Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.148
      1 /*	$NetBSD: tcp_subr.c,v 1.148 2003/08/22 21:53:06 itojun Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.148 2003/08/22 21:53:06 itojun Exp $");
    102 
    103 #include "opt_inet.h"
    104 #include "opt_ipsec.h"
    105 #include "opt_tcp_compat_42.h"
    106 #include "opt_inet_csum.h"
    107 #include "opt_mbuftrace.h"
    108 #include "rnd.h"
    109 
    110 #include <sys/param.h>
    111 #include <sys/proc.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/socket.h>
    116 #include <sys/socketvar.h>
    117 #include <sys/protosw.h>
    118 #include <sys/errno.h>
    119 #include <sys/kernel.h>
    120 #include <sys/pool.h>
    121 #if NRND > 0
    122 #include <sys/md5.h>
    123 #include <sys/rnd.h>
    124 #endif
    125 
    126 #include <net/route.h>
    127 #include <net/if.h>
    128 
    129 #include <netinet/in.h>
    130 #include <netinet/in_systm.h>
    131 #include <netinet/ip.h>
    132 #include <netinet/in_pcb.h>
    133 #include <netinet/ip_var.h>
    134 #include <netinet/ip_icmp.h>
    135 
    136 #ifdef INET6
    137 #ifndef INET
    138 #include <netinet/in.h>
    139 #endif
    140 #include <netinet/ip6.h>
    141 #include <netinet6/in6_pcb.h>
    142 #include <netinet6/ip6_var.h>
    143 #include <netinet6/in6_var.h>
    144 #include <netinet6/ip6protosw.h>
    145 #include <netinet/icmp6.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include <netinet/tcp.h>
    150 #include <netinet/tcp_fsm.h>
    151 #include <netinet/tcp_seq.h>
    152 #include <netinet/tcp_timer.h>
    153 #include <netinet/tcp_var.h>
    154 #include <netinet/tcpip.h>
    155 
    156 #ifdef IPSEC
    157 #include <netinet6/ipsec.h>
    158 #endif /*IPSEC*/
    159 
    160 #ifdef FAST_IPSEC
    161 #include <netipsec/ipsec.h>
    162 #ifdef INET6
    163 #include <netipsec/ipsec6.h>
    164 #endif
    165 #endif	/* FAST_IPSEC*/
    166 
    167 
    168 #ifdef INET6
    169 struct in6pcb tcb6;
    170 #endif
    171 
    172 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    173 struct	tcpstat tcpstat;	/* tcp statistics */
    174 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
    175 
    176 /* patchable/settable parameters for tcp */
    177 int 	tcp_mssdflt = TCP_MSS;
    178 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    179 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    180 #if NRND > 0
    181 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    182 #endif
    183 int	tcp_do_sack = 1;	/* selective acknowledgement */
    184 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    185 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    186 int	tcp_do_newreno = 0;	/* Use the New Reno algorithms */
    187 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    188 #ifndef TCP_INIT_WIN
    189 #define	TCP_INIT_WIN	1	/* initial slow start window */
    190 #endif
    191 #ifndef TCP_INIT_WIN_LOCAL
    192 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    193 #endif
    194 int	tcp_init_win = TCP_INIT_WIN;
    195 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    196 int	tcp_mss_ifmtu = 0;
    197 #ifdef TCP_COMPAT_42
    198 int	tcp_compat_42 = 1;
    199 #else
    200 int	tcp_compat_42 = 0;
    201 #endif
    202 int	tcp_rst_ppslim = 100;	/* 100pps */
    203 
    204 /* tcb hash */
    205 #ifndef TCBHASHSIZE
    206 #define	TCBHASHSIZE	128
    207 #endif
    208 int	tcbhashsize = TCBHASHSIZE;
    209 
    210 /* syn hash parameters */
    211 #define	TCP_SYN_HASH_SIZE	293
    212 #define	TCP_SYN_BUCKET_SIZE	35
    213 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    214 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    215 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    216 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    217 
    218 int	tcp_freeq __P((struct tcpcb *));
    219 
    220 #ifdef INET
    221 void	tcp_mtudisc_callback __P((struct in_addr));
    222 #endif
    223 #ifdef INET6
    224 void	tcp6_mtudisc_callback __P((struct in6_addr *));
    225 #endif
    226 
    227 void	tcp_mtudisc __P((struct inpcb *, int));
    228 #ifdef INET6
    229 void	tcp6_mtudisc __P((struct in6pcb *, int));
    230 #endif
    231 
    232 struct pool tcpcb_pool;
    233 
    234 #ifdef TCP_CSUM_COUNTERS
    235 #include <sys/device.h>
    236 
    237 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    238     NULL, "tcp", "hwcsum bad");
    239 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    240     NULL, "tcp", "hwcsum ok");
    241 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    242     NULL, "tcp", "hwcsum data");
    243 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    244     NULL, "tcp", "swcsum");
    245 #endif /* TCP_CSUM_COUNTERS */
    246 
    247 #ifdef TCP_OUTPUT_COUNTERS
    248 #include <sys/device.h>
    249 
    250 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    251     NULL, "tcp", "output big header");
    252 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    253     NULL, "tcp", "output copy small");
    254 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    255     NULL, "tcp", "output copy big");
    256 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    257     NULL, "tcp", "output reference big");
    258 #endif /* TCP_OUTPUT_COUNTERS */
    259 
    260 #ifdef TCP_REASS_COUNTERS
    261 #include <sys/device.h>
    262 
    263 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    264     NULL, "tcp_reass", "calls");
    265 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    266     &tcp_reass_, "tcp_reass", "insert into empty queue");
    267 struct evcnt tcp_reass_iteration[8] = {
    268     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    269     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    270     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    271     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    272     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    273     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    274     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    275     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    276 };
    277 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    278     &tcp_reass_, "tcp_reass", "prepend to first");
    279 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    280     &tcp_reass_, "tcp_reass", "prepend");
    281 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    282     &tcp_reass_, "tcp_reass", "insert");
    283 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    284     &tcp_reass_, "tcp_reass", "insert at tail");
    285 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    286     &tcp_reass_, "tcp_reass", "append");
    287 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    288     &tcp_reass_, "tcp_reass", "append to tail fragment");
    289 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    290     &tcp_reass_, "tcp_reass", "overlap at end");
    291 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    292     &tcp_reass_, "tcp_reass", "overlap at start");
    293 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    294     &tcp_reass_, "tcp_reass", "duplicate segment");
    295 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    296     &tcp_reass_, "tcp_reass", "duplicate fragment");
    297 
    298 #endif /* TCP_REASS_COUNTERS */
    299 
    300 #ifdef MBUFTRACE
    301 struct mowner tcp_mowner = { "tcp" };
    302 struct mowner tcp_rx_mowner = { "tcp", "rx" };
    303 struct mowner tcp_tx_mowner = { "tcp", "tx" };
    304 #endif
    305 
    306 /*
    307  * Tcp initialization
    308  */
    309 void
    310 tcp_init()
    311 {
    312 	int hlen;
    313 
    314 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
    315 	    NULL);
    316 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    317 #ifdef INET6
    318 	tcb6.in6p_next = tcb6.in6p_prev = &tcb6;
    319 #endif
    320 
    321 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    322 #ifdef INET6
    323 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    324 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    325 #endif
    326 	if (max_protohdr < hlen)
    327 		max_protohdr = hlen;
    328 	if (max_linkhdr + hlen > MHLEN)
    329 		panic("tcp_init");
    330 
    331 #ifdef INET
    332 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    333 #endif
    334 #ifdef INET6
    335 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    336 #endif
    337 
    338 	/* Initialize timer state. */
    339 	tcp_timer_init();
    340 
    341 	/* Initialize the compressed state engine. */
    342 	syn_cache_init();
    343 
    344 #ifdef TCP_CSUM_COUNTERS
    345 	evcnt_attach_static(&tcp_hwcsum_bad);
    346 	evcnt_attach_static(&tcp_hwcsum_ok);
    347 	evcnt_attach_static(&tcp_hwcsum_data);
    348 	evcnt_attach_static(&tcp_swcsum);
    349 #endif /* TCP_CSUM_COUNTERS */
    350 
    351 #ifdef TCP_OUTPUT_COUNTERS
    352 	evcnt_attach_static(&tcp_output_bigheader);
    353 	evcnt_attach_static(&tcp_output_copysmall);
    354 	evcnt_attach_static(&tcp_output_copybig);
    355 	evcnt_attach_static(&tcp_output_refbig);
    356 #endif /* TCP_OUTPUT_COUNTERS */
    357 
    358 #ifdef TCP_REASS_COUNTERS
    359 	evcnt_attach_static(&tcp_reass_);
    360 	evcnt_attach_static(&tcp_reass_empty);
    361 	evcnt_attach_static(&tcp_reass_iteration[0]);
    362 	evcnt_attach_static(&tcp_reass_iteration[1]);
    363 	evcnt_attach_static(&tcp_reass_iteration[2]);
    364 	evcnt_attach_static(&tcp_reass_iteration[3]);
    365 	evcnt_attach_static(&tcp_reass_iteration[4]);
    366 	evcnt_attach_static(&tcp_reass_iteration[5]);
    367 	evcnt_attach_static(&tcp_reass_iteration[6]);
    368 	evcnt_attach_static(&tcp_reass_iteration[7]);
    369 	evcnt_attach_static(&tcp_reass_prependfirst);
    370 	evcnt_attach_static(&tcp_reass_prepend);
    371 	evcnt_attach_static(&tcp_reass_insert);
    372 	evcnt_attach_static(&tcp_reass_inserttail);
    373 	evcnt_attach_static(&tcp_reass_append);
    374 	evcnt_attach_static(&tcp_reass_appendtail);
    375 	evcnt_attach_static(&tcp_reass_overlaptail);
    376 	evcnt_attach_static(&tcp_reass_overlapfront);
    377 	evcnt_attach_static(&tcp_reass_segdup);
    378 	evcnt_attach_static(&tcp_reass_fragdup);
    379 #endif /* TCP_REASS_COUNTERS */
    380 
    381 	MOWNER_ATTACH(&tcp_tx_mowner);
    382 	MOWNER_ATTACH(&tcp_rx_mowner);
    383 	MOWNER_ATTACH(&tcp_mowner);
    384 }
    385 
    386 /*
    387  * Create template to be used to send tcp packets on a connection.
