Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.147
      1 /*	$NetBSD: tcp_subr.c,v 1.147 2003/08/22 20:20:11 jonathan Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.147 2003/08/22 20:20:11 jonathan Exp $");
    102 
    103 #include "opt_inet.h"
    104 #include "opt_ipsec.h"
    105 #include "opt_tcp_compat_42.h"
    106 #include "opt_inet_csum.h"
    107 #include "opt_mbuftrace.h"
    108 #include "rnd.h"
    109 
    110 #include <sys/param.h>
    111 #include <sys/proc.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/socket.h>
    116 #include <sys/socketvar.h>
    117 #include <sys/protosw.h>
    118 #include <sys/errno.h>
    119 #include <sys/kernel.h>
    120 #include <sys/pool.h>
    121 #if NRND > 0
    122 #include <sys/md5.h>
    123 #include <sys/rnd.h>
    124 #endif
    125 
    126 #include <net/route.h>
    127 #include <net/if.h>
    128 
    129 #include <netinet/in.h>
    130 #include <netinet/in_systm.h>
    131 #include <netinet/ip.h>
    132 #include <netinet/in_pcb.h>
    133 #include <netinet/ip_var.h>
    134 #include <netinet/ip_icmp.h>
    135 
    136 #ifdef INET6
    137 #ifndef INET
    138 #include <netinet/in.h>
    139 #endif
    140 #include <netinet/ip6.h>
    141 #include <netinet6/in6_pcb.h>
    142 #include <netinet6/ip6_var.h>
    143 #include <netinet6/in6_var.h>
    144 #include <netinet6/ip6protosw.h>
    145 #include <netinet/icmp6.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include <netinet/tcp.h>
    150 #include <netinet/tcp_fsm.h>
    151 #include <netinet/tcp_seq.h>
    152 #include <netinet/tcp_timer.h>
    153 #include <netinet/tcp_var.h>
    154 #include <netinet/tcpip.h>
    155 
    156 #ifdef IPSEC
    157 #include <netinet6/ipsec.h>
    158 #endif /*IPSEC*/
    159 
    160 #ifdef FAST_IPSEC
    161 #include <netipsec/ipsec.h>
    162 #ifdef INET6
    163 #include <netipsec/ipsec6.h>
    164 #endif
    165 #endif	/* FAST_IPSEC*/
    166 
    167 
    168 #ifdef INET6
    169 struct in6pcb tcb6;
    170 #endif
    171 
    172 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    173 struct	tcpstat tcpstat;	/* tcp statistics */
    174 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
    175 
    176 /* patchable/settable parameters for tcp */
    177 int 	tcp_mssdflt = TCP_MSS;
    178 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    179 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    180 #if NRND > 0
    181 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    182 #endif
    183 int	tcp_do_sack = 1;	/* selective acknowledgement */
    184 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    185 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    186 int	tcp_do_newreno = 0;	/* Use the New Reno algorithms */
    187 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    188 #ifndef TCP_INIT_WIN
    189 #define	TCP_INIT_WIN	1	/* initial slow start window */
    190 #endif
    191 #ifndef TCP_INIT_WIN_LOCAL
    192 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    193 #endif
    194 int	tcp_init_win = TCP_INIT_WIN;
    195 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    196 int	tcp_mss_ifmtu = 0;
    197 #ifdef TCP_COMPAT_42
    198 int	tcp_compat_42 = 1;
    199 #else
    200 int	tcp_compat_42 = 0;
    201 #endif
    202 int	tcp_rst_ppslim = 100;	/* 100pps */
    203 
    204 /* tcb hash */
    205 #ifndef TCBHASHSIZE
    206 #define	TCBHASHSIZE	128
    207 #endif
    208 int	tcbhashsize = TCBHASHSIZE;
    209 
    210 /* syn hash parameters */
    211 #define	TCP_SYN_HASH_SIZE	293
    212 #define	TCP_SYN_BUCKET_SIZE	35
    213 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    214 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    215 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    216 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    217 
    218 int	tcp_freeq __P((struct tcpcb *));
    219 
    220 #ifdef INET
    221 void	tcp_mtudisc_callback __P((struct in_addr));
    222 #endif
    223 #ifdef INET6
    224 void	tcp6_mtudisc_callback __P((struct in6_addr *));
    225 #endif
    226 
    227 void	tcp_mtudisc __P((struct inpcb *, int));
    228 #ifdef INET6
    229 void	tcp6_mtudisc __P((struct in6pcb *, int));
    230 #endif
    231 
    232 struct pool tcpcb_pool;
    233 
    234 #ifdef TCP_CSUM_COUNTERS
    235 #include <sys/device.h>
    236 
    237 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    238     NULL, "tcp", "hwcsum bad");
    239 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    240     NULL, "tcp", "hwcsum ok");
    241 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    242     NULL, "tcp", "hwcsum data");
    243 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    244     NULL, "tcp", "swcsum");
    245 #endif /* TCP_CSUM_COUNTERS */
    246 
    247 #ifdef TCP_OUTPUT_COUNTERS
    248 #include <sys/device.h>
    249 
    250 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    251     NULL, "tcp", "output big header");
    252 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    253     NULL, "tcp", "output copy small");
    254 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    255     NULL, "tcp", "output copy big");
    256 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    257     NULL, "tcp", "output reference big");
    258 #endif /* TCP_OUTPUT_COUNTERS */
    259 
    260 #ifdef TCP_REASS_COUNTERS
    261 #include <sys/device.h>
    262 
    263 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    264     NULL, "tcp_reass", "calls");
    265 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    266     &tcp_reass_, "tcp_reass", "insert into empty queue");
    267 struct evcnt tcp_reass_iteration[8] = {
    268     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    269     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    270     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    271     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    272     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    273     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    274     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    275     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    276 };
    277 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    278     &tcp_reass_, "tcp_reass", "prepend to first");
    279 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    280     &tcp_reass_, "tcp_reass", "prepend");
    281 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    282     &tcp_reass_, "tcp_reass", "insert");
    283 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    284     &tcp_reass_, "tcp_reass", "insert at tail");
    285 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    286     &tcp_reass_, "tcp_reass", "append");
    287 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    288     &tcp_reass_, "tcp_reass", "append to tail fragment");
    289 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    290     &tcp_reass_, "tcp_reass", "overlap at end");
    291 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    292     &tcp_reass_, "tcp_reass", "overlap at start");
    293 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    294     &tcp_reass_, "tcp_reass", "duplicate segment");
    295 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    296     &tcp_reass_, "tcp_reass", "duplicate fragment");
    297 
    298 #endif /* TCP_REASS_COUNTERS */
    299 
    300 #ifdef MBUFTRACE
    301 struct mowner tcp_mowner = { "tcp" };
    302 struct mowner tcp_rx_mowner = { "tcp", "rx" };
    303 struct mowner tcp_tx_mowner = { "tcp", "tx" };
    304 #endif
    305 
    306 /*
    307  * Tcp initialization
    308  */
    309 void
    310 tcp_init()
    311 {
    312 	int hlen;
    313 
    314 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
    315 	    NULL);
    316 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    317 #ifdef INET6
    318 	tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
    319 #endif
    320 
    321 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    322 #ifdef INET6
    323 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    324 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    325 #endif
    326 	if (max_protohdr < hlen)
    327 		max_protohdr = hlen;
    328 	if (max_linkhdr + hlen > MHLEN)
    329 		panic("tcp_init");
    330 
    331 #ifdef INET
    332 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    333 #endif
    334 #ifdef INET6
    335 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    336 #endif
    337 
    338 	/* Initialize timer state. */
    339 	tcp_timer_init();
    340 
    341 	/* Initialize the compressed state engine. */
    342 	syn_cache_init();
    343 
    344 #ifdef TCP_CSUM_COUNTERS
    345 	evcnt_attach_static(&tcp_hwcsum_bad);
    346 	evcnt_attach_static(&tcp_hwcsum_ok);
    347 	evcnt_attach_static(&tcp_hwcsum_data);
    348 	evcnt_attach_static(&tcp_swcsum);
    349 #endif /* TCP_CSUM_COUNTERS */
    350 
    351 #ifdef TCP_OUTPUT_COUNTERS
    352 	evcnt_attach_static(&tcp_output_bigheader);
    353 	evcnt_attach_static(&tcp_output_copysmall);
    354 	evcnt_attach_static(&tcp_output_copybig);
    355 	evcnt_attach_static(&tcp_output_refbig);
    356 #endif /* TCP_OUTPUT_COUNTERS */
    357 
    358 #ifdef TCP_REASS_COUNTERS
    359 	evcnt_attach_static(&tcp_reass_);
    360 	evcnt_attach_static(&tcp_reass_empty);
    361 	evcnt_attach_static(&tcp_reass_iteration[0]);
    362 	evcnt_attach_static(&tcp_reass_iteration[1]);
    363 	evcnt_attach_static(&tcp_reass_iteration[2]);
    364 	evcnt_attach_static(&tcp_reass_iteration[3]);
    365 	evcnt_attach_static(&tcp_reass_iteration[4]);
    366 	evcnt_attach_static(&tcp_reass_iteration[5]);
    367 	evcnt_attach_static(&tcp_reass_iteration[6]);
    368 	evcnt_attach_static(&tcp_reass_iteration[7]);
    369 	evcnt_attach_static(&tcp_reass_prependfirst);
    370 	evcnt_attach_static(&tcp_reass_prepend);
    371 	evcnt_attach_static(&tcp_reass_insert);
    372 	evcnt_attach_static(&tcp_reass_inserttail);
    373 	evcnt_attach_static(&tcp_reass_append);
    374 	evcnt_attach_static(&tcp_reass_appendtail);
    375 	evcnt_attach_static(&tcp_reass_overlaptail);
    376 	evcnt_attach_static(&tcp_reass_overlapfront);
    377 	evcnt_attach_static(&tcp_reass_segdup);
    378 	evcnt_attach_static(&tcp_reass_fragdup);
    379 #endif /* TCP_REASS_COUNTERS */
    380 
    381 	MOWNER_ATTACH(&tcp_tx_mowner);
    382 	MOWNER_ATTACH(&tcp_rx_mowner);
    383 	MOWNER_ATTACH(&tcp_mowner);
    384 }
    385 
    386 /*
    387  * Create template to be used to send tcp packets on a connection.
