tcp_subr.c revision 1.160 1 /* $NetBSD: tcp_subr.c,v 1.160 2004/01/07 19:15:43 matt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.160 2004/01/07 19:15:43 matt Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcpip.h>
155
156 #ifdef IPSEC
157 #include <netinet6/ipsec.h>
158 #endif /*IPSEC*/
159
160 #ifdef FAST_IPSEC
161 #include <netipsec/ipsec.h>
162 #ifdef INET6
163 #include <netipsec/ipsec6.h>
164 #endif
165 #endif /* FAST_IPSEC*/
166
167
168 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
169 struct tcpstat tcpstat; /* tcp statistics */
170 u_int32_t tcp_now; /* for RFC 1323 timestamps */
171
172 /* patchable/settable parameters for tcp */
173 int tcp_mssdflt = TCP_MSS;
174 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
175 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
176 #if NRND > 0
177 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
178 #endif
179 int tcp_do_sack = 1; /* selective acknowledgement */
180 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
181 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
182 int tcp_do_newreno = 0; /* Use the New Reno algorithms */
183 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
184 #ifndef TCP_INIT_WIN
185 #define TCP_INIT_WIN 1 /* initial slow start window */
186 #endif
187 #ifndef TCP_INIT_WIN_LOCAL
188 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
189 #endif
190 int tcp_init_win = TCP_INIT_WIN;
191 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
192 int tcp_mss_ifmtu = 0;
193 #ifdef TCP_COMPAT_42
194 int tcp_compat_42 = 1;
195 #else
196 int tcp_compat_42 = 0;
197 #endif
198 int tcp_rst_ppslim = 100; /* 100pps */
199
200 /* tcb hash */
201 #ifndef TCBHASHSIZE
202 #define TCBHASHSIZE 128
203 #endif
204 int tcbhashsize = TCBHASHSIZE;
205
206 /* syn hash parameters */
207 #define TCP_SYN_HASH_SIZE 293
208 #define TCP_SYN_BUCKET_SIZE 35
209 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
210 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
211 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
212 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
213
214 int tcp_freeq __P((struct tcpcb *));
215
216 #ifdef INET
217 void tcp_mtudisc_callback __P((struct in_addr));
218 #endif
219 #ifdef INET6
220 void tcp6_mtudisc_callback __P((struct in6_addr *));
221 #endif
222
223 void tcp_mtudisc __P((struct inpcb *, int));
224 #ifdef INET6
225 void tcp6_mtudisc __P((struct in6pcb *, int));
226 #endif
227
228 struct pool tcpcb_pool;
229
230 #ifdef TCP_CSUM_COUNTERS
231 #include <sys/device.h>
232
233 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
234 NULL, "tcp", "hwcsum bad");
235 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
236 NULL, "tcp", "hwcsum ok");
237 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
238 NULL, "tcp", "hwcsum data");
239 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
240 NULL, "tcp", "swcsum");
241 #endif /* TCP_CSUM_COUNTERS */
242
243 #ifdef TCP_OUTPUT_COUNTERS
244 #include <sys/device.h>
245
246 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
247 NULL, "tcp", "output big header");
248 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
249 NULL, "tcp", "output predict hit");
250 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
251 NULL, "tcp", "output predict miss");
252 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
253 NULL, "tcp", "output copy small");
254 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
255 NULL, "tcp", "output copy big");
256 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
257 NULL, "tcp", "output reference big");
258 #endif /* TCP_OUTPUT_COUNTERS */
259
260 #ifdef TCP_REASS_COUNTERS
261 #include <sys/device.h>
262
263 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264 NULL, "tcp_reass", "calls");
265 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266 &tcp_reass_, "tcp_reass", "insert into empty queue");
267 struct evcnt tcp_reass_iteration[8] = {
268 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
269 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
270 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
271 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
272 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
273 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
274 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
275 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
276 };
277 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
278 &tcp_reass_, "tcp_reass", "prepend to first");
279 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
280 &tcp_reass_, "tcp_reass", "prepend");
281 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282 &tcp_reass_, "tcp_reass", "insert");
283 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284 &tcp_reass_, "tcp_reass", "insert at tail");
285 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
286 &tcp_reass_, "tcp_reass", "append");
287 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
288 &tcp_reass_, "tcp_reass", "append to tail fragment");
289 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
290 &tcp_reass_, "tcp_reass", "overlap at end");
291 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
292 &tcp_reass_, "tcp_reass", "overlap at start");
293 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
294 &tcp_reass_, "tcp_reass", "duplicate segment");
295 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
296 &tcp_reass_, "tcp_reass", "duplicate fragment");
297
298 #endif /* TCP_REASS_COUNTERS */
299
300 #ifdef MBUFTRACE
301 struct mowner tcp_mowner = { "tcp" };
302 struct mowner tcp_rx_mowner = { "tcp", "rx" };
303 struct mowner tcp_tx_mowner = { "tcp", "tx" };
304 #endif
305
306 /*
307 * Tcp initialization
308 */
309 void
310 tcp_init()
311 {
312 int hlen;
313
314 /* Initialize the TCPCB template. */
315 tcp_tcpcb_template();
316
317 pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
318 NULL);
319 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
320
321 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
322 #ifdef INET6
323 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
324 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
325 #endif
326 if (max_protohdr < hlen)
327 max_protohdr = hlen;
328 if (max_linkhdr + hlen > MHLEN)
329 panic("tcp_init");
330
331 #ifdef INET
332 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
333 #endif
334 #ifdef INET6
335 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
336 #endif
337
338 /* Initialize timer state. */
339 tcp_timer_init();
340
341 /* Initialize the compressed state engine. */
342 syn_cache_init();
343
344 #ifdef TCP_CSUM_COUNTERS
345 evcnt_attach_static(&tcp_hwcsum_bad);
346 evcnt_attach_static(&tcp_hwcsum_ok);
347 evcnt_attach_static(&tcp_hwcsum_data);
348 evcnt_attach_static(&tcp_swcsum);
349 #endif /* TCP_CSUM_COUNTERS */
350
351 #ifdef TCP_OUTPUT_COUNTERS
352 evcnt_attach_static(&tcp_output_bigheader);
353 evcnt_attach_static(&tcp_output_predict_hit);
354 evcnt_attach_static(&tcp_output_predict_miss);
355 evcnt_attach_static(&tcp_output_copysmall);
356 evcnt_attach_static(&tcp_output_copybig);
357 evcnt_attach_static(&tcp_output_refbig);
358 #endif /* TCP_OUTPUT_COUNTERS */
359
360 #ifdef TCP_REASS_COUNTERS
361 evcnt_attach_static(&tcp_reass_);
362 evcnt_attach_static(&tcp_reass_empty);
363 evcnt_attach_static(&tcp_reass_iteration[0]);
364 evcnt_attach_static(&tcp_reass_iteration[1]);
365 evcnt_attach_static(&tcp_reass_iteration[2]);
366 evcnt_attach_static(&tcp_reass_iteration[3]);
367 evcnt_attach_static(&tcp_reass_iteration[4]);
368 evcnt_attach_static(&tcp_reass_iteration[5]);
369 evcnt_attach_static(&tcp_reass_iteration[6]);
370 evcnt_attach_static(&tcp_reass_iteration[7]);
371 evcnt_attach_static(&tcp_reass_prependfirst);
372 evcnt_attach_static(&tcp_reass_prepend);
373 evcnt_attach_static(&tcp_reass_insert);
374 evcnt_attach_static(&tcp_reass_inserttail);
375 evcnt_attach_static(&tcp_reass_append);
376 evcnt_attach_static(&tcp_reass_appendtail);
377 evcnt_attach_static(&tcp_reass_overlaptail);
378 evcnt_attach_static(&tcp_reass_overlapfront);
379 evcnt_attach_static(&tcp_reass_segdup);
380 evcnt_attach_static(&tcp_reass_fragdup);
381 #endif /* TCP_REASS_COUNTERS */
382
383 MOWNER_ATTACH(&tcp_tx_mowner);
384 MOWNER_ATTACH(&tcp_rx_mowner);
385 MOWNER_ATTACH(&tcp_mowner);
386 }
387
388 /*
389 * Create template to be used to send tcp packets on a connection.
