tcp_subr.c revision 1.157 1 /* $NetBSD: tcp_subr.c,v 1.157 2003/10/22 05:55:54 thorpej Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.157 2003/10/22 05:55:54 thorpej Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcpip.h>
155
156 #ifdef IPSEC
157 #include <netinet6/ipsec.h>
158 #endif /*IPSEC*/
159
160 #ifdef FAST_IPSEC
161 #include <netipsec/ipsec.h>
162 #ifdef INET6
163 #include <netipsec/ipsec6.h>
164 #endif
165 #endif /* FAST_IPSEC*/
166
167
168 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
169 struct tcpstat tcpstat; /* tcp statistics */
170 u_int32_t tcp_now; /* for RFC 1323 timestamps */
171
172 /* patchable/settable parameters for tcp */
173 int tcp_mssdflt = TCP_MSS;
174 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
175 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
176 #if NRND > 0
177 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
178 #endif
179 int tcp_do_sack = 1; /* selective acknowledgement */
180 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
181 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
182 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
183 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
184 #ifndef TCP_INIT_WIN
185 #define TCP_INIT_WIN 1 /* initial slow start window */
186 #endif
187 #ifndef TCP_INIT_WIN_LOCAL
188 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
189 #endif
190 int tcp_init_win = TCP_INIT_WIN;
191 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
192 int tcp_mss_ifmtu = 0;
193 #ifdef TCP_COMPAT_42
194 int tcp_compat_42 = 1;
195 #else
196 int tcp_compat_42 = 0;
197 #endif
198 int tcp_rst_ppslim = 100; /* 100pps */
199
200 /* tcb hash */
201 #ifndef TCBHASHSIZE
202 #define TCBHASHSIZE 128
203 #endif
204 int tcbhashsize = TCBHASHSIZE;
205
206 /* syn hash parameters */
207 #define TCP_SYN_HASH_SIZE 293
208 #define TCP_SYN_BUCKET_SIZE 35
209 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
210 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
211 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
212 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
213
214 int tcp_freeq __P((struct tcpcb *));
215
216 #ifdef INET
217 void tcp_mtudisc_callback __P((struct in_addr));
218 #endif
219 #ifdef INET6
220 void tcp6_mtudisc_callback __P((struct in6_addr *));
221 #endif
222
223 void tcp_mtudisc __P((struct inpcb *, int));
224 #ifdef INET6
225 void tcp6_mtudisc __P((struct in6pcb *, int));
226 #endif
227
228 struct pool tcpcb_pool;
229
230 #ifdef TCP_CSUM_COUNTERS
231 #include <sys/device.h>
232
233 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
234 NULL, "tcp", "hwcsum bad");
235 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
236 NULL, "tcp", "hwcsum ok");
237 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
238 NULL, "tcp", "hwcsum data");
239 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
240 NULL, "tcp", "swcsum");
241 #endif /* TCP_CSUM_COUNTERS */
242
243 #ifdef TCP_OUTPUT_COUNTERS
244 #include <sys/device.h>
245
246 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
247 NULL, "tcp", "output big header");
248 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
249 NULL, "tcp", "output predict hit");
250 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
251 NULL, "tcp", "output predict miss");
252 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
253 NULL, "tcp", "output copy small");
254 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
255 NULL, "tcp", "output copy big");
256 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
257 NULL, "tcp", "output reference big");
258 #endif /* TCP_OUTPUT_COUNTERS */
259
260 #ifdef TCP_REASS_COUNTERS
261 #include <sys/device.h>
262
263 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264 NULL, "tcp_reass", "calls");
265 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266 &tcp_reass_, "tcp_reass", "insert into empty queue");
267 struct evcnt tcp_reass_iteration[8] = {
268 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
269 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
270 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
271 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
272 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
273 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
274 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
275 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
276 };
277 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
278 &tcp_reass_, "tcp_reass", "prepend to first");
279 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
280 &tcp_reass_, "tcp_reass", "prepend");
281 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282 &tcp_reass_, "tcp_reass", "insert");
283 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284 &tcp_reass_, "tcp_reass", "insert at tail");
285 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286 &tcp_reass_, "tcp_reass", "append");
287 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288 &tcp_reass_, "tcp_reass", "append to tail fragment");
289 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
290 &tcp_reass_, "tcp_reass", "overlap at end");
291 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
292 &tcp_reass_, "tcp_reass", "overlap at start");
293 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
294 &tcp_reass_, "tcp_reass", "duplicate segment");
295 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
296 &tcp_reass_, "tcp_reass", "duplicate fragment");
297
298 #endif /* TCP_REASS_COUNTERS */
299
300 #ifdef MBUFTRACE
301 struct mowner tcp_mowner = { "tcp" };
302 struct mowner tcp_rx_mowner = { "tcp", "rx" };
303 struct mowner tcp_tx_mowner = { "tcp", "tx" };
304 #endif
305
306 /*
307 * Tcp initialization
308 */
309 void
310 tcp_init()
311 {
312 int hlen;
313
314 /* Initialize the TCPCB template. */
315 tcp_tcpcb_template();
316
317 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
318 NULL);
319 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
320
321 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
322 #ifdef INET6
323 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
324 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
325 #endif
326 if (max_protohdr < hlen)
327 max_protohdr = hlen;
328 if (max_linkhdr + hlen > MHLEN)
329 panic("tcp_init");
330
331 #ifdef INET
332 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
333 #endif
334 #ifdef INET6
335 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
336 #endif
337
338 /* Initialize timer state. */
339 tcp_timer_init();
340
341 /* Initialize the compressed state engine. */
342 syn_cache_init();
343
344 #ifdef TCP_CSUM_COUNTERS
345 evcnt_attach_static(&tcp_hwcsum_bad);
346 evcnt_attach_static(&tcp_hwcsum_ok);
347 evcnt_attach_static(&tcp_hwcsum_data);
348 evcnt_attach_static(&tcp_swcsum);
349 #endif /* TCP_CSUM_COUNTERS */
350
351 #ifdef TCP_OUTPUT_COUNTERS
352 evcnt_attach_static(&tcp_output_bigheader);
353 evcnt_attach_static(&tcp_output_predict_hit);
354 evcnt_attach_static(&tcp_output_predict_miss);
355 evcnt_attach_static(&tcp_output_copysmall);
356 evcnt_attach_static(&tcp_output_copybig);
357 evcnt_attach_static(&tcp_output_refbig);
358 #endif /* TCP_OUTPUT_COUNTERS */
359
360 #ifdef TCP_REASS_COUNTERS
361 evcnt_attach_static(&tcp_reass_);
362 evcnt_attach_static(&tcp_reass_empty);
363 evcnt_attach_static(&tcp_reass_iteration[0]);
364 evcnt_attach_static(&tcp_reass_iteration[1]);
365 evcnt_attach_static(&tcp_reass_iteration[2]);
366 evcnt_attach_static(&tcp_reass_iteration[3]);
367 evcnt_attach_static(&tcp_reass_iteration[4]);
368 evcnt_attach_static(&tcp_reass_iteration[5]);
369 evcnt_attach_static(&tcp_reass_iteration[6]);
370 evcnt_attach_static(&tcp_reass_iteration[7]);
371 evcnt_attach_static(&tcp_reass_prependfirst);
372 evcnt_attach_static(&tcp_reass_prepend);
373 evcnt_attach_static(&tcp_reass_insert);
374 evcnt_attach_static(&tcp_reass_inserttail);
375 evcnt_attach_static(&tcp_reass_append);
376 evcnt_attach_static(&tcp_reass_appendtail);
377 evcnt_attach_static(&tcp_reass_overlaptail);
378 evcnt_attach_static(&tcp_reass_overlapfront);
379 evcnt_attach_static(&tcp_reass_segdup);
380 evcnt_attach_static(&tcp_reass_fragdup);
381 #endif /* TCP_REASS_COUNTERS */
382
383 MOWNER_ATTACH(&tcp_tx_mowner);
384 MOWNER_ATTACH(&tcp_rx_mowner);
385 MOWNER_ATTACH(&tcp_mowner);
386 }
387
388 /*
389 * Create template to be used to send tcp packets on a connection.
