tcp_subr.c revision 1.155 1 /* $NetBSD: tcp_subr.c,v 1.155 2003/10/21 21:17:20 thorpej Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.155 2003/10/21 21:17:20 thorpej Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcpip.h>
155
156 #ifdef IPSEC
157 #include <netinet6/ipsec.h>
158 #endif /*IPSEC*/
159
160 #ifdef FAST_IPSEC
161 #include <netipsec/ipsec.h>
162 #ifdef INET6
163 #include <netipsec/ipsec6.h>
164 #endif
165 #endif /* FAST_IPSEC*/
166
167
168 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
169 struct tcpstat tcpstat; /* tcp statistics */
170 u_int32_t tcp_now; /* for RFC 1323 timestamps */
171
172 /* patchable/settable parameters for tcp */
173 int tcp_mssdflt = TCP_MSS;
174 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
175 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
176 #if NRND > 0
177 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
178 #endif
179 int tcp_do_sack = 1; /* selective acknowledgement */
180 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
181 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
182 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
183 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
184 #ifndef TCP_INIT_WIN
185 #define TCP_INIT_WIN 1 /* initial slow start window */
186 #endif
187 #ifndef TCP_INIT_WIN_LOCAL
188 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
189 #endif
190 int tcp_init_win = TCP_INIT_WIN;
191 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
192 int tcp_mss_ifmtu = 0;
193 #ifdef TCP_COMPAT_42
194 int tcp_compat_42 = 1;
195 #else
196 int tcp_compat_42 = 0;
197 #endif
198 int tcp_rst_ppslim = 100; /* 100pps */
199
200 /* tcb hash */
201 #ifndef TCBHASHSIZE
202 #define TCBHASHSIZE 128
203 #endif
204 int tcbhashsize = TCBHASHSIZE;
205
206 /* syn hash parameters */
207 #define TCP_SYN_HASH_SIZE 293
208 #define TCP_SYN_BUCKET_SIZE 35
209 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
210 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
211 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
212 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
213
214 int tcp_freeq __P((struct tcpcb *));
215
216 #ifdef INET
217 void tcp_mtudisc_callback __P((struct in_addr));
218 #endif
219 #ifdef INET6
220 void tcp6_mtudisc_callback __P((struct in6_addr *));
221 #endif
222
223 void tcp_mtudisc __P((struct inpcb *, int));
224 #ifdef INET6
225 void tcp6_mtudisc __P((struct in6pcb *, int));
226 #endif
227
228 struct pool tcpcb_pool;
229
230 #ifdef TCP_CSUM_COUNTERS
231 #include <sys/device.h>
232
233 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
234 NULL, "tcp", "hwcsum bad");
235 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
236 NULL, "tcp", "hwcsum ok");
237 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
238 NULL, "tcp", "hwcsum data");
239 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
240 NULL, "tcp", "swcsum");
241 #endif /* TCP_CSUM_COUNTERS */
242
243 #ifdef TCP_OUTPUT_COUNTERS
244 #include <sys/device.h>
245
246 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
247 NULL, "tcp", "output big header");
248 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
249 NULL, "tcp", "output predict hit");
250 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
251 NULL, "tcp", "output predict miss");
252 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
253 NULL, "tcp", "output copy small");
254 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
255 NULL, "tcp", "output copy big");
256 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
257 NULL, "tcp", "output reference big");
258 #endif /* TCP_OUTPUT_COUNTERS */
259
260 #ifdef TCP_REASS_COUNTERS
261 #include <sys/device.h>
262
263 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264 NULL, "tcp_reass", "calls");
265 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266 &tcp_reass_, "tcp_reass", "insert into empty queue");
267 struct evcnt tcp_reass_iteration[8] = {
268 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
269 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
270 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
271 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
272 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
273 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
274 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
275 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
276 };
277 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
278 &tcp_reass_, "tcp_reass", "prepend to first");
279 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
280 &tcp_reass_, "tcp_reass", "prepend");
281 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282 &tcp_reass_, "tcp_reass", "insert");
283 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284 &tcp_reass_, "tcp_reass", "insert at tail");
285 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286 &tcp_reass_, "tcp_reass", "append");
287 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288 &tcp_reass_, "tcp_reass", "append to tail fragment");
289 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
290 &tcp_reass_, "tcp_reass", "overlap at end");
291 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
292 &tcp_reass_, "tcp_reass", "overlap at start");
293 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
294 &tcp_reass_, "tcp_reass", "duplicate segment");
295 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
296 &tcp_reass_, "tcp_reass", "duplicate fragment");
297
298 #endif /* TCP_REASS_COUNTERS */
299
300 #ifdef MBUFTRACE
301 struct mowner tcp_mowner = { "tcp" };
302 struct mowner tcp_rx_mowner = { "tcp", "rx" };
303 struct mowner tcp_tx_mowner = { "tcp", "tx" };
304 #endif
305
306 /*
307 * Tcp initialization
308 */
309 void
310 tcp_init()
311 {
312 int hlen;
313
314 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
315 NULL);
316 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
317
318 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
319 #ifdef INET6
320 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
321 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
322 #endif
323 if (max_protohdr < hlen)
324 max_protohdr = hlen;
325 if (max_linkhdr + hlen > MHLEN)
326 panic("tcp_init");
327
328 #ifdef INET
329 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
330 #endif
331 #ifdef INET6
332 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
333 #endif
334
335 /* Initialize timer state. */
336 tcp_timer_init();
337
338 /* Initialize the compressed state engine. */
339 syn_cache_init();
340
341 #ifdef TCP_CSUM_COUNTERS
342 evcnt_attach_static(&tcp_hwcsum_bad);
343 evcnt_attach_static(&tcp_hwcsum_ok);
344 evcnt_attach_static(&tcp_hwcsum_data);
345 evcnt_attach_static(&tcp_swcsum);
346 #endif /* TCP_CSUM_COUNTERS */
347
348 #ifdef TCP_OUTPUT_COUNTERS
349 evcnt_attach_static(&tcp_output_bigheader);
350 evcnt_attach_static(&tcp_output_predict_hit);
351 evcnt_attach_static(&tcp_output_predict_miss);
352 evcnt_attach_static(&tcp_output_copysmall);
353 evcnt_attach_static(&tcp_output_copybig);
354 evcnt_attach_static(&tcp_output_refbig);
355 #endif /* TCP_OUTPUT_COUNTERS */
356
357 #ifdef TCP_REASS_COUNTERS
358 evcnt_attach_static(&tcp_reass_);
359 evcnt_attach_static(&tcp_reass_empty);
360 evcnt_attach_static(&tcp_reass_iteration[0]);
361 evcnt_attach_static(&tcp_reass_iteration[1]);
362 evcnt_attach_static(&tcp_reass_iteration[2]);
363 evcnt_attach_static(&tcp_reass_iteration[3]);
364 evcnt_attach_static(&tcp_reass_iteration[4]);
365 evcnt_attach_static(&tcp_reass_iteration[5]);
366 evcnt_attach_static(&tcp_reass_iteration[6]);
367 evcnt_attach_static(&tcp_reass_iteration[7]);
368 evcnt_attach_static(&tcp_reass_prependfirst);
369 evcnt_attach_static(&tcp_reass_prepend);
370 evcnt_attach_static(&tcp_reass_insert);
371 evcnt_attach_static(&tcp_reass_inserttail);
372 evcnt_attach_static(&tcp_reass_append);
373 evcnt_attach_static(&tcp_reass_appendtail);
374 evcnt_attach_static(&tcp_reass_overlaptail);
375 evcnt_attach_static(&tcp_reass_overlapfront);
376 evcnt_attach_static(&tcp_reass_segdup);
377 evcnt_attach_static(&tcp_reass_fragdup);
378 #endif /* TCP_REASS_COUNTERS */
379
380 MOWNER_ATTACH(&tcp_tx_mowner);
381 MOWNER_ATTACH(&tcp_rx_mowner);
382 MOWNER_ATTACH(&tcp_mowner);
383 }
384
385 /*
386 * Create template to be used to send tcp packets on a connection.