390 * Call after host entry created, allocates an mbuf and fills
391 * in a skeletal tcp/ip header, minimizing the amount of work
392 * necessary when the connection is used.
393 */
394 struct mbuf *
395 tcp_template(tp)
396 struct tcpcb *tp;
397 {
398 struct inpcb *inp = tp->t_inpcb;
399 #ifdef INET6
400 struct in6pcb *in6p = tp->t_in6pcb;
401 #endif
402 struct tcphdr *n;
403 struct mbuf *m;
404 int hlen;
405
406 switch (tp->t_family) {
407 case AF_INET:
408 hlen = sizeof(struct ip);
409 if (inp)
410 break;
411 #ifdef INET6
412 if (in6p) {
413 /* mapped addr case */
414 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
415 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
416 break;
417 }
418 #endif
419 return NULL; /*EINVAL*/
420 #ifdef INET6
421 case AF_INET6:
422 hlen = sizeof(struct ip6_hdr);
423 if (in6p) {
424 /* more sainty check? */
425 break;
426 }
427 return NULL; /*EINVAL*/
428 #endif
429 default:
430 hlen = 0; /*pacify gcc*/
431 return NULL; /*EAFNOSUPPORT*/
432 }
433 #ifdef DIAGNOSTIC
434 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
435 panic("mclbytes too small for t_template");
436 #endif
437 m = tp->t_template;
438 if (m && m->m_len == hlen + sizeof(struct tcphdr))
439 ;
440 else {
441 if (m)
442 m_freem(m);
443 m = tp->t_template = NULL;
444 MGETHDR(m, M_DONTWAIT, MT_HEADER);
445 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
446 MCLGET(m, M_DONTWAIT);
447 if ((m->m_flags & M_EXT) == 0) {
448 m_free(m);
449 m = NULL;
450 }
451 }
452 if (m == NULL)
453 return NULL;
454 MCLAIM(m, &tcp_mowner);
455 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
456 }
457
458 bzero(mtod(m, caddr_t), m->m_len);
459
460 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
461
462 switch (tp->t_family) {
463 case AF_INET:
464 {
465 struct ipovly *ipov;
466 mtod(m, struct ip *)->ip_v = 4;
467 mtod(m, struct ip *)->ip_hl = hlen >> 2;
468 ipov = mtod(m, struct ipovly *);
469 ipov->ih_pr = IPPROTO_TCP;
470 ipov->ih_len = htons(sizeof(struct tcphdr));
471 if (inp) {
472 ipov->ih_src = inp->inp_laddr;
473 ipov->ih_dst = inp->inp_faddr;
474 }
475 #ifdef INET6
476 else if (in6p) {
477 /* mapped addr case */
478 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
479 sizeof(ipov->ih_src));
480 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
481 sizeof(ipov->ih_dst));
482 }
483 #endif
484 /*
485 * Compute the pseudo-header portion of the checksum
486 * now. We incrementally add in the TCP option and
487 * payload lengths later, and then compute the TCP
488 * checksum right before the packet is sent off onto
489 * the wire.
490 */
491 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
492 ipov->ih_dst.s_addr,
493 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
494 break;
495 }
496 #ifdef INET6
497 case AF_INET6:
498 {
499 struct ip6_hdr *ip6;
500 mtod(m, struct ip *)->ip_v = 6;
501 ip6 = mtod(m, struct ip6_hdr *);
502 ip6->ip6_nxt = IPPROTO_TCP;
503 ip6->ip6_plen = htons(sizeof(struct tcphdr));
504 ip6->ip6_src = in6p->in6p_laddr;
505 ip6->ip6_dst = in6p->in6p_faddr;
506 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
507 if (ip6_auto_flowlabel) {
508 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
509 ip6->ip6_flow |=
510 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
511 }
512 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
513 ip6->ip6_vfc |= IPV6_VERSION;
514
515 /*
516 * Compute the pseudo-header portion of the checksum
517 * now. We incrementally add in the TCP option and
518 * payload lengths later, and then compute the TCP
519 * checksum right before the packet is sent off onto
520 * the wire.
521 */
522 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
523 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
524 htonl(IPPROTO_TCP));
525 break;
526 }
527 #endif
528 }
529 if (inp) {
530 n->th_sport = inp->inp_lport;
531 n->th_dport = inp->inp_fport;
532 }
533 #ifdef INET6
534 else if (in6p) {
535 n->th_sport = in6p->in6p_lport;
536 n->th_dport = in6p->in6p_fport;
537 }
538 #endif
539 n->th_seq = 0;
540 n->th_ack = 0;
541 n->th_x2 = 0;
542 n->th_off = 5;
543 n->th_flags = 0;
544 n->th_win = 0;
545 n->th_urp = 0;
546 return (m);
547 }
548
549 /*
550 * Send a single message to the TCP at address specified by
551 * the given TCP/IP header. If m == 0, then we make a copy
552 * of the tcpiphdr at ti and send directly to the addressed host.
553 * This is used to force keep alive messages out using the TCP
554 * template for a connection tp->t_template. If flags are given
555 * then we send a message back to the TCP which originated the
556 * segment ti, and discard the mbuf containing it and any other
557 * attached mbufs.
558 *
559 * In any case the ack and sequence number of the transmitted
560 * segment are as specified by the parameters.
561 */
562 int
563 tcp_respond(tp, template, m, th0, ack, seq, flags)
564 struct tcpcb *tp;
565 struct mbuf *template;
566 struct mbuf *m;
567 struct tcphdr *th0;
568 tcp_seq ack, seq;
569 int flags;
570 {
571 struct route *ro;
572 int error, tlen, win = 0;
573 int hlen;
574 struct ip *ip;
575 #ifdef INET6
576 struct ip6_hdr *ip6;
577 #endif
578 int family; /* family on packet, not inpcb/in6pcb! */
579 struct tcphdr *th;
580 struct socket *so;
581
582 if (tp != NULL && (flags & TH_RST) == 0) {
583 #ifdef DIAGNOSTIC
584 if (tp->t_inpcb && tp->t_in6pcb)
585 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
586 #endif
587 #ifdef INET
588 if (tp->t_inpcb)
589 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
590 #endif
591 #ifdef INET6
592 if (tp->t_in6pcb)
593 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
594 #endif
595 }
596
597 th = NULL; /* Quell uninitialized warning */
598 ip = NULL;
599 #ifdef INET6
600 ip6 = NULL;
601 #endif
602 if (m == 0) {
603 if (!template)
604 return EINVAL;
605
606 /* get family information from template */
607 switch (mtod(template, struct ip *)->ip_v) {
608 case 4:
609 family = AF_INET;
610 hlen = sizeof(struct ip);
611 break;
612 #ifdef INET6
613 case 6:
614 family = AF_INET6;
615 hlen = sizeof(struct ip6_hdr);
616 break;
617 #endif
618 default:
619 return EAFNOSUPPORT;
620 }
621
622 MGETHDR(m, M_DONTWAIT, MT_HEADER);
623 if (m) {
624 MCLAIM(m, &tcp_tx_mowner);
625 MCLGET(m, M_DONTWAIT);
626 if ((m->m_flags & M_EXT) == 0) {
627 m_free(m);
628 m = NULL;
629 }
630 }
631 if (m == NULL)
632 return (ENOBUFS);
633
634 if (tcp_compat_42)
635 tlen = 1;
636 else
637 tlen = 0;
638
639 m->m_data += max_linkhdr;
640 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
641 template->m_len);
642 switch (family) {
643 case AF_INET:
644 ip = mtod(m, struct ip *);
645 th = (struct tcphdr *)(ip + 1);
646 break;
647 #ifdef INET6
648 case AF_INET6:
649 ip6 = mtod(m, struct ip6_hdr *);