390 * Call after host entry created, allocates an mbuf and fills
391 * in a skeletal tcp/ip header, minimizing the amount of work
392 * necessary when the connection is used.
393 */
394 struct mbuf *
395 tcp_template(tp)
396 struct tcpcb *tp;
397 {
398 struct inpcb *inp = tp->t_inpcb;
399 #ifdef INET6
400 struct in6pcb *in6p = tp->t_in6pcb;
401 #endif
402 struct tcphdr *n;
403 struct mbuf *m;
404 int hlen;
405
406 switch (tp->t_family) {
407 case AF_INET:
408 hlen = sizeof(struct ip);
409 if (inp)
410 break;
411 #ifdef INET6
412 if (in6p) {
413 /* mapped addr case */
414 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
415 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
416 break;
417 }
418 #endif
419 return NULL; /*EINVAL*/
420 #ifdef INET6
421 case AF_INET6:
422 hlen = sizeof(struct ip6_hdr);
423 if (in6p) {
424 /* more sainty check? */
425 break;
426 }
427 return NULL; /*EINVAL*/
428 #endif
429 default:
430 hlen = 0; /*pacify gcc*/
431 return NULL; /*EAFNOSUPPORT*/
432 }
433 #ifdef DIAGNOSTIC
434 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
435 panic("mclbytes too small for t_template");
436 #endif
437 m = tp->t_template;
438 if (m && m->m_len == hlen + sizeof(struct tcphdr))
439 ;
440 else {
441 if (m)
442 m_freem(m);
443 m = tp->t_template = NULL;
444 MGETHDR(m, M_DONTWAIT, MT_HEADER);
445 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
446 MCLGET(m, M_DONTWAIT);
447 if ((m->m_flags & M_EXT) == 0) {
448 m_free(m);
449 m = NULL;
450 }
451 }
452 if (m == NULL)
453 return NULL;
454 MCLAIM(m, &tcp_mowner);
455 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
456 }
457
458 bzero(mtod(m, caddr_t), m->m_len);
459
460 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
461
462 switch (tp->t_family) {
463 case AF_INET:
464 {
465 struct ipovly *ipov;
466 mtod(m, struct ip *)->ip_v = 4;
467 mtod(m, struct ip *)->ip_hl = hlen >> 2;
468 ipov = mtod(m, struct ipovly *);
469 ipov->ih_pr = IPPROTO_TCP;
470 ipov->ih_len = htons(sizeof(struct tcphdr));
471 if (inp) {
472 ipov->ih_src = inp->inp_laddr;
473 ipov->ih_dst = inp->inp_faddr;
474 }
475 #ifdef INET6
476 else if (in6p) {
477 /* mapped addr case */
478 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
479 sizeof(ipov->ih_src));
480 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
481 sizeof(ipov->ih_dst));
482 }
483 #endif
484 /*
485 * Compute the pseudo-header portion of the checksum
486 * now. We incrementally add in the TCP option and
487 * payload lengths later, and then compute the TCP
488 * checksum right before the packet is sent off onto
489 * the wire.
490 */
491 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
492 ipov->ih_dst.s_addr,
493 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
494 break;
495 }
496 #ifdef INET6
497 case AF_INET6:
498 {
499 struct ip6_hdr *ip6;
500 mtod(m, struct ip *)->ip_v = 6;
501 ip6 = mtod(m, struct ip6_hdr *);
502 ip6->ip6_nxt = IPPROTO_TCP;
503 ip6->ip6_plen = htons(sizeof(struct tcphdr));
504 ip6->ip6_src = in6p->in6p_laddr;
505 ip6->ip6_dst = in6p->in6p_faddr;
506 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
507 if (ip6_auto_flowlabel) {
508 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
509 ip6->ip6_flow |=
510 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
511 }
512 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
513 ip6->ip6_vfc |= IPV6_VERSION;
514
515 /*
516 * Compute the pseudo-header portion of the checksum
517 * now. We incrementally add in the TCP option and
518 * payload lengths later, and then compute the TCP
519 * checksum right before the packet is sent off onto
520 * the wire.
521 */
522 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
523 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
524 htonl(IPPROTO_TCP));
525 break;
526 }
527 #endif
528 }
529 if (inp) {
530 n->th_sport = inp->inp_lport;
531 n->th_dport = inp->inp_fport;
532 }
533 #ifdef INET6
534 else if (in6p) {
535 n->th_sport = in6p->in6p_lport;
536 n->th_dport = in6p->in6p_fport;
537 }
538 #endif
539 n->th_seq = 0;
540 n->th_ack = 0;
541 n->th_x2 = 0;
542 n->th_off = 5;
543 n->th_flags = 0;
544 n->th_win = 0;
545 n->th_urp = 0;
546 return (m);
547 }
548
549 /*
550 * Send a single message to the TCP at address specified by
551 * the given TCP/IP header. If m == 0, then we make a copy
552 * of the tcpiphdr at ti and send directly to the addressed host.
553 * This is used to force keep alive messages out using the TCP
554 * template for a connection tp->t_template. If flags are given
555 * then we send a message back to the TCP which originated the
556 * segment ti, and discard the mbuf containing it and any other
557 * attached mbufs.
558 *
559 * In any case the ack and sequence number of the transmitted
560 * segment are as specified by the parameters.
561 */
562 int
563 tcp_respond(tp, template, m, th0, ack, seq, flags)
564 struct tcpcb *tp;
565 struct mbuf *template;
566 struct mbuf *m;
567 struct tcphdr *th0;
568 tcp_seq ack, seq;
569 int flags;
570 {
571 struct route *ro;
572 int error, tlen, win = 0;
573 int hlen;
574 struct ip *ip;
575 #ifdef INET6
576 struct ip6_hdr *ip6;
577 #endif
578 int family; /* family on packet, not inpcb/in6pcb! */
579 struct tcphdr *th;
580 struct socket *so;
581
582 if (tp != NULL && (flags & TH_RST) == 0) {
583 #ifdef DIAGNOSTIC
584 if (tp->t_inpcb && tp->t_in6pcb)
585 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
586 #endif
587 #ifdef INET
588 if (tp->t_inpcb)
589 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
590 #endif
591 #ifdef INET6
592 if (tp->t_in6pcb)
593 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
594 #endif
595 }
596
597 th = NULL; /* Quell uninitialized warning */
598 ip = NULL;
599 #ifdef INET6
600 ip6 = NULL;
601 #endif
602 if (m == 0) {
603 if (!template)
604 return EINVAL;
605
606 /* get family information from template */
607 switch (mtod(template, struct ip *)->ip_v) {
608 case 4:
609 family = AF_INET;
610 hlen = sizeof(struct ip);
611 break;
612 #ifdef INET6
613 case 6:
614 family = AF_INET6;
615 hlen = sizeof(struct ip6_hdr);
616 break;
617 #endif
618 default:
619 return EAFNOSUPPORT;
620 }
621
622 MGETHDR(m, M_DONTWAIT, MT_HEADER);
623 if (m) {
624 MCLAIM(m, &tcp_tx_mowner);
625 MCLGET(m, M_DONTWAIT);
626 if ((m->m_flags & M_EXT) == 0) {
627 m_free(m);
628 m = NULL;
629 }
630 }
631 if (m == NULL)
632 return (ENOBUFS);
633
634 if (tcp_compat_42)
635 tlen = 1;
636 else
637 tlen = 0;
638
639 m->m_data += max_linkhdr;
640 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
641 template->m_len);
642 switch (family) {
643 case AF_INET:
644 ip = mtod(m, struct ip *);