    388  * Call after host entry created, allocates an mbuf and fills
    389  * in a skeletal tcp/ip header, minimizing the amount of work
    390  * necessary when the connection is used.
    391  */
    392 struct mbuf *
    393 tcp_template(tp)
    394 	struct tcpcb *tp;
    395 {
    396 	struct inpcb *inp = tp->t_inpcb;
    397 #ifdef INET6
    398 	struct in6pcb *in6p = tp->t_in6pcb;
    399 #endif
    400 	struct tcphdr *n;
    401 	struct mbuf *m;
    402 	int hlen;
    403 
    404 	switch (tp->t_family) {
    405 	case AF_INET:
    406 		hlen = sizeof(struct ip);
    407 		if (inp)
    408 			break;
    409 #ifdef INET6
    410 		if (in6p) {
    411 			/* mapped addr case */
    412 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    413 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    414 				break;
    415 		}
    416 #endif
    417 		return NULL;	/*EINVAL*/
    418 #ifdef INET6
    419 	case AF_INET6:
    420 		hlen = sizeof(struct ip6_hdr);
    421 		if (in6p) {
    422 			/* more sainty check? */
    423 			break;
    424 		}
    425 		return NULL;	/*EINVAL*/
    426 #endif
    427 	default:
    428 		hlen = 0;	/*pacify gcc*/
    429 		return NULL;	/*EAFNOSUPPORT*/
    430 	}
    431 #ifdef DIAGNOSTIC
    432 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    433 		panic("mclbytes too small for t_template");
    434 #endif
    435 	m = tp->t_template;
    436 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    437 		;
    438 	else {
    439 		if (m)
    440 			m_freem(m);
    441 		m = tp->t_template = NULL;
    442 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    443 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    444 			MCLGET(m, M_DONTWAIT);
    445 			if ((m->m_flags & M_EXT) == 0) {
    446 				m_free(m);
    447 				m = NULL;
    448 			}
    449 		}
    450 		if (m == NULL)
    451 			return NULL;
    452 		MCLAIM(m, &tcp_mowner);
    453 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    454 	}
    455 
    456 	bzero(mtod(m, caddr_t), m->m_len);
    457 
    458 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
    459 
    460 	switch (tp->t_family) {
    461 	case AF_INET:
    462 	    {
    463 		struct ipovly *ipov;
    464 		mtod(m, struct ip *)->ip_v = 4;
    465 		ipov = mtod(m, struct ipovly *);
    466 		ipov->ih_pr = IPPROTO_TCP;
    467 		ipov->ih_len = htons(sizeof(struct tcphdr));
    468 		if (inp) {
    469 			ipov->ih_src = inp->inp_laddr;
    470 			ipov->ih_dst = inp->inp_faddr;
    471 		}
    472 #ifdef INET6
    473 		else if (in6p) {
    474 			/* mapped addr case */
    475 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    476 				sizeof(ipov->ih_src));
    477 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    478 				sizeof(ipov->ih_dst));
    479 		}
    480 #endif
    481 		/*
    482 		 * Compute the pseudo-header portion of the checksum
    483 		 * now.  We incrementally add in the TCP option and
    484 		 * payload lengths later, and then compute the TCP
    485 		 * checksum right before the packet is sent off onto
    486 		 * the wire.
    487 		 */
    488 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    489 		    ipov->ih_dst.s_addr,
    490 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    491 		break;
    492 	    }
    493 #ifdef INET6
    494 	case AF_INET6:
    495 	    {
    496 		struct ip6_hdr *ip6;
    497 		mtod(m, struct ip *)->ip_v = 6;
    498 		ip6 = mtod(m, struct ip6_hdr *);
    499 		ip6->ip6_nxt = IPPROTO_TCP;
    500 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    501 		ip6->ip6_src = in6p->in6p_laddr;
    502 		ip6->ip6_dst = in6p->in6p_faddr;
    503 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    504 		if (ip6_auto_flowlabel) {
    505 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    506 			ip6->ip6_flow |=
    507 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
    508 		}
    509 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    510 		ip6->ip6_vfc |= IPV6_VERSION;
    511 
    512 		/*
    513 		 * Compute the pseudo-header portion of the checksum
    514 		 * now.  We incrementally add in the TCP option and
    515 		 * payload lengths later, and then compute the TCP
    516 		 * checksum right before the packet is sent off onto
    517 		 * the wire.
    518 		 */
    519 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    520 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    521 		    htonl(IPPROTO_TCP));
    522 		break;
    523 	    }
    524 #endif
    525 	}
    526 	if (inp) {
    527 		n->th_sport = inp->inp_lport;
    528 		n->th_dport = inp->inp_fport;
    529 	}
    530 #ifdef INET6
    531 	else if (in6p) {
    532 		n->th_sport = in6p->in6p_lport;
    533 		n->th_dport = in6p->in6p_fport;
    534 	}
    535 #endif
    536 	n->th_seq = 0;
    537 	n->th_ack = 0;
    538 	n->th_x2 = 0;
    539 	n->th_off = 5;
    540 	n->th_flags = 0;
    541 	n->th_win = 0;
    542 	n->th_urp = 0;
    543 	return (m);
    544 }
    545 
    546 /*
    547  * Send a single message to the TCP at address specified by
    548  * the given TCP/IP header.  If m == 0, then we make a copy
    549  * of the tcpiphdr at ti and send directly to the addressed host.
    550  * This is used to force keep alive messages out using the TCP
    551  * template for a connection tp->t_template.  If flags are given
    552  * then we send a message back to the TCP which originated the
    553  * segment ti, and discard the mbuf containing it and any other
    554  * attached mbufs.
    555  *
    556  * In any case the ack and sequence number of the transmitted
    557  * segment are as specified by the parameters.
