Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.166
      1 /*	$NetBSD: tcp_subr.c,v 1.166 2004/04/25 22:25:04 jonathan Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.166 2004/04/25 22:25:04 jonathan Exp $");
    102 
    103 #include "opt_inet.h"
    104 #include "opt_ipsec.h"
    105 #include "opt_tcp_compat_42.h"
    106 #include "opt_inet_csum.h"
    107 #include "opt_mbuftrace.h"
    108 #include "rnd.h"
    109 
    110 #include <sys/param.h>
    111 #include <sys/proc.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/socket.h>
    116 #include <sys/socketvar.h>
    117 #include <sys/protosw.h>
    118 #include <sys/errno.h>
    119 #include <sys/kernel.h>
    120 #include <sys/pool.h>
    121 #if NRND > 0
    122 #include <sys/md5.h>
    123 #include <sys/rnd.h>
    124 #endif
    125 
    126 #include <net/route.h>
    127 #include <net/if.h>
    128 
    129 #include <netinet/in.h>
    130 #include <netinet/in_systm.h>
    131 #include <netinet/ip.h>
    132 #include <netinet/in_pcb.h>
    133 #include <netinet/ip_var.h>
    134 #include <netinet/ip_icmp.h>
    135 
    136 #ifdef INET6
    137 #ifndef INET
    138 #include <netinet/in.h>
    139 #endif
    140 #include <netinet/ip6.h>
    141 #include <netinet6/in6_pcb.h>
    142 #include <netinet6/ip6_var.h>
    143 #include <netinet6/in6_var.h>
    144 #include <netinet6/ip6protosw.h>
    145 #include <netinet/icmp6.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include <netinet/tcp.h>
    150 #include <netinet/tcp_fsm.h>
    151 #include <netinet/tcp_seq.h>
    152 #include <netinet/tcp_timer.h>
    153 #include <netinet/tcp_var.h>
    154 #include <netinet/tcpip.h>
    155 
    156 #ifdef IPSEC
    157 #include <netinet6/ipsec.h>
    158 #endif /*IPSEC*/
    159 
    160 #ifdef FAST_IPSEC
    161 #include <netipsec/ipsec.h>
    162 #include <netipsec/xform.h>
    163 #ifdef INET6
    164 #include <netipsec/ipsec6.h>
    165 #endif
    166  #include <netipsec/key.h>
    167 #endif	/* FAST_IPSEC*/
    168 
    169 
    170 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    171 struct	tcpstat tcpstat;	/* tcp statistics */
    172 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
    173 
    174 /* patchable/settable parameters for tcp */
    175 int 	tcp_mssdflt = TCP_MSS;
    176 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    177 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    178 #if NRND > 0
    179 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    180 #endif
    181 int	tcp_do_sack = 1;	/* selective acknowledgement */
    182 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    183 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    184 int	tcp_do_newreno = 1;	/* Use the New Reno algorithms */
    185 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    186 #ifndef TCP_INIT_WIN
    187 #define	TCP_INIT_WIN	0	/* initial slow start window */
    188 #endif
    189 #ifndef TCP_INIT_WIN_LOCAL
    190 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    191 #endif
    192 int	tcp_init_win = TCP_INIT_WIN;
    193 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    194 int	tcp_mss_ifmtu = 0;
    195 #ifdef TCP_COMPAT_42
    196 int	tcp_compat_42 = 1;
    197 #else
    198 int	tcp_compat_42 = 0;
    199 #endif
    200 int	tcp_rst_ppslim = 100;	/* 100pps */
    201 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
    202 
    203 /* tcb hash */
    204 #ifndef TCBHASHSIZE
    205 #define	TCBHASHSIZE	128
    206 #endif
    207 int	tcbhashsize = TCBHASHSIZE;
    208 
    209 /* syn hash parameters */
    210 #define	TCP_SYN_HASH_SIZE	293
    211 #define	TCP_SYN_BUCKET_SIZE	35
    212 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    213 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    214 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    215 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    216 
    217 int	tcp_freeq __P((struct tcpcb *));
    218 
    219 #ifdef INET
    220 void	tcp_mtudisc_callback __P((struct in_addr));
    221 #endif
    222 #ifdef INET6
    223 void	tcp6_mtudisc_callback __P((struct in6_addr *));
    224 #endif
    225 
    226 void	tcp_mtudisc __P((struct inpcb *, int));
    227 #ifdef INET6
    228 void	tcp6_mtudisc __P((struct in6pcb *, int));
    229 #endif
    230 
    231 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
    232 
    233 #ifdef TCP_CSUM_COUNTERS
    234 #include <sys/device.h>
    235 
    236 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    237     NULL, "tcp", "hwcsum bad");
    238 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    239     NULL, "tcp", "hwcsum ok");
    240 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    241     NULL, "tcp", "hwcsum data");
    242 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    243     NULL, "tcp", "swcsum");
    244 #endif /* TCP_CSUM_COUNTERS */
    245 
    246 #ifdef TCP_OUTPUT_COUNTERS
    247 #include <sys/device.h>
    248 
    249 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    250     NULL, "tcp", "output big header");
    251 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    252     NULL, "tcp", "output predict hit");
    253 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    254     NULL, "tcp", "output predict miss");
    255 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    256     NULL, "tcp", "output copy small");
    257 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    258     NULL, "tcp", "output copy big");
    259 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    260     NULL, "tcp", "output reference big");
    261 #endif /* TCP_OUTPUT_COUNTERS */
    262 
    263 #ifdef TCP_REASS_COUNTERS
    264 #include <sys/device.h>
    265 
    266 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    267     NULL, "tcp_reass", "calls");
    268 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    269     &tcp_reass_, "tcp_reass", "insert into empty queue");
    270 struct evcnt tcp_reass_iteration[8] = {
    271     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    272     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    273     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    274     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    275     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    276     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    277     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    278     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    279 };
    280 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    281     &tcp_reass_, "tcp_reass", "prepend to first");
    282 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    283     &tcp_reass_, "tcp_reass", "prepend");
    284 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    285     &tcp_reass_, "tcp_reass", "insert");
    286 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    287     &tcp_reass_, "tcp_reass", "insert at tail");
    288 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    289     &tcp_reass_, "tcp_reass", "append");
    290 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    291     &tcp_reass_, "tcp_reass", "append to tail fragment");
    292 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    293     &tcp_reass_, "tcp_reass", "overlap at end");
    294 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    295     &tcp_reass_, "tcp_reass", "overlap at start");
    296 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    297     &tcp_reass_, "tcp_reass", "duplicate segment");
    298 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    299     &tcp_reass_, "tcp_reass", "duplicate fragment");
    300 
    301 #endif /* TCP_REASS_COUNTERS */
    302 
    303 #ifdef MBUFTRACE
    304 struct mowner tcp_mowner = { "tcp" };
    305 struct mowner tcp_rx_mowner = { "tcp", "rx" };
    306 struct mowner tcp_tx_mowner = { "tcp", "tx" };
    307 #endif
    308 
    309 /*
    310  * Tcp initialization
    311  */
    312 void
    313 tcp_init()
    314 {
    315 	int hlen;
    316 
    317 	/* Initialize the TCPCB template. */
    318 	tcp_tcpcb_template();
    319 
    320 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    321 
    322 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    323 #ifdef INET6
    324 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    325 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    326 #endif
    327 	if (max_protohdr < hlen)
    328 		max_protohdr = hlen;
    329 	if (max_linkhdr + hlen > MHLEN)
    330 		panic("tcp_init");
    331 
    332 #ifdef INET
    333 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    334 #endif
    335 #ifdef INET6
    336 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    337 #endif
    338 
    339 	/* Initialize timer state. */
    340 	tcp_timer_init();
    341 
    342 	/* Initialize the compressed state engine. */
    343 	syn_cache_init();
    344 
    345 #ifdef TCP_CSUM_COUNTERS
    346 	evcnt_attach_static(&tcp_hwcsum_bad);
    347 	evcnt_attach_static(&tcp_hwcsum_ok);
    348 	evcnt_attach_static(&tcp_hwcsum_data);
    349 	evcnt_attach_static(&tcp_swcsum);
    350 #endif /* TCP_CSUM_COUNTERS */
    351 
    352 #ifdef TCP_OUTPUT_COUNTERS
    353 	evcnt_attach_static(&tcp_output_bigheader);
    354 	evcnt_attach_static(&tcp_output_predict_hit);
    355 	evcnt_attach_static(&tcp_output_predict_miss);
    356 	evcnt_attach_static(&tcp_output_copysmall);
    357 	evcnt_attach_static(&tcp_output_copybig);
    358 	evcnt_attach_static(&tcp_output_refbig);
    359 #endif /* TCP_OUTPUT_COUNTERS */
    360 
    361 #ifdef TCP_REASS_COUNTERS
    362 	evcnt_attach_static(&tcp_reass_);
    363 	evcnt_attach_static(&tcp_reass_empty);
    364 	evcnt_attach_static(&tcp_reass_iteration[0]);
    365 	evcnt_attach_static(&tcp_reass_iteration[1]);
    366 	evcnt_attach_static(&tcp_reass_iteration[2]);
    367 	evcnt_attach_static(&tcp_reass_iteration[3]);
    368 	evcnt_attach_static(&tcp_reass_iteration[4]);
    369 	evcnt_attach_static(&tcp_reass_iteration[5]);
    370 	evcnt_attach_static(&tcp_reass_iteration[6]);
    371 	evcnt_attach_static(&tcp_reass_iteration[7]);
    372 	evcnt_attach_static(&tcp_reass_prependfirst);
    373 	evcnt_attach_static(&tcp_reass_prepend);
    374 	evcnt_attach_static(&tcp_reass_insert);
    375 	evcnt_attach_static(&tcp_reass_inserttail);
    376 	evcnt_attach_static(&tcp_reass_append);
    377 	evcnt_attach_static(&tcp_reass_appendtail);
    378 	evcnt_attach_static(&tcp_reass_overlaptail);
    379 	evcnt_attach_static(&tcp_reass_overlapfront);
    380 	evcnt_attach_static(&tcp_reass_segdup);
    381 	evcnt_attach_static(&tcp_reass_fragdup);
    382 #endif /* TCP_REASS_COUNTERS */
    383 
    384 	MOWNER_ATTACH(&tcp_tx_mowner);
    385 	MOWNER_ATTACH(&tcp_rx_mowner);
    386 	MOWNER_ATTACH(&tcp_mowner);
    387 }
    388 
    389 /*
    390  * Create template to be used to send tcp packets on a connection.