645 th = (struct tcphdr *)(ip + 1);
646 break;
647 #ifdef INET6
648 case AF_INET6:
649 ip6 = mtod(m, struct ip6_hdr *);
650 th = (struct tcphdr *)(ip6 + 1);
651 break;
652 #endif
653 #if 0
654 default:
655 /* noone will visit here */
656 m_freem(m);
657 return EAFNOSUPPORT;
658 #endif
659 }
660 flags = TH_ACK;
661 } else {
662
663 if ((m->m_flags & M_PKTHDR) == 0) {
664 #if 0
665 printf("non PKTHDR to tcp_respond\n");
666 #endif
667 m_freem(m);
668 return EINVAL;
669 }
670 #ifdef DIAGNOSTIC
671 if (!th0)
672 panic("th0 == NULL in tcp_respond");
673 #endif
674
675 /* get family information from m */
676 switch (mtod(m, struct ip *)->ip_v) {
677 case 4:
678 family = AF_INET;
679 hlen = sizeof(struct ip);
680 ip = mtod(m, struct ip *);
681 break;
682 #ifdef INET6
683 case 6:
684 family = AF_INET6;
685 hlen = sizeof(struct ip6_hdr);
686 ip6 = mtod(m, struct ip6_hdr *);
687 break;
688 #endif
689 default:
690 m_freem(m);
691 return EAFNOSUPPORT;
692 }
693 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
694 tlen = sizeof(*th0);
695 else
696 tlen = th0->th_off << 2;
697
698 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
699 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
700 m->m_len = hlen + tlen;
701 m_freem(m->m_next);
702 m->m_next = NULL;
703 } else {
704 struct mbuf *n;
705
706 #ifdef DIAGNOSTIC
707 if (max_linkhdr + hlen + tlen > MCLBYTES) {
708 m_freem(m);
709 return EMSGSIZE;
710 }
711 #endif
712 MGETHDR(n, M_DONTWAIT, MT_HEADER);
713 if (n && max_linkhdr + hlen + tlen > MHLEN) {
714 MCLGET(n, M_DONTWAIT);
715 if ((n->m_flags & M_EXT) == 0) {
716 m_freem(n);
717 n = NULL;
718 }
719 }
720 if (!n) {
721 m_freem(m);
722 return ENOBUFS;
723 }
724
725 MCLAIM(n, &tcp_tx_mowner);
726 n->m_data += max_linkhdr;
727 n->m_len = hlen + tlen;
728 m_copyback(n, 0, hlen, mtod(m, caddr_t));
729 m_copyback(n, hlen, tlen, (caddr_t)th0);
730
731 m_freem(m);
732 m = n;
733 n = NULL;
734 }
735
736 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
737 switch (family) {
738 case AF_INET:
739 ip = mtod(m, struct ip *);
740 th = (struct tcphdr *)(ip + 1);
741 ip->ip_p = IPPROTO_TCP;
742 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
743 ip->ip_p = IPPROTO_TCP;
744 break;
745 #ifdef INET6
746 case AF_INET6:
747 ip6 = mtod(m, struct ip6_hdr *);
748 th = (struct tcphdr *)(ip6 + 1);
749 ip6->ip6_nxt = IPPROTO_TCP;
750 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
751 ip6->ip6_nxt = IPPROTO_TCP;
752 break;
753 #endif
754 #if 0
755 default:
756 /* noone will visit here */
757 m_freem(m);
758 return EAFNOSUPPORT;
759 #endif
760 }
761 xchg(th->th_dport, th->th_sport, u_int16_t);
762 #undef xchg
763 tlen = 0; /*be friendly with the following code*/
764 }
765 th->th_seq = htonl(seq);
766 th->th_ack = htonl(ack);
767 th->th_x2 = 0;
768 if ((flags & TH_SYN) == 0) {
769 if (tp)
770 win >>= tp->rcv_scale;
771 if (win > TCP_MAXWIN)
772 win = TCP_MAXWIN;
773 th->th_win = htons((u_int16_t)win);
774 th->th_off = sizeof (struct tcphdr) >> 2;
775 tlen += sizeof(*th);
776 } else
777 tlen += th->th_off << 2;
778 m->m_len = hlen + tlen;
779 m->m_pkthdr.len = hlen + tlen;
780 m->m_pkthdr.rcvif = (struct ifnet *) 0;
781 th->th_flags = flags;
782 th->th_urp = 0;
783
784 switch (family) {
785 #ifdef INET
786 case AF_INET:
787 {
788 struct ipovly *ipov = (struct ipovly *)ip;
789 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
790 ipov->ih_len = htons((u_int16_t)tlen);
791
792 th->th_sum = 0;
793 th->th_sum = in_cksum(m, hlen + tlen);
794 ip->ip_len = htons(hlen + tlen);
795 ip->ip_ttl = ip_defttl;
796 break;
797 }
798 #endif
799 #ifdef INET6
800 case AF_INET6:
801 {
802 th->th_sum = 0;
803 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
804 tlen);
805 ip6->ip6_plen = ntohs(tlen);
806 if (tp && tp->t_in6pcb) {
807 struct ifnet *oifp;
808 ro = (struct route *)&tp->t_in6pcb->in6p_route;
809 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
810 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
811 } else
812 ip6->ip6_hlim = ip6_defhlim;
813 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
814 if (ip6_auto_flowlabel) {
815 ip6->ip6_flow |=
816 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
817 }
818 break;
819 }
820 #endif
821 }
822
823 if (tp && tp->t_inpcb)
824 so = tp->t_inpcb->inp_socket;
825 #ifdef INET6
826 else if (tp && tp->t_in6pcb)
827 so = tp->t_in6pcb->in6p_socket;
828 #endif
829 else
830 so = NULL;
831
832 if (tp != NULL && tp->t_inpcb != NULL) {
833 ro = &tp->t_inpcb->inp_route;
834 #ifdef DIAGNOSTIC
835 if (family != AF_INET)
836 panic("tcp_respond: address family mismatch");
837 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
838 panic("tcp_respond: ip_dst %x != inp_faddr %x",
839 ntohl(ip->ip_dst.s_addr),
840 ntohl(tp->t_inpcb->inp_faddr.s_addr));
841 }
842 #endif
843 }
844 #ifdef INET6
845 else if (tp != NULL && tp->t_in6pcb != NULL) {
846 ro = (struct route *)&tp->t_in6pcb->in6p_route;
847 #ifdef DIAGNOSTIC
848 if (family == AF_INET) {
849 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
850 panic("tcp_respond: not mapped addr");
851 if (bcmp(&ip->ip_dst,
852 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
853 sizeof(ip->ip_dst)) != 0) {
854 panic("tcp_respond: ip_dst != in6p_faddr");
855 }
856 } else if (family == AF_INET6) {
857 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
858 &tp->t_in6pcb->in6p_faddr))
859 panic("tcp_respond: ip6_dst != in6p_faddr");
860 } else
861 panic("tcp_respond: address family mismatch");
862 #endif
863 }
864 #endif
865 else
866 ro = NULL;
867
868 switch (family) {
869 #ifdef INET
870 case AF_INET:
871 error = ip_output(m, NULL, ro,
872 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
873 (struct ip_moptions *)0, so);
874 break;
875 #endif
876 #ifdef INET6
877 case AF_INET6:
878 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
879 (struct ip6_moptions *)0, so, NULL);
880 break;
881 #endif
882 default:
883 error = EAFNOSUPPORT;
884 break;
885 }
886
887 return (error);
888 }
889
890 /*
891 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
892 * a bunch of members individually, we maintain this template for the
893 * static and mostly-static components of the TCPCB, and copy it into
894 * the new TCPCB instead.
895 */
896 static struct tcpcb tcpcb_template = {
897 .t_delack_ch = CALLOUT_INITIALIZER,
898
899 .t_srtt = TCPTV_SRTTBASE,
900 .t_rttmin = TCPTV_MIN,
901
902 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
903 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
904 };
905
906 /*
907 * Updates the TCPCB template whenever a parameter that would affect
908 * the template is changed.