387 * Call after host entry created, allocates an mbuf and fills
388 * in a skeletal tcp/ip header, minimizing the amount of work
389 * necessary when the connection is used.
390 */
391 struct mbuf *
392 tcp_template(tp)
393 struct tcpcb *tp;
394 {
395 struct inpcb *inp = tp->t_inpcb;
396 #ifdef INET6
397 struct in6pcb *in6p = tp->t_in6pcb;
398 #endif
399 struct tcphdr *n;
400 struct mbuf *m;
401 int hlen;
402
403 switch (tp->t_family) {
404 case AF_INET:
405 hlen = sizeof(struct ip);
406 if (inp)
407 break;
408 #ifdef INET6
409 if (in6p) {
410 /* mapped addr case */
411 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
412 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
413 break;
414 }
415 #endif
416 return NULL; /*EINVAL*/
417 #ifdef INET6
418 case AF_INET6:
419 hlen = sizeof(struct ip6_hdr);
420 if (in6p) {
421 /* more sainty check? */
422 break;
423 }
424 return NULL; /*EINVAL*/
425 #endif
426 default:
427 hlen = 0; /*pacify gcc*/
428 return NULL; /*EAFNOSUPPORT*/
429 }
430 #ifdef DIAGNOSTIC
431 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
432 panic("mclbytes too small for t_template");
433 #endif
434 m = tp->t_template;
435 if (m && m->m_len == hlen + sizeof(struct tcphdr))
436 ;
437 else {
438 if (m)
439 m_freem(m);
440 m = tp->t_template = NULL;
441 MGETHDR(m, M_DONTWAIT, MT_HEADER);
442 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
443 MCLGET(m, M_DONTWAIT);
444 if ((m->m_flags & M_EXT) == 0) {
445 m_free(m);
446 m = NULL;
447 }
448 }
449 if (m == NULL)
450 return NULL;
451 MCLAIM(m, &tcp_mowner);
452 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
453 }
454
455 bzero(mtod(m, caddr_t), m->m_len);
456
457 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
458
459 switch (tp->t_family) {
460 case AF_INET:
461 {
462 struct ipovly *ipov;
463 mtod(m, struct ip *)->ip_v = 4;
464 mtod(m, struct ip *)->ip_hl = hlen >> 2;
465 ipov = mtod(m, struct ipovly *);
466 ipov->ih_pr = IPPROTO_TCP;
467 ipov->ih_len = htons(sizeof(struct tcphdr));
468 if (inp) {
469 ipov->ih_src = inp->inp_laddr;
470 ipov->ih_dst = inp->inp_faddr;
471 }
472 #ifdef INET6
473 else if (in6p) {
474 /* mapped addr case */
475 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
476 sizeof(ipov->ih_src));
477 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
478 sizeof(ipov->ih_dst));
479 }
480 #endif
481 /*
482 * Compute the pseudo-header portion of the checksum
483 * now. We incrementally add in the TCP option and
484 * payload lengths later, and then compute the TCP
485 * checksum right before the packet is sent off onto
486 * the wire.
487 */
488 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
489 ipov->ih_dst.s_addr,
490 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
491 break;
492 }
493 #ifdef INET6
494 case AF_INET6:
495 {
496 struct ip6_hdr *ip6;
497 mtod(m, struct ip *)->ip_v = 6;
498 ip6 = mtod(m, struct ip6_hdr *);
499 ip6->ip6_nxt = IPPROTO_TCP;
500 ip6->ip6_plen = htons(sizeof(struct tcphdr));
501 ip6->ip6_src = in6p->in6p_laddr;
502 ip6->ip6_dst = in6p->in6p_faddr;
503 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
504 if (ip6_auto_flowlabel) {
505 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
506 ip6->ip6_flow |=
507 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
508 }
509 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
510 ip6->ip6_vfc |= IPV6_VERSION;
511
512 /*
513 * Compute the pseudo-header portion of the checksum
514 * now. We incrementally add in the TCP option and
515 * payload lengths later, and then compute the TCP
516 * checksum right before the packet is sent off onto
517 * the wire.
518 */
519 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
520 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
521 htonl(IPPROTO_TCP));
522 break;
523 }
524 #endif
525 }
526 if (inp) {
527 n->th_sport = inp->inp_lport;
528 n->th_dport = inp->inp_fport;
529 }
530 #ifdef INET6
531 else if (in6p) {
532 n->th_sport = in6p->in6p_lport;
533 n->th_dport = in6p->in6p_fport;
534 }
535 #endif
536 n->th_seq = 0;
537 n->th_ack = 0;
538 n->th_x2 = 0;
539 n->th_off = 5;
540 n->th_flags = 0;
541 n->th_win = 0;
542 n->th_urp = 0;
543 return (m);
544 }
545
546 /*
547 * Send a single message to the TCP at address specified by
548 * the given TCP/IP header. If m == 0, then we make a copy
549 * of the tcpiphdr at ti and send directly to the addressed host.
550 * This is used to force keep alive messages out using the TCP
551 * template for a connection tp->t_template. If flags are given
552 * then we send a message back to the TCP which originated the
553 * segment ti, and discard the mbuf containing it and any other
554 * attached mbufs.
555 *
556 * In any case the ack and sequence number of the transmitted
557 * segment are as specified by the parameters.
558 */
559 int
560 tcp_respond(tp, template, m, th0, ack, seq, flags)
561 struct tcpcb *tp;
562 struct mbuf *template;
563 struct mbuf *m;
564 struct tcphdr *th0;
565 tcp_seq ack, seq;
566 int flags;
567 {
568 struct route *ro;
569 int error, tlen, win = 0;
570 int hlen;
571 struct ip *ip;
572 #ifdef INET6
573 struct ip6_hdr *ip6;
574 #endif
575 int family; /* family on packet, not inpcb/in6pcb! */
576 struct tcphdr *th;
577 struct socket *so;
578
579 if (tp != NULL && (flags & TH_RST) == 0) {
580 #ifdef DIAGNOSTIC
581 if (tp->t_inpcb && tp->t_in6pcb)
582 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
583 #endif
584 #ifdef INET
585 if (tp->t_inpcb)
586 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
587 #endif
588 #ifdef INET6
589 if (tp->t_in6pcb)
590 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
591 #endif
592 }
593
594 th = NULL; /* Quell uninitialized warning */
595 ip = NULL;
596 #ifdef INET6
597 ip6 = NULL;
598 #endif
599 if (m == 0) {
600 if (!template)
601 return EINVAL;
602
603 /* get family information from template */
604 switch (mtod(template, struct ip *)->ip_v) {
605 case 4:
606 family = AF_INET;
607 hlen = sizeof(struct ip);
608 break;
609 #ifdef INET6
610 case 6:
611 family = AF_INET6;
612 hlen = sizeof(struct ip6_hdr);
613 break;
614 #endif
615 default:
616 return EAFNOSUPPORT;
617 }
618
619 MGETHDR(m, M_DONTWAIT, MT_HEADER);
620 if (m) {
621 MCLAIM(m, &tcp_tx_mowner);
622 MCLGET(m, M_DONTWAIT);
623 if ((m->m_flags & M_EXT) == 0) {
624 m_free(m);
625 m = NULL;
626 }
627 }
628 if (m == NULL)
629 return (ENOBUFS);
630
