Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.152
      1 /*	$NetBSD: tcp_subr.c,v 1.152 2003/09/06 03:36:31 itojun Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.152 2003/09/06 03:36:31 itojun Exp $");
    102 
    103 #include "opt_inet.h"
    104 #include "opt_ipsec.h"
    105 #include "opt_tcp_compat_42.h"
    106 #include "opt_inet_csum.h"
    107 #include "opt_mbuftrace.h"
    108 #include "rnd.h"
    109 
    110 #include <sys/param.h>
    111 #include <sys/proc.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/socket.h>
    116 #include <sys/socketvar.h>
    117 #include <sys/protosw.h>
    118 #include <sys/errno.h>
    119 #include <sys/kernel.h>
    120 #include <sys/pool.h>
    121 #if NRND > 0
    122 #include <sys/md5.h>
    123 #include <sys/rnd.h>
    124 #endif
    125 
    126 #include <net/route.h>
    127 #include <net/if.h>
    128 
    129 #include <netinet/in.h>
    130 #include <netinet/in_systm.h>
    131 #include <netinet/ip.h>
    132 #include <netinet/in_pcb.h>
    133 #include <netinet/ip_var.h>
    134 #include <netinet/ip_icmp.h>
    135 
    136 #ifdef INET6
    137 #ifndef INET
    138 #include <netinet/in.h>
    139 #endif
    140 #include <netinet/ip6.h>
    141 #include <netinet6/in6_pcb.h>
    142 #include <netinet6/ip6_var.h>
    143 #include <netinet6/in6_var.h>
    144 #include <netinet6/ip6protosw.h>
    145 #include <netinet/icmp6.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include <netinet/tcp.h>
    150 #include <netinet/tcp_fsm.h>
    151 #include <netinet/tcp_seq.h>
    152 #include <netinet/tcp_timer.h>
    153 #include <netinet/tcp_var.h>
    154 #include <netinet/tcpip.h>
    155 
    156 #ifdef IPSEC
    157 #include <netinet6/ipsec.h>
    158 #endif /*IPSEC*/
    159 
    160 #ifdef FAST_IPSEC
    161 #include <netipsec/ipsec.h>
    162 #ifdef INET6
    163 #include <netipsec/ipsec6.h>
    164 #endif
    165 #endif	/* FAST_IPSEC*/
    166 
    167 
    168 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    169 struct	tcpstat tcpstat;	/* tcp statistics */
    170 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
    171 
    172 /* patchable/settable parameters for tcp */
    173 int 	tcp_mssdflt = TCP_MSS;
    174 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    175 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    176 #if NRND > 0
    177 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    178 #endif
    179 int	tcp_do_sack = 1;	/* selective acknowledgement */
    180 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    181 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    182 int	tcp_do_newreno = 0;	/* Use the New Reno algorithms */
    183 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    184 #ifndef TCP_INIT_WIN
    185 #define	TCP_INIT_WIN	1	/* initial slow start window */
    186 #endif
    187 #ifndef TCP_INIT_WIN_LOCAL
    188 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    189 #endif
    190 int	tcp_init_win = TCP_INIT_WIN;
    191 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    192 int	tcp_mss_ifmtu = 0;
    193 #ifdef TCP_COMPAT_42
    194 int	tcp_compat_42 = 1;
    195 #else
    196 int	tcp_compat_42 = 0;
    197 #endif
    198 int	tcp_rst_ppslim = 100;	/* 100pps */
    199 
    200 /* tcb hash */
    201 #ifndef TCBHASHSIZE
    202 #define	TCBHASHSIZE	128
    203 #endif
    204 int	tcbhashsize = TCBHASHSIZE;
    205 
    206 /* syn hash parameters */
    207 #define	TCP_SYN_HASH_SIZE	293
    208 #define	TCP_SYN_BUCKET_SIZE	35
    209 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    210 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    211 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    212 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    213 
    214 int	tcp_freeq __P((struct tcpcb *));
    215 
    216 #ifdef INET
    217 void	tcp_mtudisc_callback __P((struct in_addr));
    218 #endif
    219 #ifdef INET6
    220 void	tcp6_mtudisc_callback __P((struct in6_addr *));
    221 #endif
    222 
    223 void	tcp_mtudisc __P((struct inpcb *, int));
    224 #ifdef INET6
    225 void	tcp6_mtudisc __P((struct in6pcb *, int));
    226 #endif
    227 
    228 struct pool tcpcb_pool;
    229 
    230 #ifdef TCP_CSUM_COUNTERS
    231 #include <sys/device.h>
    232 
    233 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    234     NULL, "tcp", "hwcsum bad");
    235 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    236     NULL, "tcp", "hwcsum ok");
    237 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    238     NULL, "tcp", "hwcsum data");
    239 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    240     NULL, "tcp", "swcsum");
    241 #endif /* TCP_CSUM_COUNTERS */
    242 
    243 #ifdef TCP_OUTPUT_COUNTERS
    244 #include <sys/device.h>
    245 
    246 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    247     NULL, "tcp", "output big header");
    248 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    249     NULL, "tcp", "output copy small");
    250 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    251     NULL, "tcp", "output copy big");
    252 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    253     NULL, "tcp", "output reference big");
    254 #endif /* TCP_OUTPUT_COUNTERS */
    255 
    256 #ifdef TCP_REASS_COUNTERS
    257 #include <sys/device.h>
    258 
    259 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    260     NULL, "tcp_reass", "calls");
    261 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    262     &tcp_reass_, "tcp_reass", "insert into empty queue");
    263 struct evcnt tcp_reass_iteration[8] = {
    264     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    265     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    266     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    267     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    268     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    269     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    270     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    271     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    272 };
    273 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    274     &tcp_reass_, "tcp_reass", "prepend to first");
    275 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    276     &tcp_reass_, "tcp_reass", "prepend");
    277 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    278     &tcp_reass_, "tcp_reass", "insert");
    279 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    280     &tcp_reass_, "tcp_reass", "insert at tail");
    281 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    282     &tcp_reass_, "tcp_reass", "append");
    283 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    284     &tcp_reass_, "tcp_reass", "append to tail fragment");
    285 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    286     &tcp_reass_, "tcp_reass", "overlap at end");
    287 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    288     &tcp_reass_, "tcp_reass", "overlap at start");
    289 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    290     &tcp_reass_, "tcp_reass", "duplicate segment");
    291 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    292     &tcp_reass_, "tcp_reass", "duplicate fragment");
    293 
    294 #endif /* TCP_REASS_COUNTERS */
    295 
    296 #ifdef MBUFTRACE
    297 struct mowner tcp_mowner = { "tcp" };
    298 struct mowner tcp_rx_mowner = { "tcp", "rx" };
    299 struct mowner tcp_tx_mowner = { "tcp", "tx" };
    300 #endif
    301 
    302 /*
    303  * Tcp initialization
    304  */
    305 void
    306 tcp_init()
    307 {
    308 	int hlen;
    309 
    310 	pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
    311 	    NULL);
    312 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    313 
    314 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    315 #ifdef INET6
    316 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    317 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    318 #endif
    319 	if (max_protohdr < hlen)
    320 		max_protohdr = hlen;
    321 	if (max_linkhdr + hlen > MHLEN)
    322 		panic("tcp_init");
    323 
    324 #ifdef INET
    325 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    326 #endif
    327 #ifdef INET6
    328 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    329 #endif
    330 
    331 	/* Initialize timer state. */
    332 	tcp_timer_init();
    333 
    334 	/* Initialize the compressed state engine. */
    335 	syn_cache_init();
    336 
    337 #ifdef TCP_CSUM_COUNTERS
    338 	evcnt_attach_static(&tcp_hwcsum_bad);
    339 	evcnt_attach_static(&tcp_hwcsum_ok);
    340 	evcnt_attach_static(&tcp_hwcsum_data);
    341 	evcnt_attach_static(&tcp_swcsum);
    342 #endif /* TCP_CSUM_COUNTERS */
    343 
    344 #ifdef TCP_OUTPUT_COUNTERS
    345 	evcnt_attach_static(&tcp_output_bigheader);
    346 	evcnt_attach_static(&tcp_output_copysmall);
    347 	evcnt_attach_static(&tcp_output_copybig);
    348 	evcnt_attach_static(&tcp_output_refbig);
    349 #endif /* TCP_OUTPUT_COUNTERS */
    350 
    351 #ifdef TCP_REASS_COUNTERS
    352 	evcnt_attach_static(&tcp_reass_);
    353 	evcnt_attach_static(&tcp_reass_empty);
    354 	evcnt_attach_static(&tcp_reass_iteration[0]);
    355 	evcnt_attach_static(&tcp_reass_iteration[1]);
    356 	evcnt_attach_static(&tcp_reass_iteration[2]);
    357 	evcnt_attach_static(&tcp_reass_iteration[3]);
    358 	evcnt_attach_static(&tcp_reass_iteration[4]);
    359 	evcnt_attach_static(&tcp_reass_iteration[5]);
    360 	evcnt_attach_static(&tcp_reass_iteration[6]);
    361 	evcnt_attach_static(&tcp_reass_iteration[7]);
    362 	evcnt_attach_static(&tcp_reass_prependfirst);
    363 	evcnt_attach_static(&tcp_reass_prepend);
    364 	evcnt_attach_static(&tcp_reass_insert);
    365 	evcnt_attach_static(&tcp_reass_inserttail);
    366 	evcnt_attach_static(&tcp_reass_append);
    367 	evcnt_attach_static(&tcp_reass_appendtail);
    368 	evcnt_attach_static(&tcp_reass_overlaptail);
    369 	evcnt_attach_static(&tcp_reass_overlapfront);
    370 	evcnt_attach_static(&tcp_reass_segdup);
    371 	evcnt_attach_static(&tcp_reass_fragdup);
    372 #endif /* TCP_REASS_COUNTERS */
    373 
    374 	MOWNER_ATTACH(&tcp_tx_mowner);
    375 	MOWNER_ATTACH(&tcp_rx_mowner);
    376 	MOWNER_ATTACH(&tcp_mowner);
    377 }
    378 
    379 /*
    380  * Create template to be used to send tcp packets on a connection.