    388  * Call after host entry created, allocates an mbuf and fills
    389  * in a skeletal tcp/ip header, minimizing the amount of work
    390  * necessary when the connection is used.
    391  */
    392 struct mbuf *
    393 tcp_template(tp)
    394 	struct tcpcb *tp;
    395 {
    396 	struct inpcb *inp = tp->t_inpcb;
    397 #ifdef INET6
    398 	struct in6pcb *in6p = tp->t_in6pcb;
    399 #endif
    400 	struct tcphdr *n;
    401 	struct mbuf *m;
    402 	int hlen;
    403 
    404 	switch (tp->t_family) {
    405 	case AF_INET:
    406 		hlen = sizeof(struct ip);
    407 		if (inp)
    408 			break;
    409 #ifdef INET6
    410 		if (in6p) {
    411 			/* mapped addr case */
    412 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    413 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    414 				break;
    415 		}
    416 #endif
    417 		return NULL;	/*EINVAL*/
    418 #ifdef INET6
    419 	case AF_INET6:
    420 		hlen = sizeof(struct ip6_hdr);
    421 		if (in6p) {
    422 			/* more sainty check? */
    423 			break;
    424 		}
    425 		return NULL;	/*EINVAL*/
    426 #endif
    427 	default:
    428 		hlen = 0;	/*pacify gcc*/
    429 		return NULL;	/*EAFNOSUPPORT*/
    430 	}
    431 #ifdef DIAGNOSTIC
    432 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    433 		panic("mclbytes too small for t_template");
    434 #endif
    435 	m = tp->t_template;
    436 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    437 		;
    438 	else {
    439 		if (m)
    440 			m_freem(m);
    441 		m = tp->t_template = NULL;
    442 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    443 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    444 			MCLGET(m, M_DONTWAIT);
    445 			if ((m->m_flags & M_EXT) == 0) {
    446 				m_free(m);
    447 				m = NULL;
    448 			}
    449 		}
    450 		if (m == NULL)
    451 			return NULL;
    452 		MCLAIM(m, &tcp_mowner);
    453 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    454 	}
    455 
    456 	bzero(mtod(m, caddr_t), m->m_len);
    457 
    458 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
    459 
    460 	switch (tp->t_family) {
    461 	case AF_INET:
    462 	    {
    463 		struct ipovly *ipov;
    464 		mtod(m, struct ip *)->ip_v = 4;
    465 		ipov = mtod(m, struct ipovly *);
    466 		ipov->ih_pr = IPPROTO_TCP;
    467 		ipov->ih_len = htons(sizeof(struct tcphdr));
    468 		if (inp) {
    469 			ipov->ih_src = inp->inp_laddr;
    470 			ipov->ih_dst = inp->inp_faddr;
    471 		}
    472 #ifdef INET6
    473 		else if (in6p) {
    474 			/* mapped addr case */
    475 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    476 				sizeof(ipov->ih_src));
    477 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    478 				sizeof(ipov->ih_dst));
    479 		}
    480 #endif
    481 		/*
    482 		 * Compute the pseudo-header portion of the checksum
    483 		 * now.  We incrementally add in the TCP option and
    484 		 * payload lengths later, and then compute the TCP
    485 		 * checksum right before the packet is sent off onto
    486 		 * the wire.
    487 		 */
    488 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    489 		    ipov->ih_dst.s_addr,
    490 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    491 		break;
    492 	    }
    493 #ifdef INET6
    494 	case AF_INET6:
    495 	    {
    496 		struct ip6_hdr *ip6;
    497 		mtod(m, struct ip *)->ip_v = 6;
    498 		ip6 = mtod(m, struct ip6_hdr *);
    499 		ip6->ip6_nxt = IPPROTO_TCP;
    500 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    501 		ip6->ip6_src = in6p->in6p_laddr;
    502 		ip6->ip6_dst = in6p->in6p_faddr;
    503 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    504 		if (ip6_auto_flowlabel) {
    505 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    506 			ip6->ip6_flow |=
    507 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
    508 		}
    509 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    510 		ip6->ip6_vfc |= IPV6_VERSION;
    511 
    512 		/*
    513 		 * Compute the pseudo-header portion of the checksum
    514 		 * now.  We incrementally add in the TCP option and
    515 		 * payload lengths later, and then compute the TCP
    516 		 * checksum right before the packet is sent off onto
    517 		 * the wire.
    518 		 */
    519 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    520 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    521 		    htonl(IPPROTO_TCP));
    522 		break;
    523 	    }
    524 #endif
    525 	}
    526 	if (inp) {
    527 		n->th_sport = inp->inp_lport;
    528 		n->th_dport = inp->inp_fport;
    529 	}
    530 #ifdef INET6
    531 	else if (in6p) {
    532 		n->th_sport = in6p->in6p_lport;
    533 		n->th_dport = in6p->in6p_fport;
    534 	}
    535 #endif
    536 	n->th_seq = 0;
    537 	n->th_ack = 0;
    538 	n->th_x2 = 0;
    539 	n->th_off = 5;
    540 	n->th_flags = 0;
    541 	n->th_win = 0;
    542 	n->th_urp = 0;
    543 	return (m);
    544 }
    545 
    546 /*
    547  * Send a single message to the TCP at address specified by
    548  * the given TCP/IP header.  If m == 0, then we make a copy
    549  * of the tcpiphdr at ti and send directly to the addressed host.
    550  * This is used to force keep alive messages out using the TCP
    551  * template for a connection tp->t_template.  If flags are given
    552  * then we send a message back to the TCP which originated the
    553  * segment ti, and discard the mbuf containing it and any other
    554  * attached mbufs.
    555  *
    556  * In any case the ack and sequence number of the transmitted
    557  * segment are as specified by the parameters.