909 */
910 void
911 tcp_tcpcb_template(void)
912 {
913 struct tcpcb *tp = &tcpcb_template;
914 int flags;
915
916 tp->t_peermss = tcp_mssdflt;
917 tp->t_ourmss = tcp_mssdflt;
918 tp->t_segsz = tcp_mssdflt;
919
920 flags = 0;
921 if (tcp_do_rfc1323 && tcp_do_win_scale)
922 flags |= TF_REQ_SCALE;
923 if (tcp_do_rfc1323 && tcp_do_timestamps)
924 flags |= TF_REQ_TSTMP;
925 if (tcp_do_sack == 2)
926 flags |= TF_WILL_SACK;
927 else if (tcp_do_sack == 1)
928 flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
929 flags |= TF_CANT_TXSACK;
930 tp->t_flags = flags;
931
932 /*
933 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
934 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
935 * reasonable initial retransmit time.
936 */
937 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
938 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
939 TCPTV_MIN, TCPTV_REXMTMAX);
940 }
941
942 /*
943 * Create a new TCP control block, making an
944 * empty reassembly queue and hooking it to the argument
945 * protocol control block.
946 */
947 struct tcpcb *
948 tcp_newtcpcb(family, aux)
949 int family; /* selects inpcb, or in6pcb */
950 void *aux;
951 {
952 struct tcpcb *tp;
953 int i;
954
955 /* XXX Consider using a pool_cache for speed. */
956 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
957 if (tp == NULL)
958 return (NULL);
959 memcpy(tp, &tcpcb_template, sizeof(*tp));
960 TAILQ_INIT(&tp->segq);
961 TAILQ_INIT(&tp->timeq);
962 tp->t_family = family; /* may be overridden later on */
963 LIST_INIT(&tp->t_sc); /* XXX can template this */
964
965 /* XXX Figure out a way to make this a bit less painful. */
966 for (i = 0; i < TCPT_NTIMERS; i++)
967 TCP_TIMER_INIT(tp, i);
968
969 switch (family) {
970 case AF_INET:
971 {
972 struct inpcb *inp = (struct inpcb *)aux;
973
974 inp->inp_ip.ip_ttl = ip_defttl;
975 inp->inp_ppcb = (caddr_t)tp;
976
977 tp->t_inpcb = inp;
978 tp->t_mtudisc = ip_mtudisc;
979 break;
980 }
981 #ifdef INET6
982 case AF_INET6:
983 {
984 struct in6pcb *in6p = (struct in6pcb *)aux;
985
986 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
987 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
988 : NULL);
989 in6p->in6p_ppcb = (caddr_t)tp;
990
991 tp->t_in6pcb = in6p;
992 /* for IPv6, always try to run path MTU discovery */
993 tp->t_mtudisc = 1;
994 break;
995 }
996 #endif /* INET6 */
997 default:
998 pool_put(&tcpcb_pool, tp);
999 return (NULL);
1000 }
1001
1002 /*
1003 * Initialize our timebase. When we send timestamps, we take
1004 * the delta from tcp_now -- this means each connection always
1005 * gets a timebase of 0, which makes it, among other things,
1006 * more difficult to determine how long a system has been up,
1007 * and thus how many TCP sequence increments have occurred.
1008 */
1009 tp->ts_timebase = tcp_now;
1010
1011 return (tp);
1012 }
1013
1014 /*
1015 * Drop a TCP connection, reporting
1016 * the specified error. If connection is synchronized,
1017 * then send a RST to peer.
1018 */
1019 struct tcpcb *
1020 tcp_drop(tp, errno)
1021 struct tcpcb *tp;
1022 int errno;
1023 {
1024 struct socket *so = NULL;
1025
1026 #ifdef DIAGNOSTIC
1027 if (tp->t_inpcb && tp->t_in6pcb)
1028 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1029 #endif
1030 #ifdef INET
1031 if (tp->t_inpcb)
1032 so = tp->t_inpcb->inp_socket;
1033 #endif
1034 #ifdef INET6
1035 if (tp->t_in6pcb)
1036 so = tp->t_in6pcb->in6p_socket;
1037 #endif
1038 if (!so)
1039 return NULL;
1040
1041 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1042 tp->t_state = TCPS_CLOSED;
1043 (void) tcp_output(tp);
1044 tcpstat.tcps_drops++;
1045 } else
1046 tcpstat.tcps_conndrops++;
1047 if (errno == ETIMEDOUT && tp->t_softerror)
1048 errno = tp->t_softerror;
1049 so->so_error = errno;
1050 return (tcp_close(tp));
1051 }
1052
1053 /*
1054 * Return whether this tcpcb is marked as dead, indicating
1055 * to the calling timer function that no further action should
1056 * be taken, as we are about to release this tcpcb. The release
1057 * of the storage will be done if this is the last timer running.
1058 *
1059 * This is typically called from the callout handler function before
1060 * callout_ack() is done, therefore we need to test the number of
1061 * running timer functions against 1 below, not 0.
1062 */
1063 int
1064 tcp_isdead(tp)
1065 struct tcpcb *tp;
1066 {
1067 int dead = (tp->t_flags & TF_DEAD);
1068
1069 if (__predict_false(dead)) {
1070 if (tcp_timers_invoking(tp) > 1)
1071 /* not quite there yet -- count separately? */
1072 return dead;
1073 tcpstat.tcps_delayed_free++;
1074 pool_put(&tcpcb_pool, tp);
1075 }
1076 return dead;
1077 }
1078
1079 /*
1080 * Close a TCP control block:
1081 * discard all space held by the tcp
1082 * discard internet protocol block
1083 * wake up any sleepers
1084 */
1085 struct tcpcb *
1086 tcp_close(tp)
1087 struct tcpcb *tp;
1088 {
1089 struct inpcb *inp;
1090 #ifdef INET6
1091 struct in6pcb *in6p;
1092 #endif
1093 struct socket *so;
1094 #ifdef RTV_RTT
1095 struct rtentry *rt;
1096 #endif
1097 struct route *ro;
1098
1099 inp = tp->t_inpcb;
1100 #ifdef INET6
1101 in6p = tp->t_in6pcb;
1102 #endif
1103 so = NULL;
1104 ro = NULL;
1105 if (inp) {
1106 so = inp->inp_socket;
1107 ro = &inp->inp_route;
1108 }
1109 #ifdef INET6
1110 else if (in6p) {
1111 so = in6p->in6p_socket;
1112 ro = (struct route *)&in6p->in6p_route;
1113 }
1114 #endif
1115
1116 #ifdef RTV_RTT
1117 /*
1118 * If we sent enough data to get some meaningful characteristics,
1119 * save them in the routing entry. 'Enough' is arbitrarily
1120 * defined as the sendpipesize (default 4K) * 16. This would
1121 * give us 16 rtt samples assuming we only get one sample per
1122 * window (the usual case on a long haul net). 16 samples is
1123 * enough for the srtt filter to converge to within 5% of the correct
1124 * value; fewer samples and we could save a very bogus rtt.
1125 *
1126 * Don't update the default route's characteristics and don't
1127 * update anything that the user "locked".
1128 */
1129 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1130 ro && (rt = ro->ro_rt) &&
1131 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1132 u_long i = 0;
1133
1134 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1135 i = tp->t_srtt *
1136 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1137 if (rt->rt_rmx.rmx_rtt && i)
1138 /*
1139 * filter this update to half the old & half
1140 * the new values, converting scale.
1141 * See route.h and tcp_var.h for a
1142 * description of the scaling constants.
1143 */
1144 rt->rt_rmx.rmx_rtt =
1145 (rt->rt_rmx.rmx_rtt + i) / 2;
1146 else
1147 rt->rt_rmx.rmx_rtt = i;
1148 }
1149 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1150 i = tp->t_rttvar *
1151 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1152 if (rt->rt_rmx.rmx_rttvar && i)
1153 rt->rt_rmx.rmx_rttvar =
1154 (rt->rt_rmx.rmx_rttvar + i) / 2;
1155 else
1156 rt->rt_rmx.rmx_rttvar = i;
1157 }
1158 /*
1159 * update the pipelimit (ssthresh) if it has been updated
1160 * already or if a pipesize was specified & the threshhold
1161 * got below half the pipesize. I.e., wait for bad news
1162 * before we start updating, then update on both good
1163 * and bad news.
1164 */
1165 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1166 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1167 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1168 /*
1169 * convert the limit from user data bytes to
1170 * packets then to packet data bytes.
