tcp_subr.c revision 1.153 1 /* $NetBSD: tcp_subr.c,v 1.153 2003/09/08 02:06:34 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.153 2003/09/08 02:06:34 itojun Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcpip.h>
155
156 #ifdef IPSEC
157 #include <netinet6/ipsec.h>
158 #endif /*IPSEC*/
159
160 #ifdef FAST_IPSEC
161 #include <netipsec/ipsec.h>
162 #ifdef INET6
163 #include <netipsec/ipsec6.h>
164 #endif
165 #endif /* FAST_IPSEC*/
166
167
168 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
169 struct tcpstat tcpstat; /* tcp statistics */
170 u_int32_t tcp_now; /* for RFC 1323 timestamps */
171
172 /* patchable/settable parameters for tcp */
173 int tcp_mssdflt = TCP_MSS;
174 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
175 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
176 #if NRND > 0
177 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
178 #endif
179 int tcp_do_sack = 1; /* selective acknowledgement */
180 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
181 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
182 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
183 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
184 #ifndef TCP_INIT_WIN
185 #define TCP_INIT_WIN 1 /* initial slow start window */
186 #endif
187 #ifndef TCP_INIT_WIN_LOCAL
188 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
189 #endif
190 int tcp_init_win = TCP_INIT_WIN;
191 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
192 int tcp_mss_ifmtu = 0;
193 #ifdef TCP_COMPAT_42
194 int tcp_compat_42 = 1;
195 #else
196 int tcp_compat_42 = 0;
197 #endif
198 int tcp_rst_ppslim = 100; /* 100pps */
199
200 /* tcb hash */
201 #ifndef TCBHASHSIZE
202 #define TCBHASHSIZE 128
203 #endif
204 int tcbhashsize = TCBHASHSIZE;
205
206 /* syn hash parameters */
207 #define TCP_SYN_HASH_SIZE 293
208 #define TCP_SYN_BUCKET_SIZE 35
209 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
210 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
211 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
212 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
213
214 int tcp_freeq __P((struct tcpcb *));
215
216 #ifdef INET
217 void tcp_mtudisc_callback __P((struct in_addr));
218 #endif
219 #ifdef INET6
220 void tcp6_mtudisc_callback __P((struct in6_addr *));
221 #endif
222
223 void tcp_mtudisc __P((struct inpcb *, int));
224 #ifdef INET6
225 void tcp6_mtudisc __P((struct in6pcb *, int));
226 #endif
227
228 struct pool tcpcb_pool;
229
230 #ifdef TCP_CSUM_COUNTERS
231 #include <sys/device.h>
232
233 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
234 NULL, "tcp", "hwcsum bad");
235 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
236 NULL, "tcp", "hwcsum ok");
237 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
238 NULL, "tcp", "hwcsum data");
239 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
240 NULL, "tcp", "swcsum");
241 #endif /* TCP_CSUM_COUNTERS */
242
243 #ifdef TCP_OUTPUT_COUNTERS
244 #include <sys/device.h>
245
246 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
247 NULL, "tcp", "output big header");
248 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
249 NULL, "tcp", "output copy small");
250 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
251 NULL, "tcp", "output copy big");
252 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
253 NULL, "tcp", "output reference big");
254 #endif /* TCP_OUTPUT_COUNTERS */
255
256 #ifdef TCP_REASS_COUNTERS
257 #include <sys/device.h>
258
259 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
260 NULL, "tcp_reass", "calls");
261 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
262 &tcp_reass_, "tcp_reass", "insert into empty queue");
263 struct evcnt tcp_reass_iteration[8] = {
264 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
265 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
266 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
267 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
268 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
269 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
270 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
271 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
272 };
273 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
274 &tcp_reass_, "tcp_reass", "prepend to first");
275 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
276 &tcp_reass_, "tcp_reass", "prepend");
277 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
278 &tcp_reass_, "tcp_reass", "insert");
279 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
280 &tcp_reass_, "tcp_reass", "insert at tail");
281 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282 &tcp_reass_, "tcp_reass", "append");
283 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284 &tcp_reass_, "tcp_reass", "append to tail fragment");
285 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286 &tcp_reass_, "tcp_reass", "overlap at end");
287 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288 &tcp_reass_, "tcp_reass", "overlap at start");
289 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
290 &tcp_reass_, "tcp_reass", "duplicate segment");
291 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
292 &tcp_reass_, "tcp_reass", "duplicate fragment");
293
294 #endif /* TCP_REASS_COUNTERS */
295
296 #ifdef MBUFTRACE
297 struct mowner tcp_mowner = { "tcp" };
298 struct mowner tcp_rx_mowner = { "tcp", "rx" };
299 struct mowner tcp_tx_mowner = { "tcp", "tx" };
300 #endif
301
302 /*
303 * Tcp initialization
304 */
305 void
306 tcp_init()
307 {
308 int hlen;
309
310 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
311 NULL);
312 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
313
314 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
315 #ifdef INET6
316 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
317 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
318 #endif
319 if (max_protohdr < hlen)
320 max_protohdr = hlen;
321 if (max_linkhdr + hlen > MHLEN)
322 panic("tcp_init");
323
324 #ifdef INET
325 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
326 #endif
327 #ifdef INET6
328 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
329 #endif
330
331 /* Initialize timer state. */
332 tcp_timer_init();
333
334 /* Initialize the compressed state engine. */
335 syn_cache_init();
336
337 #ifdef TCP_CSUM_COUNTERS
338 evcnt_attach_static(&tcp_hwcsum_bad);
339 evcnt_attach_static(&tcp_hwcsum_ok);
340 evcnt_attach_static(&tcp_hwcsum_data);
341 evcnt_attach_static(&tcp_swcsum);
342 #endif /* TCP_CSUM_COUNTERS */
343
344 #ifdef TCP_OUTPUT_COUNTERS
345 evcnt_attach_static(&tcp_output_bigheader);
346 evcnt_attach_static(&tcp_output_copysmall);
347 evcnt_attach_static(&tcp_output_copybig);
348 evcnt_attach_static(&tcp_output_refbig);
349 #endif /* TCP_OUTPUT_COUNTERS */
350
351 #ifdef TCP_REASS_COUNTERS
352 evcnt_attach_static(&tcp_reass_);
353 evcnt_attach_static(&tcp_reass_empty);
354 evcnt_attach_static(&tcp_reass_iteration[0]);
355 evcnt_attach_static(&tcp_reass_iteration[1]);
356 evcnt_attach_static(&tcp_reass_iteration[2]);
357 evcnt_attach_static(&tcp_reass_iteration[3]);
358 evcnt_attach_static(&tcp_reass_iteration[4]);
359 evcnt_attach_static(&tcp_reass_iteration[5]);
360 evcnt_attach_static(&tcp_reass_iteration[6]);
361 evcnt_attach_static(&tcp_reass_iteration[7]);
362 evcnt_attach_static(&tcp_reass_prependfirst);
363 evcnt_attach_static(&tcp_reass_prepend);
364 evcnt_attach_static(&tcp_reass_insert);
365 evcnt_attach_static(&tcp_reass_inserttail);
366 evcnt_attach_static(&tcp_reass_append);
367 evcnt_attach_static(&tcp_reass_appendtail);
368 evcnt_attach_static(&tcp_reass_overlaptail);
369 evcnt_attach_static(&tcp_reass_overlapfront);
370 evcnt_attach_static(&tcp_reass_segdup);
371 evcnt_attach_static(&tcp_reass_fragdup);
372 #endif /* TCP_REASS_COUNTERS */
373
374 MOWNER_ATTACH(&tcp_tx_mowner);
375 MOWNER_ATTACH(&tcp_rx_mowner);
376 MOWNER_ATTACH(&tcp_mowner);
377 }
378
379 /*
380 * Create template to be used to send tcp packets on a connection.
381 * Call after host entry created, allocates an mbuf and fills
382 * in a skeletal tcp/ip header, minimizing the amount of work
383 * necessary when the connection is used.