    391  * Call after host entry created, allocates an mbuf and fills
    392  * in a skeletal tcp/ip header, minimizing the amount of work
    393  * necessary when the connection is used.
    394  */
    395 struct mbuf *
    396 tcp_template(tp)
    397 	struct tcpcb *tp;
    398 {
    399 	struct inpcb *inp = tp->t_inpcb;
    400 #ifdef INET6
    401 	struct in6pcb *in6p = tp->t_in6pcb;
    402 #endif
    403 	struct tcphdr *n;
    404 	struct mbuf *m;
    405 	int hlen;
    406 
    407 	switch (tp->t_family) {
    408 	case AF_INET:
    409 		hlen = sizeof(struct ip);
    410 		if (inp)
    411 			break;
    412 #ifdef INET6
    413 		if (in6p) {
    414 			/* mapped addr case */
    415 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    416 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    417 				break;
    418 		}
    419 #endif
    420 		return NULL;	/*EINVAL*/
    421 #ifdef INET6
    422 	case AF_INET6:
    423 		hlen = sizeof(struct ip6_hdr);
    424 		if (in6p) {
    425 			/* more sainty check? */
    426 			break;
    427 		}
    428 		return NULL;	/*EINVAL*/
    429 #endif
    430 	default:
    431 		hlen = 0;	/*pacify gcc*/
    432 		return NULL;	/*EAFNOSUPPORT*/
    433 	}
    434 #ifdef DIAGNOSTIC
    435 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    436 		panic("mclbytes too small for t_template");
    437 #endif
    438 	m = tp->t_template;
    439 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    440 		;
    441 	else {
    442 		if (m)
    443 			m_freem(m);
    444 		m = tp->t_template = NULL;
    445 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    446 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    447 			MCLGET(m, M_DONTWAIT);
    448 			if ((m->m_flags & M_EXT) == 0) {
    449 				m_free(m);
    450 				m = NULL;
    451 			}
    452 		}
    453 		if (m == NULL)
    454 			return NULL;
    455 		MCLAIM(m, &tcp_mowner);
    456 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    457 	}
    458 
    459 	bzero(mtod(m, caddr_t), m->m_len);
    460 
    461 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
    462 
    463 	switch (tp->t_family) {
    464 	case AF_INET:
    465 	    {
    466 		struct ipovly *ipov;
    467 		mtod(m, struct ip *)->ip_v = 4;
    468 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
    469 		ipov = mtod(m, struct ipovly *);
    470 		ipov->ih_pr = IPPROTO_TCP;
    471 		ipov->ih_len = htons(sizeof(struct tcphdr));
    472 		if (inp) {
    473 			ipov->ih_src = inp->inp_laddr;
    474 			ipov->ih_dst = inp->inp_faddr;
    475 		}
    476 #ifdef INET6
    477 		else if (in6p) {
    478 			/* mapped addr case */
    479 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    480 				sizeof(ipov->ih_src));
    481 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    482 				sizeof(ipov->ih_dst));
    483 		}
    484 #endif
    485 		/*
    486 		 * Compute the pseudo-header portion of the checksum
    487 		 * now.  We incrementally add in the TCP option and
    488 		 * payload lengths later, and then compute the TCP
    489 		 * checksum right before the packet is sent off onto
    490 		 * the wire.
    491 		 */
    492 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    493 		    ipov->ih_dst.s_addr,
    494 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    495 		break;
    496 	    }
    497 #ifdef INET6
    498 	case AF_INET6:
    499 	    {
    500 		struct ip6_hdr *ip6;
    501 		mtod(m, struct ip *)->ip_v = 6;
    502 		ip6 = mtod(m, struct ip6_hdr *);
    503 		ip6->ip6_nxt = IPPROTO_TCP;
    504 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    505 		ip6->ip6_src = in6p->in6p_laddr;
    506 		ip6->ip6_dst = in6p->in6p_faddr;
    507 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    508 		if (ip6_auto_flowlabel) {
    509 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    510 			ip6->ip6_flow |=
    511 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    512 		}
    513 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    514 		ip6->ip6_vfc |= IPV6_VERSION;
    515 
    516 		/*
    517 		 * Compute the pseudo-header portion of the checksum
    518 		 * now.  We incrementally add in the TCP option and
    519 		 * payload lengths later, and then compute the TCP
    520 		 * checksum right before the packet is sent off onto
    521 		 * the wire.
    522 		 */
    523 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    524 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    525 		    htonl(IPPROTO_TCP));
    526 		break;
    527 	    }
    528 #endif
    529 	}
    530 	if (inp) {
    531 		n->th_sport = inp->inp_lport;
    532 		n->th_dport = inp->inp_fport;
    533 	}
    534 #ifdef INET6
    535 	else if (in6p) {
    536 		n->th_sport = in6p->in6p_lport;
    537 		n->th_dport = in6p->in6p_fport;
    538 	}
    539 #endif
    540 	n->th_seq = 0;
    541 	n->th_ack = 0;
    542 	n->th_x2 = 0;
    543 	n->th_off = 5;
    544 	n->th_flags = 0;
    545 	n->th_win = 0;
    546 	n->th_urp = 0;
    547 	return (m);
    548 }
    549 
    550 /*
    551  * Send a single message to the TCP at address specified by
    552  * the given TCP/IP header.  If m == 0, then we make a copy
    553  * of the tcpiphdr at ti and send directly to the addressed host.
    554  * This is used to force keep alive messages out using the TCP
    555  * template for a connection tp->t_template.  If flags are given
    556  * then we send a message back to the TCP which originated the
    557  * segment ti, and discard the mbuf containing it and any other
    558  * attached mbufs.
    559  *
    560  * In any case the ack and sequence number of the transmitted
    561  * segment are as specified by the parameters.
    562  */
    563 int
    564 tcp_respond(tp, template, m, th0, ack, seq, flags)
    565 	struct tcpcb *tp;
    566 	struct mbuf *template;
    567 	struct mbuf *m;
    568 	struct tcphdr *th0;
    569 	tcp_seq ack, seq;
    570 	int flags;
    571 {
    572 	struct route *ro;
    573 	int error, tlen, win = 0;
    574 	int hlen;
    575 	struct ip *ip;
    576 #ifdef INET6
    577 	struct ip6_hdr *ip6;
    578 #endif
    579 	int family;	/* family on packet, not inpcb/in6pcb! */
    580 	struct tcphdr *th;
    581 	struct socket *so;
    582 
    583 	if (tp != NULL && (flags & TH_RST) == 0) {
    584 #ifdef DIAGNOSTIC
    585 		if (tp->t_inpcb && tp->t_in6pcb)
    586 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    587 #endif
    588 #ifdef INET
    589 		if (tp->t_inpcb)
    590 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    591 #endif
    592 #ifdef INET6
    593 		if (tp->t_in6pcb)
    594 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    595 #endif
    596 	}
    597 
    598 	th = NULL;	/* Quell uninitialized warning */
    599 	ip = NULL;
    600 #ifdef INET6
    601 	ip6 = NULL;
    602 #endif
    603 	if (m == 0) {
    604 		if (!template)
    605 			return EINVAL;
    606 
    607 		/* get family information from template */
    608 		switch (mtod(template, struct ip *)->ip_v) {
    609 		case 4:
    610 			family = AF_INET;
    611 			hlen = sizeof(struct ip);
    612 			break;
    613 #ifdef INET6
    614 		case 6:
    615 			family = AF_INET6;
    616 			hlen = sizeof(struct ip6_hdr);
    617 			break;
    618 #endif
    619 		default:
    620 			return EAFNOSUPPORT;
    621 		}
    622 
    623 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    624 		if (m) {
    625 			MCLAIM(m, &tcp_tx_mowner);
    626 			MCLGET(m, M_DONTWAIT);
    627 			if ((m->m_flags & M_EXT) == 0) {
    628 				m_free(m);
    629 				m = NULL;
    630 			}
    631 		}
    632 		if (m == NULL)
    633 			return (ENOBUFS);
    634 
    635 		if (tcp_compat_42)
    636 			tlen = 1;
    637 		else
    638 			tlen = 0;
    639 
    640 		m->m_data += max_linkhdr;
    641 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
    642 			template->m_len);
    643 		switch (family) {
    644 		case AF_INET:
    645 			ip = mtod(m, struct ip *);
    646 			th = (struct tcphdr *)(ip + 1);
    647 			break;
    648 #ifdef INET6
    649 		case AF_INET6:
    650 			ip6 = mtod(m, struct ip6_hdr *);
    651 			th = (struct tcphdr *)(ip6 + 1);
    652 			break;
    653 #endif
    654 #if 0
    655 		default:
    656 			/* noone will visit here */
    657 			m_freem(m);
    658 			return EAFNOSUPPORT;
    659 #endif
    660 		}
    661 		flags = TH_ACK;
    662 	} else {
    663 
    664 		if ((m->m_flags & M_PKTHDR) == 0) {
    665 #if 0
    666 			printf("non PKTHDR to tcp_respond\n");
    667 #endif
    668 			m_freem(m);
    669 			return EINVAL;
    670 		}
    671 #ifdef DIAGNOSTIC
    672 		if (!th0)
    673 			panic("th0 == NULL in tcp_respond");
    674 #endif
    675 
    676 		/* get family information from m */
    677 		switch (mtod(m, struct ip *)->ip_v) {
