tcp_subr.c revision 1.166 1 /* $NetBSD: tcp_subr.c,v 1.166 2004/04/25 22:25:04 jonathan Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.166 2004/04/25 22:25:04 jonathan Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcpip.h>
155
156 #ifdef IPSEC
157 #include <netinet6/ipsec.h>
158 #endif /*IPSEC*/
159
160 #ifdef FAST_IPSEC
161 #include <netipsec/ipsec.h>
162 #include <netipsec/xform.h>
163 #ifdef INET6
164 #include <netipsec/ipsec6.h>
165 #endif
166 #include <netipsec/key.h>
167 #endif /* FAST_IPSEC*/
168
169
170 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
171 struct tcpstat tcpstat; /* tcp statistics */
172 u_int32_t tcp_now; /* for RFC 1323 timestamps */
173
174 /* patchable/settable parameters for tcp */
175 int tcp_mssdflt = TCP_MSS;
176 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
177 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
178 #if NRND > 0
179 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
180 #endif
181 int tcp_do_sack = 1; /* selective acknowledgement */
182 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
183 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
184 int tcp_do_newreno = 1; /* Use the New Reno algorithms */
185 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
186 #ifndef TCP_INIT_WIN
187 #define TCP_INIT_WIN 0 /* initial slow start window */
188 #endif
189 #ifndef TCP_INIT_WIN_LOCAL
190 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
191 #endif
192 int tcp_init_win = TCP_INIT_WIN;
193 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
194 int tcp_mss_ifmtu = 0;
195 #ifdef TCP_COMPAT_42
196 int tcp_compat_42 = 1;
197 #else
198 int tcp_compat_42 = 0;
199 #endif
200 int tcp_rst_ppslim = 100; /* 100pps */
201 int tcp_ackdrop_ppslim = 100; /* 100pps */
202
203 /* tcb hash */
204 #ifndef TCBHASHSIZE
205 #define TCBHASHSIZE 128
206 #endif
207 int tcbhashsize = TCBHASHSIZE;
208
209 /* syn hash parameters */
210 #define TCP_SYN_HASH_SIZE 293
211 #define TCP_SYN_BUCKET_SIZE 35
212 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
213 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
214 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
215 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
216
217 int tcp_freeq __P((struct tcpcb *));
218
219 #ifdef INET
220 void tcp_mtudisc_callback __P((struct in_addr));
221 #endif
222 #ifdef INET6
223 void tcp6_mtudisc_callback __P((struct in6_addr *));
224 #endif
225
226 void tcp_mtudisc __P((struct inpcb *, int));
227 #ifdef INET6
228 void tcp6_mtudisc __P((struct in6pcb *, int));
229 #endif
230
231 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
232
233 #ifdef TCP_CSUM_COUNTERS
234 #include <sys/device.h>
235
236 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
237 NULL, "tcp", "hwcsum bad");
238 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
239 NULL, "tcp", "hwcsum ok");
240 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
241 NULL, "tcp", "hwcsum data");
242 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
243 NULL, "tcp", "swcsum");
244 #endif /* TCP_CSUM_COUNTERS */
245
246 #ifdef TCP_OUTPUT_COUNTERS
247 #include <sys/device.h>
248
249 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
250 NULL, "tcp", "output big header");
251 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
252 NULL, "tcp", "output predict hit");
253 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
254 NULL, "tcp", "output predict miss");
255 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
256 NULL, "tcp", "output copy small");
257 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
258 NULL, "tcp", "output copy big");
259 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
260 NULL, "tcp", "output reference big");
261 #endif /* TCP_OUTPUT_COUNTERS */
262
263 #ifdef TCP_REASS_COUNTERS
264 #include <sys/device.h>
265
266 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
267 NULL, "tcp_reass", "calls");
268 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
269 &tcp_reass_, "tcp_reass", "insert into empty queue");
270 struct evcnt tcp_reass_iteration[8] = {
271 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
272 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
273 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
274 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
275 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
276 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
277 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
278 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
279 };
280 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
281 &tcp_reass_, "tcp_reass", "prepend to first");
282 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
283 &tcp_reass_, "tcp_reass", "prepend");
284 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
285 &tcp_reass_, "tcp_reass", "insert");
286 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
287 &tcp_reass_, "tcp_reass", "insert at tail");
288 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
289 &tcp_reass_, "tcp_reass", "append");
290 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
291 &tcp_reass_, "tcp_reass", "append to tail fragment");
292 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
293 &tcp_reass_, "tcp_reass", "overlap at end");
294 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
295 &tcp_reass_, "tcp_reass", "overlap at start");
296 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
297 &tcp_reass_, "tcp_reass", "duplicate segment");
298 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
299 &tcp_reass_, "tcp_reass", "duplicate fragment");
300
301 #endif /* TCP_REASS_COUNTERS */
302
303 #ifdef MBUFTRACE
304 struct mowner tcp_mowner = { "tcp" };
305 struct mowner tcp_rx_mowner = { "tcp", "rx" };
306 struct mowner tcp_tx_mowner = { "tcp", "tx" };
307 #endif
308
309 /*
310 * Tcp initialization
311 */
312 void
313 tcp_init()
314 {
315 int hlen;
316
317 /* Initialize the TCPCB template. */
318 tcp_tcpcb_template();
319
320 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
321
322 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
323 #ifdef INET6
324 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
325 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
326 #endif
327 if (max_protohdr < hlen)
328 max_protohdr = hlen;
329 if (max_linkhdr + hlen > MHLEN)
330 panic("tcp_init");
331
332 #ifdef INET
333 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
334 #endif
335 #ifdef INET6
336 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
337 #endif
338
339 /* Initialize timer state. */
340 tcp_timer_init();
341
342 /* Initialize the compressed state engine. */
343 syn_cache_init();
344
345 #ifdef TCP_CSUM_COUNTERS
346 evcnt_attach_static(&tcp_hwcsum_bad);
347 evcnt_attach_static(&tcp_hwcsum_ok);
348 evcnt_attach_static(&tcp_hwcsum_data);
349 evcnt_attach_static(&tcp_swcsum);
350 #endif /* TCP_CSUM_COUNTERS */
351
352 #ifdef TCP_OUTPUT_COUNTERS
353 evcnt_attach_static(&tcp_output_bigheader);
354 evcnt_attach_static(&tcp_output_predict_hit);
355 evcnt_attach_static(&tcp_output_predict_miss);
356 evcnt_attach_static(&tcp_output_copysmall);
357 evcnt_attach_static(&tcp_output_copybig);
358 evcnt_attach_static(&tcp_output_refbig);
359 #endif /* TCP_OUTPUT_COUNTERS */
360
361 #ifdef TCP_REASS_COUNTERS
362 evcnt_attach_static(&tcp_reass_);
363 evcnt_attach_static(&tcp_reass_empty);
364 evcnt_attach_static(&tcp_reass_iteration[0]);
365 evcnt_attach_static(&tcp_reass_iteration[1]);
366 evcnt_attach_static(&tcp_reass_iteration[2]);
367 evcnt_attach_static(&tcp_reass_iteration[3]);
368 evcnt_attach_static(&tcp_reass_iteration[4]);
369 evcnt_attach_static(&tcp_reass_iteration[5]);
370 evcnt_attach_static(&tcp_reass_iteration[6]);
371 evcnt_attach_static(&tcp_reass_iteration[7]);
372 evcnt_attach_static(&tcp_reass_prependfirst);
373 evcnt_attach_static(&tcp_reass_prepend);
374 evcnt_attach_static(&tcp_reass_insert);
375 evcnt_attach_static(&tcp_reass_inserttail);
376 evcnt_attach_static(&tcp_reass_append);
377 evcnt_attach_static(&tcp_reass_appendtail);
378 evcnt_attach_static(&tcp_reass_overlaptail);
379 evcnt_attach_static(&tcp_reass_overlapfront);
380 evcnt_attach_static(&tcp_reass_segdup);
381 evcnt_attach_static(&tcp_reass_fragdup);
382 #endif /* TCP_REASS_COUNTERS */
383
384 MOWNER_ATTACH(&tcp_tx_mowner);
385 MOWNER_ATTACH(&tcp_rx_mowner);
386 MOWNER_ATTACH(&tcp_mowner);
387 }
388
389 /*
390 * Create template to be used to send tcp packets on a connection.
391 * Call after host entry created, allocates an mbuf and fills
392 * in a skeletal tcp/ip header, minimizing the amount of work
393 * necessary when the connection is used.
