			if (cmd == PRC_MSGSIZE)
   1399 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1400 			return;
   1401 		}
   1402 
   1403 		bzero(&th, sizeof(th));
   1404 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
   1405 
   1406 		if (cmd == PRC_MSGSIZE) {
   1407 			int valid = 0;
   1408 
   1409 			/*
   1410 			 * Check to see if we have a valid TCP connection
   1411 			 * corresponding to the address in the ICMPv6 message
   1412 			 * payload.
   1413 			 */
   1414 			if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
   1415 			    th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
   1416 			    th.th_sport, 0))
   1417 				valid++;
   1418 
   1419 			/*
   1420 			 * Depending on the value of "valid" and routing table
   1421 			 * size (mtudisc_{hi,lo}wat), we will:
   1422 			 * - recalcurate the new MTU and create the
   1423 			 *   corresponding routing entry, or
   1424 			 * - ignore the MTU change notification.
   1425 			 */
   1426 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1427 
   1428 			/*
   1429 			 * no need to call in6_pcbnotify, it should have been
   1430 			 * called via callback if necessary
   1431 			 */
   1432 			return;
   1433 		}
   1434 
   1435 		nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
   1436 		    (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1437 		if (nmatch == 0 && syn_cache_count &&
   1438 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1439 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1440 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1441 			syn_cache_unreach((struct sockaddr *)sa6_src,
   1442 					  sa, &th);
   1443 	} else {
   1444 		(void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
   1445 		    0, cmd, NULL, notify);
   1446 	}
   1447 }
   1448 #endif
   1449 
   1450 #ifdef INET
   1451 /* assumes that ip header and tcp header are contiguous on mbuf */
   1452 void *
   1453 tcp_ctlinput(cmd, sa, v)
   1454 	int cmd;
   1455 	struct sockaddr *sa;
   1456 	void *v;
   1457 {
   1458 	struct ip *ip = v;
   1459 	struct tcphdr *th;
   1460 	struct icmp *icp;
   1461 	extern const int inetctlerrmap[];
   1462 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
   1463 	int errno;
   1464 	int nmatch;
   1465 #ifdef INET6
   1466 	struct in6_addr src6, dst6;
   1467 #endif
   1468 
   1469 	if (sa->sa_family != AF_INET ||
   1470 	    sa->sa_len != sizeof(struct sockaddr_in))
   1471 		return NULL;
   1472 	if ((unsigned)cmd >= PRC_NCMDS)
   1473 		return NULL;
   1474 	errno = inetctlerrmap[cmd];
   1475 	if (cmd == PRC_QUENCH)
   1476 		notify = tcp_quench;
   1477 	else if (PRC_IS_REDIRECT(cmd))
   1478 		notify = in_rtchange, ip = 0;
   1479 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1480 		/*
   1481 		 * Check to see if we have a valid TCP connection
   1482 		 * corresponding to the address in the ICMP message
   1483 		 * payload.
   1484 		 *
   1485 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1486 		 */
   1487 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1488 #ifdef INET6
   1489 		memset(&src6, 0, sizeof(src6));
   1490 		memset(&dst6, 0, sizeof(dst6));
   1491 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1492 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1493 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1494 #endif
   1495 		if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
   1496 		    ip->ip_src, th->th_sport) != NULL)
   1497 			;
   1498 #ifdef INET6
   1499 		else if (in6_pcblookup_connect(&tcb6, &dst6,
   1500 		    th->th_dport, &src6, th->th_sport, 0) != NULL)
   1501 			;
   1502 #endif
   1503 		else
   1504 			return NULL;
   1505 
   1506 		/*
   1507 		 * Now that we've validated that we are actually communicating
   1508 		 * with the host indicated in the ICMP message, locate the
   1509 		 * ICMP header, recalculate the new MTU, and create the
   1510 		 * corresponding routing entry.
   1511 		 */
   1512 		icp = (struct icmp *)((caddr_t)ip -
   1513 		    offsetof(struct icmp, icmp_ip));
   1514 		icmp_mtudisc(icp, ip->ip_dst);
   1515 
   1516 		return NULL;
   1517 	} else if (cmd == PRC_HOSTDEAD)
   1518 		ip = 0;
   1519 	else if (errno == 0)
   1520 		return NULL;
   1521 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1522 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1523 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
   1524 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1525 		if (nmatch == 0 && syn_cache_count &&
   1526 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1527 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1528 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1529 			struct sockaddr_in sin;
   1530 			bzero(&sin, sizeof(sin));
   1531 			sin.sin_len = sizeof(sin);
   1532 			sin.sin_family = AF_INET;
   1533 			sin.sin_port = th->th_sport;
   1534 			sin.sin_addr = ip->ip_src;
   1535 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1536 		}
   1537 
   1538 		/* XXX mapped address case */
   1539 	} else
   1540 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
   1541 		    notify);
   1542 	return NULL;
   1543 }
   1544 
   1545 /*
   1546  * When a source quence is received, we are being notifed of congestion.