384 */
385 struct mbuf *
386 tcp_template(tp)
387 struct tcpcb *tp;
388 {
389 struct inpcb *inp = tp->t_inpcb;
390 #ifdef INET6
391 struct in6pcb *in6p = tp->t_in6pcb;
392 #endif
393 struct tcphdr *n;
394 struct mbuf *m;
395 int hlen;
396
397 switch (tp->t_family) {
398 case AF_INET:
399 hlen = sizeof(struct ip);
400 if (inp)
401 break;
402 #ifdef INET6
403 if (in6p) {
404 /* mapped addr case */
405 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
406 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
407 break;
408 }
409 #endif
410 return NULL; /*EINVAL*/
411 #ifdef INET6
412 case AF_INET6:
413 hlen = sizeof(struct ip6_hdr);
414 if (in6p) {
415 /* more sainty check? */
416 break;
417 }
418 return NULL; /*EINVAL*/
419 #endif
420 default:
421 hlen = 0; /*pacify gcc*/
422 return NULL; /*EAFNOSUPPORT*/
423 }
424 #ifdef DIAGNOSTIC
425 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
426 panic("mclbytes too small for t_template");
427 #endif
428 m = tp->t_template;
429 if (m && m->m_len == hlen + sizeof(struct tcphdr))
430 ;
431 else {
432 if (m)
433 m_freem(m);
434 m = tp->t_template = NULL;
435 MGETHDR(m, M_DONTWAIT, MT_HEADER);
436 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
437 MCLGET(m, M_DONTWAIT);
438 if ((m->m_flags & M_EXT) == 0) {
439 m_free(m);
440 m = NULL;
441 }
442 }
443 if (m == NULL)
444 return NULL;
445 MCLAIM(m, &tcp_mowner);
446 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
447 }
448
449 bzero(mtod(m, caddr_t), m->m_len);
450
451 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
452
453 switch (tp->t_family) {
454 case AF_INET:
455 {
456 struct ipovly *ipov;
457 mtod(m, struct ip *)->ip_v = 4;
458 mtod(m, struct ip *)->ip_hl = hlen >> 2;
459 ipov = mtod(m, struct ipovly *);
460 ipov->ih_pr = IPPROTO_TCP;
461 ipov->ih_len = htons(sizeof(struct tcphdr));
462 if (inp) {
463 ipov->ih_src = inp->inp_laddr;
464 ipov->ih_dst = inp->inp_faddr;
465 }
466 #ifdef INET6
467 else if (in6p) {
468 /* mapped addr case */
469 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
470 sizeof(ipov->ih_src));
471 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
472 sizeof(ipov->ih_dst));
473 }
474 #endif
475 /*
476 * Compute the pseudo-header portion of the checksum
477 * now. We incrementally add in the TCP option and
478 * payload lengths later, and then compute the TCP
479 * checksum right before the packet is sent off onto
480 * the wire.
481 */
482 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
483 ipov->ih_dst.s_addr,
484 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
485 break;
486 }
487 #ifdef INET6
488 case AF_INET6:
489 {
490 struct ip6_hdr *ip6;
491 mtod(m, struct ip *)->ip_v = 6;
492 ip6 = mtod(m, struct ip6_hdr *);
493 ip6->ip6_nxt = IPPROTO_TCP;
494 ip6->ip6_plen = htons(sizeof(struct tcphdr));
495 ip6->ip6_src = in6p->in6p_laddr;
496 ip6->ip6_dst = in6p->in6p_faddr;
497 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
498 if (ip6_auto_flowlabel) {
499 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
500 ip6->ip6_flow |=
501 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
502 }
503 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
504 ip6->ip6_vfc |= IPV6_VERSION;
505
506 /*
507 * Compute the pseudo-header portion of the checksum
508 * now. We incrementally add in the TCP option and
509 * payload lengths later, and then compute the TCP
510 * checksum right before the packet is sent off onto
511 * the wire.
512 */
513 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
514 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
515 htonl(IPPROTO_TCP));
516 break;
517 }
518 #endif
519 }
520 if (inp) {
521 n->th_sport = inp->inp_lport;
522 n->th_dport = inp->inp_fport;
523 }
524 #ifdef INET6
525 else if (in6p) {
526 n->th_sport = in6p->in6p_lport;
527 n->th_dport = in6p->in6p_fport;
528 }
529 #endif
530 n->th_seq = 0;
531 n->th_ack = 0;
532 n->th_x2 = 0;
533 n->th_off = 5;
534 n->th_flags = 0;
535 n->th_win = 0;
536 n->th_urp = 0;
537 return (m);
538 }
539
540 /*
541 * Send a single message to the TCP at address specified by
542 * the given TCP/IP header. If m == 0, then we make a copy
543 * of the tcpiphdr at ti and send directly to the addressed host.
544 * This is used to force keep alive messages out using the TCP
545 * template for a connection tp->t_template. If flags are given
546 * then we send a message back to the TCP which originated the
547 * segment ti, and discard the mbuf containing it and any other
548 * attached mbufs.
549 *
550 * In any case the ack and sequence number of the transmitted
551 * segment are as specified by the parameters.
552 */
553 int
554 tcp_respond(tp, template, m, th0, ack, seq, flags)
555 struct tcpcb *tp;
556 struct mbuf *template;
557 struct mbuf *m;
558 struct tcphdr *th0;
559 tcp_seq ack, seq;
560 int flags;
561 {
562 struct route *ro;
563 int error, tlen, win = 0;
564 int hlen;
565 struct ip *ip;
566 #ifdef INET6
567 struct ip6_hdr *ip6;
568 #endif
569 int family; /* family on packet, not inpcb/in6pcb! */
570 struct tcphdr *th;
571 struct socket *so;
572
573 if (tp != NULL && (flags & TH_RST) == 0) {
574 #ifdef DIAGNOSTIC
575 if (tp->t_inpcb && tp->t_in6pcb)
576 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
577 #endif
578 #ifdef INET
579 if (tp->t_inpcb)
580 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
581 #endif
582 #ifdef INET6
583 if (tp->t_in6pcb)
584 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
585 #endif
586 }
587
588 th = NULL; /* Quell uninitialized warning */
589 ip = NULL;
590 #ifdef INET6
591 ip6 = NULL;
592 #endif
593 if (m == 0) {
594 if (!template)
595 return EINVAL;
596
597 /* get family information from template */
598 switch (mtod(template, struct ip *)->ip_v) {
599 case 4:
600 family = AF_INET;
601 hlen = sizeof(struct ip);
602 break;
603 #ifdef INET6
604 case 6:
605 family = AF_INET6;
606 hlen = sizeof(struct ip6_hdr);
607 break;
608 #endif
609 default:
610 return EAFNOSUPPORT;
611 }
612
613 MGETHDR(m, M_DONTWAIT, MT_HEADER);
614 if (m) {
615 MCLAIM(m, &tcp_tx_mowner);
616 MCLGET(m, M_DONTWAIT);
617 if ((m->m_flags & M_EXT) == 0) {
618 m_free(m);
619 m = NULL;
620 }
621 }
622 if (m == NULL)
623 return (ENOBUFS);
624
625 if (tcp_compat_42)
626 tlen = 1;
627 else
628 tlen = 0;
629
630 m->m_data += max_linkhdr;