    678 		case 4:
    679 			family = AF_INET;
    680 			hlen = sizeof(struct ip);
    681 			ip = mtod(m, struct ip *);
    682 			break;
    683 #ifdef INET6
    684 		case 6:
    685 			family = AF_INET6;
    686 			hlen = sizeof(struct ip6_hdr);
    687 			ip6 = mtod(m, struct ip6_hdr *);
    688 			break;
    689 #endif
    690 		default:
    691 			m_freem(m);
    692 			return EAFNOSUPPORT;
    693 		}
    694 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    695 			tlen = sizeof(*th0);
    696 		else
    697 			tlen = th0->th_off << 2;
    698 
    699 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    700 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
    701 			m->m_len = hlen + tlen;
    702 			m_freem(m->m_next);
    703 			m->m_next = NULL;
    704 		} else {
    705 			struct mbuf *n;
    706 
    707 #ifdef DIAGNOSTIC
    708 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    709 				m_freem(m);
    710 				return EMSGSIZE;
    711 			}
    712 #endif
    713 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    714 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    715 				MCLGET(n, M_DONTWAIT);
    716 				if ((n->m_flags & M_EXT) == 0) {
    717 					m_freem(n);
    718 					n = NULL;
    719 				}
    720 			}
    721 			if (!n) {
    722 				m_freem(m);
    723 				return ENOBUFS;
    724 			}
    725 
    726 			MCLAIM(n, &tcp_tx_mowner);
    727 			n->m_data += max_linkhdr;
    728 			n->m_len = hlen + tlen;
    729 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
    730 			m_copyback(n, hlen, tlen, (caddr_t)th0);
    731 
    732 			m_freem(m);
    733 			m = n;
    734 			n = NULL;
    735 		}
    736 
    737 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    738 		switch (family) {
    739 		case AF_INET:
    740 			ip = mtod(m, struct ip *);
    741 			th = (struct tcphdr *)(ip + 1);
    742 			ip->ip_p = IPPROTO_TCP;
    743 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    744 			ip->ip_p = IPPROTO_TCP;
    745 			break;
    746 #ifdef INET6
    747 		case AF_INET6:
    748 			ip6 = mtod(m, struct ip6_hdr *);
    749 			th = (struct tcphdr *)(ip6 + 1);
    750 			ip6->ip6_nxt = IPPROTO_TCP;
    751 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    752 			ip6->ip6_nxt = IPPROTO_TCP;
    753 			break;
    754 #endif
    755 #if 0
    756 		default:
    757 			/* noone will visit here */
    758 			m_freem(m);
    759 			return EAFNOSUPPORT;
    760 #endif
    761 		}
    762 		xchg(th->th_dport, th->th_sport, u_int16_t);
    763 #undef xchg
    764 		tlen = 0;	/*be friendly with the following code*/
    765 	}
    766 	th->th_seq = htonl(seq);
    767 	th->th_ack = htonl(ack);
    768 	th->th_x2 = 0;
    769 	if ((flags & TH_SYN) == 0) {
    770 		if (tp)
    771 			win >>= tp->rcv_scale;
    772 		if (win > TCP_MAXWIN)
    773 			win = TCP_MAXWIN;
    774 		th->th_win = htons((u_int16_t)win);
    775 		th->th_off = sizeof (struct tcphdr) >> 2;
    776 		tlen += sizeof(*th);
    777 	} else
    778 		tlen += th->th_off << 2;
    779 	m->m_len = hlen + tlen;
    780 	m->m_pkthdr.len = hlen + tlen;
    781 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    782 	th->th_flags = flags;
    783 	th->th_urp = 0;
    784 
    785 	switch (family) {
    786 #ifdef INET
    787 	case AF_INET:
    788 	    {
    789 		struct ipovly *ipov = (struct ipovly *)ip;
    790 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    791 		ipov->ih_len = htons((u_int16_t)tlen);
    792 
    793 		th->th_sum = 0;
    794 		th->th_sum = in_cksum(m, hlen + tlen);
    795 		ip->ip_len = htons(hlen + tlen);
    796 		ip->ip_ttl = ip_defttl;
    797 		break;
    798 	    }
    799 #endif
    800 #ifdef INET6
    801 	case AF_INET6:
    802 	    {
    803 		th->th_sum = 0;
    804 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    805 				tlen);
    806 		ip6->ip6_plen = ntohs(tlen);
    807 		if (tp && tp->t_in6pcb) {
    808 			struct ifnet *oifp;
    809 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    810 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    811 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    812 		} else
    813 			ip6->ip6_hlim = ip6_defhlim;
    814 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    815 		if (ip6_auto_flowlabel) {
    816 			ip6->ip6_flow |=
    817 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    818 		}
    819 		break;
    820 	    }
    821 #endif
    822 	}
    823 
    824 	if (tp && tp->t_inpcb)
    825 		so = tp->t_inpcb->inp_socket;
    826 #ifdef INET6
    827 	else if (tp && tp->t_in6pcb)
    828 		so = tp->t_in6pcb->in6p_socket;
    829 #endif
    830 	else
    831 		so = NULL;
    832 
    833 	if (tp != NULL && tp->t_inpcb != NULL) {
    834 		ro = &tp->t_inpcb->inp_route;
    835 #ifdef DIAGNOSTIC
    836 		if (family != AF_INET)
    837 			panic("tcp_respond: address family mismatch");
    838 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    839 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    840 			    ntohl(ip->ip_dst.s_addr),
    841 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    842 		}
    843 #endif
    844 	}
    845 #ifdef INET6
    846 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    847 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    848 #ifdef DIAGNOSTIC
    849 		if (family == AF_INET) {
    850 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    851 				panic("tcp_respond: not mapped addr");
    852 			if (bcmp(&ip->ip_dst,
    853 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    854 			    sizeof(ip->ip_dst)) != 0) {
    855 				panic("tcp_respond: ip_dst != in6p_faddr");
    856 			}
    857 		} else if (family == AF_INET6) {
    858 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    859 			    &tp->t_in6pcb->in6p_faddr))
    860 				panic("tcp_respond: ip6_dst != in6p_faddr");
    861 		} else
    862 			panic("tcp_respond: address family mismatch");
    863 #endif
    864 	}
    865 #endif
    866 	else
    867 		ro = NULL;
    868 
    869 	switch (family) {
    870 #ifdef INET
    871 	case AF_INET:
    872 		error = ip_output(m, NULL, ro,
    873 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    874 		    (struct ip_moptions *)0, so);
    875 		break;
    876 #endif
    877 #ifdef INET6
    878 	case AF_INET6:
    879 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
    880 		    (struct ip6_moptions *)0, so, NULL);
    881 		break;
    882 #endif
    883 	default:
    884 		error = EAFNOSUPPORT;
    885 		break;
    886 	}
    887 
    888 	return (error);
    889 }
    890 
    891 /*
    892  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
    893  * a bunch of members individually, we maintain this template for the
    894  * static and mostly-static components of the TCPCB, and copy it into
    895  * the new TCPCB instead.
    896  */
    897 static struct tcpcb tcpcb_template = {
    898 	/*
    899 	 * If TCP_NTIMERS ever changes, we'll need to update this
    900 	 * initializer.
    901 	 */
    902 	.t_timer = {
    903 		CALLOUT_INITIALIZER,
    904 		CALLOUT_INITIALIZER,
    905 		CALLOUT_INITIALIZER,
    906 		CALLOUT_INITIALIZER,
    907 	},
    908 	.t_delack_ch = CALLOUT_INITIALIZER,
    909 
    910 	.t_srtt = TCPTV_SRTTBASE,
    911 	.t_rttmin = TCPTV_MIN,
    912 
    913 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    914 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    915 };
    916 
    917 /*
    918  * Updates the TCPCB template whenever a parameter that would affect
    919  * the template is changed.
    920  */
    921 void
    922 tcp_tcpcb_template(void)
    923 {
    924 	struct tcpcb *tp = &tcpcb_template;
    925 	int flags;
    926 
    927 	tp->t_peermss = tcp_mssdflt;
    928 	tp->t_ourmss = tcp_mssdflt;
    929 	tp->t_segsz = tcp_mssdflt;
    930 
    931 	flags = 0;
    932 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    933 		flags |= TF_REQ_SCALE;
    934 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    935 		flags |= TF_REQ_TSTMP;
    936 	if (tcp_do_sack == 2)
    937 		flags |= TF_WILL_SACK;
    938 	else if (tcp_do_sack == 1)
    939 		flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
    940 	flags |= TF_CANT_TXSACK;
    941 	tp->t_flags = flags;
    942 
    943 	/*
    944 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    945 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    946 	 * reasonable initial retransmit time.
    947 	 */
    948 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    949 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    950 	    TCPTV_MIN, TCPTV_REXMTMAX);
    951 }
    952 
    953 /*
    954  * Create a new TCP control block, making an
    955  * empty reassembly queue and hooking it to the argument
    956  * protocol control block.
