Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.169
      1 /*	$NetBSD: tcp_subr.c,v 1.169 2004/04/26 05:15:47 itojun Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.169 2004/04/26 05:15:47 itojun Exp $");
    102 
    103 #include "opt_inet.h"
    104 #include "opt_ipsec.h"
    105 #include "opt_tcp_compat_42.h"
    106 #include "opt_inet_csum.h"
    107 #include "opt_mbuftrace.h"
    108 #include "rnd.h"
    109 
    110 #include <sys/param.h>
    111 #include <sys/proc.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/socket.h>
    116 #include <sys/socketvar.h>
    117 #include <sys/protosw.h>
    118 #include <sys/errno.h>
    119 #include <sys/kernel.h>
    120 #include <sys/pool.h>
    121 #if NRND > 0
    122 #include <sys/md5.h>
    123 #include <sys/rnd.h>
    124 #endif
    125 
    126 #include <net/route.h>
    127 #include <net/if.h>
    128 
    129 #include <netinet/in.h>
    130 #include <netinet/in_systm.h>
    131 #include <netinet/ip.h>
    132 #include <netinet/in_pcb.h>
    133 #include <netinet/ip_var.h>
    134 #include <netinet/ip_icmp.h>
    135 
    136 #ifdef INET6
    137 #ifndef INET
    138 #include <netinet/in.h>
    139 #endif
    140 #include <netinet/ip6.h>
    141 #include <netinet6/in6_pcb.h>
    142 #include <netinet6/ip6_var.h>
    143 #include <netinet6/in6_var.h>
    144 #include <netinet6/ip6protosw.h>
    145 #include <netinet/icmp6.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include <netinet/tcp.h>
    150 #include <netinet/tcp_fsm.h>
    151 #include <netinet/tcp_seq.h>
    152 #include <netinet/tcp_timer.h>
    153 #include <netinet/tcp_var.h>
    154 #include <netinet/tcpip.h>
    155 
    156 #ifdef IPSEC
    157 #include <netinet6/ipsec.h>
    158 #include <netkey/key.h>
    159 #endif /*IPSEC*/
    160 
    161 #ifdef FAST_IPSEC
    162 #include <netipsec/ipsec.h>
    163 #include <netipsec/xform.h>
    164 #ifdef INET6
    165 #include <netipsec/ipsec6.h>
    166 #endif
    167  #include <netipsec/key.h>
    168 #endif	/* FAST_IPSEC*/
    169 
    170 
    171 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    172 struct	tcpstat tcpstat;	/* tcp statistics */
    173 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
    174 
    175 /* patchable/settable parameters for tcp */
    176 int 	tcp_mssdflt = TCP_MSS;
    177 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    178 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    179 #if NRND > 0
    180 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    181 #endif
    182 int	tcp_do_sack = 1;	/* selective acknowledgement */
    183 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    184 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    185 int	tcp_do_newreno = 1;	/* Use the New Reno algorithms */
    186 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    187 #ifndef TCP_INIT_WIN
    188 #define	TCP_INIT_WIN	0	/* initial slow start window */
    189 #endif
    190 #ifndef TCP_INIT_WIN_LOCAL
    191 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    192 #endif
    193 int	tcp_init_win = TCP_INIT_WIN;
    194 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    195 int	tcp_mss_ifmtu = 0;
    196 #ifdef TCP_COMPAT_42
    197 int	tcp_compat_42 = 1;
    198 #else
    199 int	tcp_compat_42 = 0;
    200 #endif
    201 int	tcp_rst_ppslim = 100;	/* 100pps */
    202 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
    203 
    204 /* tcb hash */
    205 #ifndef TCBHASHSIZE
    206 #define	TCBHASHSIZE	128
    207 #endif
    208 int	tcbhashsize = TCBHASHSIZE;
    209 
    210 /* syn hash parameters */
    211 #define	TCP_SYN_HASH_SIZE	293
    212 #define	TCP_SYN_BUCKET_SIZE	35
    213 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    214 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    215 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    216 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    217 
    218 int	tcp_freeq __P((struct tcpcb *));
    219 
    220 #ifdef INET
    221 void	tcp_mtudisc_callback __P((struct in_addr));
    222 #endif
    223 #ifdef INET6
    224 void	tcp6_mtudisc_callback __P((struct in6_addr *));
    225 #endif
    226 
    227 void	tcp_mtudisc __P((struct inpcb *, int));
    228 #ifdef INET6
    229 void	tcp6_mtudisc __P((struct in6pcb *, int));
    230 #endif
    231 
    232 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
    233 
    234 #ifdef TCP_CSUM_COUNTERS
    235 #include <sys/device.h>
    236 
    237 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    238     NULL, "tcp", "hwcsum bad");
    239 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    240     NULL, "tcp", "hwcsum ok");
    241 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    242     NULL, "tcp", "hwcsum data");
    243 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    244     NULL, "tcp", "swcsum");
    245 #endif /* TCP_CSUM_COUNTERS */
    246 
    247 #ifdef TCP_OUTPUT_COUNTERS
    248 #include <sys/device.h>
    249 
    250 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    251     NULL, "tcp", "output big header");
    252 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    253     NULL, "tcp", "output predict hit");
    254 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    255     NULL, "tcp", "output predict miss");
    256 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    257     NULL, "tcp", "output copy small");
    258 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    259     NULL, "tcp", "output copy big");
    260 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    261     NULL, "tcp", "output reference big");
    262 #endif /* TCP_OUTPUT_COUNTERS */
    263 
    264 #ifdef TCP_REASS_COUNTERS
    265 #include <sys/device.h>
    266 
    267 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    268     NULL, "tcp_reass", "calls");
    269 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    270     &tcp_reass_, "tcp_reass", "insert into empty queue");
    271 struct evcnt tcp_reass_iteration[8] = {
    272     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    273     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    274     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    275     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    276     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    277     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    278     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    279     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    280 };
    281 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    282     &tcp_reass_, "tcp_reass", "prepend to first");
    283 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    284     &tcp_reass_, "tcp_reass", "prepend");
    285 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    286     &tcp_reass_, "tcp_reass", "insert");
    287 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    288     &tcp_reass_, "tcp_reass", "insert at tail");
    289 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    290     &tcp_reass_, "tcp_reass", "append");
    291 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    292     &tcp_reass_, "tcp_reass", "append to tail fragment");
    293 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    294     &tcp_reass_, "tcp_reass", "overlap at end");
    295 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    296     &tcp_reass_, "tcp_reass", "overlap at start");
    297 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    298     &tcp_reass_, "tcp_reass", "duplicate segment");
    299 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    300     &tcp_reass_, "tcp_reass", "duplicate fragment");
    301 
    302 #endif /* TCP_REASS_COUNTERS */
    303 
    304 #ifdef MBUFTRACE
    305 struct mowner tcp_mowner = { "tcp" };
    306 struct mowner tcp_rx_mowner = { "tcp", "rx" };
    307 struct mowner tcp_tx_mowner = { "tcp", "tx" };
    308 #endif
    309 
    310 /*
    311  * Tcp initialization
    312  */
    313 void
    314 tcp_init()
    315 {
    316 	int hlen;
    317 
    318 	/* Initialize the TCPCB template. */
    319 	tcp_tcpcb_template();
    320 
    321 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    322 
    323 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    324 #ifdef INET6
    325 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    326 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    327 #endif
    328 	if (max_protohdr < hlen)
    329 		max_protohdr = hlen;
    330 	if (max_linkhdr + hlen > MHLEN)
    331 		panic("tcp_init");
    332 
    333 #ifdef INET
    334 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    335 #endif
    336 #ifdef INET6
    337 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    338 #endif
    339 
    340 	/* Initialize timer state. */
    341 	tcp_timer_init();
    342 
    343 	/* Initialize the compressed state engine. */
    344 	syn_cache_init();
    345 
    346 #ifdef TCP_CSUM_COUNTERS
    347 	evcnt_attach_static(&tcp_hwcsum_bad);
    348 	evcnt_attach_static(&tcp_hwcsum_ok);
    349 	evcnt_attach_static(&tcp_hwcsum_data);
    350 	evcnt_attach_static(&tcp_swcsum);
    351 #endif /* TCP_CSUM_COUNTERS */
    352 
    353 #ifdef TCP_OUTPUT_COUNTERS
    354 	evcnt_attach_static(&tcp_output_bigheader);
    355 	evcnt_attach_static(&tcp_output_predict_hit);
    356 	evcnt_attach_static(&tcp_output_predict_miss);
    357 	evcnt_attach_static(&tcp_output_copysmall);
    358 	evcnt_attach_static(&tcp_output_copybig);
    359 	evcnt_attach_static(&tcp_output_refbig);
    360 #endif /* TCP_OUTPUT_COUNTERS */
    361 
    362 #ifdef TCP_REASS_COUNTERS
    363 	evcnt_attach_static(&tcp_reass_);
    364 	evcnt_attach_static(&tcp_reass_empty);
    365 	evcnt_attach_static(&tcp_reass_iteration[0]);
    366 	evcnt_attach_static(&tcp_reass_iteration[1]);
    367 	evcnt_attach_static(&tcp_reass_iteration[2]);
    368 	evcnt_attach_static(&tcp_reass_iteration[3]);
    369 	evcnt_attach_static(&tcp_reass_iteration[4]);
    370 	evcnt_attach_static(&tcp_reass_iteration[5]);
    371 	evcnt_attach_static(&tcp_reass_iteration[6]);
    372 	evcnt_attach_static(&tcp_reass_iteration[7]);
    373 	evcnt_attach_static(&tcp_reass_prependfirst);
    374 	evcnt_attach_static(&tcp_reass_prepend);
    375 	evcnt_attach_static(&tcp_reass_insert);
    376 	evcnt_attach_static(&tcp_reass_inserttail);
    377 	evcnt_attach_static(&tcp_reass_append);
    378 	evcnt_attach_static(&tcp_reass_appendtail);
    379 	evcnt_attach_static(&tcp_reass_overlaptail);
    380 	evcnt_attach_static(&tcp_reass_overlapfront);
    381 	evcnt_attach_static(&tcp_reass_segdup);
    382 	evcnt_attach_static(&tcp_reass_fragdup);
    383 #endif /* TCP_REASS_COUNTERS */
    384 
    385 	MOWNER_ATTACH(&tcp_tx_mowner);
    386 	MOWNER_ATTACH(&tcp_rx_mowner);
    387 	MOWNER_ATTACH(&tcp_mowner);
    388 }
    389 
    390 /*
    391  * Create template to be used to send tcp packets on a connection.