631 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
632 template->m_len);
633 switch (family) {
634 case AF_INET:
635 ip = mtod(m, struct ip *);
636 th = (struct tcphdr *)(ip + 1);
637 break;
638 #ifdef INET6
639 case AF_INET6:
640 ip6 = mtod(m, struct ip6_hdr *);
641 th = (struct tcphdr *)(ip6 + 1);
642 break;
643 #endif
644 #if 0
645 default:
646 /* noone will visit here */
647 m_freem(m);
648 return EAFNOSUPPORT;
649 #endif
650 }
651 flags = TH_ACK;
652 } else {
653
654 if ((m->m_flags & M_PKTHDR) == 0) {
655 #if 0
656 printf("non PKTHDR to tcp_respond\n");
657 #endif
658 m_freem(m);
659 return EINVAL;
660 }
661 #ifdef DIAGNOSTIC
662 if (!th0)
663 panic("th0 == NULL in tcp_respond");
664 #endif
665
666 /* get family information from m */
667 switch (mtod(m, struct ip *)->ip_v) {
668 case 4:
669 family = AF_INET;
670 hlen = sizeof(struct ip);
671 ip = mtod(m, struct ip *);
672 break;
673 #ifdef INET6
674 case 6:
675 family = AF_INET6;
676 hlen = sizeof(struct ip6_hdr);
677 ip6 = mtod(m, struct ip6_hdr *);
678 break;
679 #endif
680 default:
681 m_freem(m);
682 return EAFNOSUPPORT;
683 }
684 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
685 tlen = sizeof(*th0);
686 else
687 tlen = th0->th_off << 2;
688
689 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
690 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
691 m->m_len = hlen + tlen;
692 m_freem(m->m_next);
693 m->m_next = NULL;
694 } else {
695 struct mbuf *n;
696
697 #ifdef DIAGNOSTIC
698 if (max_linkhdr + hlen + tlen > MCLBYTES) {
699 m_freem(m);
700 return EMSGSIZE;
701 }
702 #endif
703 MGETHDR(n, M_DONTWAIT, MT_HEADER);
704 if (n && max_linkhdr + hlen + tlen > MHLEN) {
705 MCLGET(n, M_DONTWAIT);
706 if ((n->m_flags & M_EXT) == 0) {
707 m_freem(n);
708 n = NULL;
709 }
710 }
711 if (!n) {
712 m_freem(m);
713 return ENOBUFS;
714 }
715
716 MCLAIM(n, &tcp_tx_mowner);
717 n->m_data += max_linkhdr;
718 n->m_len = hlen + tlen;
719 m_copyback(n, 0, hlen, mtod(m, caddr_t));
720 m_copyback(n, hlen, tlen, (caddr_t)th0);
721
722 m_freem(m);
723 m = n;
724 n = NULL;
725 }
726
727 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
728 switch (family) {
729 case AF_INET:
730 ip = mtod(m, struct ip *);
731 th = (struct tcphdr *)(ip + 1);
732 ip->ip_p = IPPROTO_TCP;
733 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
734 ip->ip_p = IPPROTO_TCP;
735 break;
736 #ifdef INET6
737 case AF_INET6:
738 ip6 = mtod(m, struct ip6_hdr *);
739 th = (struct tcphdr *)(ip6 + 1);
740 ip6->ip6_nxt = IPPROTO_TCP;
741 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
742 ip6->ip6_nxt = IPPROTO_TCP;
743 break;
744 #endif
745 #if 0
746 default:
747 /* noone will visit here */
748 m_freem(m);
749 return EAFNOSUPPORT;
750 #endif
751 }
752 xchg(th->th_dport, th->th_sport, u_int16_t);
753 #undef xchg
754 tlen = 0; /*be friendly with the following code*/
755 }
756 th->th_seq = htonl(seq);
757 th->th_ack = htonl(ack);
758 th->th_x2 = 0;
759 if ((flags & TH_SYN) == 0) {
760 if (tp)
761 win >>= tp->rcv_scale;
762 if (win > TCP_MAXWIN)
763 win = TCP_MAXWIN;
764 th->th_win = htons((u_int16_t)win);
765 th->th_off = sizeof (struct tcphdr) >> 2;
766 tlen += sizeof(*th);
767 } else
768 tlen += th->th_off << 2;
769 m->m_len = hlen + tlen;
770 m->m_pkthdr.len = hlen + tlen;
771 m->m_pkthdr.rcvif = (struct ifnet *) 0;
772 th->th_flags = flags;
773 th->th_urp = 0;
774
775 switch (family) {
776 #ifdef INET
777 case AF_INET:
778 {
779 struct ipovly *ipov = (struct ipovly *)ip;
780 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
781 ipov->ih_len = htons((u_int16_t)tlen);
782
783 th->th_sum = 0;
784 th->th_sum = in_cksum(m, hlen + tlen);
785 ip->ip_len = htons(hlen + tlen);
786 ip->ip_ttl = ip_defttl;
787 break;
788 }
789 #endif
790 #ifdef INET6
791 case AF_INET6:
792 {
793 th->th_sum = 0;
794 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
795 tlen);
796 ip6->ip6_plen = ntohs(tlen);
797 if (tp && tp->t_in6pcb) {
798 struct ifnet *oifp;
799 ro = (struct route *)&tp->t_in6pcb->in6p_route;
800 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
801 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
802 } else
803 ip6->ip6_hlim = ip6_defhlim;
804 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
805 if (ip6_auto_flowlabel) {
806 ip6->ip6_flow |=
807 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
808 }
809 break;
810 }
811 #endif
812 }
813
814 if (tp && tp->t_inpcb)
815 so = tp->t_inpcb->inp_socket;
816 #ifdef INET6
817 else if (tp && tp->t_in6pcb)
818 so = tp->t_in6pcb->in6p_socket;
819 #endif
820 else
821 so = NULL;
822
823 if (tp != NULL && tp->t_inpcb != NULL) {
824 ro = &tp->t_inpcb->inp_route;
825 #ifdef DIAGNOSTIC
826 if (family != AF_INET)
827 panic("tcp_respond: address family mismatch");
828 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
829 panic("tcp_respond: ip_dst %x != inp_faddr %x",
830 ntohl(ip->ip_dst.s_addr),
831 ntohl(tp->t_inpcb->inp_faddr.s_addr));
832 }
833 #endif
834 }
835 #ifdef INET6
836 else if (tp != NULL && tp->t_in6pcb != NULL) {
837 ro = (struct route *)&tp->t_in6pcb->in6p_route;
838 #ifdef DIAGNOSTIC
839 if (family == AF_INET) {
840 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
841 panic("tcp_respond: not mapped addr");
842 if (bcmp(&ip->ip_dst,
843 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
844 sizeof(ip->ip_dst)) != 0) {
845 panic("tcp_respond: ip_dst != in6p_faddr");
846 }
847 } else if (family == AF_INET6) {
848 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
849 &tp->t_in6pcb->in6p_faddr))
850 panic("tcp_respond: ip6_dst != in6p_faddr");
851 } else
852 panic("tcp_respond: address family mismatch");
853 #endif
854 }
855 #endif
856 else
857 ro = NULL;
858
859 switch (family) {
860 #ifdef INET
861 case AF_INET:
862 error = ip_output(m, NULL, ro,
863 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
864 (struct ip_moptions *)0, so);
865 break;
866 #endif
867 #ifdef INET6
868 case AF_INET6:
869 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
870 (struct ip6_moptions *)0, so, NULL);
871 break;
872 #endif
873 default:
874 error = EAFNOSUPPORT;
875 break;
876 }
877
878 return (error);
879 }
880
881 /*
882 * Create a new TCP control block, making an
883 * empty reassembly queue and hooking it to the argument
884 * protocol control block.