    957  */
    958 struct tcpcb *
    959 tcp_newtcpcb(family, aux)
    960 	int family;	/* selects inpcb, or in6pcb */
    961 	void *aux;
    962 {
    963 	struct tcpcb *tp;
    964 	int i;
    965 
    966 	/* XXX Consider using a pool_cache for speed. */
    967 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    968 	if (tp == NULL)
    969 		return (NULL);
    970 	memcpy(tp, &tcpcb_template, sizeof(*tp));
    971 	TAILQ_INIT(&tp->segq);
    972 	TAILQ_INIT(&tp->timeq);
    973 	tp->t_family = family;		/* may be overridden later on */
    974 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
    975 
    976 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
    977 	for (i = 0; i < TCPT_NTIMERS; i++)
    978 		TCP_TIMER_INIT(tp, i);
    979 
    980 	switch (family) {
    981 	case AF_INET:
    982 	    {
    983 		struct inpcb *inp = (struct inpcb *)aux;
    984 
    985 		inp->inp_ip.ip_ttl = ip_defttl;
    986 		inp->inp_ppcb = (caddr_t)tp;
    987 
    988 		tp->t_inpcb = inp;
    989 		tp->t_mtudisc = ip_mtudisc;
    990 		break;
    991 	    }
    992 #ifdef INET6
    993 	case AF_INET6:
    994 	    {
    995 		struct in6pcb *in6p = (struct in6pcb *)aux;
    996 
    997 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
    998 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
    999 					       : NULL);
   1000 		in6p->in6p_ppcb = (caddr_t)tp;
   1001 
   1002 		tp->t_in6pcb = in6p;
   1003 		/* for IPv6, always try to run path MTU discovery */
   1004 		tp->t_mtudisc = 1;
   1005 		break;
   1006 	    }
   1007 #endif /* INET6 */
   1008 	default:
   1009 		pool_put(&tcpcb_pool, tp);
   1010 		return (NULL);
   1011 	}
   1012 
   1013 	/*
   1014 	 * Initialize our timebase.  When we send timestamps, we take
   1015 	 * the delta from tcp_now -- this means each connection always
   1016 	 * gets a timebase of 0, which makes it, among other things,
   1017 	 * more difficult to determine how long a system has been up,
   1018 	 * and thus how many TCP sequence increments have occurred.
   1019 	 */
   1020 	tp->ts_timebase = tcp_now;
   1021 
   1022 	return (tp);
   1023 }
   1024 
   1025 /*
   1026  * Drop a TCP connection, reporting
   1027  * the specified error.  If connection is synchronized,
   1028  * then send a RST to peer.
   1029  */
   1030 struct tcpcb *
   1031 tcp_drop(tp, errno)
   1032 	struct tcpcb *tp;
   1033 	int errno;
   1034 {
   1035 	struct socket *so = NULL;
   1036 
   1037 #ifdef DIAGNOSTIC
   1038 	if (tp->t_inpcb && tp->t_in6pcb)
   1039 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1040 #endif
   1041 #ifdef INET
   1042 	if (tp->t_inpcb)
   1043 		so = tp->t_inpcb->inp_socket;
   1044 #endif
   1045 #ifdef INET6
   1046 	if (tp->t_in6pcb)
   1047 		so = tp->t_in6pcb->in6p_socket;
   1048 #endif
   1049 	if (!so)
   1050 		return NULL;
   1051 
   1052 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1053 		tp->t_state = TCPS_CLOSED;
   1054 		(void) tcp_output(tp);
   1055 		tcpstat.tcps_drops++;
   1056 	} else
   1057 		tcpstat.tcps_conndrops++;
   1058 	if (errno == ETIMEDOUT && tp->t_softerror)
   1059 		errno = tp->t_softerror;
   1060 	so->so_error = errno;
   1061 	return (tcp_close(tp));
   1062 }
   1063 
   1064 /*
   1065  * Return whether this tcpcb is marked as dead, indicating
   1066  * to the calling timer function that no further action should
   1067  * be taken, as we are about to release this tcpcb.  The release
   1068  * of the storage will be done if this is the last timer running.
   1069  *
   1070  * This should be called from the callout handler function after
   1071  * callout_ack() is done, so that the number of invoking timer
   1072  * functions is 0.
   1073  */
   1074 int
   1075 tcp_isdead(tp)
   1076 	struct tcpcb *tp;
   1077 {
   1078 	int dead = (tp->t_flags & TF_DEAD);
   1079 
   1080 	if (__predict_false(dead)) {
   1081 		if (tcp_timers_invoking(tp) > 0)
   1082 				/* not quite there yet -- count separately? */
   1083 			return dead;
   1084 		tcpstat.tcps_delayed_free++;
   1085 		pool_put(&tcpcb_pool, tp);
   1086 	}
   1087 	return dead;
   1088 }
   1089 
   1090 /*
   1091  * Close a TCP control block:
   1092  *	discard all space held by the tcp
   1093  *	discard internet protocol block
   1094  *	wake up any sleepers
   1095  */
   1096 struct tcpcb *
   1097 tcp_close(tp)
   1098 	struct tcpcb *tp;
   1099 {
   1100 	struct inpcb *inp;
   1101 #ifdef INET6
   1102 	struct in6pcb *in6p;
   1103 #endif
   1104 	struct socket *so;
   1105 #ifdef RTV_RTT
   1106 	struct rtentry *rt;
   1107 #endif
   1108 	struct route *ro;
   1109 
   1110 	inp = tp->t_inpcb;
   1111 #ifdef INET6
   1112 	in6p = tp->t_in6pcb;
   1113 #endif
   1114 	so = NULL;
   1115 	ro = NULL;
   1116 	if (inp) {
   1117 		so = inp->inp_socket;
   1118 		ro = &inp->inp_route;
   1119 	}
   1120 #ifdef INET6
   1121 	else if (in6p) {
   1122 		so = in6p->in6p_socket;
   1123 		ro = (struct route *)&in6p->in6p_route;
   1124 	}
   1125 #endif
   1126 
   1127 #ifdef RTV_RTT
   1128 	/*
   1129 	 * If we sent enough data to get some meaningful characteristics,
   1130 	 * save them in the routing entry.  'Enough' is arbitrarily
   1131 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1132 	 * give us 16 rtt samples assuming we only get one sample per
   1133 	 * window (the usual case on a long haul net).  16 samples is
   1134 	 * enough for the srtt filter to converge to within 5% of the correct
   1135 	 * value; fewer samples and we could save a very bogus rtt.
   1136 	 *
   1137 	 * Don't update the default route's characteristics and don't
   1138 	 * update anything that the user "locked".
   1139 	 */
   1140 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1141 	    ro && (rt = ro->ro_rt) &&
   1142 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
   1143 		u_long i = 0;
   1144 
   1145 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1146 			i = tp->t_srtt *
   1147 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1148 			if (rt->rt_rmx.rmx_rtt && i)
   1149 				/*
   1150 				 * filter this update to half the old & half
   1151 				 * the new values, converting scale.
   1152 				 * See route.h and tcp_var.h for a
   1153 				 * description of the scaling constants.
   1154 				 */
   1155 				rt->rt_rmx.rmx_rtt =
   1156 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1157 			else
   1158 				rt->rt_rmx.rmx_rtt = i;
   1159 		}
   1160 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1161 			i = tp->t_rttvar *
   1162 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1163 			if (rt->rt_rmx.rmx_rttvar && i)
   1164 				rt->rt_rmx.rmx_rttvar =
   1165 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1166 			else
   1167 				rt->rt_rmx.rmx_rttvar = i;
   1168 		}
   1169 		/*
   1170 		 * update the pipelimit (ssthresh) if it has been updated
   1171 		 * already or if a pipesize was specified & the threshhold
   1172 		 * got below half the pipesize.  I.e., wait for bad news
   1173 		 * before we start updating, then update on both good
   1174 		 * and bad news.
   1175 		 */
   1176 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1177 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1178 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1179 			/*
   1180 			 * convert the limit from user data bytes to
   1181 			 * packets then to packet data bytes.
   1182 			 */
   1183 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1184 			if (i < 2)
   1185 				i = 2;
   1186 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1187 			if (rt->rt_rmx.rmx_ssthresh)
   1188 				rt->rt_rmx.rmx_ssthresh =
   1189 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1190 			else
   1191 				rt->rt_rmx.rmx_ssthresh = i;
   1192 		}
   1193 	}
   1194 #endif /* RTV_RTT */
   1195 	/* free the reassembly queue, if any */
   1196 	TCP_REASS_LOCK(tp);
   1197 	(void) tcp_freeq(tp);
   1198 	TCP_REASS_UNLOCK(tp);
   1199 
   1200 	tcp_canceltimers(tp);
   1201 	TCP_CLEAR_DELACK(tp);
   1202 	syn_cache_cleanup(tp);
   1203 
   1204 	if (tp->t_template) {
   1205 		m_free(tp->t_template);
   1206 		tp->t_template = NULL;
   1207 	}
   1208 	if (tcp_timers_invoking(tp))
   1209 		tp->t_flags |= TF_DEAD;
   1210 	else
   1211 		pool_put(&tcpcb_pool, tp);
   1212 
   1213 	if (inp) {
   1214 		inp->inp_ppcb = 0;
   1215 		soisdisconnected(so);
   1216 		in_pcbdetach(inp);
   1217 	}
   1218 #ifdef INET6
   1219 	else if (in6p) {
   1220 		in6p->in6p_ppcb = 0;
   1221 		soisdisconnected(so);
   1222 		in6_pcbdetach(in6p);
   1223 	}
   1224 #endif
   1225 	tcpstat.tcps_closed++;
   1226 	return ((struct tcpcb *)0);
   1227 }
   1228 
   1229 int
   1230 tcp_freeq(tp)
   1231 	struct tcpcb *tp;
   1232 {
   1233 	struct ipqent *qe;
   1234 	int rv = 0;
   1235 #ifdef TCPREASS_DEBUG
   1236 	int i = 0;
   1237 #endif
   1238 
   1239 	TCP_REASS_LOCK_CHECK(tp);
   1240 
   1241 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1242 #ifdef TCPREASS_DEBUG
   1243 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1244 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1245 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1246 #endif
   1247 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1248 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1249 		m_freem(qe->ipqe_m);
   1250 		pool_put(&ipqent_pool, qe);
   1251 		rv = 1;
   1252 	}
   1253 	return (rv);
   1254 }
   1255 
   1256 /*
   1257  * Protocol drain routine.  Called when memory is in short supply.