    558  */
    559 int
    560 tcp_respond(tp, template, m, th0, ack, seq, flags)
    561 	struct tcpcb *tp;
    562 	struct mbuf *template;
    563 	struct mbuf *m;
    564 	struct tcphdr *th0;
    565 	tcp_seq ack, seq;
    566 	int flags;
    567 {
    568 	struct route *ro;
    569 	int error, tlen, win = 0;
    570 	int hlen;
    571 	struct ip *ip;
    572 #ifdef INET6
    573 	struct ip6_hdr *ip6;
    574 #endif
    575 	int family;	/* family on packet, not inpcb/in6pcb! */
    576 	struct tcphdr *th;
    577 	struct socket *so;
    578 
    579 	if (tp != NULL && (flags & TH_RST) == 0) {
    580 #ifdef DIAGNOSTIC
    581 		if (tp->t_inpcb && tp->t_in6pcb)
    582 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    583 #endif
    584 #ifdef INET
    585 		if (tp->t_inpcb)
    586 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    587 #endif
    588 #ifdef INET6
    589 		if (tp->t_in6pcb)
    590 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    591 #endif
    592 	}
    593 
    594 	th = NULL;	/* Quell uninitialized warning */
    595 	ip = NULL;
    596 #ifdef INET6
    597 	ip6 = NULL;
    598 #endif
    599 	if (m == 0) {
    600 		if (!template)
    601 			return EINVAL;
    602 
    603 		/* get family information from template */
    604 		switch (mtod(template, struct ip *)->ip_v) {
    605 		case 4:
    606 			family = AF_INET;
    607 			hlen = sizeof(struct ip);
    608 			break;
    609 #ifdef INET6
    610 		case 6:
    611 			family = AF_INET6;
    612 			hlen = sizeof(struct ip6_hdr);
    613 			break;
    614 #endif
    615 		default:
    616 			return EAFNOSUPPORT;
    617 		}
    618 
    619 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    620 		if (m) {
    621 			MCLAIM(m, &tcp_tx_mowner);
    622 			MCLGET(m, M_DONTWAIT);
    623 			if ((m->m_flags & M_EXT) == 0) {
    624 				m_free(m);
    625 				m = NULL;
    626 			}
    627 		}
    628 		if (m == NULL)
    629 			return (ENOBUFS);
    630 
    631 		if (tcp_compat_42)
    632 			tlen = 1;
    633 		else
    634 			tlen = 0;
    635 
    636 		m->m_data += max_linkhdr;
    637 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
    638 			template->m_len);
    639 		switch (family) {
    640 		case AF_INET:
    641 			ip = mtod(m, struct ip *);
    642 			th = (struct tcphdr *)(ip + 1);
    643 			break;
    644 #ifdef INET6
    645 		case AF_INET6:
    646 			ip6 = mtod(m, struct ip6_hdr *);
    647 			th = (struct tcphdr *)(ip6 + 1);
    648 			break;
    649 #endif
    650 #if 0
    651 		default:
    652 			/* noone will visit here */
    653 			m_freem(m);
    654 			return EAFNOSUPPORT;
    655 #endif
    656 		}
    657 		flags = TH_ACK;
    658 	} else {
    659 
    660 		if ((m->m_flags & M_PKTHDR) == 0) {
    661 #if 0
    662 			printf("non PKTHDR to tcp_respond\n");
    663 #endif
    664 			m_freem(m);
    665 			return EINVAL;
    666 		}
    667 #ifdef DIAGNOSTIC
    668 		if (!th0)
    669 			panic("th0 == NULL in tcp_respond");
    670 #endif
    671 
    672 		/* get family information from m */
    673 		switch (mtod(m, struct ip *)->ip_v) {
    674 		case 4:
    675 			family = AF_INET;
    676 			hlen = sizeof(struct ip);
    677 			ip = mtod(m, struct ip *);
    678 			break;
    679 #ifdef INET6
    680 		case 6:
    681 			family = AF_INET6;
    682 			hlen = sizeof(struct ip6_hdr);
    683 			ip6 = mtod(m, struct ip6_hdr *);
    684 			break;
    685 #endif
    686 		default:
    687 			m_freem(m);
    688 			return EAFNOSUPPORT;
    689 		}
    690 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    691 			tlen = sizeof(*th0);
    692 		else
    693 			tlen = th0->th_off << 2;
    694 
    695 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    696 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
    697 			m->m_len = hlen + tlen;
    698 			m_freem(m->m_next);
    699 			m->m_next = NULL;
    700 		} else {
    701 			struct mbuf *n;
    702 
    703 #ifdef DIAGNOSTIC
    704 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    705 				m_freem(m);
    706 				return EMSGSIZE;
    707 			}
    708 #endif
    709 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    710 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    711 				MCLGET(n, M_DONTWAIT);
    712 				if ((n->m_flags & M_EXT) == 0) {
    713 					m_freem(n);
    714 					n = NULL;
    715 				}
    716 			}
    717 			if (!n) {
    718 				m_freem(m);
    719 				return ENOBUFS;
    720 			}
    721 
    722 			MCLAIM(n, &tcp_tx_mowner);
    723 			n->m_data += max_linkhdr;
    724 			n->m_len = hlen + tlen;
    725 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
    726 			m_copyback(n, hlen, tlen, (caddr_t)th0);
    727 
    728 			m_freem(m);
    729 			m = n;
    730 			n = NULL;
    731 		}
    732 
    733 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    734 		switch (family) {
    735 		case AF_INET:
    736 			ip = mtod(m, struct ip *);
    737 			th = (struct tcphdr *)(ip + 1);
    738 			ip->ip_p = IPPROTO_TCP;
    739 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    740 			ip->ip_p = IPPROTO_TCP;
    741 			break;
    742 #ifdef INET6
    743 		case AF_INET6:
    744 			ip6 = mtod(m, struct ip6_hdr *);
    745 			th = (struct tcphdr *)(ip6 + 1);
    746 			ip6->ip6_nxt = IPPROTO_TCP;
    747 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    748 			ip6->ip6_nxt = IPPROTO_TCP;
    749 			break;
    750 #endif
    751 #if 0
    752 		default:
    753 			/* noone will visit here */
    754 			m_freem(m);
    755 			return EAFNOSUPPORT;
    756 #endif
    757 		}
    758 		xchg(th->th_dport, th->th_sport, u_int16_t);
    759 #undef xchg
    760 		tlen = 0;	/*be friendly with the following code*/
    761 	}
    762 	th->th_seq = htonl(seq);
    763 	th->th_ack = htonl(ack);
    764 	th->th_x2 = 0;
    765 	if ((flags & TH_SYN) == 0) {
    766 		if (tp)
    767 			win >>= tp->rcv_scale;
    768 		if (win > TCP_MAXWIN)
    769 			win = TCP_MAXWIN;
    770 		th->th_win = htons((u_int16_t)win);
    771 		th->th_off = sizeof (struct tcphdr) >> 2;
    772 		tlen += sizeof(*th);
    773 	} else
    774 		tlen += th->th_off << 2;
    775 	m->m_len = hlen + tlen;
    776 	m->m_pkthdr.len = hlen + tlen;
    777 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    778 	th->th_flags = flags;
    779 	th->th_urp = 0;
    780 
    781 	switch (family) {
    782 #ifdef INET
    783 	case AF_INET:
    784 	    {
    785 		struct ipovly *ipov = (struct ipovly *)ip;
    786 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    787 		ipov->ih_len = htons((u_int16_t)tlen);
    788 
    789 		th->th_sum = 0;
    790 		th->th_sum = in_cksum(m, hlen + tlen);
    791 		ip->ip_len = htons(hlen + tlen);
    792 		ip->ip_ttl = ip_defttl;
    793 		break;
    794 	    }
    795 #endif
    796 #ifdef INET6
    797 	case AF_INET6:
    798 	    {
    799 		th->th_sum = 0;
    800 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    801 				tlen);
    802 		ip6->ip6_plen = ntohs(tlen);
    803 		if (tp && tp->t_in6pcb) {
    804 			struct ifnet *oifp;
    805 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    806 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    807 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    808 		} else
    809 			ip6->ip6_hlim = ip6_defhlim;
    810 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    811 		if (ip6_auto_flowlabel) {
    812 			ip6->ip6_flow |=
    813 				(htonl(ip6_flow_seq++) & IPV6_FLOWLABEL_MASK);
    814 		}
    815 		break;
    816 	    }
    817 #endif
    818 	}
    819 
    820 	if (tp->t_inpcb)
    821 		so = tp->t_inpcb->inp_socket;
    822 #ifdef INET6
    823 	else if (tp->t_in6pcb)
    824 		so = tp->t_in6pcb->in6p_socket;
    825 #endif
    826 	else
    827 		so = NULL;
    828 #ifdef IPSEC
    829 	if (ipsec_setsocket(m, so) != 0) {
    830 		m_freem(m);
    831 		return ENOBUFS;
    832 	}
    833 #endif /*IPSEC*/
    834 
    835 	if (tp != NULL && tp->t_inpcb != NULL) {
    836 		ro = &tp->t_inpcb->inp_route;
    837 #ifdef DIAGNOSTIC
    838 		if (family != AF_INET)
    839 			panic("tcp_respond: address family mismatch");
    840 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    841 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    842 			    ntohl(ip->ip_dst.s_addr),
    843 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    844 		}
    845 #endif
    846 	}
    847 #ifdef INET6
    848 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    849 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    850 #ifdef DIAGNOSTIC
    851 		if (family == AF_INET) {
    852 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    853 				panic("tcp_respond: not mapped addr");
    854 			if (bcmp(&ip->ip_dst,
    855 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    856 			    sizeof(ip->ip_dst)) != 0) {
    857 				panic("tcp_respond: ip_dst != in6p_faddr");
    858 			}
    859 		} else if (family == AF_INET6) {
    860 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    861 			    &tp->t_in6pcb->in6p_faddr))
    862 				panic("tcp_respond: ip6_dst != in6p_faddr");
    863 		} else
    864 			panic("tcp_respond: address family mismatch");
    865 #endif
    866 	}
    867 #endif
    868 	else
    869 		ro = NULL;
    870 
    871 	switch (family) {
    872 #ifdef INET
    873 	case AF_INET:
    874 		error = ip_output(m, NULL, ro,
    875 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    876 		    (struct ip_moptions *)0, so);
    877 		break;
    878 #endif
    879 #ifdef INET6
    880 	case AF_INET6:
    881 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
    882 		    (struct ip6_moptions *)0, so, NULL);
    883 		break;
    884 #endif
    885 	default:
    886 		error = EAFNOSUPPORT;
    887 		break;
    888 	}
    889 
    890 	return (error);
    891 }
    892 
    893 /*
    894  * Create a new TCP control block, making an
    895  * empty reassembly queue and hooking it to the argument
    896  * protocol control block.
