tcp_subr.c revision 1.156 1 /* $NetBSD: tcp_subr.c,v 1.156 2003/10/22 02:45:57 thorpej Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.156 2003/10/22 02:45:57 thorpej Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcpip.h>
155
156 #ifdef IPSEC
157 #include <netinet6/ipsec.h>
158 #endif /*IPSEC*/
159
160 #ifdef FAST_IPSEC
161 #include <netipsec/ipsec.h>
162 #ifdef INET6
163 #include <netipsec/ipsec6.h>
164 #endif
165 #endif /* FAST_IPSEC*/
166
167
168 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
169 struct tcpstat tcpstat; /* tcp statistics */
170 u_int32_t tcp_now; /* for RFC 1323 timestamps */
171
172 /* patchable/settable parameters for tcp */
173 int tcp_mssdflt = TCP_MSS;
174 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
175 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
176 #if NRND > 0
177 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
178 #endif
179 int tcp_do_sack = 1; /* selective acknowledgement */
180 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
181 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
182 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
183 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
184 #ifndef TCP_INIT_WIN
185 #define TCP_INIT_WIN 1 /* initial slow start window */
186 #endif
187 #ifndef TCP_INIT_WIN_LOCAL
188 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
189 #endif
190 int tcp_init_win = TCP_INIT_WIN;
191 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
192 int tcp_mss_ifmtu = 0;
193 #ifdef TCP_COMPAT_42
194 int tcp_compat_42 = 1;
195 #else
196 int tcp_compat_42 = 0;
197 #endif
198 int tcp_rst_ppslim = 100; /* 100pps */
199
200 /* tcb hash */
201 #ifndef TCBHASHSIZE
202 #define TCBHASHSIZE 128
203 #endif
204 int tcbhashsize = TCBHASHSIZE;
205
206 /* syn hash parameters */
207 #define TCP_SYN_HASH_SIZE 293
208 #define TCP_SYN_BUCKET_SIZE 35
209 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
210 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
211 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
212 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
213
214 int tcp_freeq __P((struct tcpcb *));
215
216 #ifdef INET
217 void tcp_mtudisc_callback __P((struct in_addr));
218 #endif
219 #ifdef INET6
220 void tcp6_mtudisc_callback __P((struct in6_addr *));
221 #endif
222
223 void tcp_mtudisc __P((struct inpcb *, int));
224 #ifdef INET6
225 void tcp6_mtudisc __P((struct in6pcb *, int));
226 #endif
227
228 struct pool tcpcb_pool;
229
230 #ifdef TCP_CSUM_COUNTERS
231 #include <sys/device.h>
232
233 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
234 NULL, "tcp", "hwcsum bad");
235 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
236 NULL, "tcp", "hwcsum ok");
237 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
238 NULL, "tcp", "hwcsum data");
239 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
240 NULL, "tcp", "swcsum");
241 #endif /* TCP_CSUM_COUNTERS */
242
243 #ifdef TCP_OUTPUT_COUNTERS
244 #include <sys/device.h>
245
246 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
247 NULL, "tcp", "output big header");
248 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
249 NULL, "tcp", "output predict hit");
250 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
251 NULL, "tcp", "output predict miss");
252 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
253 NULL, "tcp", "output copy small");
254 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
255 NULL, "tcp", "output copy big");
256 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
257 NULL, "tcp", "output reference big");
258 #endif /* TCP_OUTPUT_COUNTERS */
259
260 #ifdef TCP_REASS_COUNTERS
261 #include <sys/device.h>
262
263 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264 NULL, "tcp_reass", "calls");
265 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266 &tcp_reass_, "tcp_reass", "insert into empty queue");
267 struct evcnt tcp_reass_iteration[8] = {
268 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
269 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
270 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
271 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
272 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
273 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
274 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
275 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
276 };
277 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
278 &tcp_reass_, "tcp_reass", "prepend to first");
279 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
280 &tcp_reass_, "tcp_reass", "prepend");
281 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282 &tcp_reass_, "tcp_reass", "insert");
283 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284 &tcp_reass_, "tcp_reass", "insert at tail");
285 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286 &tcp_reass_, "tcp_reass", "append");
287 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288 &tcp_reass_, "tcp_reass", "append to tail fragment");
289 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
290 &tcp_reass_, "tcp_reass", "overlap at end");
291 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
292 &tcp_reass_, "tcp_reass", "overlap at start");
293 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
294 &tcp_reass_, "tcp_reass", "duplicate segment");
295 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
296 &tcp_reass_, "tcp_reass", "duplicate fragment");
297
298 #endif /* TCP_REASS_COUNTERS */
299
300 #ifdef MBUFTRACE
301 struct mowner tcp_mowner = { "tcp" };
302 struct mowner tcp_rx_mowner = { "tcp", "rx" };
303 struct mowner tcp_tx_mowner = { "tcp", "tx" };
304 #endif
305
306 /*
307 * Tcp initialization
308 */
309 void
310 tcp_init()
311 {
312 int hlen;
313
314 /* Initialize the TCPCB template. */
315 tcp_tcpcb_template();
316
317 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
318 NULL);
319 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
320
321 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
322 #ifdef INET6
323 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
324 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
325 #endif
326 if (max_protohdr < hlen)
327 max_protohdr = hlen;
328 if (max_linkhdr + hlen > MHLEN)
329 panic("tcp_init");
330
331 #ifdef INET
332 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
333 #endif
334 #ifdef INET6
335 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
336 #endif
337
338 /* Initialize timer state. */
339 tcp_timer_init();
340
341 /* Initialize the compressed state engine. */
342 syn_cache_init();
343
344 #ifdef TCP_CSUM_COUNTERS
345 evcnt_attach_static(&tcp_hwcsum_bad);
346 evcnt_attach_static(&tcp_hwcsum_ok);
347 evcnt_attach_static(&tcp_hwcsum_data);
348 evcnt_attach_static(&tcp_swcsum);
349 #endif /* TCP_CSUM_COUNTERS */
350
351 #ifdef TCP_OUTPUT_COUNTERS
352 evcnt_attach_static(&tcp_output_bigheader);
353 evcnt_attach_static(&tcp_output_predict_hit);
354 evcnt_attach_static(&tcp_output_predict_miss);
355 evcnt_attach_static(&tcp_output_copysmall);
356 evcnt_attach_static(&tcp_output_copybig);
357 evcnt_attach_static(&tcp_output_refbig);
358 #endif /* TCP_OUTPUT_COUNTERS */
359
360 #ifdef TCP_REASS_COUNTERS
361 evcnt_attach_static(&tcp_reass_);
362 evcnt_attach_static(&tcp_reass_empty);
363 evcnt_attach_static(&tcp_reass_iteration[0]);
364 evcnt_attach_static(&tcp_reass_iteration[1]);
365 evcnt_attach_static(&tcp_reass_iteration[2]);
366 evcnt_attach_static(&tcp_reass_iteration[3]);
367 evcnt_attach_static(&tcp_reass_iteration[4]);
368 evcnt_attach_static(&tcp_reass_iteration[5]);
369 evcnt_attach_static(&tcp_reass_iteration[6]);
370 evcnt_attach_static(&tcp_reass_iteration[7]);
371 evcnt_attach_static(&tcp_reass_prependfirst);
372 evcnt_attach_static(&tcp_reass_prepend);
373 evcnt_attach_static(&tcp_reass_insert);
374 evcnt_attach_static(&tcp_reass_inserttail);
375 evcnt_attach_static(&tcp_reass_append);
376 evcnt_attach_static(&tcp_reass_appendtail);
377 evcnt_attach_static(&tcp_reass_overlaptail);
378 evcnt_attach_static(&tcp_reass_overlapfront);
379 evcnt_attach_static(&tcp_reass_segdup);
380 evcnt_attach_static(&tcp_reass_fragdup);
381 #endif /* TCP_REASS_COUNTERS */
382
383 MOWNER_ATTACH(&tcp_tx_mowner);
384 MOWNER_ATTACH(&tcp_rx_mowner);
385 MOWNER_ATTACH(&tcp_mowner);
386 }
387
388 /*
389 * Create template to be used to send tcp packets on a connection.