394 */
395 struct mbuf *
396 tcp_template(tp)
397 struct tcpcb *tp;
398 {
399 struct inpcb *inp = tp->t_inpcb;
400 #ifdef INET6
401 struct in6pcb *in6p = tp->t_in6pcb;
402 #endif
403 struct tcphdr *n;
404 struct mbuf *m;
405 int hlen;
406
407 switch (tp->t_family) {
408 case AF_INET:
409 hlen = sizeof(struct ip);
410 if (inp)
411 break;
412 #ifdef INET6
413 if (in6p) {
414 /* mapped addr case */
415 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
416 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
417 break;
418 }
419 #endif
420 return NULL; /*EINVAL*/
421 #ifdef INET6
422 case AF_INET6:
423 hlen = sizeof(struct ip6_hdr);
424 if (in6p) {
425 /* more sainty check? */
426 break;
427 }
428 return NULL; /*EINVAL*/
429 #endif
430 default:
431 hlen = 0; /*pacify gcc*/
432 return NULL; /*EAFNOSUPPORT*/
433 }
434 #ifdef DIAGNOSTIC
435 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
436 panic("mclbytes too small for t_template");
437 #endif
438 m = tp->t_template;
439 if (m && m->m_len == hlen + sizeof(struct tcphdr))
440 ;
441 else {
442 if (m)
443 m_freem(m);
444 m = tp->t_template = NULL;
445 MGETHDR(m, M_DONTWAIT, MT_HEADER);
446 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
447 MCLGET(m, M_DONTWAIT);
448 if ((m->m_flags & M_EXT) == 0) {
449 m_free(m);
450 m = NULL;
451 }
452 }
453 if (m == NULL)
454 return NULL;
455 MCLAIM(m, &tcp_mowner);
456 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
457 }
458
459 bzero(mtod(m, caddr_t), m->m_len);
460
461 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
462
463 switch (tp->t_family) {
464 case AF_INET:
465 {
466 struct ipovly *ipov;
467 mtod(m, struct ip *)->ip_v = 4;
468 mtod(m, struct ip *)->ip_hl = hlen >> 2;
469 ipov = mtod(m, struct ipovly *);
470 ipov->ih_pr = IPPROTO_TCP;
471 ipov->ih_len = htons(sizeof(struct tcphdr));
472 if (inp) {
473 ipov->ih_src = inp->inp_laddr;
474 ipov->ih_dst = inp->inp_faddr;
475 }
476 #ifdef INET6
477 else if (in6p) {
478 /* mapped addr case */
479 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
480 sizeof(ipov->ih_src));
481 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
482 sizeof(ipov->ih_dst));
483 }
484 #endif
485 /*
486 * Compute the pseudo-header portion of the checksum
487 * now. We incrementally add in the TCP option and
488 * payload lengths later, and then compute the TCP
489 * checksum right before the packet is sent off onto
490 * the wire.
491 */
492 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
493 ipov->ih_dst.s_addr,
494 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
495 break;
496 }
497 #ifdef INET6
498 case AF_INET6:
499 {
500 struct ip6_hdr *ip6;
501 mtod(m, struct ip *)->ip_v = 6;
502 ip6 = mtod(m, struct ip6_hdr *);
503 ip6->ip6_nxt = IPPROTO_TCP;
504 ip6->ip6_plen = htons(sizeof(struct tcphdr));
505 ip6->ip6_src = in6p->in6p_laddr;
506 ip6->ip6_dst = in6p->in6p_faddr;
507 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
508 if (ip6_auto_flowlabel) {
509 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
510 ip6->ip6_flow |=
511 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
512 }
513 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
514 ip6->ip6_vfc |= IPV6_VERSION;
515
516 /*
517 * Compute the pseudo-header portion of the checksum
518 * now. We incrementally add in the TCP option and
519 * payload lengths later, and then compute the TCP
520 * checksum right before the packet is sent off onto
521 * the wire.
522 */
523 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
524 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
525 htonl(IPPROTO_TCP));
526 break;
527 }
528 #endif
529 }
530 if (inp) {
531 n->th_sport = inp->inp_lport;
532 n->th_dport = inp->inp_fport;
533 }
534 #ifdef INET6
535 else if (in6p) {
536 n->th_sport = in6p->in6p_lport;
537 n->th_dport = in6p->in6p_fport;
538 }
539 #endif
540 n->th_seq = 0;
541 n->th_ack = 0;
542 n->th_x2 = 0;
543 n->th_off = 5;
544 n->th_flags = 0;
545 n->th_win = 0;
546 n->th_urp = 0;
547 return (m);
548 }
549
550 /*
551 * Send a single message to the TCP at address specified by
552 * the given TCP/IP header. If m == 0, then we make a copy
553 * of the tcpiphdr at ti and send directly to the addressed host.
554 * This is used to force keep alive messages out using the TCP
555 * template for a connection tp->t_template. If flags are given
556 * then we send a message back to the TCP which originated the
557 * segment ti, and discard the mbuf containing it and any other
558 * attached mbufs.
559 *
560 * In any case the ack and sequence number of the transmitted
561 * segment are as specified by the parameters.
562 */
563 int
564 tcp_respond(tp, template, m, th0, ack, seq, flags)
565 struct tcpcb *tp;
566 struct mbuf *template;
567 struct mbuf *m;
568 struct tcphdr *th0;
569 tcp_seq ack, seq;
570 int flags;
571 {
572 struct route *ro;
573 int error, tlen, win = 0;
574 int hlen;
575 struct ip *ip;
576 #ifdef INET6
577 struct ip6_hdr *ip6;
578 #endif
579 int family; /* family on packet, not inpcb/in6pcb! */
580 struct tcphdr *th;
581 struct socket *so;
582
583 if (tp != NULL && (flags & TH_RST) == 0) {
584 #ifdef DIAGNOSTIC
585 if (tp->t_inpcb && tp->t_in6pcb)
586 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
587 #endif
588 #ifdef INET
589 if (tp->t_inpcb)
590 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
591 #endif
592 #ifdef INET6
593 if (tp->t_in6pcb)
594 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
595 #endif
596 }
597
598 th = NULL; /* Quell uninitialized warning */
599 ip = NULL;
600 #ifdef INET6
601 ip6 = NULL;
602 #endif
603 if (m == 0) {
604 if (!template)
605 return EINVAL;
606
607 /* get family information from template */
608 switch (mtod(template, struct ip *)->ip_v) {
609 case 4:
610 family = AF_INET;
611 hlen = sizeof(struct ip);
612 break;
613 #ifdef INET6
614 case 6:
615 family = AF_INET6;
616 hlen = sizeof(struct ip6_hdr);
617 break;
618 #endif
619 default:
620 return EAFNOSUPPORT;
621 }
622
623 MGETHDR(m, M_DONTWAIT, MT_HEADER);
624 if (m) {
625 MCLAIM(m, &tcp_tx_mowner);
626 MCLGET(m, M_DONTWAIT);
627 if ((m->m_flags & M_EXT) == 0) {
628 m_free(m);
629 m = NULL;
630 }
631 }
632 if (m == NULL)
633 return (ENOBUFS);
634
635 if (tcp_compat_42)
636 tlen = 1;
637 else
638 tlen = 0;
639
640 m->m_data += max_linkhdr;
641 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
642 template->m_len);
643 switch (family) {
644 case AF_INET:
645 ip = mtod(m, struct ip *);
646 th = (struct tcphdr *)(ip + 1);
647 break;
648 #ifdef INET6
649 case AF_INET6:
650 ip6 = mtod(m, struct ip6_hdr *);
651 th = (struct tcphdr *)(ip6 + 1);
652 break;
653 #endif
654 #if 0
655 default:
656 /* noone will visit here */
657 m_freem(m);
658 return EAFNOSUPPORT;
659 #endif
660 }
661 flags = TH_ACK;
662 } else {
663
664 if ((m->m_flags & M_PKTHDR) == 0) {
665 #if 0
666 printf("non PKTHDR to tcp_respond\n");
667 #endif
668 m_freem(m);
669 return EINVAL;
670 }
671 #ifdef DIAGNOSTIC
672 if (!th0)
673 panic("th0 == NULL in tcp_respond");
674 #endif
675
676 /* get family information from m */
677 switch (mtod(m, struct ip *)->ip_v) {
678 case 4:
679 family = AF_INET;
680 hlen = sizeof(struct ip);