    381  * Call after host entry created, allocates an mbuf and fills
    382  * in a skeletal tcp/ip header, minimizing the amount of work
    383  * necessary when the connection is used.
    384  */
    385 struct mbuf *
    386 tcp_template(tp)
    387 	struct tcpcb *tp;
    388 {
    389 	struct inpcb *inp = tp->t_inpcb;
    390 #ifdef INET6
    391 	struct in6pcb *in6p = tp->t_in6pcb;
    392 #endif
    393 	struct tcphdr *n;
    394 	struct mbuf *m;
    395 	int hlen;
    396 
    397 	switch (tp->t_family) {
    398 	case AF_INET:
    399 		hlen = sizeof(struct ip);
    400 		if (inp)
    401 			break;
    402 #ifdef INET6
    403 		if (in6p) {
    404 			/* mapped addr case */
    405 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    406 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    407 				break;
    408 		}
    409 #endif
    410 		return NULL;	/*EINVAL*/
    411 #ifdef INET6
    412 	case AF_INET6:
    413 		hlen = sizeof(struct ip6_hdr);
    414 		if (in6p) {
    415 			/* more sainty check? */
    416 			break;
    417 		}
    418 		return NULL;	/*EINVAL*/
    419 #endif
    420 	default:
    421 		hlen = 0;	/*pacify gcc*/
    422 		return NULL;	/*EAFNOSUPPORT*/
    423 	}
    424 #ifdef DIAGNOSTIC
    425 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    426 		panic("mclbytes too small for t_template");
    427 #endif
    428 	m = tp->t_template;
    429 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    430 		;
    431 	else {
    432 		if (m)
    433 			m_freem(m);
    434 		m = tp->t_template = NULL;
    435 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    436 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    437 			MCLGET(m, M_DONTWAIT);
    438 			if ((m->m_flags & M_EXT) == 0) {
    439 				m_free(m);
    440 				m = NULL;
    441 			}
    442 		}
    443 		if (m == NULL)
    444 			return NULL;
    445 		MCLAIM(m, &tcp_mowner);
    446 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    447 	}
    448 
    449 	bzero(mtod(m, caddr_t), m->m_len);
    450 
    451 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
    452 
    453 	switch (tp->t_family) {
    454 	case AF_INET:
    455 	    {
    456 		struct ipovly *ipov;
    457 		mtod(m, struct ip *)->ip_v = 4;
    458 		ipov = mtod(m, struct ipovly *);
    459 		ipov->ih_pr = IPPROTO_TCP;
    460 		ipov->ih_len = htons(sizeof(struct tcphdr));
    461 		if (inp) {
    462 			ipov->ih_src = inp->inp_laddr;
    463 			ipov->ih_dst = inp->inp_faddr;
    464 		}
    465 #ifdef INET6
    466 		else if (in6p) {
    467 			/* mapped addr case */
    468 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    469 				sizeof(ipov->ih_src));
    470 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    471 				sizeof(ipov->ih_dst));
    472 		}
    473 #endif
    474 		/*
    475 		 * Compute the pseudo-header portion of the checksum
    476 		 * now.  We incrementally add in the TCP option and
    477 		 * payload lengths later, and then compute the TCP
    478 		 * checksum right before the packet is sent off onto
    479 		 * the wire.
    480 		 */
    481 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    482 		    ipov->ih_dst.s_addr,
    483 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    484 		break;
    485 	    }
    486 #ifdef INET6
    487 	case AF_INET6:
    488 	    {
    489 		struct ip6_hdr *ip6;
    490 		mtod(m, struct ip *)->ip_v = 6;
    491 		ip6 = mtod(m, struct ip6_hdr *);
    492 		ip6->ip6_nxt = IPPROTO_TCP;
    493 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    494 		ip6->ip6_src = in6p->in6p_laddr;
    495 		ip6->ip6_dst = in6p->in6p_faddr;
    496 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    497 		if (ip6_auto_flowlabel) {
    498 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    499 			ip6->ip6_flow |=
    500 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    501 		}
    502 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    503 		ip6->ip6_vfc |= IPV6_VERSION;
    504 
    505 		/*
    506 		 * Compute the pseudo-header portion of the checksum
    507 		 * now.  We incrementally add in the TCP option and
    508 		 * payload lengths later, and then compute the TCP
    509 		 * checksum right before the packet is sent off onto
    510 		 * the wire.
    511 		 */
    512 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    513 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    514 		    htonl(IPPROTO_TCP));
    515 		break;
    516 	    }
    517 #endif
    518 	}
    519 	if (inp) {
    520 		n->th_sport = inp->inp_lport;
    521 		n->th_dport = inp->inp_fport;
    522 	}
    523 #ifdef INET6
    524 	else if (in6p) {
    525 		n->th_sport = in6p->in6p_lport;
    526 		n->th_dport = in6p->in6p_fport;
    527 	}
    528 #endif
    529 	n->th_seq = 0;
    530 	n->th_ack = 0;
    531 	n->th_x2 = 0;
    532 	n->th_off = 5;
    533 	n->th_flags = 0;
    534 	n->th_win = 0;
    535 	n->th_urp = 0;
    536 	return (m);
    537 }
    538 
    539 /*
    540  * Send a single message to the TCP at address specified by
    541  * the given TCP/IP header.  If m == 0, then we make a copy
    542  * of the tcpiphdr at ti and send directly to the addressed host.
    543  * This is used to force keep alive messages out using the TCP
    544  * template for a connection tp->t_template.  If flags are given
    545  * then we send a message back to the TCP which originated the
    546  * segment ti, and discard the mbuf containing it and any other
    547  * attached mbufs.
    548  *
    549  * In any case the ack and sequence number of the transmitted
    550  * segment are as specified by the parameters.