   1258  */
   1259 void
   1260 tcp_drain()
   1261 {
   1262 	struct inpcb_hdr *inph;
   1263 	struct tcpcb *tp;
   1264 
   1265 	/*
   1266 	 * Free the sequence queue of all TCP connections.
   1267 	 */
   1268 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
   1269 		switch (inph->inph_af) {
   1270 		case AF_INET:
   1271 			tp = intotcpcb((struct inpcb *)inph);
   1272 			break;
   1273 #ifdef INET6
   1274 		case AF_INET6:
   1275 			tp = in6totcpcb((struct in6pcb *)inph);
   1276 			break;
   1277 #endif
   1278 		default:
   1279 			tp = NULL;
   1280 			break;
   1281 		}
   1282 		if (tp != NULL) {
   1283 			/*
   1284 			 * We may be called from a device's interrupt
   1285 			 * context.  If the tcpcb is already busy,
   1286 			 * just bail out now.
   1287 			 */
   1288 			if (tcp_reass_lock_try(tp) == 0)
   1289 				continue;
   1290 			if (tcp_freeq(tp))
   1291 				tcpstat.tcps_connsdrained++;
   1292 			TCP_REASS_UNLOCK(tp);
   1293 		}
   1294 	}
   1295 }
   1296 
   1297 /*
   1298  * Notify a tcp user of an asynchronous error;
   1299  * store error as soft error, but wake up user
   1300  * (for now, won't do anything until can select for soft error).
   1301  */
   1302 void
   1303 tcp_notify(inp, error)
   1304 	struct inpcb *inp;
   1305 	int error;
   1306 {
   1307 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1308 	struct socket *so = inp->inp_socket;
   1309 
   1310 	/*
   1311 	 * Ignore some errors if we are hooked up.
   1312 	 * If connection hasn't completed, has retransmitted several times,
   1313 	 * and receives a second error, give up now.  This is better
   1314 	 * than waiting a long time to establish a connection that
   1315 	 * can never complete.
   1316 	 */
   1317 	if (tp->t_state == TCPS_ESTABLISHED &&
   1318 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1319 	      error == EHOSTDOWN)) {
   1320 		return;
   1321 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1322 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1323 		so->so_error = error;
   1324 	else
   1325 		tp->t_softerror = error;
   1326 	wakeup((caddr_t) &so->so_timeo);
   1327 	sorwakeup(so);
   1328 	sowwakeup(so);
   1329 }
   1330 
   1331 #ifdef INET6
   1332 void
   1333 tcp6_notify(in6p, error)
   1334 	struct in6pcb *in6p;
   1335 	int error;
   1336 {
   1337 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1338 	struct socket *so = in6p->in6p_socket;
   1339 
   1340 	/*
   1341 	 * Ignore some errors if we are hooked up.
   1342 	 * If connection hasn't completed, has retransmitted several times,
   1343 	 * and receives a second error, give up now.  This is better
   1344 	 * than waiting a long time to establish a connection that
   1345 	 * can never complete.
   1346 	 */
   1347 	if (tp->t_state == TCPS_ESTABLISHED &&
   1348 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1349 	      error == EHOSTDOWN)) {
   1350 		return;
   1351 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1352 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1353 		so->so_error = error;
   1354 	else
   1355 		tp->t_softerror = error;
   1356 	wakeup((caddr_t) &so->so_timeo);
   1357 	sorwakeup(so);
   1358 	sowwakeup(so);
   1359 }
   1360 #endif
   1361 
   1362 #ifdef INET6
   1363 void
   1364 tcp6_ctlinput(cmd, sa, d)
   1365 	int cmd;
   1366 	struct sockaddr *sa;
   1367 	void *d;
   1368 {
   1369 	struct tcphdr th;
   1370 	void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
   1371 	int nmatch;
   1372 	struct ip6_hdr *ip6;
   1373 	const struct sockaddr_in6 *sa6_src = NULL;
   1374 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
   1375 	struct mbuf *m;
   1376 	int off;
   1377 
   1378 	if (sa->sa_family != AF_INET6 ||
   1379 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1380 		return;
   1381 	if ((unsigned)cmd >= PRC_NCMDS)
   1382 		return;
   1383 	else if (cmd == PRC_QUENCH) {
   1384 		/* XXX there's no PRC_QUENCH in IPv6 */
   1385 		notify = tcp6_quench;
   1386 	} else if (PRC_IS_REDIRECT(cmd))
   1387 		notify = in6_rtchange, d = NULL;
   1388 	else if (cmd == PRC_MSGSIZE)
   1389 		; /* special code is present, see below */
   1390 	else if (cmd == PRC_HOSTDEAD)
   1391 		d = NULL;
   1392 	else if (inet6ctlerrmap[cmd] == 0)
   1393 		return;
   1394 
   1395 	/* if the parameter is from icmp6, decode it. */
   1396 	if (d != NULL) {
   1397 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1398 		m = ip6cp->ip6c_m;
   1399 		ip6 = ip6cp->ip6c_ip6;
   1400 		off = ip6cp->ip6c_off;
   1401 		sa6_src = ip6cp->ip6c_src;
   1402 	} else {
   1403 		m = NULL;
   1404 		ip6 = NULL;
   1405 		sa6_src = &sa6_any;
   1406 		off = 0;
   1407 	}
   1408 
   1409 	if (ip6) {
   1410 		/*
   1411 		 * XXX: We assume that when ip6 is non NULL,
   1412 		 * M and OFF are valid.
   1413 		 */
   1414 
   1415 		/* check if we can safely examine src and dst ports */
   1416 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1417 			if (cmd == PRC_MSGSIZE)
   1418 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1419 			return;
   1420 		}
   1421 
   1422 		bzero(&th, sizeof(th));
   1423 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
   1424 
   1425 		if (cmd == PRC_MSGSIZE) {
   1426 			int valid = 0;
   1427 
   1428 			/*
   1429 			 * Check to see if we have a valid TCP connection
   1430 			 * corresponding to the address in the ICMPv6 message
   1431 			 * payload.
   1432 			 */
   1433 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
   1434 			    th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
   1435 			    th.th_sport, 0))
   1436 				valid++;
   1437 
   1438 			/*
   1439 			 * Depending on the value of "valid" and routing table
   1440 			 * size (mtudisc_{hi,lo}wat), we will:
   1441 			 * - recalcurate the new MTU and create the
   1442 			 *   corresponding routing entry, or
   1443 			 * - ignore the MTU change notification.
   1444 			 */
   1445 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1446 
   1447 			/*
   1448 			 * no need to call in6_pcbnotify, it should have been
   1449 			 * called via callback if necessary
   1450 			 */
   1451 			return;
   1452 		}
   1453 
   1454 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
   1455 		    (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1456 		if (nmatch == 0 && syn_cache_count &&
   1457 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1458 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1459 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1460 			syn_cache_unreach((struct sockaddr *)sa6_src,
   1461 					  sa, &th);
   1462 	} else {
   1463 		(void) in6_pcbnotify(&tcbtable, sa, 0,
   1464 		    (struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
   1465 	}
   1466 }
   1467 #endif
   1468 
   1469 #ifdef INET
   1470 /* assumes that ip header and tcp header are contiguous on mbuf */
   1471 void *
   1472 tcp_ctlinput(cmd, sa, v)
   1473 	int cmd;
   1474 	struct sockaddr *sa;
   1475 	void *v;
   1476 {
   1477 	struct ip *ip = v;
   1478 	struct tcphdr *th;
   1479 	struct icmp *icp;
   1480 	extern const int inetctlerrmap[];
   1481 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
   1482 	int errno;
   1483 	int nmatch;
   1484 #ifdef INET6
   1485 	struct in6_addr src6, dst6;
   1486 #endif
   1487 
   1488 	if (sa->sa_family != AF_INET ||
   1489 	    sa->sa_len != sizeof(struct sockaddr_in))
   1490 		return NULL;
   1491 	if ((unsigned)cmd >= PRC_NCMDS)
   1492 		return NULL;
   1493 	errno = inetctlerrmap[cmd];
   1494 	if (cmd == PRC_QUENCH)
   1495 		notify = tcp_quench;
   1496 	else if (PRC_IS_REDIRECT(cmd))
   1497 		notify = in_rtchange, ip = 0;
   1498 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1499 		/*
   1500 		 * Check to see if we have a valid TCP connection
   1501 		 * corresponding to the address in the ICMP message
   1502 		 * payload.
   1503 		 *
   1504 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1505 		 */
   1506 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1507 #ifdef INET6
   1508 		memset(&src6, 0, sizeof(src6));
   1509 		memset(&dst6, 0, sizeof(dst6));
   1510 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1511 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1512 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1513 #endif
   1514 		if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
   1515 		    ip->ip_src, th->th_sport) != NULL)
   1516 			;
   1517 #ifdef INET6
   1518 		else if (in6_pcblookup_connect(&tcbtable, &dst6,
   1519 		    th->th_dport, &src6, th->th_sport, 0) != NULL)
   1520 			;
   1521 #endif
   1522 		else
   1523 			return NULL;
   1524 
   1525 		/*
   1526 		 * Now that we've validated that we are actually communicating
   1527 		 * with the host indicated in the ICMP message, locate the
   1528 		 * ICMP header, recalculate the new MTU, and create the
   1529 		 * corresponding routing entry.