650 th = (struct tcphdr *)(ip6 + 1);
651 break;
652 #endif
653 #if 0
654 default:
655 /* noone will visit here */
656 m_freem(m);
657 return EAFNOSUPPORT;
658 #endif
659 }
660 flags = TH_ACK;
661 } else {
662
663 if ((m->m_flags & M_PKTHDR) == 0) {
664 #if 0
665 printf("non PKTHDR to tcp_respond\n");
666 #endif
667 m_freem(m);
668 return EINVAL;
669 }
670 #ifdef DIAGNOSTIC
671 if (!th0)
672 panic("th0 == NULL in tcp_respond");
673 #endif
674
675 /* get family information from m */
676 switch (mtod(m, struct ip *)->ip_v) {
677 case 4:
678 family = AF_INET;
679 hlen = sizeof(struct ip);
680 ip = mtod(m, struct ip *);
681 break;
682 #ifdef INET6
683 case 6:
684 family = AF_INET6;
685 hlen = sizeof(struct ip6_hdr);
686 ip6 = mtod(m, struct ip6_hdr *);
687 break;
688 #endif
689 default:
690 m_freem(m);
691 return EAFNOSUPPORT;
692 }
693 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
694 tlen = sizeof(*th0);
695 else
696 tlen = th0->th_off << 2;
697
698 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
699 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
700 m->m_len = hlen + tlen;
701 m_freem(m->m_next);
702 m->m_next = NULL;
703 } else {
704 struct mbuf *n;
705
706 #ifdef DIAGNOSTIC
707 if (max_linkhdr + hlen + tlen > MCLBYTES) {
708 m_freem(m);
709 return EMSGSIZE;
710 }
711 #endif
712 MGETHDR(n, M_DONTWAIT, MT_HEADER);
713 if (n && max_linkhdr + hlen + tlen > MHLEN) {
714 MCLGET(n, M_DONTWAIT);
715 if ((n->m_flags & M_EXT) == 0) {
716 m_freem(n);
717 n = NULL;
718 }
719 }
720 if (!n) {
721 m_freem(m);
722 return ENOBUFS;
723 }
724
725 MCLAIM(n, &tcp_tx_mowner);
726 n->m_data += max_linkhdr;
727 n->m_len = hlen + tlen;
728 m_copyback(n, 0, hlen, mtod(m, caddr_t));
729 m_copyback(n, hlen, tlen, (caddr_t)th0);
730
731 m_freem(m);
732 m = n;
733 n = NULL;
734 }
735
736 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
737 switch (family) {
738 case AF_INET:
739 ip = mtod(m, struct ip *);
740 th = (struct tcphdr *)(ip + 1);
741 ip->ip_p = IPPROTO_TCP;
742 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
743 ip->ip_p = IPPROTO_TCP;
744 break;
745 #ifdef INET6
746 case AF_INET6:
747 ip6 = mtod(m, struct ip6_hdr *);
748 th = (struct tcphdr *)(ip6 + 1);
749 ip6->ip6_nxt = IPPROTO_TCP;
750 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
751 ip6->ip6_nxt = IPPROTO_TCP;
752 break;
753 #endif
754 #if 0
755 default:
756 /* noone will visit here */
757 m_freem(m);
758 return EAFNOSUPPORT;
759 #endif
760 }
761 xchg(th->th_dport, th->th_sport, u_int16_t);
762 #undef xchg
763 tlen = 0; /*be friendly with the following code*/
764 }
765 th->th_seq = htonl(seq);
766 th->th_ack = htonl(ack);
767 th->th_x2 = 0;
768 if ((flags & TH_SYN) == 0) {
769 if (tp)
770 win >>= tp->rcv_scale;
771 if (win > TCP_MAXWIN)
772 win = TCP_MAXWIN;
773 th->th_win = htons((u_int16_t)win);
774 th->th_off = sizeof (struct tcphdr) >> 2;
775 tlen += sizeof(*th);
776 } else
777 tlen += th->th_off << 2;
778 m->m_len = hlen + tlen;
779 m->m_pkthdr.len = hlen + tlen;
780 m->m_pkthdr.rcvif = (struct ifnet *) 0;
781 th->th_flags = flags;
782 th->th_urp = 0;
783
784 switch (family) {
785 #ifdef INET
786 case AF_INET:
787 {
788 struct ipovly *ipov = (struct ipovly *)ip;
789 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
790 ipov->ih_len = htons((u_int16_t)tlen);
791
792 th->th_sum = 0;
793 th->th_sum = in_cksum(m, hlen + tlen);
794 ip->ip_len = htons(hlen + tlen);
795 ip->ip_ttl = ip_defttl;
796 break;
797 }
798 #endif
799 #ifdef INET6
800 case AF_INET6:
801 {
802 th->th_sum = 0;
803 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
804 tlen);
805 ip6->ip6_plen = ntohs(tlen);
806 if (tp && tp->t_in6pcb) {
807 struct ifnet *oifp;
808 ro = (struct route *)&tp->t_in6pcb->in6p_route;
809 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
810 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
811 } else
812 ip6->ip6_hlim = ip6_defhlim;
813 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
814 if (ip6_auto_flowlabel) {
815 ip6->ip6_flow |=
816 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
817 }
818 break;
819 }
820 #endif
821 }
822
823 if (tp && tp->t_inpcb)
824 so = tp->t_inpcb->inp_socket;
825 #ifdef INET6
826 else if (tp && tp->t_in6pcb)
827 so = tp->t_in6pcb->in6p_socket;
828 #endif
829 else
830 so = NULL;
831
832 if (tp != NULL && tp->t_inpcb != NULL) {
833 ro = &tp->t_inpcb->inp_route;
834 #ifdef DIAGNOSTIC
835 if (family != AF_INET)
836 panic("tcp_respond: address family mismatch");
837 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
838 panic("tcp_respond: ip_dst %x != inp_faddr %x",
839 ntohl(ip->ip_dst.s_addr),
840 ntohl(tp->t_inpcb->inp_faddr.s_addr));
841 }
842 #endif
843 }
844 #ifdef INET6
845 else if (tp != NULL && tp->t_in6pcb != NULL) {
846 ro = (struct route *)&tp->t_in6pcb->in6p_route;
847 #ifdef DIAGNOSTIC
848 if (family == AF_INET) {
849 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
850 panic("tcp_respond: not mapped addr");
851 if (bcmp(&ip->ip_dst,
852 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
853 sizeof(ip->ip_dst)) != 0) {
854 panic("tcp_respond: ip_dst != in6p_faddr");
855 }
856 } else if (family == AF_INET6) {
857 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
858 &tp->t_in6pcb->in6p_faddr))
859 panic("tcp_respond: ip6_dst != in6p_faddr");
860 } else
861 panic("tcp_respond: address family mismatch");
862 #endif
863 }
864 #endif
865 else
866 ro = NULL;
867
868 switch (family) {
869 #ifdef INET
870 case AF_INET:
871 error = ip_output(m, NULL, ro,
872 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
873 (struct ip_moptions *)0, so);
874 break;
875 #endif
876 #ifdef INET6
877 case AF_INET6:
878 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
879 (struct ip6_moptions *)0, so, NULL);
880 break;
881 #endif
882 default:
883 error = EAFNOSUPPORT;
884 break;
885 }
886
887 return (error);
888 }
889
890 /*
891 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
892 * a bunch of members individually, we maintain this template for the
893 * static and mostly-static components of the TCPCB, and copy it into
894 * the new TCPCB instead.
895 */
896 static struct tcpcb tcpcb_template = {
897 /*
898 * If TCP_NTIMERS ever changes, we'll need to update this
899 * initializer.
900 */
901 .t_timer = {
902 CALLOUT_INITIALIZER,
903 CALLOUT_INITIALIZER,
904 CALLOUT_INITIALIZER,
905 CALLOUT_INITIALIZER,
906 },
907 .t_delack_ch = CALLOUT_INITIALIZER,
908
909 .t_srtt = TCPTV_SRTTBASE,
910 .t_rttmin = TCPTV_MIN,
911
912 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
913 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
914 };
915
916 /*
917 * Updates the TCPCB template whenever a parameter that would affect
918 * the template is changed.