631 if (tcp_compat_42)
632 tlen = 1;
633 else
634 tlen = 0;
635
636 m->m_data += max_linkhdr;
637 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
638 template->m_len);
639 switch (family) {
640 case AF_INET:
641 ip = mtod(m, struct ip *);
642 th = (struct tcphdr *)(ip + 1);
643 break;
644 #ifdef INET6
645 case AF_INET6:
646 ip6 = mtod(m, struct ip6_hdr *);
647 th = (struct tcphdr *)(ip6 + 1);
648 break;
649 #endif
650 #if 0
651 default:
652 /* noone will visit here */
653 m_freem(m);
654 return EAFNOSUPPORT;
655 #endif
656 }
657 flags = TH_ACK;
658 } else {
659
660 if ((m->m_flags & M_PKTHDR) == 0) {
661 #if 0
662 printf("non PKTHDR to tcp_respond\n");
663 #endif
664 m_freem(m);
665 return EINVAL;
666 }
667 #ifdef DIAGNOSTIC
668 if (!th0)
669 panic("th0 == NULL in tcp_respond");
670 #endif
671
672 /* get family information from m */
673 switch (mtod(m, struct ip *)->ip_v) {
674 case 4:
675 family = AF_INET;
676 hlen = sizeof(struct ip);
677 ip = mtod(m, struct ip *);
678 break;
679 #ifdef INET6
680 case 6:
681 family = AF_INET6;
682 hlen = sizeof(struct ip6_hdr);
683 ip6 = mtod(m, struct ip6_hdr *);
684 break;
685 #endif
686 default:
687 m_freem(m);
688 return EAFNOSUPPORT;
689 }
690 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
691 tlen = sizeof(*th0);
692 else
693 tlen = th0->th_off << 2;
694
695 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
696 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
697 m->m_len = hlen + tlen;
698 m_freem(m->m_next);
699 m->m_next = NULL;
700 } else {
701 struct mbuf *n;
702
703 #ifdef DIAGNOSTIC
704 if (max_linkhdr + hlen + tlen > MCLBYTES) {
705 m_freem(m);
706 return EMSGSIZE;
707 }
708 #endif
709 MGETHDR(n, M_DONTWAIT, MT_HEADER);
710 if (n && max_linkhdr + hlen + tlen > MHLEN) {
711 MCLGET(n, M_DONTWAIT);
712 if ((n->m_flags & M_EXT) == 0) {
713 m_freem(n);
714 n = NULL;
715 }
716 }
717 if (!n) {
718 m_freem(m);
719 return ENOBUFS;
720 }
721
722 MCLAIM(n, &tcp_tx_mowner);
723 n->m_data += max_linkhdr;
724 n->m_len = hlen + tlen;
725 m_copyback(n, 0, hlen, mtod(m, caddr_t));
726 m_copyback(n, hlen, tlen, (caddr_t)th0);
727
728 m_freem(m);
729 m = n;
730 n = NULL;
731 }
732
733 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
734 switch (family) {
735 case AF_INET:
736 ip = mtod(m, struct ip *);
737 th = (struct tcphdr *)(ip + 1);
738 ip->ip_p = IPPROTO_TCP;
739 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
740 ip->ip_p = IPPROTO_TCP;
741 break;
742 #ifdef INET6
743 case AF_INET6:
744 ip6 = mtod(m, struct ip6_hdr *);
745 th = (struct tcphdr *)(ip6 + 1);
746 ip6->ip6_nxt = IPPROTO_TCP;
747 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
748 ip6->ip6_nxt = IPPROTO_TCP;
749 break;
750 #endif
751 #if 0
752 default:
753 /* noone will visit here */
754 m_freem(m);
755 return EAFNOSUPPORT;
756 #endif
757 }
758 xchg(th->th_dport, th->th_sport, u_int16_t);
759 #undef xchg
760 tlen = 0; /*be friendly with the following code*/
761 }
762 th->th_seq = htonl(seq);
763 th->th_ack = htonl(ack);
764 th->th_x2 = 0;
765 if ((flags & TH_SYN) == 0) {
766 if (tp)
767 win >>= tp->rcv_scale;
768 if (win > TCP_MAXWIN)
769 win = TCP_MAXWIN;
770 th->th_win = htons((u_int16_t)win);
771 th->th_off = sizeof (struct tcphdr) >> 2;
772 tlen += sizeof(*th);
773 } else
774 tlen += th->th_off << 2;
775 m->m_len = hlen + tlen;
776 m->m_pkthdr.len = hlen + tlen;
777 m->m_pkthdr.rcvif = (struct ifnet *) 0;
778 th->th_flags = flags;
779 th->th_urp = 0;
780
781 switch (family) {
782 #ifdef INET
783 case AF_INET:
784 {
785 struct ipovly *ipov = (struct ipovly *)ip;
786 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
787 ipov->ih_len = htons((u_int16_t)tlen);
788
789 th->th_sum = 0;
790 th->th_sum = in_cksum(m, hlen + tlen);
791 ip->ip_len = htons(hlen + tlen);
792 ip->ip_ttl = ip_defttl;
793 break;
794 }
795 #endif
796 #ifdef INET6
797 case AF_INET6:
798 {
799 th->th_sum = 0;
800 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
801 tlen);
802 ip6->ip6_plen = ntohs(tlen);
803 if (tp && tp->t_in6pcb) {
804 struct ifnet *oifp;
805 ro = (struct route *)&tp->t_in6pcb->in6p_route;
806 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
807 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
808 } else
809 ip6->ip6_hlim = ip6_defhlim;
810 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
811 if (ip6_auto_flowlabel) {
812 ip6->ip6_flow |=
813 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
814 }
815 break;
816 }
817 #endif
818 }
819
820 if (tp && tp->t_inpcb)
821 so = tp->t_inpcb->inp_socket;
822 #ifdef INET6
823 else if (tp && tp->t_in6pcb)
824 so = tp->t_in6pcb->in6p_socket;
825 #endif
826 else
827 so = NULL;
828
829 if (tp != NULL && tp->t_inpcb != NULL) {
830 ro = &tp->t_inpcb->inp_route;
831 #ifdef DIAGNOSTIC
832 if (family != AF_INET)
833 panic("tcp_respond: address family mismatch");
834 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
835 panic("tcp_respond: ip_dst %x != inp_faddr %x",
836 ntohl(ip->ip_dst.s_addr),
837 ntohl(tp->t_inpcb->inp_faddr.s_addr));
838 }
839 #endif
840 }
841 #ifdef INET6
842 else if (tp != NULL && tp->t_in6pcb != NULL) {
843 ro = (struct route *)&tp->t_in6pcb->in6p_route;
844 #ifdef DIAGNOSTIC
845 if (family == AF_INET) {
846 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
847 panic("tcp_respond: not mapped addr");
848 if (bcmp(&ip->ip_dst,
849 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
850 sizeof(ip->ip_dst)) != 0) {
851 panic("tcp_respond: ip_dst != in6p_faddr");
852 }
853 } else if (family == AF_INET6) {
854 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
855 &tp->t_in6pcb->in6p_faddr))
856 panic("tcp_respond: ip6_dst != in6p_faddr");
857 } else
858 panic("tcp_respond: address family mismatch");
859 #endif
860 }
861 #endif
862 else
863 ro = NULL;
864
865 switch (family) {
866 #ifdef INET
867 case AF_INET:
868 error = ip_output(m, NULL, ro,
869 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
870 (struct ip_moptions *)0, so);
871 break;
872 #endif
873 #ifdef INET6
874 case AF_INET6:
875 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
876 (struct ip6_moptions *)0, so, NULL);
877 break;
878 #endif
879 default:
880 error = EAFNOSUPPORT;
881 break;
882 }
883
884 return (error);
885 }
886
887 /*
888 * Create a new TCP control block, making an
889 * empty reassembly queue and hooking it to the argument
890 * protocol control block.