    558  */
    559 int
    560 tcp_respond(tp, template, m, th0, ack, seq, flags)
    561 	struct tcpcb *tp;
    562 	struct mbuf *template;
    563 	struct mbuf *m;
    564 	struct tcphdr *th0;
    565 	tcp_seq ack, seq;
    566 	int flags;
    567 {
    568 	struct route *ro;
    569 	int error, tlen, win = 0;
    570 	int hlen;
    571 	struct ip *ip;
    572 #ifdef INET6
    573 	struct ip6_hdr *ip6;
    574 #endif
    575 	int family;	/* family on packet, not inpcb/in6pcb! */
    576 	struct tcphdr *th;
    577 
    578 	if (tp != NULL && (flags & TH_RST) == 0) {
    579 #ifdef DIAGNOSTIC
    580 		if (tp->t_inpcb && tp->t_in6pcb)
    581 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    582 #endif
    583 #ifdef INET
    584 		if (tp->t_inpcb)
    585 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    586 #endif
    587 #ifdef INET6
    588 		if (tp->t_in6pcb)
    589 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    590 #endif
    591 	}
    592 
    593 	th = NULL;	/* Quell uninitialized warning */
    594 	ip = NULL;
    595 #ifdef INET6
    596 	ip6 = NULL;
    597 #endif
    598 	if (m == 0) {
    599 		if (!template)
    600 			return EINVAL;
    601 
    602 		/* get family information from template */
    603 		switch (mtod(template, struct ip *)->ip_v) {
    604 		case 4:
    605 			family = AF_INET;
    606 			hlen = sizeof(struct ip);
    607 			break;
    608 #ifdef INET6
    609 		case 6:
    610 			family = AF_INET6;
    611 			hlen = sizeof(struct ip6_hdr);
    612 			break;
    613 #endif
    614 		default:
    615 			return EAFNOSUPPORT;
    616 		}
    617 
    618 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    619 		if (m) {
    620 			MCLAIM(m, &tcp_tx_mowner);
    621 			MCLGET(m, M_DONTWAIT);
    622 			if ((m->m_flags & M_EXT) == 0) {
    623 				m_free(m);
    624 				m = NULL;
    625 			}
    626 		}
    627 		if (m == NULL)
    628 			return (ENOBUFS);
    629 
    630 		if (tcp_compat_42)
    631 			tlen = 1;
    632 		else
    633 			tlen = 0;
    634 
    635 		m->m_data += max_linkhdr;
    636 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
    637 			template->m_len);
    638 		switch (family) {
    639 		case AF_INET:
    640 			ip = mtod(m, struct ip *);
    641 			th = (struct tcphdr *)(ip + 1);
    642 			break;
    643 #ifdef INET6
    644 		case AF_INET6:
    645 			ip6 = mtod(m, struct ip6_hdr *);
    646 			th = (struct tcphdr *)(ip6 + 1);
    647 			break;
    648 #endif
    649 #if 0
    650 		default:
    651 			/* noone will visit here */
    652 			m_freem(m);
    653 			return EAFNOSUPPORT;
    654 #endif
    655 		}
    656 		flags = TH_ACK;
    657 	} else {
    658 
    659 		if ((m->m_flags & M_PKTHDR) == 0) {
    660 #if 0
    661 			printf("non PKTHDR to tcp_respond\n");
    662 #endif
    663 			m_freem(m);
    664 			return EINVAL;
    665 		}
    666 #ifdef DIAGNOSTIC
    667 		if (!th0)
    668 			panic("th0 == NULL in tcp_respond");
    669 #endif
    670 
    671 		/* get family information from m */
    672 		switch (mtod(m, struct ip *)->ip_v) {
    673 		case 4:
    674 			family = AF_INET;
    675 			hlen = sizeof(struct ip);
    676 			ip = mtod(m, struct ip *);
    677 			break;
    678 #ifdef INET6
    679 		case 6:
    680 			family = AF_INET6;
    681 			hlen = sizeof(struct ip6_hdr);
    682 			ip6 = mtod(m, struct ip6_hdr *);
    683 			break;
    684 #endif
    685 		default:
    686 			m_freem(m);
    687 			return EAFNOSUPPORT;
    688 		}
    689 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    690 			tlen = sizeof(*th0);
    691 		else
    692 			tlen = th0->th_off << 2;
    693 
    694 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    695 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
    696 			m->m_len = hlen + tlen;
    697 			m_freem(m->m_next);
    698 			m->m_next = NULL;
    699 		} else {
    700 			struct mbuf *n;
    701 
    702 #ifdef DIAGNOSTIC
    703 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    704 				m_freem(m);
    705 				return EMSGSIZE;
    706 			}
    707 #endif
    708 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    709 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    710 				MCLGET(n, M_DONTWAIT);
    711 				if ((n->m_flags & M_EXT) == 0) {
    712 					m_freem(n);
    713 					n = NULL;
    714 				}
    715 			}
    716 			if (!n) {
    717 				m_freem(m);
    718 				return ENOBUFS;
    719 			}
    720 
    721 			MCLAIM(n, &tcp_tx_mowner);
    722 			n->m_data += max_linkhdr;
    723 			n->m_len = hlen + tlen;
    724 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
    725 			m_copyback(n, hlen, tlen, (caddr_t)th0);
    726 
    727 			m_freem(m);
    728 			m = n;
    729 			n = NULL;
    730 		}
    731 
    732 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    733 		switch (family) {
    734 		case AF_INET:
    735 			ip = mtod(m, struct ip *);
    736 			th = (struct tcphdr *)(ip + 1);
    737 			ip->ip_p = IPPROTO_TCP;
    738 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    739 			ip->ip_p = IPPROTO_TCP;
    740 			break;
    741 #ifdef INET6
    742 		case AF_INET6:
    743 			ip6 = mtod(m, struct ip6_hdr *);
    744 			th = (struct tcphdr *)(ip6 + 1);
    745 			ip6->ip6_nxt = IPPROTO_TCP;
    746 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    747 			ip6->ip6_nxt = IPPROTO_TCP;
    748 			break;
    749 #endif
    750 #if 0
    751 		default:
    752 			/* noone will visit here */
    753 			m_freem(m);
    754 			return EAFNOSUPPORT;
    755 #endif
    756 		}
    757 		xchg(th->th_dport, th->th_sport, u_int16_t);
    758 #undef xchg
    759 		tlen = 0;	/*be friendly with the following code*/
    760 	}
    761 	th->th_seq = htonl(seq);
    762 	th->th_ack = htonl(ack);
    763 	th->th_x2 = 0;
    764 	if ((flags & TH_SYN) == 0) {
    765 		if (tp)
    766 			win >>= tp->rcv_scale;
    767 		if (win > TCP_MAXWIN)
    768 			win = TCP_MAXWIN;
    769 		th->th_win = htons((u_int16_t)win);
    770 		th->th_off = sizeof (struct tcphdr) >> 2;
    771 		tlen += sizeof(*th);
    772 	} else
    773 		tlen += th->th_off << 2;
    774 	m->m_len = hlen + tlen;
    775 	m->m_pkthdr.len = hlen + tlen;
    776 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    777 	th->th_flags = flags;
    778 	th->th_urp = 0;
    779 
    780 	switch (family) {
    781 #ifdef INET
    782 	case AF_INET:
    783 	    {
    784 		struct ipovly *ipov = (struct ipovly *)ip;
    785 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    786 		ipov->ih_len = htons((u_int16_t)tlen);
    787 
    788 		th->th_sum = 0;
    789 		th->th_sum = in_cksum(m, hlen + tlen);
    790 		ip->ip_len = htons(hlen + tlen);
    791 		ip->ip_ttl = ip_defttl;
    792 		break;
    793 	    }
    794 #endif
    795 #ifdef INET6
    796 	case AF_INET6:
    797 	    {
    798 		th->th_sum = 0;
    799 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    800 				tlen);
    801 		ip6->ip6_plen = ntohs(tlen);
    802 		if (tp && tp->t_in6pcb) {
    803 			struct ifnet *oifp;
    804 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    805 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    806 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    807 		} else
    808 			ip6->ip6_hlim = ip6_defhlim;
    809 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    810 		if (ip6_auto_flowlabel) {
    811 			ip6->ip6_flow |=
    812 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
    813 		}
    814 		break;
    815 	    }
    816 #endif
    817 	}
    818 
    819 #ifdef IPSEC
    820 	(void)ipsec_setsocket(m, NULL);
    821 #endif /*IPSEC*/
    822 
    823 	if (tp != NULL && tp->t_inpcb != NULL) {
    824 		ro = &tp->t_inpcb->inp_route;
    825 #ifdef IPSEC
    826 		if (ipsec_setsocket(m, tp->t_inpcb->inp_socket) != 0) {
    827 			m_freem(m);
    828 			return ENOBUFS;
    829 		}
    830 #endif
    831 #ifdef DIAGNOSTIC
    832 		if (family != AF_INET)
    833 			panic("tcp_respond: address family mismatch");
    834 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    835 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    836 			    ntohl(ip->ip_dst.s_addr),
    837 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    838 		}
    839 #endif
    840 	}
    841 #ifdef INET6
    842 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    843 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    844 #ifdef IPSEC
    845 		if (ipsec_setsocket(m, tp->t_in6pcb->in6p_socket) != 0) {
    846 			m_freem(m);
    847 			return ENOBUFS;
    848 		}
    849 #endif
    850 #ifdef DIAGNOSTIC
    851 		if (family == AF_INET) {
    852 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    853 				panic("tcp_respond: not mapped addr");
    854 			if (bcmp(&ip->ip_dst,
    855 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    856 			    sizeof(ip->ip_dst)) != 0) {
    857 				panic("tcp_respond: ip_dst != in6p_faddr");
    858 			}
    859 		} else if (family == AF_INET6) {
    860 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    861 			    &tp->t_in6pcb->in6p_faddr))
    862 				panic("tcp_respond: ip6_dst != in6p_faddr");
    863 		} else
    864 			panic("tcp_respond: address family mismatch");
    865 #endif
    866 	}
    867 #endif
    868 	else
    869 		ro = NULL;
    870 
    871 	switch (family) {
    872 #ifdef INET
    873 	case AF_INET:
    874 		error = ip_output(m, NULL, ro,
    875 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    876 		    (struct ip_moptions *)0,
    877 		     (tp == NULL ? (struct inpcb *)0 : tp->t_inpcb));
    878 		break;
    879 #endif
    880 #ifdef INET6
    881 	case AF_INET6:
    882 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
    883 		    (struct ip6_moptions *)0, (struct in6pcb *)0, NULL);
    884 		break;
    885 #endif
    886 	default:
    887 		error = EAFNOSUPPORT;
    888 		break;
    889 	}
    890 
    891 	return (error);
    892 }
    893 
    894 /*
    895  * Create a new TCP control block, making an
    896  * empty reassembly queue and hooking it to the argument
    897  * protocol control block.