    551  */
    552 int
    553 tcp_respond(tp, template, m, th0, ack, seq, flags)
    554 	struct tcpcb *tp;
    555 	struct mbuf *template;
    556 	struct mbuf *m;
    557 	struct tcphdr *th0;
    558 	tcp_seq ack, seq;
    559 	int flags;
    560 {
    561 	struct route *ro;
    562 	int error, tlen, win = 0;
    563 	int hlen;
    564 	struct ip *ip;
    565 #ifdef INET6
    566 	struct ip6_hdr *ip6;
    567 #endif
    568 	int family;	/* family on packet, not inpcb/in6pcb! */
    569 	struct tcphdr *th;
    570 	struct socket *so;
    571 
    572 	if (tp != NULL && (flags & TH_RST) == 0) {
    573 #ifdef DIAGNOSTIC
    574 		if (tp->t_inpcb && tp->t_in6pcb)
    575 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    576 #endif
    577 #ifdef INET
    578 		if (tp->t_inpcb)
    579 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    580 #endif
    581 #ifdef INET6
    582 		if (tp->t_in6pcb)
    583 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    584 #endif
    585 	}
    586 
    587 	th = NULL;	/* Quell uninitialized warning */
    588 	ip = NULL;
    589 #ifdef INET6
    590 	ip6 = NULL;
    591 #endif
    592 	if (m == 0) {
    593 		if (!template)
    594 			return EINVAL;
    595 
    596 		/* get family information from template */
    597 		switch (mtod(template, struct ip *)->ip_v) {
    598 		case 4:
    599 			family = AF_INET;
    600 			hlen = sizeof(struct ip);
    601 			break;
    602 #ifdef INET6
    603 		case 6:
    604 			family = AF_INET6;
    605 			hlen = sizeof(struct ip6_hdr);
    606 			break;
    607 #endif
    608 		default:
    609 			return EAFNOSUPPORT;
    610 		}
    611 
    612 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    613 		if (m) {
    614 			MCLAIM(m, &tcp_tx_mowner);
    615 			MCLGET(m, M_DONTWAIT);
    616 			if ((m->m_flags & M_EXT) == 0) {
    617 				m_free(m);
    618 				m = NULL;
    619 			}
    620 		}
    621 		if (m == NULL)
    622 			return (ENOBUFS);
    623 
    624 		if (tcp_compat_42)
    625 			tlen = 1;
    626 		else
    627 			tlen = 0;
    628 
    629 		m->m_data += max_linkhdr;
    630 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
    631 			template->m_len);
    632 		switch (family) {
    633 		case AF_INET:
    634 			ip = mtod(m, struct ip *);
    635 			th = (struct tcphdr *)(ip + 1);
    636 			break;
    637 #ifdef INET6
    638 		case AF_INET6:
    639 			ip6 = mtod(m, struct ip6_hdr *);
    640 			th = (struct tcphdr *)(ip6 + 1);
    641 			break;
    642 #endif
    643 #if 0
    644 		default:
    645 			/* noone will visit here */
    646 			m_freem(m);
    647 			return EAFNOSUPPORT;
    648 #endif
    649 		}
    650 		flags = TH_ACK;
    651 	} else {
    652 
    653 		if ((m->m_flags & M_PKTHDR) == 0) {
    654 #if 0
    655 			printf("non PKTHDR to tcp_respond\n");
    656 #endif
    657 			m_freem(m);
    658 			return EINVAL;
    659 		}
    660 #ifdef DIAGNOSTIC
    661 		if (!th0)
    662 			panic("th0 == NULL in tcp_respond");
    663 #endif
    664 
    665 		/* get family information from m */
    666 		switch (mtod(m, struct ip *)->ip_v) {
    667 		case 4:
    668 			family = AF_INET;
    669 			hlen = sizeof(struct ip);
    670 			ip = mtod(m, struct ip *);
    671 			break;
    672 #ifdef INET6
    673 		case 6:
    674 			family = AF_INET6;
    675 			hlen = sizeof(struct ip6_hdr);
    676 			ip6 = mtod(m, struct ip6_hdr *);
    677 			break;
    678 #endif
    679 		default:
    680 			m_freem(m);
    681 			return EAFNOSUPPORT;
    682 		}
    683 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    684 			tlen = sizeof(*th0);
    685 		else
    686 			tlen = th0->th_off << 2;
    687 
    688 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    689 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
    690 			m->m_len = hlen + tlen;
    691 			m_freem(m->m_next);
    692 			m->m_next = NULL;
    693 		} else {
    694 			struct mbuf *n;
    695 
    696 #ifdef DIAGNOSTIC
    697 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    698 				m_freem(m);
    699 				return EMSGSIZE;
    700 			}
    701 #endif
    702 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    703 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    704 				MCLGET(n, M_DONTWAIT);
    705 				if ((n->m_flags & M_EXT) == 0) {
    706 					m_freem(n);
    707 					n = NULL;
    708 				}
    709 			}
    710 			if (!n) {
    711 				m_freem(m);
    712 				return ENOBUFS;
    713 			}
    714 
    715 			MCLAIM(n, &tcp_tx_mowner);
    716 			n->m_data += max_linkhdr;
    717 			n->m_len = hlen + tlen;
    718 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
    719 			m_copyback(n, hlen, tlen, (caddr_t)th0);
    720 
    721 			m_freem(m);
    722 			m = n;
    723 			n = NULL;
    724 		}
    725 
    726 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    727 		switch (family) {
    728 		case AF_INET:
    729 			ip = mtod(m, struct ip *);
    730 			th = (struct tcphdr *)(ip + 1);
    731 			ip->ip_p = IPPROTO_TCP;
    732 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    733 			ip->ip_p = IPPROTO_TCP;
    734 			break;
    735 #ifdef INET6
    736 		case AF_INET6:
    737 			ip6 = mtod(m, struct ip6_hdr *);
    738 			th = (struct tcphdr *)(ip6 + 1);
    739 			ip6->ip6_nxt = IPPROTO_TCP;
    740 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    741 			ip6->ip6_nxt = IPPROTO_TCP;
    742 			break;
    743 #endif
    744 #if 0
    745 		default:
    746 			/* noone will visit here */
    747 			m_freem(m);
    748 			return EAFNOSUPPORT;
    749 #endif
    750 		}
    751 		xchg(th->th_dport, th->th_sport, u_int16_t);
    752 #undef xchg
    753 		tlen = 0;	/*be friendly with the following code*/
    754 	}
    755 	th->th_seq = htonl(seq);
    756 	th->th_ack = htonl(ack);
    757 	th->th_x2 = 0;
    758 	if ((flags & TH_SYN) == 0) {
    759 		if (tp)
    760 			win >>= tp->rcv_scale;
    761 		if (win > TCP_MAXWIN)
    762 			win = TCP_MAXWIN;
    763 		th->th_win = htons((u_int16_t)win);
    764 		th->th_off = sizeof (struct tcphdr) >> 2;
    765 		tlen += sizeof(*th);
    766 	} else
    767 		tlen += th->th_off << 2;
    768 	m->m_len = hlen + tlen;
    769 	m->m_pkthdr.len = hlen + tlen;
    770 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    771 	th->th_flags = flags;
    772 	th->th_urp = 0;
    773 
    774 	switch (family) {
    775 #ifdef INET
    776 	case AF_INET:
    777 	    {
    778 		struct ipovly *ipov = (struct ipovly *)ip;
    779 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    780 		ipov->ih_len = htons((u_int16_t)tlen);
    781 
    782 		th->th_sum = 0;
    783 		th->th_sum = in_cksum(m, hlen + tlen);
    784 		ip->ip_len = htons(hlen + tlen);
    785 		ip->ip_ttl = ip_defttl;
    786 		break;
    787 	    }
    788 #endif
    789 #ifdef INET6
    790 	case AF_INET6:
    791 	    {
    792 		th->th_sum = 0;
    793 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    794 				tlen);
    795 		ip6->ip6_plen = ntohs(tlen);
    796 		if (tp && tp->t_in6pcb) {
    797 			struct ifnet *oifp;
    798 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    799 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    800 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    801 		} else
    802 			ip6->ip6_hlim = ip6_defhlim;
    803 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    804 		if (ip6_auto_flowlabel) {
    805 			ip6->ip6_flow |=
    806 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    807 		}
    808 		break;
    809 	    }
    810 #endif
    811 	}
    812 
    813 	if (tp && tp->t_inpcb)
    814 		so = tp->t_inpcb->inp_socket;
    815 #ifdef INET6
    816 	else if (tp && tp->t_in6pcb)
    817 		so = tp->t_in6pcb->in6p_socket;
    818 #endif
    819 	else
    820 		so = NULL;
    821 
    822 	if (tp != NULL && tp->t_inpcb != NULL) {
    823 		ro = &tp->t_inpcb->inp_route;
    824 #ifdef DIAGNOSTIC
    825 		if (family != AF_INET)
    826 			panic("tcp_respond: address family mismatch");
    827 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    828 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    829 			    ntohl(ip->ip_dst.s_addr),
    830 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    831 		}
    832 #endif
    833 	}
    834 #ifdef INET6
    835 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    836 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    837 #ifdef DIAGNOSTIC
    838 		if (family == AF_INET) {
    839 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    840 				panic("tcp_respond: not mapped addr");
    841 			if (bcmp(&ip->ip_dst,
    842 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    843 			    sizeof(ip->ip_dst)) != 0) {
    844 				panic("tcp_respond: ip_dst != in6p_faddr");
    845 			}
    846 		} else if (family == AF_INET6) {
    847 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    848 			    &tp->t_in6pcb->in6p_faddr))
    849 				panic("tcp_respond: ip6_dst != in6p_faddr");
    850 		} else
    851 			panic("tcp_respond: address family mismatch");
    852 #endif
    853 	}
    854 #endif
    855 	else
    856 		ro = NULL;
    857 
    858 	switch (family) {
    859 #ifdef INET
    860 	case AF_INET:
    861 		error = ip_output(m, NULL, ro,
    862 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    863 		    (struct ip_moptions *)0, so);
    864 		break;
    865 #endif
    866 #ifdef INET6
    867 	case AF_INET6:
    868 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
    869 		    (struct ip6_moptions *)0, so, NULL);
    870 		break;
    871 #endif
    872 	default:
    873 		error = EAFNOSUPPORT;
    874 		break;
    875 	}
    876 
    877 	return (error);
    878 }
    879 
    880 /*
    881  * Create a new TCP control block, making an
    882  * empty reassembly queue and hooking it to the argument
    883  * protocol control block.