   1547  * Close the congestion window down to the Loss Window (one segment).
   1548  * We will gradually open it again as we proceed.
   1549  */
   1550 void
   1551 tcp_quench(inp, errno)
   1552 	struct inpcb *inp;
   1553 	int errno;
   1554 {
   1555 	struct tcpcb *tp = intotcpcb(inp);
   1556 
   1557 	if (tp)
   1558 		tp->snd_cwnd = tp->t_segsz;
   1559 }
   1560 #endif
   1561 
   1562 #ifdef INET6
   1563 void
   1564 tcp6_quench(in6p, errno)
   1565 	struct in6pcb *in6p;
   1566 	int errno;
   1567 {
   1568 	struct tcpcb *tp = in6totcpcb(in6p);
   1569 
   1570 	if (tp)
   1571 		tp->snd_cwnd = tp->t_segsz;
   1572 }
   1573 #endif
   1574 
   1575 #ifdef INET
   1576 /*
   1577  * Path MTU Discovery handlers.
   1578  */
   1579 void
   1580 tcp_mtudisc_callback(faddr)
   1581 	struct in_addr faddr;
   1582 {
   1583 #ifdef INET6
   1584 	struct in6_addr in6;
   1585 #endif
   1586 
   1587 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1588 #ifdef INET6
   1589 	memset(&in6, 0, sizeof(in6));
   1590 	in6.s6_addr16[5] = 0xffff;
   1591 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1592 	tcp6_mtudisc_callback(&in6);
   1593 #endif
   1594 }
   1595 
   1596 /*
   1597  * On receipt of path MTU corrections, flush old route and replace it
   1598  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1599  * that all packets will be received.
   1600  */
   1601 void
   1602 tcp_mtudisc(inp, errno)
   1603 	struct inpcb *inp;
   1604 	int errno;
   1605 {
   1606 	struct tcpcb *tp = intotcpcb(inp);
   1607 	struct rtentry *rt = in_pcbrtentry(inp);
   1608 
   1609 	if (tp != 0) {
   1610 		if (rt != 0) {
   1611 			/*
   1612 			 * If this was not a host route, remove and realloc.
   1613 			 */
   1614 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1615 				in_rtchange(inp, errno);
   1616 				if ((rt = in_pcbrtentry(inp)) == 0)
   1617 					return;
   1618 			}
   1619 
   1620 			/*
   1621 			 * Slow start out of the error condition.  We
   1622 			 * use the MTU because we know it's smaller
   1623 			 * than the previously transmitted segment.
   1624 			 *
   1625 			 * Note: This is more conservative than the
   1626 			 * suggestion in draft-floyd-incr-init-win-03.
   1627 			 */
   1628 			if (rt->rt_rmx.rmx_mtu != 0)
   1629 				tp->snd_cwnd =
   1630 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1631 				    rt->rt_rmx.rmx_mtu);
   1632 		}
   1633 
   1634 		/*
   1635 		 * Resend unacknowledged packets.
   1636 		 */
   1637 		tp->snd_nxt = tp->snd_una;
   1638 		tcp_output(tp);
   1639 	}
   1640 }
   1641 #endif
   1642 
   1643 #ifdef INET6
   1644 /*
   1645  * Path MTU Discovery handlers.
   1646  */
   1647 void
   1648 tcp6_mtudisc_callback(faddr)
   1649 	struct in6_addr *faddr;
   1650 {
   1651 	struct sockaddr_in6 sin6;
   1652 
   1653 	bzero(&sin6, sizeof(sin6));
   1654 	sin6.sin6_family = AF_INET6;
   1655 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1656 	sin6.sin6_addr = *faddr;
   1657 	(void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
   1658 	    (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1659 }
   1660 
   1661 void
   1662 tcp6_mtudisc(in6p, errno)
   1663 	struct in6pcb *in6p;
   1664 	int errno;
   1665 {
   1666 	struct tcpcb *tp = in6totcpcb(in6p);
   1667 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1668 
   1669 	if (tp != 0) {
   1670 		if (rt != 0) {
   1671 			/*
   1672 			 * If this was not a host route, remove and realloc.