681 ip = mtod(m, struct ip *);
682 break;
683 #ifdef INET6
684 case 6:
685 family = AF_INET6;
686 hlen = sizeof(struct ip6_hdr);
687 ip6 = mtod(m, struct ip6_hdr *);
688 break;
689 #endif
690 default:
691 m_freem(m);
692 return EAFNOSUPPORT;
693 }
694 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
695 tlen = sizeof(*th0);
696 else
697 tlen = th0->th_off << 2;
698
699 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
700 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
701 m->m_len = hlen + tlen;
702 m_freem(m->m_next);
703 m->m_next = NULL;
704 } else {
705 struct mbuf *n;
706
707 #ifdef DIAGNOSTIC
708 if (max_linkhdr + hlen + tlen > MCLBYTES) {
709 m_freem(m);
710 return EMSGSIZE;
711 }
712 #endif
713 MGETHDR(n, M_DONTWAIT, MT_HEADER);
714 if (n && max_linkhdr + hlen + tlen > MHLEN) {
715 MCLGET(n, M_DONTWAIT);
716 if ((n->m_flags & M_EXT) == 0) {
717 m_freem(n);
718 n = NULL;
719 }
720 }
721 if (!n) {
722 m_freem(m);
723 return ENOBUFS;
724 }
725
726 MCLAIM(n, &tcp_tx_mowner);
727 n->m_data += max_linkhdr;
728 n->m_len = hlen + tlen;
729 m_copyback(n, 0, hlen, mtod(m, caddr_t));
730 m_copyback(n, hlen, tlen, (caddr_t)th0);
731
732 m_freem(m);
733 m = n;
734 n = NULL;
735 }
736
737 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
738 switch (family) {
739 case AF_INET:
740 ip = mtod(m, struct ip *);
741 th = (struct tcphdr *)(ip + 1);
742 ip->ip_p = IPPROTO_TCP;
743 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
744 ip->ip_p = IPPROTO_TCP;
745 break;
746 #ifdef INET6
747 case AF_INET6:
748 ip6 = mtod(m, struct ip6_hdr *);
749 th = (struct tcphdr *)(ip6 + 1);
750 ip6->ip6_nxt = IPPROTO_TCP;
751 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
752 ip6->ip6_nxt = IPPROTO_TCP;
753 break;
754 #endif
755 #if 0
756 default:
757 /* noone will visit here */
758 m_freem(m);
759 return EAFNOSUPPORT;
760 #endif
761 }
762 xchg(th->th_dport, th->th_sport, u_int16_t);
763 #undef xchg
764 tlen = 0; /*be friendly with the following code*/
765 }
766 th->th_seq = htonl(seq);
767 th->th_ack = htonl(ack);
768 th->th_x2 = 0;
769 if ((flags & TH_SYN) == 0) {
770 if (tp)
771 win >>= tp->rcv_scale;
772 if (win > TCP_MAXWIN)
773 win = TCP_MAXWIN;
774 th->th_win = htons((u_int16_t)win);
775 th->th_off = sizeof (struct tcphdr) >> 2;
776 tlen += sizeof(*th);
777 } else
778 tlen += th->th_off << 2;
779 m->m_len = hlen + tlen;
780 m->m_pkthdr.len = hlen + tlen;
781 m->m_pkthdr.rcvif = (struct ifnet *) 0;
782 th->th_flags = flags;
783 th->th_urp = 0;
784
785 switch (family) {
786 #ifdef INET
787 case AF_INET:
788 {
789 struct ipovly *ipov = (struct ipovly *)ip;
790 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
791 ipov->ih_len = htons((u_int16_t)tlen);
792
793 th->th_sum = 0;
794 th->th_sum = in_cksum(m, hlen + tlen);
795 ip->ip_len = htons(hlen + tlen);
796 ip->ip_ttl = ip_defttl;
797 break;
798 }
799 #endif
800 #ifdef INET6
801 case AF_INET6:
802 {
803 th->th_sum = 0;
804 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
805 tlen);
806 ip6->ip6_plen = ntohs(tlen);
807 if (tp && tp->t_in6pcb) {
808 struct ifnet *oifp;
809 ro = (struct route *)&tp->t_in6pcb->in6p_route;
810 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
811 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
812 } else
813 ip6->ip6_hlim = ip6_defhlim;
814 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
815 if (ip6_auto_flowlabel) {
816 ip6->ip6_flow |=
817 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
818 }
819 break;
820 }
821 #endif
822 }
823
824 if (tp && tp->t_inpcb)
825 so = tp->t_inpcb->inp_socket;
826 #ifdef INET6
827 else if (tp && tp->t_in6pcb)
828 so = tp->t_in6pcb->in6p_socket;
829 #endif
830 else
831 so = NULL;
832
833 if (tp != NULL && tp->t_inpcb != NULL) {
834 ro = &tp->t_inpcb->inp_route;
835 #ifdef DIAGNOSTIC
836 if (family != AF_INET)
837 panic("tcp_respond: address family mismatch");
838 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
839 panic("tcp_respond: ip_dst %x != inp_faddr %x",
840 ntohl(ip->ip_dst.s_addr),
841 ntohl(tp->t_inpcb->inp_faddr.s_addr));
842 }
843 #endif
844 }
845 #ifdef INET6
846 else if (tp != NULL && tp->t_in6pcb != NULL) {
847 ro = (struct route *)&tp->t_in6pcb->in6p_route;
848 #ifdef DIAGNOSTIC
849 if (family == AF_INET) {
850 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
851 panic("tcp_respond: not mapped addr");
852 if (bcmp(&ip->ip_dst,
853 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
854 sizeof(ip->ip_dst)) != 0) {
855 panic("tcp_respond: ip_dst != in6p_faddr");
856 }
857 } else if (family == AF_INET6) {
858 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
859 &tp->t_in6pcb->in6p_faddr))
860 panic("tcp_respond: ip6_dst != in6p_faddr");
861 } else
862 panic("tcp_respond: address family mismatch");
863 #endif
864 }
865 #endif
866 else
867 ro = NULL;
868
869 switch (family) {
870 #ifdef INET
871 case AF_INET:
872 error = ip_output(m, NULL, ro,
873 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
874 (struct ip_moptions *)0, so);
875 break;
876 #endif
877 #ifdef INET6
878 case AF_INET6:
879 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
880 (struct ip6_moptions *)0, so, NULL);
881 break;
882 #endif
883 default:
884 error = EAFNOSUPPORT;
885 break;
886 }
887
888 return (error);
889 }
890
891 /*
892 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
893 * a bunch of members individually, we maintain this template for the
894 * static and mostly-static components of the TCPCB, and copy it into
895 * the new TCPCB instead.
896 */
897 static struct tcpcb tcpcb_template = {
898 /*
899 * If TCP_NTIMERS ever changes, we'll need to update this
900 * initializer.
901 */
902 .t_timer = {
903 CALLOUT_INITIALIZER,
904 CALLOUT_INITIALIZER,
905 CALLOUT_INITIALIZER,
906 CALLOUT_INITIALIZER,
907 },
908 .t_delack_ch = CALLOUT_INITIALIZER,
909
910 .t_srtt = TCPTV_SRTTBASE,
911 .t_rttmin = TCPTV_MIN,
912
913 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
914 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
915 };
916
917 /*
918 * Updates the TCPCB template whenever a parameter that would affect
919 * the template is changed.
920 */
921 void
922 tcp_tcpcb_template(void)
923 {
924 struct tcpcb *tp = &tcpcb_template;
925 int flags;
926
927 tp->t_peermss = tcp_mssdflt;
928 tp->t_ourmss = tcp_mssdflt;
929 tp->t_segsz = tcp_mssdflt;
930
931 flags = 0;
932 if (tcp_do_rfc1323 && tcp_do_win_scale)
933 flags |= TF_REQ_SCALE;
934 if (tcp_do_rfc1323 && tcp_do_timestamps)
935 flags |= TF_REQ_TSTMP;
936 if (tcp_do_sack == 2)
937 flags |= TF_WILL_SACK;
938 else if (tcp_do_sack == 1)
939 flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
940 flags |= TF_CANT_TXSACK;
941 tp->t_flags = flags;
942
943 /*
944 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
945 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
946 * reasonable initial retransmit time.
947 */
948 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
949 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
950 TCPTV_MIN, TCPTV_REXMTMAX);
951 }
952
953 /*
954 * Create a new TCP control block, making an
955 * empty reassembly queue and hooking it to the argument
956 * protocol control block.