    884  */
    885 struct tcpcb *
    886 tcp_newtcpcb(family, aux)
    887 	int family;	/* selects inpcb, or in6pcb */
    888 	void *aux;
    889 {
    890 	struct tcpcb *tp;
    891 	int i;
    892 
    893 	switch (family) {
    894 	case PF_INET:
    895 		break;
    896 #ifdef INET6
    897 	case PF_INET6:
    898 		break;
    899 #endif
    900 	default:
    901 		return NULL;
    902 	}
    903 
    904 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    905 	if (tp == NULL)
    906 		return (NULL);
    907 	bzero((caddr_t)tp, sizeof(struct tcpcb));
    908 	TAILQ_INIT(&tp->segq);
    909 	TAILQ_INIT(&tp->timeq);
    910 	tp->t_family = family;		/* may be overridden later on */
    911 	tp->t_peermss = tcp_mssdflt;
    912 	tp->t_ourmss = tcp_mssdflt;
    913 	tp->t_segsz = tcp_mssdflt;
    914 	LIST_INIT(&tp->t_sc);
    915 
    916 	tp->t_lastm = NULL;
    917 	tp->t_lastoff = 0;
    918 
    919 	callout_init(&tp->t_delack_ch);
    920 	for (i = 0; i < TCPT_NTIMERS; i++)
    921 		TCP_TIMER_INIT(tp, i);
    922 
    923 	tp->t_flags = 0;
    924 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    925 		tp->t_flags |= TF_REQ_SCALE;
    926 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    927 		tp->t_flags |= TF_REQ_TSTMP;
    928 	if (tcp_do_sack == 2)
    929 		tp->t_flags |= TF_WILL_SACK;
    930 	else if (tcp_do_sack == 1)
    931 		tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
    932 	tp->t_flags |= TF_CANT_TXSACK;
    933 	switch (family) {
    934 	case PF_INET:
    935 		tp->t_inpcb = (struct inpcb *)aux;
    936 		tp->t_mtudisc = ip_mtudisc;
    937 		break;
    938 #ifdef INET6
    939 	case PF_INET6:
    940 		tp->t_in6pcb = (struct in6pcb *)aux;
    941 		/* for IPv6, always try to run path MTU discovery */
    942 		tp->t_mtudisc = 1;
    943 		break;
    944 #endif
    945 	}
    946 	/*
    947 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    948 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    949 	 * reasonable initial retransmit time.
    950 	 */
    951 	tp->t_srtt = TCPTV_SRTTBASE;
    952 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    953 	tp->t_rttmin = TCPTV_MIN;
    954 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    955 	    TCPTV_MIN, TCPTV_REXMTMAX);
    956 	tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    957 	tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
    958 	if (family == AF_INET) {
    959 		struct inpcb *inp = (struct inpcb *)aux;
    960 		inp->inp_ip.ip_ttl = ip_defttl;
    961 		inp->inp_ppcb = (caddr_t)tp;
    962 	}
    963 #ifdef INET6
    964 	else if (family == AF_INET6) {
    965 		struct in6pcb *in6p = (struct in6pcb *)aux;
    966 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
    967 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
    968 					       : NULL);
    969 		in6p->in6p_ppcb = (caddr_t)tp;
    970 	}
    971 #endif
    972 
    973 	/*
    974 	 * Initialize our timebase.  When we send timestamps, we take
    975 	 * the delta from tcp_now -- this means each connection always
    976 	 * gets a timebase of 0, which makes it, among other things,
    977 	 * more difficult to determine how long a system has been up,
    978 	 * and thus how many TCP sequence increments have occurred.
    979 	 */
    980 	tp->ts_timebase = tcp_now;
    981 
    982 	return (tp);
    983 }
    984 
    985 /*
    986  * Drop a TCP connection, reporting
    987  * the specified error.  If connection is synchronized,
    988  * then send a RST to peer.
    989  */
    990 struct tcpcb *
    991 tcp_drop(tp, errno)
    992 	struct tcpcb *tp;
    993 	int errno;
    994 {
    995 	struct socket *so = NULL;
    996 
    997 #ifdef DIAGNOSTIC
    998 	if (tp->t_inpcb && tp->t_in6pcb)
    999 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1000 #endif
   1001 #ifdef INET
   1002 	if (tp->t_inpcb)
   1003 		so = tp->t_inpcb->inp_socket;
   1004 #endif
   1005 #ifdef INET6
   1006 	if (tp->t_in6pcb)
   1007 		so = tp->t_in6pcb->in6p_socket;
   1008 #endif
   1009 	if (!so)
   1010 		return NULL;
   1011 
   1012 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1013 		tp->t_state = TCPS_CLOSED;
   1014 		(void) tcp_output(tp);
   1015 		tcpstat.tcps_drops++;
   1016 	} else
   1017 		tcpstat.tcps_conndrops++;
   1018 	if (errno == ETIMEDOUT && tp->t_softerror)
   1019 		errno = tp->t_softerror;
   1020 	so->so_error = errno;
   1021 	return (tcp_close(tp));
   1022 }
   1023 
   1024 /*
   1025  * Return whether this tcpcb is marked as dead, indicating
   1026  * to the calling timer function that no further action should
   1027  * be taken, as we are about to release this tcpcb.  The release
   1028  * of the storage will be done if this is the last timer running.
   1029  *
   1030  * This is typically called from the callout handler function before
   1031  * callout_ack() is done, therefore we need to test the number of
   1032  * running timer functions against 1 below, not 0.
   1033  */
   1034 int
   1035 tcp_isdead(tp)
   1036 	struct tcpcb *tp;
   1037 {
   1038 	int dead = (tp->t_flags & TF_DEAD);
   1039 
   1040 	if (__predict_false(dead)) {
   1041 		if (tcp_timers_invoking(tp) > 1)
   1042 				/* not quite there yet -- count separately? */
   1043 			return dead;
   1044 		tcpstat.tcps_delayed_free++;
   1045 		pool_put(&tcpcb_pool, tp);
   1046 	}
   1047 	return dead;
   1048 }
   1049 
   1050 /*
   1051  * Close a TCP control block:
   1052  *	discard all space held by the tcp
   1053  *	discard internet protocol block
   1054  *	wake up any sleepers
   1055  */
   1056 struct tcpcb *
   1057 tcp_close(tp)
   1058 	struct tcpcb *tp;
   1059 {
   1060 	struct inpcb *inp;
   1061 #ifdef INET6
   1062 	struct in6pcb *in6p;
   1063 #endif
   1064 	struct socket *so;
   1065 #ifdef RTV_RTT
   1066 	struct rtentry *rt;
   1067 #endif
   1068 	struct route *ro;
   1069 
   1070 	inp = tp->t_inpcb;
   1071 #ifdef INET6
   1072 	in6p = tp->t_in6pcb;
   1073 #endif
   1074 	so = NULL;
   1075 	ro = NULL;
   1076 	if (inp) {
   1077 		so = inp->inp_socket;
   1078 		ro = &inp->inp_route;
   1079 	}
   1080 #ifdef INET6
   1081 	else if (in6p) {
   1082 		so = in6p->in6p_socket;
   1083 		ro = (struct route *)&in6p->in6p_route;
   1084 	}
   1085 #endif
   1086 
   1087 #ifdef RTV_RTT
   1088 	/*
   1089 	 * If we sent enough data to get some meaningful characteristics,
   1090 	 * save them in the routing entry.  'Enough' is arbitrarily
   1091 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1092 	 * give us 16 rtt samples assuming we only get one sample per
   1093 	 * window (the usual case on a long haul net).  16 samples is
   1094 	 * enough for the srtt filter to converge to within 5% of the correct
   1095 	 * value; fewer samples and we could save a very bogus rtt.
   1096 	 *
   1097 	 * Don't update the default route's characteristics and don't
   1098 	 * update anything that the user "locked".
   1099 	 */
   1100 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1101 	    ro && (rt = ro->ro_rt) &&
   1102 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
   1103 		u_long i = 0;
   1104 
   1105 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1106 			i = tp->t_srtt *
   1107 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1108 			if (rt->rt_rmx.rmx_rtt && i)
   1109 				/*
   1110 				 * filter this update to half the old & half
   1111 				 * the new values, converting scale.
   1112 				 * See route.h and tcp_var.h for a
   1113 				 * description of the scaling constants.
   1114 				 */
   1115 				rt->rt_rmx.rmx_rtt =
   1116 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1117 			else
   1118 				rt->rt_rmx.rmx_rtt = i;
   1119 		}
   1120 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1121 			i = tp->t_rttvar *
   1122 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1123 			if (rt->rt_rmx.rmx_rttvar && i)
   1124 				rt->rt_rmx.rmx_rttvar =
   1125 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1126 			else
   1127 				rt->rt_rmx.rmx_rttvar = i;
   1128 		}
   1129 		/*
   1130 		 * update the pipelimit (ssthresh) if it has been updated
   1131 		 * already or if a pipesize was specified & the threshhold
   1132 		 * got below half the pipesize.  I.e., wait for bad news
   1133 		 * before we start updating, then update on both good
   1134 		 * and bad news.