    897  */
    898 struct tcpcb *
    899 tcp_newtcpcb(family, aux)
    900 	int family;	/* selects inpcb, or in6pcb */
    901 	void *aux;
    902 {
    903 	struct tcpcb *tp;
    904 	int i;
    905 
    906 	switch (family) {
    907 	case PF_INET:
    908 		break;
    909 #ifdef INET6
    910 	case PF_INET6:
    911 		break;
    912 #endif
    913 	default:
    914 		return NULL;
    915 	}
    916 
    917 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    918 	if (tp == NULL)
    919 		return (NULL);
    920 	bzero((caddr_t)tp, sizeof(struct tcpcb));
    921 	TAILQ_INIT(&tp->segq);
    922 	TAILQ_INIT(&tp->timeq);
    923 	tp->t_family = family;		/* may be overridden later on */
    924 	tp->t_peermss = tcp_mssdflt;
    925 	tp->t_ourmss = tcp_mssdflt;
    926 	tp->t_segsz = tcp_mssdflt;
    927 	LIST_INIT(&tp->t_sc);
    928 
    929 	tp->t_lastm = NULL;
    930 	tp->t_lastoff = 0;
    931 
    932 	callout_init(&tp->t_delack_ch);
    933 	for (i = 0; i < TCPT_NTIMERS; i++)
    934 		TCP_TIMER_INIT(tp, i);
    935 
    936 	tp->t_flags = 0;
    937 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    938 		tp->t_flags |= TF_REQ_SCALE;
    939 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    940 		tp->t_flags |= TF_REQ_TSTMP;
    941 	if (tcp_do_sack == 2)
    942 		tp->t_flags |= TF_WILL_SACK;
    943 	else if (tcp_do_sack == 1)
    944 		tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
    945 	tp->t_flags |= TF_CANT_TXSACK;
    946 	switch (family) {
    947 	case PF_INET:
    948 		tp->t_inpcb = (struct inpcb *)aux;
    949 		tp->t_mtudisc = ip_mtudisc;
    950 		break;
    951 #ifdef INET6
    952 	case PF_INET6:
    953 		tp->t_in6pcb = (struct in6pcb *)aux;
    954 		/* for IPv6, always try to run path MTU discovery */
    955 		tp->t_mtudisc = 1;
    956 		break;
    957 #endif
    958 	}
    959 	/*
    960 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    961 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    962 	 * reasonable initial retransmit time.
    963 	 */
    964 	tp->t_srtt = TCPTV_SRTTBASE;
    965 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    966 	tp->t_rttmin = TCPTV_MIN;
    967 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    968 	    TCPTV_MIN, TCPTV_REXMTMAX);
    969 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    970 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    971 	if (family == AF_INET) {
    972 		struct inpcb *inp = (struct inpcb *)aux;
    973 		inp->inp_ip.ip_ttl = ip_defttl;
    974 		inp->inp_ppcb = (caddr_t)tp;
    975 	}
    976 #ifdef INET6
    977 	else if (family == AF_INET6) {
    978 		struct in6pcb *in6p = (struct in6pcb *)aux;
    979 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
    980 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
    981 					       : NULL);
    982 		in6p->in6p_ppcb = (caddr_t)tp;
    983 	}
    984 #endif
    985 
    986 	/*
    987 	 * Initialize our timebase.  When we send timestamps, we take
    988 	 * the delta from tcp_now -- this means each connection always
    989 	 * gets a timebase of 0, which makes it, among other things,
    990 	 * more difficult to determine how long a system has been up,
    991 	 * and thus how many TCP sequence increments have occurred.
    992 	 */
    993 	tp->ts_timebase = tcp_now;
    994 
    995 	return (tp);
    996 }
    997 
    998 /*
    999  * Drop a TCP connection, reporting
   1000  * the specified error.  If connection is synchronized,
   1001  * then send a RST to peer.
   1002  */
   1003 struct tcpcb *
   1004 tcp_drop(tp, errno)
   1005 	struct tcpcb *tp;
   1006 	int errno;
   1007 {
   1008 	struct socket *so = NULL;
   1009 
   1010 #ifdef DIAGNOSTIC
   1011 	if (tp->t_inpcb && tp->t_in6pcb)
   1012 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1013 #endif
   1014 #ifdef INET
   1015 	if (tp->t_inpcb)
   1016 		so = tp->t_inpcb->inp_socket;
   1017 #endif
   1018 #ifdef INET6
   1019 	if (tp->t_in6pcb)
   1020 		so = tp->t_in6pcb->in6p_socket;
   1021 #endif
   1022 	if (!so)
   1023 		return NULL;
   1024 
   1025 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1026 		tp->t_state = TCPS_CLOSED;
   1027 		(void) tcp_output(tp);
   1028 		tcpstat.tcps_drops++;
   1029 	} else
   1030 		tcpstat.tcps_conndrops++;
   1031 	if (errno == ETIMEDOUT && tp->t_softerror)
   1032 		errno = tp->t_softerror;
   1033 	so->so_error = errno;
   1034 	return (tcp_close(tp));
   1035 }
   1036 
   1037 /*
   1038  * Return whether this tcpcb is marked as dead, indicating
   1039  * to the calling timer function that no further action should
   1040  * be taken, as we are about to release this tcpcb.  The release
   1041  * of the storage will be done if this is the last timer running.
   1042  *
   1043  * This is typically called from the callout handler function before
   1044  * callout_ack() is done, therefore we need to test the number of
   1045  * running timer functions against 1 below, not 0.
   1046  */
   1047 int
   1048 tcp_isdead(tp)
   1049 	struct tcpcb *tp;
   1050 {
   1051 	int dead = (tp->t_flags & TF_DEAD);
   1052 
   1053 	if (__predict_false(dead)) {
   1054 		if (tcp_timers_invoking(tp) > 1)
   1055 				/* not quite there yet -- count separately? */
   1056 			return dead;
   1057 		tcpstat.tcps_delayed_free++;
   1058 		pool_put(&tcpcb_pool, tp);
   1059 	}
   1060 	return dead;
   1061 }
   1062 
   1063 /*
   1064  * Close a TCP control block:
   1065  *	discard all space held by the tcp
   1066  *	discard internet protocol block
   1067  *	wake up any sleepers
   1068  */
   1069 struct tcpcb *
   1070 tcp_close(tp)
   1071 	struct tcpcb *tp;
   1072 {
   1073 	struct inpcb *inp;
   1074 #ifdef INET6
   1075 	struct in6pcb *in6p;
   1076 #endif
   1077 	struct socket *so;
   1078 #ifdef RTV_RTT
   1079 	struct rtentry *rt;
   1080 #endif
   1081 	struct route *ro;
   1082 
   1083 	inp = tp->t_inpcb;
   1084 #ifdef INET6
   1085 	in6p = tp->t_in6pcb;
   1086 #endif
   1087 	so = NULL;
   1088 	ro = NULL;
   1089 	if (inp) {
   1090 		so = inp->inp_socket;
   1091 		ro = &inp->inp_route;
   1092 	}
   1093 #ifdef INET6
   1094 	else if (in6p) {
   1095 		so = in6p->in6p_socket;
   1096 		ro = (struct route *)&in6p->in6p_route;
   1097 	}
   1098 #endif
   1099 
   1100 #ifdef RTV_RTT
   1101 	/*
   1102 	 * If we sent enough data to get some meaningful characteristics,
   1103 	 * save them in the routing entry.  'Enough' is arbitrarily
   1104 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1105 	 * give us 16 rtt samples assuming we only get one sample per
   1106 	 * window (the usual case on a long haul net).  16 samples is
   1107 	 * enough for the srtt filter to converge to within 5% of the correct
   1108 	 * value; fewer samples and we could save a very bogus rtt.
   1109 	 *
   1110 	 * Don't update the default route's characteristics and don't
   1111 	 * update anything that the user "locked".
   1112 	 */
   1113 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1114 	    ro && (rt = ro->ro_rt) &&
   1115 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
   1116 		u_long i = 0;
   1117 
   1118 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1119 			i = tp->t_srtt *
   1120 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1121 			if (rt->rt_rmx.rmx_rtt && i)
   1122 				/*
   1123 				 * filter this update to half the old & half
   1124 				 * the new values, converting scale.
   1125 				 * See route.h and tcp_var.h for a
   1126 				 * description of the scaling constants.
   1127 				 */
   1128 				rt->rt_rmx.rmx_rtt =
   1129 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1130 			else
   1131 				rt->rt_rmx.rmx_rtt = i;
   1132 		}
   1133 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1134 			i = tp->t_rttvar *
   1135 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1136 			if (rt->rt_rmx.rmx_rttvar && i)
   1137 				rt->rt_rmx.rmx_rttvar =
   1138 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1139 			else
   1140 				rt->rt_rmx.rmx_rttvar = i;
   1141 		}
   1142 		/*
   1143 		 * update the pipelimit (ssthresh) if it has been updated
   1144 		 * already or if a pipesize was specified & the threshhold
   1145 		 * got below half the pipesize.  I.e., wait for bad news
   1146 		 * before we start updating, then update on both good
   1147 		 * and bad news.