891 */
892 struct tcpcb *
893 tcp_newtcpcb(family, aux)
894 int family; /* selects inpcb, or in6pcb */
895 void *aux;
896 {
897 struct tcpcb *tp;
898 int i;
899
900 switch (family) {
901 case PF_INET:
902 break;
903 #ifdef INET6
904 case PF_INET6:
905 break;
906 #endif
907 default:
908 return NULL;
909 }
910
911 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
912 if (tp == NULL)
913 return (NULL);
914 bzero((caddr_t)tp, sizeof(struct tcpcb));
915 TAILQ_INIT(&tp->segq);
916 TAILQ_INIT(&tp->timeq);
917 tp->t_family = family; /* may be overridden later on */
918 tp->t_peermss = tcp_mssdflt;
919 tp->t_ourmss = tcp_mssdflt;
920 tp->t_segsz = tcp_mssdflt;
921 LIST_INIT(&tp->t_sc);
922
923 tp->t_lastm = NULL;
924 tp->t_lastoff = 0;
925
926 callout_init(&tp->t_delack_ch);
927 for (i = 0; i < TCPT_NTIMERS; i++)
928 TCP_TIMER_INIT(tp, i);
929
930 tp->t_flags = 0;
931 if (tcp_do_rfc1323 && tcp_do_win_scale)
932 tp->t_flags |= TF_REQ_SCALE;
933 if (tcp_do_rfc1323 && tcp_do_timestamps)
934 tp->t_flags |= TF_REQ_TSTMP;
935 if (tcp_do_sack == 2)
936 tp->t_flags |= TF_WILL_SACK;
937 else if (tcp_do_sack == 1)
938 tp->t_flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
939 tp->t_flags |= TF_CANT_TXSACK;
940 switch (family) {
941 case PF_INET:
942 tp->t_inpcb = (struct inpcb *)aux;
943 tp->t_mtudisc = ip_mtudisc;
944 break;
945 #ifdef INET6
946 case PF_INET6:
947 tp->t_in6pcb = (struct in6pcb *)aux;
948 /* for IPv6, always try to run path MTU discovery */
949 tp->t_mtudisc = 1;
950 break;
951 #endif
952 }
953 /*
954 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
955 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
956 * reasonable initial retransmit time.
957 */
958 tp->t_srtt = TCPTV_SRTTBASE;
959 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
960 tp->t_rttmin = TCPTV_MIN;
961 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
962 TCPTV_MIN, TCPTV_REXMTMAX);
963 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
964 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
965 if (family == AF_INET) {
966 struct inpcb *inp = (struct inpcb *)aux;
967 inp->inp_ip.ip_ttl = ip_defttl;
968 inp->inp_ppcb = (caddr_t)tp;
969 }
970 #ifdef INET6
971 else if (family == AF_INET6) {
972 struct in6pcb *in6p = (struct in6pcb *)aux;
973 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
974 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
975 : NULL);
976 in6p->in6p_ppcb = (caddr_t)tp;
977 }
978 #endif
979
980 /*
981 * Initialize our timebase. When we send timestamps, we take
982 * the delta from tcp_now -- this means each connection always
983 * gets a timebase of 0, which makes it, among other things,
984 * more difficult to determine how long a system has been up,
985 * and thus how many TCP sequence increments have occurred.
986 */
987 tp->ts_timebase = tcp_now;
988
989 return (tp);
990 }
991
992 /*
993 * Drop a TCP connection, reporting
994 * the specified error. If connection is synchronized,
995 * then send a RST to peer.
996 */
997 struct tcpcb *
998 tcp_drop(tp, errno)
999 struct tcpcb *tp;
1000 int errno;
1001 {
1002 struct socket *so = NULL;
1003
1004 #ifdef DIAGNOSTIC
1005 if (tp->t_inpcb && tp->t_in6pcb)
1006 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1007 #endif
1008 #ifdef INET
1009 if (tp->t_inpcb)
1010 so = tp->t_inpcb->inp_socket;
1011 #endif
1012 #ifdef INET6
1013 if (tp->t_in6pcb)
1014 so = tp->t_in6pcb->in6p_socket;
1015 #endif
1016 if (!so)
1017 return NULL;
1018
1019 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1020 tp->t_state = TCPS_CLOSED;
1021 (void) tcp_output(tp);
1022 tcpstat.tcps_drops++;
1023 } else
1024 tcpstat.tcps_conndrops++;
1025 if (errno == ETIMEDOUT && tp->t_softerror)
1026 errno = tp->t_softerror;
1027 so->so_error = errno;
1028 return (tcp_close(tp));
1029 }
1030
1031 /*
1032 * Return whether this tcpcb is marked as dead, indicating
1033 * to the calling timer function that no further action should
1034 * be taken, as we are about to release this tcpcb. The release
1035 * of the storage will be done if this is the last timer running.
1036 *
1037 * This is typically called from the callout handler function before
1038 * callout_ack() is done, therefore we need to test the number of
1039 * running timer functions against 1 below, not 0.
1040 */
1041 int
1042 tcp_isdead(tp)
1043 struct tcpcb *tp;
1044 {
1045 int dead = (tp->t_flags & TF_DEAD);
1046
1047 if (__predict_false(dead)) {
1048 if (tcp_timers_invoking(tp) > 1)
1049 /* not quite there yet -- count separately? */
1050 return dead;
1051 tcpstat.tcps_delayed_free++;
1052 pool_put(&tcpcb_pool, tp);
1053 }
1054 return dead;
1055 }
1056
1057 /*
1058 * Close a TCP control block:
1059 * discard all space held by the tcp
1060 * discard internet protocol block
1061 * wake up any sleepers
1062 */
1063 struct tcpcb *
1064 tcp_close(tp)
1065 struct tcpcb *tp;
1066 {
1067 struct inpcb *inp;
1068 #ifdef INET6
1069 struct in6pcb *in6p;
1070 #endif
1071 struct socket *so;
1072 #ifdef RTV_RTT
1073 struct rtentry *rt;
1074 #endif
1075 struct route *ro;
1076
1077 inp = tp->t_inpcb;
1078 #ifdef INET6
1079 in6p = tp->t_in6pcb;
1080 #endif
1081 so = NULL;
1082 ro = NULL;
1083 if (inp) {
1084 so = inp->inp_socket;
1085 ro = &inp->inp_route;
1086 }
1087 #ifdef INET6
1088 else if (in6p) {
1089 so = in6p->in6p_socket;
1090 ro = (struct route *)&in6p->in6p_route;
1091 }
1092 #endif
1093
1094 #ifdef RTV_RTT
1095 /*
1096 * If we sent enough data to get some meaningful characteristics,
1097 * save them in the routing entry. 'Enough' is arbitrarily
1098 * defined as the sendpipesize (default 4K) * 16. This would
1099 * give us 16 rtt samples assuming we only get one sample per
1100 * window (the usual case on a long haul net). 16 samples is
1101 * enough for the srtt filter to converge to within 5% of the correct
1102 * value; fewer samples and we could save a very bogus rtt.
1103 *
1104 * Don't update the default route's characteristics and don't
1105 * update anything that the user "locked".
1106 */
1107 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1108 ro && (rt = ro->ro_rt) &&
1109 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1110 u_long i = 0;
1111
1112 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1113 i = tp->t_srtt *
1114 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1115 if (rt->rt_rmx.rmx_rtt && i)
1116 /*
1117 * filter this update to half the old & half
1118 * the new values, converting scale.
1119 * See route.h and tcp_var.h for a
1120 * description of the scaling constants.
1121 */
1122 rt->rt_rmx.rmx_rtt =
1123 (rt->rt_rmx.rmx_rtt + i) / 2;
1124 else
1125 rt->rt_rmx.rmx_rtt = i;
1126 }
1127 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1128 i = tp->t_rttvar *
1129 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1130 if (rt->rt_rmx.rmx_rttvar && i)
1131 rt->rt_rmx.rmx_rttvar =
1132 (rt->rt_rmx.rmx_rttvar + i) / 2;
1133 else
1134 rt->rt_rmx.rmx_rttvar = i;
1135 }
1136 /*
1137 * update the pipelimit (ssthresh) if it has been updated
1138 * already or if a pipesize was specified & the threshhold
1139 * got below half the pipesize. I.e., wait for bad news
1140 * before we start updating, then update on both good
1141 * and bad news.
1142 */
1143 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1144 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1145 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1146 /*
1147 * convert the limit from user data bytes to
1148 * packets then to packet data bytes.