390 * Call after host entry created, allocates an mbuf and fills
391 * in a skeletal tcp/ip header, minimizing the amount of work
392 * necessary when the connection is used.
393 */
394 struct mbuf *
395 tcp_template(tp)
396 struct tcpcb *tp;
397 {
398 struct inpcb *inp = tp->t_inpcb;
399 #ifdef INET6
400 struct in6pcb *in6p = tp->t_in6pcb;
401 #endif
402 struct tcphdr *n;
403 struct mbuf *m;
404 int hlen;
405
406 switch (tp->t_family) {
407 case AF_INET:
408 hlen = sizeof(struct ip);
409 if (inp)
410 break;
411 #ifdef INET6
412 if (in6p) {
413 /* mapped addr case */
414 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
415 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
416 break;
417 }
418 #endif
419 return NULL; /*EINVAL*/
420 #ifdef INET6
421 case AF_INET6:
422 hlen = sizeof(struct ip6_hdr);
423 if (in6p) {
424 /* more sainty check? */
425 break;
426 }
427 return NULL; /*EINVAL*/
428 #endif
429 default:
430 hlen = 0; /*pacify gcc*/
431 return NULL; /*EAFNOSUPPORT*/
432 }
433 #ifdef DIAGNOSTIC
434 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
435 panic("mclbytes too small for t_template");
436 #endif
437 m = tp->t_template;
438 if (m && m->m_len == hlen + sizeof(struct tcphdr))
439 ;
440 else {
441 if (m)
442 m_freem(m);
443 m = tp->t_template = NULL;
444 MGETHDR(m, M_DONTWAIT, MT_HEADER);
445 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
446 MCLGET(m, M_DONTWAIT);
447 if ((m->m_flags & M_EXT) == 0) {
448 m_free(m);
449 m = NULL;
450 }
451 }
452 if (m == NULL)
453 return NULL;
454 MCLAIM(m, &tcp_mowner);
455 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
456 }
457
458 bzero(mtod(m, caddr_t), m->m_len);
459
460 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
461
462 switch (tp->t_family) {
463 case AF_INET:
464 {
465 struct ipovly *ipov;
466 mtod(m, struct ip *)->ip_v = 4;
467 mtod(m, struct ip *)->ip_hl = hlen >> 2;
468 ipov = mtod(m, struct ipovly *);
469 ipov->ih_pr = IPPROTO_TCP;
470 ipov->ih_len = htons(sizeof(struct tcphdr));
471 if (inp) {
472 ipov->ih_src = inp->inp_laddr;
473 ipov->ih_dst = inp->inp_faddr;
474 }
475 #ifdef INET6
476 else if (in6p) {
477 /* mapped addr case */
478 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
479 sizeof(ipov->ih_src));
480 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
481 sizeof(ipov->ih_dst));
482 }
483 #endif
484 /*
485 * Compute the pseudo-header portion of the checksum
486 * now. We incrementally add in the TCP option and
487 * payload lengths later, and then compute the TCP
488 * checksum right before the packet is sent off onto
489 * the wire.
490 */
491 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
492 ipov->ih_dst.s_addr,
493 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
494 break;
495 }
496 #ifdef INET6
497 case AF_INET6:
498 {
499 struct ip6_hdr *ip6;
500 mtod(m, struct ip *)->ip_v = 6;
501 ip6 = mtod(m, struct ip6_hdr *);
502 ip6->ip6_nxt = IPPROTO_TCP;
503 ip6->ip6_plen = htons(sizeof(struct tcphdr));
504 ip6->ip6_src = in6p->in6p_laddr;
505 ip6->ip6_dst = in6p->in6p_faddr;
506 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
507 if (ip6_auto_flowlabel) {
508 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
509 ip6->ip6_flow |=
510 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
511 }
512 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
513 ip6->ip6_vfc |= IPV6_VERSION;
514
515 /*
516 * Compute the pseudo-header portion of the checksum
517 * now. We incrementally add in the TCP option and
518 * payload lengths later, and then compute the TCP
519 * checksum right before the packet is sent off onto
520 * the wire.
521 */
522 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
523 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
524 htonl(IPPROTO_TCP));
525 break;
526 }
527 #endif
528 }
529 if (inp) {
530 n->th_sport = inp->inp_lport;
531 n->th_dport = inp->inp_fport;
532 }
533 #ifdef INET6
534 else if (in6p) {
535 n->th_sport = in6p->in6p_lport;
536 n->th_dport = in6p->in6p_fport;
537 }
538 #endif
539 n->th_seq = 0;
540 n->th_ack = 0;
541 n->th_x2 = 0;
542 n->th_off = 5;
543 n->th_flags = 0;
544 n->th_win = 0;
545 n->th_urp = 0;
546 return (m);
547 }
548
549 /*
550 * Send a single message to the TCP at address specified by
551 * the given TCP/IP header. If m == 0, then we make a copy
552 * of the tcpiphdr at ti and send directly to the addressed host.
553 * This is used to force keep alive messages out using the TCP
554 * template for a connection tp->t_template. If flags are given
555 * then we send a message back to the TCP which originated the
556 * segment ti, and discard the mbuf containing it and any other
557 * attached mbufs.
558 *
559 * In any case the ack and sequence number of the transmitted
560 * segment are as specified by the parameters.
561 */
562 int
563 tcp_respond(tp, template, m, th0, ack, seq, flags)
564 struct tcpcb *tp;
565 struct mbuf *template;
566 struct mbuf *m;
567 struct tcphdr *th0;
568 tcp_seq ack, seq;
569 int flags;
570 {
571 struct route *ro;
572 int error, tlen, win = 0;
573 int hlen;
574 struct ip *ip;
575 #ifdef INET6
576 struct ip6_hdr *ip6;
577 #endif
578 int family; /* family on packet, not inpcb/in6pcb! */
579 struct tcphdr *th;
580 struct socket *so;
581
582 if (tp != NULL && (flags & TH_RST) == 0) {
583 #ifdef DIAGNOSTIC
584 if (tp->t_inpcb && tp->t_in6pcb)
585 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
586 #endif
587 #ifdef INET
588 if (tp->t_inpcb)
589 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
590 #endif
591 #ifdef INET6
592 if (tp->t_in6pcb)
593 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
594 #endif
595 }
596
597 th = NULL; /* Quell uninitialized warning */
598 ip = NULL;
599 #ifdef INET6
600 ip6 = NULL;
601 #endif
602 if (m == 0) {
603 if (!template)
604 return EINVAL;
605
606 /* get family information from template */
607 switch (mtod(template, struct ip *)->ip_v) {
608 case 4:
609 family = AF_INET;
610 hlen = sizeof(struct ip);
611 break;
612 #ifdef INET6
613 case 6:
614 family = AF_INET6;
615 hlen = sizeof(struct ip6_hdr);
616 break;
617 #endif
618 default:
619 return EAFNOSUPPORT;
620 }
621
622 MGETHDR(m, M_DONTWAIT, MT_HEADER);
623 if (m) {
624 MCLAIM(m, &tcp_tx_mowner);
625 MCLGET(m, M_DONTWAIT);
626 if ((m->m_flags & M_EXT) == 0) {
627 m_free(m);
628 m = NULL;
629 }
630 }
631 if (m == NULL)
632 return (ENOBUFS);
633
634 if (tcp_compat_42)
635 tlen = 1;
636 else
637 tlen = 0;
638
639 m->m_data += max_linkhdr;
640 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
641 template->m_len);
642 switch (family) {
643 case AF_INET:
644 ip = mtod(m, struct ip *);