   1148 		 */
   1149 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1150 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1151 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1152 			/*
   1153 			 * convert the limit from user data bytes to
   1154 			 * packets then to packet data bytes.
   1155 			 */
   1156 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1157 			if (i < 2)
   1158 				i = 2;
   1159 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1160 			if (rt->rt_rmx.rmx_ssthresh)
   1161 				rt->rt_rmx.rmx_ssthresh =
   1162 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1163 			else
   1164 				rt->rt_rmx.rmx_ssthresh = i;
   1165 		}
   1166 	}
   1167 #endif /* RTV_RTT */
   1168 	/* free the reassembly queue, if any */
   1169 	TCP_REASS_LOCK(tp);
   1170 	(void) tcp_freeq(tp);
   1171 	TCP_REASS_UNLOCK(tp);
   1172 
   1173 	tcp_canceltimers(tp);
   1174 	TCP_CLEAR_DELACK(tp);
   1175 	syn_cache_cleanup(tp);
   1176 
   1177 	if (tp->t_template) {
   1178 		m_free(tp->t_template);
   1179 		tp->t_template = NULL;
   1180 	}
   1181 	if (tcp_timers_invoking(tp))
   1182 		tp->t_flags |= TF_DEAD;
   1183 	else
   1184 		pool_put(&tcpcb_pool, tp);
   1185 
   1186 	if (inp) {
   1187 		inp->inp_ppcb = 0;
   1188 		soisdisconnected(so);
   1189 		in_pcbdetach(inp);
   1190 	}
   1191 #ifdef INET6
   1192 	else if (in6p) {
   1193 		in6p->in6p_ppcb = 0;
   1194 		soisdisconnected(so);
   1195 		in6_pcbdetach(in6p);
   1196 	}
   1197 #endif
   1198 	tcpstat.tcps_closed++;
   1199 	return ((struct tcpcb *)0);
   1200 }
   1201 
   1202 int
   1203 tcp_freeq(tp)
   1204 	struct tcpcb *tp;
   1205 {
   1206 	struct ipqent *qe;
   1207 	int rv = 0;
   1208 #ifdef TCPREASS_DEBUG
   1209 	int i = 0;
   1210 #endif
   1211 
   1212 	TCP_REASS_LOCK_CHECK(tp);
   1213 
   1214 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1215 #ifdef TCPREASS_DEBUG
   1216 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1217 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1218 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1219 #endif
   1220 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1221 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1222 		m_freem(qe->ipqe_m);
   1223 		pool_put(&ipqent_pool, qe);
   1224 		rv = 1;
   1225 	}
   1226 	return (rv);
   1227 }
   1228 
   1229 /*
   1230  * Protocol drain routine.  Called when memory is in short supply.
   1231  */
   1232 void
   1233 tcp_drain()
   1234 {
   1235 	struct inpcb *inp;
   1236 	struct tcpcb *tp;
   1237 
   1238 	/*
   1239 	 * Free the sequence queue of all TCP connections.
   1240 	 */
   1241 	inp = CIRCLEQ_FIRST(&tcbtable.inpt_queue);
   1242 	if (inp)						/* XXX */
   1243 	CIRCLEQ_FOREACH(inp, &tcbtable.inpt_queue, inp_queue) {
   1244 		if ((tp = intotcpcb(inp)) != NULL) {
   1245 			/*
   1246 			 * We may be called from a device's interrupt
   1247 			 * context.  If the tcpcb is already busy,
   1248 			 * just bail out now.
   1249 			 */
   1250 			if (tcp_reass_lock_try(tp) == 0)
   1251 				continue;
   1252 			if (tcp_freeq(tp))
   1253 				tcpstat.tcps_connsdrained++;
   1254 			TCP_REASS_UNLOCK(tp);
   1255 		}
   1256 	}
   1257 }
   1258 
   1259 #ifdef INET6
   1260 void
   1261 tcp6_drain()
   1262 {
   1263 	struct in6pcb *in6p;
   1264 	struct tcpcb *tp;
   1265 	struct in6pcb *head = &tcb6;
   1266 
   1267 	/*
   1268 	 * Free the sequence queue of all TCP connections.
   1269 	 */
   1270 	for (in6p = head->in6p_next; in6p != head; in6p = in6p->in6p_next) {
   1271 		if ((tp = in6totcpcb(in6p)) != NULL) {
   1272 			/*
   1273 			 * We may be called from a device's interrupt
   1274 			 * context.  If the tcpcb is already busy,
   1275 			 * just bail out now.
   1276 			 */
   1277 			if (tcp_reass_lock_try(tp) == 0)
   1278 				continue;
   1279 			if (tcp_freeq(tp))
   1280 				tcpstat.tcps_connsdrained++;
   1281 			TCP_REASS_UNLOCK(tp);
   1282 		}
   1283 	}
   1284 }
   1285 #endif
   1286 
   1287 /*
   1288  * Notify a tcp user of an asynchronous error;
   1289  * store error as soft error, but wake up user
   1290  * (for now, won't do anything until can select for soft error).
   1291  */
   1292 void
   1293 tcp_notify(inp, error)
   1294 	struct inpcb *inp;
   1295 	int error;
   1296 {
   1297 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1298 	struct socket *so = inp->inp_socket;
   1299 
   1300 	/*
   1301 	 * Ignore some errors if we are hooked up.
   1302 	 * If connection hasn't completed, has retransmitted several times,
   1303 	 * and receives a second error, give up now.  This is better
   1304 	 * than waiting a long time to establish a connection that
   1305 	 * can never complete.
   1306 	 */
   1307 	if (tp->t_state == TCPS_ESTABLISHED &&
   1308 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1309 	      error == EHOSTDOWN)) {
   1310 		return;
   1311 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1312 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1313 		so->so_error = error;
   1314 	else
   1315 		tp->t_softerror = error;
   1316 	wakeup((caddr_t) &so->so_timeo);
   1317 	sorwakeup(so);
   1318 	sowwakeup(so);
   1319 }
   1320 
   1321 #ifdef INET6
   1322 void
   1323 tcp6_notify(in6p, error)
   1324 	struct in6pcb *in6p;
   1325 	int error;
   1326 {
   1327 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1328 	struct socket *so = in6p->in6p_socket;
   1329 
   1330 	/*
   1331 	 * Ignore some errors if we are hooked up.
   1332 	 * If connection hasn't completed, has retransmitted several times,
   1333 	 * and receives a second error, give up now.  This is better
   1334 	 * than waiting a long time to establish a connection that
   1335 	 * can never complete.
   1336 	 */
   1337 	if (tp->t_state == TCPS_ESTABLISHED &&
   1338 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1339 	      error == EHOSTDOWN)) {
   1340 		return;
   1341 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1342 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1343 		so->so_error = error;
   1344 	else
   1345 		tp->t_softerror = error;
   1346 	wakeup((caddr_t) &so->so_timeo);
   1347 	sorwakeup(so);
   1348 	sowwakeup(so);
   1349 }
   1350 #endif
   1351 
   1352 #ifdef INET6
   1353 void
   1354 tcp6_ctlinput(cmd, sa, d)
   1355 	int cmd;
   1356 	struct sockaddr *sa;
   1357 	void *d;
   1358 {
   1359 	struct tcphdr th;
   1360 	void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
   1361 	int nmatch;
   1362 	struct ip6_hdr *ip6;
   1363 	const struct sockaddr_in6 *sa6_src = NULL;
   1364 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
   1365 	struct mbuf *m;
   1366 	int off;
   1367 
   1368 	if (sa->sa_family != AF_INET6 ||
   1369 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1370 		return;
   1371 	if ((unsigned)cmd >= PRC_NCMDS)
   1372 		return;
   1373 	else if (cmd == PRC_QUENCH) {
   1374 		/* XXX there's no PRC_QUENCH in IPv6 */
   1375 		notify = tcp6_quench;
   1376 	} else if (PRC_IS_REDIRECT(cmd))
   1377 		notify = in6_rtchange, d = NULL;
   1378 	else if (cmd == PRC_MSGSIZE)
   1379 		; /* special code is present, see below */
   1380 	else if (cmd == PRC_HOSTDEAD)
   1381 		d = NULL;
   1382 	else if (inet6ctlerrmap[cmd] == 0)
   1383 		return;
   1384 
   1385 	/* if the parameter is from icmp6, decode it. */
   1386 	if (d != NULL) {
   1387 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1388 		m = ip6cp->ip6c_m;
   1389 		ip6 = ip6cp->ip6c_ip6;
   1390 		off = ip6cp->ip6c_off;
   1391 		sa6_src = ip6cp->ip6c_src;
   1392 	} else {
   1393 		m = NULL;
   1394 		ip6 = NULL;
   1395 		sa6_src = &sa6_any;
   1396 	}
   1397 
   1398 	if (ip6) {
   1399 		/*
   1400 		 * XXX: We assume that when ip6 is non NULL,
   1401 		 * M and OFF are valid.