    392  * Call after host entry created, allocates an mbuf and fills
    393  * in a skeletal tcp/ip header, minimizing the amount of work
    394  * necessary when the connection is used.
    395  */
    396 struct mbuf *
    397 tcp_template(tp)
    398 	struct tcpcb *tp;
    399 {
    400 	struct inpcb *inp = tp->t_inpcb;
    401 #ifdef INET6
    402 	struct in6pcb *in6p = tp->t_in6pcb;
    403 #endif
    404 	struct tcphdr *n;
    405 	struct mbuf *m;
    406 	int hlen;
    407 
    408 	switch (tp->t_family) {
    409 	case AF_INET:
    410 		hlen = sizeof(struct ip);
    411 		if (inp)
    412 			break;
    413 #ifdef INET6
    414 		if (in6p) {
    415 			/* mapped addr case */
    416 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    417 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    418 				break;
    419 		}
    420 #endif
    421 		return NULL;	/*EINVAL*/
    422 #ifdef INET6
    423 	case AF_INET6:
    424 		hlen = sizeof(struct ip6_hdr);
    425 		if (in6p) {
    426 			/* more sainty check? */
    427 			break;
    428 		}
    429 		return NULL;	/*EINVAL*/
    430 #endif
    431 	default:
    432 		hlen = 0;	/*pacify gcc*/
    433 		return NULL;	/*EAFNOSUPPORT*/
    434 	}
    435 #ifdef DIAGNOSTIC
    436 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    437 		panic("mclbytes too small for t_template");
    438 #endif
    439 	m = tp->t_template;
    440 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    441 		;
    442 	else {
    443 		if (m)
    444 			m_freem(m);
    445 		m = tp->t_template = NULL;
    446 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    447 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    448 			MCLGET(m, M_DONTWAIT);
    449 			if ((m->m_flags & M_EXT) == 0) {
    450 				m_free(m);
    451 				m = NULL;
    452 			}
    453 		}
    454 		if (m == NULL)
    455 			return NULL;
    456 		MCLAIM(m, &tcp_mowner);
    457 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    458 	}
    459 
    460 	bzero(mtod(m, caddr_t), m->m_len);
    461 
    462 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
    463 
    464 	switch (tp->t_family) {
    465 	case AF_INET:
    466 	    {
    467 		struct ipovly *ipov;
    468 		mtod(m, struct ip *)->ip_v = 4;
    469 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
    470 		ipov = mtod(m, struct ipovly *);
    471 		ipov->ih_pr = IPPROTO_TCP;
    472 		ipov->ih_len = htons(sizeof(struct tcphdr));
    473 		if (inp) {
    474 			ipov->ih_src = inp->inp_laddr;
    475 			ipov->ih_dst = inp->inp_faddr;
    476 		}
    477 #ifdef INET6
    478 		else if (in6p) {
    479 			/* mapped addr case */
    480 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    481 				sizeof(ipov->ih_src));
    482 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    483 				sizeof(ipov->ih_dst));
    484 		}
    485 #endif
    486 		/*
    487 		 * Compute the pseudo-header portion of the checksum
    488 		 * now.  We incrementally add in the TCP option and
    489 		 * payload lengths later, and then compute the TCP
    490 		 * checksum right before the packet is sent off onto
    491 		 * the wire.
    492 		 */
    493 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    494 		    ipov->ih_dst.s_addr,
    495 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    496 		break;
    497 	    }
    498 #ifdef INET6
    499 	case AF_INET6:
    500 	    {
    501 		struct ip6_hdr *ip6;
    502 		mtod(m, struct ip *)->ip_v = 6;
    503 		ip6 = mtod(m, struct ip6_hdr *);
    504 		ip6->ip6_nxt = IPPROTO_TCP;
    505 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    506 		ip6->ip6_src = in6p->in6p_laddr;
    507 		ip6->ip6_dst = in6p->in6p_faddr;
    508 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    509 		if (ip6_auto_flowlabel) {
    510 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    511 			ip6->ip6_flow |=
    512 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    513 		}
    514 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    515 		ip6->ip6_vfc |= IPV6_VERSION;
    516 
    517 		/*
    518 		 * Compute the pseudo-header portion of the checksum
    519 		 * now.  We incrementally add in the TCP option and
    520 		 * payload lengths later, and then compute the TCP
    521 		 * checksum right before the packet is sent off onto
    522 		 * the wire.
    523 		 */
    524 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    525 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    526 		    htonl(IPPROTO_TCP));
    527 		break;
    528 	    }
    529 #endif
    530 	}
    531 	if (inp) {
    532 		n->th_sport = inp->inp_lport;
    533 		n->th_dport = inp->inp_fport;
    534 	}
    535 #ifdef INET6
    536 	else if (in6p) {
    537 		n->th_sport = in6p->in6p_lport;
    538 		n->th_dport = in6p->in6p_fport;
    539 	}
    540 #endif
    541 	n->th_seq = 0;
    542 	n->th_ack = 0;
    543 	n->th_x2 = 0;
    544 	n->th_off = 5;
    545 	n->th_flags = 0;
    546 	n->th_win = 0;
    547 	n->th_urp = 0;
    548 	return (m);
    549 }
    550 
    551 /*
    552  * Send a single message to the TCP at address specified by
    553  * the given TCP/IP header.  If m == 0, then we make a copy
    554  * of the tcpiphdr at ti and send directly to the addressed host.
    555  * This is used to force keep alive messages out using the TCP
    556  * template for a connection tp->t_template.  If flags are given
    557  * then we send a message back to the TCP which originated the
    558  * segment ti, and discard the mbuf containing it and any other
    559  * attached mbufs.
    560  *
    561  * In any case the ack and sequence number of the transmitted
    562  * segment are as specified by the parameters.
    563  */
    564 int
    565 tcp_respond(tp, template, m, th0, ack, seq, flags)
    566 	struct tcpcb *tp;
    567 	struct mbuf *template;
    568 	struct mbuf *m;
    569 	struct tcphdr *th0;
    570 	tcp_seq ack, seq;
    571 	int flags;
    572 {
    573 	struct route *ro;
    574 	int error, tlen, win = 0;
    575 	int hlen;
    576 	struct ip *ip;
    577 #ifdef INET6
    578 	struct ip6_hdr *ip6;
    579 #endif
    580 	int family;	/* family on packet, not inpcb/in6pcb! */
    581 	struct tcphdr *th;
    582 	struct socket *so;
    583 
    584 	if (tp != NULL && (flags & TH_RST) == 0) {
    585 #ifdef DIAGNOSTIC
    586 		if (tp->t_inpcb && tp->t_in6pcb)
    587 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    588 #endif
    589 #ifdef INET
    590 		if (tp->t_inpcb)
    591 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    592 #endif
    593 #ifdef INET6
    594 		if (tp->t_in6pcb)
    595 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    596 #endif
    597 	}
    598 
    599 	th = NULL;	/* Quell uninitialized warning */
    600 	ip = NULL;
    601 #ifdef INET6
    602 	ip6 = NULL;
    603 #endif
    604 	if (m == 0) {
    605 		if (!template)
    606 			return EINVAL;
    607 
    608 		/* get family information from template */
    609 		switch (mtod(template, struct ip *)->ip_v) {
    610 		case 4:
    611 			family = AF_INET;
    612 			hlen = sizeof(struct ip);
    613 			break;
    614 #ifdef INET6
    615 		case 6:
    616 			family = AF_INET6;
    617 			hlen = sizeof(struct ip6_hdr);
    618 			break;
    619 #endif
    620 		default:
    621 			return EAFNOSUPPORT;
    622 		}
    623 
    624 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    625 		if (m) {
    626 			MCLAIM(m, &tcp_tx_mowner);
    627 			MCLGET(m, M_DONTWAIT);
    628 			if ((m->m_flags & M_EXT) == 0) {
    629 				m_free(m);
    630 				m = NULL;
    631 			}
    632 		}
    633 		if (m == NULL)
    634 			return (ENOBUFS);
    635 
    636 		if (tcp_compat_42)
    637 			tlen = 1;
    638 		else
    639 			tlen = 0;
    640 
    641 		m->m_data += max_linkhdr;
    642 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
    643 			template->m_len);
    644 		switch (family) {
    645 		case AF_INET:
    646 			ip = mtod(m, struct ip *);
    647 			th = (struct tcphdr *)(ip + 1);
    648 			break;
    649 #ifdef INET6
    650 		case AF_INET6:
    651 			ip6 = mtod(m, struct ip6_hdr *);
    652 			th = (struct tcphdr *)(ip6 + 1);
    653 			break;
    654 #endif
    655 #if 0
    656 		default:
    657 			/* noone will visit here */
    658 			m_freem(m);
    659 			return EAFNOSUPPORT;
    660 #endif
    661 		}
    662 		flags = TH_ACK;
    663 	} else {
    664 
    665 		if ((m->m_flags & M_PKTHDR) == 0) {
    666 #if 0
    667 			printf("non PKTHDR to tcp_respond\n");
    668 #endif
    669 			m_freem(m);
    670 			return EINVAL;
    671 		}
    672 #ifdef DIAGNOSTIC
    673 		if (!th0)
    674 			panic("th0 == NULL in tcp_respond");
    675 #endif
    676 
    677 		/* get family information from m */
    678 		switch (mtod(m, struct ip *)->ip_v) {