957 */
958 struct tcpcb *
959 tcp_newtcpcb(family, aux)
960 int family; /* selects inpcb, or in6pcb */
961 void *aux;
962 {
963 struct tcpcb *tp;
964 int i;
965
966 /* XXX Consider using a pool_cache for speed. */
967 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
968 if (tp == NULL)
969 return (NULL);
970 memcpy(tp, &tcpcb_template, sizeof(*tp));
971 TAILQ_INIT(&tp->segq);
972 TAILQ_INIT(&tp->timeq);
973 tp->t_family = family; /* may be overridden later on */
974 LIST_INIT(&tp->t_sc); /* XXX can template this */
975
976 /* Don't sweat this loop; hopefully the compiler will unroll it. */
977 for (i = 0; i < TCPT_NTIMERS; i++)
978 TCP_TIMER_INIT(tp, i);
979
980 switch (family) {
981 case AF_INET:
982 {
983 struct inpcb *inp = (struct inpcb *)aux;
984
985 inp->inp_ip.ip_ttl = ip_defttl;
986 inp->inp_ppcb = (caddr_t)tp;
987
988 tp->t_inpcb = inp;
989 tp->t_mtudisc = ip_mtudisc;
990 break;
991 }
992 #ifdef INET6
993 case AF_INET6:
994 {
995 struct in6pcb *in6p = (struct in6pcb *)aux;
996
997 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
998 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
999 : NULL);
1000 in6p->in6p_ppcb = (caddr_t)tp;
1001
1002 tp->t_in6pcb = in6p;
1003 /* for IPv6, always try to run path MTU discovery */
1004 tp->t_mtudisc = 1;
1005 break;
1006 }
1007 #endif /* INET6 */
1008 default:
1009 pool_put(&tcpcb_pool, tp);
1010 return (NULL);
1011 }
1012
1013 /*
1014 * Initialize our timebase. When we send timestamps, we take
1015 * the delta from tcp_now -- this means each connection always
1016 * gets a timebase of 0, which makes it, among other things,
1017 * more difficult to determine how long a system has been up,
1018 * and thus how many TCP sequence increments have occurred.
1019 */
1020 tp->ts_timebase = tcp_now;
1021
1022 return (tp);
1023 }
1024
1025 /*
1026 * Drop a TCP connection, reporting
1027 * the specified error. If connection is synchronized,
1028 * then send a RST to peer.
1029 */
1030 struct tcpcb *
1031 tcp_drop(tp, errno)
1032 struct tcpcb *tp;
1033 int errno;
1034 {
1035 struct socket *so = NULL;
1036
1037 #ifdef DIAGNOSTIC
1038 if (tp->t_inpcb && tp->t_in6pcb)
1039 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1040 #endif
1041 #ifdef INET
1042 if (tp->t_inpcb)
1043 so = tp->t_inpcb->inp_socket;
1044 #endif
1045 #ifdef INET6
1046 if (tp->t_in6pcb)
1047 so = tp->t_in6pcb->in6p_socket;
1048 #endif
1049 if (!so)
1050 return NULL;
1051
1052 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1053 tp->t_state = TCPS_CLOSED;
1054 (void) tcp_output(tp);
1055 tcpstat.tcps_drops++;
1056 } else
1057 tcpstat.tcps_conndrops++;
1058 if (errno == ETIMEDOUT && tp->t_softerror)
1059 errno = tp->t_softerror;
1060 so->so_error = errno;
1061 return (tcp_close(tp));
1062 }
1063
1064 /*
1065 * Return whether this tcpcb is marked as dead, indicating
1066 * to the calling timer function that no further action should
1067 * be taken, as we are about to release this tcpcb. The release
1068 * of the storage will be done if this is the last timer running.
1069 *
1070 * This should be called from the callout handler function after
1071 * callout_ack() is done, so that the number of invoking timer
1072 * functions is 0.
1073 */
1074 int
1075 tcp_isdead(tp)
1076 struct tcpcb *tp;
1077 {
1078 int dead = (tp->t_flags & TF_DEAD);
1079
1080 if (__predict_false(dead)) {
1081 if (tcp_timers_invoking(tp) > 0)
1082 /* not quite there yet -- count separately? */
1083 return dead;
1084 tcpstat.tcps_delayed_free++;
1085 pool_put(&tcpcb_pool, tp);
1086 }
1087 return dead;
1088 }
1089
1090 /*
1091 * Close a TCP control block:
1092 * discard all space held by the tcp
1093 * discard internet protocol block
1094 * wake up any sleepers
1095 */
1096 struct tcpcb *
1097 tcp_close(tp)
1098 struct tcpcb *tp;
1099 {
1100 struct inpcb *inp;
1101 #ifdef INET6
1102 struct in6pcb *in6p;
1103 #endif
1104 struct socket *so;
1105 #ifdef RTV_RTT
1106 struct rtentry *rt;
1107 #endif
1108 struct route *ro;
1109
1110 inp = tp->t_inpcb;
1111 #ifdef INET6
1112 in6p = tp->t_in6pcb;
1113 #endif
1114 so = NULL;
1115 ro = NULL;
1116 if (inp) {
1117 so = inp->inp_socket;
1118 ro = &inp->inp_route;
1119 }
1120 #ifdef INET6
1121 else if (in6p) {
1122 so = in6p->in6p_socket;
1123 ro = (struct route *)&in6p->in6p_route;
1124 }
1125 #endif
1126
1127 #ifdef RTV_RTT
1128 /*
1129 * If we sent enough data to get some meaningful characteristics,
1130 * save them in the routing entry. 'Enough' is arbitrarily
1131 * defined as the sendpipesize (default 4K) * 16. This would
1132 * give us 16 rtt samples assuming we only get one sample per
1133 * window (the usual case on a long haul net). 16 samples is
1134 * enough for the srtt filter to converge to within 5% of the correct
1135 * value; fewer samples and we could save a very bogus rtt.
1136 *
1137 * Don't update the default route's characteristics and don't
1138 * update anything that the user "locked".
1139 */
1140 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1141 ro && (rt = ro->ro_rt) &&
1142 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1143 u_long i = 0;
1144
1145 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1146 i = tp->t_srtt *
1147 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1148 if (rt->rt_rmx.rmx_rtt && i)
1149 /*
1150 * filter this update to half the old & half
1151 * the new values, converting scale.
1152 * See route.h and tcp_var.h for a
1153 * description of the scaling constants.
1154 */
1155 rt->rt_rmx.rmx_rtt =
1156 (rt->rt_rmx.rmx_rtt + i) / 2;
1157 else
1158 rt->rt_rmx.rmx_rtt = i;
1159 }
1160 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1161 i = tp->t_rttvar *
1162 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1163 if (rt->rt_rmx.rmx_rttvar && i)
1164 rt->rt_rmx.rmx_rttvar =
1165 (rt->rt_rmx.rmx_rttvar + i) / 2;
1166 else
1167 rt->rt_rmx.rmx_rttvar = i;
1168 }
1169 /*
1170 * update the pipelimit (ssthresh) if it has been updated
1171 * already or if a pipesize was specified & the threshhold
1172 * got below half the pipesize. I.e., wait for bad news
1173 * before we start updating, then update on both good
1174 * and bad news.
1175 */
1176 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1177 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1178 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1179 /*
1180 * convert the limit from user data bytes to
1181 * packets then to packet data bytes.
1182 */
1183 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1184 if (i < 2)
1185 i = 2;
1186 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1187 if (rt->rt_rmx.rmx_ssthresh)
1188 rt->rt_rmx.rmx_ssthresh =
1189 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1190 else
1191 rt->rt_rmx.rmx_ssthresh = i;
1192 }
1193 }
1194 #endif /* RTV_RTT */
1195 /* free the reassembly queue, if any */
1196 TCP_REASS_LOCK(tp);
1197 (void) tcp_freeq(tp);
1198 TCP_REASS_UNLOCK(tp);
1199
1200 tcp_canceltimers(tp);
1201 TCP_CLEAR_DELACK(tp);
1202 syn_cache_cleanup(tp);
1203
1204 if (tp->t_template) {
1205 m_free(tp->t_template);
1206 tp->t_template = NULL;
1207 }
1208 if (tcp_timers_invoking(tp))
1209 tp->t_flags |= TF_DEAD;
1210 else
1211 pool_put(&tcpcb_pool, tp);
1212
1213 if (inp) {
1214 inp->inp_ppcb = 0;
1215 soisdisconnected(so);
1216 in_pcbdetach(inp);
1217 }
1218 #ifdef INET6
1219 else if (in6p) {
1220 in6p->in6p_ppcb = 0;
1221 soisdisconnected(so);
1222 in6_pcbdetach(in6p);
1223 }
1224 #endif
1225 tcpstat.tcps_closed++;
1226 return ((struct tcpcb *)0);
1227 }
1228
1229 int
1230 tcp_freeq(tp)
1231 struct tcpcb *tp;
1232 {
1233 struct ipqent *qe;
1234 int rv = 0;
1235 #ifdef TCPREASS_DEBUG
1236 int i = 0;
1237 #endif
1238
1239 TCP_REASS_LOCK_CHECK(tp);
1240
1241 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1242 #ifdef TCPREASS_DEBUG
1243 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1244 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1245 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1246 #endif
1247 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1248 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1249 m_freem(qe->ipqe_m);
1250 pool_put(&ipqent_pool, qe);
1251 rv = 1;
1252 }
1253 return (rv);
1254 }
1255
1256 /*
1257 * Protocol drain routine. Called when memory is in short supply.