1149 */
1150 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1151 if (i < 2)
1152 i = 2;
1153 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1154 if (rt->rt_rmx.rmx_ssthresh)
1155 rt->rt_rmx.rmx_ssthresh =
1156 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1157 else
1158 rt->rt_rmx.rmx_ssthresh = i;
1159 }
1160 }
1161 #endif /* RTV_RTT */
1162 /* free the reassembly queue, if any */
1163 TCP_REASS_LOCK(tp);
1164 (void) tcp_freeq(tp);
1165 TCP_REASS_UNLOCK(tp);
1166
1167 tcp_canceltimers(tp);
1168 TCP_CLEAR_DELACK(tp);
1169 syn_cache_cleanup(tp);
1170
1171 if (tp->t_template) {
1172 m_free(tp->t_template);
1173 tp->t_template = NULL;
1174 }
1175 if (tcp_timers_invoking(tp))
1176 tp->t_flags |= TF_DEAD;
1177 else
1178 pool_put(&tcpcb_pool, tp);
1179
1180 if (inp) {
1181 inp->inp_ppcb = 0;
1182 soisdisconnected(so);
1183 in_pcbdetach(inp);
1184 }
1185 #ifdef INET6
1186 else if (in6p) {
1187 in6p->in6p_ppcb = 0;
1188 soisdisconnected(so);
1189 in6_pcbdetach(in6p);
1190 }
1191 #endif
1192 tcpstat.tcps_closed++;
1193 return ((struct tcpcb *)0);
1194 }
1195
1196 int
1197 tcp_freeq(tp)
1198 struct tcpcb *tp;
1199 {
1200 struct ipqent *qe;
1201 int rv = 0;
1202 #ifdef TCPREASS_DEBUG
1203 int i = 0;
1204 #endif
1205
1206 TCP_REASS_LOCK_CHECK(tp);
1207
1208 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1209 #ifdef TCPREASS_DEBUG
1210 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1211 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1212 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1213 #endif
1214 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1215 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1216 m_freem(qe->ipqe_m);
1217 pool_put(&ipqent_pool, qe);
1218 rv = 1;
1219 }
1220 return (rv);
1221 }
1222
1223 /*
1224 * Protocol drain routine. Called when memory is in short supply.
1225 */
1226 void
1227 tcp_drain()
1228 {
1229 struct inpcb_hdr *inph;
1230 struct tcpcb *tp;
1231
1232 /*
1233 * Free the sequence queue of all TCP connections.
1234 */
1235 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1236 switch (inph->inph_af) {
1237 case AF_INET:
1238 tp = intotcpcb((struct inpcb *)inph);
1239 break;
1240 #ifdef INET6
1241 case AF_INET6:
1242 tp = in6totcpcb((struct in6pcb *)inph);
1243 break;
1244 #endif
1245 default:
1246 tp = NULL;
1247 break;
1248 }
1249 if (tp != NULL) {
1250 /*
1251 * We may be called from a device's interrupt
1252 * context. If the tcpcb is already busy,
1253 * just bail out now.
1254 */
1255 if (tcp_reass_lock_try(tp) == 0)
1256 continue;
1257 if (tcp_freeq(tp))
1258 tcpstat.tcps_connsdrained++;
1259 TCP_REASS_UNLOCK(tp);
1260 }
1261 }
1262 }
1263
1264 /*
1265 * Notify a tcp user of an asynchronous error;
1266 * store error as soft error, but wake up user
1267 * (for now, won't do anything until can select for soft error).
1268 */
1269 void
1270 tcp_notify(inp, error)
1271 struct inpcb *inp;
1272 int error;
1273 {
1274 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1275 struct socket *so = inp->inp_socket;
1276
1277 /*
1278 * Ignore some errors if we are hooked up.
1279 * If connection hasn't completed, has retransmitted several times,
1280 * and receives a second error, give up now. This is better
1281 * than waiting a long time to establish a connection that
1282 * can never complete.
1283 */
1284 if (tp->t_state == TCPS_ESTABLISHED &&
1285 (error == EHOSTUNREACH || error == ENETUNREACH ||
1286 error == EHOSTDOWN)) {
1287 return;
1288 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1289 tp->t_rxtshift > 3 && tp->t_softerror)
1290 so->so_error = error;
1291 else
1292 tp->t_softerror = error;
1293 wakeup((caddr_t) &so->so_timeo);
1294 sorwakeup(so);
1295 sowwakeup(so);
1296 }
1297
1298 #ifdef INET6
1299 void
1300 tcp6_notify(in6p, error)
1301 struct in6pcb *in6p;
1302 int error;
1303 {
1304 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1305 struct socket *so = in6p->in6p_socket;
1306
1307 /*
1308 * Ignore some errors if we are hooked up.
1309 * If connection hasn't completed, has retransmitted several times,
1310 * and receives a second error, give up now. This is better
1311 * than waiting a long time to establish a connection that
1312 * can never complete.
1313 */
1314 if (tp->t_state == TCPS_ESTABLISHED &&
1315 (error == EHOSTUNREACH || error == ENETUNREACH ||
1316 error == EHOSTDOWN)) {
1317 return;
1318 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1319 tp->t_rxtshift > 3 && tp->t_softerror)
1320 so->so_error = error;
1321 else
1322 tp->t_softerror = error;
1323 wakeup((caddr_t) &so->so_timeo);
1324 sorwakeup(so);
1325 sowwakeup(so);
1326 }
1327 #endif
1328
1329 #ifdef INET6
1330 void
1331 tcp6_ctlinput(cmd, sa, d)
1332 int cmd;
1333 struct sockaddr *sa;
1334 void *d;
1335 {
1336 struct tcphdr th;
1337 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1338 int nmatch;
1339 struct ip6_hdr *ip6;
1340 const struct sockaddr_in6 *sa6_src = NULL;
1341 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1342 struct mbuf *m;
1343 int off;
1344
1345 if (sa->sa_family != AF_INET6 ||
1346 sa->sa_len != sizeof(struct sockaddr_in6))
1347 return;
1348 if ((unsigned)cmd >= PRC_NCMDS)
1349 return;
1350 else if (cmd == PRC_QUENCH) {
1351 /* XXX there's no PRC_QUENCH in IPv6 */
1352 notify = tcp6_quench;
1353 } else if (PRC_IS_REDIRECT(cmd))
1354 notify = in6_rtchange, d = NULL;
1355 else if (cmd == PRC_MSGSIZE)
1356 ; /* special code is present, see below */
1357 else if (cmd == PRC_HOSTDEAD)
1358 d = NULL;
1359 else if (inet6ctlerrmap[cmd] == 0)
1360 return;
1361
1362 /* if the parameter is from icmp6, decode it. */
1363 if (d != NULL) {
1364 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1365 m = ip6cp->ip6c_m;
1366 ip6 = ip6cp->ip6c_ip6;
1367 off = ip6cp->ip6c_off;
1368 sa6_src = ip6cp->ip6c_src;
1369 } else {
1370 m = NULL;
1371 ip6 = NULL;
1372 sa6_src = &sa6_any;
1373 }
1374
1375 if (ip6) {
1376 /*
1377 * XXX: We assume that when ip6 is non NULL,
1378 * M and OFF are valid.
1379 */
1380
1381 /* check if we can safely examine src and dst ports */
1382 if (m->m_pkthdr.len < off + sizeof(th)) {
1383 if (cmd == PRC_MSGSIZE)
1384 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1385 return;
1386 }
1387
1388 bzero(&th, sizeof(th));
1389 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1390
1391 if (cmd == PRC_MSGSIZE) {
1392 int valid = 0;
1393
1394 /*
1395 * Check to see if we have a valid TCP connection
1396 * corresponding to the address in the ICMPv6 message
1397 * payload.
1398 */
1399 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1400 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1401 th.th_sport, 0))
1402 valid++;
1403
1404 /*
1405 * Depending on the value of "valid" and routing table
1406 * size (mtudisc_{hi,lo}wat), we will:
1407 * - recalcurate the new MTU and create the
1408 * corresponding routing entry, or
1409 * - ignore the MTU change notification.