    898  */
    899 struct tcpcb *
    900 tcp_newtcpcb(family, aux)
    901 	int family;	/* selects inpcb, or in6pcb */
    902 	void *aux;
    903 {
    904 	struct tcpcb *tp;
    905 	int i;
    906 
    907 	switch (family) {
    908 	case PF_INET:
    909 		break;
    910 #ifdef INET6
    911 	case PF_INET6:
    912 		break;
    913 #endif
    914 	default:
    915 		return NULL;
    916 	}
    917 
    918 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    919 	if (tp == NULL)
    920 		return (NULL);
    921 	bzero((caddr_t)tp, sizeof(struct tcpcb));
    922 	TAILQ_INIT(&tp->segq);
    923 	TAILQ_INIT(&tp->timeq);
    924 	tp->t_family = family;		/* may be overridden later on */
    925 	tp->t_peermss = tcp_mssdflt;
    926 	tp->t_ourmss = tcp_mssdflt;
    927 	tp->t_segsz = tcp_mssdflt;
    928 	LIST_INIT(&tp->t_sc);
    929 
    930 	tp->t_lastm = NULL;
    931 	tp->t_lastoff = 0;
    932 
    933 	callout_init(&tp->t_delack_ch);
    934 	for (i = 0; i < TCPT_NTIMERS; i++)
    935 		TCP_TIMER_INIT(tp, i);
    936 
    937 	tp->t_flags = 0;
    938 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    939 		tp->t_flags |= TF_REQ_SCALE;
    940 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    941 		tp->t_flags |= TF_REQ_TSTMP;
    942 	if (tcp_do_sack == 2)
    943 		tp->t_flags |= TF_WILL_SACK;
    944 	else if (tcp_do_sack == 1)
    945 		tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
    946 	tp->t_flags |= TF_CANT_TXSACK;
    947 	switch (family) {
    948 	case PF_INET:
    949 		tp->t_inpcb = (struct inpcb *)aux;
    950 		tp->t_mtudisc = ip_mtudisc;
    951 		break;
    952 #ifdef INET6
    953 	case PF_INET6:
    954 		tp->t_in6pcb = (struct in6pcb *)aux;
    955 		/* for IPv6, always try to run path MTU discovery */
    956 		tp->t_mtudisc = 1;
    957 		break;
    958 #endif
    959 	}
    960 	/*
    961 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    962 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    963 	 * reasonable initial retransmit time.
    964 	 */
    965 	tp->t_srtt = TCPTV_SRTTBASE;
    966 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    967 	tp->t_rttmin = TCPTV_MIN;
    968 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    969 	    TCPTV_MIN, TCPTV_REXMTMAX);
    970 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    971 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    972 	if (family == AF_INET) {
    973 		struct inpcb *inp = (struct inpcb *)aux;
    974 		inp->inp_ip.ip_ttl = ip_defttl;
    975 		inp->inp_ppcb = (caddr_t)tp;
    976 	}
    977 #ifdef INET6
    978 	else if (family == AF_INET6) {
    979 		struct in6pcb *in6p = (struct in6pcb *)aux;
    980 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
    981 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
    982 					       : NULL);
    983 		in6p->in6p_ppcb = (caddr_t)tp;
    984 	}
    985 #endif
    986 
    987 	/*
    988 	 * Initialize our timebase.  When we send timestamps, we take
    989 	 * the delta from tcp_now -- this means each connection always
    990 	 * gets a timebase of 0, which makes it, among other things,
    991 	 * more difficult to determine how long a system has been up,
    992 	 * and thus how many TCP sequence increments have occurred.
    993 	 */
    994 	tp->ts_timebase = tcp_now;
    995 
    996 	return (tp);
    997 }
    998 
    999 /*
   1000  * Drop a TCP connection, reporting
   1001  * the specified error.  If connection is synchronized,
   1002  * then send a RST to peer.
   1003  */
   1004 struct tcpcb *
   1005 tcp_drop(tp, errno)
   1006 	struct tcpcb *tp;
   1007 	int errno;
   1008 {
   1009 	struct socket *so = NULL;
   1010 
   1011 #ifdef DIAGNOSTIC
   1012 	if (tp->t_inpcb && tp->t_in6pcb)
   1013 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1014 #endif
   1015 #ifdef INET
   1016 	if (tp->t_inpcb)
   1017 		so = tp->t_inpcb->inp_socket;
   1018 #endif
   1019 #ifdef INET6
   1020 	if (tp->t_in6pcb)
   1021 		so = tp->t_in6pcb->in6p_socket;
   1022 #endif
   1023 	if (!so)
   1024 		return NULL;
   1025 
   1026 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1027 		tp->t_state = TCPS_CLOSED;
   1028 		(void) tcp_output(tp);
   1029 		tcpstat.tcps_drops++;
   1030 	} else
   1031 		tcpstat.tcps_conndrops++;
   1032 	if (errno == ETIMEDOUT && tp->t_softerror)
   1033 		errno = tp->t_softerror;
   1034 	so->so_error = errno;
   1035 	return (tcp_close(tp));
   1036 }
   1037 
   1038 /*
   1039  * Return whether this tcpcb is marked as dead, indicating
   1040  * to the calling timer function that no further action should
   1041  * be taken, as we are about to release this tcpcb.  The release
   1042  * of the storage will be done if this is the last timer running.
   1043  *
   1044  * This is typically called from the callout handler function before
   1045  * callout_ack() is done, therefore we need to test the number of
   1046  * running timer functions against 1 below, not 0.
   1047  */
   1048 int
   1049 tcp_isdead(tp)
   1050 	struct tcpcb *tp;
   1051 {
   1052 	int dead = (tp->t_flags & TF_DEAD);
   1053 
   1054 	if (__predict_false(dead)) {
   1055 		if (tcp_timers_invoking(tp) > 1)
   1056 				/* not quite there yet -- count separately? */
   1057 			return dead;
   1058 		tcpstat.tcps_delayed_free++;
   1059 		pool_put(&tcpcb_pool, tp);
   1060 	}
   1061 	return dead;
   1062 }
   1063 
   1064 /*
   1065  * Close a TCP control block:
   1066  *	discard all space held by the tcp
   1067  *	discard internet protocol block
   1068  *	wake up any sleepers
   1069  */
   1070 struct tcpcb *
   1071 tcp_close(tp)
   1072 	struct tcpcb *tp;
   1073 {
   1074 	struct inpcb *inp;
   1075 #ifdef INET6
   1076 	struct in6pcb *in6p;
   1077 #endif
   1078 	struct socket *so;
   1079 #ifdef RTV_RTT
   1080 	struct rtentry *rt;
   1081 #endif
   1082 	struct route *ro;
   1083 
   1084 	inp = tp->t_inpcb;
   1085 #ifdef INET6
   1086 	in6p = tp->t_in6pcb;
   1087 #endif
   1088 	so = NULL;
   1089 	ro = NULL;
   1090 	if (inp) {
   1091 		so = inp->inp_socket;
   1092 		ro = &inp->inp_route;
   1093 	}
   1094 #ifdef INET6
   1095 	else if (in6p) {
   1096 		so = in6p->in6p_socket;
   1097 		ro = (struct route *)&in6p->in6p_route;
   1098 	}
   1099 #endif
   1100 
   1101 #ifdef RTV_RTT
   1102 	/*
   1103 	 * If we sent enough data to get some meaningful characteristics,
   1104 	 * save them in the routing entry.  'Enough' is arbitrarily
   1105 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1106 	 * give us 16 rtt samples assuming we only get one sample per
   1107 	 * window (the usual case on a long haul net).  16 samples is
   1108 	 * enough for the srtt filter to converge to within 5% of the correct
   1109 	 * value; fewer samples and we could save a very bogus rtt.
   1110 	 *
   1111 	 * Don't update the default route's characteristics and don't
   1112 	 * update anything that the user "locked".
   1113 	 */
   1114 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1115 	    ro && (rt = ro->ro_rt) &&
   1116 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
   1117 		u_long i = 0;
   1118 
   1119 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1120 			i = tp->t_srtt *
   1121 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1122 			if (rt->rt_rmx.rmx_rtt && i)
   1123 				/*
   1124 				 * filter this update to half the old & half
   1125 				 * the new values, converting scale.
   1126 				 * See route.h and tcp_var.h for a
   1127 				 * description of the scaling constants.
   1128 				 */
   1129 				rt->rt_rmx.rmx_rtt =
   1130 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1131 			else
   1132 				rt->rt_rmx.rmx_rtt = i;
   1133 		}
   1134 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1135 			i = tp->t_rttvar *
   1136 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1137 			if (rt->rt_rmx.rmx_rttvar && i)
   1138 				rt->rt_rmx.rmx_rttvar =
   1139 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1140 			else
   1141 				rt->rt_rmx.rmx_rttvar = i;
   1142 		}
   1143 		/*
   1144 		 * update the pipelimit (ssthresh) if it has been updated
   1145 		 * already or if a pipesize was specified & the threshhold
   1146 		 * got below half the pipesize.  I.e., wait for bad news
   1147 		 * before we start updating, then update on both good
   1148 		 * and bad news.