919 */
920 void
921 tcp_tcpcb_template(void)
922 {
923 struct tcpcb *tp = &tcpcb_template;
924 int flags;
925
926 tp->t_peermss = tcp_mssdflt;
927 tp->t_ourmss = tcp_mssdflt;
928 tp->t_segsz = tcp_mssdflt;
929
930 flags = 0;
931 if (tcp_do_rfc1323 && tcp_do_win_scale)
932 flags |= TF_REQ_SCALE;
933 if (tcp_do_rfc1323 && tcp_do_timestamps)
934 flags |= TF_REQ_TSTMP;
935 if (tcp_do_sack == 2)
936 flags |= TF_WILL_SACK;
937 else if (tcp_do_sack == 1)
938 flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
939 flags |= TF_CANT_TXSACK;
940 tp->t_flags = flags;
941
942 /*
943 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
944 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
945 * reasonable initial retransmit time.
946 */
947 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
948 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
949 TCPTV_MIN, TCPTV_REXMTMAX);
950 }
951
952 /*
953 * Create a new TCP control block, making an
954 * empty reassembly queue and hooking it to the argument
955 * protocol control block.
956 */
957 struct tcpcb *
958 tcp_newtcpcb(family, aux)
959 int family; /* selects inpcb, or in6pcb */
960 void *aux;
961 {
962 struct tcpcb *tp;
963 int i;
964
965 /* XXX Consider using a pool_cache for speed. */
966 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
967 if (tp == NULL)
968 return (NULL);
969 memcpy(tp, &tcpcb_template, sizeof(*tp));
970 TAILQ_INIT(&tp->segq);
971 TAILQ_INIT(&tp->timeq);
972 tp->t_family = family; /* may be overridden later on */
973 LIST_INIT(&tp->t_sc); /* XXX can template this */
974
975 /* Don't sweat this loop; hopefully the compiler will unroll it. */
976 for (i = 0; i < TCPT_NTIMERS; i++)
977 TCP_TIMER_INIT(tp, i);
978
979 switch (family) {
980 case AF_INET:
981 {
982 struct inpcb *inp = (struct inpcb *)aux;
983
984 inp->inp_ip.ip_ttl = ip_defttl;
985 inp->inp_ppcb = (caddr_t)tp;
986
987 tp->t_inpcb = inp;
988 tp->t_mtudisc = ip_mtudisc;
989 break;
990 }
991 #ifdef INET6
992 case AF_INET6:
993 {
994 struct in6pcb *in6p = (struct in6pcb *)aux;
995
996 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
997 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
998 : NULL);
999 in6p->in6p_ppcb = (caddr_t)tp;
1000
1001 tp->t_in6pcb = in6p;
1002 /* for IPv6, always try to run path MTU discovery */
1003 tp->t_mtudisc = 1;
1004 break;
1005 }
1006 #endif /* INET6 */
1007 default:
1008 pool_put(&tcpcb_pool, tp);
1009 return (NULL);
1010 }
1011
1012 /*
1013 * Initialize our timebase. When we send timestamps, we take
1014 * the delta from tcp_now -- this means each connection always
1015 * gets a timebase of 0, which makes it, among other things,
1016 * more difficult to determine how long a system has been up,
1017 * and thus how many TCP sequence increments have occurred.
1018 */
1019 tp->ts_timebase = tcp_now;
1020
1021 return (tp);
1022 }
1023
1024 /*
1025 * Drop a TCP connection, reporting
1026 * the specified error. If connection is synchronized,
1027 * then send a RST to peer.
1028 */
1029 struct tcpcb *
1030 tcp_drop(tp, errno)
1031 struct tcpcb *tp;
1032 int errno;
1033 {
1034 struct socket *so = NULL;
1035
1036 #ifdef DIAGNOSTIC
1037 if (tp->t_inpcb && tp->t_in6pcb)
1038 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1039 #endif
1040 #ifdef INET
1041 if (tp->t_inpcb)
1042 so = tp->t_inpcb->inp_socket;
1043 #endif
1044 #ifdef INET6
1045 if (tp->t_in6pcb)
1046 so = tp->t_in6pcb->in6p_socket;
1047 #endif
1048 if (!so)
1049 return NULL;
1050
1051 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1052 tp->t_state = TCPS_CLOSED;
1053 (void) tcp_output(tp);
1054 tcpstat.tcps_drops++;
1055 } else
1056 tcpstat.tcps_conndrops++;
1057 if (errno == ETIMEDOUT && tp->t_softerror)
1058 errno = tp->t_softerror;
1059 so->so_error = errno;
1060 return (tcp_close(tp));
1061 }
1062
1063 /*
1064 * Return whether this tcpcb is marked as dead, indicating
1065 * to the calling timer function that no further action should
1066 * be taken, as we are about to release this tcpcb. The release
1067 * of the storage will be done if this is the last timer running.
1068 *
1069 * This is typically called from the callout handler function before
1070 * callout_ack() is done, therefore we need to test the number of
1071 * running timer functions against 1 below, not 0.
1072 */
1073 int
1074 tcp_isdead(tp)
1075 struct tcpcb *tp;
1076 {
1077 int dead = (tp->t_flags & TF_DEAD);
1078
1079 if (__predict_false(dead)) {
1080 if (tcp_timers_invoking(tp) > 1)
1081 /* not quite there yet -- count separately? */
1082 return dead;
1083 tcpstat.tcps_delayed_free++;
1084 pool_put(&tcpcb_pool, tp);
1085 }
1086 return dead;
1087 }
1088
1089 /*
1090 * Close a TCP control block:
1091 * discard all space held by the tcp
1092 * discard internet protocol block
1093 * wake up any sleepers
1094 */
1095 struct tcpcb *
1096 tcp_close(tp)
1097 struct tcpcb *tp;
1098 {
1099 struct inpcb *inp;
1100 #ifdef INET6
1101 struct in6pcb *in6p;
1102 #endif
1103 struct socket *so;
1104 #ifdef RTV_RTT
1105 struct rtentry *rt;
1106 #endif
1107 struct route *ro;
1108
1109 inp = tp->t_inpcb;
1110 #ifdef INET6
1111 in6p = tp->t_in6pcb;
1112 #endif
1113 so = NULL;
1114 ro = NULL;
1115 if (inp) {
1116 so = inp->inp_socket;
1117 ro = &inp->inp_route;
1118 }
1119 #ifdef INET6
1120 else if (in6p) {
1121 so = in6p->in6p_socket;
1122 ro = (struct route *)&in6p->in6p_route;
1123 }
1124 #endif
1125
1126 #ifdef RTV_RTT
1127 /*
1128 * If we sent enough data to get some meaningful characteristics,
1129 * save them in the routing entry. 'Enough' is arbitrarily
1130 * defined as the sendpipesize (default 4K) * 16. This would
1131 * give us 16 rtt samples assuming we only get one sample per
1132 * window (the usual case on a long haul net). 16 samples is
1133 * enough for the srtt filter to converge to within 5% of the correct
1134 * value; fewer samples and we could save a very bogus rtt.
1135 *
1136 * Don't update the default route's characteristics and don't
1137 * update anything that the user "locked".
1138 */
1139 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1140 ro && (rt = ro->ro_rt) &&
1141 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1142 u_long i = 0;
1143
1144 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1145 i = tp->t_srtt *
1146 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1147 if (rt->rt_rmx.rmx_rtt && i)
1148 /*
1149 * filter this update to half the old & half
1150 * the new values, converting scale.
1151 * See route.h and tcp_var.h for a
1152 * description of the scaling constants.
1153 */
1154 rt->rt_rmx.rmx_rtt =
1155 (rt->rt_rmx.rmx_rtt + i) / 2;
1156 else
1157 rt->rt_rmx.rmx_rtt = i;
1158 }
1159 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1160 i = tp->t_rttvar *
1161 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1162 if (rt->rt_rmx.rmx_rttvar && i)
1163 rt->rt_rmx.rmx_rttvar =
1164 (rt->rt_rmx.rmx_rttvar + i) / 2;
1165 else
1166 rt->rt_rmx.rmx_rttvar = i;
1167 }
1168 /*
1169 * update the pipelimit (ssthresh) if it has been updated
1170 * already or if a pipesize was specified & the threshhold
1171 * got below half the pipesize. I.e., wait for bad news
1172 * before we start updating, then update on both good
1173 * and bad news.