   1673 			 */
   1674 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1675 				in6_rtchange(in6p, errno);
   1676 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1677 					return;
   1678 			}
   1679 
   1680 			/*
   1681 			 * Slow start out of the error condition.  We
   1682 			 * use the MTU because we know it's smaller
   1683 			 * than the previously transmitted segment.
   1684 			 *
   1685 			 * Note: This is more conservative than the
   1686 			 * suggestion in draft-floyd-incr-init-win-03.
   1687 			 */
   1688 			if (rt->rt_rmx.rmx_mtu != 0)
   1689 				tp->snd_cwnd =
   1690 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1691 				    rt->rt_rmx.rmx_mtu);
   1692 		}
   1693 
   1694 		/*
   1695 		 * Resend unacknowledged packets.
   1696 		 */
   1697 		tp->snd_nxt = tp->snd_una;
   1698 		tcp_output(tp);
   1699 	}
   1700 }
   1701 #endif /* INET6 */
   1702 
   1703 /*
   1704  * Compute the MSS to advertise to the peer.  Called only during
   1705  * the 3-way handshake.  If we are the server (peer initiated
   1706  * connection), we are called with a pointer to the interface
   1707  * on which the SYN packet arrived.  If we are the client (we
   1708  * initiated connection), we are called with a pointer to the
   1709  * interface out which this connection should go.
   1710  *
   1711  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1712  * header size from MSS advertisement.  MSS option must hold the maximum
   1713  * segment size we can accept, so it must always be:
   1714  *	 max(if mtu) - ip header - tcp header
   1715  */
   1716 u_long
   1717 tcp_mss_to_advertise(ifp, af)
   1718 	const struct ifnet *ifp;
   1719 	int af;
   1720 {
   1721 	extern u_long in_maxmtu;
   1722 	u_long mss = 0;
   1723 	u_long hdrsiz;
   1724 
   1725 	/*
   1726 	 * In order to avoid defeating path MTU discovery on the peer,
   1727 	 * we advertise the max MTU of all attached networks as our MSS,
   1728 	 * per RFC 1191, section 3.1.
   1729 	 *
   1730 	 * We provide the option to advertise just the MTU of
   1731 	 * the interface on which we hope this connection will
   1732 	 * be receiving.  If we are responding to a SYN, we
   1733 	 * will have a pretty good idea about this, but when
   1734 	 * initiating a connection there is a bit more doubt.
   1735 	 *
   1736 	 * We also need to ensure that loopback has a large enough
   1737 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1738 	 */
   1739 
   1740 	if (ifp != NULL)
   1741 		switch (af) {
   1742 		case AF_INET:
   1743 			mss = ifp->if_mtu;
   1744 			break;
   1745 #ifdef INET6
   1746 		case AF_INET6:
   1747 			mss = IN6_LINKMTU(ifp);
   1748 			break;
   1749 #endif
   1750 		}
   1751 
   1752 	if (tcp_mss_ifmtu == 0)
   1753 		switch (af) {
   1754 		case AF_INET:
   1755 			mss = max(in_maxmtu, mss);
   1756 			break;
   1757 #ifdef INET6
   1758 		case AF_INET6:
   1759 			mss = max(in6_maxmtu, mss);
   1760 			break;
   1761 #endif
   1762 		}
   1763 
   1764 	switch (af) {
   1765 	case AF_INET:
   1766 		hdrsiz = sizeof(struct ip);
   1767 		break;
   1768 #ifdef INET6
   1769 	case AF_INET6:
   1770 		hdrsiz = sizeof(struct ip6_hdr);
   1771 		break;
   1772 #endif
   1773 	default:
   1774 		hdrsiz = 0;
   1775 		break;
   1776 	}
   1777 	hdrsiz += sizeof(struct tcphdr);
   1778 	if (mss > hdrsiz)
   1779 		mss -= hdrsiz;
   1780 
   1781 	mss = max(tcp_mssdflt, mss);
   1782 	return (mss);
   1783 }
   1784 
   1785 /*
   1786  * Set connection variables based on the peer's advertised MSS.
   1787  * We are passed the TCPCB for the actual connection.  If we
   1788  * are the server, we are called by the compressed state engine
   1789  * when the 3-way handshake is complete.  If we are the client,
   1790  * we are called when we receive the SYN,ACK from the server.
   1791  *
   1792  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1793  * before this routine is called!
