tcp_subr.c revision 1.148 1 /* $NetBSD: tcp_subr.c,v 1.148 2003/08/22 21:53:06 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.148 2003/08/22 21:53:06 itojun Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcpip.h>
155
156 #ifdef IPSEC
157 #include <netinet6/ipsec.h>
158 #endif /*IPSEC*/
159
160 #ifdef FAST_IPSEC
161 #include <netipsec/ipsec.h>
162 #ifdef INET6
163 #include <netipsec/ipsec6.h>
164 #endif
165 #endif /* FAST_IPSEC*/
166
167
168 #ifdef INET6
169 struct in6pcb tcb6;
170 #endif
171
172 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
173 struct tcpstat tcpstat; /* tcp statistics */
174 u_int32_t tcp_now; /* for RFC 1323 timestamps */
175
176 /* patchable/settable parameters for tcp */
177 int tcp_mssdflt = TCP_MSS;
178 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
179 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
180 #if NRND > 0
181 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
182 #endif
183 int tcp_do_sack = 1; /* selective acknowledgement */
184 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
185 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
186 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
187 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
188 #ifndef TCP_INIT_WIN
189 #define TCP_INIT_WIN 1 /* initial slow start window */
190 #endif
191 #ifndef TCP_INIT_WIN_LOCAL
192 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
193 #endif
194 int tcp_init_win = TCP_INIT_WIN;
195 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
196 int tcp_mss_ifmtu = 0;
197 #ifdef TCP_COMPAT_42
198 int tcp_compat_42 = 1;
199 #else
200 int tcp_compat_42 = 0;
201 #endif
202 int tcp_rst_ppslim = 100; /* 100pps */
203
204 /* tcb hash */
205 #ifndef TCBHASHSIZE
206 #define TCBHASHSIZE 128
207 #endif
208 int tcbhashsize = TCBHASHSIZE;
209
210 /* syn hash parameters */
211 #define TCP_SYN_HASH_SIZE 293
212 #define TCP_SYN_BUCKET_SIZE 35
213 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
214 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
215 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
216 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
217
218 int tcp_freeq __P((struct tcpcb *));
219
220 #ifdef INET
221 void tcp_mtudisc_callback __P((struct in_addr));
222 #endif
223 #ifdef INET6
224 void tcp6_mtudisc_callback __P((struct in6_addr *));
225 #endif
226
227 void tcp_mtudisc __P((struct inpcb *, int));
228 #ifdef INET6
229 void tcp6_mtudisc __P((struct in6pcb *, int));
230 #endif
231
232 struct pool tcpcb_pool;
233
234 #ifdef TCP_CSUM_COUNTERS
235 #include <sys/device.h>
236
237 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
238 NULL, "tcp", "hwcsum bad");
239 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
240 NULL, "tcp", "hwcsum ok");
241 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
242 NULL, "tcp", "hwcsum data");
243 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
244 NULL, "tcp", "swcsum");
245 #endif /* TCP_CSUM_COUNTERS */
246
247 #ifdef TCP_OUTPUT_COUNTERS
248 #include <sys/device.h>
249
250 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
251 NULL, "tcp", "output big header");
252 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
253 NULL, "tcp", "output copy small");
254 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
255 NULL, "tcp", "output copy big");
256 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
257 NULL, "tcp", "output reference big");
258 #endif /* TCP_OUTPUT_COUNTERS */
259
260 #ifdef TCP_REASS_COUNTERS
261 #include <sys/device.h>
262
263 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264 NULL, "tcp_reass", "calls");
265 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266 &tcp_reass_, "tcp_reass", "insert into empty queue");
267 struct evcnt tcp_reass_iteration[8] = {
268 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
269 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
270 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
271 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
272 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
273 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
274 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
275 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
276 };
277 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
278 &tcp_reass_, "tcp_reass", "prepend to first");
279 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
280 &tcp_reass_, "tcp_reass", "prepend");
281 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282 &tcp_reass_, "tcp_reass", "insert");
283 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284 &tcp_reass_, "tcp_reass", "insert at tail");
285 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286 &tcp_reass_, "tcp_reass", "append");
287 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288 &tcp_reass_, "tcp_reass", "append to tail fragment");
289 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
290 &tcp_reass_, "tcp_reass", "overlap at end");
291 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
292 &tcp_reass_, "tcp_reass", "overlap at start");
293 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
294 &tcp_reass_, "tcp_reass", "duplicate segment");
295 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
296 &tcp_reass_, "tcp_reass", "duplicate fragment");
297
298 #endif /* TCP_REASS_COUNTERS */
299
300 #ifdef MBUFTRACE
301 struct mowner tcp_mowner = { "tcp" };
302 struct mowner tcp_rx_mowner = { "tcp", "rx" };
303 struct mowner tcp_tx_mowner = { "tcp", "tx" };
304 #endif
305
306 /*
307 * Tcp initialization
308 */
309 void
310 tcp_init()
311 {
312 int hlen;
313
314 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
315 NULL);
316 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
317 #ifdef INET6
318 tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
319 #endif
320
321 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
322 #ifdef INET6
323 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
324 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
325 #endif
326 if (max_protohdr < hlen)
327 max_protohdr = hlen;
328 if (max_linkhdr + hlen > MHLEN)
329 panic("tcp_init");
330
331 #ifdef INET
332 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
333 #endif
334 #ifdef INET6
335 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
336 #endif
337
338 /* Initialize timer state. */
339 tcp_timer_init();
340
341 /* Initialize the compressed state engine. */
342 syn_cache_init();
343
344 #ifdef TCP_CSUM_COUNTERS
345 evcnt_attach_static(&tcp_hwcsum_bad);
346 evcnt_attach_static(&tcp_hwcsum_ok);
347 evcnt_attach_static(&tcp_hwcsum_data);
348 evcnt_attach_static(&tcp_swcsum);
349 #endif /* TCP_CSUM_COUNTERS */
350
351 #ifdef TCP_OUTPUT_COUNTERS
352 evcnt_attach_static(&tcp_output_bigheader);
353 evcnt_attach_static(&tcp_output_copysmall);
354 evcnt_attach_static(&tcp_output_copybig);
355 evcnt_attach_static(&tcp_output_refbig);
356 #endif /* TCP_OUTPUT_COUNTERS */
357
358 #ifdef TCP_REASS_COUNTERS
359 evcnt_attach_static(&tcp_reass_);
360 evcnt_attach_static(&tcp_reass_empty);
361 evcnt_attach_static(&tcp_reass_iteration[0]);
362 evcnt_attach_static(&tcp_reass_iteration[1]);
363 evcnt_attach_static(&tcp_reass_iteration[2]);
364 evcnt_attach_static(&tcp_reass_iteration[3]);
365 evcnt_attach_static(&tcp_reass_iteration[4]);
366 evcnt_attach_static(&tcp_reass_iteration[5]);
367 evcnt_attach_static(&tcp_reass_iteration[6]);
368 evcnt_attach_static(&tcp_reass_iteration[7]);
369 evcnt_attach_static(&tcp_reass_prependfirst);
370 evcnt_attach_static(&tcp_reass_prepend);
371 evcnt_attach_static(&tcp_reass_insert);
372 evcnt_attach_static(&tcp_reass_inserttail);
373 evcnt_attach_static(&tcp_reass_append);
374 evcnt_attach_static(&tcp_reass_appendtail);
375 evcnt_attach_static(&tcp_reass_overlaptail);
376 evcnt_attach_static(&tcp_reass_overlapfront);
377 evcnt_attach_static(&tcp_reass_segdup);
378 evcnt_attach_static(&tcp_reass_fragdup);
379 #endif /* TCP_REASS_COUNTERS */
380
381 MOWNER_ATTACH(&tcp_tx_mowner);
382 MOWNER_ATTACH(&tcp_rx_mowner);
383 MOWNER_ATTACH(&tcp_mowner);
384 }
385
386 /*
387 * Create template to be used to send tcp packets on a connection.
388 * Call after host entry created, allocates an mbuf and fills
389 * in a skeletal tcp/ip header, minimizing the amount of work
390 * necessary when the connection is used.