   1402 		 */
   1403 
   1404 		/* check if we can safely examine src and dst ports */
   1405 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1406 			if (cmd == PRC_MSGSIZE)
   1407 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1408 			return;
   1409 		}
   1410 
   1411 		bzero(&th, sizeof(th));
   1412 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
   1413 
   1414 		if (cmd == PRC_MSGSIZE) {
   1415 			int valid = 0;
   1416 
   1417 			/*
   1418 			 * Check to see if we have a valid TCP connection
   1419 			 * corresponding to the address in the ICMPv6 message
   1420 			 * payload.
   1421 			 */
   1422 			if (in6_pcblookup_connect(&tcb6, &sa6->sin6_addr,
   1423 			    th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
   1424 			    th.th_sport, 0))
   1425 				valid++;
   1426 
   1427 			/*
   1428 			 * Depending on the value of "valid" and routing table
   1429 			 * size (mtudisc_{hi,lo}wat), we will:
   1430 			 * - recalcurate the new MTU and create the
   1431 			 *   corresponding routing entry, or
   1432 			 * - ignore the MTU change notification.
   1433 			 */
   1434 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1435 
   1436 			/*
   1437 			 * no need to call in6_pcbnotify, it should have been
   1438 			 * called via callback if necessary
   1439 			 */
   1440 			return;
   1441 		}
   1442 
   1443 		nmatch = in6_pcbnotify(&tcb6, sa, th.th_dport,
   1444 		    (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1445 		if (nmatch == 0 && syn_cache_count &&
   1446 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1447 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1448 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1449 			syn_cache_unreach((struct sockaddr *)sa6_src,
   1450 					  sa, &th);
   1451 	} else {
   1452 		(void) in6_pcbnotify(&tcb6, sa, 0, (struct sockaddr *)sa6_src,
   1453 		    0, cmd, NULL, notify);
   1454 	}
   1455 }
   1456 #endif
   1457 
   1458 #ifdef INET
   1459 /* assumes that ip header and tcp header are contiguous on mbuf */
   1460 void *
   1461 tcp_ctlinput(cmd, sa, v)
   1462 	int cmd;
   1463 	struct sockaddr *sa;
   1464 	void *v;
   1465 {
   1466 	struct ip *ip = v;
   1467 	struct tcphdr *th;
   1468 	struct icmp *icp;
   1469 	extern const int inetctlerrmap[];
   1470 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
   1471 	int errno;
   1472 	int nmatch;
   1473 #ifdef INET6
   1474 	struct in6_addr src6, dst6;
   1475 #endif
   1476 
   1477 	if (sa->sa_family != AF_INET ||
   1478 	    sa->sa_len != sizeof(struct sockaddr_in))
   1479 		return NULL;
   1480 	if ((unsigned)cmd >= PRC_NCMDS)
   1481 		return NULL;
   1482 	errno = inetctlerrmap[cmd];
   1483 	if (cmd == PRC_QUENCH)
   1484 		notify = tcp_quench;
   1485 	else if (PRC_IS_REDIRECT(cmd))
   1486 		notify = in_rtchange, ip = 0;
   1487 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1488 		/*
   1489 		 * Check to see if we have a valid TCP connection
   1490 		 * corresponding to the address in the ICMP message
   1491 		 * payload.
   1492 		 *
   1493 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1494 		 */
   1495 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1496 #ifdef INET6
   1497 		memset(&src6, 0, sizeof(src6));
   1498 		memset(&dst6, 0, sizeof(dst6));
   1499 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1500 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1501 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1502 #endif
   1503 		if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
   1504 		    ip->ip_src, th->th_sport) != NULL)
   1505 			;
   1506 #ifdef INET6
   1507 		else if (in6_pcblookup_connect(&tcb6, &dst6,
   1508 		    th->th_dport, &src6, th->th_sport, 0) != NULL)
   1509 			;
   1510 #endif
   1511 		else
   1512 			return NULL;
   1513 
   1514 		/*
   1515 		 * Now that we've validated that we are actually communicating
   1516 		 * with the host indicated in the ICMP message, locate the
   1517 		 * ICMP header, recalculate the new MTU, and create the
   1518 		 * corresponding routing entry.
   1519 		 */
   1520 		icp = (struct icmp *)((caddr_t)ip -
   1521 		    offsetof(struct icmp, icmp_ip));
   1522 		icmp_mtudisc(icp, ip->ip_dst);
   1523 
   1524 		return NULL;
   1525 	} else if (cmd == PRC_HOSTDEAD)
   1526 		ip = 0;
   1527 	else if (errno == 0)
   1528 		return NULL;
   1529 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1530 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1531 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
   1532 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1533 		if (nmatch == 0 && syn_cache_count &&
   1534 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1535 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1536 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1537 			struct sockaddr_in sin;
   1538 			bzero(&sin, sizeof(sin));
   1539 			sin.sin_len = sizeof(sin);
   1540 			sin.sin_family = AF_INET;
   1541 			sin.sin_port = th->th_sport;
   1542 			sin.sin_addr = ip->ip_src;
   1543 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1544 		}
   1545 
   1546 		/* XXX mapped address case */
   1547 	} else
   1548 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
   1549 		    notify);
   1550 	return NULL;
   1551 }
   1552 
   1553 /*
   1554  * When a source quence is received, we are being notifed of congestion.
   1555  * Close the congestion window down to the Loss Window (one segment).
   1556  * We will gradually open it again as we proceed.
   1557  */
   1558 void
   1559 tcp_quench(inp, errno)
   1560 	struct inpcb *inp;
   1561 	int errno;
   1562 {
   1563 	struct tcpcb *tp = intotcpcb(inp);
   1564 
   1565 	if (tp)
   1566 		tp->snd_cwnd = tp->t_segsz;
   1567 }
   1568 #endif
   1569 
   1570 #ifdef INET6
   1571 void
   1572 tcp6_quench(in6p, errno)
   1573 	struct in6pcb *in6p;
   1574 	int errno;
   1575 {
   1576 	struct tcpcb *tp = in6totcpcb(in6p);
   1577 
   1578 	if (tp)
   1579 		tp->snd_cwnd = tp->t_segsz;
   1580 }
   1581 #endif
   1582 
   1583 #ifdef INET
   1584 /*
   1585  * Path MTU Discovery handlers.
   1586  */
   1587 void
   1588 tcp_mtudisc_callback(faddr)
   1589 	struct in_addr faddr;
   1590 {
   1591 #ifdef INET6
   1592 	struct in6_addr in6;
   1593 #endif
   1594 
   1595 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1596 #ifdef INET6
   1597 	memset(&in6, 0, sizeof(in6));
   1598 	in6.s6_addr16[5] = 0xffff;
   1599 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1600 	tcp6_mtudisc_callback(&in6);
   1601 #endif
   1602 }
   1603 
   1604 /*
   1605  * On receipt of path MTU corrections, flush old route and replace it
   1606  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1607  * that all packets will be received.
   1608  */
   1609 void
   1610 tcp_mtudisc(inp, errno)
   1611 	struct inpcb *inp;
   1612 	int errno;
   1613 {
   1614 	struct tcpcb *tp = intotcpcb(inp);
   1615 	struct rtentry *rt = in_pcbrtentry(inp);
   1616 
   1617 	if (tp != 0) {
   1618 		if (rt != 0) {
   1619 			/*
   1620 			 * If this was not a host route, remove and realloc.
   1621 			 */
   1622 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1623 				in_rtchange(inp, errno);
   1624 				if ((rt = in_pcbrtentry(inp)) == 0)
   1625 					return;
   1626 			}
   1627 
   1628 			/*
   1629 			 * Slow start out of the error condition.  We
   1630 			 * use the MTU because we know it's smaller
   1631 			 * than the previously transmitted segment.
   1632 			 *
   1633 			 * Note: This is more conservative than the
   1634 			 * suggestion in draft-floyd-incr-init-win-03.
   1635 			 */
   1636 			if (rt->rt_rmx.rmx_mtu != 0)
   1637 				tp->snd_cwnd =
   1638 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1639 				    rt->rt_rmx.rmx_mtu);
   1640 		}
   1641 
   1642 		/*
   1643 		 * Resend unacknowledged packets.
   1644 		 */
   1645 		tp->snd_nxt = tp->snd_una;
   1646 		tcp_output(tp);
   1647 	}
   1648 }
   1649 #endif
   1650 
   1651 #ifdef INET6
   1652 /*
   1653  * Path MTU Discovery handlers.
   1654  */
   1655 void
   1656 tcp6_mtudisc_callback(faddr)
   1657 	struct in6_addr *faddr;
   1658 {
   1659 	struct sockaddr_in6 sin6;
   1660 
   1661 	bzero(&sin6, sizeof(sin6));
   1662 	sin6.sin6_family = AF_INET6;
   1663 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1664 	sin6.sin6_addr = *faddr;
   1665 	(void) in6_pcbnotify(&tcb6, (struct sockaddr *)&sin6, 0,
   1666 	    (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1667 }
   1668 
   1669 void
   1670 tcp6_mtudisc(in6p, errno)
   1671 	struct in6pcb *in6p;
   1672 	int errno;
   1673 {
   1674 	struct tcpcb *tp = in6totcpcb(in6p);
   1675 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1676 
   1677 	if (tp != 0) {
   1678 		if (rt != 0) {
   1679 			/*
   1680 			 * If this was not a host route, remove and realloc.