1174 */
1175 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1176 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1177 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1178 /*
1179 * convert the limit from user data bytes to
1180 * packets then to packet data bytes.
1181 */
1182 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1183 if (i < 2)
1184 i = 2;
1185 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1186 if (rt->rt_rmx.rmx_ssthresh)
1187 rt->rt_rmx.rmx_ssthresh =
1188 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1189 else
1190 rt->rt_rmx.rmx_ssthresh = i;
1191 }
1192 }
1193 #endif /* RTV_RTT */
1194 /* free the reassembly queue, if any */
1195 TCP_REASS_LOCK(tp);
1196 (void) tcp_freeq(tp);
1197 TCP_REASS_UNLOCK(tp);
1198
1199 tcp_canceltimers(tp);
1200 TCP_CLEAR_DELACK(tp);
1201 syn_cache_cleanup(tp);
1202
1203 if (tp->t_template) {
1204 m_free(tp->t_template);
1205 tp->t_template = NULL;
1206 }
1207 if (tcp_timers_invoking(tp))
1208 tp->t_flags |= TF_DEAD;
1209 else
1210 pool_put(&tcpcb_pool, tp);
1211
1212 if (inp) {
1213 inp->inp_ppcb = 0;
1214 soisdisconnected(so);
1215 in_pcbdetach(inp);
1216 }
1217 #ifdef INET6
1218 else if (in6p) {
1219 in6p->in6p_ppcb = 0;
1220 soisdisconnected(so);
1221 in6_pcbdetach(in6p);
1222 }
1223 #endif
1224 tcpstat.tcps_closed++;
1225 return ((struct tcpcb *)0);
1226 }
1227
1228 int
1229 tcp_freeq(tp)
1230 struct tcpcb *tp;
1231 {
1232 struct ipqent *qe;
1233 int rv = 0;
1234 #ifdef TCPREASS_DEBUG
1235 int i = 0;
1236 #endif
1237
1238 TCP_REASS_LOCK_CHECK(tp);
1239
1240 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1241 #ifdef TCPREASS_DEBUG
1242 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1243 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1244 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1245 #endif
1246 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1247 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1248 m_freem(qe->ipqe_m);
1249 pool_put(&ipqent_pool, qe);
1250 rv = 1;
1251 }
1252 return (rv);
1253 }
1254
1255 /*
1256 * Protocol drain routine. Called when memory is in short supply.
1257 */
1258 void
1259 tcp_drain()
1260 {
1261 struct inpcb_hdr *inph;
1262 struct tcpcb *tp;
1263
1264 /*
1265 * Free the sequence queue of all TCP connections.
1266 */
1267 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1268 switch (inph->inph_af) {
1269 case AF_INET:
1270 tp = intotcpcb((struct inpcb *)inph);
1271 break;
1272 #ifdef INET6
1273 case AF_INET6:
1274 tp = in6totcpcb((struct in6pcb *)inph);
1275 break;
1276 #endif
1277 default:
1278 tp = NULL;
1279 break;
1280 }
1281 if (tp != NULL) {
1282 /*
1283 * We may be called from a device's interrupt
1284 * context. If the tcpcb is already busy,
1285 * just bail out now.
1286 */
1287 if (tcp_reass_lock_try(tp) == 0)
1288 continue;
1289 if (tcp_freeq(tp))
1290 tcpstat.tcps_connsdrained++;
1291 TCP_REASS_UNLOCK(tp);
1292 }
1293 }
1294 }
1295
1296 /*
1297 * Notify a tcp user of an asynchronous error;
1298 * store error as soft error, but wake up user
1299 * (for now, won't do anything until can select for soft error).
1300 */
1301 void
1302 tcp_notify(inp, error)
1303 struct inpcb *inp;
1304 int error;
1305 {
1306 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1307 struct socket *so = inp->inp_socket;
1308
1309 /*
1310 * Ignore some errors if we are hooked up.
1311 * If connection hasn't completed, has retransmitted several times,
1312 * and receives a second error, give up now. This is better
1313 * than waiting a long time to establish a connection that
1314 * can never complete.
1315 */
1316 if (tp->t_state == TCPS_ESTABLISHED &&
1317 (error == EHOSTUNREACH || error == ENETUNREACH ||
1318 error == EHOSTDOWN)) {
1319 return;
1320 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1321 tp->t_rxtshift > 3 && tp->t_softerror)
1322 so->so_error = error;
1323 else
1324 tp->t_softerror = error;
1325 wakeup((caddr_t) &so->so_timeo);
1326 sorwakeup(so);
1327 sowwakeup(so);
1328 }
1329
1330 #ifdef INET6
1331 void
1332 tcp6_notify(in6p, error)
1333 struct in6pcb *in6p;
1334 int error;
1335 {
1336 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1337 struct socket *so = in6p->in6p_socket;
1338
1339 /*
1340 * Ignore some errors if we are hooked up.
1341 * If connection hasn't completed, has retransmitted several times,
1342 * and receives a second error, give up now. This is better
1343 * than waiting a long time to establish a connection that
1344 * can never complete.
1345 */
1346 if (tp->t_state == TCPS_ESTABLISHED &&
1347 (error == EHOSTUNREACH || error == ENETUNREACH ||
1348 error == EHOSTDOWN)) {
1349 return;
1350 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1351 tp->t_rxtshift > 3 && tp->t_softerror)
1352 so->so_error = error;
1353 else
1354 tp->t_softerror = error;
1355 wakeup((caddr_t) &so->so_timeo);
1356 sorwakeup(so);
1357 sowwakeup(so);
1358 }
1359 #endif
1360
1361 #ifdef INET6
1362 void
1363 tcp6_ctlinput(cmd, sa, d)
1364 int cmd;
1365 struct sockaddr *sa;
1366 void *d;
1367 {
1368 struct tcphdr th;
1369 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1370 int nmatch;
1371 struct ip6_hdr *ip6;
1372 const struct sockaddr_in6 *sa6_src = NULL;
1373 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1374 struct mbuf *m;
1375 int off;
1376
1377 if (sa->sa_family != AF_INET6 ||
1378 sa->sa_len != sizeof(struct sockaddr_in6))
1379 return;
1380 if ((unsigned)cmd >= PRC_NCMDS)
1381 return;
1382 else if (cmd == PRC_QUENCH) {
1383 /* XXX there's no PRC_QUENCH in IPv6 */
1384 notify = tcp6_quench;
1385 } else if (PRC_IS_REDIRECT(cmd))
1386 notify = in6_rtchange, d = NULL;
1387 else if (cmd == PRC_MSGSIZE)
1388 ; /* special code is present, see below */
1389 else if (cmd == PRC_HOSTDEAD)
1390 d = NULL;
1391 else if (inet6ctlerrmap[cmd] == 0)
1392 return;
1393
1394 /* if the parameter is from icmp6, decode it. */
1395 if (d != NULL) {
1396 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1397 m = ip6cp->ip6c_m;
1398 ip6 = ip6cp->ip6c_ip6;
1399 off = ip6cp->ip6c_off;
1400 sa6_src = ip6cp->ip6c_src;
1401 } else {
1402 m = NULL;
1403 ip6 = NULL;
1404 sa6_src = &sa6_any;
1405 off = 0;
1406 }
1407
1408 if (ip6) {
1409 /*
1410 * XXX: We assume that when ip6 is non NULL,
1411 * M and OFF are valid.
1412 */
1413
1414 /* check if we can safely examine src and dst ports */
1415 if (m->m_pkthdr.len < off + sizeof(th)) {
1416 if (cmd == PRC_MSGSIZE)
1417 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1418 return;
1419 }
1420
1421 bzero(&th, sizeof(th));
1422 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1423
1424 if (cmd == PRC_MSGSIZE) {
1425 int valid = 0;
1426
1427 /*
1428 * Check to see if we have a valid TCP connection
1429 * corresponding to the address in the ICMPv6 message
1430 * payload.