391 */
392 struct mbuf *
393 tcp_template(tp)
394 struct tcpcb *tp;
395 {
396 struct inpcb *inp = tp->t_inpcb;
397 #ifdef INET6
398 struct in6pcb *in6p = tp->t_in6pcb;
399 #endif
400 struct tcphdr *n;
401 struct mbuf *m;
402 int hlen;
403
404 switch (tp->t_family) {
405 case AF_INET:
406 hlen = sizeof(struct ip);
407 if (inp)
408 break;
409 #ifdef INET6
410 if (in6p) {
411 /* mapped addr case */
412 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
413 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
414 break;
415 }
416 #endif
417 return NULL; /*EINVAL*/
418 #ifdef INET6
419 case AF_INET6:
420 hlen = sizeof(struct ip6_hdr);
421 if (in6p) {
422 /* more sainty check? */
423 break;
424 }
425 return NULL; /*EINVAL*/
426 #endif
427 default:
428 hlen = 0; /*pacify gcc*/
429 return NULL; /*EAFNOSUPPORT*/
430 }
431 #ifdef DIAGNOSTIC
432 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
433 panic("mclbytes too small for t_template");
434 #endif
435 m = tp->t_template;
436 if (m && m->m_len == hlen + sizeof(struct tcphdr))
437 ;
438 else {
439 if (m)
440 m_freem(m);
441 m = tp->t_template = NULL;
442 MGETHDR(m, M_DONTWAIT, MT_HEADER);
443 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
444 MCLGET(m, M_DONTWAIT);
445 if ((m->m_flags & M_EXT) == 0) {
446 m_free(m);
447 m = NULL;
448 }
449 }
450 if (m == NULL)
451 return NULL;
452 MCLAIM(m, &tcp_mowner);
453 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
454 }
455
456 bzero(mtod(m, caddr_t), m->m_len);
457
458 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
459
460 switch (tp->t_family) {
461 case AF_INET:
462 {
463 struct ipovly *ipov;
464 mtod(m, struct ip *)->ip_v = 4;
465 ipov = mtod(m, struct ipovly *);
466 ipov->ih_pr = IPPROTO_TCP;
467 ipov->ih_len = htons(sizeof(struct tcphdr));
468 if (inp) {
469 ipov->ih_src = inp->inp_laddr;
470 ipov->ih_dst = inp->inp_faddr;
471 }
472 #ifdef INET6
473 else if (in6p) {
474 /* mapped addr case */
475 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
476 sizeof(ipov->ih_src));
477 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
478 sizeof(ipov->ih_dst));
479 }
480 #endif
481 /*
482 * Compute the pseudo-header portion of the checksum
483 * now. We incrementally add in the TCP option and
484 * payload lengths later, and then compute the TCP
485 * checksum right before the packet is sent off onto
486 * the wire.
487 */
488 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
489 ipov->ih_dst.s_addr,
490 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
491 break;
492 }
493 #ifdef INET6
494 case AF_INET6:
495 {
496 struct ip6_hdr *ip6;
497 mtod(m, struct ip *)->ip_v = 6;
498 ip6 = mtod(m, struct ip6_hdr *);
499 ip6->ip6_nxt = IPPROTO_TCP;
500 ip6->ip6_plen = htons(sizeof(struct tcphdr));
501 ip6->ip6_src = in6p->in6p_laddr;
502 ip6->ip6_dst = in6p->in6p_faddr;
503 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
504 if (ip6_auto_flowlabel) {
505 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
506 ip6->ip6_flow |=
507 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
508 }
509 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
510 ip6->ip6_vfc |= IPV6_VERSION;
511
512 /*
513 * Compute the pseudo-header portion of the checksum
514 * now. We incrementally add in the TCP option and
515 * payload lengths later, and then compute the TCP
516 * checksum right before the packet is sent off onto
517 * the wire.
518 */
519 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
520 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
521 htonl(IPPROTO_TCP));
522 break;
523 }
524 #endif
525 }
526 if (inp) {
527 n->th_sport = inp->inp_lport;
528 n->th_dport = inp->inp_fport;
529 }
530 #ifdef INET6
531 else if (in6p) {
532 n->th_sport = in6p->in6p_lport;
533 n->th_dport = in6p->in6p_fport;
534 }
535 #endif
536 n->th_seq = 0;
537 n->th_ack = 0;
538 n->th_x2 = 0;
539 n->th_off = 5;
540 n->th_flags = 0;
541 n->th_win = 0;
542 n->th_urp = 0;
543 return (m);
544 }
545
546 /*
547 * Send a single message to the TCP at address specified by
548 * the given TCP/IP header. If m == 0, then we make a copy
549 * of the tcpiphdr at ti and send directly to the addressed host.
550 * This is used to force keep alive messages out using the TCP
551 * template for a connection tp->t_template. If flags are given
552 * then we send a message back to the TCP which originated the
553 * segment ti, and discard the mbuf containing it and any other
554 * attached mbufs.
555 *
556 * In any case the ack and sequence number of the transmitted
557 * segment are as specified by the parameters.
558 */
559 int
560 tcp_respond(tp, template, m, th0, ack, seq, flags)
561 struct tcpcb *tp;
562 struct mbuf *template;
563 struct mbuf *m;
564 struct tcphdr *th0;
565 tcp_seq ack, seq;
566 int flags;
567 {
568 struct route *ro;
569 int error, tlen, win = 0;
570 int hlen;
571 struct ip *ip;
572 #ifdef INET6
573 struct ip6_hdr *ip6;
574 #endif
575 int family; /* family on packet, not inpcb/in6pcb! */
576 struct tcphdr *th;
577 struct socket *so;
578
579 if (tp != NULL && (flags & TH_RST) == 0) {
580 #ifdef DIAGNOSTIC
581 if (tp->t_inpcb && tp->t_in6pcb)
582 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
583 #endif
584 #ifdef INET
585 if (tp->t_inpcb)
586 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
587 #endif
588 #ifdef INET6
589 if (tp->t_in6pcb)
590 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
591 #endif
592 }
593
594 th = NULL; /* Quell uninitialized warning */
595 ip = NULL;
596 #ifdef INET6
597 ip6 = NULL;
598 #endif
599 if (m == 0) {
600 if (!template)
601 return EINVAL;
602
603 /* get family information from template */
604 switch (mtod(template, struct ip *)->ip_v) {
605 case 4:
606 family = AF_INET;
607 hlen = sizeof(struct ip);
608 break;
609 #ifdef INET6
610 case 6:
611 family = AF_INET6;
612 hlen = sizeof(struct ip6_hdr);
613 break;
614 #endif
615 default:
616 return EAFNOSUPPORT;
617 }
618
619 MGETHDR(m, M_DONTWAIT, MT_HEADER);
620 if (m) {
621 MCLAIM(m, &tcp_tx_mowner);
622 MCLGET(m, M_DONTWAIT);
623 if ((m->m_flags & M_EXT) == 0) {
624 m_free(m);
625 m = NULL;
626 }
627 }
628 if (m == NULL)
629 return (ENOBUFS);
630
631 if (tcp_compat_42)
632 tlen = 1;
633 else
634 tlen = 0;
635
636 m->m_data += max_linkhdr;
637 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
638 template->m_len);