1171 */
1172 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1173 if (i < 2)
1174 i = 2;
1175 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1176 if (rt->rt_rmx.rmx_ssthresh)
1177 rt->rt_rmx.rmx_ssthresh =
1178 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1179 else
1180 rt->rt_rmx.rmx_ssthresh = i;
1181 }
1182 }
1183 #endif /* RTV_RTT */
1184 /* free the reassembly queue, if any */
1185 TCP_REASS_LOCK(tp);
1186 (void) tcp_freeq(tp);
1187 TCP_REASS_UNLOCK(tp);
1188
1189 tcp_canceltimers(tp);
1190 TCP_CLEAR_DELACK(tp);
1191 syn_cache_cleanup(tp);
1192
1193 if (tp->t_template) {
1194 m_free(tp->t_template);
1195 tp->t_template = NULL;
1196 }
1197 if (tcp_timers_invoking(tp))
1198 tp->t_flags |= TF_DEAD;
1199 else
1200 pool_put(&tcpcb_pool, tp);
1201
1202 if (inp) {
1203 inp->inp_ppcb = 0;
1204 soisdisconnected(so);
1205 in_pcbdetach(inp);
1206 }
1207 #ifdef INET6
1208 else if (in6p) {
1209 in6p->in6p_ppcb = 0;
1210 soisdisconnected(so);
1211 in6_pcbdetach(in6p);
1212 }
1213 #endif
1214 tcpstat.tcps_closed++;
1215 return ((struct tcpcb *)0);
1216 }
1217
1218 int
1219 tcp_freeq(tp)
1220 struct tcpcb *tp;
1221 {
1222 struct ipqent *qe;
1223 int rv = 0;
1224 #ifdef TCPREASS_DEBUG
1225 int i = 0;
1226 #endif
1227
1228 TCP_REASS_LOCK_CHECK(tp);
1229
1230 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1231 #ifdef TCPREASS_DEBUG
1232 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1233 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1234 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1235 #endif
1236 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1237 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1238 m_freem(qe->ipqe_m);
1239 pool_put(&ipqent_pool, qe);
1240 rv = 1;
1241 }
1242 return (rv);
1243 }
1244
1245 /*
1246 * Protocol drain routine. Called when memory is in short supply.
1247 */
1248 void
1249 tcp_drain()
1250 {
1251 struct inpcb_hdr *inph;
1252 struct tcpcb *tp;
1253
1254 /*
1255 * Free the sequence queue of all TCP connections.
1256 */
1257 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1258 switch (inph->inph_af) {
1259 case AF_INET:
1260 tp = intotcpcb((struct inpcb *)inph);
1261 break;
1262 #ifdef INET6
1263 case AF_INET6:
1264 tp = in6totcpcb((struct in6pcb *)inph);
1265 break;
1266 #endif
1267 default:
1268 tp = NULL;
1269 break;
1270 }
1271 if (tp != NULL) {
1272 /*
1273 * We may be called from a device's interrupt
1274 * context. If the tcpcb is already busy,
1275 * just bail out now.
1276 */
1277 if (tcp_reass_lock_try(tp) == 0)
1278 continue;
1279 if (tcp_freeq(tp))
1280 tcpstat.tcps_connsdrained++;
1281 TCP_REASS_UNLOCK(tp);
1282 }
1283 }
1284 }
1285
1286 /*
1287 * Notify a tcp user of an asynchronous error;
1288 * store error as soft error, but wake up user
1289 * (for now, won't do anything until can select for soft error).
1290 */
1291 void
1292 tcp_notify(inp, error)
1293 struct inpcb *inp;
1294 int error;
1295 {
1296 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1297 struct socket *so = inp->inp_socket;
1298
1299 /*
1300 * Ignore some errors if we are hooked up.
1301 * If connection hasn't completed, has retransmitted several times,
1302 * and receives a second error, give up now. This is better
1303 * than waiting a long time to establish a connection that
1304 * can never complete.
1305 */
1306 if (tp->t_state == TCPS_ESTABLISHED &&
1307 (error == EHOSTUNREACH || error == ENETUNREACH ||
1308 error == EHOSTDOWN)) {
1309 return;
1310 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1311 tp->t_rxtshift > 3 && tp->t_softerror)
1312 so->so_error = error;
1313 else
1314 tp->t_softerror = error;
1315 wakeup((caddr_t) &so->so_timeo);
1316 sorwakeup(so);
1317 sowwakeup(so);
1318 }
1319
1320 #ifdef INET6
1321 void
1322 tcp6_notify(in6p, error)
1323 struct in6pcb *in6p;
1324 int error;
1325 {
1326 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1327 struct socket *so = in6p->in6p_socket;
1328
1329 /*
1330 * Ignore some errors if we are hooked up.
1331 * If connection hasn't completed, has retransmitted several times,
1332 * and receives a second error, give up now. This is better
1333 * than waiting a long time to establish a connection that
1334 * can never complete.
1335 */
1336 if (tp->t_state == TCPS_ESTABLISHED &&
1337 (error == EHOSTUNREACH || error == ENETUNREACH ||
1338 error == EHOSTDOWN)) {
1339 return;
1340 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1341 tp->t_rxtshift > 3 && tp->t_softerror)
1342 so->so_error = error;
1343 else
1344 tp->t_softerror = error;
1345 wakeup((caddr_t) &so->so_timeo);
1346 sorwakeup(so);
1347 sowwakeup(so);
1348 }
1349 #endif
1350
1351 #ifdef INET6
1352 void
1353 tcp6_ctlinput(cmd, sa, d)
1354 int cmd;
1355 struct sockaddr *sa;
1356 void *d;
1357 {
1358 struct tcphdr th;
1359 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1360 int nmatch;
1361 struct ip6_hdr *ip6;
1362 const struct sockaddr_in6 *sa6_src = NULL;
1363 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1364 struct mbuf *m;
1365 int off;
1366
1367 if (sa->sa_family != AF_INET6 ||
1368 sa->sa_len != sizeof(struct sockaddr_in6))
1369 return;
1370 if ((unsigned)cmd >= PRC_NCMDS)
1371 return;
1372 else if (cmd == PRC_QUENCH) {
1373 /* XXX there's no PRC_QUENCH in IPv6 */
1374 notify = tcp6_quench;
1375 } else if (PRC_IS_REDIRECT(cmd))
1376 notify = in6_rtchange, d = NULL;
1377 else if (cmd == PRC_MSGSIZE)
1378 ; /* special code is present, see below */
1379 else if (cmd == PRC_HOSTDEAD)
1380 d = NULL;
1381 else if (inet6ctlerrmap[cmd] == 0)
1382 return;
1383
1384 /* if the parameter is from icmp6, decode it. */
1385 if (d != NULL) {
1386 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1387 m = ip6cp->ip6c_m;
1388 ip6 = ip6cp->ip6c_ip6;
1389 off = ip6cp->ip6c_off;
1390 sa6_src = ip6cp->ip6c_src;
1391 } else {
1392 m = NULL;
1393 ip6 = NULL;
1394 sa6_src = &sa6_any;
1395 }
1396
1397 if (ip6) {
1398 /*
1399 * XXX: We assume that when ip6 is non NULL,
1400 * M and OFF are valid.
1401 */
1402
1403 /* check if we can safely examine src and dst ports */
1404 if (m->m_pkthdr.len < off + sizeof(th)) {
1405 if (cmd == PRC_MSGSIZE)
1406 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1407 return;
1408 }
1409
1410 bzero(&th, sizeof(th));
1411 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1412
1413 if (cmd == PRC_MSGSIZE) {
1414 int valid = 0;
1415
1416 /*
1417 * Check to see if we have a valid TCP connection
1418 * corresponding to the address in the ICMPv6 message
1419 * payload.
1420 */
1421 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1422 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1423 th.th_sport, 0))
1424 valid++;
1425
1426 /*
1427 * Depending on the value of "valid" and routing table
1428 * size (mtudisc_{hi,lo}wat), we will:
1429 * - recalcurate the new MTU and create the
1430 * corresponding routing entry, or
1431 * - ignore the MTU change notification.