1431 */
1432 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1433 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1434 th.th_sport, 0))
1435 valid++;
1436
1437 /*
1438 * Depending on the value of "valid" and routing table
1439 * size (mtudisc_{hi,lo}wat), we will:
1440 * - recalcurate the new MTU and create the
1441 * corresponding routing entry, or
1442 * - ignore the MTU change notification.
1443 */
1444 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1445
1446 /*
1447 * no need to call in6_pcbnotify, it should have been
1448 * called via callback if necessary
1449 */
1450 return;
1451 }
1452
1453 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1454 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1455 if (nmatch == 0 && syn_cache_count &&
1456 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1457 inet6ctlerrmap[cmd] == ENETUNREACH ||
1458 inet6ctlerrmap[cmd] == EHOSTDOWN))
1459 syn_cache_unreach((struct sockaddr *)sa6_src,
1460 sa, &th);
1461 } else {
1462 (void) in6_pcbnotify(&tcbtable, sa, 0,
1463 (struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1464 }
1465 }
1466 #endif
1467
1468 #ifdef INET
1469 /* assumes that ip header and tcp header are contiguous on mbuf */
1470 void *
1471 tcp_ctlinput(cmd, sa, v)
1472 int cmd;
1473 struct sockaddr *sa;
1474 void *v;
1475 {
1476 struct ip *ip = v;
1477 struct tcphdr *th;
1478 struct icmp *icp;
1479 extern const int inetctlerrmap[];
1480 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1481 int errno;
1482 int nmatch;
1483 #ifdef INET6
1484 struct in6_addr src6, dst6;
1485 #endif
1486
1487 if (sa->sa_family != AF_INET ||
1488 sa->sa_len != sizeof(struct sockaddr_in))
1489 return NULL;
1490 if ((unsigned)cmd >= PRC_NCMDS)
1491 return NULL;
1492 errno = inetctlerrmap[cmd];
1493 if (cmd == PRC_QUENCH)
1494 notify = tcp_quench;
1495 else if (PRC_IS_REDIRECT(cmd))
1496 notify = in_rtchange, ip = 0;
1497 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1498 /*
1499 * Check to see if we have a valid TCP connection
1500 * corresponding to the address in the ICMP message
1501 * payload.
1502 *
1503 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1504 */
1505 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1506 #ifdef INET6
1507 memset(&src6, 0, sizeof(src6));
1508 memset(&dst6, 0, sizeof(dst6));
1509 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1510 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1511 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1512 #endif
1513 if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
1514 ip->ip_src, th->th_sport) != NULL)
1515 ;
1516 #ifdef INET6
1517 else if (in6_pcblookup_connect(&tcbtable, &dst6,
1518 th->th_dport, &src6, th->th_sport, 0) != NULL)
1519 ;
1520 #endif
1521 else
1522 return NULL;
1523
1524 /*
1525 * Now that we've validated that we are actually communicating
1526 * with the host indicated in the ICMP message, locate the
1527 * ICMP header, recalculate the new MTU, and create the
1528 * corresponding routing entry.
1529 */
1530 icp = (struct icmp *)((caddr_t)ip -
1531 offsetof(struct icmp, icmp_ip));
1532 icmp_mtudisc(icp, ip->ip_dst);
1533
1534 return NULL;
1535 } else if (cmd == PRC_HOSTDEAD)
1536 ip = 0;
1537 else if (errno == 0)
1538 return NULL;
1539 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1540 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1541 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1542 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1543 if (nmatch == 0 && syn_cache_count &&
1544 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1545 inetctlerrmap[cmd] == ENETUNREACH ||
1546 inetctlerrmap[cmd] == EHOSTDOWN)) {
1547 struct sockaddr_in sin;
1548 bzero(&sin, sizeof(sin));
1549 sin.sin_len = sizeof(sin);
1550 sin.sin_family = AF_INET;
1551 sin.sin_port = th->th_sport;
1552 sin.sin_addr = ip->ip_src;
1553 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1554 }
1555
1556 /* XXX mapped address case */
1557 } else
1558 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1559 notify);
1560 return NULL;
1561 }
1562
1563 /*
1564 * When a source quence is received, we are being notifed of congestion.
1565 * Close the congestion window down to the Loss Window (one segment).
1566 * We will gradually open it again as we proceed.
1567 */
1568 void
1569 tcp_quench(inp, errno)
1570 struct inpcb *inp;
1571 int errno;
1572 {
1573 struct tcpcb *tp = intotcpcb(inp);
1574
1575 if (tp)
1576 tp->snd_cwnd = tp->t_segsz;
1577 }
1578 #endif
1579
1580 #ifdef INET6
1581 void
1582 tcp6_quench(in6p, errno)
1583 struct in6pcb *in6p;
1584 int errno;
1585 {
1586 struct tcpcb *tp = in6totcpcb(in6p);
1587
1588 if (tp)
1589 tp->snd_cwnd = tp->t_segsz;
1590 }
1591 #endif
1592
1593 #ifdef INET
1594 /*
1595 * Path MTU Discovery handlers.
1596 */
1597 void
1598 tcp_mtudisc_callback(faddr)
1599 struct in_addr faddr;
1600 {
1601 #ifdef INET6
1602 struct in6_addr in6;
1603 #endif
1604
1605 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1606 #ifdef INET6
1607 memset(&in6, 0, sizeof(in6));
1608 in6.s6_addr16[5] = 0xffff;
1609 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1610 tcp6_mtudisc_callback(&in6);
1611 #endif
1612 }
1613
1614 /*
1615 * On receipt of path MTU corrections, flush old route and replace it
1616 * with the new one. Retransmit all unacknowledged packets, to ensure
1617 * that all packets will be received.
1618 */
1619 void
1620 tcp_mtudisc(inp, errno)
1621 struct inpcb *inp;
1622 int errno;
1623 {
1624 struct tcpcb *tp = intotcpcb(inp);
1625 struct rtentry *rt = in_pcbrtentry(inp);
1626
1627 if (tp != 0) {
1628 if (rt != 0) {
1629 /*
1630 * If this was not a host route, remove and realloc.
1631 */
1632 if ((rt->rt_flags & RTF_HOST) == 0) {
1633 in_rtchange(inp, errno);
1634 if ((rt = in_pcbrtentry(inp)) == 0)
1635 return;
1636 }
1637
1638 /*
1639 * Slow start out of the error condition. We
1640 * use the MTU because we know it's smaller
1641 * than the previously transmitted segment.
1642 *
1643 * Note: This is more conservative than the
1644 * suggestion in draft-floyd-incr-init-win-03.
1645 */
1646 if (rt->rt_rmx.rmx_mtu != 0)
1647 tp->snd_cwnd =
1648 TCP_INITIAL_WINDOW(tcp_init_win,
1649 rt->rt_rmx.rmx_mtu);
1650 }
1651
1652 /*
1653 * Resend unacknowledged packets.
1654 */
1655 tp->snd_nxt = tp->snd_una;
1656 tcp_output(tp);
1657 }
1658 }
1659 #endif
1660
1661 #ifdef INET6
1662 /*
1663 * Path MTU Discovery handlers.
1664 */
1665 void
1666 tcp6_mtudisc_callback(faddr)
1667 struct in6_addr *faddr;
1668 {
1669 struct sockaddr_in6 sin6;
1670
1671 bzero(&sin6, sizeof(sin6));
1672 sin6.sin6_family = AF_INET6;
1673 sin6.sin6_len = sizeof(struct sockaddr_in6);
1674 sin6.sin6_addr = *faddr;
1675 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1676 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1677 }
1678
1679 void
1680 tcp6_mtudisc(in6p, errno)
1681 struct in6pcb *in6p;
1682 int errno;
1683 {
1684 struct tcpcb *tp = in6totcpcb(in6p);
1685 struct rtentry *rt = in6_pcbrtentry(in6p);
1686
1687 if (tp != 0) {
1688 if (rt != 0) {
1689 /*
1690 * If this was not a host route, remove and realloc.