645 th = (struct tcphdr *)(ip + 1);
646 break;
647 #ifdef INET6
648 case AF_INET6:
649 ip6 = mtod(m, struct ip6_hdr *);
650 th = (struct tcphdr *)(ip6 + 1);
651 break;
652 #endif
653 #if 0
654 default:
655 /* noone will visit here */
656 m_freem(m);
657 return EAFNOSUPPORT;
658 #endif
659 }
660 flags = TH_ACK;
661 } else {
662
663 if ((m->m_flags & M_PKTHDR) == 0) {
664 #if 0
665 printf("non PKTHDR to tcp_respond\n");
666 #endif
667 m_freem(m);
668 return EINVAL;
669 }
670 #ifdef DIAGNOSTIC
671 if (!th0)
672 panic("th0 == NULL in tcp_respond");
673 #endif
674
675 /* get family information from m */
676 switch (mtod(m, struct ip *)->ip_v) {
677 case 4:
678 family = AF_INET;
679 hlen = sizeof(struct ip);
680 ip = mtod(m, struct ip *);
681 break;
682 #ifdef INET6
683 case 6:
684 family = AF_INET6;
685 hlen = sizeof(struct ip6_hdr);
686 ip6 = mtod(m, struct ip6_hdr *);
687 break;
688 #endif
689 default:
690 m_freem(m);
691 return EAFNOSUPPORT;
692 }
693 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
694 tlen = sizeof(*th0);
695 else
696 tlen = th0->th_off << 2;
697
698 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
699 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
700 m->m_len = hlen + tlen;
701 m_freem(m->m_next);
702 m->m_next = NULL;
703 } else {
704 struct mbuf *n;
705
706 #ifdef DIAGNOSTIC
707 if (max_linkhdr + hlen + tlen > MCLBYTES) {
708 m_freem(m);
709 return EMSGSIZE;
710 }
711 #endif
712 MGETHDR(n, M_DONTWAIT, MT_HEADER);
713 if (n && max_linkhdr + hlen + tlen > MHLEN) {
714 MCLGET(n, M_DONTWAIT);
715 if ((n->m_flags & M_EXT) == 0) {
716 m_freem(n);
717 n = NULL;
718 }
719 }
720 if (!n) {
721 m_freem(m);
722 return ENOBUFS;
723 }
724
725 MCLAIM(n, &tcp_tx_mowner);
726 n->m_data += max_linkhdr;
727 n->m_len = hlen + tlen;
728 m_copyback(n, 0, hlen, mtod(m, caddr_t));
729 m_copyback(n, hlen, tlen, (caddr_t)th0);
730
731 m_freem(m);
732 m = n;
733 n = NULL;
734 }
735
736 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
737 switch (family) {
738 case AF_INET:
739 ip = mtod(m, struct ip *);
740 th = (struct tcphdr *)(ip + 1);
741 ip->ip_p = IPPROTO_TCP;
742 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
743 ip->ip_p = IPPROTO_TCP;
744 break;
745 #ifdef INET6
746 case AF_INET6:
747 ip6 = mtod(m, struct ip6_hdr *);
748 th = (struct tcphdr *)(ip6 + 1);
749 ip6->ip6_nxt = IPPROTO_TCP;
750 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
751 ip6->ip6_nxt = IPPROTO_TCP;
752 break;
753 #endif
754 #if 0
755 default:
756 /* noone will visit here */
757 m_freem(m);
758 return EAFNOSUPPORT;
759 #endif
760 }
761 xchg(th->th_dport, th->th_sport, u_int16_t);
762 #undef xchg
763 tlen = 0; /*be friendly with the following code*/
764 }
765 th->th_seq = htonl(seq);
766 th->th_ack = htonl(ack);
767 th->th_x2 = 0;
768 if ((flags & TH_SYN) == 0) {
769 if (tp)
770 win >>= tp->rcv_scale;
771 if (win > TCP_MAXWIN)
772 win = TCP_MAXWIN;
773 th->th_win = htons((u_int16_t)win);
774 th->th_off = sizeof (struct tcphdr) >> 2;
775 tlen += sizeof(*th);
776 } else
777 tlen += th->th_off << 2;
778 m->m_len = hlen + tlen;
779 m->m_pkthdr.len = hlen + tlen;
780 m->m_pkthdr.rcvif = (struct ifnet *) 0;
781 th->th_flags = flags;
782 th->th_urp = 0;
783
784 switch (family) {
785 #ifdef INET
786 case AF_INET:
787 {
788 struct ipovly *ipov = (struct ipovly *)ip;
789 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
790 ipov->ih_len = htons((u_int16_t)tlen);
791
792 th->th_sum = 0;
793 th->th_sum = in_cksum(m, hlen + tlen);
794 ip->ip_len = htons(hlen + tlen);
795 ip->ip_ttl = ip_defttl;
796 break;
797 }
798 #endif
799 #ifdef INET6
800 case AF_INET6:
801 {
802 th->th_sum = 0;
803 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
804 tlen);
805 ip6->ip6_plen = ntohs(tlen);
806 if (tp && tp->t_in6pcb) {
807 struct ifnet *oifp;
808 ro = (struct route *)&tp->t_in6pcb->in6p_route;
809 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
810 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
811 } else
812 ip6->ip6_hlim = ip6_defhlim;
813 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
814 if (ip6_auto_flowlabel) {
815 ip6->ip6_flow |=
816 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
817 }
818 break;
819 }
820 #endif
821 }
822
823 if (tp && tp->t_inpcb)
824 so = tp->t_inpcb->inp_socket;
825 #ifdef INET6
826 else if (tp && tp->t_in6pcb)
827 so = tp->t_in6pcb->in6p_socket;
828 #endif
829 else
830 so = NULL;
831
832 if (tp != NULL && tp->t_inpcb != NULL) {
833 ro = &tp->t_inpcb->inp_route;
834 #ifdef DIAGNOSTIC
835 if (family != AF_INET)
836 panic("tcp_respond: address family mismatch");
837 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
838 panic("tcp_respond: ip_dst %x != inp_faddr %x",
839 ntohl(ip->ip_dst.s_addr),
840 ntohl(tp->t_inpcb->inp_faddr.s_addr));
841 }
842 #endif
843 }
844 #ifdef INET6
845 else if (tp != NULL && tp->t_in6pcb != NULL) {
846 ro = (struct route *)&tp->t_in6pcb->in6p_route;
847 #ifdef DIAGNOSTIC
848 if (family == AF_INET) {
849 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
850 panic("tcp_respond: not mapped addr");
851 if (bcmp(&ip->ip_dst,
852 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
853 sizeof(ip->ip_dst)) != 0) {
854 panic("tcp_respond: ip_dst != in6p_faddr");
855 }
856 } else if (family == AF_INET6) {
857 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
858 &tp->t_in6pcb->in6p_faddr))
859 panic("tcp_respond: ip6_dst != in6p_faddr");
860 } else
861 panic("tcp_respond: address family mismatch");
862 #endif
863 }
864 #endif
865 else
866 ro = NULL;
867
868 switch (family) {
869 #ifdef INET
870 case AF_INET:
871 error = ip_output(m, NULL, ro,
872 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
873 (struct ip_moptions *)0, so);
874 break;
875 #endif
876 #ifdef INET6
877 case AF_INET6:
878 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
879 (struct ip6_moptions *)0, so, NULL);
880 break;
881 #endif
882 default:
883 error = EAFNOSUPPORT;
884 break;
885 }
886
887 return (error);
888 }
889
890 /*
891 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
892 * a bunch of members individually, we maintain this template for the
893 * static and mostly-static components of the TCPCB, and copy it into
894 * the new TCPCB instead.
895 */
896 static struct tcpcb tcpcb_template = {
897 .t_delack_ch = CALLOUT_INITIALIZER,
898
899 .t_srtt = TCPTV_SRTTBASE,
900 .t_rttmin = TCPTV_MIN,
901
902 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
903 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
904 };
905
906 /*
907 * Updates the TCPCB template whenever a parameter that would affect
908 * the template is changed.