   1149 		 */
   1150 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1151 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1152 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1153 			/*
   1154 			 * convert the limit from user data bytes to
   1155 			 * packets then to packet data bytes.
   1156 			 */
   1157 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1158 			if (i < 2)
   1159 				i = 2;
   1160 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1161 			if (rt->rt_rmx.rmx_ssthresh)
   1162 				rt->rt_rmx.rmx_ssthresh =
   1163 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1164 			else
   1165 				rt->rt_rmx.rmx_ssthresh = i;
   1166 		}
   1167 	}
   1168 #endif /* RTV_RTT */
   1169 	/* free the reassembly queue, if any */
   1170 	TCP_REASS_LOCK(tp);
   1171 	(void) tcp_freeq(tp);
   1172 	TCP_REASS_UNLOCK(tp);
   1173 
   1174 	tcp_canceltimers(tp);
   1175 	TCP_CLEAR_DELACK(tp);
   1176 	syn_cache_cleanup(tp);
   1177 
   1178 	if (tp->t_template) {
   1179 		m_free(tp->t_template);
   1180 		tp->t_template = NULL;
   1181 	}
   1182 	if (tcp_timers_invoking(tp))
   1183 		tp->t_flags |= TF_DEAD;
   1184 	else
   1185 		pool_put(&tcpcb_pool, tp);
   1186 
   1187 	if (inp) {
   1188 		inp->inp_ppcb = 0;
   1189 		soisdisconnected(so);
   1190 		in_pcbdetach(inp);
   1191 	}
   1192 #ifdef INET6
   1193 	else if (in6p) {
   1194 		in6p->in6p_ppcb = 0;
   1195 		soisdisconnected(so);
   1196 		in6_pcbdetach(in6p);
   1197 	}
   1198 #endif
   1199 	tcpstat.tcps_closed++;
   1200 	return ((struct tcpcb *)0);
   1201 }
   1202 
   1203 int
   1204 tcp_freeq(tp)
   1205 	struct tcpcb *tp;
   1206 {
   1207 	struct ipqent *qe;
   1208 	int rv = 0;
   1209 #ifdef TCPREASS_DEBUG
   1210 	int i = 0;
   1211 #endif
   1212 
   1213 	TCP_REASS_LOCK_CHECK(tp);
   1214 
   1215 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1216 #ifdef TCPREASS_DEBUG
   1217 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1218 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1219 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1220 #endif
   1221 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1222 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1223 		m_freem(qe->ipqe_m);
   1224 		pool_put(&ipqent_pool, qe);
   1225 		rv = 1;
   1226 	}
   1227 	return (rv);
   1228 }
   1229 
   1230 /*
   1231  * Protocol drain routine.  Called when memory is in short supply.
   1232  */
   1233 void
   1234 tcp_drain()
   1235 {
   1236 	struct inpcb *inp;
   1237 	struct tcpcb *tp;
   1238 
   1239 	/*
   1240 	 * Free the sequence queue of all TCP connections.
   1241 	 */
   1242 	inp = CIRCLEQ_FIRST(&tcbtable.inpt_queue);
   1243 	if (inp)						/* XXX */
   1244 	CIRCLEQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue) {
   1245 		if ((tp = intotcpcb(inp)) != NULL) {
   1246 			/*
   1247 			 * We may be called from a device's interrupt
   1248 			 * context.  If the tcpcb is already busy,
   1249 			 * just bail out now.
   1250 			 */
   1251 			if (tcp_reass_lock_try(tp) == 0)
   1252 				continue;
   1253 			if (tcp_freeq(tp))
   1254 				tcpstat.tcps_connsdrained++;
   1255 			TCP_REASS_UNLOCK(tp);
   1256 		}
   1257 	}
   1258 }
   1259 
   1260 #ifdef INET6
   1261 void
   1262 tcp6_drain()
   1263 {
   1264 	struct in6pcb *in6p;
   1265 	struct tcpcb *tp;
   1266 	struct in6pcb *head = &tcb6;
   1267 
   1268 	/*
   1269 	 * Free the sequence queue of all TCP connections.
   1270 	 */
   1271 	for (in6p = head->in6p_next; in6p != head; in6p = in6p->in6p_next) {
   1272 		if ((tp = in6totcpcb(in6p)) != NULL) {
   1273 			/*
   1274 			 * We may be called from a device's interrupt
   1275 			 * context.  If the tcpcb is already busy,
   1276 			 * just bail out now.
   1277 			 */
   1278 			if (tcp_reass_lock_try(tp) == 0)
   1279 				continue;
   1280 			if (tcp_freeq(tp))
   1281 				tcpstat.tcps_connsdrained++;
   1282 			TCP_REASS_UNLOCK(tp);
   1283 		}
   1284 	}
   1285 }
   1286 #endif
   1287 
   1288 /*
   1289  * Notify a tcp user of an asynchronous error;
   1290  * store error as soft error, but wake up user
   1291  * (for now, won't do anything until can select for soft error).
   1292  */
   1293 void
   1294 tcp_notify(inp, error)
   1295 	struct inpcb *inp;
   1296 	int error;
   1297 {
   1298 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1299 	struct socket *so = inp->inp_socket;
   1300 
   1301 	/*
   1302 	 * Ignore some errors if we are hooked up.
   1303 	 * If connection hasn't completed, has retransmitted several times,
   1304 	 * and receives a second error, give up now.  This is better
   1305 	 * than waiting a long time to establish a connection that
   1306 	 * can never complete.
   1307 	 */
   1308 	if (tp->t_state == TCPS_ESTABLISHED &&
   1309 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1310 	      error == EHOSTDOWN)) {
   1311 		return;
   1312 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1313 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1314 		so->so_error = error;
   1315 	else
   1316 		tp->t_softerror = error;
   1317 	wakeup((caddr_t) &so->so_timeo);
   1318 	sorwakeup(so);
   1319 	sowwakeup(so);
   1320 }
   1321 
   1322 #ifdef INET6
   1323 void
   1324 tcp6_notify(in6p, error)
   1325 	struct in6pcb *in6p;
   1326 	int error;
   1327 {
   1328 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1329 	struct socket *so = in6p->in6p_socket;
   1330 
   1331 	/*
   1332 	 * Ignore some errors if we are hooked up.
   1333 	 * If connection hasn't completed, has retransmitted several times,
   1334 	 * and receives a second error, give up now.  This is better
   1335 	 * than waiting a long time to establish a connection that
   1336 	 * can never complete.
   1337 	 */
   1338 	if (tp->t_state == TCPS_ESTABLISHED &&
   1339 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1340 	      error == EHOSTDOWN)) {
   1341 		return;
   1342 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1343 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1344 		so->so_error = error;
   1345 	else
   1346 		tp->t_softerror = error;
   1347 	wakeup((caddr_t) &so->so_timeo);
   1348 	sorwakeup(so);
   1349 	sowwakeup(so);
   1350 }
   1351 #endif
   1352 
   1353 #ifdef INET6
   1354 void
   1355 tcp6_ctlinput(cmd, sa, d)
   1356 	int cmd;
   1357 	struct sockaddr *sa;
   1358 	void *d;
   1359 {
   1360 	struct tcphdr th;
   1361 	void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
   1362 	int nmatch;
   1363 	struct ip6_hdr *ip6;
   1364 	const struct sockaddr_in6 *sa6_src = NULL;
   1365 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
   1366 	struct mbuf *m;
   1367 	int off;
   1368 
   1369 	if (sa->sa_family != AF_INET6 ||
   1370 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1371 		return;
   1372 	if ((unsigned)cmd >= PRC_NCMDS)
   1373 		return;
   1374 	else if (cmd == PRC_QUENCH) {
   1375 		/* XXX there's no PRC_QUENCH in IPv6 */
   1376 		notify = tcp6_quench;
   1377 	} else if (PRC_IS_REDIRECT(cmd))
   1378 		notify = in6_rtchange, d = NULL;
   1379 	else if (cmd == PRC_MSGSIZE)
   1380 		; /* special code is present, see below */
   1381 	else if (cmd == PRC_HOSTDEAD)
   1382 		d = NULL;
   1383 	else if (inet6ctlerrmap[cmd] == 0)
   1384 		return;
   1385 
   1386 	/* if the parameter is from icmp6, decode it. */
   1387 	if (d != NULL) {
   1388 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1389 		m = ip6cp->ip6c_m;
   1390 		ip6 = ip6cp->ip6c_ip6;
   1391 		off = ip6cp->ip6c_off;
   1392 		sa6_src = ip6cp->ip6c_src;
   1393 	} else {
   1394 		m = NULL;
   1395 		ip6 = NULL;
   1396 		sa6_src = &sa6_any;
   1397 	}
   1398 
   1399 	if (ip6) {
   1400 		/*
   1401 		 * XXX: We assume that when ip6 is non NULL,
   1402 		 * M and OFF are valid.