1410 */
1411 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1412
1413 /*
1414 * no need to call in6_pcbnotify, it should have been
1415 * called via callback if necessary
1416 */
1417 return;
1418 }
1419
1420 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1421 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1422 if (nmatch == 0 && syn_cache_count &&
1423 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1424 inet6ctlerrmap[cmd] == ENETUNREACH ||
1425 inet6ctlerrmap[cmd] == EHOSTDOWN))
1426 syn_cache_unreach((struct sockaddr *)sa6_src,
1427 sa, &th);
1428 } else {
1429 (void) in6_pcbnotify(&tcbtable, sa, 0,
1430 (struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1431 }
1432 }
1433 #endif
1434
1435 #ifdef INET
1436 /* assumes that ip header and tcp header are contiguous on mbuf */
1437 void *
1438 tcp_ctlinput(cmd, sa, v)
1439 int cmd;
1440 struct sockaddr *sa;
1441 void *v;
1442 {
1443 struct ip *ip = v;
1444 struct tcphdr *th;
1445 struct icmp *icp;
1446 extern const int inetctlerrmap[];
1447 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1448 int errno;
1449 int nmatch;
1450 #ifdef INET6
1451 struct in6_addr src6, dst6;
1452 #endif
1453
1454 if (sa->sa_family != AF_INET ||
1455 sa->sa_len != sizeof(struct sockaddr_in))
1456 return NULL;
1457 if ((unsigned)cmd >= PRC_NCMDS)
1458 return NULL;
1459 errno = inetctlerrmap[cmd];
1460 if (cmd == PRC_QUENCH)
1461 notify = tcp_quench;
1462 else if (PRC_IS_REDIRECT(cmd))
1463 notify = in_rtchange, ip = 0;
1464 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1465 /*
1466 * Check to see if we have a valid TCP connection
1467 * corresponding to the address in the ICMP message
1468 * payload.
1469 *
1470 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1471 */
1472 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1473 #ifdef INET6
1474 memset(&src6, 0, sizeof(src6));
1475 memset(&dst6, 0, sizeof(dst6));
1476 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1477 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1478 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1479 #endif
1480 if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
1481 ip->ip_src, th->th_sport) != NULL)
1482 ;
1483 #ifdef INET6
1484 else if (in6_pcblookup_connect(&tcbtable, &dst6,
1485 th->th_dport, &src6, th->th_sport, 0) != NULL)
1486 ;
1487 #endif
1488 else
1489 return NULL;
1490
1491 /*
1492 * Now that we've validated that we are actually communicating
1493 * with the host indicated in the ICMP message, locate the
1494 * ICMP header, recalculate the new MTU, and create the
1495 * corresponding routing entry.
1496 */
1497 icp = (struct icmp *)((caddr_t)ip -
1498 offsetof(struct icmp, icmp_ip));
1499 icmp_mtudisc(icp, ip->ip_dst);
1500
1501 return NULL;
1502 } else if (cmd == PRC_HOSTDEAD)
1503 ip = 0;
1504 else if (errno == 0)
1505 return NULL;
1506 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1507 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1508 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1509 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1510 if (nmatch == 0 && syn_cache_count &&
1511 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1512 inetctlerrmap[cmd] == ENETUNREACH ||
1513 inetctlerrmap[cmd] == EHOSTDOWN)) {
1514 struct sockaddr_in sin;
1515 bzero(&sin, sizeof(sin));
1516 sin.sin_len = sizeof(sin);
1517 sin.sin_family = AF_INET;
1518 sin.sin_port = th->th_sport;
1519 sin.sin_addr = ip->ip_src;
1520 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1521 }
1522
1523 /* XXX mapped address case */
1524 } else
1525 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1526 notify);
1527 return NULL;
1528 }
1529
1530 /*
1531 * When a source quence is received, we are being notifed of congestion.
1532 * Close the congestion window down to the Loss Window (one segment).
1533 * We will gradually open it again as we proceed.
1534 */
1535 void
1536 tcp_quench(inp, errno)
1537 struct inpcb *inp;
1538 int errno;
1539 {
1540 struct tcpcb *tp = intotcpcb(inp);
1541
1542 if (tp)
1543 tp->snd_cwnd = tp->t_segsz;
1544 }
1545 #endif
1546
1547 #ifdef INET6
1548 void
1549 tcp6_quench(in6p, errno)
1550 struct in6pcb *in6p;
1551 int errno;
1552 {
1553 struct tcpcb *tp = in6totcpcb(in6p);
1554
1555 if (tp)
1556 tp->snd_cwnd = tp->t_segsz;
1557 }
1558 #endif
1559
1560 #ifdef INET
1561 /*
1562 * Path MTU Discovery handlers.
1563 */
1564 void
1565 tcp_mtudisc_callback(faddr)
1566 struct in_addr faddr;
1567 {
1568 #ifdef INET6
1569 struct in6_addr in6;
1570 #endif
1571
1572 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1573 #ifdef INET6
1574 memset(&in6, 0, sizeof(in6));
1575 in6.s6_addr16[5] = 0xffff;
1576 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1577 tcp6_mtudisc_callback(&in6);
1578 #endif
1579 }
1580
1581 /*
1582 * On receipt of path MTU corrections, flush old route and replace it
1583 * with the new one. Retransmit all unacknowledged packets, to ensure
1584 * that all packets will be received.
1585 */
1586 void
1587 tcp_mtudisc(inp, errno)
1588 struct inpcb *inp;
1589 int errno;
1590 {
1591 struct tcpcb *tp = intotcpcb(inp);
1592 struct rtentry *rt = in_pcbrtentry(inp);
1593
1594 if (tp != 0) {
1595 if (rt != 0) {
1596 /*
1597 * If this was not a host route, remove and realloc.
1598 */
1599 if ((rt->rt_flags & RTF_HOST) == 0) {
1600 in_rtchange(inp, errno);
1601 if ((rt = in_pcbrtentry(inp)) == 0)
1602 return;
1603 }
1604
1605 /*
1606 * Slow start out of the error condition. We
1607 * use the MTU because we know it's smaller
1608 * than the previously transmitted segment.
1609 *
1610 * Note: This is more conservative than the
1611 * suggestion in draft-floyd-incr-init-win-03.
1612 */
1613 if (rt->rt_rmx.rmx_mtu != 0)
1614 tp->snd_cwnd =
1615 TCP_INITIAL_WINDOW(tcp_init_win,
1616 rt->rt_rmx.rmx_mtu);
1617 }
1618
1619 /*
1620 * Resend unacknowledged packets.
1621 */
1622 tp->snd_nxt = tp->snd_una;
1623 tcp_output(tp);
1624 }
1625 }
1626 #endif
1627
1628 #ifdef INET6
1629 /*
1630 * Path MTU Discovery handlers.
1631 */
1632 void
1633 tcp6_mtudisc_callback(faddr)
1634 struct in6_addr *faddr;
1635 {
1636 struct sockaddr_in6 sin6;
1637
1638 bzero(&sin6, sizeof(sin6));
1639 sin6.sin6_family = AF_INET6;
1640 sin6.sin6_len = sizeof(struct sockaddr_in6);
1641 sin6.sin6_addr = *faddr;
1642 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1643 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1644 }
1645
1646 void
1647 tcp6_mtudisc(in6p, errno)
1648 struct in6pcb *in6p;
1649 int errno;
1650 {
1651 struct tcpcb *tp = in6totcpcb(in6p);
1652 struct rtentry *rt = in6_pcbrtentry(in6p);
1653
1654 if (tp != 0) {
1655 if (rt != 0) {
1656 /*
1657 * If this was not a host route, remove and realloc.
1658 */
1659 if ((rt->rt_flags & RTF_HOST) == 0) {
1660 in6_rtchange(in6p, errno);
1661 if ((rt = in6_pcbrtentry(in6p)) == 0)
1662 return;
1663 }
1664
1665 /*
1666 * Slow start out of the error condition. We
1667 * use the MTU because we know it's smaller
1668 * than the previously transmitted segment.