885 */
886 struct tcpcb *
887 tcp_newtcpcb(family, aux)
888 int family; /* selects inpcb, or in6pcb */
889 void *aux;
890 {
891 struct tcpcb *tp;
892 int i;
893
894 switch (family) {
895 case PF_INET:
896 break;
897 #ifdef INET6
898 case PF_INET6:
899 break;
900 #endif
901 default:
902 return NULL;
903 }
904
905 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
906 if (tp == NULL)
907 return (NULL);
908 bzero((caddr_t)tp, sizeof(struct tcpcb));
909 TAILQ_INIT(&tp->segq);
910 TAILQ_INIT(&tp->timeq);
911 tp->t_family = family; /* may be overridden later on */
912 tp->t_peermss = tcp_mssdflt;
913 tp->t_ourmss = tcp_mssdflt;
914 tp->t_segsz = tcp_mssdflt;
915 LIST_INIT(&tp->t_sc);
916
917 tp->t_lastm = NULL;
918 tp->t_lastoff = 0;
919
920 callout_init(&tp->t_delack_ch);
921 for (i = 0; i < TCPT_NTIMERS; i++)
922 TCP_TIMER_INIT(tp, i);
923
924 tp->t_flags = 0;
925 if (tcp_do_rfc1323 && tcp_do_win_scale)
926 tp->t_flags |= TF_REQ_SCALE;
927 if (tcp_do_rfc1323 && tcp_do_timestamps)
928 tp->t_flags |= TF_REQ_TSTMP;
929 if (tcp_do_sack == 2)
930 tp->t_flags |= TF_WILL_SACK;
931 else if (tcp_do_sack == 1)
932 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
933 tp->t_flags |= TF_CANT_TXSACK;
934 switch (family) {
935 case PF_INET:
936 tp->t_inpcb = (struct inpcb *)aux;
937 tp->t_mtudisc = ip_mtudisc;
938 break;
939 #ifdef INET6
940 case PF_INET6:
941 tp->t_in6pcb = (struct in6pcb *)aux;
942 /* for IPv6, always try to run path MTU discovery */
943 tp->t_mtudisc = 1;
944 break;
945 #endif
946 }
947 /*
948 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
949 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
950 * reasonable initial retransmit time.
951 */
952 tp->t_srtt = TCPTV_SRTTBASE;
953 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
954 tp->t_rttmin = TCPTV_MIN;
955 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
956 TCPTV_MIN, TCPTV_REXMTMAX);
957 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
958 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
959 if (family == AF_INET) {
960 struct inpcb *inp = (struct inpcb *)aux;
961 inp->inp_ip.ip_ttl = ip_defttl;
962 inp->inp_ppcb = (caddr_t)tp;
963 }
964 #ifdef INET6
965 else if (family == AF_INET6) {
966 struct in6pcb *in6p = (struct in6pcb *)aux;
967 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
968 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
969 : NULL);
970 in6p->in6p_ppcb = (caddr_t)tp;
971 }
972 #endif
973
974 /*
975 * Initialize our timebase. When we send timestamps, we take
976 * the delta from tcp_now -- this means each connection always
977 * gets a timebase of 0, which makes it, among other things,
978 * more difficult to determine how long a system has been up,
979 * and thus how many TCP sequence increments have occurred.
980 */
981 tp->ts_timebase = tcp_now;
982
983 return (tp);
984 }
985
986 /*
987 * Drop a TCP connection, reporting
988 * the specified error. If connection is synchronized,
989 * then send a RST to peer.
990 */
991 struct tcpcb *
992 tcp_drop(tp, errno)
993 struct tcpcb *tp;
994 int errno;
995 {
996 struct socket *so = NULL;
997
998 #ifdef DIAGNOSTIC
999 if (tp->t_inpcb && tp->t_in6pcb)
1000 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1001 #endif
1002 #ifdef INET
1003 if (tp->t_inpcb)
1004 so = tp->t_inpcb->inp_socket;
1005 #endif
1006 #ifdef INET6
1007 if (tp->t_in6pcb)
1008 so = tp->t_in6pcb->in6p_socket;
1009 #endif
1010 if (!so)
1011 return NULL;
1012
1013 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1014 tp->t_state = TCPS_CLOSED;
1015 (void) tcp_output(tp);
1016 tcpstat.tcps_drops++;
1017 } else
1018 tcpstat.tcps_conndrops++;
1019 if (errno == ETIMEDOUT && tp->t_softerror)
1020 errno = tp->t_softerror;
1021 so->so_error = errno;
1022 return (tcp_close(tp));
1023 }
1024
1025 /*
1026 * Return whether this tcpcb is marked as dead, indicating
1027 * to the calling timer function that no further action should
1028 * be taken, as we are about to release this tcpcb. The release
1029 * of the storage will be done if this is the last timer running.
1030 *
1031 * This is typically called from the callout handler function before
1032 * callout_ack() is done, therefore we need to test the number of
1033 * running timer functions against 1 below, not 0.
1034 */
1035 int
1036 tcp_isdead(tp)
1037 struct tcpcb *tp;
1038 {
1039 int dead = (tp->t_flags & TF_DEAD);
1040
1041 if (__predict_false(dead)) {
1042 if (tcp_timers_invoking(tp) > 1)
1043 /* not quite there yet -- count separately? */
1044 return dead;
1045 tcpstat.tcps_delayed_free++;
1046 pool_put(&tcpcb_pool, tp);
1047 }
1048 return dead;
1049 }
1050
1051 /*
1052 * Close a TCP control block:
1053 * discard all space held by the tcp
1054 * discard internet protocol block
1055 * wake up any sleepers
1056 */
1057 struct tcpcb *
1058 tcp_close(tp)
1059 struct tcpcb *tp;
1060 {
1061 struct inpcb *inp;
1062 #ifdef INET6
1063 struct in6pcb *in6p;
1064 #endif
1065 struct socket *so;
1066 #ifdef RTV_RTT
1067 struct rtentry *rt;
1068 #endif
1069 struct route *ro;
1070
1071 inp = tp->t_inpcb;
1072 #ifdef INET6
1073 in6p = tp->t_in6pcb;
1074 #endif
1075 so = NULL;
1076 ro = NULL;
1077 if (inp) {
1078 so = inp->inp_socket;
1079 ro = &inp->inp_route;
1080 }
1081 #ifdef INET6
1082 else if (in6p) {
1083 so = in6p->in6p_socket;
1084 ro = (struct route *)&in6p->in6p_route;
1085 }
1086 #endif
1087
1088 #ifdef RTV_RTT
1089 /*
1090 * If we sent enough data to get some meaningful characteristics,
1091 * save them in the routing entry. 'Enough' is arbitrarily
1092 * defined as the sendpipesize (default 4K) * 16. This would
1093 * give us 16 rtt samples assuming we only get one sample per
1094 * window (the usual case on a long haul net). 16 samples is
1095 * enough for the srtt filter to converge to within 5% of the correct
1096 * value; fewer samples and we could save a very bogus rtt.
1097 *
1098 * Don't update the default route's characteristics and don't
1099 * update anything that the user "locked".
1100 */
1101 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1102 ro && (rt = ro->ro_rt) &&
1103 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1104 u_long i = 0;
1105
1106 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1107 i = tp->t_srtt *
1108 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1109 if (rt->rt_rmx.rmx_rtt && i)
1110 /*
1111 * filter this update to half the old & half
1112 * the new values, converting scale.
1113 * See route.h and tcp_var.h for a
1114 * description of the scaling constants.
1115 */
1116 rt->rt_rmx.rmx_rtt =
1117 (rt->rt_rmx.rmx_rtt + i) / 2;
1118 else
1119 rt->rt_rmx.rmx_rtt = i;
1120 }
1121 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1122 i = tp->t_rttvar *
1123 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1124 if (rt->rt_rmx.rmx_rttvar && i)
1125 rt->rt_rmx.rmx_rttvar =
1126 (rt->rt_rmx.rmx_rttvar + i) / 2;
1127 else
1128 rt->rt_rmx.rmx_rttvar = i;
1129 }
1130 /*
1131 * update the pipelimit (ssthresh) if it has been updated
1132 * already or if a pipesize was specified & the threshhold
1133 * got below half the pipesize. I.e., wait for bad news
1134 * before we start updating, then update on both good
1135 * and bad news.
1136 */
1137 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1138 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1139 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1140 /*
1141 * convert the limit from user data bytes to
1142 * packets then to packet data bytes.