   1681 			 */
   1682 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1683 				in6_rtchange(in6p, errno);
   1684 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1685 					return;
   1686 			}
   1687 
   1688 			/*
   1689 			 * Slow start out of the error condition.  We
   1690 			 * use the MTU because we know it's smaller
   1691 			 * than the previously transmitted segment.
   1692 			 *
   1693 			 * Note: This is more conservative than the
   1694 			 * suggestion in draft-floyd-incr-init-win-03.
   1695 			 */
   1696 			if (rt->rt_rmx.rmx_mtu != 0)
   1697 				tp->snd_cwnd =
   1698 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1699 				    rt->rt_rmx.rmx_mtu);
   1700 		}
   1701 
   1702 		/*
   1703 		 * Resend unacknowledged packets.
   1704 		 */
   1705 		tp->snd_nxt = tp->snd_una;
   1706 		tcp_output(tp);
   1707 	}
   1708 }
   1709 #endif /* INET6 */
   1710 
   1711 /*
   1712  * Compute the MSS to advertise to the peer.  Called only during
   1713  * the 3-way handshake.  If we are the server (peer initiated
   1714  * connection), we are called with a pointer to the interface
   1715  * on which the SYN packet arrived.  If we are the client (we
   1716  * initiated connection), we are called with a pointer to the
   1717  * interface out which this connection should go.
   1718  *
   1719  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1720  * header size from MSS advertisement.  MSS option must hold the maximum
   1721  * segment size we can accept, so it must always be:
   1722  *	 max(if mtu) - ip header - tcp header
   1723  */
   1724 u_long
   1725 tcp_mss_to_advertise(ifp, af)
   1726 	const struct ifnet *ifp;
   1727 	int af;
   1728 {
   1729 	extern u_long in_maxmtu;
   1730 	u_long mss = 0;
   1731 	u_long hdrsiz;
   1732 
   1733 	/*
   1734 	 * In order to avoid defeating path MTU discovery on the peer,
   1735 	 * we advertise the max MTU of all attached networks as our MSS,
   1736 	 * per RFC 1191, section 3.1.
   1737 	 *
   1738 	 * We provide the option to advertise just the MTU of
   1739 	 * the interface on which we hope this connection will
   1740 	 * be receiving.  If we are responding to a SYN, we
   1741 	 * will have a pretty good idea about this, but when
   1742 	 * initiating a connection there is a bit more doubt.
   1743 	 *
   1744 	 * We also need to ensure that loopback has a large enough
   1745 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1746 	 */
   1747 
   1748 	if (ifp != NULL)
   1749 		switch (af) {
   1750 		case AF_INET:
   1751 			mss = ifp->if_mtu;
   1752 			break;
   1753 #ifdef INET6
   1754 		case AF_INET6:
   1755 			mss = IN6_LINKMTU(ifp);
   1756 			break;
   1757 #endif
   1758 		}
   1759 
   1760 	if (tcp_mss_ifmtu == 0)
   1761 		switch (af) {
   1762 		case AF_INET:
   1763 			mss = max(in_maxmtu, mss);
   1764 			break;
   1765 #ifdef INET6
   1766 		case AF_INET6:
   1767 			mss = max(in6_maxmtu, mss);
   1768 			break;
   1769 #endif
   1770 		}
   1771 
   1772 	switch (af) {
   1773 	case AF_INET:
   1774 		hdrsiz = sizeof(struct ip);
   1775 		break;
   1776 #ifdef INET6
   1777 	case AF_INET6:
   1778 		hdrsiz = sizeof(struct ip6_hdr);
   1779 		break;
   1780 #endif
   1781 	default:
   1782 		hdrsiz = 0;
   1783 		break;
   1784 	}
   1785 	hdrsiz += sizeof(struct tcphdr);
   1786 	if (mss > hdrsiz)
   1787 		mss -= hdrsiz;
   1788 
   1789 	mss = max(tcp_mssdflt, mss);
   1790 	return (mss);
   1791 }
   1792 
   1793 /*
   1794  * Set connection variables based on the peer's advertised MSS.
   1795  * We are passed the TCPCB for the actual connection.  If we
   1796  * are the server, we are called by the compressed state engine
   1797  * when the 3-way handshake is complete.  If we are the client,
   1798  * we are called when we receive the SYN,ACK from the server.
   1799  *
   1800  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1801  * before this routine is called!
   1802  */
   1803 void
   1804 tcp_mss_from_peer(tp, offer)
   1805 	struct tcpcb *tp;
   1806 	int offer;
   1807 {
   1808 	struct socket *so;
   1809 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1810 	struct rtentry *rt;
   1811 #endif
   1812 	u_long bufsize;
   1813 	int mss;
   1814 
   1815 #ifdef DIAGNOSTIC
   1816 	if (tp->t_inpcb && tp->t_in6pcb)
   1817 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1818 #endif
   1819 	so = NULL;
   1820 	rt = NULL;
   1821 #ifdef INET
   1822 	if (tp->t_inpcb) {
   1823 		so = tp->t_inpcb->inp_socket;
   1824 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1825 		rt = in_pcbrtentry(tp->t_inpcb);
   1826 #endif
   1827 	}
   1828 #endif
   1829 #ifdef INET6
   1830 	if (tp->t_in6pcb) {
   1831 		so = tp->t_in6pcb->in6p_socket;
   1832 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1833 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1834 #endif
   1835 	}
   1836 #endif
   1837 
   1838 	/*
   1839 	 * As per RFC1122, use the default MSS value, unless they
   1840 	 * sent us an offer.  Do not accept offers less than 32 bytes.
   1841 	 */
   1842 	mss = tcp_mssdflt;
   1843 	if (offer)
   1844 		mss = offer;
   1845 	mss = max(mss, 32);		/* sanity */
   1846 	tp->t_peermss = mss;
   1847 	mss -= tcp_optlen(tp);
   1848 #ifdef INET
   1849 	if (tp->t_inpcb)
   1850 		mss -= ip_optlen(tp->t_inpcb);
   1851 #endif
   1852 #ifdef INET6
   1853 	if (tp->t_in6pcb)
   1854 		mss -= ip6_optlen(tp->t_in6pcb);
   1855 #endif
   1856 
   1857 	/*
   1858 	 * If there's a pipesize, change the socket buffer to that size.
   1859 	 * Make the socket buffer an integral number of MSS units.  If
   1860 	 * the MSS is larger than the socket buffer, artificially decrease
   1861 	 * the MSS.
   1862 	 */
   1863 #ifdef RTV_SPIPE
   1864 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1865 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1866 	else
   1867 #endif
   1868 		bufsize = so->so_snd.sb_hiwat;
   1869 	if (bufsize < mss)
   1870 		mss = bufsize;
   1871 	else {
   1872 		bufsize = roundup(bufsize, mss);
   1873 		if (bufsize > sb_max)
   1874 			bufsize = sb_max;
   1875 		(void) sbreserve(&so->so_snd, bufsize);
   1876 	}
   1877 	tp->t_segsz = mss;
   1878 
   1879 #ifdef RTV_SSTHRESH
   1880 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1881 		/*
   1882 		 * There's some sort of gateway or interface buffer
   1883 		 * limit on the path.  Use this to set the slow
   1884 		 * start threshold, but set the threshold to no less
   1885 		 * than 2 * MSS.
   1886 		 */
   1887 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1888 	}
   1889 #endif
   1890 }
   1891 
   1892 /*
   1893  * Processing necessary when a TCP connection is established.
   1894  */
   1895 void
   1896 tcp_established(tp)
   1897 	struct tcpcb *tp;
   1898 {
   1899 	struct socket *so;
   1900 #ifdef RTV_RPIPE
   1901 	struct rtentry *rt;
   1902 #endif
   1903 	u_long bufsize;
   1904 
   1905 #ifdef DIAGNOSTIC
   1906 	if (tp->t_inpcb && tp->t_in6pcb)
   1907 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   1908 #endif
   1909 	so = NULL;
   1910 	rt = NULL;
   1911 #ifdef INET
   1912 	if (tp->t_inpcb) {
   1913 		so = tp->t_inpcb->inp_socket;
   1914 #if defined(RTV_RPIPE)
   1915 		rt = in_pcbrtentry(tp->t_inpcb);
   1916 #endif
   1917 	}
   1918 #endif
   1919 #ifdef INET6
   1920 	if (tp->t_in6pcb) {
   1921 		so = tp->t_in6pcb->in6p_socket;
   1922 #if defined(RTV_RPIPE)
   1923 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1924 #endif
   1925 	}
   1926 #endif
   1927 
   1928 	tp->t_state = TCPS_ESTABLISHED;
   1929 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1930 
   1931 #ifdef RTV_RPIPE
   1932 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   1933 		bufsize = rt->rt_rmx.rmx_recvpipe;
   1934 	else
   1935 #endif
   1936 		bufsize = so->so_rcv.sb_hiwat;
   1937 	if (bufsize > tp->t_ourmss) {
   1938 		bufsize = roundup(bufsize, tp->t_ourmss);
   1939 		if (bufsize > sb_max)
   1940 			bufsize = sb_max;
   1941 		(void) sbreserve(&so->so_rcv, bufsize);
   1942 	}
   1943 }
   1944 
   1945 /*
   1946  * Check if there's an initial rtt or rttvar.  Convert from the
   1947  * route-table units to scaled multiples of the slow timeout timer.