   1530 		 */
   1531 		icp = (struct icmp *)((caddr_t)ip -
   1532 		    offsetof(struct icmp, icmp_ip));
   1533 		icmp_mtudisc(icp, ip->ip_dst);
   1534 
   1535 		return NULL;
   1536 	} else if (cmd == PRC_HOSTDEAD)
   1537 		ip = 0;
   1538 	else if (errno == 0)
   1539 		return NULL;
   1540 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1541 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1542 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
   1543 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1544 		if (nmatch == 0 && syn_cache_count &&
   1545 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1546 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1547 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1548 			struct sockaddr_in sin;
   1549 			bzero(&sin, sizeof(sin));
   1550 			sin.sin_len = sizeof(sin);
   1551 			sin.sin_family = AF_INET;
   1552 			sin.sin_port = th->th_sport;
   1553 			sin.sin_addr = ip->ip_src;
   1554 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1555 		}
   1556 
   1557 		/* XXX mapped address case */
   1558 	} else
   1559 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
   1560 		    notify);
   1561 	return NULL;
   1562 }
   1563 
   1564 /*
   1565  * When a source quence is received, we are being notifed of congestion.
   1566  * Close the congestion window down to the Loss Window (one segment).
   1567  * We will gradually open it again as we proceed.
   1568  */
   1569 void
   1570 tcp_quench(inp, errno)
   1571 	struct inpcb *inp;
   1572 	int errno;
   1573 {
   1574 	struct tcpcb *tp = intotcpcb(inp);
   1575 
   1576 	if (tp)
   1577 		tp->snd_cwnd = tp->t_segsz;
   1578 }
   1579 #endif
   1580 
   1581 #ifdef INET6
   1582 void
   1583 tcp6_quench(in6p, errno)
   1584 	struct in6pcb *in6p;
   1585 	int errno;
   1586 {
   1587 	struct tcpcb *tp = in6totcpcb(in6p);
   1588 
   1589 	if (tp)
   1590 		tp->snd_cwnd = tp->t_segsz;
   1591 }
   1592 #endif
   1593 
   1594 #ifdef INET
   1595 /*
   1596  * Path MTU Discovery handlers.
   1597  */
   1598 void
   1599 tcp_mtudisc_callback(faddr)
   1600 	struct in_addr faddr;
   1601 {
   1602 #ifdef INET6
   1603 	struct in6_addr in6;
   1604 #endif
   1605 
   1606 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1607 #ifdef INET6
   1608 	memset(&in6, 0, sizeof(in6));
   1609 	in6.s6_addr16[5] = 0xffff;
   1610 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1611 	tcp6_mtudisc_callback(&in6);
   1612 #endif
   1613 }
   1614 
   1615 #ifdef TCP_SIGNATURE
   1616 /*
   1617  * Callback function invoked by m_apply() to digest TCP segment data
   1618  * contained within an mbuf chain.
   1619  */
   1620 static int
   1621 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
   1622 {
   1623 
   1624 	MD5Update(fstate, (u_char *)data, len);
   1625 	return (0);
   1626 }
   1627 
   1628 /*
   1629  * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
   1630  *
   1631  * Parameters:
   1632  * m		pointer to head of mbuf chain
   1633  * off0		offset to TCP header within the mbuf chain
   1634  * len		length of TCP segment data, excluding options
   1635  * optlen	length of TCP segment options
   1636  * buf		pointer to storage for computed MD5 digest
   1637  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
   1638  *
   1639  * We do this over ip, tcphdr, segment data, and the key in the SADB.
   1640  * When called from tcp_input(), we can be sure that th_sum has been
   1641  * zeroed out and verified already.
   1642  *
   1643  * This function is for IPv4 use only. Calling this function with an
   1644  * IPv6 packet in the mbuf chain will yield undefined results.
   1645  *
   1646  * Return 0 if successful, otherwise return -1.
   1647  *
   1648  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
   1649  * search with the destination IP address, and a 'magic SPI' of 0x1000.
   1650  * Another branch of this code exists which uses the SPD to specify
   1651  * per-application flows, but it is unstable.
   1652  */
   1653 int
   1654 tcp_signature_compute(struct mbuf *m, int off0, int len, int optlen,
   1655     u_char *buf, u_int direction)
   1656 {
   1657 	union sockaddr_union dst;
   1658 	MD5_CTX ctx;
   1659 	int doff;
   1660 	struct ip *ip;
   1661 	struct ipovly *ipovly;
   1662 	struct secasvar *sav;
   1663 	struct tcphdr *th;
   1664 	u_short savecsum;
   1665 	struct ippseudo ippseudo;
   1666 
   1667 
   1668 	KASSERT(m != NULL /*, ("NULL mbuf chain")*/);
   1669 	KASSERT(buf != NULL /*, ("NULL signature pointer")*/);
   1670 
   1671 	/* Extract the destination from the IP header in the mbuf. */
   1672 	ip = mtod(m, struct ip *);
   1673 	bzero(&dst, sizeof(union sockaddr_union));
   1674 	dst.sa.sa_len = sizeof(struct sockaddr_in);
   1675 	dst.sa.sa_family = AF_INET;
   1676 	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
   1677 	    ip->ip_src : ip->ip_dst;
   1678 
   1679 	/* Look up an SADB entry which matches the address of the peer. */
   1680 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
   1681 	if (sav == NULL) {
   1682 		printf("%s: SADB lookup failed for %s\n", __func__,
   1683 		    inet_ntoa(dst.sin.sin_addr));
   1684 		return (EINVAL);
   1685 	}
   1686 
   1687 	MD5Init(&ctx);
   1688 	ipovly = (struct ipovly *)ip;
   1689 	th = (struct tcphdr *)((u_char *)ip + off0);
   1690 	doff = off0 + sizeof(struct tcphdr) + optlen;
   1691 
   1692 	/*
   1693 	 * Step 1: Update MD5 hash with IP pseudo-header.
   1694 	 *
   1695 	 * XXX The ippseudo header MUST be digested in network byte order,
   1696 	 * or else we'll fail the regression test. Assume all fields we've
   1697 	 * been doing arithmetic on have been in host byte order.
   1698 	 * XXX One cannot depend on ipovly->ih_len here. When called from
   1699 	 * tcp_output(), the underlying ip_len member has not yet been set.
   1700 	 */
   1701 	ippseudo.ippseudo_src = ipovly->ih_src;
   1702 	ippseudo.ippseudo_dst = ipovly->ih_dst;
   1703 	ippseudo.ippseudo_pad = 0;
   1704 	ippseudo.ippseudo_p = IPPROTO_TCP;
   1705 	ippseudo.ippseudo_len = htons(len + sizeof(struct tcphdr) + optlen);
   1706 	MD5Update(&ctx, (char *)&ippseudo, sizeof(struct ippseudo));
   1707 
   1708 	/*
   1709 	 * Step 2: Update MD5 hash with TCP header, excluding options.
   1710 	 * The TCP checksum must be set to zero.
   1711 	 */
   1712 	savecsum = th->th_sum;
   1713 	th->th_sum = 0;
   1714 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
   1715 	th->th_sum = savecsum;
   1716 
   1717 	/*
   1718 	 * Step 3: Update MD5 hash with TCP segment data.
   1719 	 *         Use m_apply() to avoid an early m_pullup().
   1720 	 */
   1721 	if (len > 0)
   1722 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
   1723 
   1724 	/*
   1725 	 * Step 4: Update MD5 hash with shared secret.
   1726 	 */
   1727 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   1728 	MD5Final(buf, &ctx);
   1729 
   1730 	key_sa_recordxfer(sav, m);
   1731 	KEY_FREESAV(&sav);
   1732 	return (0);
   1733 }
   1734 #endif /* TCP_SIGNATURE */
   1735 
   1736 /*
   1737  * On receipt of path MTU corrections, flush old route and replace it
   1738  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1739  * that all packets will be received.
   1740  */
   1741 void
   1742 tcp_mtudisc(inp, errno)
   1743 	struct inpcb *inp;
   1744 	int errno;
   1745 {
   1746 	struct tcpcb *tp = intotcpcb(inp);
   1747 	struct rtentry *rt = in_pcbrtentry(inp);
   1748 
   1749 	if (tp != 0) {
   1750 		if (rt != 0) {
   1751 			/*
   1752 			 * If this was not a host route, remove and realloc.
   1753 			 */
   1754 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1755 				in_rtchange(inp, errno);
   1756 				if ((rt = in_pcbrtentry(inp)) == 0)
   1757 					return;
   1758 			}
   1759 
   1760 			/*
   1761 			 * Slow start out of the error condition.  We
   1762 			 * use the MTU because we know it's smaller
   1763 			 * than the previously transmitted segment.
   1764 			 *
   1765 			 * Note: This is more conservative than the
   1766 			 * suggestion in draft-floyd-incr-init-win-03.
   1767 			 */
   1768 			if (rt->rt_rmx.rmx_mtu != 0)
   1769 				tp->snd_cwnd =
   1770 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1771 				    rt->rt_rmx.rmx_mtu);
   1772 		}
   1773 
   1774 		/*
   1775 		 * Resend unacknowledged packets.