909 */
910 void
911 tcp_tcpcb_template(void)
912 {
913 struct tcpcb *tp = &tcpcb_template;
914 int flags, i;
915
916 tp->t_peermss = tcp_mssdflt;
917 tp->t_ourmss = tcp_mssdflt;
918 tp->t_segsz = tcp_mssdflt;
919
920 for (i = 0; i < TCPT_NTIMERS; i++)
921 TCP_TIMER_INIT(tp, i);
922
923 flags = 0;
924 if (tcp_do_rfc1323 && tcp_do_win_scale)
925 flags |= TF_REQ_SCALE;
926 if (tcp_do_rfc1323 && tcp_do_timestamps)
927 flags |= TF_REQ_TSTMP;
928 if (tcp_do_sack == 2)
929 flags |= TF_WILL_SACK;
930 else if (tcp_do_sack == 1)
931 flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
932 flags |= TF_CANT_TXSACK;
933 tp->t_flags = flags;
934
935 /*
936 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
937 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
938 * reasonable initial retransmit time.
939 */
940 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
941 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
942 TCPTV_MIN, TCPTV_REXMTMAX);
943 }
944
945 /*
946 * Create a new TCP control block, making an
947 * empty reassembly queue and hooking it to the argument
948 * protocol control block.
949 */
950 struct tcpcb *
951 tcp_newtcpcb(family, aux)
952 int family; /* selects inpcb, or in6pcb */
953 void *aux;
954 {
955 struct tcpcb *tp;
956
957 /* XXX Consider using a pool_cache for speed. */
958 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
959 if (tp == NULL)
960 return (NULL);
961 memcpy(tp, &tcpcb_template, sizeof(*tp));
962 TAILQ_INIT(&tp->segq);
963 TAILQ_INIT(&tp->timeq);
964 tp->t_family = family; /* may be overridden later on */
965 LIST_INIT(&tp->t_sc); /* XXX can template this */
966
967 switch (family) {
968 case AF_INET:
969 {
970 struct inpcb *inp = (struct inpcb *)aux;
971
972 inp->inp_ip.ip_ttl = ip_defttl;
973 inp->inp_ppcb = (caddr_t)tp;
974
975 tp->t_inpcb = inp;
976 tp->t_mtudisc = ip_mtudisc;
977 break;
978 }
979 #ifdef INET6
980 case AF_INET6:
981 {
982 struct in6pcb *in6p = (struct in6pcb *)aux;
983
984 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
985 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
986 : NULL);
987 in6p->in6p_ppcb = (caddr_t)tp;
988
989 tp->t_in6pcb = in6p;
990 /* for IPv6, always try to run path MTU discovery */
991 tp->t_mtudisc = 1;
992 break;
993 }
994 #endif /* INET6 */
995 default:
996 pool_put(&tcpcb_pool, tp);
997 return (NULL);
998 }
999
1000 /*
1001 * Initialize our timebase. When we send timestamps, we take
1002 * the delta from tcp_now -- this means each connection always
1003 * gets a timebase of 0, which makes it, among other things,
1004 * more difficult to determine how long a system has been up,
1005 * and thus how many TCP sequence increments have occurred.
1006 */
1007 tp->ts_timebase = tcp_now;
1008
1009 return (tp);
1010 }
1011
1012 /*
1013 * Drop a TCP connection, reporting
1014 * the specified error. If connection is synchronized,
1015 * then send a RST to peer.
1016 */
1017 struct tcpcb *
1018 tcp_drop(tp, errno)
1019 struct tcpcb *tp;
1020 int errno;
1021 {
1022 struct socket *so = NULL;
1023
1024 #ifdef DIAGNOSTIC
1025 if (tp->t_inpcb && tp->t_in6pcb)
1026 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1027 #endif
1028 #ifdef INET
1029 if (tp->t_inpcb)
1030 so = tp->t_inpcb->inp_socket;
1031 #endif
1032 #ifdef INET6
1033 if (tp->t_in6pcb)
1034 so = tp->t_in6pcb->in6p_socket;
1035 #endif
1036 if (!so)
1037 return NULL;
1038
1039 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1040 tp->t_state = TCPS_CLOSED;
1041 (void) tcp_output(tp);
1042 tcpstat.tcps_drops++;
1043 } else
1044 tcpstat.tcps_conndrops++;
1045 if (errno == ETIMEDOUT && tp->t_softerror)
1046 errno = tp->t_softerror;
1047 so->so_error = errno;
1048 return (tcp_close(tp));
1049 }
1050
1051 /*
1052 * Return whether this tcpcb is marked as dead, indicating
1053 * to the calling timer function that no further action should
1054 * be taken, as we are about to release this tcpcb. The release
1055 * of the storage will be done if this is the last timer running.
1056 *
1057 * This is typically called from the callout handler function before
1058 * callout_ack() is done, therefore we need to test the number of
1059 * running timer functions against 1 below, not 0.
1060 */
1061 int
1062 tcp_isdead(tp)
1063 struct tcpcb *tp;
1064 {
1065 int dead = (tp->t_flags & TF_DEAD);
1066
1067 if (__predict_false(dead)) {
1068 if (tcp_timers_invoking(tp) > 1)
1069 /* not quite there yet -- count separately? */
1070 return dead;
1071 tcpstat.tcps_delayed_free++;
1072 pool_put(&tcpcb_pool, tp);
1073 }
1074 return dead;
1075 }
1076
1077 /*
1078 * Close a TCP control block:
1079 * discard all space held by the tcp
1080 * discard internet protocol block
1081 * wake up any sleepers
1082 */
1083 struct tcpcb *
1084 tcp_close(tp)
1085 struct tcpcb *tp;
1086 {
1087 struct inpcb *inp;
1088 #ifdef INET6
1089 struct in6pcb *in6p;
1090 #endif
1091 struct socket *so;
1092 #ifdef RTV_RTT
1093 struct rtentry *rt;
1094 #endif
1095 struct route *ro;
1096
1097 inp = tp->t_inpcb;
1098 #ifdef INET6
1099 in6p = tp->t_in6pcb;
1100 #endif
1101 so = NULL;
1102 ro = NULL;
1103 if (inp) {
1104 so = inp->inp_socket;
1105 ro = &inp->inp_route;
1106 }
1107 #ifdef INET6
1108 else if (in6p) {
1109 so = in6p->in6p_socket;
1110 ro = (struct route *)&in6p->in6p_route;
1111 }
1112 #endif
1113
1114 #ifdef RTV_RTT
1115 /*
1116 * If we sent enough data to get some meaningful characteristics,
1117 * save them in the routing entry. 'Enough' is arbitrarily
1118 * defined as the sendpipesize (default 4K) * 16. This would
1119 * give us 16 rtt samples assuming we only get one sample per
1120 * window (the usual case on a long haul net). 16 samples is
1121 * enough for the srtt filter to converge to within 5% of the correct
1122 * value; fewer samples and we could save a very bogus rtt.
1123 *
1124 * Don't update the default route's characteristics and don't
1125 * update anything that the user "locked".
1126 */
1127 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1128 ro && (rt = ro->ro_rt) &&
1129 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1130 u_long i = 0;
1131
1132 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1133 i = tp->t_srtt *
1134 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1135 if (rt->rt_rmx.rmx_rtt && i)
1136 /*
1137 * filter this update to half the old & half
1138 * the new values, converting scale.
1139 * See route.h and tcp_var.h for a
1140 * description of the scaling constants.
1141 */
1142 rt->rt_rmx.rmx_rtt =
1143 (rt->rt_rmx.rmx_rtt + i) / 2;
1144 else
1145 rt->rt_rmx.rmx_rtt = i;
1146 }
1147 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1148 i = tp->t_rttvar *
1149 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1150 if (rt->rt_rmx.rmx_rttvar && i)
1151 rt->rt_rmx.rmx_rttvar =
1152 (rt->rt_rmx.rmx_rttvar + i) / 2;
1153 else
1154 rt->rt_rmx.rmx_rttvar = i;
1155 }
1156 /*
1157 * update the pipelimit (ssthresh) if it has been updated
1158 * already or if a pipesize was specified & the threshhold
1159 * got below half the pipesize. I.e., wait for bad news
1160 * before we start updating, then update on both good
1161 * and bad news.
1162 */
1163 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1164 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1165 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1166 /*
1167 * convert the limit from user data bytes to
1168 * packets then to packet data bytes.