639 switch (family) {
640 case AF_INET:
641 ip = mtod(m, struct ip *);
642 th = (struct tcphdr *)(ip + 1);
643 break;
644 #ifdef INET6
645 case AF_INET6:
646 ip6 = mtod(m, struct ip6_hdr *);
647 th = (struct tcphdr *)(ip6 + 1);
648 break;
649 #endif
650 #if 0
651 default:
652 /* noone will visit here */
653 m_freem(m);
654 return EAFNOSUPPORT;
655 #endif
656 }
657 flags = TH_ACK;
658 } else {
659
660 if ((m->m_flags & M_PKTHDR) == 0) {
661 #if 0
662 printf("non PKTHDR to tcp_respond\n");
663 #endif
664 m_freem(m);
665 return EINVAL;
666 }
667 #ifdef DIAGNOSTIC
668 if (!th0)
669 panic("th0 == NULL in tcp_respond");
670 #endif
671
672 /* get family information from m */
673 switch (mtod(m, struct ip *)->ip_v) {
674 case 4:
675 family = AF_INET;
676 hlen = sizeof(struct ip);
677 ip = mtod(m, struct ip *);
678 break;
679 #ifdef INET6
680 case 6:
681 family = AF_INET6;
682 hlen = sizeof(struct ip6_hdr);
683 ip6 = mtod(m, struct ip6_hdr *);
684 break;
685 #endif
686 default:
687 m_freem(m);
688 return EAFNOSUPPORT;
689 }
690 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
691 tlen = sizeof(*th0);
692 else
693 tlen = th0->th_off << 2;
694
695 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
696 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
697 m->m_len = hlen + tlen;
698 m_freem(m->m_next);
699 m->m_next = NULL;
700 } else {
701 struct mbuf *n;
702
703 #ifdef DIAGNOSTIC
704 if (max_linkhdr + hlen + tlen > MCLBYTES) {
705 m_freem(m);
706 return EMSGSIZE;
707 }
708 #endif
709 MGETHDR(n, M_DONTWAIT, MT_HEADER);
710 if (n && max_linkhdr + hlen + tlen > MHLEN) {
711 MCLGET(n, M_DONTWAIT);
712 if ((n->m_flags & M_EXT) == 0) {
713 m_freem(n);
714 n = NULL;
715 }
716 }
717 if (!n) {
718 m_freem(m);
719 return ENOBUFS;
720 }
721
722 MCLAIM(n, &tcp_tx_mowner);
723 n->m_data += max_linkhdr;
724 n->m_len = hlen + tlen;
725 m_copyback(n, 0, hlen, mtod(m, caddr_t));
726 m_copyback(n, hlen, tlen, (caddr_t)th0);
727
728 m_freem(m);
729 m = n;
730 n = NULL;
731 }
732
733 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
734 switch (family) {
735 case AF_INET:
736 ip = mtod(m, struct ip *);
737 th = (struct tcphdr *)(ip + 1);
738 ip->ip_p = IPPROTO_TCP;
739 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
740 ip->ip_p = IPPROTO_TCP;
741 break;
742 #ifdef INET6
743 case AF_INET6:
744 ip6 = mtod(m, struct ip6_hdr *);
745 th = (struct tcphdr *)(ip6 + 1);
746 ip6->ip6_nxt = IPPROTO_TCP;
747 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
748 ip6->ip6_nxt = IPPROTO_TCP;
749 break;
750 #endif
751 #if 0
752 default:
753 /* noone will visit here */
754 m_freem(m);
755 return EAFNOSUPPORT;
756 #endif
757 }
758 xchg(th->th_dport, th->th_sport, u_int16_t);
759 #undef xchg
760 tlen = 0; /*be friendly with the following code*/
761 }
762 th->th_seq = htonl(seq);
763 th->th_ack = htonl(ack);
764 th->th_x2 = 0;
765 if ((flags & TH_SYN) == 0) {
766 if (tp)
767 win >>= tp->rcv_scale;
768 if (win > TCP_MAXWIN)
769 win = TCP_MAXWIN;
770 th->th_win = htons((u_int16_t)win);
771 th->th_off = sizeof (struct tcphdr) >> 2;
772 tlen += sizeof(*th);
773 } else
774 tlen += th->th_off << 2;
775 m->m_len = hlen + tlen;
776 m->m_pkthdr.len = hlen + tlen;
777 m->m_pkthdr.rcvif = (struct ifnet *) 0;
778 th->th_flags = flags;
779 th->th_urp = 0;
780
781 switch (family) {
782 #ifdef INET
783 case AF_INET:
784 {
785 struct ipovly *ipov = (struct ipovly *)ip;
786 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
787 ipov->ih_len = htons((u_int16_t)tlen);
788
789 th->th_sum = 0;
790 th->th_sum = in_cksum(m, hlen + tlen);
791 ip->ip_len = htons(hlen + tlen);
792 ip->ip_ttl = ip_defttl;
793 break;
794 }
795 #endif
796 #ifdef INET6
797 case AF_INET6:
798 {
799 th->th_sum = 0;
800 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
801 tlen);
802 ip6->ip6_plen = ntohs(tlen);
803 if (tp && tp->t_in6pcb) {
804 struct ifnet *oifp;
805 ro = (struct route *)&tp->t_in6pcb->in6p_route;
806 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
807 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
808 } else
809 ip6->ip6_hlim = ip6_defhlim;
810 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
811 if (ip6_auto_flowlabel) {
812 ip6->ip6_flow |=
813 (htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
814 }
815 break;
816 }
817 #endif
818 }
819
820 if (tp->t_inpcb)
821 so = tp->t_inpcb->inp_socket;
822 #ifdef INET6
823 else if (tp->t_in6pcb)
824 so = tp->t_in6pcb->in6p_socket;
825 #endif
826 else
827 so = NULL;
828 #ifdef IPSEC
829 if (ipsec_setsocket(m, so) != 0) {
830 m_freem(m);
831 return ENOBUFS;
832 }
833 #endif /*IPSEC*/
834
835 if (tp != NULL && tp->t_inpcb != NULL) {
836 ro = &tp->t_inpcb->inp_route;
837 #ifdef DIAGNOSTIC
838 if (family != AF_INET)
839 panic("tcp_respond: address family mismatch");
840 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
841 panic("tcp_respond: ip_dst %x != inp_faddr %x",
842 ntohl(ip->ip_dst.s_addr),
843 ntohl(tp->t_inpcb->inp_faddr.s_addr));
844 }
845 #endif
846 }
847 #ifdef INET6
848 else if (tp != NULL && tp->t_in6pcb != NULL) {
849 ro = (struct route *)&tp->t_in6pcb->in6p_route;
850 #ifdef DIAGNOSTIC
851 if (family == AF_INET) {
852 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
853 panic("tcp_respond: not mapped addr");
854 if (bcmp(&ip->ip_dst,
855 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
856 sizeof(ip->ip_dst)) != 0) {
857 panic("tcp_respond: ip_dst != in6p_faddr");
858 }
859 } else if (family == AF_INET6) {
860 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
861 &tp->t_in6pcb->in6p_faddr))
862 panic("tcp_respond: ip6_dst != in6p_faddr");
863 } else
864 panic("tcp_respond: address family mismatch");
865 #endif
866 }
867 #endif
868 else
869 ro = NULL;
870
871 switch (family) {
872 #ifdef INET
873 case AF_INET:
874 error = ip_output(m, NULL, ro,
875 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
876 (struct ip_moptions *)0, so);
877 break;
878 #endif
879 #ifdef INET6
880 case AF_INET6:
881 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
882 (struct ip6_moptions *)0, so, NULL);
883 break;
884 #endif
885 default:
886 error = EAFNOSUPPORT;
887 break;
888 }
889
890 return (error);
891 }
892
893 /*
894 * Create a new TCP control block, making an
895 * empty reassembly queue and hooking it to the argument
896 * protocol control block.