   1135 		 */
   1136 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1137 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1138 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1139 			/*
   1140 			 * convert the limit from user data bytes to
   1141 			 * packets then to packet data bytes.
   1142 			 */
   1143 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1144 			if (i < 2)
   1145 				i = 2;
   1146 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1147 			if (rt->rt_rmx.rmx_ssthresh)
   1148 				rt->rt_rmx.rmx_ssthresh =
   1149 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1150 			else
   1151 				rt->rt_rmx.rmx_ssthresh = i;
   1152 		}
   1153 	}
   1154 #endif /* RTV_RTT */
   1155 	/* free the reassembly queue, if any */
   1156 	TCP_REASS_LOCK(tp);
   1157 	(void) tcp_freeq(tp);
   1158 	TCP_REASS_UNLOCK(tp);
   1159 
   1160 	tcp_canceltimers(tp);
   1161 	TCP_CLEAR_DELACK(tp);
   1162 	syn_cache_cleanup(tp);
   1163 
   1164 	if (tp->t_template) {
   1165 		m_free(tp->t_template);
   1166 		tp->t_template = NULL;
   1167 	}
   1168 	if (tcp_timers_invoking(tp))
   1169 		tp->t_flags |= TF_DEAD;
   1170 	else
   1171 		pool_put(&tcpcb_pool, tp);
   1172 
   1173 	if (inp) {
   1174 		inp->inp_ppcb = 0;
   1175 		soisdisconnected(so);
   1176 		in_pcbdetach(inp);
   1177 	}
   1178 #ifdef INET6
   1179 	else if (in6p) {
   1180 		in6p->in6p_ppcb = 0;
   1181 		soisdisconnected(so);
   1182 		in6_pcbdetach(in6p);
   1183 	}
   1184 #endif
   1185 	tcpstat.tcps_closed++;
   1186 	return ((struct tcpcb *)0);
   1187 }
   1188 
   1189 int
   1190 tcp_freeq(tp)
   1191 	struct tcpcb *tp;
   1192 {
   1193 	struct ipqent *qe;
   1194 	int rv = 0;
   1195 #ifdef TCPREASS_DEBUG
   1196 	int i = 0;
   1197 #endif
   1198 
   1199 	TCP_REASS_LOCK_CHECK(tp);
   1200 
   1201 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1202 #ifdef TCPREASS_DEBUG
   1203 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1204 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1205 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1206 #endif
   1207 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1208 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1209 		m_freem(qe->ipqe_m);
   1210 		pool_put(&ipqent_pool, qe);
   1211 		rv = 1;
   1212 	}
   1213 	return (rv);
   1214 }
   1215 
   1216 /*
   1217  * Protocol drain routine.  Called when memory is in short supply.
   1218  */
   1219 void
   1220 tcp_drain()
   1221 {
   1222 	struct inpcb_hdr *inph;
   1223 	struct inpcb *inp;
   1224 	struct tcpcb *tp;
   1225 
   1226 	/*
   1227 	 * Free the sequence queue of all TCP connections.
   1228 	 */
   1229 	inph = CIRCLEQ_FIRST(&tcbtable.inpt_queue);
   1230 	if (inp)						/* XXX */
   1231 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
   1232 		switch (inph->inph_af) {
   1233 		case AF_INET:
   1234 			tp = intotcpcb((struct inpcb *)inph);
   1235 			break;
   1236 #ifdef INET6
   1237 		case AF_INET6:
   1238 			tp = in6totcpcb((struct in6pcb *)inph);
   1239 			break;
   1240 #endif
   1241 		default:
   1242 			tp = NULL;
   1243 			break;
   1244 		}
   1245 		if (tp != NULL) {
   1246 			/*
   1247 			 * We may be called from a device's interrupt
   1248 			 * context.  If the tcpcb is already busy,
   1249 			 * just bail out now.
   1250 			 */
   1251 			if (tcp_reass_lock_try(tp) == 0)
   1252 				continue;
   1253 			if (tcp_freeq(tp))
   1254 				tcpstat.tcps_connsdrained++;
   1255 			TCP_REASS_UNLOCK(tp);
   1256 		}
   1257 	}
   1258 }
   1259 
   1260 /*
   1261  * Notify a tcp user of an asynchronous error;
   1262  * store error as soft error, but wake up user
   1263  * (for now, won't do anything until can select for soft error).
   1264  */
   1265 void
   1266 tcp_notify(inp, error)
   1267 	struct inpcb *inp;
   1268 	int error;
   1269 {
   1270 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1271 	struct socket *so = inp->inp_socket;
   1272 
   1273 	/*
   1274 	 * Ignore some errors if we are hooked up.
   1275 	 * If connection hasn't completed, has retransmitted several times,
   1276 	 * and receives a second error, give up now.  This is better
   1277 	 * than waiting a long time to establish a connection that
   1278 	 * can never complete.
   1279 	 */
   1280 	if (tp->t_state == TCPS_ESTABLISHED &&
   1281 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1282 	      error == EHOSTDOWN)) {
   1283 		return;
   1284 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1285 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1286 		so->so_error = error;
   1287 	else
   1288 		tp->t_softerror = error;
   1289 	wakeup((caddr_t) &so->so_timeo);
   1290 	sorwakeup(so);
   1291 	sowwakeup(so);
   1292 }
   1293 
   1294 #ifdef INET6
   1295 void
   1296 tcp6_notify(in6p, error)
   1297 	struct in6pcb *in6p;
   1298 	int error;
   1299 {
   1300 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1301 	struct socket *so = in6p->in6p_socket;
   1302 
   1303 	/*
   1304 	 * Ignore some errors if we are hooked up.
   1305 	 * If connection hasn't completed, has retransmitted several times,
   1306 	 * and receives a second error, give up now.  This is better
   1307 	 * than waiting a long time to establish a connection that
   1308 	 * can never complete.
   1309 	 */
   1310 	if (tp->t_state == TCPS_ESTABLISHED &&
   1311 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1312 	      error == EHOSTDOWN)) {
   1313 		return;
   1314 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1315 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1316 		so->so_error = error;
   1317 	else
   1318 		tp->t_softerror = error;
   1319 	wakeup((caddr_t) &so->so_timeo);
   1320 	sorwakeup(so);
   1321 	sowwakeup(so);
   1322 }
   1323 #endif
   1324 
   1325 #ifdef INET6
   1326 void
   1327 tcp6_ctlinput(cmd, sa, d)
   1328 	int cmd;
   1329 	struct sockaddr *sa;
   1330 	void *d;
   1331 {
   1332 	struct tcphdr th;
   1333 	void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
   1334 	int nmatch;
   1335 	struct ip6_hdr *ip6;
   1336 	const struct sockaddr_in6 *sa6_src = NULL;
   1337 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
   1338 	struct mbuf *m;
   1339 	int off;
   1340 
   1341 	if (sa->sa_family != AF_INET6 ||
   1342 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1343 		return;
   1344 	if ((unsigned)cmd >= PRC_NCMDS)
   1345 		return;
   1346 	else if (cmd == PRC_QUENCH) {
   1347 		/* XXX there's no PRC_QUENCH in IPv6 */
   1348 		notify = tcp6_quench;
   1349 	} else if (PRC_IS_REDIRECT(cmd))
   1350 		notify = in6_rtchange, d = NULL;
   1351 	else if (cmd == PRC_MSGSIZE)
   1352 		; /* special code is present, see below */
   1353 	else if (cmd == PRC_HOSTDEAD)
   1354 		d = NULL;
   1355 	else if (inet6ctlerrmap[cmd] == 0)
   1356 		return;
   1357 
   1358 	/* if the parameter is from icmp6, decode it. */
   1359 	if (d != NULL) {
   1360 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1361 		m = ip6cp->ip6c_m;
   1362 		ip6 = ip6cp->ip6c_ip6;
   1363 		off = ip6cp->ip6c_off;
   1364 		sa6_src = ip6cp->ip6c_src;
   1365 	} else {
   1366 		m = NULL;
   1367 		ip6 = NULL;
   1368 		sa6_src = &sa6_any;
   1369 	}
   1370 
   1371 	if (ip6) {
   1372 		/*
   1373 		 * XXX: We assume that when ip6 is non NULL,
   1374 		 * M and OFF are valid.
   1375 		 */
   1376 
   1377 		/* check if we can safely examine src and dst ports */
   1378 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1379 			if (cmd == PRC_MSGSIZE)
   1380 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1381 			return;
   1382 		}
   1383 
   1384 		bzero(&th, sizeof(th));
   1385 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
   1386 
   1387 		if (cmd == PRC_MSGSIZE) {
   1388 			int valid = 0;
   1389 
   1390 			/*
   1391 			 * Check to see if we have a valid TCP connection
   1392 			 * corresponding to the address in the ICMPv6 message
   1393 			 * payload.