1432 */
1433 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1434
1435 /*
1436 * no need to call in6_pcbnotify, it should have been
1437 * called via callback if necessary
1438 */
1439 return;
1440 }
1441
1442 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1443 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1444 if (nmatch == 0 && syn_cache_count &&
1445 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1446 inet6ctlerrmap[cmd] == ENETUNREACH ||
1447 inet6ctlerrmap[cmd] == EHOSTDOWN))
1448 syn_cache_unreach((struct sockaddr *)sa6_src,
1449 sa, &th);
1450 } else {
1451 (void) in6_pcbnotify(&tcbtable, sa, 0,
1452 (struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1453 }
1454 }
1455 #endif
1456
1457 #ifdef INET
1458 /* assumes that ip header and tcp header are contiguous on mbuf */
1459 void *
1460 tcp_ctlinput(cmd, sa, v)
1461 int cmd;
1462 struct sockaddr *sa;
1463 void *v;
1464 {
1465 struct ip *ip = v;
1466 struct tcphdr *th;
1467 struct icmp *icp;
1468 extern const int inetctlerrmap[];
1469 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1470 int errno;
1471 int nmatch;
1472 #ifdef INET6
1473 struct in6_addr src6, dst6;
1474 #endif
1475
1476 if (sa->sa_family != AF_INET ||
1477 sa->sa_len != sizeof(struct sockaddr_in))
1478 return NULL;
1479 if ((unsigned)cmd >= PRC_NCMDS)
1480 return NULL;
1481 errno = inetctlerrmap[cmd];
1482 if (cmd == PRC_QUENCH)
1483 notify = tcp_quench;
1484 else if (PRC_IS_REDIRECT(cmd))
1485 notify = in_rtchange, ip = 0;
1486 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1487 /*
1488 * Check to see if we have a valid TCP connection
1489 * corresponding to the address in the ICMP message
1490 * payload.
1491 *
1492 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1493 */
1494 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1495 #ifdef INET6
1496 memset(&src6, 0, sizeof(src6));
1497 memset(&dst6, 0, sizeof(dst6));
1498 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1499 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1500 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1501 #endif
1502 if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
1503 ip->ip_src, th->th_sport) != NULL)
1504 ;
1505 #ifdef INET6
1506 else if (in6_pcblookup_connect(&tcbtable, &dst6,
1507 th->th_dport, &src6, th->th_sport, 0) != NULL)
1508 ;
1509 #endif
1510 else
1511 return NULL;
1512
1513 /*
1514 * Now that we've validated that we are actually communicating
1515 * with the host indicated in the ICMP message, locate the
1516 * ICMP header, recalculate the new MTU, and create the
1517 * corresponding routing entry.
1518 */
1519 icp = (struct icmp *)((caddr_t)ip -
1520 offsetof(struct icmp, icmp_ip));
1521 icmp_mtudisc(icp, ip->ip_dst);
1522
1523 return NULL;
1524 } else if (cmd == PRC_HOSTDEAD)
1525 ip = 0;
1526 else if (errno == 0)
1527 return NULL;
1528 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1529 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1530 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1531 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1532 if (nmatch == 0 && syn_cache_count &&
1533 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1534 inetctlerrmap[cmd] == ENETUNREACH ||
1535 inetctlerrmap[cmd] == EHOSTDOWN)) {
1536 struct sockaddr_in sin;
1537 bzero(&sin, sizeof(sin));
1538 sin.sin_len = sizeof(sin);
1539 sin.sin_family = AF_INET;
1540 sin.sin_port = th->th_sport;
1541 sin.sin_addr = ip->ip_src;
1542 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1543 }
1544
1545 /* XXX mapped address case */
1546 } else
1547 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1548 notify);
1549 return NULL;
1550 }
1551
1552 /*
1553 * When a source quence is received, we are being notifed of congestion.
1554 * Close the congestion window down to the Loss Window (one segment).
1555 * We will gradually open it again as we proceed.
1556 */
1557 void
1558 tcp_quench(inp, errno)
1559 struct inpcb *inp;
1560 int errno;
1561 {
1562 struct tcpcb *tp = intotcpcb(inp);
1563
1564 if (tp)
1565 tp->snd_cwnd = tp->t_segsz;
1566 }
1567 #endif
1568
1569 #ifdef INET6
1570 void
1571 tcp6_quench(in6p, errno)
1572 struct in6pcb *in6p;
1573 int errno;
1574 {
1575 struct tcpcb *tp = in6totcpcb(in6p);
1576
1577 if (tp)
1578 tp->snd_cwnd = tp->t_segsz;
1579 }
1580 #endif
1581
1582 #ifdef INET
1583 /*
1584 * Path MTU Discovery handlers.
1585 */
1586 void
1587 tcp_mtudisc_callback(faddr)
1588 struct in_addr faddr;
1589 {
1590 #ifdef INET6
1591 struct in6_addr in6;
1592 #endif
1593
1594 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1595 #ifdef INET6
1596 memset(&in6, 0, sizeof(in6));
1597 in6.s6_addr16[5] = 0xffff;
1598 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1599 tcp6_mtudisc_callback(&in6);
1600 #endif
1601 }
1602
1603 /*
1604 * On receipt of path MTU corrections, flush old route and replace it
1605 * with the new one. Retransmit all unacknowledged packets, to ensure
1606 * that all packets will be received.
1607 */
1608 void
1609 tcp_mtudisc(inp, errno)
1610 struct inpcb *inp;
1611 int errno;
1612 {
1613 struct tcpcb *tp = intotcpcb(inp);
1614 struct rtentry *rt = in_pcbrtentry(inp);
1615
1616 if (tp != 0) {
1617 if (rt != 0) {
1618 /*
1619 * If this was not a host route, remove and realloc.
1620 */
1621 if ((rt->rt_flags & RTF_HOST) == 0) {
1622 in_rtchange(inp, errno);
1623 if ((rt = in_pcbrtentry(inp)) == 0)
1624 return;
1625 }
1626
1627 /*
1628 * Slow start out of the error condition. We
1629 * use the MTU because we know it's smaller
1630 * than the previously transmitted segment.
1631 *
1632 * Note: This is more conservative than the
1633 * suggestion in draft-floyd-incr-init-win-03.
1634 */
1635 if (rt->rt_rmx.rmx_mtu != 0)
1636 tp->snd_cwnd =
1637 TCP_INITIAL_WINDOW(tcp_init_win,
1638 rt->rt_rmx.rmx_mtu);
1639 }
1640
1641 /*
1642 * Resend unacknowledged packets.
1643 */
1644 tp->snd_nxt = tp->snd_una;
1645 tcp_output(tp);
1646 }
1647 }
1648 #endif
1649
1650 #ifdef INET6
1651 /*
1652 * Path MTU Discovery handlers.
1653 */
1654 void
1655 tcp6_mtudisc_callback(faddr)
1656 struct in6_addr *faddr;
1657 {
1658 struct sockaddr_in6 sin6;
1659
1660 bzero(&sin6, sizeof(sin6));
1661 sin6.sin6_family = AF_INET6;
1662 sin6.sin6_len = sizeof(struct sockaddr_in6);
1663 sin6.sin6_addr = *faddr;
1664 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1665 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1666 }
1667
1668 void
1669 tcp6_mtudisc(in6p, errno)
1670 struct in6pcb *in6p;
1671 int errno;
1672 {
1673 struct tcpcb *tp = in6totcpcb(in6p);
1674 struct rtentry *rt = in6_pcbrtentry(in6p);
1675
1676 if (tp != 0) {
1677 if (rt != 0) {
1678 /*
1679 * If this was not a host route, remove and realloc.
1680 */
1681 if ((rt->rt_flags & RTF_HOST) == 0) {
1682 in6_rtchange(in6p, errno);
1683 if ((rt = in6_pcbrtentry(in6p)) == 0)
1684 return;
1685 }
1686
1687 /*
1688 * Slow start out of the error condition. We
1689 * use the MTU because we know it's smaller
1690 * than the previously transmitted segment.