897 */
898 struct tcpcb *
899 tcp_newtcpcb(family, aux)
900 int family; /* selects inpcb, or in6pcb */
901 void *aux;
902 {
903 struct tcpcb *tp;
904 int i;
905
906 switch (family) {
907 case PF_INET:
908 break;
909 #ifdef INET6
910 case PF_INET6:
911 break;
912 #endif
913 default:
914 return NULL;
915 }
916
917 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
918 if (tp == NULL)
919 return (NULL);
920 bzero((caddr_t)tp, sizeof(struct tcpcb));
921 TAILQ_INIT(&tp->segq);
922 TAILQ_INIT(&tp->timeq);
923 tp->t_family = family; /* may be overridden later on */
924 tp->t_peermss = tcp_mssdflt;
925 tp->t_ourmss = tcp_mssdflt;
926 tp->t_segsz = tcp_mssdflt;
927 LIST_INIT(&tp->t_sc);
928
929 tp->t_lastm = NULL;
930 tp->t_lastoff = 0;
931
932 callout_init(&tp->t_delack_ch);
933 for (i = 0; i < TCPT_NTIMERS; i++)
934 TCP_TIMER_INIT(tp, i);
935
936 tp->t_flags = 0;
937 if (tcp_do_rfc1323 && tcp_do_win_scale)
938 tp->t_flags |= TF_REQ_SCALE;
939 if (tcp_do_rfc1323 && tcp_do_timestamps)
940 tp->t_flags |= TF_REQ_TSTMP;
941 if (tcp_do_sack == 2)
942 tp->t_flags |= TF_WILL_SACK;
943 else if (tcp_do_sack == 1)
944 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
945 tp->t_flags |= TF_CANT_TXSACK;
946 switch (family) {
947 case PF_INET:
948 tp->t_inpcb = (struct inpcb *)aux;
949 tp->t_mtudisc = ip_mtudisc;
950 break;
951 #ifdef INET6
952 case PF_INET6:
953 tp->t_in6pcb = (struct in6pcb *)aux;
954 /* for IPv6, always try to run path MTU discovery */
955 tp->t_mtudisc = 1;
956 break;
957 #endif
958 }
959 /*
960 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
961 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
962 * reasonable initial retransmit time.
963 */
964 tp->t_srtt = TCPTV_SRTTBASE;
965 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
966 tp->t_rttmin = TCPTV_MIN;
967 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
968 TCPTV_MIN, TCPTV_REXMTMAX);
969 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
970 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
971 if (family == AF_INET) {
972 struct inpcb *inp = (struct inpcb *)aux;
973 inp->inp_ip.ip_ttl = ip_defttl;
974 inp->inp_ppcb = (caddr_t)tp;
975 }
976 #ifdef INET6
977 else if (family == AF_INET6) {
978 struct in6pcb *in6p = (struct in6pcb *)aux;
979 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
980 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
981 : NULL);
982 in6p->in6p_ppcb = (caddr_t)tp;
983 }
984 #endif
985
986 /*
987 * Initialize our timebase. When we send timestamps, we take
988 * the delta from tcp_now -- this means each connection always
989 * gets a timebase of 0, which makes it, among other things,
990 * more difficult to determine how long a system has been up,
991 * and thus how many TCP sequence increments have occurred.
992 */
993 tp->ts_timebase = tcp_now;
994
995 return (tp);
996 }
997
998 /*
999 * Drop a TCP connection, reporting
1000 * the specified error. If connection is synchronized,
1001 * then send a RST to peer.
1002 */
1003 struct tcpcb *
1004 tcp_drop(tp, errno)
1005 struct tcpcb *tp;
1006 int errno;
1007 {
1008 struct socket *so = NULL;
1009
1010 #ifdef DIAGNOSTIC
1011 if (tp->t_inpcb && tp->t_in6pcb)
1012 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1013 #endif
1014 #ifdef INET
1015 if (tp->t_inpcb)
1016 so = tp->t_inpcb->inp_socket;
1017 #endif
1018 #ifdef INET6
1019 if (tp->t_in6pcb)
1020 so = tp->t_in6pcb->in6p_socket;
1021 #endif
1022 if (!so)
1023 return NULL;
1024
1025 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1026 tp->t_state = TCPS_CLOSED;
1027 (void) tcp_output(tp);
1028 tcpstat.tcps_drops++;
1029 } else
1030 tcpstat.tcps_conndrops++;
1031 if (errno == ETIMEDOUT && tp->t_softerror)
1032 errno = tp->t_softerror;
1033 so->so_error = errno;
1034 return (tcp_close(tp));
1035 }
1036
1037 /*
1038 * Return whether this tcpcb is marked as dead, indicating
1039 * to the calling timer function that no further action should
1040 * be taken, as we are about to release this tcpcb. The release
1041 * of the storage will be done if this is the last timer running.
1042 *
1043 * This is typically called from the callout handler function before
1044 * callout_ack() is done, therefore we need to test the number of
1045 * running timer functions against 1 below, not 0.
1046 */
1047 int
1048 tcp_isdead(tp)
1049 struct tcpcb *tp;
1050 {
1051 int dead = (tp->t_flags & TF_DEAD);
1052
1053 if (__predict_false(dead)) {
1054 if (tcp_timers_invoking(tp) > 1)
1055 /* not quite there yet -- count separately? */
1056 return dead;
1057 tcpstat.tcps_delayed_free++;
1058 pool_put(&tcpcb_pool, tp);
1059 }
1060 return dead;
1061 }
1062
1063 /*
1064 * Close a TCP control block:
1065 * discard all space held by the tcp
1066 * discard internet protocol block
1067 * wake up any sleepers
1068 */
1069 struct tcpcb *
1070 tcp_close(tp)
1071 struct tcpcb *tp;
1072 {
1073 struct inpcb *inp;
1074 #ifdef INET6
1075 struct in6pcb *in6p;
1076 #endif
1077 struct socket *so;
1078 #ifdef RTV_RTT
1079 struct rtentry *rt;
1080 #endif
1081 struct route *ro;
1082
1083 inp = tp->t_inpcb;
1084 #ifdef INET6
1085 in6p = tp->t_in6pcb;
1086 #endif
1087 so = NULL;
1088 ro = NULL;
1089 if (inp) {
1090 so = inp->inp_socket;
1091 ro = &inp->inp_route;
1092 }
1093 #ifdef INET6
1094 else if (in6p) {
1095 so = in6p->in6p_socket;
1096 ro = (struct route *)&in6p->in6p_route;
1097 }
1098 #endif
1099
1100 #ifdef RTV_RTT
1101 /*
1102 * If we sent enough data to get some meaningful characteristics,
1103 * save them in the routing entry. 'Enough' is arbitrarily
1104 * defined as the sendpipesize (default 4K) * 16. This would
1105 * give us 16 rtt samples assuming we only get one sample per
1106 * window (the usual case on a long haul net). 16 samples is
1107 * enough for the srtt filter to converge to within 5% of the correct
1108 * value; fewer samples and we could save a very bogus rtt.
1109 *
1110 * Don't update the default route's characteristics and don't
1111 * update anything that the user "locked".
1112 */
1113 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1114 ro && (rt = ro->ro_rt) &&
1115 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1116 u_long i = 0;
1117
1118 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1119 i = tp->t_srtt *
1120 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1121 if (rt->rt_rmx.rmx_rtt && i)
1122 /*
1123 * filter this update to half the old & half
1124 * the new values, converting scale.
1125 * See route.h and tcp_var.h for a
1126 * description of the scaling constants.
1127 */
1128 rt->rt_rmx.rmx_rtt =
1129 (rt->rt_rmx.rmx_rtt + i) / 2;
1130 else
1131 rt->rt_rmx.rmx_rtt = i;
1132 }
1133 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1134 i = tp->t_rttvar *
1135 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1136 if (rt->rt_rmx.rmx_rttvar && i)
1137 rt->rt_rmx.rmx_rttvar =
1138 (rt->rt_rmx.rmx_rttvar + i) / 2;
1139 else
1140 rt->rt_rmx.rmx_rttvar = i;
1141 }
1142 /*
1143 * update the pipelimit (ssthresh) if it has been updated
1144 * already or if a pipesize was specified & the threshhold
1145 * got below half the pipesize. I.e., wait for bad news
1146 * before we start updating, then update on both good
1147 * and bad news.
1148 */
1149 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1150 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1151 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1152 /*
1153 * convert the limit from user data bytes to
1154 * packets then to packet data bytes.