   1776 		 */
   1777 		tp->snd_nxt = tp->snd_una;
   1778 		tcp_output(tp);
   1779 	}
   1780 }
   1781 #endif
   1782 
   1783 #ifdef INET6
   1784 /*
   1785  * Path MTU Discovery handlers.
   1786  */
   1787 void
   1788 tcp6_mtudisc_callback(faddr)
   1789 	struct in6_addr *faddr;
   1790 {
   1791 	struct sockaddr_in6 sin6;
   1792 
   1793 	bzero(&sin6, sizeof(sin6));
   1794 	sin6.sin6_family = AF_INET6;
   1795 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1796 	sin6.sin6_addr = *faddr;
   1797 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
   1798 	    (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1799 }
   1800 
   1801 void
   1802 tcp6_mtudisc(in6p, errno)
   1803 	struct in6pcb *in6p;
   1804 	int errno;
   1805 {
   1806 	struct tcpcb *tp = in6totcpcb(in6p);
   1807 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1808 
   1809 	if (tp != 0) {
   1810 		if (rt != 0) {
   1811 			/*
   1812 			 * If this was not a host route, remove and realloc.
   1813 			 */
   1814 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1815 				in6_rtchange(in6p, errno);
   1816 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1817 					return;
   1818 			}
   1819 
   1820 			/*
   1821 			 * Slow start out of the error condition.  We
   1822 			 * use the MTU because we know it's smaller
   1823 			 * than the previously transmitted segment.
   1824 			 *
   1825 			 * Note: This is more conservative than the
   1826 			 * suggestion in draft-floyd-incr-init-win-03.
   1827 			 */
   1828 			if (rt->rt_rmx.rmx_mtu != 0)
   1829 				tp->snd_cwnd =
   1830 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1831 				    rt->rt_rmx.rmx_mtu);
   1832 		}
   1833 
   1834 		/*
   1835 		 * Resend unacknowledged packets.
   1836 		 */
   1837 		tp->snd_nxt = tp->snd_una;
   1838 		tcp_output(tp);
   1839 	}
   1840 }
   1841 #endif /* INET6 */
   1842 
   1843 /*
   1844  * Compute the MSS to advertise to the peer.  Called only during
   1845  * the 3-way handshake.  If we are the server (peer initiated
   1846  * connection), we are called with a pointer to the interface
   1847  * on which the SYN packet arrived.  If we are the client (we
   1848  * initiated connection), we are called with a pointer to the
   1849  * interface out which this connection should go.
   1850  *
   1851  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1852  * header size from MSS advertisement.  MSS option must hold the maximum
   1853  * segment size we can accept, so it must always be:
   1854  *	 max(if mtu) - ip header - tcp header
   1855  */
   1856 u_long
   1857 tcp_mss_to_advertise(ifp, af)
   1858 	const struct ifnet *ifp;
   1859 	int af;
   1860 {
   1861 	extern u_long in_maxmtu;
   1862 	u_long mss = 0;
   1863 	u_long hdrsiz;
   1864 
   1865 	/*
   1866 	 * In order to avoid defeating path MTU discovery on the peer,
   1867 	 * we advertise the max MTU of all attached networks as our MSS,
   1868 	 * per RFC 1191, section 3.1.
   1869 	 *
   1870 	 * We provide the option to advertise just the MTU of
   1871 	 * the interface on which we hope this connection will
   1872 	 * be receiving.  If we are responding to a SYN, we
   1873 	 * will have a pretty good idea about this, but when
   1874 	 * initiating a connection there is a bit more doubt.
   1875 	 *
   1876 	 * We also need to ensure that loopback has a large enough
   1877 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1878 	 */
   1879 
   1880 	if (ifp != NULL)
   1881 		switch (af) {
   1882 		case AF_INET:
   1883 			mss = ifp->if_mtu;
   1884 			break;
   1885 #ifdef INET6
   1886 		case AF_INET6:
   1887 			mss = IN6_LINKMTU(ifp);
   1888 			break;
   1889 #endif
   1890 		}
   1891 
   1892 	if (tcp_mss_ifmtu == 0)
   1893 		switch (af) {
   1894 		case AF_INET:
   1895 			mss = max(in_maxmtu, mss);
   1896 			break;
   1897 #ifdef INET6
   1898 		case AF_INET6:
   1899 			mss = max(in6_maxmtu, mss);
   1900 			break;
   1901 #endif
   1902 		}
   1903 
   1904 	switch (af) {
   1905 	case AF_INET:
   1906 		hdrsiz = sizeof(struct ip);
   1907 		break;
   1908 #ifdef INET6
   1909 	case AF_INET6:
   1910 		hdrsiz = sizeof(struct ip6_hdr);
   1911 		break;
   1912 #endif
   1913 	default:
   1914 		hdrsiz = 0;
   1915 		break;
   1916 	}
   1917 	hdrsiz += sizeof(struct tcphdr);
   1918 	if (mss > hdrsiz)
   1919 		mss -= hdrsiz;
   1920 
   1921 	mss = max(tcp_mssdflt, mss);
   1922 	return (mss);
   1923 }
   1924 
   1925 /*
   1926  * Set connection variables based on the peer's advertised MSS.
   1927  * We are passed the TCPCB for the actual connection.  If we
   1928  * are the server, we are called by the compressed state engine
   1929  * when the 3-way handshake is complete.  If we are the client,
   1930  * we are called when we receive the SYN,ACK from the server.
   1931  *
   1932  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1933  * before this routine is called!
   1934  */
   1935 void
   1936 tcp_mss_from_peer(tp, offer)
   1937 	struct tcpcb *tp;
   1938 	int offer;
   1939 {
   1940 	struct socket *so;
   1941 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1942 	struct rtentry *rt;
   1943 #endif
   1944 	u_long bufsize;
   1945 	int mss;
   1946 
   1947 #ifdef DIAGNOSTIC
   1948 	if (tp->t_inpcb && tp->t_in6pcb)
   1949 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1950 #endif
   1951 	so = NULL;
   1952 	rt = NULL;
   1953 #ifdef INET
   1954 	if (tp->t_inpcb) {
   1955 		so = tp->t_inpcb->inp_socket;
   1956 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1957 		rt = in_pcbrtentry(tp->t_inpcb);
   1958 #endif
   1959 	}
   1960 #endif
   1961 #ifdef INET6
   1962 	if (tp->t_in6pcb) {
   1963 		so = tp->t_in6pcb->in6p_socket;
   1964 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1965 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1966 #endif
   1967 	}
   1968 #endif
   1969 
   1970 	/*
   1971 	 * As per RFC1122, use the default MSS value, unless they
   1972 	 * sent us an offer.  Do not accept offers less than 256 bytes.
   1973 	 */
   1974 	mss = tcp_mssdflt;
   1975 	if (offer)
   1976 		mss = offer;
   1977 	mss = max(mss, 256);		/* sanity */
   1978 	tp->t_peermss = mss;
   1979 	mss -= tcp_optlen(tp);
   1980 #ifdef INET
   1981 	if (tp->t_inpcb)
   1982 		mss -= ip_optlen(tp->t_inpcb);
   1983 #endif
   1984 #ifdef INET6
   1985 	if (tp->t_in6pcb)
   1986 		mss -= ip6_optlen(tp->t_in6pcb);
   1987 #endif
   1988 
   1989 	/*
   1990 	 * If there's a pipesize, change the socket buffer to that size.
   1991 	 * Make the socket buffer an integral number of MSS units.  If
   1992 	 * the MSS is larger than the socket buffer, artificially decrease
   1993 	 * the MSS.
   1994 	 */
   1995 #ifdef RTV_SPIPE
   1996 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1997 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1998 	else
   1999 #endif
   2000 		bufsize = so->so_snd.sb_hiwat;
   2001 	if (bufsize < mss)
   2002 		mss = bufsize;
   2003 	else {
   2004 		bufsize = roundup(bufsize, mss);
   2005 		if (bufsize > sb_max)
   2006 			bufsize = sb_max;
   2007 		(void) sbreserve(&so->so_snd, bufsize, so);
   2008 	}
   2009 	tp->t_segsz = mss;
   2010 
   2011 #ifdef RTV_SSTHRESH
   2012 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   2013 		/*
   2014 		 * There's some sort of gateway or interface buffer
   2015 		 * limit on the path.  Use this to set the slow
   2016 		 * start threshold, but set the threshold to no less
   2017 		 * than 2 * MSS.
   2018 		 */
   2019 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   2020 	}
   2021 #endif
   2022 }
   2023 
   2024 /*
   2025  * Processing necessary when a TCP connection is established.
   2026  */
   2027 void
   2028 tcp_established(tp)
   2029 	struct tcpcb *tp;
   2030 {
   2031 	struct socket *so;
   2032 #ifdef RTV_RPIPE
   2033 	struct rtentry *rt;
   2034 #endif
   2035 	u_long bufsize;
   2036 
   2037 #ifdef DIAGNOSTIC
   2038 	if (tp->t_inpcb && tp->t_in6pcb)
   2039 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   2040 #endif
   2041 	so = NULL;
   2042 	rt = NULL;
   2043 #ifdef INET
   2044 	if (tp->t_inpcb) {
   2045 		so = tp->t_inpcb->inp_socket;
   2046 #if defined(RTV_RPIPE)
   2047 		rt = in_pcbrtentry(tp->t_inpcb);
   2048 #endif
   2049 	}
   2050 #endif
   2051 #ifdef INET6
   2052 	if (tp->t_in6pcb) {
   2053 		so = tp->t_in6pcb->in6p_socket;
   2054 #if defined(RTV_RPIPE)
   2055 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2056 #endif
   2057 	}
   2058 #endif
   2059 
   2060 	tp->t_state = TCPS_ESTABLISHED;
   2061 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   2062 
   2063 #ifdef RTV_RPIPE
   2064 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   2065 		bufsize = rt->rt_rmx.rmx_recvpipe;
   2066 	else
   2067 #endif
   2068 		bufsize = so->so_rcv.sb_hiwat;
   2069 	if (bufsize > tp->t_ourmss) {
   2070 		bufsize = roundup(bufsize, tp->t_ourmss);
   2071 		if (bufsize > sb_max)
   2072 			bufsize = sb_max;
   2073 		(void) sbreserve(&so->so_rcv, bufsize, so);
   2074 	}
   2075 }
   2076 
   2077 /*
   2078  * Check if there's an initial rtt or rttvar.  Convert from the
   2079  * route-table units to scaled multiples of the slow timeout timer.