   1794  */
   1795 void
   1796 tcp_mss_from_peer(tp, offer)
   1797 	struct tcpcb *tp;
   1798 	int offer;
   1799 {
   1800 	struct socket *so;
   1801 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1802 	struct rtentry *rt;
   1803 #endif
   1804 	u_long bufsize;
   1805 	int mss;
   1806 
   1807 #ifdef DIAGNOSTIC
   1808 	if (tp->t_inpcb && tp->t_in6pcb)
   1809 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1810 #endif
   1811 	so = NULL;
   1812 	rt = NULL;
   1813 #ifdef INET
   1814 	if (tp->t_inpcb) {
   1815 		so = tp->t_inpcb->inp_socket;
   1816 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1817 		rt = in_pcbrtentry(tp->t_inpcb);
   1818 #endif
   1819 	}
   1820 #endif
   1821 #ifdef INET6
   1822 	if (tp->t_in6pcb) {
   1823 		so = tp->t_in6pcb->in6p_socket;
   1824 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1825 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1826 #endif
   1827 	}
   1828 #endif
   1829 
   1830 	/*
   1831 	 * As per RFC1122, use the default MSS value, unless they
   1832 	 * sent us an offer.  Do not accept offers less than 32 bytes.
   1833 	 */
   1834 	mss = tcp_mssdflt;
   1835 	if (offer)
   1836 		mss = offer;
   1837 	mss = max(mss, 32);		/* sanity */
   1838 	tp->t_peermss = mss;
   1839 	mss -= tcp_optlen(tp);
   1840 #ifdef INET
   1841 	if (tp->t_inpcb)
   1842 		mss -= ip_optlen(tp->t_inpcb);
   1843 #endif
   1844 #ifdef INET6
   1845 	if (tp->t_in6pcb)
   1846 		mss -= ip6_optlen(tp->t_in6pcb);
   1847 #endif
   1848 
   1849 	/*
   1850 	 * If there's a pipesize, change the socket buffer to that size.
   1851 	 * Make the socket buffer an integral number of MSS units.  If
   1852 	 * the MSS is larger than the socket buffer, artificially decrease
   1853 	 * the MSS.
   1854 	 */
   1855 #ifdef RTV_SPIPE
   1856 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1857 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1858 	else
   1859 #endif
   1860 		bufsize = so->so_snd.sb_hiwat;
   1861 	if (bufsize < mss)
   1862 		mss = bufsize;
   1863 	else {
   1864 		bufsize = roundup(bufsize, mss);
   1865 		if (bufsize > sb_max)
   1866 			bufsize = sb_max;
   1867 		(void) sbreserve(&so->so_snd, bufsize);
   1868 	}
   1869 	tp->t_segsz = mss;
   1870 
   1871 #ifdef RTV_SSTHRESH
   1872 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1873 		/*
   1874 		 * There's some sort of gateway or interface buffer
   1875 		 * limit on the path.  Use this to set the slow
   1876 		 * start threshold, but set the threshold to no less
   1877 		 * than 2 * MSS.
   1878 		 */
   1879 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1880 	}
   1881 #endif
   1882 }
   1883 
   1884 /*
   1885  * Processing necessary when a TCP connection is established.
   1886  */
   1887 void
   1888 tcp_established(tp)
   1889 	struct tcpcb *tp;
   1890 {
   1891 	struct socket *so;
   1892 #ifdef RTV_RPIPE
   1893 	struct rtentry *rt;
   1894 #endif
   1895 	u_long bufsize;
   1896 
   1897 #ifdef DIAGNOSTIC
   1898 	if (tp->t_inpcb && tp->t_in6pcb)
   1899 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   1900 #endif
   1901 	so = NULL;
   1902 	rt = NULL;
   1903 #ifdef INET
   1904 	if (tp->t_inpcb) {
   1905 		so = tp->t_inpcb->inp_socket;
   1906 #if defined(RTV_RPIPE)
   1907 		rt = in_pcbrtentry(tp->t_inpcb);
   1908 #endif
   1909 	}
   1910 #endif
   1911 #ifdef INET6
   1912 	if (tp->t_in6pcb) {
   1913 		so = tp->t_in6pcb->in6p_socket;
   1914 #if defined(RTV_RPIPE)
   1915 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1916 #endif
   1917 	}
   1918 #endif
   1919 
   1920 	tp->t_state = TCPS_ESTABLISHED;
   1921 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1922 
   1923 #ifdef RTV_RPIPE
   1924 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   1925 		bufsize = rt->rt_rmx.rmx_recvpipe;
   1926 	else
   1927 #endif
   1928 		bufsize = so->so_rcv.sb_hiwat;
   1929 	if (bufsize > tp->t_ourmss) {
   1930 		bufsize = roundup(bufsize, tp->t_ourmss);
   1931 		if (bufsize > sb_max)
   1932 			bufsize = sb_max;
   1933 		(void) sbreserve(&so->so_rcv, bufsize);
   1934 	}
   1935 }
   1936 
   1937 /*
   1938  * Check if there's an initial rtt or rttvar.  Convert from the
   1939  * route-table units to scaled multiples of the slow timeout timer.