1669 *
1670 * Note: This is more conservative than the
1671 * suggestion in draft-floyd-incr-init-win-03.
1672 */
1673 if (rt->rt_rmx.rmx_mtu != 0)
1674 tp->snd_cwnd =
1675 TCP_INITIAL_WINDOW(tcp_init_win,
1676 rt->rt_rmx.rmx_mtu);
1677 }
1678
1679 /*
1680 * Resend unacknowledged packets.
1681 */
1682 tp->snd_nxt = tp->snd_una;
1683 tcp_output(tp);
1684 }
1685 }
1686 #endif /* INET6 */
1687
1688 /*
1689 * Compute the MSS to advertise to the peer. Called only during
1690 * the 3-way handshake. If we are the server (peer initiated
1691 * connection), we are called with a pointer to the interface
1692 * on which the SYN packet arrived. If we are the client (we
1693 * initiated connection), we are called with a pointer to the
1694 * interface out which this connection should go.
1695 *
1696 * NOTE: Do not subtract IP option/extension header size nor IPsec
1697 * header size from MSS advertisement. MSS option must hold the maximum
1698 * segment size we can accept, so it must always be:
1699 * max(if mtu) - ip header - tcp header
1700 */
1701 u_long
1702 tcp_mss_to_advertise(ifp, af)
1703 const struct ifnet *ifp;
1704 int af;
1705 {
1706 extern u_long in_maxmtu;
1707 u_long mss = 0;
1708 u_long hdrsiz;
1709
1710 /*
1711 * In order to avoid defeating path MTU discovery on the peer,
1712 * we advertise the max MTU of all attached networks as our MSS,
1713 * per RFC 1191, section 3.1.
1714 *
1715 * We provide the option to advertise just the MTU of
1716 * the interface on which we hope this connection will
1717 * be receiving. If we are responding to a SYN, we
1718 * will have a pretty good idea about this, but when
1719 * initiating a connection there is a bit more doubt.
1720 *
1721 * We also need to ensure that loopback has a large enough
1722 * MSS, as the loopback MTU is never included in in_maxmtu.
1723 */
1724
1725 if (ifp != NULL)
1726 switch (af) {
1727 case AF_INET:
1728 mss = ifp->if_mtu;
1729 break;
1730 #ifdef INET6
1731 case AF_INET6:
1732 mss = IN6_LINKMTU(ifp);
1733 break;
1734 #endif
1735 }
1736
1737 if (tcp_mss_ifmtu == 0)
1738 switch (af) {
1739 case AF_INET:
1740 mss = max(in_maxmtu, mss);
1741 break;
1742 #ifdef INET6
1743 case AF_INET6:
1744 mss = max(in6_maxmtu, mss);
1745 break;
1746 #endif
1747 }
1748
1749 switch (af) {
1750 case AF_INET:
1751 hdrsiz = sizeof(struct ip);
1752 break;
1753 #ifdef INET6
1754 case AF_INET6:
1755 hdrsiz = sizeof(struct ip6_hdr);
1756 break;
1757 #endif
1758 default:
1759 hdrsiz = 0;
1760 break;
1761 }
1762 hdrsiz += sizeof(struct tcphdr);
1763 if (mss > hdrsiz)
1764 mss -= hdrsiz;
1765
1766 mss = max(tcp_mssdflt, mss);
1767 return (mss);
1768 }
1769
1770 /*
1771 * Set connection variables based on the peer's advertised MSS.
1772 * We are passed the TCPCB for the actual connection. If we
1773 * are the server, we are called by the compressed state engine
1774 * when the 3-way handshake is complete. If we are the client,
1775 * we are called when we receive the SYN,ACK from the server.
1776 *
1777 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1778 * before this routine is called!
1779 */
1780 void
1781 tcp_mss_from_peer(tp, offer)
1782 struct tcpcb *tp;
1783 int offer;
1784 {
1785 struct socket *so;
1786 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1787 struct rtentry *rt;
1788 #endif
1789 u_long bufsize;
1790 int mss;
1791
1792 #ifdef DIAGNOSTIC
1793 if (tp->t_inpcb && tp->t_in6pcb)
1794 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1795 #endif
1796 so = NULL;
1797 rt = NULL;
1798 #ifdef INET
1799 if (tp->t_inpcb) {
1800 so = tp->t_inpcb->inp_socket;
1801 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1802 rt = in_pcbrtentry(tp->t_inpcb);
1803 #endif
1804 }
1805 #endif
1806 #ifdef INET6
1807 if (tp->t_in6pcb) {
1808 so = tp->t_in6pcb->in6p_socket;
1809 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1810 rt = in6_pcbrtentry(tp->t_in6pcb);
1811 #endif
1812 }
1813 #endif
1814
1815 /*
1816 * As per RFC1122, use the default MSS value, unless they
1817 * sent us an offer. Do not accept offers less than 32 bytes.
1818 */
1819 mss = tcp_mssdflt;
1820 if (offer)
1821 mss = offer;
1822 mss = max(mss, 32); /* sanity */
1823 tp->t_peermss = mss;
1824 mss -= tcp_optlen(tp);
1825 #ifdef INET
1826 if (tp->t_inpcb)
1827 mss -= ip_optlen(tp->t_inpcb);
1828 #endif
1829 #ifdef INET6
1830 if (tp->t_in6pcb)
1831 mss -= ip6_optlen(tp->t_in6pcb);
1832 #endif
1833
1834 /*
1835 * If there's a pipesize, change the socket buffer to that size.
1836 * Make the socket buffer an integral number of MSS units. If
1837 * the MSS is larger than the socket buffer, artificially decrease
1838 * the MSS.
1839 */
1840 #ifdef RTV_SPIPE
1841 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1842 bufsize = rt->rt_rmx.rmx_sendpipe;
1843 else
1844 #endif
1845 bufsize = so->so_snd.sb_hiwat;
1846 if (bufsize < mss)
1847 mss = bufsize;
1848 else {
1849 bufsize = roundup(bufsize, mss);
1850 if (bufsize > sb_max)
1851 bufsize = sb_max;
1852 (void) sbreserve(&so->so_snd, bufsize);
1853 }
1854 tp->t_segsz = mss;
1855
1856 #ifdef RTV_SSTHRESH
1857 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1858 /*
1859 * There's some sort of gateway or interface buffer
1860 * limit on the path. Use this to set the slow
1861 * start threshold, but set the threshold to no less
1862 * than 2 * MSS.
1863 */
1864 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1865 }
1866 #endif
1867 }
1868
1869 /*
1870 * Processing necessary when a TCP connection is established.
1871 */
1872 void
1873 tcp_established(tp)
1874 struct tcpcb *tp;
1875 {
1876 struct socket *so;
1877 #ifdef RTV_RPIPE
1878 struct rtentry *rt;
1879 #endif
1880 u_long bufsize;
1881
1882 #ifdef DIAGNOSTIC
1883 if (tp->t_inpcb && tp->t_in6pcb)
1884 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1885 #endif
1886 so = NULL;
1887 rt = NULL;
1888 #ifdef INET
1889 if (tp->t_inpcb) {
1890 so = tp->t_inpcb->inp_socket;
1891 #if defined(RTV_RPIPE)
1892 rt = in_pcbrtentry(tp->t_inpcb);
1893 #endif
1894 }
1895 #endif
1896 #ifdef INET6
1897 if (tp->t_in6pcb) {
1898 so = tp->t_in6pcb->in6p_socket;
1899 #if defined(RTV_RPIPE)
1900 rt = in6_pcbrtentry(tp->t_in6pcb);
1901 #endif
1902 }
1903 #endif
1904
1905 tp->t_state = TCPS_ESTABLISHED;
1906 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1907
1908 #ifdef RTV_RPIPE
1909 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1910 bufsize = rt->rt_rmx.rmx_recvpipe;
1911 else
1912 #endif
1913 bufsize = so->so_rcv.sb_hiwat;
1914 if (bufsize > tp->t_ourmss) {
1915 bufsize = roundup(bufsize, tp->t_ourmss);
1916 if (bufsize > sb_max)
1917 bufsize = sb_max;
1918 (void) sbreserve(&so->so_rcv, bufsize);
1919 }
1920 }
1921
1922 /*
1923 * Check if there's an initial rtt or rttvar. Convert from the
1924 * route-table units to scaled multiples of the slow timeout timer.