1258 */
1259 void
1260 tcp_drain()
1261 {
1262 struct inpcb_hdr *inph;
1263 struct tcpcb *tp;
1264
1265 /*
1266 * Free the sequence queue of all TCP connections.
1267 */
1268 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1269 switch (inph->inph_af) {
1270 case AF_INET:
1271 tp = intotcpcb((struct inpcb *)inph);
1272 break;
1273 #ifdef INET6
1274 case AF_INET6:
1275 tp = in6totcpcb((struct in6pcb *)inph);
1276 break;
1277 #endif
1278 default:
1279 tp = NULL;
1280 break;
1281 }
1282 if (tp != NULL) {
1283 /*
1284 * We may be called from a device's interrupt
1285 * context. If the tcpcb is already busy,
1286 * just bail out now.
1287 */
1288 if (tcp_reass_lock_try(tp) == 0)
1289 continue;
1290 if (tcp_freeq(tp))
1291 tcpstat.tcps_connsdrained++;
1292 TCP_REASS_UNLOCK(tp);
1293 }
1294 }
1295 }
1296
1297 /*
1298 * Notify a tcp user of an asynchronous error;
1299 * store error as soft error, but wake up user
1300 * (for now, won't do anything until can select for soft error).
1301 */
1302 void
1303 tcp_notify(inp, error)
1304 struct inpcb *inp;
1305 int error;
1306 {
1307 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1308 struct socket *so = inp->inp_socket;
1309
1310 /*
1311 * Ignore some errors if we are hooked up.
1312 * If connection hasn't completed, has retransmitted several times,
1313 * and receives a second error, give up now. This is better
1314 * than waiting a long time to establish a connection that
1315 * can never complete.
1316 */
1317 if (tp->t_state == TCPS_ESTABLISHED &&
1318 (error == EHOSTUNREACH || error == ENETUNREACH ||
1319 error == EHOSTDOWN)) {
1320 return;
1321 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1322 tp->t_rxtshift > 3 && tp->t_softerror)
1323 so->so_error = error;
1324 else
1325 tp->t_softerror = error;
1326 wakeup((caddr_t) &so->so_timeo);
1327 sorwakeup(so);
1328 sowwakeup(so);
1329 }
1330
1331 #ifdef INET6
1332 void
1333 tcp6_notify(in6p, error)
1334 struct in6pcb *in6p;
1335 int error;
1336 {
1337 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1338 struct socket *so = in6p->in6p_socket;
1339
1340 /*
1341 * Ignore some errors if we are hooked up.
1342 * If connection hasn't completed, has retransmitted several times,
1343 * and receives a second error, give up now. This is better
1344 * than waiting a long time to establish a connection that
1345 * can never complete.
1346 */
1347 if (tp->t_state == TCPS_ESTABLISHED &&
1348 (error == EHOSTUNREACH || error == ENETUNREACH ||
1349 error == EHOSTDOWN)) {
1350 return;
1351 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1352 tp->t_rxtshift > 3 && tp->t_softerror)
1353 so->so_error = error;
1354 else
1355 tp->t_softerror = error;
1356 wakeup((caddr_t) &so->so_timeo);
1357 sorwakeup(so);
1358 sowwakeup(so);
1359 }
1360 #endif
1361
1362 #ifdef INET6
1363 void
1364 tcp6_ctlinput(cmd, sa, d)
1365 int cmd;
1366 struct sockaddr *sa;
1367 void *d;
1368 {
1369 struct tcphdr th;
1370 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1371 int nmatch;
1372 struct ip6_hdr *ip6;
1373 const struct sockaddr_in6 *sa6_src = NULL;
1374 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1375 struct mbuf *m;
1376 int off;
1377
1378 if (sa->sa_family != AF_INET6 ||
1379 sa->sa_len != sizeof(struct sockaddr_in6))
1380 return;
1381 if ((unsigned)cmd >= PRC_NCMDS)
1382 return;
1383 else if (cmd == PRC_QUENCH) {
1384 /* XXX there's no PRC_QUENCH in IPv6 */
1385 notify = tcp6_quench;
1386 } else if (PRC_IS_REDIRECT(cmd))
1387 notify = in6_rtchange, d = NULL;
1388 else if (cmd == PRC_MSGSIZE)
1389 ; /* special code is present, see below */
1390 else if (cmd == PRC_HOSTDEAD)
1391 d = NULL;
1392 else if (inet6ctlerrmap[cmd] == 0)
1393 return;
1394
1395 /* if the parameter is from icmp6, decode it. */
1396 if (d != NULL) {
1397 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1398 m = ip6cp->ip6c_m;
1399 ip6 = ip6cp->ip6c_ip6;
1400 off = ip6cp->ip6c_off;
1401 sa6_src = ip6cp->ip6c_src;
1402 } else {
1403 m = NULL;
1404 ip6 = NULL;
1405 sa6_src = &sa6_any;
1406 off = 0;
1407 }
1408
1409 if (ip6) {
1410 /*
1411 * XXX: We assume that when ip6 is non NULL,
1412 * M and OFF are valid.
1413 */
1414
1415 /* check if we can safely examine src and dst ports */
1416 if (m->m_pkthdr.len < off + sizeof(th)) {
1417 if (cmd == PRC_MSGSIZE)
1418 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1419 return;
1420 }
1421
1422 bzero(&th, sizeof(th));
1423 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1424
1425 if (cmd == PRC_MSGSIZE) {
1426 int valid = 0;
1427
1428 /*
1429 * Check to see if we have a valid TCP connection
1430 * corresponding to the address in the ICMPv6 message
1431 * payload.
1432 */
1433 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1434 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1435 th.th_sport, 0))
1436 valid++;
1437
1438 /*
1439 * Depending on the value of "valid" and routing table
1440 * size (mtudisc_{hi,lo}wat), we will:
1441 * - recalcurate the new MTU and create the
1442 * corresponding routing entry, or
1443 * - ignore the MTU change notification.
1444 */
1445 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1446
1447 /*
1448 * no need to call in6_pcbnotify, it should have been
1449 * called via callback if necessary
1450 */
1451 return;
1452 }
1453
1454 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1455 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1456 if (nmatch == 0 && syn_cache_count &&
1457 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1458 inet6ctlerrmap[cmd] == ENETUNREACH ||
1459 inet6ctlerrmap[cmd] == EHOSTDOWN))
1460 syn_cache_unreach((struct sockaddr *)sa6_src,
1461 sa, &th);
1462 } else {
1463 (void) in6_pcbnotify(&tcbtable, sa, 0,
1464 (struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1465 }
1466 }
1467 #endif
1468
1469 #ifdef INET
1470 /* assumes that ip header and tcp header are contiguous on mbuf */
1471 void *
1472 tcp_ctlinput(cmd, sa, v)
1473 int cmd;
1474 struct sockaddr *sa;
1475 void *v;
1476 {
1477 struct ip *ip = v;
1478 struct tcphdr *th;
1479 struct icmp *icp;
1480 extern const int inetctlerrmap[];
1481 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1482 int errno;
1483 int nmatch;
1484 #ifdef INET6
1485 struct in6_addr src6, dst6;
1486 #endif
1487
1488 if (sa->sa_family != AF_INET ||
1489 sa->sa_len != sizeof(struct sockaddr_in))
1490 return NULL;
1491 if ((unsigned)cmd >= PRC_NCMDS)
1492 return NULL;
1493 errno = inetctlerrmap[cmd];
1494 if (cmd == PRC_QUENCH)
1495 notify = tcp_quench;
1496 else if (PRC_IS_REDIRECT(cmd))
1497 notify = in_rtchange, ip = 0;
1498 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1499 /*
1500 * Check to see if we have a valid TCP connection
1501 * corresponding to the address in the ICMP message
1502 * payload.
1503 *
1504 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1505 */
1506 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1507 #ifdef INET6
1508 memset(&src6, 0, sizeof(src6));
1509 memset(&dst6, 0, sizeof(dst6));
1510 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1511 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1512 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1513 #endif
1514 if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
1515 ip->ip_src, th->th_sport) != NULL)
1516 ;
1517 #ifdef INET6
1518 else if (in6_pcblookup_connect(&tcbtable, &dst6,
1519 th->th_dport, &src6, th->th_sport, 0) != NULL)
1520 ;
1521 #endif
1522 else
1523 return NULL;
1524
1525 /*
1526 * Now that we've validated that we are actually communicating
1527 * with the host indicated in the ICMP message, locate the
1528 * ICMP header, recalculate the new MTU, and create the
1529 * corresponding routing entry.