   1394 			 */
   1395 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
   1396 			    th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
   1397 			    th.th_sport, 0))
   1398 				valid++;
   1399 
   1400 			/*
   1401 			 * Depending on the value of "valid" and routing table
   1402 			 * size (mtudisc_{hi,lo}wat), we will:
   1403 			 * - recalcurate the new MTU and create the
   1404 			 *   corresponding routing entry, or
   1405 			 * - ignore the MTU change notification.
   1406 			 */
   1407 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1408 
   1409 			/*
   1410 			 * no need to call in6_pcbnotify, it should have been
   1411 			 * called via callback if necessary
   1412 			 */
   1413 			return;
   1414 		}
   1415 
   1416 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
   1417 		    (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1418 		if (nmatch == 0 && syn_cache_count &&
   1419 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1420 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1421 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1422 			syn_cache_unreach((struct sockaddr *)sa6_src,
   1423 					  sa, &th);
   1424 	} else {
   1425 		(void) in6_pcbnotify(&tcbtable, sa, 0,
   1426 		    (struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
   1427 	}
   1428 }
   1429 #endif
   1430 
   1431 #ifdef INET
   1432 /* assumes that ip header and tcp header are contiguous on mbuf */
   1433 void *
   1434 tcp_ctlinput(cmd, sa, v)
   1435 	int cmd;
   1436 	struct sockaddr *sa;
   1437 	void *v;
   1438 {
   1439 	struct ip *ip = v;
   1440 	struct tcphdr *th;
   1441 	struct icmp *icp;
   1442 	extern const int inetctlerrmap[];
   1443 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
   1444 	int errno;
   1445 	int nmatch;
   1446 #ifdef INET6
   1447 	struct in6_addr src6, dst6;
   1448 #endif
   1449 
   1450 	if (sa->sa_family != AF_INET ||
   1451 	    sa->sa_len != sizeof(struct sockaddr_in))
   1452 		return NULL;
   1453 	if ((unsigned)cmd >= PRC_NCMDS)
   1454 		return NULL;
   1455 	errno = inetctlerrmap[cmd];
   1456 	if (cmd == PRC_QUENCH)
   1457 		notify = tcp_quench;
   1458 	else if (PRC_IS_REDIRECT(cmd))
   1459 		notify = in_rtchange, ip = 0;
   1460 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1461 		/*
   1462 		 * Check to see if we have a valid TCP connection
   1463 		 * corresponding to the address in the ICMP message
   1464 		 * payload.
   1465 		 *
   1466 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1467 		 */
   1468 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1469 #ifdef INET6
   1470 		memset(&src6, 0, sizeof(src6));
   1471 		memset(&dst6, 0, sizeof(dst6));
   1472 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1473 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1474 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1475 #endif
   1476 		if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
   1477 		    ip->ip_src, th->th_sport) != NULL)
   1478 			;
   1479 #ifdef INET6
   1480 		else if (in6_pcblookup_connect(&tcbtable, &dst6,
   1481 		    th->th_dport, &src6, th->th_sport, 0) != NULL)
   1482 			;
   1483 #endif
   1484 		else
   1485 			return NULL;
   1486 
   1487 		/*
   1488 		 * Now that we've validated that we are actually communicating
   1489 		 * with the host indicated in the ICMP message, locate the
   1490 		 * ICMP header, recalculate the new MTU, and create the
   1491 		 * corresponding routing entry.
   1492 		 */
   1493 		icp = (struct icmp *)((caddr_t)ip -
   1494 		    offsetof(struct icmp, icmp_ip));
   1495 		icmp_mtudisc(icp, ip->ip_dst);
   1496 
   1497 		return NULL;
   1498 	} else if (cmd == PRC_HOSTDEAD)
   1499 		ip = 0;
   1500 	else if (errno == 0)
   1501 		return NULL;
   1502 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1503 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1504 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
   1505 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1506 		if (nmatch == 0 && syn_cache_count &&
   1507 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1508 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1509 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1510 			struct sockaddr_in sin;
   1511 			bzero(&sin, sizeof(sin));
   1512 			sin.sin_len = sizeof(sin);
   1513 			sin.sin_family = AF_INET;
   1514 			sin.sin_port = th->th_sport;
   1515 			sin.sin_addr = ip->ip_src;
   1516 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1517 		}
   1518 
   1519 		/* XXX mapped address case */
   1520 	} else
   1521 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
   1522 		    notify);
   1523 	return NULL;
   1524 }
   1525 
   1526 /*
   1527  * When a source quence is received, we are being notifed of congestion.
   1528  * Close the congestion window down to the Loss Window (one segment).
   1529  * We will gradually open it again as we proceed.
   1530  */
   1531 void
   1532 tcp_quench(inp, errno)
   1533 	struct inpcb *inp;
   1534 	int errno;
   1535 {
   1536 	struct tcpcb *tp = intotcpcb(inp);
   1537 
   1538 	if (tp)
   1539 		tp->snd_cwnd = tp->t_segsz;
   1540 }
   1541 #endif
   1542 
   1543 #ifdef INET6
   1544 void
   1545 tcp6_quench(in6p, errno)
   1546 	struct in6pcb *in6p;
   1547 	int errno;
   1548 {
   1549 	struct tcpcb *tp = in6totcpcb(in6p);
   1550 
   1551 	if (tp)
   1552 		tp->snd_cwnd = tp->t_segsz;
   1553 }
   1554 #endif
   1555 
   1556 #ifdef INET
   1557 /*
   1558  * Path MTU Discovery handlers.
   1559  */
   1560 void
   1561 tcp_mtudisc_callback(faddr)
   1562 	struct in_addr faddr;
   1563 {
   1564 #ifdef INET6
   1565 	struct in6_addr in6;
   1566 #endif
   1567 
   1568 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1569 #ifdef INET6
   1570 	memset(&in6, 0, sizeof(in6));
   1571 	in6.s6_addr16[5] = 0xffff;
   1572 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1573 	tcp6_mtudisc_callback(&in6);
   1574 #endif
   1575 }
   1576 
   1577 /*
   1578  * On receipt of path MTU corrections, flush old route and replace it
   1579  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1580  * that all packets will be received.
   1581  */
   1582 void
   1583 tcp_mtudisc(inp, errno)
   1584 	struct inpcb *inp;
   1585 	int errno;
   1586 {
   1587 	struct tcpcb *tp = intotcpcb(inp);
   1588 	struct rtentry *rt = in_pcbrtentry(inp);
   1589 
   1590 	if (tp != 0) {
   1591 		if (rt != 0) {
   1592 			/*
   1593 			 * If this was not a host route, remove and realloc.
   1594 			 */
   1595 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1596 				in_rtchange(inp, errno);
   1597 				if ((rt = in_pcbrtentry(inp)) == 0)
   1598 					return;
   1599 			}
   1600 
   1601 			/*
   1602 			 * Slow start out of the error condition.  We
   1603 			 * use the MTU because we know it's smaller
   1604 			 * than the previously transmitted segment.
   1605 			 *
   1606 			 * Note: This is more conservative than the
   1607 			 * suggestion in draft-floyd-incr-init-win-03.
   1608 			 */
   1609 			if (rt->rt_rmx.rmx_mtu != 0)
   1610 				tp->snd_cwnd =
   1611 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1612 				    rt->rt_rmx.rmx_mtu);
   1613 		}
   1614 
   1615 		/*
   1616 		 * Resend unacknowledged packets.
   1617 		 */
   1618 		tp->snd_nxt = tp->snd_una;
   1619 		tcp_output(tp);
   1620 	}
   1621 }
   1622 #endif
   1623 
   1624 #ifdef INET6
   1625 /*
   1626  * Path MTU Discovery handlers.
   1627  */
   1628 void
   1629 tcp6_mtudisc_callback(faddr)
   1630 	struct in6_addr *faddr;
   1631 {
   1632 	struct sockaddr_in6 sin6;
   1633 
   1634 	bzero(&sin6, sizeof(sin6));
   1635 	sin6.sin6_family = AF_INET6;
   1636 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1637 	sin6.sin6_addr = *faddr;
   1638 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
   1639 	    (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1640 }
   1641 
   1642 void
   1643 tcp6_mtudisc(in6p, errno)
   1644 	struct in6pcb *in6p;
   1645 	int errno;
   1646 {
   1647 	struct tcpcb *tp = in6totcpcb(in6p);
   1648 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1649 
   1650 	if (tp != 0) {
   1651 		if (rt != 0) {
   1652 			/*
   1653 			 * If this was not a host route, remove and realloc.