1691 */
1692 if ((rt->rt_flags & RTF_HOST) == 0) {
1693 in6_rtchange(in6p, errno);
1694 if ((rt = in6_pcbrtentry(in6p)) == 0)
1695 return;
1696 }
1697
1698 /*
1699 * Slow start out of the error condition. We
1700 * use the MTU because we know it's smaller
1701 * than the previously transmitted segment.
1702 *
1703 * Note: This is more conservative than the
1704 * suggestion in draft-floyd-incr-init-win-03.
1705 */
1706 if (rt->rt_rmx.rmx_mtu != 0)
1707 tp->snd_cwnd =
1708 TCP_INITIAL_WINDOW(tcp_init_win,
1709 rt->rt_rmx.rmx_mtu);
1710 }
1711
1712 /*
1713 * Resend unacknowledged packets.
1714 */
1715 tp->snd_nxt = tp->snd_una;
1716 tcp_output(tp);
1717 }
1718 }
1719 #endif /* INET6 */
1720
1721 /*
1722 * Compute the MSS to advertise to the peer. Called only during
1723 * the 3-way handshake. If we are the server (peer initiated
1724 * connection), we are called with a pointer to the interface
1725 * on which the SYN packet arrived. If we are the client (we
1726 * initiated connection), we are called with a pointer to the
1727 * interface out which this connection should go.
1728 *
1729 * NOTE: Do not subtract IP option/extension header size nor IPsec
1730 * header size from MSS advertisement. MSS option must hold the maximum
1731 * segment size we can accept, so it must always be:
1732 * max(if mtu) - ip header - tcp header
1733 */
1734 u_long
1735 tcp_mss_to_advertise(ifp, af)
1736 const struct ifnet *ifp;
1737 int af;
1738 {
1739 extern u_long in_maxmtu;
1740 u_long mss = 0;
1741 u_long hdrsiz;
1742
1743 /*
1744 * In order to avoid defeating path MTU discovery on the peer,
1745 * we advertise the max MTU of all attached networks as our MSS,
1746 * per RFC 1191, section 3.1.
1747 *
1748 * We provide the option to advertise just the MTU of
1749 * the interface on which we hope this connection will
1750 * be receiving. If we are responding to a SYN, we
1751 * will have a pretty good idea about this, but when
1752 * initiating a connection there is a bit more doubt.
1753 *
1754 * We also need to ensure that loopback has a large enough
1755 * MSS, as the loopback MTU is never included in in_maxmtu.
1756 */
1757
1758 if (ifp != NULL)
1759 switch (af) {
1760 case AF_INET:
1761 mss = ifp->if_mtu;
1762 break;
1763 #ifdef INET6
1764 case AF_INET6:
1765 mss = IN6_LINKMTU(ifp);
1766 break;
1767 #endif
1768 }
1769
1770 if (tcp_mss_ifmtu == 0)
1771 switch (af) {
1772 case AF_INET:
1773 mss = max(in_maxmtu, mss);
1774 break;
1775 #ifdef INET6
1776 case AF_INET6:
1777 mss = max(in6_maxmtu, mss);
1778 break;
1779 #endif
1780 }
1781
1782 switch (af) {
1783 case AF_INET:
1784 hdrsiz = sizeof(struct ip);
1785 break;
1786 #ifdef INET6
1787 case AF_INET6:
1788 hdrsiz = sizeof(struct ip6_hdr);
1789 break;
1790 #endif
1791 default:
1792 hdrsiz = 0;
1793 break;
1794 }
1795 hdrsiz += sizeof(struct tcphdr);
1796 if (mss > hdrsiz)
1797 mss -= hdrsiz;
1798
1799 mss = max(tcp_mssdflt, mss);
1800 return (mss);
1801 }
1802
1803 /*
1804 * Set connection variables based on the peer's advertised MSS.
1805 * We are passed the TCPCB for the actual connection. If we
1806 * are the server, we are called by the compressed state engine
1807 * when the 3-way handshake is complete. If we are the client,
1808 * we are called when we receive the SYN,ACK from the server.
1809 *
1810 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1811 * before this routine is called!
1812 */
1813 void
1814 tcp_mss_from_peer(tp, offer)
1815 struct tcpcb *tp;
1816 int offer;
1817 {
1818 struct socket *so;
1819 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1820 struct rtentry *rt;
1821 #endif
1822 u_long bufsize;
1823 int mss;
1824
1825 #ifdef DIAGNOSTIC
1826 if (tp->t_inpcb && tp->t_in6pcb)
1827 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1828 #endif
1829 so = NULL;
1830 rt = NULL;
1831 #ifdef INET
1832 if (tp->t_inpcb) {
1833 so = tp->t_inpcb->inp_socket;
1834 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1835 rt = in_pcbrtentry(tp->t_inpcb);
1836 #endif
1837 }
1838 #endif
1839 #ifdef INET6
1840 if (tp->t_in6pcb) {
1841 so = tp->t_in6pcb->in6p_socket;
1842 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1843 rt = in6_pcbrtentry(tp->t_in6pcb);
1844 #endif
1845 }
1846 #endif
1847
1848 /*
1849 * As per RFC1122, use the default MSS value, unless they
1850 * sent us an offer. Do not accept offers less than 256 bytes.
1851 */
1852 mss = tcp_mssdflt;
1853 if (offer)
1854 mss = offer;
1855 mss = max(mss, 256); /* sanity */
1856 tp->t_peermss = mss;
1857 mss -= tcp_optlen(tp);
1858 #ifdef INET
1859 if (tp->t_inpcb)
1860 mss -= ip_optlen(tp->t_inpcb);
1861 #endif
1862 #ifdef INET6
1863 if (tp->t_in6pcb)
1864 mss -= ip6_optlen(tp->t_in6pcb);
1865 #endif
1866
1867 /*
1868 * If there's a pipesize, change the socket buffer to that size.
1869 * Make the socket buffer an integral number of MSS units. If
1870 * the MSS is larger than the socket buffer, artificially decrease
1871 * the MSS.
1872 */
1873 #ifdef RTV_SPIPE
1874 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1875 bufsize = rt->rt_rmx.rmx_sendpipe;
1876 else
1877 #endif
1878 bufsize = so->so_snd.sb_hiwat;
1879 if (bufsize < mss)
1880 mss = bufsize;
1881 else {
1882 bufsize = roundup(bufsize, mss);
1883 if (bufsize > sb_max)
1884 bufsize = sb_max;
1885 (void) sbreserve(&so->so_snd, bufsize);
1886 }
1887 tp->t_segsz = mss;
1888
1889 #ifdef RTV_SSTHRESH
1890 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1891 /*
1892 * There's some sort of gateway or interface buffer
1893 * limit on the path. Use this to set the slow
1894 * start threshold, but set the threshold to no less
1895 * than 2 * MSS.
1896 */
1897 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1898 }
1899 #endif
1900 }
1901
1902 /*
1903 * Processing necessary when a TCP connection is established.
1904 */
1905 void
1906 tcp_established(tp)
1907 struct tcpcb *tp;
1908 {
1909 struct socket *so;
1910 #ifdef RTV_RPIPE
1911 struct rtentry *rt;
1912 #endif
1913 u_long bufsize;
1914
1915 #ifdef DIAGNOSTIC
1916 if (tp->t_inpcb && tp->t_in6pcb)
1917 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1918 #endif
1919 so = NULL;
1920 rt = NULL;
1921 #ifdef INET
1922 if (tp->t_inpcb) {
1923 so = tp->t_inpcb->inp_socket;
1924 #if defined(RTV_RPIPE)
1925 rt = in_pcbrtentry(tp->t_inpcb);
1926 #endif
1927 }
1928 #endif
1929 #ifdef INET6
1930 if (tp->t_in6pcb) {
1931 so = tp->t_in6pcb->in6p_socket;
1932 #if defined(RTV_RPIPE)
1933 rt = in6_pcbrtentry(tp->t_in6pcb);
1934 #endif
1935 }
1936 #endif
1937
1938 tp->t_state = TCPS_ESTABLISHED;
1939 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1940
1941 #ifdef RTV_RPIPE
1942 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1943 bufsize = rt->rt_rmx.rmx_recvpipe;
1944 else
1945 #endif
1946 bufsize = so->so_rcv.sb_hiwat;
1947 if (bufsize > tp->t_ourmss) {
1948 bufsize = roundup(bufsize, tp->t_ourmss);
1949 if (bufsize > sb_max)
1950 bufsize = sb_max;
1951 (void) sbreserve(&so->so_rcv, bufsize);
1952 }
1953 }
1954
1955 /*
1956 * Check if there's an initial rtt or rttvar. Convert from the
1957 * route-table units to scaled multiples of the slow timeout timer.