1530 */
1531 icp = (struct icmp *)((caddr_t)ip -
1532 offsetof(struct icmp, icmp_ip));
1533 icmp_mtudisc(icp, ip->ip_dst);
1534
1535 return NULL;
1536 } else if (cmd == PRC_HOSTDEAD)
1537 ip = 0;
1538 else if (errno == 0)
1539 return NULL;
1540 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1541 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1542 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1543 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1544 if (nmatch == 0 && syn_cache_count &&
1545 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1546 inetctlerrmap[cmd] == ENETUNREACH ||
1547 inetctlerrmap[cmd] == EHOSTDOWN)) {
1548 struct sockaddr_in sin;
1549 bzero(&sin, sizeof(sin));
1550 sin.sin_len = sizeof(sin);
1551 sin.sin_family = AF_INET;
1552 sin.sin_port = th->th_sport;
1553 sin.sin_addr = ip->ip_src;
1554 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1555 }
1556
1557 /* XXX mapped address case */
1558 } else
1559 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1560 notify);
1561 return NULL;
1562 }
1563
1564 /*
1565 * When a source quence is received, we are being notifed of congestion.
1566 * Close the congestion window down to the Loss Window (one segment).
1567 * We will gradually open it again as we proceed.
1568 */
1569 void
1570 tcp_quench(inp, errno)
1571 struct inpcb *inp;
1572 int errno;
1573 {
1574 struct tcpcb *tp = intotcpcb(inp);
1575
1576 if (tp)
1577 tp->snd_cwnd = tp->t_segsz;
1578 }
1579 #endif
1580
1581 #ifdef INET6
1582 void
1583 tcp6_quench(in6p, errno)
1584 struct in6pcb *in6p;
1585 int errno;
1586 {
1587 struct tcpcb *tp = in6totcpcb(in6p);
1588
1589 if (tp)
1590 tp->snd_cwnd = tp->t_segsz;
1591 }
1592 #endif
1593
1594 #ifdef INET
1595 /*
1596 * Path MTU Discovery handlers.
1597 */
1598 void
1599 tcp_mtudisc_callback(faddr)
1600 struct in_addr faddr;
1601 {
1602 #ifdef INET6
1603 struct in6_addr in6;
1604 #endif
1605
1606 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1607 #ifdef INET6
1608 memset(&in6, 0, sizeof(in6));
1609 in6.s6_addr16[5] = 0xffff;
1610 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1611 tcp6_mtudisc_callback(&in6);
1612 #endif
1613 }
1614
1615 #ifdef TCP_SIGNATURE
1616 /*
1617 * Callback function invoked by m_apply() to digest TCP segment data
1618 * contained within an mbuf chain.
1619 */
1620 static int
1621 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
1622 {
1623
1624 MD5Update(fstate, (u_char *)data, len);
1625 return (0);
1626 }
1627
1628 /*
1629 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
1630 *
1631 * Parameters:
1632 * m pointer to head of mbuf chain
1633 * off0 offset to TCP header within the mbuf chain
1634 * len length of TCP segment data, excluding options
1635 * optlen length of TCP segment options
1636 * buf pointer to storage for computed MD5 digest
1637 * direction direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1638 *
1639 * We do this over ip, tcphdr, segment data, and the key in the SADB.
1640 * When called from tcp_input(), we can be sure that th_sum has been
1641 * zeroed out and verified already.
1642 *
1643 * This function is for IPv4 use only. Calling this function with an
1644 * IPv6 packet in the mbuf chain will yield undefined results.
1645 *
1646 * Return 0 if successful, otherwise return -1.
1647 *
1648 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1649 * search with the destination IP address, and a 'magic SPI' of 0x1000.
1650 * Another branch of this code exists which uses the SPD to specify
1651 * per-application flows, but it is unstable.
1652 */
1653 int
1654 tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
1655 u_char *buf, u_int direction)
1656 {
1657 union sockaddr_union dst;
1658 MD5_CTX ctx;
1659 int doff;
1660 struct ip *ip;
1661 struct ipovly *ipovly;
1662 struct secasvar *sav;
1663 struct tcphdr *th;
1664 u_short savecsum;
1665 struct ippseudo ippseudo;
1666
1667
1668 KASSERT(m != NULL /*, ("NULL mbuf chain")*/);
1669 KASSERT(buf != NULL /*, ("NULL signature pointer")*/);
1670
1671 /* Extract the destination from the IP header in the mbuf. */
1672 ip = mtod(m, struct ip *);
1673 bzero(&dst, sizeof(union sockaddr_union));
1674 dst.sa.sa_len = sizeof(struct sockaddr_in);
1675 dst.sa.sa_family = AF_INET;
1676 dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
1677 ip->ip_src : ip->ip_dst;
1678
1679 /* Look up an SADB entry which matches the address of the peer. */
1680 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
1681 if (sav == NULL) {
1682 printf("%s: SADB lookup failed for %s\n", __func__,
1683 inet_ntoa(dst.sin.sin_addr));
1684 return (EINVAL);
1685 }
1686
1687 MD5Init(&ctx);
1688 ipovly = (struct ipovly *)ip;
1689 th = (struct tcphdr *)((u_char *)ip + off0);
1690 doff = off0 + sizeof(struct tcphdr) + optlen;
1691
1692 /*
1693 * Step 1: Update MD5 hash with IP pseudo-header.
1694 *
1695 * XXX The ippseudo header MUST be digested in network byte order,
1696 * or else we'll fail the regression test. Assume all fields we've
1697 * been doing arithmetic on have been in host byte order.
1698 * XXX One cannot depend on ipovly->ih_len here. When called from
1699 * tcp_output(), the underlying ip_len member has not yet been set.
1700 */
1701 ippseudo.ippseudo_src = ipovly->ih_src;
1702 ippseudo.ippseudo_dst = ipovly->ih_dst;
1703 ippseudo.ippseudo_pad = 0;
1704 ippseudo.ippseudo_p = IPPROTO_TCP;
1705 ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
1706 MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
1707
1708 /*
1709 * Step 2: Update MD5 hash with TCP header, excluding options.
1710 * The TCP checksum must be set to zero.
1711 */
1712 savecsum = th->th_sum;
1713 th->th_sum = 0;
1714 MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
1715 th->th_sum = savecsum;
1716
1717 /*
1718 * Step 3: Update MD5 hash with TCP segment data.
1719 * Use m_apply() to avoid an early m_pullup().
1720 */
1721 if (len > 0)
1722 m_apply(m, doff, len, tcp_signature_apply, &ctx);
1723
1724 /*
1725 * Step 4: Update MD5 hash with shared secret.
1726 */
1727 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
1728 MD5Final(buf, &ctx);
1729
1730 key_sa_recordxfer(sav, m);
1731 KEY_FREESAV(&sav);
1732 return (0);
1733 }
1734 #endif /* TCP_SIGNATURE */
1735
1736 /*
1737 * On receipt of path MTU corrections, flush old route and replace it
1738 * with the new one. Retransmit all unacknowledged packets, to ensure
1739 * that all packets will be received.
1740 */
1741 void
1742 tcp_mtudisc(inp, errno)
1743 struct inpcb *inp;
1744 int errno;
1745 {
1746 struct tcpcb *tp = intotcpcb(inp);
1747 struct rtentry *rt = in_pcbrtentry(inp);
1748
1749 if (tp != 0) {
1750 if (rt != 0) {
1751 /*
1752 * If this was not a host route, remove and realloc.
1753 */
1754 if ((rt->rt_flags & RTF_HOST) == 0) {
1755 in_rtchange(inp, errno);
1756 if ((rt = in_pcbrtentry(inp)) == 0)
1757 return;
1758 }
1759
1760 /*
1761 * Slow start out of the error condition. We
1762 * use the MTU because we know it's smaller
1763 * than the previously transmitted segment.
1764 *
1765 * Note: This is more conservative than the
1766 * suggestion in draft-floyd-incr-init-win-03.
1767 */
1768 if (rt->rt_rmx.rmx_mtu != 0)
1769 tp->snd_cwnd =
1770 TCP_INITIAL_WINDOW(tcp_init_win,
1771 rt->rt_rmx.rmx_mtu);
1772 }
1773
1774 /*
1775 * Resend unacknowledged packets.
1776 */
1777 tp->snd_nxt = tp->snd_una;
1778 tcp_output(tp);
1779 }
1780 }
1781 #endif
1782
1783 #ifdef INET6
1784 /*
1785 * Path MTU Discovery handlers.
1786 */
1787 void
1788 tcp6_mtudisc_callback(faddr)
1789 struct in6_addr *faddr;
1790 {
1791 struct sockaddr_in6 sin6;
1792
1793 bzero(&sin6, sizeof(sin6));
1794 sin6.sin6_family = AF_INET6;
1795 sin6.sin6_len = sizeof(struct sockaddr_in6);
1796 sin6.sin6_addr = *faddr;
1797 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1798 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1799 }
1800
1801 void
1802 tcp6_mtudisc(in6p, errno)
1803 struct in6pcb *in6p;
1804 int errno;
1805 {
1806 struct tcpcb *tp = in6totcpcb(in6p);
1807 struct rtentry *rt = in6_pcbrtentry(in6p);
1808
1809 if (tp != 0) {
1810 if (rt != 0) {
1811 /*
1812 * If this was not a host route, remove and realloc.