   1403 		 */
   1404 
   1405 		/* check if we can safely examine src and dst ports */
   1406 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1407 			if (cmd == PRC_MSGSIZE)
   1408 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1409 			return;
   1410 		}
   1411 
   1412 		bzero(&th, sizeof(th));
   1413 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
   1414 
   1415 		if (cmd == PRC_MSGSIZE) {
   1416 			int valid = 0;
   1417 
   1418 			/*
   1419 			 * Check to see if we have a valid TCP connection
   1420 			 * corresponding to the address in the ICMPv6 message
   1421 			 * payload.
   1422 			 */
   1423 			if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
   1424 			    th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
   1425 			    th.th_sport, 0))
   1426 				valid++;
   1427 
   1428 			/*
   1429 			 * Depending on the value of "valid" and routing table
   1430 			 * size (mtudisc_{hi,lo}wat), we will:
   1431 			 * - recalcurate the new MTU and create the
   1432 			 *   corresponding routing entry, or
   1433 			 * - ignore the MTU change notification.
   1434 			 */
   1435 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1436 
   1437 			/*
   1438 			 * no need to call in6_pcbnotify, it should have been
   1439 			 * called via callback if necessary
   1440 			 */
   1441 			return;
   1442 		}
   1443 
   1444 		nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
   1445 		    (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1446 		if (nmatch == 0 && syn_cache_count &&
   1447 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1448 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1449 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1450 			syn_cache_unreach((struct sockaddr *)sa6_src,
   1451 					  sa, &th);
   1452 	} else {
   1453 		(void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
   1454 		    0, cmd, NULL, notify);
   1455 	}
   1456 }
   1457 #endif
   1458 
   1459 #ifdef INET
   1460 /* assumes that ip header and tcp header are contiguous on mbuf */
   1461 void *
   1462 tcp_ctlinput(cmd, sa, v)
   1463 	int cmd;
   1464 	struct sockaddr *sa;
   1465 	void *v;
   1466 {
   1467 	struct ip *ip = v;
   1468 	struct tcphdr *th;
   1469 	struct icmp *icp;
   1470 	extern const int inetctlerrmap[];
   1471 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
   1472 	int errno;
   1473 	int nmatch;
   1474 #ifdef INET6
   1475 	struct in6_addr src6, dst6;
   1476 #endif
   1477 
   1478 	if (sa->sa_family != AF_INET ||
   1479 	    sa->sa_len != sizeof(struct sockaddr_in))
   1480 		return NULL;
   1481 	if ((unsigned)cmd >= PRC_NCMDS)
   1482 		return NULL;
   1483 	errno = inetctlerrmap[cmd];
   1484 	if (cmd == PRC_QUENCH)
   1485 		notify = tcp_quench;
   1486 	else if (PRC_IS_REDIRECT(cmd))
   1487 		notify = in_rtchange, ip = 0;
   1488 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1489 		/*
   1490 		 * Check to see if we have a valid TCP connection
   1491 		 * corresponding to the address in the ICMP message
   1492 		 * payload.
   1493 		 *
   1494 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1495 		 */
   1496 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1497 #ifdef INET6
   1498 		memset(&src6, 0, sizeof(src6));
   1499 		memset(&dst6, 0, sizeof(dst6));
   1500 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1501 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1502 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1503 #endif
   1504 		if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
   1505 		    ip->ip_src, th->th_sport) != NULL)
   1506 			;
   1507 #ifdef INET6
   1508 		else if (in6_pcblookup_connect(&tcb6, &dst6,
   1509 		    th->th_dport, &src6, th->th_sport, 0) != NULL)
   1510 			;
   1511 #endif
   1512 		else
   1513 			return NULL;
   1514 
   1515 		/*
   1516 		 * Now that we've validated that we are actually communicating
   1517 		 * with the host indicated in the ICMP message, locate the
   1518 		 * ICMP header, recalculate the new MTU, and create the
   1519 		 * corresponding routing entry.
   1520 		 */
   1521 		icp = (struct icmp *)((caddr_t)ip -
   1522 		    offsetof(struct icmp, icmp_ip));
   1523 		icmp_mtudisc(icp, ip->ip_dst);
   1524 
   1525 		return NULL;
   1526 	} else if (cmd == PRC_HOSTDEAD)
   1527 		ip = 0;
   1528 	else if (errno == 0)
   1529 		return NULL;
   1530 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1531 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1532 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
   1533 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1534 		if (nmatch == 0 && syn_cache_count &&
   1535 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1536 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1537 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1538 			struct sockaddr_in sin;
   1539 			bzero(&sin, sizeof(sin));
   1540 			sin.sin_len = sizeof(sin);
   1541 			sin.sin_family = AF_INET;
   1542 			sin.sin_port = th->th_sport;
   1543 			sin.sin_addr = ip->ip_src;
   1544 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1545 		}
   1546 
   1547 		/* XXX mapped address case */
   1548 	} else
   1549 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
   1550 		    notify);
   1551 	return NULL;
   1552 }
   1553 
   1554 /*
   1555  * When a source quence is received, we are being notifed of congestion.
   1556  * Close the congestion window down to the Loss Window (one segment).
   1557  * We will gradually open it again as we proceed.
   1558  */
   1559 void
   1560 tcp_quench(inp, errno)
   1561 	struct inpcb *inp;
   1562 	int errno;
   1563 {
   1564 	struct tcpcb *tp = intotcpcb(inp);
   1565 
   1566 	if (tp)
   1567 		tp->snd_cwnd = tp->t_segsz;
   1568 }
   1569 #endif
   1570 
   1571 #ifdef INET6
   1572 void
   1573 tcp6_quench(in6p, errno)
   1574 	struct in6pcb *in6p;
   1575 	int errno;
   1576 {
   1577 	struct tcpcb *tp = in6totcpcb(in6p);
   1578 
   1579 	if (tp)
   1580 		tp->snd_cwnd = tp->t_segsz;
   1581 }
   1582 #endif
   1583 
   1584 #ifdef INET
   1585 /*
   1586  * Path MTU Discovery handlers.
   1587  */
   1588 void
   1589 tcp_mtudisc_callback(faddr)
   1590 	struct in_addr faddr;
   1591 {
   1592 #ifdef INET6
   1593 	struct in6_addr in6;
   1594 #endif
   1595 
   1596 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1597 #ifdef INET6
   1598 	memset(&in6, 0, sizeof(in6));
   1599 	in6.s6_addr16[5] = 0xffff;
   1600 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1601 	tcp6_mtudisc_callback(&in6);
   1602 #endif
   1603 }
   1604 
   1605 /*
   1606  * On receipt of path MTU corrections, flush old route and replace it
   1607  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1608  * that all packets will be received.
   1609  */
   1610 void
   1611 tcp_mtudisc(inp, errno)
   1612 	struct inpcb *inp;
   1613 	int errno;
   1614 {
   1615 	struct tcpcb *tp = intotcpcb(inp);
   1616 	struct rtentry *rt = in_pcbrtentry(inp);
   1617 
   1618 	if (tp != 0) {
   1619 		if (rt != 0) {
   1620 			/*
   1621 			 * If this was not a host route, remove and realloc.
   1622 			 */
   1623 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1624 				in_rtchange(inp, errno);
   1625 				if ((rt = in_pcbrtentry(inp)) == 0)
   1626 					return;
   1627 			}
   1628 
   1629 			/*
   1630 			 * Slow start out of the error condition.  We
   1631 			 * use the MTU because we know it's smaller
   1632 			 * than the previously transmitted segment.
   1633 			 *
   1634 			 * Note: This is more conservative than the
   1635 			 * suggestion in draft-floyd-incr-init-win-03.
   1636 			 */
   1637 			if (rt->rt_rmx.rmx_mtu != 0)
   1638 				tp->snd_cwnd =
   1639 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1640 				    rt->rt_rmx.rmx_mtu);
   1641 		}
   1642 
   1643 		/*
   1644 		 * Resend unacknowledged packets.
   1645 		 */
   1646 		tp->snd_nxt = tp->snd_una;
   1647 		tcp_output(tp);
   1648 	}
   1649 }
   1650 #endif
   1651 
   1652 #ifdef INET6
   1653 /*
   1654  * Path MTU Discovery handlers.
   1655  */
   1656 void
   1657 tcp6_mtudisc_callback(faddr)
   1658 	struct in6_addr *faddr;
   1659 {
   1660 	struct sockaddr_in6 sin6;
   1661 
   1662 	bzero(&sin6, sizeof(sin6));
   1663 	sin6.sin6_family = AF_INET6;
   1664 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1665 	sin6.sin6_addr = *faddr;
   1666 	(void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
   1667 	    (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1668 }
   1669 
   1670 void
   1671 tcp6_mtudisc(in6p, errno)
   1672 	struct in6pcb *in6p;
   1673 	int errno;
   1674 {
   1675 	struct tcpcb *tp = in6totcpcb(in6p);
   1676 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1677 
   1678 	if (tp != 0) {
   1679 		if (rt != 0) {
   1680 			/*
   1681 			 * If this was not a host route, remove and realloc.