1143 */
1144 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1145 if (i < 2)
1146 i = 2;
1147 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1148 if (rt->rt_rmx.rmx_ssthresh)
1149 rt->rt_rmx.rmx_ssthresh =
1150 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1151 else
1152 rt->rt_rmx.rmx_ssthresh = i;
1153 }
1154 }
1155 #endif /* RTV_RTT */
1156 /* free the reassembly queue, if any */
1157 TCP_REASS_LOCK(tp);
1158 (void) tcp_freeq(tp);
1159 TCP_REASS_UNLOCK(tp);
1160
1161 tcp_canceltimers(tp);
1162 TCP_CLEAR_DELACK(tp);
1163 syn_cache_cleanup(tp);
1164
1165 if (tp->t_template) {
1166 m_free(tp->t_template);
1167 tp->t_template = NULL;
1168 }
1169 if (tcp_timers_invoking(tp))
1170 tp->t_flags |= TF_DEAD;
1171 else
1172 pool_put(&tcpcb_pool, tp);
1173
1174 if (inp) {
1175 inp->inp_ppcb = 0;
1176 soisdisconnected(so);
1177 in_pcbdetach(inp);
1178 }
1179 #ifdef INET6
1180 else if (in6p) {
1181 in6p->in6p_ppcb = 0;
1182 soisdisconnected(so);
1183 in6_pcbdetach(in6p);
1184 }
1185 #endif
1186 tcpstat.tcps_closed++;
1187 return ((struct tcpcb *)0);
1188 }
1189
1190 int
1191 tcp_freeq(tp)
1192 struct tcpcb *tp;
1193 {
1194 struct ipqent *qe;
1195 int rv = 0;
1196 #ifdef TCPREASS_DEBUG
1197 int i = 0;
1198 #endif
1199
1200 TCP_REASS_LOCK_CHECK(tp);
1201
1202 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1203 #ifdef TCPREASS_DEBUG
1204 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1205 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1206 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1207 #endif
1208 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1209 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1210 m_freem(qe->ipqe_m);
1211 pool_put(&ipqent_pool, qe);
1212 rv = 1;
1213 }
1214 return (rv);
1215 }
1216
1217 /*
1218 * Protocol drain routine. Called when memory is in short supply.
1219 */
1220 void
1221 tcp_drain()
1222 {
1223 struct inpcb_hdr *inph;
1224 struct inpcb *inp;
1225 struct tcpcb *tp;
1226
1227 /*
1228 * Free the sequence queue of all TCP connections.
1229 */
1230 inph = CIRCLEQ_FIRST(&tcbtable.inpt_queue);
1231 if (inp) /* XXX */
1232 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1233 switch (inph->inph_af) {
1234 case AF_INET:
1235 tp = intotcpcb((struct inpcb *)inph);
1236 break;
1237 #ifdef INET6
1238 case AF_INET6:
1239 tp = in6totcpcb((struct in6pcb *)inph);
1240 break;
1241 #endif
1242 default:
1243 tp = NULL;
1244 break;
1245 }
1246 if (tp != NULL) {
1247 /*
1248 * We may be called from a device's interrupt
1249 * context. If the tcpcb is already busy,
1250 * just bail out now.
1251 */
1252 if (tcp_reass_lock_try(tp) == 0)
1253 continue;
1254 if (tcp_freeq(tp))
1255 tcpstat.tcps_connsdrained++;
1256 TCP_REASS_UNLOCK(tp);
1257 }
1258 }
1259 }
1260
1261 /*
1262 * Notify a tcp user of an asynchronous error;
1263 * store error as soft error, but wake up user
1264 * (for now, won't do anything until can select for soft error).
1265 */
1266 void
1267 tcp_notify(inp, error)
1268 struct inpcb *inp;
1269 int error;
1270 {
1271 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1272 struct socket *so = inp->inp_socket;
1273
1274 /*
1275 * Ignore some errors if we are hooked up.
1276 * If connection hasn't completed, has retransmitted several times,
1277 * and receives a second error, give up now. This is better
1278 * than waiting a long time to establish a connection that
1279 * can never complete.
1280 */
1281 if (tp->t_state == TCPS_ESTABLISHED &&
1282 (error == EHOSTUNREACH || error == ENETUNREACH ||
1283 error == EHOSTDOWN)) {
1284 return;
1285 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1286 tp->t_rxtshift > 3 && tp->t_softerror)
1287 so->so_error = error;
1288 else
1289 tp->t_softerror = error;
1290 wakeup((caddr_t) &so->so_timeo);
1291 sorwakeup(so);
1292 sowwakeup(so);
1293 }
1294
1295 #ifdef INET6
1296 void
1297 tcp6_notify(in6p, error)
1298 struct in6pcb *in6p;
1299 int error;
1300 {
1301 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1302 struct socket *so = in6p->in6p_socket;
1303
1304 /*
1305 * Ignore some errors if we are hooked up.
1306 * If connection hasn't completed, has retransmitted several times,
1307 * and receives a second error, give up now. This is better
1308 * than waiting a long time to establish a connection that
1309 * can never complete.
1310 */
1311 if (tp->t_state == TCPS_ESTABLISHED &&
1312 (error == EHOSTUNREACH || error == ENETUNREACH ||
1313 error == EHOSTDOWN)) {
1314 return;
1315 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1316 tp->t_rxtshift > 3 && tp->t_softerror)
1317 so->so_error = error;
1318 else
1319 tp->t_softerror = error;
1320 wakeup((caddr_t) &so->so_timeo);
1321 sorwakeup(so);
1322 sowwakeup(so);
1323 }
1324 #endif
1325
1326 #ifdef INET6
1327 void
1328 tcp6_ctlinput(cmd, sa, d)
1329 int cmd;
1330 struct sockaddr *sa;
1331 void *d;
1332 {
1333 struct tcphdr th;
1334 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1335 int nmatch;
1336 struct ip6_hdr *ip6;
1337 const struct sockaddr_in6 *sa6_src = NULL;
1338 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1339 struct mbuf *m;
1340 int off;
1341
1342 if (sa->sa_family != AF_INET6 ||
1343 sa->sa_len != sizeof(struct sockaddr_in6))
1344 return;
1345 if ((unsigned)cmd >= PRC_NCMDS)
1346 return;
1347 else if (cmd == PRC_QUENCH) {
1348 /* XXX there's no PRC_QUENCH in IPv6 */
1349 notify = tcp6_quench;
1350 } else if (PRC_IS_REDIRECT(cmd))
1351 notify = in6_rtchange, d = NULL;
1352 else if (cmd == PRC_MSGSIZE)
1353 ; /* special code is present, see below */
1354 else if (cmd == PRC_HOSTDEAD)
1355 d = NULL;
1356 else if (inet6ctlerrmap[cmd] == 0)
1357 return;
1358
1359 /* if the parameter is from icmp6, decode it. */
1360 if (d != NULL) {
1361 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1362 m = ip6cp->ip6c_m;
1363 ip6 = ip6cp->ip6c_ip6;
1364 off = ip6cp->ip6c_off;
1365 sa6_src = ip6cp->ip6c_src;
1366 } else {
1367 m = NULL;
1368 ip6 = NULL;
1369 sa6_src = &sa6_any;
1370 }
1371
1372 if (ip6) {
1373 /*
1374 * XXX: We assume that when ip6 is non NULL,
1375 * M and OFF are valid.
1376 */
1377
1378 /* check if we can safely examine src and dst ports */
1379 if (m->m_pkthdr.len < off + sizeof(th)) {
1380 if (cmd == PRC_MSGSIZE)
1381 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1382 return;
1383 }
1384
1385 bzero(&th, sizeof(th));
1386 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1387
1388 if (cmd == PRC_MSGSIZE) {
1389 int valid = 0;
1390
1391 /*
1392 * Check to see if we have a valid TCP connection
1393 * corresponding to the address in the ICMPv6 message
1394 * payload.
1395 */
1396 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1397 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1398 th.th_sport, 0))
1399 valid++;
1400
1401 /*
1402 * Depending on the value of "valid" and routing table
1403 * size (mtudisc_{hi,lo}wat), we will:
1404 * - recalcurate the new MTU and create the
1405 * corresponding routing entry, or
1406 * - ignore the MTU change notification.