    679 		case 4:
    680 			family = AF_INET;
    681 			hlen = sizeof(struct ip);
    682 			ip = mtod(m, struct ip *);
    683 			break;
    684 #ifdef INET6
    685 		case 6:
    686 			family = AF_INET6;
    687 			hlen = sizeof(struct ip6_hdr);
    688 			ip6 = mtod(m, struct ip6_hdr *);
    689 			break;
    690 #endif
    691 		default:
    692 			m_freem(m);
    693 			return EAFNOSUPPORT;
    694 		}
    695 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    696 			tlen = sizeof(*th0);
    697 		else
    698 			tlen = th0->th_off << 2;
    699 
    700 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    701 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
    702 			m->m_len = hlen + tlen;
    703 			m_freem(m->m_next);
    704 			m->m_next = NULL;
    705 		} else {
    706 			struct mbuf *n;
    707 
    708 #ifdef DIAGNOSTIC
    709 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    710 				m_freem(m);
    711 				return EMSGSIZE;
    712 			}
    713 #endif
    714 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    715 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    716 				MCLGET(n, M_DONTWAIT);
    717 				if ((n->m_flags & M_EXT) == 0) {
    718 					m_freem(n);
    719 					n = NULL;
    720 				}
    721 			}
    722 			if (!n) {
    723 				m_freem(m);
    724 				return ENOBUFS;
    725 			}
    726 
    727 			MCLAIM(n, &tcp_tx_mowner);
    728 			n->m_data += max_linkhdr;
    729 			n->m_len = hlen + tlen;
    730 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
    731 			m_copyback(n, hlen, tlen, (caddr_t)th0);
    732 
    733 			m_freem(m);
    734 			m = n;
    735 			n = NULL;
    736 		}
    737 
    738 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    739 		switch (family) {
    740 		case AF_INET:
    741 			ip = mtod(m, struct ip *);
    742 			th = (struct tcphdr *)(ip + 1);
    743 			ip->ip_p = IPPROTO_TCP;
    744 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    745 			ip->ip_p = IPPROTO_TCP;
    746 			break;
    747 #ifdef INET6
    748 		case AF_INET6:
    749 			ip6 = mtod(m, struct ip6_hdr *);
    750 			th = (struct tcphdr *)(ip6 + 1);
    751 			ip6->ip6_nxt = IPPROTO_TCP;
    752 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    753 			ip6->ip6_nxt = IPPROTO_TCP;
    754 			break;
    755 #endif
    756 #if 0
    757 		default:
    758 			/* noone will visit here */
    759 			m_freem(m);
    760 			return EAFNOSUPPORT;
    761 #endif
    762 		}
    763 		xchg(th->th_dport, th->th_sport, u_int16_t);
    764 #undef xchg
    765 		tlen = 0;	/*be friendly with the following code*/
    766 	}
    767 	th->th_seq = htonl(seq);
    768 	th->th_ack = htonl(ack);
    769 	th->th_x2 = 0;
    770 	if ((flags & TH_SYN) == 0) {
    771 		if (tp)
    772 			win >>= tp->rcv_scale;
    773 		if (win > TCP_MAXWIN)
    774 			win = TCP_MAXWIN;
    775 		th->th_win = htons((u_int16_t)win);
    776 		th->th_off = sizeof (struct tcphdr) >> 2;
    777 		tlen += sizeof(*th);
    778 	} else
    779 		tlen += th->th_off << 2;
    780 	m->m_len = hlen + tlen;
    781 	m->m_pkthdr.len = hlen + tlen;
    782 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    783 	th->th_flags = flags;
    784 	th->th_urp = 0;
    785 
    786 	switch (family) {
    787 #ifdef INET
    788 	case AF_INET:
    789 	    {
    790 		struct ipovly *ipov = (struct ipovly *)ip;
    791 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    792 		ipov->ih_len = htons((u_int16_t)tlen);
    793 
    794 		th->th_sum = 0;
    795 		th->th_sum = in_cksum(m, hlen + tlen);
    796 		ip->ip_len = htons(hlen + tlen);
    797 		ip->ip_ttl = ip_defttl;
    798 		break;
    799 	    }
    800 #endif
    801 #ifdef INET6
    802 	case AF_INET6:
    803 	    {
    804 		th->th_sum = 0;
    805 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    806 				tlen);
    807 		ip6->ip6_plen = ntohs(tlen);
    808 		if (tp && tp->t_in6pcb) {
    809 			struct ifnet *oifp;
    810 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    811 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    812 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    813 		} else
    814 			ip6->ip6_hlim = ip6_defhlim;
    815 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    816 		if (ip6_auto_flowlabel) {
    817 			ip6->ip6_flow |=
    818 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    819 		}
    820 		break;
    821 	    }
    822 #endif
    823 	}
    824 
    825 	if (tp && tp->t_inpcb)
    826 		so = tp->t_inpcb->inp_socket;
    827 #ifdef INET6
    828 	else if (tp && tp->t_in6pcb)
    829 		so = tp->t_in6pcb->in6p_socket;
    830 #endif
    831 	else
    832 		so = NULL;
    833 
    834 	if (tp != NULL && tp->t_inpcb != NULL) {
    835 		ro = &tp->t_inpcb->inp_route;
    836 #ifdef DIAGNOSTIC
    837 		if (family != AF_INET)
    838 			panic("tcp_respond: address family mismatch");
    839 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    840 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    841 			    ntohl(ip->ip_dst.s_addr),
    842 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    843 		}
    844 #endif
    845 	}
    846 #ifdef INET6
    847 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    848 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    849 #ifdef DIAGNOSTIC
    850 		if (family == AF_INET) {
    851 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    852 				panic("tcp_respond: not mapped addr");
    853 			if (bcmp(&ip->ip_dst,
    854 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    855 			    sizeof(ip->ip_dst)) != 0) {
    856 				panic("tcp_respond: ip_dst != in6p_faddr");
    857 			}
    858 		} else if (family == AF_INET6) {
    859 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    860 			    &tp->t_in6pcb->in6p_faddr))
    861 				panic("tcp_respond: ip6_dst != in6p_faddr");
    862 		} else
    863 			panic("tcp_respond: address family mismatch");
    864 #endif
    865 	}
    866 #endif
    867 	else
    868 		ro = NULL;
    869 
    870 	switch (family) {
    871 #ifdef INET
    872 	case AF_INET:
    873 		error = ip_output(m, NULL, ro,
    874 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    875 		    (struct ip_moptions *)0, so);
    876 		break;
    877 #endif
    878 #ifdef INET6
    879 	case AF_INET6:
    880 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
    881 		    (struct ip6_moptions *)0, so, NULL);
    882 		break;
    883 #endif
    884 	default:
    885 		error = EAFNOSUPPORT;
    886 		break;
    887 	}
    888 
    889 	return (error);
    890 }
    891 
    892 /*
    893  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
    894  * a bunch of members individually, we maintain this template for the
    895  * static and mostly-static components of the TCPCB, and copy it into
    896  * the new TCPCB instead.
    897  */
    898 static struct tcpcb tcpcb_template = {
    899 	/*
    900 	 * If TCP_NTIMERS ever changes, we'll need to update this
    901 	 * initializer.
    902 	 */
    903 	.t_timer = {
    904 		CALLOUT_INITIALIZER,
    905 		CALLOUT_INITIALIZER,
    906 		CALLOUT_INITIALIZER,
    907 		CALLOUT_INITIALIZER,
    908 	},
    909 	.t_delack_ch = CALLOUT_INITIALIZER,
    910 
    911 	.t_srtt = TCPTV_SRTTBASE,
    912 	.t_rttmin = TCPTV_MIN,
    913 
    914 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    915 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    916 };
    917 
    918 /*
    919  * Updates the TCPCB template whenever a parameter that would affect
    920  * the template is changed.
    921  */
    922 void
    923 tcp_tcpcb_template(void)
    924 {
    925 	struct tcpcb *tp = &tcpcb_template;
    926 	int flags;
    927 
    928 	tp->t_peermss = tcp_mssdflt;
    929 	tp->t_ourmss = tcp_mssdflt;
    930 	tp->t_segsz = tcp_mssdflt;
    931 
    932 	flags = 0;
    933 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    934 		flags |= TF_REQ_SCALE;
    935 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    936 		flags |= TF_REQ_TSTMP;
    937 	if (tcp_do_sack == 2)
    938 		flags |= TF_WILL_SACK;
    939 	else if (tcp_do_sack == 1)
    940 		flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
    941 	flags |= TF_CANT_TXSACK;
    942 	tp->t_flags = flags;
    943 
    944 	/*
    945 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    946 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    947 	 * reasonable initial retransmit time.
    948 	 */
    949 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    950 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    951 	    TCPTV_MIN, TCPTV_REXMTMAX);
    952 }
    953 
    954 /*
    955  * Create a new TCP control block, making an
    956  * empty reassembly queue and hooking it to the argument
    957  * protocol control block.