1925 * Called only during the 3-way handshake.
1926 */
1927 void
1928 tcp_rmx_rtt(tp)
1929 struct tcpcb *tp;
1930 {
1931 #ifdef RTV_RTT
1932 struct rtentry *rt = NULL;
1933 int rtt;
1934
1935 #ifdef DIAGNOSTIC
1936 if (tp->t_inpcb && tp->t_in6pcb)
1937 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1938 #endif
1939 #ifdef INET
1940 if (tp->t_inpcb)
1941 rt = in_pcbrtentry(tp->t_inpcb);
1942 #endif
1943 #ifdef INET6
1944 if (tp->t_in6pcb)
1945 rt = in6_pcbrtentry(tp->t_in6pcb);
1946 #endif
1947 if (rt == NULL)
1948 return;
1949
1950 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1951 /*
1952 * XXX The lock bit for MTU indicates that the value
1953 * is also a minimum value; this is subject to time.
1954 */
1955 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1956 TCPT_RANGESET(tp->t_rttmin,
1957 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1958 TCPTV_MIN, TCPTV_REXMTMAX);
1959 tp->t_srtt = rtt /
1960 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1961 if (rt->rt_rmx.rmx_rttvar) {
1962 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1963 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1964 (TCP_RTTVAR_SHIFT + 2));
1965 } else {
1966 /* Default variation is +- 1 rtt */
1967 tp->t_rttvar =
1968 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1969 }
1970 TCPT_RANGESET(tp->t_rxtcur,
1971 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1972 tp->t_rttmin, TCPTV_REXMTMAX);
1973 }
1974 #endif
1975 }
1976
1977 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1978 #if NRND > 0
1979 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
1980 #endif
1981
1982 /*
1983 * Get a new sequence value given a tcp control block
1984 */
1985 tcp_seq
1986 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
1987 {
1988
1989 #ifdef INET
1990 if (tp->t_inpcb != NULL) {
1991 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
1992 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
1993 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
1994 addin));
1995 }
1996 #endif
1997 #ifdef INET6
1998 if (tp->t_in6pcb != NULL) {
1999 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2000 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2001 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2002 addin));
2003 }
2004 #endif
2005 /* Not possible. */
2006 panic("tcp_new_iss");
2007 }
2008
2009 /*
2010 * This routine actually generates a new TCP initial sequence number.
2011 */
2012 tcp_seq
2013 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2014 size_t addrsz, tcp_seq addin)
2015 {
2016 tcp_seq tcp_iss;
2017
2018 #if NRND > 0
2019 static int beenhere;
2020
2021 /*
2022 * If we haven't been here before, initialize our cryptographic
2023 * hash secret.
2024 */
2025 if (beenhere == 0) {
2026 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2027 RND_EXTRACT_ANY);
2028 beenhere = 1;
2029 }
2030
2031 if (tcp_do_rfc1948) {
2032 MD5_CTX ctx;
2033 u_int8_t hash[16]; /* XXX MD5 knowledge */
2034
2035 /*
2036 * Compute the base value of the ISS. It is a hash
2037 * of (saddr, sport, daddr, dport, secret).
2038 */
2039 MD5Init(&ctx);
2040
2041 MD5Update(&ctx, (u_char *) laddr, addrsz);
2042 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2043
2044 MD5Update(&ctx, (u_char *) faddr, addrsz);
2045 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2046
2047 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2048
2049 MD5Final(hash, &ctx);
2050
2051 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2052
2053 /*
2054 * Now increment our "timer", and add it in to
2055 * the computed value.
2056 *
2057 * XXX Use `addin'?
2058 * XXX TCP_ISSINCR too large to use?
2059 */
2060 tcp_iss_seq += TCP_ISSINCR;
2061 #ifdef TCPISS_DEBUG
2062 printf("ISS hash 0x%08x, ", tcp_iss);
2063 #endif
2064 tcp_iss += tcp_iss_seq + addin;
2065 #ifdef TCPISS_DEBUG
2066 printf("new ISS 0x%08x\n", tcp_iss);
2067 #endif
2068 } else
2069 #endif /* NRND > 0 */
2070 {
2071 /*
2072 * Randomize.
2073 */
2074 #if NRND > 0
2075 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2076 #else
2077 tcp_iss = arc4random();
2078 #endif
2079
2080 /*
2081 * If we were asked to add some amount to a known value,
2082 * we will take a random value obtained above, mask off
2083 * the upper bits, and add in the known value. We also
2084 * add in a constant to ensure that we are at least a
2085 * certain distance from the original value.
2086 *
2087 * This is used when an old connection is in timed wait
2088 * and we have a new one coming in, for instance.
2089 */
2090 if (addin != 0) {
2091 #ifdef TCPISS_DEBUG
2092 printf("Random %08x, ", tcp_iss);
2093 #endif
2094 tcp_iss &= TCP_ISS_RANDOM_MASK;
2095 tcp_iss += addin + TCP_ISSINCR;
2096 #ifdef TCPISS_DEBUG
2097 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2098 #endif
2099 } else {
2100 tcp_iss &= TCP_ISS_RANDOM_MASK;
2101 tcp_iss += tcp_iss_seq;
2102 tcp_iss_seq += TCP_ISSINCR;
2103 #ifdef TCPISS_DEBUG
2104 printf("ISS %08x\n", tcp_iss);
2105 #endif
2106 }
2107 }
2108
2109 if (tcp_compat_42) {
2110 /*
2111 * Limit it to the positive range for really old TCP
2112 * implementations.
2113 * Just AND off the top bit instead of checking if
2114 * is set first - saves a branch 50% of the time.
2115 */
2116 tcp_iss &= 0x7fffffff; /* XXX */
2117 }
2118
2119 return (tcp_iss);
2120 }
2121
2122 #if defined(IPSEC) || defined(FAST_IPSEC)
2123 /* compute ESP/AH header size for TCP, including outer IP header. */
2124 size_t
2125 ipsec4_hdrsiz_tcp(tp)
2126 struct tcpcb *tp;
2127 {
2128 struct inpcb *inp;
2129 size_t hdrsiz;
2130
2131 /* XXX mapped addr case (tp->t_in6pcb) */
2132 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2133 return 0;
2134 switch (tp->t_family) {
2135 case AF_INET:
2136 /* XXX: should use currect direction. */
2137 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2138 break;
2139 default:
2140 hdrsiz = 0;
2141 break;
2142 }
2143
2144 return hdrsiz;
2145 }
2146
2147 #ifdef INET6
2148 size_t
2149 ipsec6_hdrsiz_tcp(tp)
2150 struct tcpcb *tp;
2151 {
2152 struct in6pcb *in6p;
2153 size_t hdrsiz;
2154
2155 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2156 return 0;
2157 switch (tp->t_family) {
2158 case AF_INET6:
2159 /* XXX: should use currect direction. */
2160 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2161 break;
2162 case AF_INET:
2163 /* mapped address case - tricky */
2164 default:
2165 hdrsiz = 0;
2166 break;
2167 }
2168
2169 return hdrsiz;
2170 }
2171 #endif
2172 #endif /*IPSEC*/
2173
2174 /*
2175 * Determine the length of the TCP options for this connection.
2176 *
2177 * XXX: What do we do for SACK, when we add that? Just reserve
2178 * all of the space? Otherwise we can't exactly be incrementing
2179 * cwnd by an amount that varies depending on the amount we last
2180 * had to SACK!
2181 */
2182
2183 u_int
2184 tcp_optlen(tp)
2185 struct tcpcb *tp;
2186 {
2187 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2188 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2189 return TCPOLEN_TSTAMP_APPA;
2190 else
2191 return 0;
2192 }
2193