   1654 			 */
   1655 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1656 				in6_rtchange(in6p, errno);
   1657 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1658 					return;
   1659 			}
   1660 
   1661 			/*
   1662 			 * Slow start out of the error condition.  We
   1663 			 * use the MTU because we know it's smaller
   1664 			 * than the previously transmitted segment.
   1665 			 *
   1666 			 * Note: This is more conservative than the
   1667 			 * suggestion in draft-floyd-incr-init-win-03.
   1668 			 */
   1669 			if (rt->rt_rmx.rmx_mtu != 0)
   1670 				tp->snd_cwnd =
   1671 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1672 				    rt->rt_rmx.rmx_mtu);
   1673 		}
   1674 
   1675 		/*
   1676 		 * Resend unacknowledged packets.
   1677 		 */
   1678 		tp->snd_nxt = tp->snd_una;
   1679 		tcp_output(tp);
   1680 	}
   1681 }
   1682 #endif /* INET6 */
   1683 
   1684 /*
   1685  * Compute the MSS to advertise to the peer.  Called only during
   1686  * the 3-way handshake.  If we are the server (peer initiated
   1687  * connection), we are called with a pointer to the interface
   1688  * on which the SYN packet arrived.  If we are the client (we
   1689  * initiated connection), we are called with a pointer to the
   1690  * interface out which this connection should go.
   1691  *
   1692  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1693  * header size from MSS advertisement.  MSS option must hold the maximum
   1694  * segment size we can accept, so it must always be:
   1695  *	 max(if mtu) - ip header - tcp header
   1696  */
   1697 u_long
   1698 tcp_mss_to_advertise(ifp, af)
   1699 	const struct ifnet *ifp;
   1700 	int af;
   1701 {
   1702 	extern u_long in_maxmtu;
   1703 	u_long mss = 0;
   1704 	u_long hdrsiz;
   1705 
   1706 	/*
   1707 	 * In order to avoid defeating path MTU discovery on the peer,
   1708 	 * we advertise the max MTU of all attached networks as our MSS,
   1709 	 * per RFC 1191, section 3.1.
   1710 	 *
   1711 	 * We provide the option to advertise just the MTU of
   1712 	 * the interface on which we hope this connection will
   1713 	 * be receiving.  If we are responding to a SYN, we
   1714 	 * will have a pretty good idea about this, but when
   1715 	 * initiating a connection there is a bit more doubt.
   1716 	 *
   1717 	 * We also need to ensure that loopback has a large enough
   1718 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1719 	 */
   1720 
   1721 	if (ifp != NULL)
   1722 		switch (af) {
   1723 		case AF_INET:
   1724 			mss = ifp->if_mtu;
   1725 			break;
   1726 #ifdef INET6
   1727 		case AF_INET6:
   1728 			mss = IN6_LINKMTU(ifp);
   1729 			break;
   1730 #endif
   1731 		}
   1732 
   1733 	if (tcp_mss_ifmtu == 0)
   1734 		switch (af) {
   1735 		case AF_INET:
   1736 			mss = max(in_maxmtu, mss);
   1737 			break;
   1738 #ifdef INET6
   1739 		case AF_INET6:
   1740 			mss = max(in6_maxmtu, mss);
   1741 			break;
   1742 #endif
   1743 		}
   1744 
   1745 	switch (af) {
   1746 	case AF_INET:
   1747 		hdrsiz = sizeof(struct ip);
   1748 		break;
   1749 #ifdef INET6
   1750 	case AF_INET6:
   1751 		hdrsiz = sizeof(struct ip6_hdr);
   1752 		break;
   1753 #endif
   1754 	default:
   1755 		hdrsiz = 0;
   1756 		break;
   1757 	}
   1758 	hdrsiz += sizeof(struct tcphdr);
   1759 	if (mss > hdrsiz)
   1760 		mss -= hdrsiz;
   1761 
   1762 	mss = max(tcp_mssdflt, mss);
   1763 	return (mss);
   1764 }
   1765 
   1766 /*
   1767  * Set connection variables based on the peer's advertised MSS.
   1768  * We are passed the TCPCB for the actual connection.  If we
   1769  * are the server, we are called by the compressed state engine
   1770  * when the 3-way handshake is complete.  If we are the client,
   1771  * we are called when we receive the SYN,ACK from the server.
   1772  *
   1773  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1774  * before this routine is called!
   1775  */
   1776 void
   1777 tcp_mss_from_peer(tp, offer)
   1778 	struct tcpcb *tp;
   1779 	int offer;
   1780 {
   1781 	struct socket *so;
   1782 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1783 	struct rtentry *rt;
   1784 #endif
   1785 	u_long bufsize;
   1786 	int mss;
   1787 
   1788 #ifdef DIAGNOSTIC
   1789 	if (tp->t_inpcb && tp->t_in6pcb)
   1790 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1791 #endif
   1792 	so = NULL;
   1793 	rt = NULL;
   1794 #ifdef INET
   1795 	if (tp->t_inpcb) {
   1796 		so = tp->t_inpcb->inp_socket;
   1797 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1798 		rt = in_pcbrtentry(tp->t_inpcb);
   1799 #endif
   1800 	}
   1801 #endif
   1802 #ifdef INET6
   1803 	if (tp->t_in6pcb) {
   1804 		so = tp->t_in6pcb->in6p_socket;
   1805 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1806 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1807 #endif
   1808 	}
   1809 #endif
   1810 
   1811 	/*
   1812 	 * As per RFC1122, use the default MSS value, unless they
   1813 	 * sent us an offer.  Do not accept offers less than 32 bytes.
   1814 	 */
   1815 	mss = tcp_mssdflt;
   1816 	if (offer)
   1817 		mss = offer;
   1818 	mss = max(mss, 32);		/* sanity */
   1819 	tp->t_peermss = mss;
   1820 	mss -= tcp_optlen(tp);
   1821 #ifdef INET
   1822 	if (tp->t_inpcb)
   1823 		mss -= ip_optlen(tp->t_inpcb);
   1824 #endif
   1825 #ifdef INET6
   1826 	if (tp->t_in6pcb)
   1827 		mss -= ip6_optlen(tp->t_in6pcb);
   1828 #endif
   1829 
   1830 	/*
   1831 	 * If there's a pipesize, change the socket buffer to that size.
   1832 	 * Make the socket buffer an integral number of MSS units.  If
   1833 	 * the MSS is larger than the socket buffer, artificially decrease
   1834 	 * the MSS.
   1835 	 */
   1836 #ifdef RTV_SPIPE
   1837 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1838 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1839 	else
   1840 #endif
   1841 		bufsize = so->so_snd.sb_hiwat;
   1842 	if (bufsize < mss)
   1843 		mss = bufsize;
   1844 	else {
   1845 		bufsize = roundup(bufsize, mss);
   1846 		if (bufsize > sb_max)
   1847 			bufsize = sb_max;
   1848 		(void) sbreserve(&so->so_snd, bufsize);
   1849 	}
   1850 	tp->t_segsz = mss;
   1851 
   1852 #ifdef RTV_SSTHRESH
   1853 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1854 		/*
   1855 		 * There's some sort of gateway or interface buffer
   1856 		 * limit on the path.  Use this to set the slow
   1857 		 * start threshold, but set the threshold to no less
   1858 		 * than 2 * MSS.
   1859 		 */
   1860 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1861 	}
   1862 #endif
   1863 }
   1864 
   1865 /*
   1866  * Processing necessary when a TCP connection is established.
   1867  */
   1868 void
   1869 tcp_established(tp)
   1870 	struct tcpcb *tp;
   1871 {
   1872 	struct socket *so;
   1873 #ifdef RTV_RPIPE
   1874 	struct rtentry *rt;
   1875 #endif
   1876 	u_long bufsize;
   1877 
   1878 #ifdef DIAGNOSTIC
   1879 	if (tp->t_inpcb && tp->t_in6pcb)
   1880 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   1881 #endif
   1882 	so = NULL;
   1883 	rt = NULL;
   1884 #ifdef INET
   1885 	if (tp->t_inpcb) {
   1886 		so = tp->t_inpcb->inp_socket;
   1887 #if defined(RTV_RPIPE)
   1888 		rt = in_pcbrtentry(tp->t_inpcb);
   1889 #endif
   1890 	}
   1891 #endif
   1892 #ifdef INET6
   1893 	if (tp->t_in6pcb) {
   1894 		so = tp->t_in6pcb->in6p_socket;
   1895 #if defined(RTV_RPIPE)
   1896 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1897 #endif
   1898 	}
   1899 #endif
   1900 
   1901 	tp->t_state = TCPS_ESTABLISHED;
   1902 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1903 
   1904 #ifdef RTV_RPIPE
   1905 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   1906 		bufsize = rt->rt_rmx.rmx_recvpipe;
   1907 	else
   1908 #endif
   1909 		bufsize = so->so_rcv.sb_hiwat;
   1910 	if (bufsize > tp->t_ourmss) {
   1911 		bufsize = roundup(bufsize, tp->t_ourmss);
   1912 		if (bufsize > sb_max)
   1913 			bufsize = sb_max;
   1914 		(void) sbreserve(&so->so_rcv, bufsize);
   1915 	}
   1916 }
   1917 
   1918 /*
   1919  * Check if there's an initial rtt or rttvar.  Convert from the
   1920  * route-table units to scaled multiples of the slow timeout timer.