    958  */
    959 struct tcpcb *
    960 tcp_newtcpcb(family, aux)
    961 	int family;	/* selects inpcb, or in6pcb */
    962 	void *aux;
    963 {
    964 	struct tcpcb *tp;
    965 	int i;
    966 
    967 	/* XXX Consider using a pool_cache for speed. */
    968 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    969 	if (tp == NULL)
    970 		return (NULL);
    971 	memcpy(tp, &tcpcb_template, sizeof(*tp));
    972 	TAILQ_INIT(&tp->segq);
    973 	TAILQ_INIT(&tp->timeq);
    974 	tp->t_family = family;		/* may be overridden later on */
    975 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
    976 
    977 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
    978 	for (i = 0; i < TCPT_NTIMERS; i++)
    979 		TCP_TIMER_INIT(tp, i);
    980 
    981 	switch (family) {
    982 	case AF_INET:
    983 	    {
    984 		struct inpcb *inp = (struct inpcb *)aux;
    985 
    986 		inp->inp_ip.ip_ttl = ip_defttl;
    987 		inp->inp_ppcb = (caddr_t)tp;
    988 
    989 		tp->t_inpcb = inp;
    990 		tp->t_mtudisc = ip_mtudisc;
    991 		break;
    992 	    }
    993 #ifdef INET6
    994 	case AF_INET6:
    995 	    {
    996 		struct in6pcb *in6p = (struct in6pcb *)aux;
    997 
    998 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
    999 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
   1000 					       : NULL);
   1001 		in6p->in6p_ppcb = (caddr_t)tp;
   1002 
   1003 		tp->t_in6pcb = in6p;
   1004 		/* for IPv6, always try to run path MTU discovery */
   1005 		tp->t_mtudisc = 1;
   1006 		break;
   1007 	    }
   1008 #endif /* INET6 */
   1009 	default:
   1010 		pool_put(&tcpcb_pool, tp);
   1011 		return (NULL);
   1012 	}
   1013 
   1014 	/*
   1015 	 * Initialize our timebase.  When we send timestamps, we take
   1016 	 * the delta from tcp_now -- this means each connection always
   1017 	 * gets a timebase of 0, which makes it, among other things,
   1018 	 * more difficult to determine how long a system has been up,
   1019 	 * and thus how many TCP sequence increments have occurred.
   1020 	 */
   1021 	tp->ts_timebase = tcp_now;
   1022 
   1023 	return (tp);
   1024 }
   1025 
   1026 /*
   1027  * Drop a TCP connection, reporting
   1028  * the specified error.  If connection is synchronized,
   1029  * then send a RST to peer.
   1030  */
   1031 struct tcpcb *
   1032 tcp_drop(tp, errno)
   1033 	struct tcpcb *tp;
   1034 	int errno;
   1035 {
   1036 	struct socket *so = NULL;
   1037 
   1038 #ifdef DIAGNOSTIC
   1039 	if (tp->t_inpcb && tp->t_in6pcb)
   1040 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1041 #endif
   1042 #ifdef INET
   1043 	if (tp->t_inpcb)
   1044 		so = tp->t_inpcb->inp_socket;
   1045 #endif
   1046 #ifdef INET6
   1047 	if (tp->t_in6pcb)
   1048 		so = tp->t_in6pcb->in6p_socket;
   1049 #endif
   1050 	if (!so)
   1051 		return NULL;
   1052 
   1053 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1054 		tp->t_state = TCPS_CLOSED;
   1055 		(void) tcp_output(tp);
   1056 		tcpstat.tcps_drops++;
   1057 	} else
   1058 		tcpstat.tcps_conndrops++;
   1059 	if (errno == ETIMEDOUT && tp->t_softerror)
   1060 		errno = tp->t_softerror;
   1061 	so->so_error = errno;
   1062 	return (tcp_close(tp));
   1063 }
   1064 
   1065 /*
   1066  * Return whether this tcpcb is marked as dead, indicating
   1067  * to the calling timer function that no further action should
   1068  * be taken, as we are about to release this tcpcb.  The release
   1069  * of the storage will be done if this is the last timer running.
   1070  *
   1071  * This should be called from the callout handler function after
   1072  * callout_ack() is done, so that the number of invoking timer
   1073  * functions is 0.
   1074  */
   1075 int
   1076 tcp_isdead(tp)
   1077 	struct tcpcb *tp;
   1078 {
   1079 	int dead = (tp->t_flags & TF_DEAD);
   1080 
   1081 	if (__predict_false(dead)) {
   1082 		if (tcp_timers_invoking(tp) > 0)
   1083 				/* not quite there yet -- count separately? */
   1084 			return dead;
   1085 		tcpstat.tcps_delayed_free++;
   1086 		pool_put(&tcpcb_pool, tp);
   1087 	}
   1088 	return dead;
   1089 }
   1090 
   1091 /*
   1092  * Close a TCP control block:
   1093  *	discard all space held by the tcp
   1094  *	discard internet protocol block
   1095  *	wake up any sleepers
   1096  */
   1097 struct tcpcb *
   1098 tcp_close(tp)
   1099 	struct tcpcb *tp;
   1100 {
   1101 	struct inpcb *inp;
   1102 #ifdef INET6
   1103 	struct in6pcb *in6p;
   1104 #endif
   1105 	struct socket *so;
   1106 #ifdef RTV_RTT
   1107 	struct rtentry *rt;
   1108 #endif
   1109 	struct route *ro;
   1110 
   1111 	inp = tp->t_inpcb;
   1112 #ifdef INET6
   1113 	in6p = tp->t_in6pcb;
   1114 #endif
   1115 	so = NULL;
   1116 	ro = NULL;
   1117 	if (inp) {
   1118 		so = inp->inp_socket;
   1119 		ro = &inp->inp_route;
   1120 	}
   1121 #ifdef INET6
   1122 	else if (in6p) {
   1123 		so = in6p->in6p_socket;
   1124 		ro = (struct route *)&in6p->in6p_route;
   1125 	}
   1126 #endif
   1127 
   1128 #ifdef RTV_RTT
   1129 	/*
   1130 	 * If we sent enough data to get some meaningful characteristics,
   1131 	 * save them in the routing entry.  'Enough' is arbitrarily
   1132 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1133 	 * give us 16 rtt samples assuming we only get one sample per
   1134 	 * window (the usual case on a long haul net).  16 samples is
   1135 	 * enough for the srtt filter to converge to within 5% of the correct
   1136 	 * value; fewer samples and we could save a very bogus rtt.
   1137 	 *
   1138 	 * Don't update the default route's characteristics and don't
   1139 	 * update anything that the user "locked".
   1140 	 */
   1141 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1142 	    ro && (rt = ro->ro_rt) &&
   1143 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
   1144 		u_long i = 0;
   1145 
   1146 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1147 			i = tp->t_srtt *
   1148 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1149 			if (rt->rt_rmx.rmx_rtt && i)
   1150 				/*
   1151 				 * filter this update to half the old & half
   1152 				 * the new values, converting scale.
   1153 				 * See route.h and tcp_var.h for a
   1154 				 * description of the scaling constants.
   1155 				 */
   1156 				rt->rt_rmx.rmx_rtt =
   1157 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1158 			else
   1159 				rt->rt_rmx.rmx_rtt = i;
   1160 		}
   1161 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1162 			i = tp->t_rttvar *
   1163 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1164 			if (rt->rt_rmx.rmx_rttvar && i)
   1165 				rt->rt_rmx.rmx_rttvar =
   1166 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1167 			else
   1168 				rt->rt_rmx.rmx_rttvar = i;
   1169 		}
   1170 		/*
   1171 		 * update the pipelimit (ssthresh) if it has been updated
   1172 		 * already or if a pipesize was specified & the threshhold
   1173 		 * got below half the pipesize.  I.e., wait for bad news
   1174 		 * before we start updating, then update on both good
   1175 		 * and bad news.
   1176 		 */
   1177 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1178 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1179 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1180 			/*
   1181 			 * convert the limit from user data bytes to
   1182 			 * packets then to packet data bytes.
   1183 			 */
   1184 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1185 			if (i < 2)
   1186 				i = 2;
   1187 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1188 			if (rt->rt_rmx.rmx_ssthresh)
   1189 				rt->rt_rmx.rmx_ssthresh =
   1190 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1191 			else
   1192 				rt->rt_rmx.rmx_ssthresh = i;
   1193 		}
   1194 	}
   1195 #endif /* RTV_RTT */
   1196 	/* free the reassembly queue, if any */
   1197 	TCP_REASS_LOCK(tp);
   1198 	(void) tcp_freeq(tp);
   1199 	TCP_REASS_UNLOCK(tp);
   1200 
   1201 	tcp_canceltimers(tp);
   1202 	TCP_CLEAR_DELACK(tp);
   1203 	syn_cache_cleanup(tp);
   1204 
   1205 	if (tp->t_template) {
   1206 		m_free(tp->t_template);
   1207 		tp->t_template = NULL;
   1208 	}
   1209 	if (tcp_timers_invoking(tp))
   1210 		tp->t_flags |= TF_DEAD;
   1211 	else
   1212 		pool_put(&tcpcb_pool, tp);
   1213 
   1214 	if (inp) {
   1215 		inp->inp_ppcb = 0;
   1216 		soisdisconnected(so);
   1217 		in_pcbdetach(inp);
   1218 	}
   1219 #ifdef INET6
   1220 	else if (in6p) {
   1221 		in6p->in6p_ppcb = 0;
   1222 		soisdisconnected(so);
   1223 		in6_pcbdetach(in6p);
   1224 	}
   1225 #endif
   1226 	tcpstat.tcps_closed++;
   1227 	return ((struct tcpcb *)0);
   1228 }
   1229 
   1230 int
   1231 tcp_freeq(tp)
   1232 	struct tcpcb *tp;
   1233 {
   1234 	struct ipqent *qe;
   1235 	int rv = 0;
   1236 #ifdef TCPREASS_DEBUG
   1237 	int i = 0;
   1238 #endif
   1239 
   1240 	TCP_REASS_LOCK_CHECK(tp);
   1241 
   1242 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1243 #ifdef TCPREASS_DEBUG
   1244 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1245 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1246 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1247 #endif
   1248 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1249 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1250 		m_freem(qe->ipqe_m);
   1251 		pool_put(&ipqent_pool, qe);
   1252 		rv = 1;
   1253 	}
   1254 	return (rv);
   1255 }
   1256 
   1257 /*
   1258  * Protocol drain routine.  Called when memory is in short supply.
   1259  */
   1260 void
   1261 tcp_drain()
   1262 {
   1263 	struct inpcb_hdr *inph;
   1264 	struct tcpcb *tp;
   1265 
   1266 	/*
   1267 	 * Free the sequence queue of all TCP connections.