1407 */
1408 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1409
1410 /*
1411 * no need to call in6_pcbnotify, it should have been
1412 * called via callback if necessary
1413 */
1414 return;
1415 }
1416
1417 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1418 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1419 if (nmatch == 0 && syn_cache_count &&
1420 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1421 inet6ctlerrmap[cmd] == ENETUNREACH ||
1422 inet6ctlerrmap[cmd] == EHOSTDOWN))
1423 syn_cache_unreach((struct sockaddr *)sa6_src,
1424 sa, &th);
1425 } else {
1426 (void) in6_pcbnotify(&tcbtable, sa, 0,
1427 (struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1428 }
1429 }
1430 #endif
1431
1432 #ifdef INET
1433 /* assumes that ip header and tcp header are contiguous on mbuf */
1434 void *
1435 tcp_ctlinput(cmd, sa, v)
1436 int cmd;
1437 struct sockaddr *sa;
1438 void *v;
1439 {
1440 struct ip *ip = v;
1441 struct tcphdr *th;
1442 struct icmp *icp;
1443 extern const int inetctlerrmap[];
1444 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1445 int errno;
1446 int nmatch;
1447 #ifdef INET6
1448 struct in6_addr src6, dst6;
1449 #endif
1450
1451 if (sa->sa_family != AF_INET ||
1452 sa->sa_len != sizeof(struct sockaddr_in))
1453 return NULL;
1454 if ((unsigned)cmd >= PRC_NCMDS)
1455 return NULL;
1456 errno = inetctlerrmap[cmd];
1457 if (cmd == PRC_QUENCH)
1458 notify = tcp_quench;
1459 else if (PRC_IS_REDIRECT(cmd))
1460 notify = in_rtchange, ip = 0;
1461 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1462 /*
1463 * Check to see if we have a valid TCP connection
1464 * corresponding to the address in the ICMP message
1465 * payload.
1466 *
1467 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1468 */
1469 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1470 #ifdef INET6
1471 memset(&src6, 0, sizeof(src6));
1472 memset(&dst6, 0, sizeof(dst6));
1473 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1474 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1475 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1476 #endif
1477 if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
1478 ip->ip_src, th->th_sport) != NULL)
1479 ;
1480 #ifdef INET6
1481 else if (in6_pcblookup_connect(&tcbtable, &dst6,
1482 th->th_dport, &src6, th->th_sport, 0) != NULL)
1483 ;
1484 #endif
1485 else
1486 return NULL;
1487
1488 /*
1489 * Now that we've validated that we are actually communicating
1490 * with the host indicated in the ICMP message, locate the
1491 * ICMP header, recalculate the new MTU, and create the
1492 * corresponding routing entry.
1493 */
1494 icp = (struct icmp *)((caddr_t)ip -
1495 offsetof(struct icmp, icmp_ip));
1496 icmp_mtudisc(icp, ip->ip_dst);
1497
1498 return NULL;
1499 } else if (cmd == PRC_HOSTDEAD)
1500 ip = 0;
1501 else if (errno == 0)
1502 return NULL;
1503 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1504 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1505 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1506 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1507 if (nmatch == 0 && syn_cache_count &&
1508 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1509 inetctlerrmap[cmd] == ENETUNREACH ||
1510 inetctlerrmap[cmd] == EHOSTDOWN)) {
1511 struct sockaddr_in sin;
1512 bzero(&sin, sizeof(sin));
1513 sin.sin_len = sizeof(sin);
1514 sin.sin_family = AF_INET;
1515 sin.sin_port = th->th_sport;
1516 sin.sin_addr = ip->ip_src;
1517 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1518 }
1519
1520 /* XXX mapped address case */
1521 } else
1522 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1523 notify);
1524 return NULL;
1525 }
1526
1527 /*
1528 * When a source quence is received, we are being notifed of congestion.
1529 * Close the congestion window down to the Loss Window (one segment).
1530 * We will gradually open it again as we proceed.
1531 */
1532 void
1533 tcp_quench(inp, errno)
1534 struct inpcb *inp;
1535 int errno;
1536 {
1537 struct tcpcb *tp = intotcpcb(inp);
1538
1539 if (tp)
1540 tp->snd_cwnd = tp->t_segsz;
1541 }
1542 #endif
1543
1544 #ifdef INET6
1545 void
1546 tcp6_quench(in6p, errno)
1547 struct in6pcb *in6p;
1548 int errno;
1549 {
1550 struct tcpcb *tp = in6totcpcb(in6p);
1551
1552 if (tp)
1553 tp->snd_cwnd = tp->t_segsz;
1554 }
1555 #endif
1556
1557 #ifdef INET
1558 /*
1559 * Path MTU Discovery handlers.
1560 */
1561 void
1562 tcp_mtudisc_callback(faddr)
1563 struct in_addr faddr;
1564 {
1565 #ifdef INET6
1566 struct in6_addr in6;
1567 #endif
1568
1569 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1570 #ifdef INET6
1571 memset(&in6, 0, sizeof(in6));
1572 in6.s6_addr16[5] = 0xffff;
1573 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1574 tcp6_mtudisc_callback(&in6);
1575 #endif
1576 }
1577
1578 /*
1579 * On receipt of path MTU corrections, flush old route and replace it
1580 * with the new one. Retransmit all unacknowledged packets, to ensure
1581 * that all packets will be received.
1582 */
1583 void
1584 tcp_mtudisc(inp, errno)
1585 struct inpcb *inp;
1586 int errno;
1587 {
1588 struct tcpcb *tp = intotcpcb(inp);
1589 struct rtentry *rt = in_pcbrtentry(inp);
1590
1591 if (tp != 0) {
1592 if (rt != 0) {
1593 /*
1594 * If this was not a host route, remove and realloc.
1595 */
1596 if ((rt->rt_flags & RTF_HOST) == 0) {
1597 in_rtchange(inp, errno);
1598 if ((rt = in_pcbrtentry(inp)) == 0)
1599 return;
1600 }
1601
1602 /*
1603 * Slow start out of the error condition. We
1604 * use the MTU because we know it's smaller
1605 * than the previously transmitted segment.
1606 *
1607 * Note: This is more conservative than the
1608 * suggestion in draft-floyd-incr-init-win-03.
1609 */
1610 if (rt->rt_rmx.rmx_mtu != 0)
1611 tp->snd_cwnd =
1612 TCP_INITIAL_WINDOW(tcp_init_win,
1613 rt->rt_rmx.rmx_mtu);
1614 }
1615
1616 /*
1617 * Resend unacknowledged packets.
1618 */
1619 tp->snd_nxt = tp->snd_una;
1620 tcp_output(tp);
1621 }
1622 }
1623 #endif
1624
1625 #ifdef INET6
1626 /*
1627 * Path MTU Discovery handlers.
1628 */
1629 void
1630 tcp6_mtudisc_callback(faddr)
1631 struct in6_addr *faddr;
1632 {
1633 struct sockaddr_in6 sin6;
1634
1635 bzero(&sin6, sizeof(sin6));
1636 sin6.sin6_family = AF_INET6;
1637 sin6.sin6_len = sizeof(struct sockaddr_in6);
1638 sin6.sin6_addr = *faddr;
1639 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1640 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1641 }
1642
1643 void
1644 tcp6_mtudisc(in6p, errno)
1645 struct in6pcb *in6p;
1646 int errno;
1647 {
1648 struct tcpcb *tp = in6totcpcb(in6p);
1649 struct rtentry *rt = in6_pcbrtentry(in6p);
1650
1651 if (tp != 0) {
1652 if (rt != 0) {
1653 /*
1654 * If this was not a host route, remove and realloc.
1655 */
1656 if ((rt->rt_flags & RTF_HOST) == 0) {
1657 in6_rtchange(in6p, errno);
1658 if ((rt = in6_pcbrtentry(in6p)) == 0)
1659 return;
1660 }
1661
1662 /*
1663 * Slow start out of the error condition. We
1664 * use the MTU because we know it's smaller
1665 * than the previously transmitted segment.
1666 *
1667 * Note: This is more conservative than the
1668 * suggestion in draft-floyd-incr-init-win-03.