1155 */
1156 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1157 if (i < 2)
1158 i = 2;
1159 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1160 if (rt->rt_rmx.rmx_ssthresh)
1161 rt->rt_rmx.rmx_ssthresh =
1162 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1163 else
1164 rt->rt_rmx.rmx_ssthresh = i;
1165 }
1166 }
1167 #endif /* RTV_RTT */
1168 /* free the reassembly queue, if any */
1169 TCP_REASS_LOCK(tp);
1170 (void) tcp_freeq(tp);
1171 TCP_REASS_UNLOCK(tp);
1172
1173 tcp_canceltimers(tp);
1174 TCP_CLEAR_DELACK(tp);
1175 syn_cache_cleanup(tp);
1176
1177 if (tp->t_template) {
1178 m_free(tp->t_template);
1179 tp->t_template = NULL;
1180 }
1181 if (tcp_timers_invoking(tp))
1182 tp->t_flags |= TF_DEAD;
1183 else
1184 pool_put(&tcpcb_pool, tp);
1185
1186 if (inp) {
1187 inp->inp_ppcb = 0;
1188 soisdisconnected(so);
1189 in_pcbdetach(inp);
1190 }
1191 #ifdef INET6
1192 else if (in6p) {
1193 in6p->in6p_ppcb = 0;
1194 soisdisconnected(so);
1195 in6_pcbdetach(in6p);
1196 }
1197 #endif
1198 tcpstat.tcps_closed++;
1199 return ((struct tcpcb *)0);
1200 }
1201
1202 int
1203 tcp_freeq(tp)
1204 struct tcpcb *tp;
1205 {
1206 struct ipqent *qe;
1207 int rv = 0;
1208 #ifdef TCPREASS_DEBUG
1209 int i = 0;
1210 #endif
1211
1212 TCP_REASS_LOCK_CHECK(tp);
1213
1214 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1215 #ifdef TCPREASS_DEBUG
1216 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1217 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1218 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1219 #endif
1220 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1221 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1222 m_freem(qe->ipqe_m);
1223 pool_put(&ipqent_pool, qe);
1224 rv = 1;
1225 }
1226 return (rv);
1227 }
1228
1229 /*
1230 * Protocol drain routine. Called when memory is in short supply.
1231 */
1232 void
1233 tcp_drain()
1234 {
1235 struct inpcb *inp;
1236 struct tcpcb *tp;
1237
1238 /*
1239 * Free the sequence queue of all TCP connections.
1240 */
1241 inp = CIRCLEQ_FIRST(&tcbtable.inpt_queue);
1242 if (inp) /* XXX */
1243 CIRCLEQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue) {
1244 if ((tp = intotcpcb(inp)) != NULL) {
1245 /*
1246 * We may be called from a device's interrupt
1247 * context. If the tcpcb is already busy,
1248 * just bail out now.
1249 */
1250 if (tcp_reass_lock_try(tp) == 0)
1251 continue;
1252 if (tcp_freeq(tp))
1253 tcpstat.tcps_connsdrained++;
1254 TCP_REASS_UNLOCK(tp);
1255 }
1256 }
1257 }
1258
1259 #ifdef INET6
1260 void
1261 tcp6_drain()
1262 {
1263 struct in6pcb *in6p;
1264 struct tcpcb *tp;
1265 struct in6pcb *head = &tcb6;
1266
1267 /*
1268 * Free the sequence queue of all TCP connections.
1269 */
1270 for (in6p = head->in6p_next; in6p != head; in6p = in6p->in6p_next) {
1271 if ((tp = in6totcpcb(in6p)) != NULL) {
1272 /*
1273 * We may be called from a device's interrupt
1274 * context. If the tcpcb is already busy,
1275 * just bail out now.
1276 */
1277 if (tcp_reass_lock_try(tp) == 0)
1278 continue;
1279 if (tcp_freeq(tp))
1280 tcpstat.tcps_connsdrained++;
1281 TCP_REASS_UNLOCK(tp);
1282 }
1283 }
1284 }
1285 #endif
1286
1287 /*
1288 * Notify a tcp user of an asynchronous error;
1289 * store error as soft error, but wake up user
1290 * (for now, won't do anything until can select for soft error).
1291 */
1292 void
1293 tcp_notify(inp, error)
1294 struct inpcb *inp;
1295 int error;
1296 {
1297 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1298 struct socket *so = inp->inp_socket;
1299
1300 /*
1301 * Ignore some errors if we are hooked up.
1302 * If connection hasn't completed, has retransmitted several times,
1303 * and receives a second error, give up now. This is better
1304 * than waiting a long time to establish a connection that
1305 * can never complete.
1306 */
1307 if (tp->t_state == TCPS_ESTABLISHED &&
1308 (error == EHOSTUNREACH || error == ENETUNREACH ||
1309 error == EHOSTDOWN)) {
1310 return;
1311 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1312 tp->t_rxtshift > 3 && tp->t_softerror)
1313 so->so_error = error;
1314 else
1315 tp->t_softerror = error;
1316 wakeup((caddr_t) &so->so_timeo);
1317 sorwakeup(so);
1318 sowwakeup(so);
1319 }
1320
1321 #ifdef INET6
1322 void
1323 tcp6_notify(in6p, error)
1324 struct in6pcb *in6p;
1325 int error;
1326 {
1327 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1328 struct socket *so = in6p->in6p_socket;
1329
1330 /*
1331 * Ignore some errors if we are hooked up.
1332 * If connection hasn't completed, has retransmitted several times,
1333 * and receives a second error, give up now. This is better
1334 * than waiting a long time to establish a connection that
1335 * can never complete.
1336 */
1337 if (tp->t_state == TCPS_ESTABLISHED &&
1338 (error == EHOSTUNREACH || error == ENETUNREACH ||
1339 error == EHOSTDOWN)) {
1340 return;
1341 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1342 tp->t_rxtshift > 3 && tp->t_softerror)
1343 so->so_error = error;
1344 else
1345 tp->t_softerror = error;
1346 wakeup((caddr_t) &so->so_timeo);
1347 sorwakeup(so);
1348 sowwakeup(so);
1349 }
1350 #endif
1351
1352 #ifdef INET6
1353 void
1354 tcp6_ctlinput(cmd, sa, d)
1355 int cmd;
1356 struct sockaddr *sa;
1357 void *d;
1358 {
1359 struct tcphdr th;
1360 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1361 int nmatch;
1362 struct ip6_hdr *ip6;
1363 const struct sockaddr_in6 *sa6_src = NULL;
1364 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1365 struct mbuf *m;
1366 int off;
1367
1368 if (sa->sa_family != AF_INET6 ||
1369 sa->sa_len != sizeof(struct sockaddr_in6))
1370 return;
1371 if ((unsigned)cmd >= PRC_NCMDS)
1372 return;
1373 else if (cmd == PRC_QUENCH) {
1374 /* XXX there's no PRC_QUENCH in IPv6 */
1375 notify = tcp6_quench;
1376 } else if (PRC_IS_REDIRECT(cmd))
1377 notify = in6_rtchange, d = NULL;
1378 else if (cmd == PRC_MSGSIZE)
1379 ; /* special code is present, see below */
1380 else if (cmd == PRC_HOSTDEAD)
1381 d = NULL;
1382 else if (inet6ctlerrmap[cmd] == 0)
1383 return;
1384
1385 /* if the parameter is from icmp6, decode it. */
1386 if (d != NULL) {
1387 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1388 m = ip6cp->ip6c_m;
1389 ip6 = ip6cp->ip6c_ip6;
1390 off = ip6cp->ip6c_off;
1391 sa6_src = ip6cp->ip6c_src;
1392 } else {
1393 m = NULL;
1394 ip6 = NULL;
1395 sa6_src = &sa6_any;
1396 }
1397
1398 if (ip6) {
1399 /*
1400 * XXX: We assume that when ip6 is non NULL,
1401 * M and OFF are valid.
1402 */
1403
1404 /* check if we can safely examine src and dst ports */
1405 if (m->m_pkthdr.len < off + sizeof(th)) {
1406 if (cmd == PRC_MSGSIZE)
1407 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1408 return;
1409 }
1410
1411 bzero(&th, sizeof(th));
1412 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1413
1414 if (cmd == PRC_MSGSIZE) {
1415 int valid = 0;
1416
1417 /*
1418 * Check to see if we have a valid TCP connection
1419 * corresponding to the address in the ICMPv6 message
1420 * payload.