   1268 	 */
   1269 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
   1270 		switch (inph->inph_af) {
   1271 		case AF_INET:
   1272 			tp = intotcpcb((struct inpcb *)inph);
   1273 			break;
   1274 #ifdef INET6
   1275 		case AF_INET6:
   1276 			tp = in6totcpcb((struct in6pcb *)inph);
   1277 			break;
   1278 #endif
   1279 		default:
   1280 			tp = NULL;
   1281 			break;
   1282 		}
   1283 		if (tp != NULL) {
   1284 			/*
   1285 			 * We may be called from a device's interrupt
   1286 			 * context.  If the tcpcb is already busy,
   1287 			 * just bail out now.
   1288 			 */
   1289 			if (tcp_reass_lock_try(tp) == 0)
   1290 				continue;
   1291 			if (tcp_freeq(tp))
   1292 				tcpstat.tcps_connsdrained++;
   1293 			TCP_REASS_UNLOCK(tp);
   1294 		}
   1295 	}
   1296 }
   1297 
   1298 /*
   1299  * Notify a tcp user of an asynchronous error;
   1300  * store error as soft error, but wake up user
   1301  * (for now, won't do anything until can select for soft error).
   1302  */
   1303 void
   1304 tcp_notify(inp, error)
   1305 	struct inpcb *inp;
   1306 	int error;
   1307 {
   1308 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1309 	struct socket *so = inp->inp_socket;
   1310 
   1311 	/*
   1312 	 * Ignore some errors if we are hooked up.
   1313 	 * If connection hasn't completed, has retransmitted several times,
   1314 	 * and receives a second error, give up now.  This is better
   1315 	 * than waiting a long time to establish a connection that
   1316 	 * can never complete.
   1317 	 */
   1318 	if (tp->t_state == TCPS_ESTABLISHED &&
   1319 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1320 	      error == EHOSTDOWN)) {
   1321 		return;
   1322 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1323 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1324 		so->so_error = error;
   1325 	else
   1326 		tp->t_softerror = error;
   1327 	wakeup((caddr_t) &so->so_timeo);
   1328 	sorwakeup(so);
   1329 	sowwakeup(so);
   1330 }
   1331 
   1332 #ifdef INET6
   1333 void
   1334 tcp6_notify(in6p, error)
   1335 	struct in6pcb *in6p;
   1336 	int error;
   1337 {
   1338 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1339 	struct socket *so = in6p->in6p_socket;
   1340 
   1341 	/*
   1342 	 * Ignore some errors if we are hooked up.
   1343 	 * If connection hasn't completed, has retransmitted several times,
   1344 	 * and receives a second error, give up now.  This is better
   1345 	 * than waiting a long time to establish a connection that
   1346 	 * can never complete.
   1347 	 */
   1348 	if (tp->t_state == TCPS_ESTABLISHED &&
   1349 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1350 	      error == EHOSTDOWN)) {
   1351 		return;
   1352 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1353 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1354 		so->so_error = error;
   1355 	else
   1356 		tp->t_softerror = error;
   1357 	wakeup((caddr_t) &so->so_timeo);
   1358 	sorwakeup(so);
   1359 	sowwakeup(so);
   1360 }
   1361 #endif
   1362 
   1363 #ifdef INET6
   1364 void
   1365 tcp6_ctlinput(cmd, sa, d)
   1366 	int cmd;
   1367 	struct sockaddr *sa;
   1368 	void *d;
   1369 {
   1370 	struct tcphdr th;
   1371 	void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
   1372 	int nmatch;
   1373 	struct ip6_hdr *ip6;
   1374 	const struct sockaddr_in6 *sa6_src = NULL;
   1375 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
   1376 	struct mbuf *m;
   1377 	int off;
   1378 
   1379 	if (sa->sa_family != AF_INET6 ||
   1380 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1381 		return;
   1382 	if ((unsigned)cmd >= PRC_NCMDS)
   1383 		return;
   1384 	else if (cmd == PRC_QUENCH) {
   1385 		/* XXX there's no PRC_QUENCH in IPv6 */
   1386 		notify = tcp6_quench;
   1387 	} else if (PRC_IS_REDIRECT(cmd))
   1388 		notify = in6_rtchange, d = NULL;
   1389 	else if (cmd == PRC_MSGSIZE)
   1390 		; /* special code is present, see below */
   1391 	else if (cmd == PRC_HOSTDEAD)
   1392 		d = NULL;
   1393 	else if (inet6ctlerrmap[cmd] == 0)
   1394 		return;
   1395 
   1396 	/* if the parameter is from icmp6, decode it. */
   1397 	if (d != NULL) {
   1398 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1399 		m = ip6cp->ip6c_m;
   1400 		ip6 = ip6cp->ip6c_ip6;
   1401 		off = ip6cp->ip6c_off;
   1402 		sa6_src = ip6cp->ip6c_src;
   1403 	} else {
   1404 		m = NULL;
   1405 		ip6 = NULL;
   1406 		sa6_src = &sa6_any;
   1407 		off = 0;
   1408 	}
   1409 
   1410 	if (ip6) {
   1411 		/*
   1412 		 * XXX: We assume that when ip6 is non NULL,
   1413 		 * M and OFF are valid.
   1414 		 */
   1415 
   1416 		/* check if we can safely examine src and dst ports */
   1417 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1418 			if (cmd == PRC_MSGSIZE)
   1419 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1420 			return;
   1421 		}
   1422 
   1423 		bzero(&th, sizeof(th));
   1424 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
   1425 
   1426 		if (cmd == PRC_MSGSIZE) {
   1427 			int valid = 0;
   1428 
   1429 			/*
   1430 			 * Check to see if we have a valid TCP connection
   1431 			 * corresponding to the address in the ICMPv6 message
   1432 			 * payload.
   1433 			 */
   1434 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
   1435 			    th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
   1436 			    th.th_sport, 0))
   1437 				valid++;
   1438 
   1439 			/*
   1440 			 * Depending on the value of "valid" and routing table
   1441 			 * size (mtudisc_{hi,lo}wat), we will:
   1442 			 * - recalcurate the new MTU and create the
   1443 			 *   corresponding routing entry, or
   1444 			 * - ignore the MTU change notification.
   1445 			 */
   1446 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1447 
   1448 			/*
   1449 			 * no need to call in6_pcbnotify, it should have been
   1450 			 * called via callback if necessary
   1451 			 */
   1452 			return;
   1453 		}
   1454 
   1455 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
   1456 		    (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1457 		if (nmatch == 0 && syn_cache_count &&
   1458 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1459 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1460 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1461 			syn_cache_unreach((struct sockaddr *)sa6_src,
   1462 					  sa, &th);
   1463 	} else {
   1464 		(void) in6_pcbnotify(&tcbtable, sa, 0,
   1465 		    (struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
   1466 	}
   1467 }
   1468 #endif
   1469 
   1470 #ifdef INET
   1471 /* assumes that ip header and tcp header are contiguous on mbuf */
   1472 void *
   1473 tcp_ctlinput(cmd, sa, v)
   1474 	int cmd;
   1475 	struct sockaddr *sa;
   1476 	void *v;
   1477 {
   1478 	struct ip *ip = v;
   1479 	struct tcphdr *th;
   1480 	struct icmp *icp;
   1481 	extern const int inetctlerrmap[];
   1482 	void (*notify) __P((struct inpcb *, int)) = tcp_notify;
   1483 	int errno;
   1484 	int nmatch;
   1485 #ifdef INET6
   1486 	struct in6_addr src6, dst6;
   1487 #endif
   1488 
   1489 	if (sa->sa_family != AF_INET ||
   1490 	    sa->sa_len != sizeof(struct sockaddr_in))
   1491 		return NULL;
   1492 	if ((unsigned)cmd >= PRC_NCMDS)
   1493 		return NULL;
   1494 	errno = inetctlerrmap[cmd];
   1495 	if (cmd == PRC_QUENCH)
   1496 		notify = tcp_quench;
   1497 	else if (PRC_IS_REDIRECT(cmd))
   1498 		notify = in_rtchange, ip = 0;
   1499 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1500 		/*
   1501 		 * Check to see if we have a valid TCP connection
   1502 		 * corresponding to the address in the ICMP message
   1503 		 * payload.
   1504 		 *
   1505 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1506 		 */
   1507 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1508 #ifdef INET6
   1509 		memset(&src6, 0, sizeof(src6));
   1510 		memset(&dst6, 0, sizeof(dst6));
   1511 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1512 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1513 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1514 #endif
   1515 		if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
   1516 		    ip->ip_src, th->th_sport) != NULL)
   1517 			;
   1518 #ifdef INET6
   1519 		else if (in6_pcblookup_connect(&tcbtable, &dst6,
   1520 		    th->th_dport, &src6, th->th_sport, 0) != NULL)
   1521 			;
   1522 #endif
   1523 		else
   1524 			return NULL;
   1525 
   1526 		/*
   1527 		 * Now that we've validated that we are actually communicating
   1528 		 * with the host indicated in the ICMP message, locate the
   1529 		 * ICMP header, recalculate the new MTU, and create the
   1530 		 * corresponding routing entry.
   1531 		 */
   1532 		icp = (struct icmp *)((caddr_t)ip -
   1533 		    offsetof(struct icmp, icmp_ip));
   1534 		icmp_mtudisc(icp, ip->ip_dst);
   1535 
   1536 		return NULL;
   1537 	} else if (cmd == PRC_HOSTDEAD)
   1538 		ip = 0;
   1539 	else if (errno == 0)
   1540 		return NULL;
   1541 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1542 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1543 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
   1544 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1545 		if (nmatch == 0 && syn_cache_count &&
   1546 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1547 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1548 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1549 			struct sockaddr_in sin;
   1550 			bzero(&sin, sizeof(sin));
   1551 			sin.sin_len = sizeof(sin);
   1552 			sin.sin_family = AF_INET;
   1553 			sin.sin_port = th->th_sport;
   1554 			sin.sin_addr = ip->ip_src;
   1555 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1556 		}
   1557 
   1558 		/* XXX mapped address case */
   1559 	} else
   1560 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
   1561 		    notify);
   1562 	return NULL;
   1563 }
   1564 
   1565 /*
   1566  * When a source quence is received, we are being notifed of congestion.