1169 */
1170 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1171 if (i < 2)
1172 i = 2;
1173 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1174 if (rt->rt_rmx.rmx_ssthresh)
1175 rt->rt_rmx.rmx_ssthresh =
1176 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1177 else
1178 rt->rt_rmx.rmx_ssthresh = i;
1179 }
1180 }
1181 #endif /* RTV_RTT */
1182 /* free the reassembly queue, if any */
1183 TCP_REASS_LOCK(tp);
1184 (void) tcp_freeq(tp);
1185 TCP_REASS_UNLOCK(tp);
1186
1187 tcp_canceltimers(tp);
1188 TCP_CLEAR_DELACK(tp);
1189 syn_cache_cleanup(tp);
1190
1191 if (tp->t_template) {
1192 m_free(tp->t_template);
1193 tp->t_template = NULL;
1194 }
1195 if (tcp_timers_invoking(tp))
1196 tp->t_flags |= TF_DEAD;
1197 else
1198 pool_put(&tcpcb_pool, tp);
1199
1200 if (inp) {
1201 inp->inp_ppcb = 0;
1202 soisdisconnected(so);
1203 in_pcbdetach(inp);
1204 }
1205 #ifdef INET6
1206 else if (in6p) {
1207 in6p->in6p_ppcb = 0;
1208 soisdisconnected(so);
1209 in6_pcbdetach(in6p);
1210 }
1211 #endif
1212 tcpstat.tcps_closed++;
1213 return ((struct tcpcb *)0);
1214 }
1215
1216 int
1217 tcp_freeq(tp)
1218 struct tcpcb *tp;
1219 {
1220 struct ipqent *qe;
1221 int rv = 0;
1222 #ifdef TCPREASS_DEBUG
1223 int i = 0;
1224 #endif
1225
1226 TCP_REASS_LOCK_CHECK(tp);
1227
1228 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1229 #ifdef TCPREASS_DEBUG
1230 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1231 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1232 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1233 #endif
1234 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1235 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1236 m_freem(qe->ipqe_m);
1237 pool_put(&ipqent_pool, qe);
1238 rv = 1;
1239 }
1240 return (rv);
1241 }
1242
1243 /*
1244 * Protocol drain routine. Called when memory is in short supply.
1245 */
1246 void
1247 tcp_drain()
1248 {
1249 struct inpcb_hdr *inph;
1250 struct tcpcb *tp;
1251
1252 /*
1253 * Free the sequence queue of all TCP connections.
1254 */
1255 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1256 switch (inph->inph_af) {
1257 case AF_INET:
1258 tp = intotcpcb((struct inpcb *)inph);
1259 break;
1260 #ifdef INET6
1261 case AF_INET6:
1262 tp = in6totcpcb((struct in6pcb *)inph);
1263 break;
1264 #endif
1265 default:
1266 tp = NULL;
1267 break;
1268 }
1269 if (tp != NULL) {
1270 /*
1271 * We may be called from a device's interrupt
1272 * context. If the tcpcb is already busy,
1273 * just bail out now.
1274 */
1275 if (tcp_reass_lock_try(tp) == 0)
1276 continue;
1277 if (tcp_freeq(tp))
1278 tcpstat.tcps_connsdrained++;
1279 TCP_REASS_UNLOCK(tp);
1280 }
1281 }
1282 }
1283
1284 /*
1285 * Notify a tcp user of an asynchronous error;
1286 * store error as soft error, but wake up user
1287 * (for now, won't do anything until can select for soft error).
1288 */
1289 void
1290 tcp_notify(inp, error)
1291 struct inpcb *inp;
1292 int error;
1293 {
1294 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1295 struct socket *so = inp->inp_socket;
1296
1297 /*
1298 * Ignore some errors if we are hooked up.
1299 * If connection hasn't completed, has retransmitted several times,
1300 * and receives a second error, give up now. This is better
1301 * than waiting a long time to establish a connection that
1302 * can never complete.
1303 */
1304 if (tp->t_state == TCPS_ESTABLISHED &&
1305 (error == EHOSTUNREACH || error == ENETUNREACH ||
1306 error == EHOSTDOWN)) {
1307 return;
1308 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1309 tp->t_rxtshift > 3 && tp->t_softerror)
1310 so->so_error = error;
1311 else
1312 tp->t_softerror = error;
1313 wakeup((caddr_t) &so->so_timeo);
1314 sorwakeup(so);
1315 sowwakeup(so);
1316 }
1317
1318 #ifdef INET6
1319 void
1320 tcp6_notify(in6p, error)
1321 struct in6pcb *in6p;
1322 int error;
1323 {
1324 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1325 struct socket *so = in6p->in6p_socket;
1326
1327 /*
1328 * Ignore some errors if we are hooked up.
1329 * If connection hasn't completed, has retransmitted several times,
1330 * and receives a second error, give up now. This is better
1331 * than waiting a long time to establish a connection that
1332 * can never complete.
1333 */
1334 if (tp->t_state == TCPS_ESTABLISHED &&
1335 (error == EHOSTUNREACH || error == ENETUNREACH ||
1336 error == EHOSTDOWN)) {
1337 return;
1338 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1339 tp->t_rxtshift > 3 && tp->t_softerror)
1340 so->so_error = error;
1341 else
1342 tp->t_softerror = error;
1343 wakeup((caddr_t) &so->so_timeo);
1344 sorwakeup(so);
1345 sowwakeup(so);
1346 }
1347 #endif
1348
1349 #ifdef INET6
1350 void
1351 tcp6_ctlinput(cmd, sa, d)
1352 int cmd;
1353 struct sockaddr *sa;
1354 void *d;
1355 {
1356 struct tcphdr th;
1357 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1358 int nmatch;
1359 struct ip6_hdr *ip6;
1360 const struct sockaddr_in6 *sa6_src = NULL;
1361 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1362 struct mbuf *m;
1363 int off;
1364
1365 if (sa->sa_family != AF_INET6 ||
1366 sa->sa_len != sizeof(struct sockaddr_in6))
1367 return;
1368 if ((unsigned)cmd >= PRC_NCMDS)
1369 return;
1370 else if (cmd == PRC_QUENCH) {
1371 /* XXX there's no PRC_QUENCH in IPv6 */
1372 notify = tcp6_quench;
1373 } else if (PRC_IS_REDIRECT(cmd))
1374 notify = in6_rtchange, d = NULL;
1375 else if (cmd == PRC_MSGSIZE)
1376 ; /* special code is present, see below */
1377 else if (cmd == PRC_HOSTDEAD)
1378 d = NULL;
1379 else if (inet6ctlerrmap[cmd] == 0)
1380 return;
1381
1382 /* if the parameter is from icmp6, decode it. */
1383 if (d != NULL) {
1384 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1385 m = ip6cp->ip6c_m;
1386 ip6 = ip6cp->ip6c_ip6;
1387 off = ip6cp->ip6c_off;
1388 sa6_src = ip6cp->ip6c_src;
1389 } else {
1390 m = NULL;
1391 ip6 = NULL;
1392 sa6_src = &sa6_any;
1393 }
1394
1395 if (ip6) {
1396 /*
1397 * XXX: We assume that when ip6 is non NULL,
1398 * M and OFF are valid.
1399 */
1400
1401 /* check if we can safely examine src and dst ports */
1402 if (m->m_pkthdr.len < off + sizeof(th)) {
1403 if (cmd == PRC_MSGSIZE)
1404 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1405 return;
1406 }
1407
1408 bzero(&th, sizeof(th));
1409 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1410
1411 if (cmd == PRC_MSGSIZE) {
1412 int valid = 0;
1413
1414 /*
1415 * Check to see if we have a valid TCP connection
1416 * corresponding to the address in the ICMPv6 message
1417 * payload.
1418 */
1419 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1420 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1421 th.th_sport, 0))
1422 valid++;
1423
1424 /*
1425 * Depending on the value of "valid" and routing table
1426 * size (mtudisc_{hi,lo}wat), we will:
1427 * - recalcurate the new MTU and create the
1428 * corresponding routing entry, or
1429 * - ignore the MTU change notification.