1813 */
1814 if ((rt->rt_flags & RTF_HOST) == 0) {
1815 in6_rtchange(in6p, errno);
1816 if ((rt = in6_pcbrtentry(in6p)) == 0)
1817 return;
1818 }
1819
1820 /*
1821 * Slow start out of the error condition. We
1822 * use the MTU because we know it's smaller
1823 * than the previously transmitted segment.
1824 *
1825 * Note: This is more conservative than the
1826 * suggestion in draft-floyd-incr-init-win-03.
1827 */
1828 if (rt->rt_rmx.rmx_mtu != 0)
1829 tp->snd_cwnd =
1830 TCP_INITIAL_WINDOW(tcp_init_win,
1831 rt->rt_rmx.rmx_mtu);
1832 }
1833
1834 /*
1835 * Resend unacknowledged packets.
1836 */
1837 tp->snd_nxt = tp->snd_una;
1838 tcp_output(tp);
1839 }
1840 }
1841 #endif /* INET6 */
1842
1843 /*
1844 * Compute the MSS to advertise to the peer. Called only during
1845 * the 3-way handshake. If we are the server (peer initiated
1846 * connection), we are called with a pointer to the interface
1847 * on which the SYN packet arrived. If we are the client (we
1848 * initiated connection), we are called with a pointer to the
1849 * interface out which this connection should go.
1850 *
1851 * NOTE: Do not subtract IP option/extension header size nor IPsec
1852 * header size from MSS advertisement. MSS option must hold the maximum
1853 * segment size we can accept, so it must always be:
1854 * max(if mtu) - ip header - tcp header
1855 */
1856 u_long
1857 tcp_mss_to_advertise(ifp, af)
1858 const struct ifnet *ifp;
1859 int af;
1860 {
1861 extern u_long in_maxmtu;
1862 u_long mss = 0;
1863 u_long hdrsiz;
1864
1865 /*
1866 * In order to avoid defeating path MTU discovery on the peer,
1867 * we advertise the max MTU of all attached networks as our MSS,
1868 * per RFC 1191, section 3.1.
1869 *
1870 * We provide the option to advertise just the MTU of
1871 * the interface on which we hope this connection will
1872 * be receiving. If we are responding to a SYN, we
1873 * will have a pretty good idea about this, but when
1874 * initiating a connection there is a bit more doubt.
1875 *
1876 * We also need to ensure that loopback has a large enough
1877 * MSS, as the loopback MTU is never included in in_maxmtu.
1878 */
1879
1880 if (ifp != NULL)
1881 switch (af) {
1882 case AF_INET:
1883 mss = ifp->if_mtu;
1884 break;
1885 #ifdef INET6
1886 case AF_INET6:
1887 mss = IN6_LINKMTU(ifp);
1888 break;
1889 #endif
1890 }
1891
1892 if (tcp_mss_ifmtu == 0)
1893 switch (af) {
1894 case AF_INET:
1895 mss = max(in_maxmtu, mss);
1896 break;
1897 #ifdef INET6
1898 case AF_INET6:
1899 mss = max(in6_maxmtu, mss);
1900 break;
1901 #endif
1902 }
1903
1904 switch (af) {
1905 case AF_INET:
1906 hdrsiz = sizeof(struct ip);
1907 break;
1908 #ifdef INET6
1909 case AF_INET6:
1910 hdrsiz = sizeof(struct ip6_hdr);
1911 break;
1912 #endif
1913 default:
1914 hdrsiz = 0;
1915 break;
1916 }
1917 hdrsiz += sizeof(struct tcphdr);
1918 if (mss > hdrsiz)
1919 mss -= hdrsiz;
1920
1921 mss = max(tcp_mssdflt, mss);
1922 return (mss);
1923 }
1924
1925 /*
1926 * Set connection variables based on the peer's advertised MSS.
1927 * We are passed the TCPCB for the actual connection. If we
1928 * are the server, we are called by the compressed state engine
1929 * when the 3-way handshake is complete. If we are the client,
1930 * we are called when we receive the SYN,ACK from the server.
1931 *
1932 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1933 * before this routine is called!
1934 */
1935 void
1936 tcp_mss_from_peer(tp, offer)
1937 struct tcpcb *tp;
1938 int offer;
1939 {
1940 struct socket *so;
1941 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1942 struct rtentry *rt;
1943 #endif
1944 u_long bufsize;
1945 int mss;
1946
1947 #ifdef DIAGNOSTIC
1948 if (tp->t_inpcb && tp->t_in6pcb)
1949 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1950 #endif
1951 so = NULL;
1952 rt = NULL;
1953 #ifdef INET
1954 if (tp->t_inpcb) {
1955 so = tp->t_inpcb->inp_socket;
1956 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1957 rt = in_pcbrtentry(tp->t_inpcb);
1958 #endif
1959 }
1960 #endif
1961 #ifdef INET6
1962 if (tp->t_in6pcb) {
1963 so = tp->t_in6pcb->in6p_socket;
1964 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1965 rt = in6_pcbrtentry(tp->t_in6pcb);
1966 #endif
1967 }
1968 #endif
1969
1970 /*
1971 * As per RFC1122, use the default MSS value, unless they
1972 * sent us an offer. Do not accept offers less than 256 bytes.
1973 */
1974 mss = tcp_mssdflt;
1975 if (offer)
1976 mss = offer;
1977 mss = max(mss, 256); /* sanity */
1978 tp->t_peermss = mss;
1979 mss -= tcp_optlen(tp);
1980 #ifdef INET
1981 if (tp->t_inpcb)
1982 mss -= ip_optlen(tp->t_inpcb);
1983 #endif
1984 #ifdef INET6
1985 if (tp->t_in6pcb)
1986 mss -= ip6_optlen(tp->t_in6pcb);
1987 #endif
1988
1989 /*
1990 * If there's a pipesize, change the socket buffer to that size.
1991 * Make the socket buffer an integral number of MSS units. If
1992 * the MSS is larger than the socket buffer, artificially decrease
1993 * the MSS.
1994 */
1995 #ifdef RTV_SPIPE
1996 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1997 bufsize = rt->rt_rmx.rmx_sendpipe;
1998 else
1999 #endif
2000 bufsize = so->so_snd.sb_hiwat;
2001 if (bufsize < mss)
2002 mss = bufsize;
2003 else {
2004 bufsize = roundup(bufsize, mss);
2005 if (bufsize > sb_max)
2006 bufsize = sb_max;
2007 (void) sbreserve(&so->so_snd, bufsize, so);
2008 }
2009 tp->t_segsz = mss;
2010
2011 #ifdef RTV_SSTHRESH
2012 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
2013 /*
2014 * There's some sort of gateway or interface buffer
2015 * limit on the path. Use this to set the slow
2016 * start threshold, but set the threshold to no less
2017 * than 2 * MSS.
2018 */
2019 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2020 }
2021 #endif
2022 }
2023
2024 /*
2025 * Processing necessary when a TCP connection is established.
2026 */
2027 void
2028 tcp_established(tp)
2029 struct tcpcb *tp;
2030 {
2031 struct socket *so;
2032 #ifdef RTV_RPIPE
2033 struct rtentry *rt;
2034 #endif
2035 u_long bufsize;
2036
2037 #ifdef DIAGNOSTIC
2038 if (tp->t_inpcb && tp->t_in6pcb)
2039 panic("tcp_established: both t_inpcb and t_in6pcb are set");
2040 #endif
2041 so = NULL;
2042 rt = NULL;
2043 #ifdef INET
2044 if (tp->t_inpcb) {
2045 so = tp->t_inpcb->inp_socket;
2046 #if defined(RTV_RPIPE)
2047 rt = in_pcbrtentry(tp->t_inpcb);
2048 #endif
2049 }
2050 #endif
2051 #ifdef INET6
2052 if (tp->t_in6pcb) {
2053 so = tp->t_in6pcb->in6p_socket;
2054 #if defined(RTV_RPIPE)
2055 rt = in6_pcbrtentry(tp->t_in6pcb);
2056 #endif
2057 }
2058 #endif
2059
2060 tp->t_state = TCPS_ESTABLISHED;
2061 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
2062
2063 #ifdef RTV_RPIPE
2064 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2065 bufsize = rt->rt_rmx.rmx_recvpipe;
2066 else
2067 #endif
2068 bufsize = so->so_rcv.sb_hiwat;
2069 if (bufsize > tp->t_ourmss) {
2070 bufsize = roundup(bufsize, tp->t_ourmss);
2071 if (bufsize > sb_max)
2072 bufsize = sb_max;
2073 (void) sbreserve(&so->so_rcv, bufsize, so);
2074 }
2075 }
2076
2077 /*
2078 * Check if there's an initial rtt or rttvar. Convert from the
2079 * route-table units to scaled multiples of the slow timeout timer.