   1948  * Called only during the 3-way handshake.
   1949  */
   1950 void
   1951 tcp_rmx_rtt(tp)
   1952 	struct tcpcb *tp;
   1953 {
   1954 #ifdef RTV_RTT
   1955 	struct rtentry *rt = NULL;
   1956 	int rtt;
   1957 
   1958 #ifdef DIAGNOSTIC
   1959 	if (tp->t_inpcb && tp->t_in6pcb)
   1960 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   1961 #endif
   1962 #ifdef INET
   1963 	if (tp->t_inpcb)
   1964 		rt = in_pcbrtentry(tp->t_inpcb);
   1965 #endif
   1966 #ifdef INET6
   1967 	if (tp->t_in6pcb)
   1968 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1969 #endif
   1970 	if (rt == NULL)
   1971 		return;
   1972 
   1973 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   1974 		/*
   1975 		 * XXX The lock bit for MTU indicates that the value
   1976 		 * is also a minimum value; this is subject to time.
   1977 		 */
   1978 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   1979 			TCPT_RANGESET(tp->t_rttmin,
   1980 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   1981 			    TCPTV_MIN, TCPTV_REXMTMAX);
   1982 		tp->t_srtt = rtt /
   1983 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1984 		if (rt->rt_rmx.rmx_rttvar) {
   1985 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   1986 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   1987 				(TCP_RTTVAR_SHIFT + 2));
   1988 		} else {
   1989 			/* Default variation is +- 1 rtt */
   1990 			tp->t_rttvar =
   1991 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   1992 		}
   1993 		TCPT_RANGESET(tp->t_rxtcur,
   1994 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   1995 		    tp->t_rttmin, TCPTV_REXMTMAX);
   1996 	}
   1997 #endif
   1998 }
   1999 
   2000 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   2001 #if NRND > 0
   2002 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   2003 #endif
   2004 
   2005 /*
   2006  * Get a new sequence value given a tcp control block
   2007  */
   2008 tcp_seq
   2009 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   2010 {
   2011 
   2012 #ifdef INET
   2013 	if (tp->t_inpcb != NULL) {
   2014 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   2015 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   2016 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   2017 		    addin));
   2018 	}
   2019 #endif
   2020 #ifdef INET6
   2021 	if (tp->t_in6pcb != NULL) {
   2022 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   2023 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   2024 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   2025 		    addin));
   2026 	}
   2027 #endif
   2028 	/* Not possible. */
   2029 	panic("tcp_new_iss");
   2030 }
   2031 
   2032 /*
   2033  * This routine actually generates a new TCP initial sequence number.
   2034  */
   2035 tcp_seq
   2036 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2037     size_t addrsz, tcp_seq addin)
   2038 {
   2039 	tcp_seq tcp_iss;
   2040 
   2041 #if NRND > 0
   2042 	static int beenhere;
   2043 
   2044 	/*
   2045 	 * If we haven't been here before, initialize our cryptographic
   2046 	 * hash secret.
   2047 	 */
   2048 	if (beenhere == 0) {
   2049 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   2050 		    RND_EXTRACT_ANY);
   2051 		beenhere = 1;
   2052 	}
   2053 
   2054 	if (tcp_do_rfc1948) {
   2055 		MD5_CTX ctx;
   2056 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2057 
   2058 		/*
   2059 		 * Compute the base value of the ISS.  It is a hash
   2060 		 * of (saddr, sport, daddr, dport, secret).
   2061 		 */
   2062 		MD5Init(&ctx);
   2063 
   2064 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2065 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2066 
   2067 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2068 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2069 
   2070 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2071 
   2072 		MD5Final(hash, &ctx);
   2073 
   2074 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2075 
   2076 		/*
   2077 		 * Now increment our "timer", and add it in to
   2078 		 * the computed value.
   2079 		 *
   2080 		 * XXX Use `addin'?
   2081 		 * XXX TCP_ISSINCR too large to use?
   2082 		 */
   2083 		tcp_iss_seq += TCP_ISSINCR;
   2084 #ifdef TCPISS_DEBUG
   2085 		printf("ISS hash 0x%08x, ", tcp_iss);
   2086 #endif
   2087 		tcp_iss += tcp_iss_seq + addin;
   2088 #ifdef TCPISS_DEBUG
   2089 		printf("new ISS 0x%08x\n", tcp_iss);
   2090 #endif
   2091 	} else
   2092 #endif /* NRND > 0 */
   2093 	{
   2094 		/*
   2095 		 * Randomize.
   2096 		 */
   2097 #if NRND > 0
   2098 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2099 #else
   2100 		tcp_iss = arc4random();
   2101 #endif
   2102 
   2103 		/*
   2104 		 * If we were asked to add some amount to a known value,
   2105 		 * we will take a random value obtained above, mask off
   2106 		 * the upper bits, and add in the known value.  We also
   2107 		 * add in a constant to ensure that we are at least a
   2108 		 * certain distance from the original value.
   2109 		 *
   2110 		 * This is used when an old connection is in timed wait
   2111 		 * and we have a new one coming in, for instance.
   2112 		 */
   2113 		if (addin != 0) {
   2114 #ifdef TCPISS_DEBUG
   2115 			printf("Random %08x, ", tcp_iss);
   2116 #endif
   2117 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2118 			tcp_iss += addin + TCP_ISSINCR;
   2119 #ifdef TCPISS_DEBUG
   2120 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2121 #endif
   2122 		} else {
   2123 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2124 			tcp_iss += tcp_iss_seq;
   2125 			tcp_iss_seq += TCP_ISSINCR;
   2126 #ifdef TCPISS_DEBUG
   2127 			printf("ISS %08x\n", tcp_iss);
   2128 #endif
   2129 		}
   2130 	}
   2131 
   2132 	if (tcp_compat_42) {
   2133 		/*
   2134 		 * Limit it to the positive range for really old TCP
   2135 		 * implementations.
   2136 		 * Just AND off the top bit instead of checking if
   2137 		 * is set first - saves a branch 50% of the time.
   2138 		 */
   2139 		tcp_iss &= 0x7fffffff;		/* XXX */
   2140 	}
   2141 
   2142 	return (tcp_iss);
   2143 }
   2144 
   2145 #if defined(IPSEC) || defined(FAST_IPSEC)
   2146 /* compute ESP/AH header size for TCP, including outer IP header. */
   2147 size_t
   2148 ipsec4_hdrsiz_tcp(tp)
   2149 	struct tcpcb *tp;
   2150 {
   2151 	struct inpcb *inp;
   2152 	size_t hdrsiz;
   2153 
   2154 	/* XXX mapped addr case (tp->t_in6pcb) */
   2155 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2156 		return 0;
   2157 	switch (tp->t_family) {
   2158 	case AF_INET:
   2159 		/* XXX: should use currect direction. */
   2160 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2161 		break;
   2162 	default:
   2163 		hdrsiz = 0;
   2164 		break;
   2165 	}
   2166 
   2167 	return hdrsiz;
   2168 }
   2169 
   2170 #ifdef INET6
   2171 size_t
   2172 ipsec6_hdrsiz_tcp(tp)
   2173 	struct tcpcb *tp;
   2174 {
   2175 	struct in6pcb *in6p;
   2176 	size_t hdrsiz;
   2177 
   2178 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2179 		return 0;
   2180 	switch (tp->t_family) {
   2181 	case AF_INET6:
   2182 		/* XXX: should use currect direction. */
   2183 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2184 		break;
   2185 	case AF_INET:
   2186 		/* mapped address case - tricky */
   2187 	default:
   2188 		hdrsiz = 0;
   2189 		break;
   2190 	}
   2191 
   2192 	return hdrsiz;
   2193 }
   2194 #endif
   2195 #endif /*IPSEC*/
   2196 
   2197 /*
   2198  * Determine the length of the TCP options for this connection.
   2199  *
   2200  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2201  *       all of the space?  Otherwise we can't exactly be incrementing
   2202  *       cwnd by an amount that varies depending on the amount we last
   2203  *       had to SACK!
   2204  */
   2205 
   2206 u_int
   2207 tcp_optlen(tp)
   2208 	struct tcpcb *tp;
   2209 {
   2210 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2211 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2212 		return TCPOLEN_TSTAMP_APPA;
   2213 	else
   2214 		return 0;
   2215 }
   2216