1421 */
1422 if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
1423 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1424 th.th_sport, 0))
1425 valid++;
1426
1427 /*
1428 * Depending on the value of "valid" and routing table
1429 * size (mtudisc_{hi,lo}wat), we will:
1430 * - recalcurate the new MTU and create the
1431 * corresponding routing entry, or
1432 * - ignore the MTU change notification.
1433 */
1434 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1435
1436 /*
1437 * no need to call in6_pcbnotify, it should have been
1438 * called via callback if necessary
1439 */
1440 return;
1441 }
1442
1443 nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
1444 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1445 if (nmatch == 0 && syn_cache_count &&
1446 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1447 inet6ctlerrmap[cmd] == ENETUNREACH ||
1448 inet6ctlerrmap[cmd] == EHOSTDOWN))
1449 syn_cache_unreach((struct sockaddr *)sa6_src,
1450 sa, &th);
1451 } else {
1452 (void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
1453 0, cmd, NULL, notify);
1454 }
1455 }
1456 #endif
1457
1458 #ifdef INET
1459 /* assumes that ip header and tcp header are contiguous on mbuf */
1460 void *
1461 tcp_ctlinput(cmd, sa, v)
1462 int cmd;
1463 struct sockaddr *sa;
1464 void *v;
1465 {
1466 struct ip *ip = v;
1467 struct tcphdr *th;
1468 struct icmp *icp;
1469 extern const int inetctlerrmap[];
1470 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1471 int errno;
1472 int nmatch;
1473 #ifdef INET6
1474 struct in6_addr src6, dst6;
1475 #endif
1476
1477 if (sa->sa_family != AF_INET ||
1478 sa->sa_len != sizeof(struct sockaddr_in))
1479 return NULL;
1480 if ((unsigned)cmd >= PRC_NCMDS)
1481 return NULL;
1482 errno = inetctlerrmap[cmd];
1483 if (cmd == PRC_QUENCH)
1484 notify = tcp_quench;
1485 else if (PRC_IS_REDIRECT(cmd))
1486 notify = in_rtchange, ip = 0;
1487 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1488 /*
1489 * Check to see if we have a valid TCP connection
1490 * corresponding to the address in the ICMP message
1491 * payload.
1492 *
1493 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1494 */
1495 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1496 #ifdef INET6
1497 memset(&src6, 0, sizeof(src6));
1498 memset(&dst6, 0, sizeof(dst6));
1499 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1500 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1501 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1502 #endif
1503 if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
1504 ip->ip_src, th->th_sport) != NULL)
1505 ;
1506 #ifdef INET6
1507 else if (in6_pcblookup_connect(&tcb6, &dst6,
1508 th->th_dport, &src6, th->th_sport, 0) != NULL)
1509 ;
1510 #endif
1511 else
1512 return NULL;
1513
1514 /*
1515 * Now that we've validated that we are actually communicating
1516 * with the host indicated in the ICMP message, locate the
1517 * ICMP header, recalculate the new MTU, and create the
1518 * corresponding routing entry.
1519 */
1520 icp = (struct icmp *)((caddr_t)ip -
1521 offsetof(struct icmp, icmp_ip));
1522 icmp_mtudisc(icp, ip->ip_dst);
1523
1524 return NULL;
1525 } else if (cmd == PRC_HOSTDEAD)
1526 ip = 0;
1527 else if (errno == 0)
1528 return NULL;
1529 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1530 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1531 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1532 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1533 if (nmatch == 0 && syn_cache_count &&
1534 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1535 inetctlerrmap[cmd] == ENETUNREACH ||
1536 inetctlerrmap[cmd] == EHOSTDOWN)) {
1537 struct sockaddr_in sin;
1538 bzero(&sin, sizeof(sin));
1539 sin.sin_len = sizeof(sin);
1540 sin.sin_family = AF_INET;
1541 sin.sin_port = th->th_sport;
1542 sin.sin_addr = ip->ip_src;
1543 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1544 }
1545
1546 /* XXX mapped address case */
1547 } else
1548 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1549 notify);
1550 return NULL;
1551 }
1552
1553 /*
1554 * When a source quence is received, we are being notifed of congestion.
1555 * Close the congestion window down to the Loss Window (one segment).
1556 * We will gradually open it again as we proceed.
1557 */
1558 void
1559 tcp_quench(inp, errno)
1560 struct inpcb *inp;
1561 int errno;
1562 {
1563 struct tcpcb *tp = intotcpcb(inp);
1564
1565 if (tp)
1566 tp->snd_cwnd = tp->t_segsz;
1567 }
1568 #endif
1569
1570 #ifdef INET6
1571 void
1572 tcp6_quench(in6p, errno)
1573 struct in6pcb *in6p;
1574 int errno;
1575 {
1576 struct tcpcb *tp = in6totcpcb(in6p);
1577
1578 if (tp)
1579 tp->snd_cwnd = tp->t_segsz;
1580 }
1581 #endif
1582
1583 #ifdef INET
1584 /*
1585 * Path MTU Discovery handlers.
1586 */
1587 void
1588 tcp_mtudisc_callback(faddr)
1589 struct in_addr faddr;
1590 {
1591 #ifdef INET6
1592 struct in6_addr in6;
1593 #endif
1594
1595 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1596 #ifdef INET6
1597 memset(&in6, 0, sizeof(in6));
1598 in6.s6_addr16[5] = 0xffff;
1599 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1600 tcp6_mtudisc_callback(&in6);
1601 #endif
1602 }
1603
1604 /*
1605 * On receipt of path MTU corrections, flush old route and replace it
1606 * with the new one. Retransmit all unacknowledged packets, to ensure
1607 * that all packets will be received.
1608 */
1609 void
1610 tcp_mtudisc(inp, errno)
1611 struct inpcb *inp;
1612 int errno;
1613 {
1614 struct tcpcb *tp = intotcpcb(inp);
1615 struct rtentry *rt = in_pcbrtentry(inp);
1616
1617 if (tp != 0) {
1618 if (rt != 0) {
1619 /*
1620 * If this was not a host route, remove and realloc.
1621 */
1622 if ((rt->rt_flags & RTF_HOST) == 0) {
1623 in_rtchange(inp, errno);
1624 if ((rt = in_pcbrtentry(inp)) == 0)
1625 return;
1626 }
1627
1628 /*
1629 * Slow start out of the error condition. We
1630 * use the MTU because we know it's smaller
1631 * than the previously transmitted segment.
1632 *
1633 * Note: This is more conservative than the
1634 * suggestion in draft-floyd-incr-init-win-03.
1635 */
1636 if (rt->rt_rmx.rmx_mtu != 0)
1637 tp->snd_cwnd =
1638 TCP_INITIAL_WINDOW(tcp_init_win,
1639 rt->rt_rmx.rmx_mtu);
1640 }
1641
1642 /*
1643 * Resend unacknowledged packets.
1644 */
1645 tp->snd_nxt = tp->snd_una;
1646 tcp_output(tp);
1647 }
1648 }
1649 #endif
1650
1651 #ifdef INET6
1652 /*
1653 * Path MTU Discovery handlers.
1654 */
1655 void
1656 tcp6_mtudisc_callback(faddr)
1657 struct in6_addr *faddr;
1658 {
1659 struct sockaddr_in6 sin6;
1660
1661 bzero(&sin6, sizeof(sin6));
1662 sin6.sin6_family = AF_INET6;
1663 sin6.sin6_len = sizeof(struct sockaddr_in6);
1664 sin6.sin6_addr = *faddr;
1665 (void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
1666 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1667 }
1668
1669 void
1670 tcp6_mtudisc(in6p, errno)
1671 struct in6pcb *in6p;
1672 int errno;
1673 {
1674 struct tcpcb *tp = in6totcpcb(in6p);
1675 struct rtentry *rt = in6_pcbrtentry(in6p);
1676
1677 if (tp != 0) {
1678 if (rt != 0) {
1679 /*
1680 * If this was not a host route, remove and realloc.
1681 */
1682 if ((rt->rt_flags & RTF_HOST) == 0) {
1683 in6_rtchange(in6p, errno);
1684 if ((rt = in6_pcbrtentry(in6p)) == 0)
1685 return;
1686 }
1687
1688 /*
1689 * Slow start out of the error condition. We
1690 * use the MTU because we know it's smaller
1691 * than the previously transmitted segment.