1669 */
1670 if (rt->rt_rmx.rmx_mtu != 0)
1671 tp->snd_cwnd =
1672 TCP_INITIAL_WINDOW(tcp_init_win,
1673 rt->rt_rmx.rmx_mtu);
1674 }
1675
1676 /*
1677 * Resend unacknowledged packets.
1678 */
1679 tp->snd_nxt = tp->snd_una;
1680 tcp_output(tp);
1681 }
1682 }
1683 #endif /* INET6 */
1684
1685 /*
1686 * Compute the MSS to advertise to the peer. Called only during
1687 * the 3-way handshake. If we are the server (peer initiated
1688 * connection), we are called with a pointer to the interface
1689 * on which the SYN packet arrived. If we are the client (we
1690 * initiated connection), we are called with a pointer to the
1691 * interface out which this connection should go.
1692 *
1693 * NOTE: Do not subtract IP option/extension header size nor IPsec
1694 * header size from MSS advertisement. MSS option must hold the maximum
1695 * segment size we can accept, so it must always be:
1696 * max(if mtu) - ip header - tcp header
1697 */
1698 u_long
1699 tcp_mss_to_advertise(ifp, af)
1700 const struct ifnet *ifp;
1701 int af;
1702 {
1703 extern u_long in_maxmtu;
1704 u_long mss = 0;
1705 u_long hdrsiz;
1706
1707 /*
1708 * In order to avoid defeating path MTU discovery on the peer,
1709 * we advertise the max MTU of all attached networks as our MSS,
1710 * per RFC 1191, section 3.1.
1711 *
1712 * We provide the option to advertise just the MTU of
1713 * the interface on which we hope this connection will
1714 * be receiving. If we are responding to a SYN, we
1715 * will have a pretty good idea about this, but when
1716 * initiating a connection there is a bit more doubt.
1717 *
1718 * We also need to ensure that loopback has a large enough
1719 * MSS, as the loopback MTU is never included in in_maxmtu.
1720 */
1721
1722 if (ifp != NULL)
1723 switch (af) {
1724 case AF_INET:
1725 mss = ifp->if_mtu;
1726 break;
1727 #ifdef INET6
1728 case AF_INET6:
1729 mss = IN6_LINKMTU(ifp);
1730 break;
1731 #endif
1732 }
1733
1734 if (tcp_mss_ifmtu == 0)
1735 switch (af) {
1736 case AF_INET:
1737 mss = max(in_maxmtu, mss);
1738 break;
1739 #ifdef INET6
1740 case AF_INET6:
1741 mss = max(in6_maxmtu, mss);
1742 break;
1743 #endif
1744 }
1745
1746 switch (af) {
1747 case AF_INET:
1748 hdrsiz = sizeof(struct ip);
1749 break;
1750 #ifdef INET6
1751 case AF_INET6:
1752 hdrsiz = sizeof(struct ip6_hdr);
1753 break;
1754 #endif
1755 default:
1756 hdrsiz = 0;
1757 break;
1758 }
1759 hdrsiz += sizeof(struct tcphdr);
1760 if (mss > hdrsiz)
1761 mss -= hdrsiz;
1762
1763 mss = max(tcp_mssdflt, mss);
1764 return (mss);
1765 }
1766
1767 /*
1768 * Set connection variables based on the peer's advertised MSS.
1769 * We are passed the TCPCB for the actual connection. If we
1770 * are the server, we are called by the compressed state engine
1771 * when the 3-way handshake is complete. If we are the client,
1772 * we are called when we receive the SYN,ACK from the server.
1773 *
1774 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1775 * before this routine is called!
1776 */
1777 void
1778 tcp_mss_from_peer(tp, offer)
1779 struct tcpcb *tp;
1780 int offer;
1781 {
1782 struct socket *so;
1783 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1784 struct rtentry *rt;
1785 #endif
1786 u_long bufsize;
1787 int mss;
1788
1789 #ifdef DIAGNOSTIC
1790 if (tp->t_inpcb && tp->t_in6pcb)
1791 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1792 #endif
1793 so = NULL;
1794 rt = NULL;
1795 #ifdef INET
1796 if (tp->t_inpcb) {
1797 so = tp->t_inpcb->inp_socket;
1798 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1799 rt = in_pcbrtentry(tp->t_inpcb);
1800 #endif
1801 }
1802 #endif
1803 #ifdef INET6
1804 if (tp->t_in6pcb) {
1805 so = tp->t_in6pcb->in6p_socket;
1806 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1807 rt = in6_pcbrtentry(tp->t_in6pcb);
1808 #endif
1809 }
1810 #endif
1811
1812 /*
1813 * As per RFC1122, use the default MSS value, unless they
1814 * sent us an offer. Do not accept offers less than 32 bytes.
1815 */
1816 mss = tcp_mssdflt;
1817 if (offer)
1818 mss = offer;
1819 mss = max(mss, 32); /* sanity */
1820 tp->t_peermss = mss;
1821 mss -= tcp_optlen(tp);
1822 #ifdef INET
1823 if (tp->t_inpcb)
1824 mss -= ip_optlen(tp->t_inpcb);
1825 #endif
1826 #ifdef INET6
1827 if (tp->t_in6pcb)
1828 mss -= ip6_optlen(tp->t_in6pcb);
1829 #endif
1830
1831 /*
1832 * If there's a pipesize, change the socket buffer to that size.
1833 * Make the socket buffer an integral number of MSS units. If
1834 * the MSS is larger than the socket buffer, artificially decrease
1835 * the MSS.
1836 */
1837 #ifdef RTV_SPIPE
1838 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1839 bufsize = rt->rt_rmx.rmx_sendpipe;
1840 else
1841 #endif
1842 bufsize = so->so_snd.sb_hiwat;
1843 if (bufsize < mss)
1844 mss = bufsize;
1845 else {
1846 bufsize = roundup(bufsize, mss);
1847 if (bufsize > sb_max)
1848 bufsize = sb_max;
1849 (void) sbreserve(&so->so_snd, bufsize);
1850 }
1851 tp->t_segsz = mss;
1852
1853 #ifdef RTV_SSTHRESH
1854 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1855 /*
1856 * There's some sort of gateway or interface buffer
1857 * limit on the path. Use this to set the slow
1858 * start threshold, but set the threshold to no less
1859 * than 2 * MSS.
1860 */
1861 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1862 }
1863 #endif
1864 }
1865
1866 /*
1867 * Processing necessary when a TCP connection is established.
1868 */
1869 void
1870 tcp_established(tp)
1871 struct tcpcb *tp;
1872 {
1873 struct socket *so;
1874 #ifdef RTV_RPIPE
1875 struct rtentry *rt;
1876 #endif
1877 u_long bufsize;
1878
1879 #ifdef DIAGNOSTIC
1880 if (tp->t_inpcb && tp->t_in6pcb)
1881 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1882 #endif
1883 so = NULL;
1884 rt = NULL;
1885 #ifdef INET
1886 if (tp->t_inpcb) {
1887 so = tp->t_inpcb->inp_socket;
1888 #if defined(RTV_RPIPE)
1889 rt = in_pcbrtentry(tp->t_inpcb);
1890 #endif
1891 }
1892 #endif
1893 #ifdef INET6
1894 if (tp->t_in6pcb) {
1895 so = tp->t_in6pcb->in6p_socket;
1896 #if defined(RTV_RPIPE)
1897 rt = in6_pcbrtentry(tp->t_in6pcb);
1898 #endif
1899 }
1900 #endif
1901
1902 tp->t_state = TCPS_ESTABLISHED;
1903 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1904
1905 #ifdef RTV_RPIPE
1906 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1907 bufsize = rt->rt_rmx.rmx_recvpipe;
1908 else
1909 #endif
1910 bufsize = so->so_rcv.sb_hiwat;
1911 if (bufsize > tp->t_ourmss) {
1912 bufsize = roundup(bufsize, tp->t_ourmss);
1913 if (bufsize > sb_max)
1914 bufsize = sb_max;
1915 (void) sbreserve(&so->so_rcv, bufsize);
1916 }
1917 }
1918
1919 /*
1920 * Check if there's an initial rtt or rttvar. Convert from the
1921 * route-table units to scaled multiples of the slow timeout timer.