2080 * Called only during the 3-way handshake.
2081 */
2082 void
2083 tcp_rmx_rtt(tp)
2084 struct tcpcb *tp;
2085 {
2086 #ifdef RTV_RTT
2087 struct rtentry *rt = NULL;
2088 int rtt;
2089
2090 #ifdef DIAGNOSTIC
2091 if (tp->t_inpcb && tp->t_in6pcb)
2092 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2093 #endif
2094 #ifdef INET
2095 if (tp->t_inpcb)
2096 rt = in_pcbrtentry(tp->t_inpcb);
2097 #endif
2098 #ifdef INET6
2099 if (tp->t_in6pcb)
2100 rt = in6_pcbrtentry(tp->t_in6pcb);
2101 #endif
2102 if (rt == NULL)
2103 return;
2104
2105 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2106 /*
2107 * XXX The lock bit for MTU indicates that the value
2108 * is also a minimum value; this is subject to time.
2109 */
2110 if (rt->rt_rmx.rmx_locks & RTV_RTT)
2111 TCPT_RANGESET(tp->t_rttmin,
2112 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2113 TCPTV_MIN, TCPTV_REXMTMAX);
2114 tp->t_srtt = rtt /
2115 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2116 if (rt->rt_rmx.rmx_rttvar) {
2117 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2118 ((RTM_RTTUNIT / PR_SLOWHZ) >>
2119 (TCP_RTTVAR_SHIFT + 2));
2120 } else {
2121 /* Default variation is +- 1 rtt */
2122 tp->t_rttvar =
2123 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2124 }
2125 TCPT_RANGESET(tp->t_rxtcur,
2126 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2127 tp->t_rttmin, TCPTV_REXMTMAX);
2128 }
2129 #endif
2130 }
2131
2132 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2133 #if NRND > 0
2134 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2135 #endif
2136
2137 /*
2138 * Get a new sequence value given a tcp control block
2139 */
2140 tcp_seq
2141 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2142 {
2143
2144 #ifdef INET
2145 if (tp->t_inpcb != NULL) {
2146 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2147 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2148 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2149 addin));
2150 }
2151 #endif
2152 #ifdef INET6
2153 if (tp->t_in6pcb != NULL) {
2154 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2155 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2156 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2157 addin));
2158 }
2159 #endif
2160 /* Not possible. */
2161 panic("tcp_new_iss");
2162 }
2163
2164 /*
2165 * This routine actually generates a new TCP initial sequence number.
2166 */
2167 tcp_seq
2168 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2169 size_t addrsz, tcp_seq addin)
2170 {
2171 tcp_seq tcp_iss;
2172
2173 #if NRND > 0
2174 static int beenhere;
2175
2176 /*
2177 * If we haven't been here before, initialize our cryptographic
2178 * hash secret.
2179 */
2180 if (beenhere == 0) {
2181 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2182 RND_EXTRACT_ANY);
2183 beenhere = 1;
2184 }
2185
2186 if (tcp_do_rfc1948) {
2187 MD5_CTX ctx;
2188 u_int8_t hash[16]; /* XXX MD5 knowledge */
2189
2190 /*
2191 * Compute the base value of the ISS. It is a hash
2192 * of (saddr, sport, daddr, dport, secret).
2193 */
2194 MD5Init(&ctx);
2195
2196 MD5Update(&ctx, (u_char *) laddr, addrsz);
2197 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2198
2199 MD5Update(&ctx, (u_char *) faddr, addrsz);
2200 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2201
2202 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2203
2204 MD5Final(hash, &ctx);
2205
2206 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2207
2208 /*
2209 * Now increment our "timer", and add it in to
2210 * the computed value.
2211 *
2212 * XXX Use `addin'?
2213 * XXX TCP_ISSINCR too large to use?
2214 */
2215 tcp_iss_seq += TCP_ISSINCR;
2216 #ifdef TCPISS_DEBUG
2217 printf("ISS hash 0x%08x, ", tcp_iss);
2218 #endif
2219 tcp_iss += tcp_iss_seq + addin;
2220 #ifdef TCPISS_DEBUG
2221 printf("new ISS 0x%08x\n", tcp_iss);
2222 #endif
2223 } else
2224 #endif /* NRND > 0 */
2225 {
2226 /*
2227 * Randomize.
2228 */
2229 #if NRND > 0
2230 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2231 #else
2232 tcp_iss = arc4random();
2233 #endif
2234
2235 /*
2236 * If we were asked to add some amount to a known value,
2237 * we will take a random value obtained above, mask off
2238 * the upper bits, and add in the known value. We also
2239 * add in a constant to ensure that we are at least a
2240 * certain distance from the original value.
2241 *
2242 * This is used when an old connection is in timed wait
2243 * and we have a new one coming in, for instance.
2244 */
2245 if (addin != 0) {
2246 #ifdef TCPISS_DEBUG
2247 printf("Random %08x, ", tcp_iss);
2248 #endif
2249 tcp_iss &= TCP_ISS_RANDOM_MASK;
2250 tcp_iss += addin + TCP_ISSINCR;
2251 #ifdef TCPISS_DEBUG
2252 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2253 #endif
2254 } else {
2255 tcp_iss &= TCP_ISS_RANDOM_MASK;
2256 tcp_iss += tcp_iss_seq;
2257 tcp_iss_seq += TCP_ISSINCR;
2258 #ifdef TCPISS_DEBUG
2259 printf("ISS %08x\n", tcp_iss);
2260 #endif
2261 }
2262 }
2263
2264 if (tcp_compat_42) {
2265 /*
2266 * Limit it to the positive range for really old TCP
2267 * implementations.
2268 * Just AND off the top bit instead of checking if
2269 * is set first - saves a branch 50% of the time.
2270 */
2271 tcp_iss &= 0x7fffffff; /* XXX */
2272 }
2273
2274 return (tcp_iss);
2275 }
2276
2277 #if defined(IPSEC) || defined(FAST_IPSEC)
2278 /* compute ESP/AH header size for TCP, including outer IP header. */
2279 size_t
2280 ipsec4_hdrsiz_tcp(tp)
2281 struct tcpcb *tp;
2282 {
2283 struct inpcb *inp;
2284 size_t hdrsiz;
2285
2286 /* XXX mapped addr case (tp->t_in6pcb) */
2287 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2288 return 0;
2289 switch (tp->t_family) {
2290 case AF_INET:
2291 /* XXX: should use currect direction. */
2292 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2293 break;
2294 default:
2295 hdrsiz = 0;
2296 break;
2297 }
2298
2299 return hdrsiz;
2300 }
2301
2302 #ifdef INET6
2303 size_t
2304 ipsec6_hdrsiz_tcp(tp)
2305 struct tcpcb *tp;
2306 {
2307 struct in6pcb *in6p;
2308 size_t hdrsiz;
2309
2310 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2311 return 0;
2312 switch (tp->t_family) {
2313 case AF_INET6:
2314 /* XXX: should use currect direction. */
2315 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2316 break;
2317 case AF_INET:
2318 /* mapped address case - tricky */
2319 default:
2320 hdrsiz = 0;
2321 break;
2322 }
2323
2324 return hdrsiz;
2325 }
2326 #endif
2327 #endif /*IPSEC*/
2328
2329 /*
2330 * Determine the length of the TCP options for this connection.
2331 *
2332 * XXX: What do we do for SACK, when we add that? Just reserve
2333 * all of the space? Otherwise we can't exactly be incrementing
2334 * cwnd by an amount that varies depending on the amount we last
2335 * had to SACK!
2336 */
2337
2338 u_int
2339 tcp_optlen(tp)
2340 struct tcpcb *tp;
2341 {
2342 u_int optlen;
2343
2344 optlen = 0;
2345 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2346 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2347 optlen += TCPOLEN_TSTAMP_APPA;
2348
2349 #ifdef TCP_SIGNATURE
2350 #ifdef INET6
2351 /* XXX: FreeBSD uses ((tp->t_inpcb->inp_vflag & INP_IPV6) == 0) */
2352 if (tp->t_family == AF_INET)
2353 #endif
2354 if (tp->t_flags & TF_SIGNATURE)
2355 optlen += TCPOLEN_SIGNATURE + 2;
2356 #endif /* TCP_SIGNATURE */
2357
2358 return optlen;
2359 }
2360