   1940  * Called only during the 3-way handshake.
   1941  */
   1942 void
   1943 tcp_rmx_rtt(tp)
   1944 	struct tcpcb *tp;
   1945 {
   1946 #ifdef RTV_RTT
   1947 	struct rtentry *rt = NULL;
   1948 	int rtt;
   1949 
   1950 #ifdef DIAGNOSTIC
   1951 	if (tp->t_inpcb && tp->t_in6pcb)
   1952 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   1953 #endif
   1954 #ifdef INET
   1955 	if (tp->t_inpcb)
   1956 		rt = in_pcbrtentry(tp->t_inpcb);
   1957 #endif
   1958 #ifdef INET6
   1959 	if (tp->t_in6pcb)
   1960 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1961 #endif
   1962 	if (rt == NULL)
   1963 		return;
   1964 
   1965 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   1966 		/*
   1967 		 * XXX The lock bit for MTU indicates that the value
   1968 		 * is also a minimum value; this is subject to time.
   1969 		 */
   1970 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   1971 			TCPT_RANGESET(tp->t_rttmin,
   1972 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   1973 			    TCPTV_MIN, TCPTV_REXMTMAX);
   1974 		tp->t_srtt = rtt /
   1975 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1976 		if (rt->rt_rmx.rmx_rttvar) {
   1977 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   1978 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   1979 				(TCP_RTTVAR_SHIFT + 2));
   1980 		} else {
   1981 			/* Default variation is +- 1 rtt */
   1982 			tp->t_rttvar =
   1983 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   1984 		}
   1985 		TCPT_RANGESET(tp->t_rxtcur,
   1986 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   1987 		    tp->t_rttmin, TCPTV_REXMTMAX);
   1988 	}
   1989 #endif
   1990 }
   1991 
   1992 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   1993 #if NRND > 0
   1994 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   1995 #endif
   1996 
   1997 /*
   1998  * Get a new sequence value given a tcp control block
   1999  */
   2000 tcp_seq
   2001 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   2002 {
   2003 
   2004 #ifdef INET
   2005 	if (tp->t_inpcb != NULL) {
   2006 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   2007 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   2008 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   2009 		    addin));
   2010 	}
   2011 #endif
   2012 #ifdef INET6
   2013 	if (tp->t_in6pcb != NULL) {
   2014 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   2015 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   2016 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   2017 		    addin));
   2018 	}
   2019 #endif
   2020 	/* Not possible. */
   2021 	panic("tcp_new_iss");
   2022 }
   2023 
   2024 /*
   2025  * This routine actually generates a new TCP initial sequence number.
   2026  */
   2027 tcp_seq
   2028 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2029     size_t addrsz, tcp_seq addin)
   2030 {
   2031 	tcp_seq tcp_iss;
   2032 
   2033 #if NRND > 0
   2034 	static int beenhere;
   2035 
   2036 	/*
   2037 	 * If we haven't been here before, initialize our cryptographic
   2038 	 * hash secret.
   2039 	 */
   2040 	if (beenhere == 0) {
   2041 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   2042 		    RND_EXTRACT_ANY);
   2043 		beenhere = 1;
   2044 	}
   2045 
   2046 	if (tcp_do_rfc1948) {
   2047 		MD5_CTX ctx;
   2048 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2049 
   2050 		/*
   2051 		 * Compute the base value of the ISS.  It is a hash
   2052 		 * of (saddr, sport, daddr, dport, secret).
   2053 		 */
   2054 		MD5Init(&ctx);
   2055 
   2056 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2057 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2058 
   2059 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2060 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2061 
   2062 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2063 
   2064 		MD5Final(hash, &ctx);
   2065 
   2066 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2067 
   2068 		/*
   2069 		 * Now increment our "timer", and add it in to
   2070 		 * the computed value.
   2071 		 *
   2072 		 * XXX Use `addin'?