1922 * Called only during the 3-way handshake.
1923 */
1924 void
1925 tcp_rmx_rtt(tp)
1926 struct tcpcb *tp;
1927 {
1928 #ifdef RTV_RTT
1929 struct rtentry *rt = NULL;
1930 int rtt;
1931
1932 #ifdef DIAGNOSTIC
1933 if (tp->t_inpcb && tp->t_in6pcb)
1934 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1935 #endif
1936 #ifdef INET
1937 if (tp->t_inpcb)
1938 rt = in_pcbrtentry(tp->t_inpcb);
1939 #endif
1940 #ifdef INET6
1941 if (tp->t_in6pcb)
1942 rt = in6_pcbrtentry(tp->t_in6pcb);
1943 #endif
1944 if (rt == NULL)
1945 return;
1946
1947 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1948 /*
1949 * XXX The lock bit for MTU indicates that the value
1950 * is also a minimum value; this is subject to time.
1951 */
1952 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1953 TCPT_RANGESET(tp->t_rttmin,
1954 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1955 TCPTV_MIN, TCPTV_REXMTMAX);
1956 tp->t_srtt = rtt /
1957 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1958 if (rt->rt_rmx.rmx_rttvar) {
1959 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1960 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1961 (TCP_RTTVAR_SHIFT + 2));
1962 } else {
1963 /* Default variation is +- 1 rtt */
1964 tp->t_rttvar =
1965 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1966 }
1967 TCPT_RANGESET(tp->t_rxtcur,
1968 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1969 tp->t_rttmin, TCPTV_REXMTMAX);
1970 }
1971 #endif
1972 }
1973
1974 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1975 #if NRND > 0
1976 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
1977 #endif
1978
1979 /*
1980 * Get a new sequence value given a tcp control block
1981 */
1982 tcp_seq
1983 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
1984 {
1985
1986 #ifdef INET
1987 if (tp->t_inpcb != NULL) {
1988 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
1989 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
1990 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
1991 addin));
1992 }
1993 #endif
1994 #ifdef INET6
1995 if (tp->t_in6pcb != NULL) {
1996 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
1997 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
1998 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
1999 addin));
2000 }
2001 #endif
2002 /* Not possible. */
2003 panic("tcp_new_iss");
2004 }
2005
2006 /*
2007 * This routine actually generates a new TCP initial sequence number.
2008 */
2009 tcp_seq
2010 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2011 size_t addrsz, tcp_seq addin)
2012 {
2013 tcp_seq tcp_iss;
2014
2015 #if NRND > 0
2016 static int beenhere;
2017
2018 /*
2019 * If we haven't been here before, initialize our cryptographic
2020 * hash secret.
2021 */
2022 if (beenhere == 0) {
2023 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2024 RND_EXTRACT_ANY);
2025 beenhere = 1;
2026 }
2027
2028 if (tcp_do_rfc1948) {
2029 MD5_CTX ctx;
2030 u_int8_t hash[16]; /* XXX MD5 knowledge */
2031
2032 /*
2033 * Compute the base value of the ISS. It is a hash
2034 * of (saddr, sport, daddr, dport, secret).
2035 */
2036 MD5Init(&ctx);
2037
2038 MD5Update(&ctx, (u_char *) laddr, addrsz);
2039 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2040
2041 MD5Update(&ctx, (u_char *) faddr, addrsz);
2042 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2043
2044 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2045
2046 MD5Final(hash, &ctx);
2047
2048 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2049
2050 /*
2051 * Now increment our "timer", and add it in to
2052 * the computed value.
2053 *
2054 * XXX Use `addin'?
2055 * XXX TCP_ISSINCR too large to use?
2056 */
2057 tcp_iss_seq += TCP_ISSINCR;
2058 #ifdef TCPISS_DEBUG
2059 printf("ISS hash 0x%08x, ", tcp_iss);
2060 #endif
2061 tcp_iss += tcp_iss_seq + addin;
2062 #ifdef TCPISS_DEBUG
2063 printf("new ISS 0x%08x\n", tcp_iss);
2064 #endif
2065 } else
2066 #endif /* NRND > 0 */
2067 {
2068 /*
2069 * Randomize.
2070 */
2071 #if NRND > 0
2072 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2073 #else
2074 tcp_iss = arc4random();
2075 #endif
2076
2077 /*
2078 * If we were asked to add some amount to a known value,
2079 * we will take a random value obtained above, mask off
2080 * the upper bits, and add in the known value. We also
2081 * add in a constant to ensure that we are at least a
2082 * certain distance from the original value.
2083 *
2084 * This is used when an old connection is in timed wait
2085 * and we have a new one coming in, for instance.
2086 */
2087 if (addin != 0) {
2088 #ifdef TCPISS_DEBUG
2089 printf("Random %08x, ", tcp_iss);
2090 #endif
2091 tcp_iss &= TCP_ISS_RANDOM_MASK;
2092 tcp_iss += addin + TCP_ISSINCR;
2093 #ifdef TCPISS_DEBUG
2094 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2095 #endif
2096 } else {
2097 tcp_iss &= TCP_ISS_RANDOM_MASK;
2098 tcp_iss += tcp_iss_seq;
2099 tcp_iss_seq += TCP_ISSINCR;
2100 #ifdef TCPISS_DEBUG
2101 printf("ISS %08x\n", tcp_iss);
2102 #endif
2103 }
2104 }
2105
2106 if (tcp_compat_42) {
2107 /*
2108 * Limit it to the positive range for really old TCP
2109 * implementations.
2110 * Just AND off the top bit instead of checking if
2111 * is set first - saves a branch 50% of the time.
2112 */
2113 tcp_iss &= 0x7fffffff; /* XXX */
2114 }
2115
2116 return (tcp_iss);
2117 }
2118
2119 #if defined(IPSEC) || defined(FAST_IPSEC)
2120 /* compute ESP/AH header size for TCP, including outer IP header. */
2121 size_t
2122 ipsec4_hdrsiz_tcp(tp)
2123 struct tcpcb *tp;
2124 {
2125 struct inpcb *inp;
2126 size_t hdrsiz;
2127
2128 /* XXX mapped addr case (tp->t_in6pcb) */
2129 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2130 return 0;
2131 switch (tp->t_family) {
2132 case AF_INET:
2133 /* XXX: should use currect direction. */
2134 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2135 break;
2136 default:
2137 hdrsiz = 0;
2138 break;
2139 }
2140
2141 return hdrsiz;
2142 }
2143
2144 #ifdef INET6
2145 size_t
2146 ipsec6_hdrsiz_tcp(tp)
2147 struct tcpcb *tp;
2148 {
2149 struct in6pcb *in6p;
2150 size_t hdrsiz;
2151
2152 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2153 return 0;
2154 switch (tp->t_family) {
2155 case AF_INET6:
2156 /* XXX: should use currect direction. */
2157 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2158 break;
2159 case AF_INET:
2160 /* mapped address case - tricky */
2161 default:
2162 hdrsiz = 0;
2163 break;
2164 }
2165
2166 return hdrsiz;
2167 }
2168 #endif
2169 #endif /*IPSEC*/
2170
2171 /*
2172 * Determine the length of the TCP options for this connection.
2173 *
2174 * XXX: What do we do for SACK, when we add that? Just reserve
2175 * all of the space? Otherwise we can't exactly be incrementing
2176 * cwnd by an amount that varies depending on the amount we last
2177 * had to SACK!
2178 */
2179
2180 u_int
2181 tcp_optlen(tp)
2182 struct tcpcb *tp;
2183 {
2184 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2185 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2186 return TCPOLEN_TSTAMP_APPA;
2187 else
2188 return 0;
2189 }
2190