1691 *
1692 * Note: This is more conservative than the
1693 * suggestion in draft-floyd-incr-init-win-03.
1694 */
1695 if (rt->rt_rmx.rmx_mtu != 0)
1696 tp->snd_cwnd =
1697 TCP_INITIAL_WINDOW(tcp_init_win,
1698 rt->rt_rmx.rmx_mtu);
1699 }
1700
1701 /*
1702 * Resend unacknowledged packets.
1703 */
1704 tp->snd_nxt = tp->snd_una;
1705 tcp_output(tp);
1706 }
1707 }
1708 #endif /* INET6 */
1709
1710 /*
1711 * Compute the MSS to advertise to the peer. Called only during
1712 * the 3-way handshake. If we are the server (peer initiated
1713 * connection), we are called with a pointer to the interface
1714 * on which the SYN packet arrived. If we are the client (we
1715 * initiated connection), we are called with a pointer to the
1716 * interface out which this connection should go.
1717 *
1718 * NOTE: Do not subtract IP option/extension header size nor IPsec
1719 * header size from MSS advertisement. MSS option must hold the maximum
1720 * segment size we can accept, so it must always be:
1721 * max(if mtu) - ip header - tcp header
1722 */
1723 u_long
1724 tcp_mss_to_advertise(ifp, af)
1725 const struct ifnet *ifp;
1726 int af;
1727 {
1728 extern u_long in_maxmtu;
1729 u_long mss = 0;
1730 u_long hdrsiz;
1731
1732 /*
1733 * In order to avoid defeating path MTU discovery on the peer,
1734 * we advertise the max MTU of all attached networks as our MSS,
1735 * per RFC 1191, section 3.1.
1736 *
1737 * We provide the option to advertise just the MTU of
1738 * the interface on which we hope this connection will
1739 * be receiving. If we are responding to a SYN, we
1740 * will have a pretty good idea about this, but when
1741 * initiating a connection there is a bit more doubt.
1742 *
1743 * We also need to ensure that loopback has a large enough
1744 * MSS, as the loopback MTU is never included in in_maxmtu.
1745 */
1746
1747 if (ifp != NULL)
1748 switch (af) {
1749 case AF_INET:
1750 mss = ifp->if_mtu;
1751 break;
1752 #ifdef INET6
1753 case AF_INET6:
1754 mss = IN6_LINKMTU(ifp);
1755 break;
1756 #endif
1757 }
1758
1759 if (tcp_mss_ifmtu == 0)
1760 switch (af) {
1761 case AF_INET:
1762 mss = max(in_maxmtu, mss);
1763 break;
1764 #ifdef INET6
1765 case AF_INET6:
1766 mss = max(in6_maxmtu, mss);
1767 break;
1768 #endif
1769 }
1770
1771 switch (af) {
1772 case AF_INET:
1773 hdrsiz = sizeof(struct ip);
1774 break;
1775 #ifdef INET6
1776 case AF_INET6:
1777 hdrsiz = sizeof(struct ip6_hdr);
1778 break;
1779 #endif
1780 default:
1781 hdrsiz = 0;
1782 break;
1783 }
1784 hdrsiz += sizeof(struct tcphdr);
1785 if (mss > hdrsiz)
1786 mss -= hdrsiz;
1787
1788 mss = max(tcp_mssdflt, mss);
1789 return (mss);
1790 }
1791
1792 /*
1793 * Set connection variables based on the peer's advertised MSS.
1794 * We are passed the TCPCB for the actual connection. If we
1795 * are the server, we are called by the compressed state engine
1796 * when the 3-way handshake is complete. If we are the client,
1797 * we are called when we receive the SYN,ACK from the server.
1798 *
1799 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1800 * before this routine is called!
1801 */
1802 void
1803 tcp_mss_from_peer(tp, offer)
1804 struct tcpcb *tp;
1805 int offer;
1806 {
1807 struct socket *so;
1808 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1809 struct rtentry *rt;
1810 #endif
1811 u_long bufsize;
1812 int mss;
1813
1814 #ifdef DIAGNOSTIC
1815 if (tp->t_inpcb && tp->t_in6pcb)
1816 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1817 #endif
1818 so = NULL;
1819 rt = NULL;
1820 #ifdef INET
1821 if (tp->t_inpcb) {
1822 so = tp->t_inpcb->inp_socket;
1823 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1824 rt = in_pcbrtentry(tp->t_inpcb);
1825 #endif
1826 }
1827 #endif
1828 #ifdef INET6
1829 if (tp->t_in6pcb) {
1830 so = tp->t_in6pcb->in6p_socket;
1831 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1832 rt = in6_pcbrtentry(tp->t_in6pcb);
1833 #endif
1834 }
1835 #endif
1836
1837 /*
1838 * As per RFC1122, use the default MSS value, unless they
1839 * sent us an offer. Do not accept offers less than 32 bytes.
1840 */
1841 mss = tcp_mssdflt;
1842 if (offer)
1843 mss = offer;
1844 mss = max(mss, 32); /* sanity */
1845 tp->t_peermss = mss;
1846 mss -= tcp_optlen(tp);
1847 #ifdef INET
1848 if (tp->t_inpcb)
1849 mss -= ip_optlen(tp->t_inpcb);
1850 #endif
1851 #ifdef INET6
1852 if (tp->t_in6pcb)
1853 mss -= ip6_optlen(tp->t_in6pcb);
1854 #endif
1855
1856 /*
1857 * If there's a pipesize, change the socket buffer to that size.
1858 * Make the socket buffer an integral number of MSS units. If
1859 * the MSS is larger than the socket buffer, artificially decrease
1860 * the MSS.
1861 */
1862 #ifdef RTV_SPIPE
1863 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1864 bufsize = rt->rt_rmx.rmx_sendpipe;
1865 else
1866 #endif
1867 bufsize = so->so_snd.sb_hiwat;
1868 if (bufsize < mss)
1869 mss = bufsize;
1870 else {
1871 bufsize = roundup(bufsize, mss);
1872 if (bufsize > sb_max)
1873 bufsize = sb_max;
1874 (void) sbreserve(&so->so_snd, bufsize);
1875 }
1876 tp->t_segsz = mss;
1877
1878 #ifdef RTV_SSTHRESH
1879 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1880 /*
1881 * There's some sort of gateway or interface buffer
1882 * limit on the path. Use this to set the slow
1883 * start threshold, but set the threshold to no less
1884 * than 2 * MSS.
1885 */
1886 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1887 }
1888 #endif
1889 }
1890
1891 /*
1892 * Processing necessary when a TCP connection is established.
1893 */
1894 void
1895 tcp_established(tp)
1896 struct tcpcb *tp;
1897 {
1898 struct socket *so;
1899 #ifdef RTV_RPIPE
1900 struct rtentry *rt;
1901 #endif
1902 u_long bufsize;
1903
1904 #ifdef DIAGNOSTIC
1905 if (tp->t_inpcb && tp->t_in6pcb)
1906 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1907 #endif
1908 so = NULL;
1909 rt = NULL;
1910 #ifdef INET
1911 if (tp->t_inpcb) {
1912 so = tp->t_inpcb->inp_socket;
1913 #if defined(RTV_RPIPE)
1914 rt = in_pcbrtentry(tp->t_inpcb);
1915 #endif
1916 }
1917 #endif
1918 #ifdef INET6
1919 if (tp->t_in6pcb) {
1920 so = tp->t_in6pcb->in6p_socket;
1921 #if defined(RTV_RPIPE)
1922 rt = in6_pcbrtentry(tp->t_in6pcb);
1923 #endif
1924 }
1925 #endif
1926
1927 tp->t_state = TCPS_ESTABLISHED;
1928 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1929
1930 #ifdef RTV_RPIPE
1931 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1932 bufsize = rt->rt_rmx.rmx_recvpipe;
1933 else
1934 #endif
1935 bufsize = so->so_rcv.sb_hiwat;
1936 if (bufsize > tp->t_ourmss) {
1937 bufsize = roundup(bufsize, tp->t_ourmss);
1938 if (bufsize > sb_max)
1939 bufsize = sb_max;
1940 (void) sbreserve(&so->so_rcv, bufsize);
1941 }
1942 }
1943
1944 /*
1945 * Check if there's an initial rtt or rttvar. Convert from the
1946 * route-table units to scaled multiples of the slow timeout timer.