1430 */
1431 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1432
1433 /*
1434 * no need to call in6_pcbnotify, it should have been
1435 * called via callback if necessary
1436 */
1437 return;
1438 }
1439
1440 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1441 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1442 if (nmatch == 0 && syn_cache_count &&
1443 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1444 inet6ctlerrmap[cmd] == ENETUNREACH ||
1445 inet6ctlerrmap[cmd] == EHOSTDOWN))
1446 syn_cache_unreach((struct sockaddr *)sa6_src,
1447 sa, &th);
1448 } else {
1449 (void) in6_pcbnotify(&tcbtable, sa, 0,
1450 (struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1451 }
1452 }
1453 #endif
1454
1455 #ifdef INET
1456 /* assumes that ip header and tcp header are contiguous on mbuf */
1457 void *
1458 tcp_ctlinput(cmd, sa, v)
1459 int cmd;
1460 struct sockaddr *sa;
1461 void *v;
1462 {
1463 struct ip *ip = v;
1464 struct tcphdr *th;
1465 struct icmp *icp;
1466 extern const int inetctlerrmap[];
1467 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1468 int errno;
1469 int nmatch;
1470 #ifdef INET6
1471 struct in6_addr src6, dst6;
1472 #endif
1473
1474 if (sa->sa_family != AF_INET ||
1475 sa->sa_len != sizeof(struct sockaddr_in))
1476 return NULL;
1477 if ((unsigned)cmd >= PRC_NCMDS)
1478 return NULL;
1479 errno = inetctlerrmap[cmd];
1480 if (cmd == PRC_QUENCH)
1481 notify = tcp_quench;
1482 else if (PRC_IS_REDIRECT(cmd))
1483 notify = in_rtchange, ip = 0;
1484 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1485 /*
1486 * Check to see if we have a valid TCP connection
1487 * corresponding to the address in the ICMP message
1488 * payload.
1489 *
1490 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1491 */
1492 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1493 #ifdef INET6
1494 memset(&src6, 0, sizeof(src6));
1495 memset(&dst6, 0, sizeof(dst6));
1496 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1497 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1498 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1499 #endif
1500 if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
1501 ip->ip_src, th->th_sport) != NULL)
1502 ;
1503 #ifdef INET6
1504 else if (in6_pcblookup_connect(&tcbtable, &dst6,
1505 th->th_dport, &src6, th->th_sport, 0) != NULL)
1506 ;
1507 #endif
1508 else
1509 return NULL;
1510
1511 /*
1512 * Now that we've validated that we are actually communicating
1513 * with the host indicated in the ICMP message, locate the
1514 * ICMP header, recalculate the new MTU, and create the
1515 * corresponding routing entry.
1516 */
1517 icp = (struct icmp *)((caddr_t)ip -
1518 offsetof(struct icmp, icmp_ip));
1519 icmp_mtudisc(icp, ip->ip_dst);
1520
1521 return NULL;
1522 } else if (cmd == PRC_HOSTDEAD)
1523 ip = 0;
1524 else if (errno == 0)
1525 return NULL;
1526 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1527 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1528 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1529 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1530 if (nmatch == 0 && syn_cache_count &&
1531 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1532 inetctlerrmap[cmd] == ENETUNREACH ||
1533 inetctlerrmap[cmd] == EHOSTDOWN)) {
1534 struct sockaddr_in sin;
1535 bzero(&sin, sizeof(sin));
1536 sin.sin_len = sizeof(sin);
1537 sin.sin_family = AF_INET;
1538 sin.sin_port = th->th_sport;
1539 sin.sin_addr = ip->ip_src;
1540 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1541 }
1542
1543 /* XXX mapped address case */
1544 } else
1545 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1546 notify);
1547 return NULL;
1548 }
1549
1550 /*
1551 * When a source quence is received, we are being notifed of congestion.
1552 * Close the congestion window down to the Loss Window (one segment).
1553 * We will gradually open it again as we proceed.
1554 */
1555 void
1556 tcp_quench(inp, errno)
1557 struct inpcb *inp;
1558 int errno;
1559 {
1560 struct tcpcb *tp = intotcpcb(inp);
1561
1562 if (tp)
1563 tp->snd_cwnd = tp->t_segsz;
1564 }
1565 #endif
1566
1567 #ifdef INET6
1568 void
1569 tcp6_quench(in6p, errno)
1570 struct in6pcb *in6p;
1571 int errno;
1572 {
1573 struct tcpcb *tp = in6totcpcb(in6p);
1574
1575 if (tp)
1576 tp->snd_cwnd = tp->t_segsz;
1577 }
1578 #endif
1579
1580 #ifdef INET
1581 /*
1582 * Path MTU Discovery handlers.
1583 */
1584 void
1585 tcp_mtudisc_callback(faddr)
1586 struct in_addr faddr;
1587 {
1588 #ifdef INET6
1589 struct in6_addr in6;
1590 #endif
1591
1592 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1593 #ifdef INET6
1594 memset(&in6, 0, sizeof(in6));
1595 in6.s6_addr16[5] = 0xffff;
1596 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1597 tcp6_mtudisc_callback(&in6);
1598 #endif
1599 }
1600
1601 /*
1602 * On receipt of path MTU corrections, flush old route and replace it
1603 * with the new one. Retransmit all unacknowledged packets, to ensure
1604 * that all packets will be received.
1605 */
1606 void
1607 tcp_mtudisc(inp, errno)
1608 struct inpcb *inp;
1609 int errno;
1610 {
1611 struct tcpcb *tp = intotcpcb(inp);
1612 struct rtentry *rt = in_pcbrtentry(inp);
1613
1614 if (tp != 0) {
1615 if (rt != 0) {
1616 /*
1617 * If this was not a host route, remove and realloc.
1618 */
1619 if ((rt->rt_flags & RTF_HOST) == 0) {
1620 in_rtchange(inp, errno);
1621 if ((rt = in_pcbrtentry(inp)) == 0)
1622 return;
1623 }
1624
1625 /*
1626 * Slow start out of the error condition. We
1627 * use the MTU because we know it's smaller
1628 * than the previously transmitted segment.
1629 *
1630 * Note: This is more conservative than the
1631 * suggestion in draft-floyd-incr-init-win-03.
1632 */
1633 if (rt->rt_rmx.rmx_mtu != 0)
1634 tp->snd_cwnd =
1635 TCP_INITIAL_WINDOW(tcp_init_win,
1636 rt->rt_rmx.rmx_mtu);
1637 }
1638
1639 /*
1640 * Resend unacknowledged packets.
1641 */
1642 tp->snd_nxt = tp->snd_una;
1643 tcp_output(tp);
1644 }
1645 }
1646 #endif
1647
1648 #ifdef INET6
1649 /*
1650 * Path MTU Discovery handlers.
1651 */
1652 void
1653 tcp6_mtudisc_callback(faddr)
1654 struct in6_addr *faddr;
1655 {
1656 struct sockaddr_in6 sin6;
1657
1658 bzero(&sin6, sizeof(sin6));
1659 sin6.sin6_family = AF_INET6;
1660 sin6.sin6_len = sizeof(struct sockaddr_in6);
1661 sin6.sin6_addr = *faddr;
1662 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1663 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1664 }
1665
1666 void
1667 tcp6_mtudisc(in6p, errno)
1668 struct in6pcb *in6p;
1669 int errno;
1670 {
1671 struct tcpcb *tp = in6totcpcb(in6p);
1672 struct rtentry *rt = in6_pcbrtentry(in6p);
1673
1674 if (tp != 0) {
1675 if (rt != 0) {
1676 /*
1677 * If this was not a host route, remove and realloc.
1678 */
1679 if ((rt->rt_flags & RTF_HOST) == 0) {
1680 in6_rtchange(in6p, errno);
1681 if ((rt = in6_pcbrtentry(in6p)) == 0)
1682 return;
1683 }
1684
1685 /*
1686 * Slow start out of the error condition. We
1687 * use the MTU because we know it's smaller
1688 * than the previously transmitted segment.