   1682 			 */
   1683 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1684 				in6_rtchange(in6p, errno);
   1685 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1686 					return;
   1687 			}
   1688 
   1689 			/*
   1690 			 * Slow start out of the error condition.  We
   1691 			 * use the MTU because we know it's smaller
   1692 			 * than the previously transmitted segment.
   1693 			 *
   1694 			 * Note: This is more conservative than the
   1695 			 * suggestion in draft-floyd-incr-init-win-03.
   1696 			 */
   1697 			if (rt->rt_rmx.rmx_mtu != 0)
   1698 				tp->snd_cwnd =
   1699 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1700 				    rt->rt_rmx.rmx_mtu);
   1701 		}
   1702 
   1703 		/*
   1704 		 * Resend unacknowledged packets.
   1705 		 */
   1706 		tp->snd_nxt = tp->snd_una;
   1707 		tcp_output(tp);
   1708 	}
   1709 }
   1710 #endif /* INET6 */
   1711 
   1712 /*
   1713  * Compute the MSS to advertise to the peer.  Called only during
   1714  * the 3-way handshake.  If we are the server (peer initiated
   1715  * connection), we are called with a pointer to the interface
   1716  * on which the SYN packet arrived.  If we are the client (we
   1717  * initiated connection), we are called with a pointer to the
   1718  * interface out which this connection should go.
   1719  *
   1720  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1721  * header size from MSS advertisement.  MSS option must hold the maximum
   1722  * segment size we can accept, so it must always be:
   1723  *	 max(if mtu) - ip header - tcp header
   1724  */
   1725 u_long
   1726 tcp_mss_to_advertise(ifp, af)
   1727 	const struct ifnet *ifp;
   1728 	int af;
   1729 {
   1730 	extern u_long in_maxmtu;
   1731 	u_long mss = 0;
   1732 	u_long hdrsiz;
   1733 
   1734 	/*
   1735 	 * In order to avoid defeating path MTU discovery on the peer,
   1736 	 * we advertise the max MTU of all attached networks as our MSS,
   1737 	 * per RFC 1191, section 3.1.
   1738 	 *
   1739 	 * We provide the option to advertise just the MTU of
   1740 	 * the interface on which we hope this connection will
   1741 	 * be receiving.  If we are responding to a SYN, we
   1742 	 * will have a pretty good idea about this, but when
   1743 	 * initiating a connection there is a bit more doubt.
   1744 	 *
   1745 	 * We also need to ensure that loopback has a large enough
   1746 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1747 	 */
   1748 
   1749 	if (ifp != NULL)
   1750 		switch (af) {
   1751 		case AF_INET:
   1752 			mss = ifp->if_mtu;
   1753 			break;
   1754 #ifdef INET6
   1755 		case AF_INET6:
   1756 			mss = IN6_LINKMTU(ifp);
   1757 			break;
   1758 #endif
   1759 		}
   1760 
   1761 	if (tcp_mss_ifmtu == 0)
   1762 		switch (af) {
   1763 		case AF_INET:
   1764 			mss = max(in_maxmtu, mss);
   1765 			break;
   1766 #ifdef INET6
   1767 		case AF_INET6:
   1768 			mss = max(in6_maxmtu, mss);
   1769 			break;
   1770 #endif
   1771 		}
   1772 
   1773 	switch (af) {
   1774 	case AF_INET:
   1775 		hdrsiz = sizeof(struct ip);
   1776 		break;
   1777 #ifdef INET6
   1778 	case AF_INET6:
   1779 		hdrsiz = sizeof(struct ip6_hdr);
   1780 		break;
   1781 #endif
   1782 	default:
   1783 		hdrsiz = 0;
   1784 		break;
   1785 	}
   1786 	hdrsiz += sizeof(struct tcphdr);
   1787 	if (mss > hdrsiz)
   1788 		mss -= hdrsiz;
   1789 
   1790 	mss = max(tcp_mssdflt, mss);
   1791 	return (mss);
   1792 }
   1793 
   1794 /*
   1795  * Set connection variables based on the peer's advertised MSS.
   1796  * We are passed the TCPCB for the actual connection.  If we
   1797  * are the server, we are called by the compressed state engine
   1798  * when the 3-way handshake is complete.  If we are the client,
   1799  * we are called when we receive the SYN,ACK from the server.
   1800  *
   1801  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1802  * before this routine is called!
   1803  */
   1804 void
   1805 tcp_mss_from_peer(tp, offer)
   1806 	struct tcpcb *tp;
   1807 	int offer;
   1808 {
   1809 	struct socket *so;
   1810 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1811 	struct rtentry *rt;
   1812 #endif
   1813 	u_long bufsize;
   1814 	int mss;
   1815 
   1816 #ifdef DIAGNOSTIC
   1817 	if (tp->t_inpcb && tp->t_in6pcb)
   1818 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1819 #endif
   1820 	so = NULL;
   1821 	rt = NULL;
   1822 #ifdef INET
   1823 	if (tp->t_inpcb) {
   1824 		so = tp->t_inpcb->inp_socket;
   1825 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1826 		rt = in_pcbrtentry(tp->t_inpcb);
   1827 #endif
   1828 	}
   1829 #endif
   1830 #ifdef INET6
   1831 	if (tp->t_in6pcb) {
   1832 		so = tp->t_in6pcb->in6p_socket;
   1833 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1834 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1835 #endif
   1836 	}
   1837 #endif
   1838 
   1839 	/*
   1840 	 * As per RFC1122, use the default MSS value, unless they
   1841 	 * sent us an offer.  Do not accept offers less than 32 bytes.
   1842 	 */
   1843 	mss = tcp_mssdflt;
   1844 	if (offer)
   1845 		mss = offer;
   1846 	mss = max(mss, 32);		/* sanity */
   1847 	tp->t_peermss = mss;
   1848 	mss -= tcp_optlen(tp);
   1849 #ifdef INET
   1850 	if (tp->t_inpcb)
   1851 		mss -= ip_optlen(tp->t_inpcb);
   1852 #endif
   1853 #ifdef INET6
   1854 	if (tp->t_in6pcb)
   1855 		mss -= ip6_optlen(tp->t_in6pcb);
   1856 #endif
   1857 
   1858 	/*
   1859 	 * If there's a pipesize, change the socket buffer to that size.
   1860 	 * Make the socket buffer an integral number of MSS units.  If
   1861 	 * the MSS is larger than the socket buffer, artificially decrease
   1862 	 * the MSS.
   1863 	 */
   1864 #ifdef RTV_SPIPE
   1865 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1866 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1867 	else
   1868 #endif
   1869 		bufsize = so->so_snd.sb_hiwat;
   1870 	if (bufsize < mss)
   1871 		mss = bufsize;
   1872 	else {
   1873 		bufsize = roundup(bufsize, mss);
   1874 		if (bufsize > sb_max)
   1875 			bufsize = sb_max;
   1876 		(void) sbreserve(&so->so_snd, bufsize);
   1877 	}
   1878 	tp->t_segsz = mss;
   1879 
   1880 #ifdef RTV_SSTHRESH
   1881 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1882 		/*
   1883 		 * There's some sort of gateway or interface buffer
   1884 		 * limit on the path.  Use this to set the slow
   1885 		 * start threshold, but set the threshold to no less
   1886 		 * than 2 * MSS.
   1887 		 */
   1888 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1889 	}
   1890 #endif
   1891 }
   1892 
   1893 /*
   1894  * Processing necessary when a TCP connection is established.
   1895  */
   1896 void
   1897 tcp_established(tp)
   1898 	struct tcpcb *tp;
   1899 {
   1900 	struct socket *so;
   1901 #ifdef RTV_RPIPE
   1902 	struct rtentry *rt;
   1903 #endif
   1904 	u_long bufsize;
   1905 
   1906 #ifdef DIAGNOSTIC
   1907 	if (tp->t_inpcb && tp->t_in6pcb)
   1908 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   1909 #endif
   1910 	so = NULL;
   1911 	rt = NULL;
   1912 #ifdef INET
   1913 	if (tp->t_inpcb) {
   1914 		so = tp->t_inpcb->inp_socket;
   1915 #if defined(RTV_RPIPE)
   1916 		rt = in_pcbrtentry(tp->t_inpcb);
   1917 #endif
   1918 	}
   1919 #endif
   1920 #ifdef INET6
   1921 	if (tp->t_in6pcb) {
   1922 		so = tp->t_in6pcb->in6p_socket;
   1923 #if defined(RTV_RPIPE)
   1924 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1925 #endif
   1926 	}
   1927 #endif
   1928 
   1929 	tp->t_state = TCPS_ESTABLISHED;
   1930 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1931 
   1932 #ifdef RTV_RPIPE
   1933 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   1934 		bufsize = rt->rt_rmx.rmx_recvpipe;
   1935 	else
   1936 #endif
   1937 		bufsize = so->so_rcv.sb_hiwat;
   1938 	if (bufsize > tp->t_ourmss) {
   1939 		bufsize = roundup(bufsize, tp->t_ourmss);
   1940 		if (bufsize > sb_max)
   1941 			bufsize = sb_max;
   1942 		(void) sbreserve(&so->so_rcv, bufsize);
   1943 	}
   1944 }
   1945 
   1946 /*
   1947  * Check if there's an initial rtt or rttvar.  Convert from the
   1948  * route-table units to scaled multiples of the slow timeout timer.