1958 * Called only during the 3-way handshake.
1959 */
1960 void
1961 tcp_rmx_rtt(tp)
1962 struct tcpcb *tp;
1963 {
1964 #ifdef RTV_RTT
1965 struct rtentry *rt = NULL;
1966 int rtt;
1967
1968 #ifdef DIAGNOSTIC
1969 if (tp->t_inpcb && tp->t_in6pcb)
1970 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1971 #endif
1972 #ifdef INET
1973 if (tp->t_inpcb)
1974 rt = in_pcbrtentry(tp->t_inpcb);
1975 #endif
1976 #ifdef INET6
1977 if (tp->t_in6pcb)
1978 rt = in6_pcbrtentry(tp->t_in6pcb);
1979 #endif
1980 if (rt == NULL)
1981 return;
1982
1983 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1984 /*
1985 * XXX The lock bit for MTU indicates that the value
1986 * is also a minimum value; this is subject to time.
1987 */
1988 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1989 TCPT_RANGESET(tp->t_rttmin,
1990 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1991 TCPTV_MIN, TCPTV_REXMTMAX);
1992 tp->t_srtt = rtt /
1993 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1994 if (rt->rt_rmx.rmx_rttvar) {
1995 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1996 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1997 (TCP_RTTVAR_SHIFT + 2));
1998 } else {
1999 /* Default variation is +- 1 rtt */
2000 tp->t_rttvar =
2001 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2002 }
2003 TCPT_RANGESET(tp->t_rxtcur,
2004 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2005 tp->t_rttmin, TCPTV_REXMTMAX);
2006 }
2007 #endif
2008 }
2009
2010 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2011 #if NRND > 0
2012 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2013 #endif
2014
2015 /*
2016 * Get a new sequence value given a tcp control block
2017 */
2018 tcp_seq
2019 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2020 {
2021
2022 #ifdef INET
2023 if (tp->t_inpcb != NULL) {
2024 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2025 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2026 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2027 addin));
2028 }
2029 #endif
2030 #ifdef INET6
2031 if (tp->t_in6pcb != NULL) {
2032 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2033 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2034 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2035 addin));
2036 }
2037 #endif
2038 /* Not possible. */
2039 panic("tcp_new_iss");
2040 }
2041
2042 /*
2043 * This routine actually generates a new TCP initial sequence number.
2044 */
2045 tcp_seq
2046 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2047 size_t addrsz, tcp_seq addin)
2048 {
2049 tcp_seq tcp_iss;
2050
2051 #if NRND > 0
2052 static int beenhere;
2053
2054 /*
2055 * If we haven't been here before, initialize our cryptographic
2056 * hash secret.
2057 */
2058 if (beenhere == 0) {
2059 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2060 RND_EXTRACT_ANY);
2061 beenhere = 1;
2062 }
2063
2064 if (tcp_do_rfc1948) {
2065 MD5_CTX ctx;
2066 u_int8_t hash[16]; /* XXX MD5 knowledge */
2067
2068 /*
2069 * Compute the base value of the ISS. It is a hash
2070 * of (saddr, sport, daddr, dport, secret).
2071 */
2072 MD5Init(&ctx);
2073
2074 MD5Update(&ctx, (u_char *) laddr, addrsz);
2075 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2076
2077 MD5Update(&ctx, (u_char *) faddr, addrsz);
2078 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2079
2080 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2081
2082 MD5Final(hash, &ctx);
2083
2084 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2085
2086 /*
2087 * Now increment our "timer", and add it in to
2088 * the computed value.
2089 *
2090 * XXX Use `addin'?
2091 * XXX TCP_ISSINCR too large to use?
2092 */
2093 tcp_iss_seq += TCP_ISSINCR;
2094 #ifdef TCPISS_DEBUG
2095 printf("ISS hash 0x%08x, ", tcp_iss);
2096 #endif
2097 tcp_iss += tcp_iss_seq + addin;
2098 #ifdef TCPISS_DEBUG
2099 printf("new ISS 0x%08x\n", tcp_iss);
2100 #endif
2101 } else
2102 #endif /* NRND > 0 */
2103 {
2104 /*
2105 * Randomize.
2106 */
2107 #if NRND > 0
2108 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2109 #else
2110 tcp_iss = arc4random();
2111 #endif
2112
2113 /*
2114 * If we were asked to add some amount to a known value,
2115 * we will take a random value obtained above, mask off
2116 * the upper bits, and add in the known value. We also
2117 * add in a constant to ensure that we are at least a
2118 * certain distance from the original value.
2119 *
2120 * This is used when an old connection is in timed wait
2121 * and we have a new one coming in, for instance.
2122 */
2123 if (addin != 0) {
2124 #ifdef TCPISS_DEBUG
2125 printf("Random %08x, ", tcp_iss);
2126 #endif
2127 tcp_iss &= TCP_ISS_RANDOM_MASK;
2128 tcp_iss += addin + TCP_ISSINCR;
2129 #ifdef TCPISS_DEBUG
2130 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2131 #endif
2132 } else {
2133 tcp_iss &= TCP_ISS_RANDOM_MASK;
2134 tcp_iss += tcp_iss_seq;
2135 tcp_iss_seq += TCP_ISSINCR;
2136 #ifdef TCPISS_DEBUG
2137 printf("ISS %08x\n", tcp_iss);
2138 #endif
2139 }
2140 }
2141
2142 if (tcp_compat_42) {
2143 /*
2144 * Limit it to the positive range for really old TCP
2145 * implementations.
2146 * Just AND off the top bit instead of checking if
2147 * is set first - saves a branch 50% of the time.
2148 */
2149 tcp_iss &= 0x7fffffff; /* XXX */
2150 }
2151
2152 return (tcp_iss);
2153 }
2154
2155 #if defined(IPSEC) || defined(FAST_IPSEC)
2156 /* compute ESP/AH header size for TCP, including outer IP header. */
2157 size_t
2158 ipsec4_hdrsiz_tcp(tp)
2159 struct tcpcb *tp;
2160 {
2161 struct inpcb *inp;
2162 size_t hdrsiz;
2163
2164 /* XXX mapped addr case (tp->t_in6pcb) */
2165 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2166 return 0;
2167 switch (tp->t_family) {
2168 case AF_INET:
2169 /* XXX: should use currect direction. */
2170 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2171 break;
2172 default:
2173 hdrsiz = 0;
2174 break;
2175 }
2176
2177 return hdrsiz;
2178 }
2179
2180 #ifdef INET6
2181 size_t
2182 ipsec6_hdrsiz_tcp(tp)
2183 struct tcpcb *tp;
2184 {
2185 struct in6pcb *in6p;
2186 size_t hdrsiz;
2187
2188 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2189 return 0;
2190 switch (tp->t_family) {
2191 case AF_INET6:
2192 /* XXX: should use currect direction. */
2193 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2194 break;
2195 case AF_INET:
2196 /* mapped address case - tricky */
2197 default:
2198 hdrsiz = 0;
2199 break;
2200 }
2201
2202 return hdrsiz;
2203 }
2204 #endif
2205 #endif /*IPSEC*/
2206
2207 /*
2208 * Determine the length of the TCP options for this connection.
2209 *
2210 * XXX: What do we do for SACK, when we add that? Just reserve
2211 * all of the space? Otherwise we can't exactly be incrementing
2212 * cwnd by an amount that varies depending on the amount we last
2213 * had to SACK!
2214 */
2215
2216 u_int
2217 tcp_optlen(tp)
2218 struct tcpcb *tp;
2219 {
2220 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2221 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2222 return TCPOLEN_TSTAMP_APPA;
2223 else
2224 return 0;
2225 }
2226