   1921  * Called only during the 3-way handshake.
   1922  */
   1923 void
   1924 tcp_rmx_rtt(tp)
   1925 	struct tcpcb *tp;
   1926 {
   1927 #ifdef RTV_RTT
   1928 	struct rtentry *rt = NULL;
   1929 	int rtt;
   1930 
   1931 #ifdef DIAGNOSTIC
   1932 	if (tp->t_inpcb && tp->t_in6pcb)
   1933 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   1934 #endif
   1935 #ifdef INET
   1936 	if (tp->t_inpcb)
   1937 		rt = in_pcbrtentry(tp->t_inpcb);
   1938 #endif
   1939 #ifdef INET6
   1940 	if (tp->t_in6pcb)
   1941 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1942 #endif
   1943 	if (rt == NULL)
   1944 		return;
   1945 
   1946 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   1947 		/*
   1948 		 * XXX The lock bit for MTU indicates that the value
   1949 		 * is also a minimum value; this is subject to time.
   1950 		 */
   1951 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   1952 			TCPT_RANGESET(tp->t_rttmin,
   1953 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   1954 			    TCPTV_MIN, TCPTV_REXMTMAX);
   1955 		tp->t_srtt = rtt /
   1956 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1957 		if (rt->rt_rmx.rmx_rttvar) {
   1958 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   1959 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   1960 				(TCP_RTTVAR_SHIFT + 2));
   1961 		} else {
   1962 			/* Default variation is +- 1 rtt */
   1963 			tp->t_rttvar =
   1964 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   1965 		}
   1966 		TCPT_RANGESET(tp->t_rxtcur,
   1967 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   1968 		    tp->t_rttmin, TCPTV_REXMTMAX);
   1969 	}
   1970 #endif
   1971 }
   1972 
   1973 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   1974 #if NRND > 0
   1975 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   1976 #endif
   1977 
   1978 /*
   1979  * Get a new sequence value given a tcp control block
   1980  */
   1981 tcp_seq
   1982 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   1983 {
   1984 
   1985 #ifdef INET
   1986 	if (tp->t_inpcb != NULL) {
   1987 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   1988 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   1989 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   1990 		    addin));
   1991 	}
   1992 #endif
   1993 #ifdef INET6
   1994 	if (tp->t_in6pcb != NULL) {
   1995 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   1996 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   1997 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   1998 		    addin));
   1999 	}
   2000 #endif
   2001 	/* Not possible. */
   2002 	panic("tcp_new_iss");
   2003 }
   2004 
   2005 /*
   2006  * This routine actually generates a new TCP initial sequence number.
   2007  */
   2008 tcp_seq
   2009 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2010     size_t addrsz, tcp_seq addin)
   2011 {
   2012 	tcp_seq tcp_iss;
   2013 
   2014 #if NRND > 0
   2015 	static int beenhere;
   2016 
   2017 	/*
   2018 	 * If we haven't been here before, initialize our cryptographic
   2019 	 * hash secret.
   2020 	 */
   2021 	if (beenhere == 0) {
   2022 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   2023 		    RND_EXTRACT_ANY);
   2024 		beenhere = 1;
   2025 	}
   2026 
   2027 	if (tcp_do_rfc1948) {
   2028 		MD5_CTX ctx;
   2029 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2030 
   2031 		/*
   2032 		 * Compute the base value of the ISS.  It is a hash
   2033 		 * of (saddr, sport, daddr, dport, secret).
   2034 		 */
   2035 		MD5Init(&ctx);
   2036 
   2037 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2038 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2039 
   2040 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2041 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2042 
   2043 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2044 
   2045 		MD5Final(hash, &ctx);
   2046 
   2047 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2048 
   2049 		/*
   2050 		 * Now increment our "timer", and add it in to
   2051 		 * the computed value.
   2052 		 *
   2053 		 * XXX Use `addin'?
   2054 		 * XXX TCP_ISSINCR too large to use?
   2055 		 */
   2056 		tcp_iss_seq += TCP_ISSINCR;
   2057 #ifdef TCPISS_DEBUG
   2058 		printf("ISS hash 0x%08x, ", tcp_iss);
   2059 #endif
   2060 		tcp_iss += tcp_iss_seq + addin;
   2061 #ifdef TCPISS_DEBUG
   2062 		printf("new ISS 0x%08x\n", tcp_iss);
   2063 #endif
   2064 	} else
   2065 #endif /* NRND > 0 */
   2066 	{
   2067 		/*
   2068 		 * Randomize.
   2069 		 */
   2070 #if NRND > 0
   2071 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2072 #else
   2073 		tcp_iss = arc4random();
   2074 #endif
   2075 
   2076 		/*
   2077 		 * If we were asked to add some amount to a known value,
   2078 		 * we will take a random value obtained above, mask off
   2079 		 * the upper bits, and add in the known value.  We also
   2080 		 * add in a constant to ensure that we are at least a
   2081 		 * certain distance from the original value.
   2082 		 *
   2083 		 * This is used when an old connection is in timed wait
   2084 		 * and we have a new one coming in, for instance.
   2085 		 */
   2086 		if (addin != 0) {
   2087 #ifdef TCPISS_DEBUG
   2088 			printf("Random %08x, ", tcp_iss);
   2089 #endif
   2090 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2091 			tcp_iss += addin + TCP_ISSINCR;
   2092 #ifdef TCPISS_DEBUG
   2093 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2094 #endif
   2095 		} else {
   2096 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2097 			tcp_iss += tcp_iss_seq;
   2098 			tcp_iss_seq += TCP_ISSINCR;
   2099 #ifdef TCPISS_DEBUG
   2100 			printf("ISS %08x\n", tcp_iss);
   2101 #endif
   2102 		}
   2103 	}
   2104 
   2105 	if (tcp_compat_42) {
   2106 		/*
   2107 		 * Limit it to the positive range for really old TCP
   2108 		 * implementations.
   2109 		 * Just AND off the top bit instead of checking if
   2110 		 * is set first - saves a branch 50% of the time.
   2111 		 */
   2112 		tcp_iss &= 0x7fffffff;		/* XXX */
   2113 	}
   2114 
   2115 	return (tcp_iss);
   2116 }
   2117 
   2118 #if defined(IPSEC) || defined(FAST_IPSEC)
   2119 /* compute ESP/AH header size for TCP, including outer IP header. */
   2120 size_t
   2121 ipsec4_hdrsiz_tcp(tp)
   2122 	struct tcpcb *tp;
   2123 {
   2124 	struct inpcb *inp;
   2125 	size_t hdrsiz;
   2126 
   2127 	/* XXX mapped addr case (tp->t_in6pcb) */
   2128 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2129 		return 0;
   2130 	switch (tp->t_family) {
   2131 	case AF_INET:
   2132 		/* XXX: should use currect direction. */
   2133 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2134 		break;
   2135 	default:
   2136 		hdrsiz = 0;
   2137 		break;
   2138 	}
   2139 
   2140 	return hdrsiz;
   2141 }
   2142 
   2143 #ifdef INET6
   2144 size_t
   2145 ipsec6_hdrsiz_tcp(tp)
   2146 	struct tcpcb *tp;
   2147 {
   2148 	struct in6pcb *in6p;
   2149 	size_t hdrsiz;
   2150 
   2151 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2152 		return 0;
   2153 	switch (tp->t_family) {
   2154 	case AF_INET6:
   2155 		/* XXX: should use currect direction. */
   2156 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2157 		break;
   2158 	case AF_INET:
   2159 		/* mapped address case - tricky */
   2160 	default:
   2161 		hdrsiz = 0;
   2162 		break;
   2163 	}
   2164 
   2165 	return hdrsiz;
   2166 }
   2167 #endif
   2168 #endif /*IPSEC*/
   2169 
   2170 /*
   2171  * Determine the length of the TCP options for this connection.
   2172  *
   2173  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2174  *       all of the space?  Otherwise we can't exactly be incrementing
   2175  *       cwnd by an amount that varies depending on the amount we last
   2176  *       had to SACK!
   2177  */
   2178 
   2179 u_int
   2180 tcp_optlen(tp)
   2181 	struct tcpcb *tp;
   2182 {
   2183 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2184 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2185 		return TCPOLEN_TSTAMP_APPA;
   2186 	else
   2187 		return 0;
   2188 }
   2189