   1567  * Close the congestion window down to the Loss Window (one segment).
   1568  * We will gradually open it again as we proceed.
   1569  */
   1570 void
   1571 tcp_quench(inp, errno)
   1572 	struct inpcb *inp;
   1573 	int errno;
   1574 {
   1575 	struct tcpcb *tp = intotcpcb(inp);
   1576 
   1577 	if (tp)
   1578 		tp->snd_cwnd = tp->t_segsz;
   1579 }
   1580 #endif
   1581 
   1582 #ifdef INET6
   1583 void
   1584 tcp6_quench(in6p, errno)
   1585 	struct in6pcb *in6p;
   1586 	int errno;
   1587 {
   1588 	struct tcpcb *tp = in6totcpcb(in6p);
   1589 
   1590 	if (tp)
   1591 		tp->snd_cwnd = tp->t_segsz;
   1592 }
   1593 #endif
   1594 
   1595 #ifdef INET
   1596 /*
   1597  * Path MTU Discovery handlers.
   1598  */
   1599 void
   1600 tcp_mtudisc_callback(faddr)
   1601 	struct in_addr faddr;
   1602 {
   1603 #ifdef INET6
   1604 	struct in6_addr in6;
   1605 #endif
   1606 
   1607 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1608 #ifdef INET6
   1609 	memset(&in6, 0, sizeof(in6));
   1610 	in6.s6_addr16[5] = 0xffff;
   1611 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1612 	tcp6_mtudisc_callback(&in6);
   1613 #endif
   1614 }
   1615 
   1616 #ifdef TCP_SIGNATURE
   1617 /*
   1618  * Callback function invoked by m_apply() to digest TCP segment data
   1619  * contained within an mbuf chain.
   1620  */
   1621 static int
   1622 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
   1623 {
   1624 
   1625 	MD5Update(fstate, (u_char *)data, len);
   1626 	return (0);
   1627 }
   1628 
   1629 /*
   1630  * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
   1631  *
   1632  * Parameters:
   1633  * m		pointer to head of mbuf chain
   1634  * th		pointer to tcp header
   1635  * thoff	offset to TCP header within the mbuf chain
   1636  *		(if you don't know the value, set to -1)
   1637  * len		length of TCP segment data, excluding options
   1638  * optlen	length of TCP segment options
   1639  * buf		pointer to storage for computed MD5 digest
   1640  * direction	direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
   1641  *
   1642  * We do this over ip, tcphdr, segment data, and the key in the SADB.
   1643  * When called from tcp_input(), we can be sure that th_sum has been
   1644  * zeroed out and verified already.
   1645  *
   1646  * Return 0 if successful, otherwise return -1.
   1647  *
   1648  * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
   1649  * search with the destination IP address, and a 'magic SPI' of 0x1000.
   1650  * Another branch of this code exists which uses the SPD to specify
   1651  * per-application flows, but it is unstable.
   1652  */
   1653 int
   1654 tcp_signature_compute(struct mbuf *m, struct tcphdr *th, int thoff,
   1655     int len, int optlen, u_char *buf, u_int direction)
   1656 {
   1657 #ifdef FAST_IPSEC
   1658 	union sockaddr_union dst;
   1659 #endif
   1660 	MD5_CTX ctx;
   1661 	int doff;
   1662 	struct ip *ip;
   1663 	struct ipovly *ipovly;
   1664 	struct ip6_hdr *ip6;
   1665 	struct secasvar *sav;
   1666 	u_int16_t savecsum;
   1667 	struct ippseudo ippseudo;
   1668 	struct ip6_ext ip6e;
   1669 	struct ip6_hdr_pseudo ip6pseudo;
   1670 	u_int8_t nxt;
   1671 
   1672 	KASSERT(m != NULL /*, ("NULL mbuf chain")*/);
   1673 	KASSERT(buf != NULL /*, ("NULL signature pointer")*/);
   1674 
   1675 	ip = mtod(m, struct ip *);
   1676 	ip6 = NULL;
   1677 	if (ip->ip_v == 6) {
   1678 		ip = NULL;
   1679 		ip6 = mtod(m, struct ip6_hdr *);
   1680 	}
   1681 
   1682 	/* look for TCP header offset - it won't take too long */
   1683 	if (thoff >= 0) {
   1684 		nxt = IPPROTO_TCP;
   1685 		goto found;
   1686 	}
   1687 
   1688 	thoff = ip ? sizeof(*ip) : sizeof(*ip6);
   1689 	nxt = ip ? ip->ip_p : ip6->ip6_nxt;
   1690 
   1691 	while (1) {
   1692 		switch (nxt) {
   1693 		case IPPROTO_TCP:
   1694 			goto found;
   1695 		case IPPROTO_AH:
   1696 			m_copydata(m, thoff, sizeof(ip6e), (caddr_t)&ip6e);
   1697 			thoff += (ip6e.ip6e_len + 2) << 2;
   1698 			break;
   1699 		case IPPROTO_DSTOPTS:
   1700 		case IPPROTO_ROUTING:
   1701 		case IPPROTO_HOPOPTS:
   1702 			m_copydata(m, thoff, sizeof(ip6e), (caddr_t)&ip6e);
   1703 			thoff += (ip6e.ip6e_len + 1) << 3;
   1704 			break;
   1705 		default:
   1706 			return EINVAL;
   1707 		}
   1708 
   1709 		nxt = ip6e.ip6e_nxt;
   1710 	}
   1711 
   1712 found:
   1713 
   1714 #ifdef FAST_IPSEC
   1715 	/* Extract the destination from the IP header in the mbuf. */
   1716 	bzero(&dst, sizeof(union sockaddr_union));
   1717 	dst.sa.sa_len = sizeof(struct sockaddr_in);
   1718 	dst.sa.sa_family = AF_INET;
   1719 	dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
   1720 	    ip->ip_src : ip->ip_dst;
   1721 
   1722 	/* Look up an SADB entry which matches the address of the peer. */
   1723 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
   1724 #else
   1725 	if (ip)
   1726 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src,
   1727 		    (caddr_t)&ip->ip_dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
   1728 	else
   1729 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src,
   1730 		    (caddr_t)&ip6->ip6_dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
   1731 #endif
   1732 	if (sav == NULL) {
   1733 		printf("%s: SADB lookup failed\n", __func__);
   1734 		return (EINVAL);
   1735 	}
   1736 
   1737 	MD5Init(&ctx);
   1738 	doff = thoff + sizeof(struct tcphdr) + optlen;
   1739 
   1740 	/*
   1741 	 * Step 1: Update MD5 hash with IP pseudo-header.
   1742 	 *
   1743 	 * XXX The ippseudo header MUST be digested in network byte order,
   1744 	 * or else we'll fail the regression test. Assume all fields we've
   1745 	 * been doing arithmetic on have been in host byte order.
   1746 	 * XXX One cannot depend on ipovly->ih_len here. When called from
   1747 	 * tcp_output(), the underlying ip_len member has not yet been set.
   1748 	 */
   1749 	if (ip) {
   1750 		ipovly = (struct ipovly *)ip;
   1751 		ippseudo.ippseudo_src = ipovly->ih_src;
   1752 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   1753 		ippseudo.ippseudo_pad = 0;
   1754 		ippseudo.ippseudo_p = IPPROTO_TCP;
   1755 		ippseudo.ippseudo_len =
   1756 		    htons(len + sizeof(struct tcphdr) + optlen);
   1757 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   1758 	} else {
   1759 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   1760 		in6_clearscope(&ip6pseudo.ip6ph_src);
   1761 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   1762 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   1763 		ip6pseudo.ip6ph_len =
   1764 		    htonl(len + sizeof(struct tcphdr) + optlen);
   1765 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   1766 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   1767 	}
   1768 
   1769 	/*
   1770 	 * Step 2: Update MD5 hash with TCP header, excluding options.
   1771 	 * The TCP checksum must be set to zero.
   1772 	 */
   1773 	savecsum = th->th_sum;
   1774 	th->th_sum = 0;
   1775 	MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
   1776 	th->th_sum = savecsum;
   1777 
   1778 	/*
   1779 	 * Step 3: Update MD5 hash with TCP segment data.
   1780 	 *         Use m_apply() to avoid an early m_pullup().
   1781 	 */
   1782 	if (len > 0)
   1783 		m_apply(m, doff, len, tcp_signature_apply, &ctx);
   1784 
   1785 	/*
   1786 	 * Step 4: Update MD5 hash with shared secret.
   1787 	 */
   1788 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   1789 	MD5Final(buf, &ctx);
   1790 
   1791 	key_sa_recordxfer(sav, m);
   1792 #ifdef FAST_IPSEC
   1793 	KEY_FREESAV(&sav);
   1794 #else
   1795 	key_freesav(sav);
   1796 #endif
   1797 	return (0);
   1798 }
   1799 #endif /* TCP_SIGNATURE */
   1800 
   1801 /*
   1802  * On receipt of path MTU corrections, flush old route and replace it
   1803  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1804  * that all packets will be received.
   1805  */
   1806 void
   1807 tcp_mtudisc(inp, errno)
   1808 	struct inpcb *inp;
   1809 	int errno;
   1810 {
   1811 	struct tcpcb *tp = intotcpcb(inp);
   1812 	struct rtentry *rt = in_pcbrtentry(inp);
   1813 
   1814 	if (tp != 0) {
   1815 		if (rt != 0) {
   1816 			/*
   1817 			 * If this was not a host route, remove and realloc.
   1818 			 */
   1819 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1820 				in_rtchange(inp, errno);
   1821 				if ((rt = in_pcbrtentry(inp)) == 0)
   1822 					return;
   1823 			}
   1824 
   1825 			/*
   1826 			 * Slow start out of the error condition.  We
   1827 			 * use the MTU because we know it's smaller
   1828 			 * than the previously transmitted segment.