   2080  * Called only during the 3-way handshake.
   2081  */
   2082 void
   2083 tcp_rmx_rtt(tp)
   2084 	struct tcpcb *tp;
   2085 {
   2086 #ifdef RTV_RTT
   2087 	struct rtentry *rt = NULL;
   2088 	int rtt;
   2089 
   2090 #ifdef DIAGNOSTIC
   2091 	if (tp->t_inpcb && tp->t_in6pcb)
   2092 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   2093 #endif
   2094 #ifdef INET
   2095 	if (tp->t_inpcb)
   2096 		rt = in_pcbrtentry(tp->t_inpcb);
   2097 #endif
   2098 #ifdef INET6
   2099 	if (tp->t_in6pcb)
   2100 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2101 #endif
   2102 	if (rt == NULL)
   2103 		return;
   2104 
   2105 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   2106 		/*
   2107 		 * XXX The lock bit for MTU indicates that the value
   2108 		 * is also a minimum value; this is subject to time.
   2109 		 */
   2110 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   2111 			TCPT_RANGESET(tp->t_rttmin,
   2112 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   2113 			    TCPTV_MIN, TCPTV_REXMTMAX);
   2114 		tp->t_srtt = rtt /
   2115 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   2116 		if (rt->rt_rmx.rmx_rttvar) {
   2117 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   2118 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   2119 				(TCP_RTTVAR_SHIFT + 2));
   2120 		} else {
   2121 			/* Default variation is +- 1 rtt */
   2122 			tp->t_rttvar =
   2123 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   2124 		}
   2125 		TCPT_RANGESET(tp->t_rxtcur,
   2126 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   2127 		    tp->t_rttmin, TCPTV_REXMTMAX);
   2128 	}
   2129 #endif
   2130 }
   2131 
   2132 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   2133 #if NRND > 0
   2134 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   2135 #endif
   2136 
   2137 /*
   2138  * Get a new sequence value given a tcp control block
   2139  */
   2140 tcp_seq
   2141 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   2142 {
   2143 
   2144 #ifdef INET
   2145 	if (tp->t_inpcb != NULL) {
   2146 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   2147 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   2148 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   2149 		    addin));
   2150 	}
   2151 #endif
   2152 #ifdef INET6
   2153 	if (tp->t_in6pcb != NULL) {
   2154 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   2155 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   2156 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   2157 		    addin));
   2158 	}
   2159 #endif
   2160 	/* Not possible. */
   2161 	panic("tcp_new_iss");
   2162 }
   2163 
   2164 /*
   2165  * This routine actually generates a new TCP initial sequence number.
   2166  */
   2167 tcp_seq
   2168 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2169     size_t addrsz, tcp_seq addin)
   2170 {
   2171 	tcp_seq tcp_iss;
   2172 
   2173 #if NRND > 0
   2174 	static int beenhere;
   2175 
   2176 	/*
   2177 	 * If we haven't been here before, initialize our cryptographic
   2178 	 * hash secret.
   2179 	 */
   2180 	if (beenhere == 0) {
   2181 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   2182 		    RND_EXTRACT_ANY);
   2183 		beenhere = 1;
   2184 	}
   2185 
   2186 	if (tcp_do_rfc1948) {
   2187 		MD5_CTX ctx;
   2188 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2189 
   2190 		/*
   2191 		 * Compute the base value of the ISS.  It is a hash
   2192 		 * of (saddr, sport, daddr, dport, secret).
   2193 		 */
   2194 		MD5Init(&ctx);
   2195 
   2196 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2197 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2198 
   2199 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2200 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2201 
   2202 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2203 
   2204 		MD5Final(hash, &ctx);
   2205 
   2206 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2207 
   2208 		/*
   2209 		 * Now increment our "timer", and add it in to
   2210 		 * the computed value.
   2211 		 *
   2212 		 * XXX Use `addin'?
   2213 		 * XXX TCP_ISSINCR too large to use?
   2214 		 */
   2215 		tcp_iss_seq += TCP_ISSINCR;
   2216 #ifdef TCPISS_DEBUG
   2217 		printf("ISS hash 0x%08x, ", tcp_iss);
   2218 #endif
   2219 		tcp_iss += tcp_iss_seq + addin;
   2220 #ifdef TCPISS_DEBUG
   2221 		printf("new ISS 0x%08x\n", tcp_iss);
   2222 #endif
   2223 	} else
   2224 #endif /* NRND > 0 */
   2225 	{
   2226 		/*
   2227 		 * Randomize.
   2228 		 */
   2229 #if NRND > 0
   2230 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2231 #else
   2232 		tcp_iss = arc4random();
   2233 #endif
   2234 
   2235 		/*
   2236 		 * If we were asked to add some amount to a known value,
   2237 		 * we will take a random value obtained above, mask off
   2238 		 * the upper bits, and add in the known value.  We also
   2239 		 * add in a constant to ensure that we are at least a
   2240 		 * certain distance from the original value.
   2241 		 *
   2242 		 * This is used when an old connection is in timed wait
   2243 		 * and we have a new one coming in, for instance.
   2244 		 */
   2245 		if (addin != 0) {
   2246 #ifdef TCPISS_DEBUG
   2247 			printf("Random %08x, ", tcp_iss);
   2248 #endif
   2249 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2250 			tcp_iss += addin + TCP_ISSINCR;
   2251 #ifdef TCPISS_DEBUG
   2252 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2253 #endif
   2254 		} else {
   2255 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2256 			tcp_iss += tcp_iss_seq;
   2257 			tcp_iss_seq += TCP_ISSINCR;
   2258 #ifdef TCPISS_DEBUG
   2259 			printf("ISS %08x\n", tcp_iss);
   2260 #endif
   2261 		}
   2262 	}
   2263 
   2264 	if (tcp_compat_42) {
   2265 		/*
   2266 		 * Limit it to the positive range for really old TCP
   2267 		 * implementations.
   2268 		 * Just AND off the top bit instead of checking if
   2269 		 * is set first - saves a branch 50% of the time.
   2270 		 */
   2271 		tcp_iss &= 0x7fffffff;		/* XXX */
   2272 	}
   2273 
   2274 	return (tcp_iss);
   2275 }
   2276 
   2277 #if defined(IPSEC) || defined(FAST_IPSEC)
   2278 /* compute ESP/AH header size for TCP, including outer IP header. */
   2279 size_t
   2280 ipsec4_hdrsiz_tcp(tp)
   2281 	struct tcpcb *tp;
   2282 {
   2283 	struct inpcb *inp;
   2284 	size_t hdrsiz;
   2285 
   2286 	/* XXX mapped addr case (tp->t_in6pcb) */
   2287 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2288 		return 0;
   2289 	switch (tp->t_family) {
   2290 	case AF_INET:
   2291 		/* XXX: should use currect direction. */
   2292 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2293 		break;
   2294 	default:
   2295 		hdrsiz = 0;
   2296 		break;
   2297 	}
   2298 
   2299 	return hdrsiz;
   2300 }
   2301 
   2302 #ifdef INET6
   2303 size_t
   2304 ipsec6_hdrsiz_tcp(tp)
   2305 	struct tcpcb *tp;
   2306 {
   2307 	struct in6pcb *in6p;
   2308 	size_t hdrsiz;
   2309 
   2310 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2311 		return 0;
   2312 	switch (tp->t_family) {
   2313 	case AF_INET6:
   2314 		/* XXX: should use currect direction. */
   2315 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2316 		break;
   2317 	case AF_INET:
   2318 		/* mapped address case - tricky */
   2319 	default:
   2320 		hdrsiz = 0;
   2321 		break;
   2322 	}
   2323 
   2324 	return hdrsiz;
   2325 }
   2326 #endif
   2327 #endif /*IPSEC*/
   2328 
   2329 /*
   2330  * Determine the length of the TCP options for this connection.
   2331  *
   2332  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2333  *       all of the space?  Otherwise we can't exactly be incrementing
   2334  *       cwnd by an amount that varies depending on the amount we last
   2335  *       had to SACK!
   2336  */
   2337 
   2338 u_int
   2339 tcp_optlen(tp)
   2340 	struct tcpcb *tp;
   2341 {
   2342 	u_int optlen;
   2343 
   2344 	optlen = 0;
   2345 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2346 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2347 		optlen += TCPOLEN_TSTAMP_APPA;
   2348 
   2349 #ifdef TCP_SIGNATURE
   2350 #ifdef INET6
   2351 	/* XXX: FreeBSD uses ((tp->t_inpcb->inp_vflag & INP_IPV6) == 0) */
   2352 	if (tp->t_family == AF_INET)
   2353 #endif
   2354 	if (tp->t_flags & TF_SIGNATURE)
   2355 		optlen += TCPOLEN_SIGNATURE + 2;
   2356 #endif /* TCP_SIGNATURE */
   2357 
   2358 	return optlen;
   2359 }
   2360