   1949  * Called only during the 3-way handshake.
   1950  */
   1951 void
   1952 tcp_rmx_rtt(tp)
   1953 	struct tcpcb *tp;
   1954 {
   1955 #ifdef RTV_RTT
   1956 	struct rtentry *rt = NULL;
   1957 	int rtt;
   1958 
   1959 #ifdef DIAGNOSTIC
   1960 	if (tp->t_inpcb && tp->t_in6pcb)
   1961 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   1962 #endif
   1963 #ifdef INET
   1964 	if (tp->t_inpcb)
   1965 		rt = in_pcbrtentry(tp->t_inpcb);
   1966 #endif
   1967 #ifdef INET6
   1968 	if (tp->t_in6pcb)
   1969 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1970 #endif
   1971 	if (rt == NULL)
   1972 		return;
   1973 
   1974 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   1975 		/*
   1976 		 * XXX The lock bit for MTU indicates that the value
   1977 		 * is also a minimum value; this is subject to time.
   1978 		 */
   1979 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   1980 			TCPT_RANGESET(tp->t_rttmin,
   1981 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   1982 			    TCPTV_MIN, TCPTV_REXMTMAX);
   1983 		tp->t_srtt = rtt /
   1984 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1985 		if (rt->rt_rmx.rmx_rttvar) {
   1986 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   1987 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   1988 				(TCP_RTTVAR_SHIFT + 2));
   1989 		} else {
   1990 			/* Default variation is +- 1 rtt */
   1991 			tp->t_rttvar =
   1992 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   1993 		}
   1994 		TCPT_RANGESET(tp->t_rxtcur,
   1995 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   1996 		    tp->t_rttmin, TCPTV_REXMTMAX);
   1997 	}
   1998 #endif
   1999 }
   2000 
   2001 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   2002 #if NRND > 0
   2003 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   2004 #endif
   2005 
   2006 /*
   2007  * Get a new sequence value given a tcp control block
   2008  */
   2009 tcp_seq
   2010 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   2011 {
   2012 
   2013 #ifdef INET
   2014 	if (tp->t_inpcb != NULL) {
   2015 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   2016 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   2017 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   2018 		    addin));
   2019 	}
   2020 #endif
   2021 #ifdef INET6
   2022 	if (tp->t_in6pcb != NULL) {
   2023 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   2024 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   2025 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   2026 		    addin));
   2027 	}
   2028 #endif
   2029 	/* Not possible. */
   2030 	panic("tcp_new_iss");
   2031 }
   2032 
   2033 /*
   2034  * This routine actually generates a new TCP initial sequence number.
   2035  */
   2036 tcp_seq
   2037 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2038     size_t addrsz, tcp_seq addin)
   2039 {
   2040 	tcp_seq tcp_iss;
   2041 
   2042 #if NRND > 0
   2043 	static int beenhere;
   2044 
   2045 	/*
   2046 	 * If we haven't been here before, initialize our cryptographic
   2047 	 * hash secret.
   2048 	 */
   2049 	if (beenhere == 0) {
   2050 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   2051 		    RND_EXTRACT_ANY);
   2052 		beenhere = 1;
   2053 	}
   2054 
   2055 	if (tcp_do_rfc1948) {
   2056 		MD5_CTX ctx;
   2057 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2058 
   2059 		/*
   2060 		 * Compute the base value of the ISS.  It is a hash
   2061 		 * of (saddr, sport, daddr, dport, secret).
   2062 		 */
   2063 		MD5Init(&ctx);
   2064 
   2065 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2066 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2067 
   2068 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2069 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2070 
   2071 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2072 
   2073 		MD5Final(hash, &ctx);
   2074 
   2075 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2076 
   2077 		/*
   2078 		 * Now increment our "timer", and add it in to
   2079 		 * the computed value.
   2080 		 *
   2081 		 * XXX Use `addin'?
   2082 		 * XXX TCP_ISSINCR too large to use?
   2083 		 */
   2084 		tcp_iss_seq += TCP_ISSINCR;
   2085 #ifdef TCPISS_DEBUG
   2086 		printf("ISS hash 0x%08x, ", tcp_iss);
   2087 #endif
   2088 		tcp_iss += tcp_iss_seq + addin;
   2089 #ifdef TCPISS_DEBUG
   2090 		printf("new ISS 0x%08x\n", tcp_iss);
   2091 #endif
   2092 	} else
   2093 #endif /* NRND > 0 */
   2094 	{
   2095 		/*
   2096 		 * Randomize.
   2097 		 */
   2098 #if NRND > 0
   2099 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2100 #else
   2101 		tcp_iss = arc4random();
   2102 #endif
   2103 
   2104 		/*
   2105 		 * If we were asked to add some amount to a known value,
   2106 		 * we will take a random value obtained above, mask off
   2107 		 * the upper bits, and add in the known value.  We also
   2108 		 * add in a constant to ensure that we are at least a
   2109 		 * certain distance from the original value.
   2110 		 *
   2111 		 * This is used when an old connection is in timed wait
   2112 		 * and we have a new one coming in, for instance.
   2113 		 */
   2114 		if (addin != 0) {
   2115 #ifdef TCPISS_DEBUG
   2116 			printf("Random %08x, ", tcp_iss);
   2117 #endif
   2118 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2119 			tcp_iss += addin + TCP_ISSINCR;
   2120 #ifdef TCPISS_DEBUG
   2121 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2122 #endif
   2123 		} else {
   2124 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2125 			tcp_iss += tcp_iss_seq;
   2126 			tcp_iss_seq += TCP_ISSINCR;
   2127 #ifdef TCPISS_DEBUG
   2128 			printf("ISS %08x\n", tcp_iss);
   2129 #endif
   2130 		}
   2131 	}
   2132 
   2133 	if (tcp_compat_42) {
   2134 		/*
   2135 		 * Limit it to the positive range for really old TCP
   2136 		 * implementations.
   2137 		 * Just AND off the top bit instead of checking if
   2138 		 * is set first - saves a branch 50% of the time.
   2139 		 */
   2140 		tcp_iss &= 0x7fffffff;		/* XXX */
   2141 	}
   2142 
   2143 	return (tcp_iss);
   2144 }
   2145 
   2146 #if defined(IPSEC) || defined(FAST_IPSEC)
   2147 /* compute ESP/AH header size for TCP, including outer IP header. */
   2148 size_t
   2149 ipsec4_hdrsiz_tcp(tp)
   2150 	struct tcpcb *tp;
   2151 {
   2152 	struct inpcb *inp;
   2153 	size_t hdrsiz;
   2154 
   2155 	/* XXX mapped addr case (tp->t_in6pcb) */
   2156 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2157 		return 0;
   2158 	switch (tp->t_family) {
   2159 	case AF_INET:
   2160 		/* XXX: should use currect direction. */
   2161 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2162 		break;
   2163 	default:
   2164 		hdrsiz = 0;
   2165 		break;
   2166 	}
   2167 
   2168 	return hdrsiz;
   2169 }
   2170 
   2171 #ifdef INET6
   2172 size_t
   2173 ipsec6_hdrsiz_tcp(tp)
   2174 	struct tcpcb *tp;
   2175 {
   2176 	struct in6pcb *in6p;
   2177 	size_t hdrsiz;
   2178 
   2179 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2180 		return 0;
   2181 	switch (tp->t_family) {
   2182 	case AF_INET6:
   2183 		/* XXX: should use currect direction. */
   2184 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2185 		break;
   2186 	case AF_INET:
   2187 		/* mapped address case - tricky */
   2188 	default:
   2189 		hdrsiz = 0;
   2190 		break;
   2191 	}
   2192 
   2193 	return hdrsiz;
   2194 }
   2195 #endif
   2196 #endif /*IPSEC*/
   2197 
   2198 /*
   2199  * Determine the length of the TCP options for this connection.
   2200  *
   2201  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2202  *       all of the space?  Otherwise we can't exactly be incrementing
   2203  *       cwnd by an amount that varies depending on the amount we last
   2204  *       had to SACK!
   2205  */
   2206 
   2207 u_int
   2208 tcp_optlen(tp)
   2209 	struct tcpcb *tp;
   2210 {
   2211 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2212 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2213 		return TCPOLEN_TSTAMP_APPA;
   2214 	else
   2215 		return 0;
   2216 }
   2217