   1829 			 *
   1830 			 * Note: This is more conservative than the
   1831 			 * suggestion in draft-floyd-incr-init-win-03.
   1832 			 */
   1833 			if (rt->rt_rmx.rmx_mtu != 0)
   1834 				tp->snd_cwnd =
   1835 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1836 				    rt->rt_rmx.rmx_mtu);
   1837 		}
   1838 
   1839 		/*
   1840 		 * Resend unacknowledged packets.
   1841 		 */
   1842 		tp->snd_nxt = tp->snd_una;
   1843 		tcp_output(tp);
   1844 	}
   1845 }
   1846 #endif
   1847 
   1848 #ifdef INET6
   1849 /*
   1850  * Path MTU Discovery handlers.
   1851  */
   1852 void
   1853 tcp6_mtudisc_callback(faddr)
   1854 	struct in6_addr *faddr;
   1855 {
   1856 	struct sockaddr_in6 sin6;
   1857 
   1858 	bzero(&sin6, sizeof(sin6));
   1859 	sin6.sin6_family = AF_INET6;
   1860 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1861 	sin6.sin6_addr = *faddr;
   1862 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
   1863 	    (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1864 }
   1865 
   1866 void
   1867 tcp6_mtudisc(in6p, errno)
   1868 	struct in6pcb *in6p;
   1869 	int errno;
   1870 {
   1871 	struct tcpcb *tp = in6totcpcb(in6p);
   1872 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1873 
   1874 	if (tp != 0) {
   1875 		if (rt != 0) {
   1876 			/*
   1877 			 * If this was not a host route, remove and realloc.
   1878 			 */
   1879 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1880 				in6_rtchange(in6p, errno);
   1881 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1882 					return;
   1883 			}
   1884 
   1885 			/*
   1886 			 * Slow start out of the error condition.  We
   1887 			 * use the MTU because we know it's smaller
   1888 			 * than the previously transmitted segment.
   1889 			 *
   1890 			 * Note: This is more conservative than the
   1891 			 * suggestion in draft-floyd-incr-init-win-03.
   1892 			 */
   1893 			if (rt->rt_rmx.rmx_mtu != 0)
   1894 				tp->snd_cwnd =
   1895 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1896 				    rt->rt_rmx.rmx_mtu);
   1897 		}
   1898 
   1899 		/*
   1900 		 * Resend unacknowledged packets.
   1901 		 */
   1902 		tp->snd_nxt = tp->snd_una;
   1903 		tcp_output(tp);
   1904 	}
   1905 }
   1906 #endif /* INET6 */
   1907 
   1908 /*
   1909  * Compute the MSS to advertise to the peer.  Called only during
   1910  * the 3-way handshake.  If we are the server (peer initiated
   1911  * connection), we are called with a pointer to the interface
   1912  * on which the SYN packet arrived.  If we are the client (we
   1913  * initiated connection), we are called with a pointer to the
   1914  * interface out which this connection should go.
   1915  *
   1916  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1917  * header size from MSS advertisement.  MSS option must hold the maximum
   1918  * segment size we can accept, so it must always be:
   1919  *	 max(if mtu) - ip header - tcp header
   1920  */
   1921 u_long
   1922 tcp_mss_to_advertise(ifp, af)
   1923 	const struct ifnet *ifp;
   1924 	int af;
   1925 {
   1926 	extern u_long in_maxmtu;
   1927 	u_long mss = 0;
   1928 	u_long hdrsiz;
   1929 
   1930 	/*
   1931 	 * In order to avoid defeating path MTU discovery on the peer,
   1932 	 * we advertise the max MTU of all attached networks as our MSS,
   1933 	 * per RFC 1191, section 3.1.
   1934 	 *
   1935 	 * We provide the option to advertise just the MTU of
   1936 	 * the interface on which we hope this connection will
   1937 	 * be receiving.  If we are responding to a SYN, we
   1938 	 * will have a pretty good idea about this, but when
   1939 	 * initiating a connection there is a bit more doubt.
   1940 	 *
   1941 	 * We also need to ensure that loopback has a large enough
   1942 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1943 	 */
   1944 
   1945 	if (ifp != NULL)
   1946 		switch (af) {
   1947 		case AF_INET:
   1948 			mss = ifp->if_mtu;
   1949 			break;
   1950 #ifdef INET6
   1951 		case AF_INET6:
   1952 			mss = IN6_LINKMTU(ifp);
   1953 			break;
   1954 #endif
   1955 		}
   1956 
   1957 	if (tcp_mss_ifmtu == 0)
   1958 		switch (af) {
   1959 		case AF_INET:
   1960 			mss = max(in_maxmtu, mss);
   1961 			break;
   1962 #ifdef INET6
   1963 		case AF_INET6:
   1964 			mss = max(in6_maxmtu, mss);
   1965 			break;
   1966 #endif
   1967 		}
   1968 
   1969 	switch (af) {
   1970 	case AF_INET:
   1971 		hdrsiz = sizeof(struct ip);
   1972 		break;
   1973 #ifdef INET6
   1974 	case AF_INET6:
   1975 		hdrsiz = sizeof(struct ip6_hdr);
   1976 		break;
   1977 #endif
   1978 	default:
   1979 		hdrsiz = 0;
   1980 		break;
   1981 	}
   1982 	hdrsiz += sizeof(struct tcphdr);
   1983 	if (mss > hdrsiz)
   1984 		mss -= hdrsiz;
   1985 
   1986 	mss = max(tcp_mssdflt, mss);
   1987 	return (mss);
   1988 }
   1989 
   1990 /*
   1991  * Set connection variables based on the peer's advertised MSS.
   1992  * We are passed the TCPCB for the actual connection.  If we
   1993  * are the server, we are called by the compressed state engine
   1994  * when the 3-way handshake is complete.  If we are the client,
   1995  * we are called when we receive the SYN,ACK from the server.
   1996  *
   1997  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1998  * before this routine is called!
   1999  */
   2000 void
   2001 tcp_mss_from_peer(tp, offer)
   2002 	struct tcpcb *tp;
   2003 	int offer;
   2004 {
   2005 	struct socket *so;
   2006 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   2007 	struct rtentry *rt;
   2008 #endif
   2009 	u_long bufsize;
   2010 	int mss;
   2011 
   2012 #ifdef DIAGNOSTIC
   2013 	if (tp->t_inpcb && tp->t_in6pcb)
   2014 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   2015 #endif
   2016 	so = NULL;
   2017 	rt = NULL;
   2018 #ifdef INET
   2019 	if (tp->t_inpcb) {
   2020 		so = tp->t_inpcb->inp_socket;
   2021 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   2022 		rt = in_pcbrtentry(tp->t_inpcb);
   2023 #endif
   2024 	}
   2025 #endif
   2026 #ifdef INET6
   2027 	if (tp->t_in6pcb) {
   2028 		so = tp->t_in6pcb->in6p_socket;
   2029 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   2030 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2031 #endif
   2032 	}
   2033 #endif
   2034 
   2035 	/*
   2036 	 * As per RFC1122, use the default MSS value, unless they
   2037 	 * sent us an offer.  Do not accept offers less than 256 bytes.
   2038 	 */
   2039 	mss = tcp_mssdflt;
   2040 	if (offer)
   2041 		mss = offer;
   2042 	mss = max(mss, 256);		/* sanity */
   2043 	tp->t_peermss = mss;
   2044 	mss -= tcp_optlen(tp);
   2045 #ifdef INET
   2046 	if (tp->t_inpcb)
   2047 		mss -= ip_optlen(tp->t_inpcb);
   2048 #endif
   2049 #ifdef INET6
   2050 	if (tp->t_in6pcb)
   2051 		mss -= ip6_optlen(tp->t_in6pcb);
   2052 #endif
   2053 
   2054 	/*
   2055 	 * If there's a pipesize, change the socket buffer to that size.
   2056 	 * Make the socket buffer an integral number of MSS units.  If
   2057 	 * the MSS is larger than the socket buffer, artificially decrease
   2058 	 * the MSS.
   2059 	 */
   2060 #ifdef RTV_SPIPE
   2061 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   2062 		bufsize = rt->rt_rmx.rmx_sendpipe;
   2063 	else
   2064 #endif
   2065 		bufsize = so->so_snd.sb_hiwat;
   2066 	if (bufsize < mss)
   2067 		mss = bufsize;
   2068 	else {
   2069 		bufsize = roundup(bufsize, mss);
   2070 		if (bufsize > sb_max)
   2071 			bufsize = sb_max;
   2072 		(void) sbreserve(&so->so_snd, bufsize, so);
   2073 	}
   2074 	tp->t_segsz = mss;
   2075 
   2076 #ifdef RTV_SSTHRESH
   2077 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   2078 		/*
   2079 		 * There's some sort of gateway or interface buffer
   2080 		 * limit on the path.  Use this to set the slow
   2081 		 * start threshold, but set the threshold to no less
   2082 		 * than 2 * MSS.
   2083 		 */
   2084 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   2085 	}
   2086 #endif
   2087 }
   2088 
   2089 /*
   2090  * Processing necessary when a TCP connection is established.