1692 *
1693 * Note: This is more conservative than the
1694 * suggestion in draft-floyd-incr-init-win-03.
1695 */
1696 if (rt->rt_rmx.rmx_mtu != 0)
1697 tp->snd_cwnd =
1698 TCP_INITIAL_WINDOW(tcp_init_win,
1699 rt->rt_rmx.rmx_mtu);
1700 }
1701
1702 /*
1703 * Resend unacknowledged packets.
1704 */
1705 tp->snd_nxt = tp->snd_una;
1706 tcp_output(tp);
1707 }
1708 }
1709 #endif /* INET6 */
1710
1711 /*
1712 * Compute the MSS to advertise to the peer. Called only during
1713 * the 3-way handshake. If we are the server (peer initiated
1714 * connection), we are called with a pointer to the interface
1715 * on which the SYN packet arrived. If we are the client (we
1716 * initiated connection), we are called with a pointer to the
1717 * interface out which this connection should go.
1718 *
1719 * NOTE: Do not subtract IP option/extension header size nor IPsec
1720 * header size from MSS advertisement. MSS option must hold the maximum
1721 * segment size we can accept, so it must always be:
1722 * max(if mtu) - ip header - tcp header
1723 */
1724 u_long
1725 tcp_mss_to_advertise(ifp, af)
1726 const struct ifnet *ifp;
1727 int af;
1728 {
1729 extern u_long in_maxmtu;
1730 u_long mss = 0;
1731 u_long hdrsiz;
1732
1733 /*
1734 * In order to avoid defeating path MTU discovery on the peer,
1735 * we advertise the max MTU of all attached networks as our MSS,
1736 * per RFC 1191, section 3.1.
1737 *
1738 * We provide the option to advertise just the MTU of
1739 * the interface on which we hope this connection will
1740 * be receiving. If we are responding to a SYN, we
1741 * will have a pretty good idea about this, but when
1742 * initiating a connection there is a bit more doubt.
1743 *
1744 * We also need to ensure that loopback has a large enough
1745 * MSS, as the loopback MTU is never included in in_maxmtu.
1746 */
1747
1748 if (ifp != NULL)
1749 switch (af) {
1750 case AF_INET:
1751 mss = ifp->if_mtu;
1752 break;
1753 #ifdef INET6
1754 case AF_INET6:
1755 mss = IN6_LINKMTU(ifp);
1756 break;
1757 #endif
1758 }
1759
1760 if (tcp_mss_ifmtu == 0)
1761 switch (af) {
1762 case AF_INET:
1763 mss = max(in_maxmtu, mss);
1764 break;
1765 #ifdef INET6
1766 case AF_INET6:
1767 mss = max(in6_maxmtu, mss);
1768 break;
1769 #endif
1770 }
1771
1772 switch (af) {
1773 case AF_INET:
1774 hdrsiz = sizeof(struct ip);
1775 break;
1776 #ifdef INET6
1777 case AF_INET6:
1778 hdrsiz = sizeof(struct ip6_hdr);
1779 break;
1780 #endif
1781 default:
1782 hdrsiz = 0;
1783 break;
1784 }
1785 hdrsiz += sizeof(struct tcphdr);
1786 if (mss > hdrsiz)
1787 mss -= hdrsiz;
1788
1789 mss = max(tcp_mssdflt, mss);
1790 return (mss);
1791 }
1792
1793 /*
1794 * Set connection variables based on the peer's advertised MSS.
1795 * We are passed the TCPCB for the actual connection. If we
1796 * are the server, we are called by the compressed state engine
1797 * when the 3-way handshake is complete. If we are the client,
1798 * we are called when we receive the SYN,ACK from the server.
1799 *
1800 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1801 * before this routine is called!
1802 */
1803 void
1804 tcp_mss_from_peer(tp, offer)
1805 struct tcpcb *tp;
1806 int offer;
1807 {
1808 struct socket *so;
1809 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1810 struct rtentry *rt;
1811 #endif
1812 u_long bufsize;
1813 int mss;
1814
1815 #ifdef DIAGNOSTIC
1816 if (tp->t_inpcb && tp->t_in6pcb)
1817 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1818 #endif
1819 so = NULL;
1820 rt = NULL;
1821 #ifdef INET
1822 if (tp->t_inpcb) {
1823 so = tp->t_inpcb->inp_socket;
1824 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1825 rt = in_pcbrtentry(tp->t_inpcb);
1826 #endif
1827 }
1828 #endif
1829 #ifdef INET6
1830 if (tp->t_in6pcb) {
1831 so = tp->t_in6pcb->in6p_socket;
1832 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1833 rt = in6_pcbrtentry(tp->t_in6pcb);
1834 #endif
1835 }
1836 #endif
1837
1838 /*
1839 * As per RFC1122, use the default MSS value, unless they
1840 * sent us an offer. Do not accept offers less than 32 bytes.
1841 */
1842 mss = tcp_mssdflt;
1843 if (offer)
1844 mss = offer;
1845 mss = max(mss, 32); /* sanity */
1846 tp->t_peermss = mss;
1847 mss -= tcp_optlen(tp);
1848 #ifdef INET
1849 if (tp->t_inpcb)
1850 mss -= ip_optlen(tp->t_inpcb);
1851 #endif
1852 #ifdef INET6
1853 if (tp->t_in6pcb)
1854 mss -= ip6_optlen(tp->t_in6pcb);
1855 #endif
1856
1857 /*
1858 * If there's a pipesize, change the socket buffer to that size.
1859 * Make the socket buffer an integral number of MSS units. If
1860 * the MSS is larger than the socket buffer, artificially decrease
1861 * the MSS.
1862 */
1863 #ifdef RTV_SPIPE
1864 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1865 bufsize = rt->rt_rmx.rmx_sendpipe;
1866 else
1867 #endif
1868 bufsize = so->so_snd.sb_hiwat;
1869 if (bufsize < mss)
1870 mss = bufsize;
1871 else {
1872 bufsize = roundup(bufsize, mss);
1873 if (bufsize > sb_max)
1874 bufsize = sb_max;
1875 (void) sbreserve(&so->so_snd, bufsize);
1876 }
1877 tp->t_segsz = mss;
1878
1879 #ifdef RTV_SSTHRESH
1880 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1881 /*
1882 * There's some sort of gateway or interface buffer
1883 * limit on the path. Use this to set the slow
1884 * start threshold, but set the threshold to no less
1885 * than 2 * MSS.
1886 */
1887 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1888 }
1889 #endif
1890 }
1891
1892 /*
1893 * Processing necessary when a TCP connection is established.
1894 */
1895 void
1896 tcp_established(tp)
1897 struct tcpcb *tp;
1898 {
1899 struct socket *so;
1900 #ifdef RTV_RPIPE
1901 struct rtentry *rt;
1902 #endif
1903 u_long bufsize;
1904
1905 #ifdef DIAGNOSTIC
1906 if (tp->t_inpcb && tp->t_in6pcb)
1907 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1908 #endif
1909 so = NULL;
1910 rt = NULL;
1911 #ifdef INET
1912 if (tp->t_inpcb) {
1913 so = tp->t_inpcb->inp_socket;
1914 #if defined(RTV_RPIPE)
1915 rt = in_pcbrtentry(tp->t_inpcb);
1916 #endif
1917 }
1918 #endif
1919 #ifdef INET6
1920 if (tp->t_in6pcb) {
1921 so = tp->t_in6pcb->in6p_socket;
1922 #if defined(RTV_RPIPE)
1923 rt = in6_pcbrtentry(tp->t_in6pcb);
1924 #endif
1925 }
1926 #endif
1927
1928 tp->t_state = TCPS_ESTABLISHED;
1929 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1930
1931 #ifdef RTV_RPIPE
1932 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1933 bufsize = rt->rt_rmx.rmx_recvpipe;
1934 else
1935 #endif
1936 bufsize = so->so_rcv.sb_hiwat;
1937 if (bufsize > tp->t_ourmss) {
1938 bufsize = roundup(bufsize, tp->t_ourmss);
1939 if (bufsize > sb_max)
1940 bufsize = sb_max;
1941 (void) sbreserve(&so->so_rcv, bufsize);
1942 }
1943 }
1944
1945 /*
1946 * Check if there's an initial rtt or rttvar. Convert from the
1947 * route-table units to scaled multiples of the slow timeout timer.