   2073 		 * XXX TCP_ISSINCR too large to use?
   2074 		 */
   2075 		tcp_iss_seq += TCP_ISSINCR;
   2076 #ifdef TCPISS_DEBUG
   2077 		printf("ISS hash 0x%08x, ", tcp_iss);
   2078 #endif
   2079 		tcp_iss += tcp_iss_seq + addin;
   2080 #ifdef TCPISS_DEBUG
   2081 		printf("new ISS 0x%08x\n", tcp_iss);
   2082 #endif
   2083 	} else
   2084 #endif /* NRND > 0 */
   2085 	{
   2086 		/*
   2087 		 * Randomize.
   2088 		 */
   2089 #if NRND > 0
   2090 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2091 #else
   2092 		tcp_iss = arc4random();
   2093 #endif
   2094 
   2095 		/*
   2096 		 * If we were asked to add some amount to a known value,
   2097 		 * we will take a random value obtained above, mask off
   2098 		 * the upper bits, and add in the known value.  We also
   2099 		 * add in a constant to ensure that we are at least a
   2100 		 * certain distance from the original value.
   2101 		 *
   2102 		 * This is used when an old connection is in timed wait
   2103 		 * and we have a new one coming in, for instance.
   2104 		 */
   2105 		if (addin != 0) {
   2106 #ifdef TCPISS_DEBUG
   2107 			printf("Random %08x, ", tcp_iss);
   2108 #endif
   2109 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2110 			tcp_iss += addin + TCP_ISSINCR;
   2111 #ifdef TCPISS_DEBUG
   2112 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2113 #endif
   2114 		} else {
   2115 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2116 			tcp_iss += tcp_iss_seq;
   2117 			tcp_iss_seq += TCP_ISSINCR;
   2118 #ifdef TCPISS_DEBUG
   2119 			printf("ISS %08x\n", tcp_iss);
   2120 #endif
   2121 		}
   2122 	}
   2123 
   2124 	if (tcp_compat_42) {
   2125 		/*
   2126 		 * Limit it to the positive range for really old TCP
   2127 		 * implementations.
   2128 		 * Just AND off the top bit instead of checking if
   2129 		 * is set first - saves a branch 50% of the time.
   2130 		 */
   2131 		tcp_iss &= 0x7fffffff;		/* XXX */
   2132 	}
   2133 
   2134 	return (tcp_iss);
   2135 }
   2136 
   2137 #ifdef IPSEC
   2138 /* compute ESP/AH header size for TCP, including outer IP header. */
   2139 size_t
   2140 ipsec4_hdrsiz_tcp(tp)
   2141 	struct tcpcb *tp;
   2142 {
   2143 	struct inpcb *inp;
   2144 	size_t hdrsiz;
   2145 
   2146 	/* XXX mapped addr case (tp->t_in6pcb) */
   2147 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2148 		return 0;
   2149 	switch (tp->t_family) {
   2150 	case AF_INET:
   2151 		/* XXX: should use currect direction. */
   2152 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2153 		break;
   2154 	default:
   2155 		hdrsiz = 0;
   2156 		break;
   2157 	}
   2158 
   2159 	return hdrsiz;
   2160 }
   2161 
   2162 #ifdef INET6
   2163 size_t
   2164 ipsec6_hdrsiz_tcp(tp)
   2165 	struct tcpcb *tp;
   2166 {
   2167 	struct in6pcb *in6p;
   2168 	size_t hdrsiz;
   2169 
   2170 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2171 		return 0;
   2172 	switch (tp->t_family) {
   2173 	case AF_INET6:
   2174 		/* XXX: should use currect direction. */
   2175 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2176 		break;
   2177 	case AF_INET:
   2178 		/* mapped address case - tricky */
   2179 	default:
   2180 		hdrsiz = 0;
   2181 		break;
   2182 	}
   2183 
   2184 	return hdrsiz;
   2185 }
   2186 #endif
   2187 #endif /*IPSEC*/
   2188 
   2189 /*
   2190  * Determine the length of the TCP options for this connection.
   2191  *
   2192  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2193  *       all of the space?  Otherwise we can't exactly be incrementing
   2194  *       cwnd by an amount that varies depending on the amount we last
   2195  *       had to SACK!
   2196  */
   2197 
   2198 u_int
   2199 tcp_optlen(tp)
   2200 	struct tcpcb *tp;
   2201 {
   2202 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2203 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2204 		return TCPOLEN_TSTAMP_APPA;
   2205 	else
   2206 		return 0;
   2207 }
   2208