1947 * Called only during the 3-way handshake.
1948 */
1949 void
1950 tcp_rmx_rtt(tp)
1951 struct tcpcb *tp;
1952 {
1953 #ifdef RTV_RTT
1954 struct rtentry *rt = NULL;
1955 int rtt;
1956
1957 #ifdef DIAGNOSTIC
1958 if (tp->t_inpcb && tp->t_in6pcb)
1959 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1960 #endif
1961 #ifdef INET
1962 if (tp->t_inpcb)
1963 rt = in_pcbrtentry(tp->t_inpcb);
1964 #endif
1965 #ifdef INET6
1966 if (tp->t_in6pcb)
1967 rt = in6_pcbrtentry(tp->t_in6pcb);
1968 #endif
1969 if (rt == NULL)
1970 return;
1971
1972 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1973 /*
1974 * XXX The lock bit for MTU indicates that the value
1975 * is also a minimum value; this is subject to time.
1976 */
1977 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1978 TCPT_RANGESET(tp->t_rttmin,
1979 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1980 TCPTV_MIN, TCPTV_REXMTMAX);
1981 tp->t_srtt = rtt /
1982 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1983 if (rt->rt_rmx.rmx_rttvar) {
1984 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1985 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1986 (TCP_RTTVAR_SHIFT + 2));
1987 } else {
1988 /* Default variation is +- 1 rtt */
1989 tp->t_rttvar =
1990 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1991 }
1992 TCPT_RANGESET(tp->t_rxtcur,
1993 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1994 tp->t_rttmin, TCPTV_REXMTMAX);
1995 }
1996 #endif
1997 }
1998
1999 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2000 #if NRND > 0
2001 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2002 #endif
2003
2004 /*
2005 * Get a new sequence value given a tcp control block
2006 */
2007 tcp_seq
2008 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2009 {
2010
2011 #ifdef INET
2012 if (tp->t_inpcb != NULL) {
2013 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2014 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2015 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2016 addin));
2017 }
2018 #endif
2019 #ifdef INET6
2020 if (tp->t_in6pcb != NULL) {
2021 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2022 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2023 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2024 addin));
2025 }
2026 #endif
2027 /* Not possible. */
2028 panic("tcp_new_iss");
2029 }
2030
2031 /*
2032 * This routine actually generates a new TCP initial sequence number.
2033 */
2034 tcp_seq
2035 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2036 size_t addrsz, tcp_seq addin)
2037 {
2038 tcp_seq tcp_iss;
2039
2040 #if NRND > 0
2041 static int beenhere;
2042
2043 /*
2044 * If we haven't been here before, initialize our cryptographic
2045 * hash secret.
2046 */
2047 if (beenhere == 0) {
2048 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2049 RND_EXTRACT_ANY);
2050 beenhere = 1;
2051 }
2052
2053 if (tcp_do_rfc1948) {
2054 MD5_CTX ctx;
2055 u_int8_t hash[16]; /* XXX MD5 knowledge */
2056
2057 /*
2058 * Compute the base value of the ISS. It is a hash
2059 * of (saddr, sport, daddr, dport, secret).
2060 */
2061 MD5Init(&ctx);
2062
2063 MD5Update(&ctx, (u_char *) laddr, addrsz);
2064 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2065
2066 MD5Update(&ctx, (u_char *) faddr, addrsz);
2067 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2068
2069 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2070
2071 MD5Final(hash, &ctx);
2072
2073 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2074
2075 /*
2076 * Now increment our "timer", and add it in to
2077 * the computed value.
2078 *
2079 * XXX Use `addin'?
2080 * XXX TCP_ISSINCR too large to use?
2081 */
2082 tcp_iss_seq += TCP_ISSINCR;
2083 #ifdef TCPISS_DEBUG
2084 printf("ISS hash 0x%08x, ", tcp_iss);
2085 #endif
2086 tcp_iss += tcp_iss_seq + addin;
2087 #ifdef TCPISS_DEBUG
2088 printf("new ISS 0x%08x\n", tcp_iss);
2089 #endif
2090 } else
2091 #endif /* NRND > 0 */
2092 {
2093 /*
2094 * Randomize.
2095 */
2096 #if NRND > 0
2097 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2098 #else
2099 tcp_iss = arc4random();
2100 #endif
2101
2102 /*
2103 * If we were asked to add some amount to a known value,
2104 * we will take a random value obtained above, mask off
2105 * the upper bits, and add in the known value. We also
2106 * add in a constant to ensure that we are at least a
2107 * certain distance from the original value.
2108 *
2109 * This is used when an old connection is in timed wait
2110 * and we have a new one coming in, for instance.
2111 */
2112 if (addin != 0) {
2113 #ifdef TCPISS_DEBUG
2114 printf("Random %08x, ", tcp_iss);
2115 #endif
2116 tcp_iss &= TCP_ISS_RANDOM_MASK;
2117 tcp_iss += addin + TCP_ISSINCR;
2118 #ifdef TCPISS_DEBUG
2119 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2120 #endif
2121 } else {
2122 tcp_iss &= TCP_ISS_RANDOM_MASK;
2123 tcp_iss += tcp_iss_seq;
2124 tcp_iss_seq += TCP_ISSINCR;
2125 #ifdef TCPISS_DEBUG
2126 printf("ISS %08x\n", tcp_iss);
2127 #endif
2128 }
2129 }
2130
2131 if (tcp_compat_42) {
2132 /*
2133 * Limit it to the positive range for really old TCP
2134 * implementations.
2135 * Just AND off the top bit instead of checking if
2136 * is set first - saves a branch 50% of the time.
2137 */
2138 tcp_iss &= 0x7fffffff; /* XXX */
2139 }
2140
2141 return (tcp_iss);
2142 }
2143
2144 #if defined(IPSEC) || defined(FAST_IPSEC)
2145 /* compute ESP/AH header size for TCP, including outer IP header. */
2146 size_t
2147 ipsec4_hdrsiz_tcp(tp)
2148 struct tcpcb *tp;
2149 {
2150 struct inpcb *inp;
2151 size_t hdrsiz;
2152
2153 /* XXX mapped addr case (tp->t_in6pcb) */
2154 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2155 return 0;
2156 switch (tp->t_family) {
2157 case AF_INET:
2158 /* XXX: should use currect direction. */
2159 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2160 break;
2161 default:
2162 hdrsiz = 0;
2163 break;
2164 }
2165
2166 return hdrsiz;
2167 }
2168
2169 #ifdef INET6
2170 size_t
2171 ipsec6_hdrsiz_tcp(tp)
2172 struct tcpcb *tp;
2173 {
2174 struct in6pcb *in6p;
2175 size_t hdrsiz;
2176
2177 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2178 return 0;
2179 switch (tp->t_family) {
2180 case AF_INET6:
2181 /* XXX: should use currect direction. */
2182 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2183 break;
2184 case AF_INET:
2185 /* mapped address case - tricky */
2186 default:
2187 hdrsiz = 0;
2188 break;
2189 }
2190
2191 return hdrsiz;
2192 }
2193 #endif
2194 #endif /*IPSEC*/
2195
2196 /*
2197 * Determine the length of the TCP options for this connection.
2198 *
2199 * XXX: What do we do for SACK, when we add that? Just reserve
2200 * all of the space? Otherwise we can't exactly be incrementing
2201 * cwnd by an amount that varies depending on the amount we last
2202 * had to SACK!
2203 */
2204
2205 u_int
2206 tcp_optlen(tp)
2207 struct tcpcb *tp;
2208 {
2209 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2210 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2211 return TCPOLEN_TSTAMP_APPA;
2212 else
2213 return 0;
2214 }
2215