1948 * Called only during the 3-way handshake.
1949 */
1950 void
1951 tcp_rmx_rtt(tp)
1952 struct tcpcb *tp;
1953 {
1954 #ifdef RTV_RTT
1955 struct rtentry *rt = NULL;
1956 int rtt;
1957
1958 #ifdef DIAGNOSTIC
1959 if (tp->t_inpcb && tp->t_in6pcb)
1960 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1961 #endif
1962 #ifdef INET
1963 if (tp->t_inpcb)
1964 rt = in_pcbrtentry(tp->t_inpcb);
1965 #endif
1966 #ifdef INET6
1967 if (tp->t_in6pcb)
1968 rt = in6_pcbrtentry(tp->t_in6pcb);
1969 #endif
1970 if (rt == NULL)
1971 return;
1972
1973 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1974 /*
1975 * XXX The lock bit for MTU indicates that the value
1976 * is also a minimum value; this is subject to time.
1977 */
1978 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1979 TCPT_RANGESET(tp->t_rttmin,
1980 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1981 TCPTV_MIN, TCPTV_REXMTMAX);
1982 tp->t_srtt = rtt /
1983 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1984 if (rt->rt_rmx.rmx_rttvar) {
1985 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1986 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1987 (TCP_RTTVAR_SHIFT + 2));
1988 } else {
1989 /* Default variation is +- 1 rtt */
1990 tp->t_rttvar =
1991 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1992 }
1993 TCPT_RANGESET(tp->t_rxtcur,
1994 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1995 tp->t_rttmin, TCPTV_REXMTMAX);
1996 }
1997 #endif
1998 }
1999
2000 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2001 #if NRND > 0
2002 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2003 #endif
2004
2005 /*
2006 * Get a new sequence value given a tcp control block
2007 */
2008 tcp_seq
2009 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2010 {
2011
2012 #ifdef INET
2013 if (tp->t_inpcb != NULL) {
2014 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2015 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2016 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2017 addin));
2018 }
2019 #endif
2020 #ifdef INET6
2021 if (tp->t_in6pcb != NULL) {
2022 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2023 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2024 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2025 addin));
2026 }
2027 #endif
2028 /* Not possible. */
2029 panic("tcp_new_iss");
2030 }
2031
2032 /*
2033 * This routine actually generates a new TCP initial sequence number.
2034 */
2035 tcp_seq
2036 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2037 size_t addrsz, tcp_seq addin)
2038 {
2039 tcp_seq tcp_iss;
2040
2041 #if NRND > 0
2042 static int beenhere;
2043
2044 /*
2045 * If we haven't been here before, initialize our cryptographic
2046 * hash secret.
2047 */
2048 if (beenhere == 0) {
2049 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2050 RND_EXTRACT_ANY);
2051 beenhere = 1;
2052 }
2053
2054 if (tcp_do_rfc1948) {
2055 MD5_CTX ctx;
2056 u_int8_t hash[16]; /* XXX MD5 knowledge */
2057
2058 /*
2059 * Compute the base value of the ISS. It is a hash
2060 * of (saddr, sport, daddr, dport, secret).
2061 */
2062 MD5Init(&ctx);
2063
2064 MD5Update(&ctx, (u_char *) laddr, addrsz);
2065 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2066
2067 MD5Update(&ctx, (u_char *) faddr, addrsz);
2068 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2069
2070 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2071
2072 MD5Final(hash, &ctx);
2073
2074 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2075
2076 /*
2077 * Now increment our "timer", and add it in to
2078 * the computed value.
2079 *
2080 * XXX Use `addin'?
2081 * XXX TCP_ISSINCR too large to use?
2082 */
2083 tcp_iss_seq += TCP_ISSINCR;
2084 #ifdef TCPISS_DEBUG
2085 printf("ISS hash 0x%08x, ", tcp_iss);
2086 #endif
2087 tcp_iss += tcp_iss_seq + addin;
2088 #ifdef TCPISS_DEBUG
2089 printf("new ISS 0x%08x\n", tcp_iss);
2090 #endif
2091 } else
2092 #endif /* NRND > 0 */
2093 {
2094 /*
2095 * Randomize.
2096 */
2097 #if NRND > 0
2098 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2099 #else
2100 tcp_iss = arc4random();
2101 #endif
2102
2103 /*
2104 * If we were asked to add some amount to a known value,
2105 * we will take a random value obtained above, mask off
2106 * the upper bits, and add in the known value. We also
2107 * add in a constant to ensure that we are at least a
2108 * certain distance from the original value.
2109 *
2110 * This is used when an old connection is in timed wait
2111 * and we have a new one coming in, for instance.
2112 */
2113 if (addin != 0) {
2114 #ifdef TCPISS_DEBUG
2115 printf("Random %08x, ", tcp_iss);
2116 #endif
2117 tcp_iss &= TCP_ISS_RANDOM_MASK;
2118 tcp_iss += addin + TCP_ISSINCR;
2119 #ifdef TCPISS_DEBUG
2120 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2121 #endif
2122 } else {
2123 tcp_iss &= TCP_ISS_RANDOM_MASK;
2124 tcp_iss += tcp_iss_seq;
2125 tcp_iss_seq += TCP_ISSINCR;
2126 #ifdef TCPISS_DEBUG
2127 printf("ISS %08x\n", tcp_iss);
2128 #endif
2129 }
2130 }
2131
2132 if (tcp_compat_42) {
2133 /*
2134 * Limit it to the positive range for really old TCP
2135 * implementations.
2136 * Just AND off the top bit instead of checking if
2137 * is set first - saves a branch 50% of the time.
2138 */
2139 tcp_iss &= 0x7fffffff; /* XXX */
2140 }
2141
2142 return (tcp_iss);
2143 }
2144
2145 #if defined(IPSEC) || defined(FAST_IPSEC)
2146 /* compute ESP/AH header size for TCP, including outer IP header. */
2147 size_t
2148 ipsec4_hdrsiz_tcp(tp)
2149 struct tcpcb *tp;
2150 {
2151 struct inpcb *inp;
2152 size_t hdrsiz;
2153
2154 /* XXX mapped addr case (tp->t_in6pcb) */
2155 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2156 return 0;
2157 switch (tp->t_family) {
2158 case AF_INET:
2159 /* XXX: should use currect direction. */
2160 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2161 break;
2162 default:
2163 hdrsiz = 0;
2164 break;
2165 }
2166
2167 return hdrsiz;
2168 }
2169
2170 #ifdef INET6
2171 size_t
2172 ipsec6_hdrsiz_tcp(tp)
2173 struct tcpcb *tp;
2174 {
2175 struct in6pcb *in6p;
2176 size_t hdrsiz;
2177
2178 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2179 return 0;
2180 switch (tp->t_family) {
2181 case AF_INET6:
2182 /* XXX: should use currect direction. */
2183 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2184 break;
2185 case AF_INET:
2186 /* mapped address case - tricky */
2187 default:
2188 hdrsiz = 0;
2189 break;
2190 }
2191
2192 return hdrsiz;
2193 }
2194 #endif
2195 #endif /*IPSEC*/
2196
2197 /*
2198 * Determine the length of the TCP options for this connection.
2199 *
2200 * XXX: What do we do for SACK, when we add that? Just reserve
2201 * all of the space? Otherwise we can't exactly be incrementing
2202 * cwnd by an amount that varies depending on the amount we last
2203 * had to SACK!
2204 */
2205
2206 u_int
2207 tcp_optlen(tp)
2208 struct tcpcb *tp;
2209 {
2210 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2211 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2212 return TCPOLEN_TSTAMP_APPA;
2213 else
2214 return 0;
2215 }
2216