   2091  */
   2092 void
   2093 tcp_established(tp)
   2094 	struct tcpcb *tp;
   2095 {
   2096 	struct socket *so;
   2097 #ifdef RTV_RPIPE
   2098 	struct rtentry *rt;
   2099 #endif
   2100 	u_long bufsize;
   2101 
   2102 #ifdef DIAGNOSTIC
   2103 	if (tp->t_inpcb && tp->t_in6pcb)
   2104 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   2105 #endif
   2106 	so = NULL;
   2107 	rt = NULL;
   2108 #ifdef INET
   2109 	if (tp->t_inpcb) {
   2110 		so = tp->t_inpcb->inp_socket;
   2111 #if defined(RTV_RPIPE)
   2112 		rt = in_pcbrtentry(tp->t_inpcb);
   2113 #endif
   2114 	}
   2115 #endif
   2116 #ifdef INET6
   2117 	if (tp->t_in6pcb) {
   2118 		so = tp->t_in6pcb->in6p_socket;
   2119 #if defined(RTV_RPIPE)
   2120 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2121 #endif
   2122 	}
   2123 #endif
   2124 
   2125 	tp->t_state = TCPS_ESTABLISHED;
   2126 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   2127 
   2128 #ifdef RTV_RPIPE
   2129 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   2130 		bufsize = rt->rt_rmx.rmx_recvpipe;
   2131 	else
   2132 #endif
   2133 		bufsize = so->so_rcv.sb_hiwat;
   2134 	if (bufsize > tp->t_ourmss) {
   2135 		bufsize = roundup(bufsize, tp->t_ourmss);
   2136 		if (bufsize > sb_max)
   2137 			bufsize = sb_max;
   2138 		(void) sbreserve(&so->so_rcv, bufsize, so);
   2139 	}
   2140 }
   2141 
   2142 /*
   2143  * Check if there's an initial rtt or rttvar.  Convert from the
   2144  * route-table units to scaled multiples of the slow timeout timer.
   2145  * Called only during the 3-way handshake.
   2146  */
   2147 void
   2148 tcp_rmx_rtt(tp)
   2149 	struct tcpcb *tp;
   2150 {
   2151 #ifdef RTV_RTT
   2152 	struct rtentry *rt = NULL;
   2153 	int rtt;
   2154 
   2155 #ifdef DIAGNOSTIC
   2156 	if (tp->t_inpcb && tp->t_in6pcb)
   2157 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   2158 #endif
   2159 #ifdef INET
   2160 	if (tp->t_inpcb)
   2161 		rt = in_pcbrtentry(tp->t_inpcb);
   2162 #endif
   2163 #ifdef INET6
   2164 	if (tp->t_in6pcb)
   2165 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2166 #endif
   2167 	if (rt == NULL)
   2168 		return;
   2169 
   2170 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   2171 		/*
   2172 		 * XXX The lock bit for MTU indicates that the value
   2173 		 * is also a minimum value; this is subject to time.
   2174 		 */
   2175 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   2176 			TCPT_RANGESET(tp->t_rttmin,
   2177 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   2178 			    TCPTV_MIN, TCPTV_REXMTMAX);
   2179 		tp->t_srtt = rtt /
   2180 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   2181 		if (rt->rt_rmx.rmx_rttvar) {
   2182 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   2183 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   2184 				(TCP_RTTVAR_SHIFT + 2));
   2185 		} else {
   2186 			/* Default variation is +- 1 rtt */
   2187 			tp->t_rttvar =
   2188 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   2189 		}
   2190 		TCPT_RANGESET(tp->t_rxtcur,
   2191 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   2192 		    tp->t_rttmin, TCPTV_REXMTMAX);
   2193 	}
   2194 #endif
   2195 }
   2196 
   2197 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   2198 #if NRND > 0
   2199 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   2200 #endif
   2201 
   2202 /*
   2203  * Get a new sequence value given a tcp control block
   2204  */
   2205 tcp_seq
   2206 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   2207 {
   2208 
   2209 #ifdef INET
   2210 	if (tp->t_inpcb != NULL) {
   2211 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   2212 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   2213 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   2214 		    addin));
   2215 	}
   2216 #endif
   2217 #ifdef INET6
   2218 	if (tp->t_in6pcb != NULL) {
   2219 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   2220 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   2221 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   2222 		    addin));
   2223 	}
   2224 #endif
   2225 	/* Not possible. */
   2226 	panic("tcp_new_iss");
   2227 }
   2228 
   2229 /*
   2230  * This routine actually generates a new TCP initial sequence number.
   2231  */
   2232 tcp_seq
   2233 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2234     size_t addrsz, tcp_seq addin)
   2235 {
   2236 	tcp_seq tcp_iss;
   2237 
   2238 #if NRND > 0
   2239 	static int beenhere;
   2240 
   2241 	/*
   2242 	 * If we haven't been here before, initialize our cryptographic
   2243 	 * hash secret.
   2244 	 */
   2245 	if (beenhere == 0) {
   2246 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   2247 		    RND_EXTRACT_ANY);
   2248 		beenhere = 1;
   2249 	}
   2250 
   2251 	if (tcp_do_rfc1948) {
   2252 		MD5_CTX ctx;
   2253 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2254 
   2255 		/*
   2256 		 * Compute the base value of the ISS.  It is a hash
   2257 		 * of (saddr, sport, daddr, dport, secret).
   2258 		 */
   2259 		MD5Init(&ctx);
   2260 
   2261 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2262 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2263 
   2264 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2265 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2266 
   2267 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2268 
   2269 		MD5Final(hash, &ctx);
   2270 
   2271 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2272 
   2273 		/*
   2274 		 * Now increment our "timer", and add it in to
   2275 		 * the computed value.
   2276 		 *
   2277 		 * XXX Use `addin'?
   2278 		 * XXX TCP_ISSINCR too large to use?
   2279 		 */
   2280 		tcp_iss_seq += TCP_ISSINCR;
   2281 #ifdef TCPISS_DEBUG
   2282 		printf("ISS hash 0x%08x, ", tcp_iss);
   2283 #endif
   2284 		tcp_iss += tcp_iss_seq + addin;
   2285 #ifdef TCPISS_DEBUG
   2286 		printf("new ISS 0x%08x\n", tcp_iss);
   2287 #endif
   2288 	} else
   2289 #endif /* NRND > 0 */
   2290 	{
   2291 		/*
   2292 		 * Randomize.
   2293 		 */
   2294 #if NRND > 0
   2295 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2296 #else
   2297 		tcp_iss = arc4random();
   2298 #endif
   2299 
   2300 		/*
   2301 		 * If we were asked to add some amount to a known value,
   2302 		 * we will take a random value obtained above, mask off
   2303 		 * the upper bits, and add in the known value.  We also
   2304 		 * add in a constant to ensure that we are at least a
   2305 		 * certain distance from the original value.
   2306 		 *
   2307 		 * This is used when an old connection is in timed wait
   2308 		 * and we have a new one coming in, for instance.
   2309 		 */
   2310 		if (addin != 0) {
   2311 #ifdef TCPISS_DEBUG
   2312 			printf("Random %08x, ", tcp_iss);
   2313 #endif
   2314 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2315 			tcp_iss += addin + TCP_ISSINCR;
   2316 #ifdef TCPISS_DEBUG
   2317 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2318 #endif
   2319 		} else {
   2320 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2321 			tcp_iss += tcp_iss_seq;
   2322 			tcp_iss_seq += TCP_ISSINCR;
   2323 #ifdef TCPISS_DEBUG
   2324 			printf("ISS %08x\n", tcp_iss);
   2325 #endif
   2326 		}
   2327 	}
   2328 
   2329 	if (tcp_compat_42) {
   2330 		/*
   2331 		 * Limit it to the positive range for really old TCP
   2332 		 * implementations.
   2333 		 * Just AND off the top bit instead of checking if
   2334 		 * is set first - saves a branch 50% of the time.
   2335 		 */
   2336 		tcp_iss &= 0x7fffffff;		/* XXX */
   2337 	}
   2338 
   2339 	return (tcp_iss);
   2340 }
   2341 
   2342 #if defined(IPSEC) || defined(FAST_IPSEC)
   2343 /* compute ESP/AH header size for TCP, including outer IP header. */
   2344 size_t
   2345 ipsec4_hdrsiz_tcp(tp)
   2346 	struct tcpcb *tp;
   2347 {
   2348 	struct inpcb *inp;
   2349 	size_t hdrsiz;
   2350 
   2351 	/* XXX mapped addr case (tp->t_in6pcb) */
   2352 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2353 		return 0;
   2354 	switch (tp->t_family) {
   2355 	case AF_INET:
   2356 		/* XXX: should use currect direction. */
   2357 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2358 		break;
   2359 	default:
   2360 		hdrsiz = 0;
   2361 		break;
   2362 	}
   2363 
   2364 	return hdrsiz;
   2365 }
   2366 
   2367 #ifdef INET6
   2368 size_t
   2369 ipsec6_hdrsiz_tcp(tp)
   2370 	struct tcpcb *tp;
   2371 {
   2372 	struct in6pcb *in6p;
   2373 	size_t hdrsiz;
   2374 
   2375 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2376 		return 0;
   2377 	switch (tp->t_family) {
   2378 	case AF_INET6:
   2379 		/* XXX: should use currect direction. */
   2380 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2381 		break;
   2382 	case AF_INET:
   2383 		/* mapped address case - tricky */
   2384 	default:
   2385 		hdrsiz = 0;
   2386 		break;
   2387 	}
   2388 
   2389 	return hdrsiz;
   2390 }
   2391 #endif
   2392 #endif /*IPSEC*/
   2393 
   2394 /*
   2395  * Determine the length of the TCP options for this connection.
   2396  *
   2397  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2398  *       all of the space?  Otherwise we can't exactly be incrementing
   2399  *       cwnd by an amount that varies depending on the amount we last
   2400  *       had to SACK!
   2401  */
   2402 
   2403 u_int
   2404 tcp_optlen(tp)
   2405 	struct tcpcb *tp;
   2406 {
   2407 	u_int optlen;
   2408 
   2409 	optlen = 0;
   2410 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2411 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2412 		optlen += TCPOLEN_TSTAMP_APPA;
   2413 
   2414 #ifdef TCP_SIGNATURE
   2415 #if defined(INET6) && defined(FAST_IPSEC)
   2416 	if (tp->t_family == AF_INET)
   2417 #endif
   2418 	if (tp->t_flags & TF_SIGNATURE)
   2419 		optlen += TCPOLEN_SIGNATURE + 2;
   2420 #endif /* TCP_SIGNATURE */
   2421 
   2422 	return optlen;
   2423 }
   2424