1689 *
1690 * Note: This is more conservative than the
1691 * suggestion in draft-floyd-incr-init-win-03.
1692 */
1693 if (rt->rt_rmx.rmx_mtu != 0)
1694 tp->snd_cwnd =
1695 TCP_INITIAL_WINDOW(tcp_init_win,
1696 rt->rt_rmx.rmx_mtu);
1697 }
1698
1699 /*
1700 * Resend unacknowledged packets.
1701 */
1702 tp->snd_nxt = tp->snd_una;
1703 tcp_output(tp);
1704 }
1705 }
1706 #endif /* INET6 */
1707
1708 /*
1709 * Compute the MSS to advertise to the peer. Called only during
1710 * the 3-way handshake. If we are the server (peer initiated
1711 * connection), we are called with a pointer to the interface
1712 * on which the SYN packet arrived. If we are the client (we
1713 * initiated connection), we are called with a pointer to the
1714 * interface out which this connection should go.
1715 *
1716 * NOTE: Do not subtract IP option/extension header size nor IPsec
1717 * header size from MSS advertisement. MSS option must hold the maximum
1718 * segment size we can accept, so it must always be:
1719 * max(if mtu) - ip header - tcp header
1720 */
1721 u_long
1722 tcp_mss_to_advertise(ifp, af)
1723 const struct ifnet *ifp;
1724 int af;
1725 {
1726 extern u_long in_maxmtu;
1727 u_long mss = 0;
1728 u_long hdrsiz;
1729
1730 /*
1731 * In order to avoid defeating path MTU discovery on the peer,
1732 * we advertise the max MTU of all attached networks as our MSS,
1733 * per RFC 1191, section 3.1.
1734 *
1735 * We provide the option to advertise just the MTU of
1736 * the interface on which we hope this connection will
1737 * be receiving. If we are responding to a SYN, we
1738 * will have a pretty good idea about this, but when
1739 * initiating a connection there is a bit more doubt.
1740 *
1741 * We also need to ensure that loopback has a large enough
1742 * MSS, as the loopback MTU is never included in in_maxmtu.
1743 */
1744
1745 if (ifp != NULL)
1746 switch (af) {
1747 case AF_INET:
1748 mss = ifp->if_mtu;
1749 break;
1750 #ifdef INET6
1751 case AF_INET6:
1752 mss = IN6_LINKMTU(ifp);
1753 break;
1754 #endif
1755 }
1756
1757 if (tcp_mss_ifmtu == 0)
1758 switch (af) {
1759 case AF_INET:
1760 mss = max(in_maxmtu, mss);
1761 break;
1762 #ifdef INET6
1763 case AF_INET6:
1764 mss = max(in6_maxmtu, mss);
1765 break;
1766 #endif
1767 }
1768
1769 switch (af) {
1770 case AF_INET:
1771 hdrsiz = sizeof(struct ip);
1772 break;
1773 #ifdef INET6
1774 case AF_INET6:
1775 hdrsiz = sizeof(struct ip6_hdr);
1776 break;
1777 #endif
1778 default:
1779 hdrsiz = 0;
1780 break;
1781 }
1782 hdrsiz += sizeof(struct tcphdr);
1783 if (mss > hdrsiz)
1784 mss -= hdrsiz;
1785
1786 mss = max(tcp_mssdflt, mss);
1787 return (mss);
1788 }
1789
1790 /*
1791 * Set connection variables based on the peer's advertised MSS.
1792 * We are passed the TCPCB for the actual connection. If we
1793 * are the server, we are called by the compressed state engine
1794 * when the 3-way handshake is complete. If we are the client,
1795 * we are called when we receive the SYN,ACK from the server.
1796 *
1797 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1798 * before this routine is called!
1799 */
1800 void
1801 tcp_mss_from_peer(tp, offer)
1802 struct tcpcb *tp;
1803 int offer;
1804 {
1805 struct socket *so;
1806 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1807 struct rtentry *rt;
1808 #endif
1809 u_long bufsize;
1810 int mss;
1811
1812 #ifdef DIAGNOSTIC
1813 if (tp->t_inpcb && tp->t_in6pcb)
1814 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1815 #endif
1816 so = NULL;
1817 rt = NULL;
1818 #ifdef INET
1819 if (tp->t_inpcb) {
1820 so = tp->t_inpcb->inp_socket;
1821 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1822 rt = in_pcbrtentry(tp->t_inpcb);
1823 #endif
1824 }
1825 #endif
1826 #ifdef INET6
1827 if (tp->t_in6pcb) {
1828 so = tp->t_in6pcb->in6p_socket;
1829 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1830 rt = in6_pcbrtentry(tp->t_in6pcb);
1831 #endif
1832 }
1833 #endif
1834
1835 /*
1836 * As per RFC1122, use the default MSS value, unless they
1837 * sent us an offer. Do not accept offers less than 32 bytes.
1838 */
1839 mss = tcp_mssdflt;
1840 if (offer)
1841 mss = offer;
1842 mss = max(mss, 32); /* sanity */
1843 tp->t_peermss = mss;
1844 mss -= tcp_optlen(tp);
1845 #ifdef INET
1846 if (tp->t_inpcb)
1847 mss -= ip_optlen(tp->t_inpcb);
1848 #endif
1849 #ifdef INET6
1850 if (tp->t_in6pcb)
1851 mss -= ip6_optlen(tp->t_in6pcb);
1852 #endif
1853
1854 /*
1855 * If there's a pipesize, change the socket buffer to that size.
1856 * Make the socket buffer an integral number of MSS units. If
1857 * the MSS is larger than the socket buffer, artificially decrease
1858 * the MSS.
1859 */
1860 #ifdef RTV_SPIPE
1861 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1862 bufsize = rt->rt_rmx.rmx_sendpipe;
1863 else
1864 #endif
1865 bufsize = so->so_snd.sb_hiwat;
1866 if (bufsize < mss)
1867 mss = bufsize;
1868 else {
1869 bufsize = roundup(bufsize, mss);
1870 if (bufsize > sb_max)
1871 bufsize = sb_max;
1872 (void) sbreserve(&so->so_snd, bufsize);
1873 }
1874 tp->t_segsz = mss;
1875
1876 #ifdef RTV_SSTHRESH
1877 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1878 /*
1879 * There's some sort of gateway or interface buffer
1880 * limit on the path. Use this to set the slow
1881 * start threshold, but set the threshold to no less
1882 * than 2 * MSS.
1883 */
1884 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1885 }
1886 #endif
1887 }
1888
1889 /*
1890 * Processing necessary when a TCP connection is established.
1891 */
1892 void
1893 tcp_established(tp)
1894 struct tcpcb *tp;
1895 {
1896 struct socket *so;
1897 #ifdef RTV_RPIPE
1898 struct rtentry *rt;
1899 #endif
1900 u_long bufsize;
1901
1902 #ifdef DIAGNOSTIC
1903 if (tp->t_inpcb && tp->t_in6pcb)
1904 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1905 #endif
1906 so = NULL;
1907 rt = NULL;
1908 #ifdef INET
1909 if (tp->t_inpcb) {
1910 so = tp->t_inpcb->inp_socket;
1911 #if defined(RTV_RPIPE)
1912 rt = in_pcbrtentry(tp->t_inpcb);
1913 #endif
1914 }
1915 #endif
1916 #ifdef INET6
1917 if (tp->t_in6pcb) {
1918 so = tp->t_in6pcb->in6p_socket;
1919 #if defined(RTV_RPIPE)
1920 rt = in6_pcbrtentry(tp->t_in6pcb);
1921 #endif
1922 }
1923 #endif
1924
1925 tp->t_state = TCPS_ESTABLISHED;
1926 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1927
1928 #ifdef RTV_RPIPE
1929 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1930 bufsize = rt->rt_rmx.rmx_recvpipe;
1931 else
1932 #endif
1933 bufsize = so->so_rcv.sb_hiwat;
1934 if (bufsize > tp->t_ourmss) {
1935 bufsize = roundup(bufsize, tp->t_ourmss);
1936 if (bufsize > sb_max)
1937 bufsize = sb_max;
1938 (void) sbreserve(&so->so_rcv, bufsize);
1939 }
1940 }
1941
1942 /*
1943 * Check if there's an initial rtt or rttvar. Convert from the
1944 * route-table units to scaled multiples of the slow timeout timer.
1945 * Called only during the 3-way handshake.
1946 */
1947 void
1948 tcp_rmx_rtt(tp)
1949 struct tcpcb *tp;
1950 {
1951 #ifdef RTV_RTT
1952 struct rtentry *rt = NULL;
1953 int rtt;
1954
1955 #ifdef DIAGNOSTIC
1956 if (tp->t_inpcb && tp->t_in6pcb)
1957 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1958 #endif
1959 #ifdef INET
1960 if (tp->t_inpcb)
1961 rt = in_pcbrtentry(tp->t_inpcb);
1962 #endif
1963 #ifdef INET6
1964 if (tp->t_in6pcb)
1965 rt = in6_pcbrtentry(tp->t_in6pcb);
1966 #endif
1967 if (rt == NULL)
1968 return;
1969
1970 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1971 /*
1972 * XXX The lock bit for MTU indicates that the value
1973 * is also a minimum value; this is subject to time.
1974 */
1975 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1976 TCPT_RANGESET(tp->t_rttmin,
1977 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1978 TCPTV_MIN, TCPTV_REXMTMAX);
1979 tp->t_srtt = rtt /
1980 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1981 if (rt->rt_rmx.rmx_rttvar) {
1982 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1983 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1984 (TCP_RTTVAR_SHIFT + 2));
1985 } else {
1986 /* Default variation is +- 1 rtt */
1987 tp->t_rttvar =
1988 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1989 }
1990 TCPT_RANGESET(tp->t_rxtcur,
1991 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1992 tp->t_rttmin, TCPTV_REXMTMAX);
1993 }
1994 #endif
1995 }
1996
1997 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1998 #if NRND > 0
1999 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2000 #endif
2001
2002 /*
2003 * Get a new sequence value given a tcp control block
2004 */
2005 tcp_seq
2006 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2007 {
2008
2009 #ifdef INET
2010 if (tp->t_inpcb != NULL) {
2011 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2012 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2013 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2014 addin));
2015 }
2016 #endif
2017 #ifdef INET6
2018 if (tp->t_in6pcb != NULL) {
2019 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2020 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2021 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2022 addin));
2023 }
2024 #endif
2025 /* Not possible. */
2026 panic("tcp_new_iss");
2027 }
2028
2029 /*
2030 * This routine actually generates a new TCP initial sequence number.
2031 */
2032 tcp_seq
2033 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2034 size_t addrsz, tcp_seq addin)
2035 {
2036 tcp_seq tcp_iss;
2037
2038 #if NRND > 0
2039 static int beenhere;
2040
2041 /*
2042 * If we haven't been here before, initialize our cryptographic
2043 * hash secret.
2044 */
2045 if (beenhere == 0) {
2046 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2047 RND_EXTRACT_ANY);
2048 beenhere = 1;
2049 }
2050
2051 if (tcp_do_rfc1948) {
2052 MD5_CTX ctx;
2053 u_int8_t hash[16]; /* XXX MD5 knowledge */
2054
2055 /*
2056 * Compute the base value of the ISS. It is a hash
2057 * of (saddr, sport, daddr, dport, secret).
2058 */
2059 MD5Init(&ctx);
2060
2061 MD5Update(&ctx, (u_char *) laddr, addrsz);
2062 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2063
2064 MD5Update(&ctx, (u_char *) faddr, addrsz);
2065 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2066
2067 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2068
2069 MD5Final(hash, &ctx);
2070
2071 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2072
2073 /*
2074 * Now increment our "timer", and add it in to
2075 * the computed value.
2076 *
2077 * XXX Use `addin'?
2078 * XXX TCP_ISSINCR too large to use?
2079 */
2080 tcp_iss_seq += TCP_ISSINCR;
2081 #ifdef TCPISS_DEBUG
2082 printf("ISS hash 0x%08x, ", tcp_iss);
2083 #endif
2084 tcp_iss += tcp_iss_seq + addin;
2085 #ifdef TCPISS_DEBUG
2086 printf("new ISS 0x%08x\n", tcp_iss);
2087 #endif
2088 } else
2089 #endif /* NRND > 0 */
2090 {
2091 /*
2092 * Randomize.
2093 */
2094 #if NRND > 0
2095 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2096 #else
2097 tcp_iss = arc4random();
2098 #endif
2099
2100 /*
2101 * If we were asked to add some amount to a known value,
2102 * we will take a random value obtained above, mask off
2103 * the upper bits, and add in the known value. We also
2104 * add in a constant to ensure that we are at least a
2105 * certain distance from the original value.
2106 *
2107 * This is used when an old connection is in timed wait
2108 * and we have a new one coming in, for instance.
2109 */
2110 if (addin != 0) {
2111 #ifdef TCPISS_DEBUG
2112 printf("Random %08x, ", tcp_iss);
2113 #endif
2114 tcp_iss &= TCP_ISS_RANDOM_MASK;
2115 tcp_iss += addin + TCP_ISSINCR;
2116 #ifdef TCPISS_DEBUG
2117 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2118 #endif
2119 } else {
2120 tcp_iss &= TCP_ISS_RANDOM_MASK;
2121 tcp_iss += tcp_iss_seq;
2122 tcp_iss_seq += TCP_ISSINCR;
2123 #ifdef TCPISS_DEBUG
2124 printf("ISS %08x\n", tcp_iss);
2125 #endif
2126 }
2127 }
2128
2129 if (tcp_compat_42) {
2130 /*
2131 * Limit it to the positive range for really old TCP
2132 * implementations.
2133 * Just AND off the top bit instead of checking if
2134 * is set first - saves a branch 50% of the time.
2135 */
2136 tcp_iss &= 0x7fffffff; /* XXX */
2137 }
2138
2139 return (tcp_iss);
2140 }
2141
2142 #if defined(IPSEC) || defined(FAST_IPSEC)
2143 /* compute ESP/AH header size for TCP, including outer IP header. */
2144 size_t
2145 ipsec4_hdrsiz_tcp(tp)
2146 struct tcpcb *tp;
2147 {
2148 struct inpcb *inp;
2149 size_t hdrsiz;
2150
2151 /* XXX mapped addr case (tp->t_in6pcb) */
2152 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2153 return 0;
2154 switch (tp->t_family) {
2155 case AF_INET:
2156 /* XXX: should use currect direction. */
2157 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2158 break;
2159 default:
2160 hdrsiz = 0;
2161 break;
2162 }
2163
2164 return hdrsiz;
2165 }
2166
2167 #ifdef INET6
2168 size_t
2169 ipsec6_hdrsiz_tcp(tp)
2170 struct tcpcb *tp;
2171 {
2172 struct in6pcb *in6p;
2173 size_t hdrsiz;
2174
2175 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2176 return 0;
2177 switch (tp->t_family) {
2178 case AF_INET6:
2179 /* XXX: should use currect direction. */
2180 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2181 break;
2182 case AF_INET:
2183 /* mapped address case - tricky */
2184 default:
2185 hdrsiz = 0;
2186 break;
2187 }
2188
2189 return hdrsiz;
2190 }
2191 #endif
2192 #endif /*IPSEC*/
2193
2194 /*
2195 * Determine the length of the TCP options for this connection.
2196 *
2197 * XXX: What do we do for SACK, when we add that? Just reserve
2198 * all of the space? Otherwise we can't exactly be incrementing
2199 * cwnd by an amount that varies depending on the amount we last
2200 * had to SACK!
2201 */
2202
2203 u_int
2204 tcp_optlen(tp)
2205 struct tcpcb *tp;
2206 {
2207 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2208 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2209 return TCPOLEN_TSTAMP_APPA;
2210 else
2211 return 0;
2212 }
2213