tcp_subr.c revision 1.171 1 /* $NetBSD: tcp_subr.c,v 1.171 2004/05/01 02:20:43 matt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.171 2004/05/01 02:20:43 matt Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcpip.h>
155
156 #ifdef IPSEC
157 #include <netinet6/ipsec.h>
158 #include <netkey/key.h>
159 #endif /*IPSEC*/
160
161 #ifdef FAST_IPSEC
162 #include <netipsec/ipsec.h>
163 #include <netipsec/xform.h>
164 #ifdef INET6
165 #include <netipsec/ipsec6.h>
166 #endif
167 #include <netipsec/key.h>
168 #endif /* FAST_IPSEC*/
169
170
171 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
172 struct tcpstat tcpstat; /* tcp statistics */
173 u_int32_t tcp_now; /* for RFC 1323 timestamps */
174
175 /* patchable/settable parameters for tcp */
176 int tcp_mssdflt = TCP_MSS;
177 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
178 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
179 #if NRND > 0
180 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
181 #endif
182 int tcp_do_sack = 1; /* selective acknowledgement */
183 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
184 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
185 int tcp_do_newreno = 1; /* Use the New Reno algorithms */
186 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
187 #ifndef TCP_INIT_WIN
188 #define TCP_INIT_WIN 0 /* initial slow start window */
189 #endif
190 #ifndef TCP_INIT_WIN_LOCAL
191 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
192 #endif
193 int tcp_init_win = TCP_INIT_WIN;
194 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
195 int tcp_mss_ifmtu = 0;
196 #ifdef TCP_COMPAT_42
197 int tcp_compat_42 = 1;
198 #else
199 int tcp_compat_42 = 0;
200 #endif
201 int tcp_rst_ppslim = 100; /* 100pps */
202 int tcp_ackdrop_ppslim = 100; /* 100pps */
203
204 /* tcb hash */
205 #ifndef TCBHASHSIZE
206 #define TCBHASHSIZE 128
207 #endif
208 int tcbhashsize = TCBHASHSIZE;
209
210 /* syn hash parameters */
211 #define TCP_SYN_HASH_SIZE 293
212 #define TCP_SYN_BUCKET_SIZE 35
213 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
214 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
215 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
216 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
217
218 int tcp_freeq __P((struct tcpcb *));
219
220 #ifdef INET
221 void tcp_mtudisc_callback __P((struct in_addr));
222 #endif
223 #ifdef INET6
224 void tcp6_mtudisc_callback __P((struct in6_addr *));
225 #endif
226
227 void tcp_mtudisc __P((struct inpcb *, int));
228 #ifdef INET6
229 void tcp6_mtudisc __P((struct in6pcb *, int));
230 #endif
231
232 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
233
234 #ifdef TCP_CSUM_COUNTERS
235 #include <sys/device.h>
236
237 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
238 NULL, "tcp", "hwcsum bad");
239 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
240 NULL, "tcp", "hwcsum ok");
241 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
242 NULL, "tcp", "hwcsum data");
243 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
244 NULL, "tcp", "swcsum");
245
246 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
247 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
248 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
249 EVCNT_ATTACH_STATIC(tcp_swcsum);
250 #endif /* TCP_CSUM_COUNTERS */
251
252
253 #ifdef TCP_OUTPUT_COUNTERS
254 #include <sys/device.h>
255
256 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
257 NULL, "tcp", "output big header");
258 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
259 NULL, "tcp", "output predict hit");
260 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
261 NULL, "tcp", "output predict miss");
262 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
263 NULL, "tcp", "output copy small");
264 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
265 NULL, "tcp", "output copy big");
266 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
267 NULL, "tcp", "output reference big");
268
269 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
270 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
271 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
272 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
273 EVCNT_ATTACH_STATIC(tcp_output_copybig);
274 EVCNT_ATTACH_STATIC(tcp_output_refbig);
275
276 #endif /* TCP_OUTPUT_COUNTERS */
277
278 #ifdef TCP_REASS_COUNTERS
279 #include <sys/device.h>
280
281 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
282 NULL, "tcp_reass", "calls");
283 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
284 &tcp_reass_, "tcp_reass", "insert into empty queue");
285 struct evcnt tcp_reass_iteration[8] = {
286 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
287 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
288 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
289 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
290 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
291 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
292 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
293 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
294 };
295 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
296 &tcp_reass_, "tcp_reass", "prepend to first");
297 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
298 &tcp_reass_, "tcp_reass", "prepend");
299 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
300 &tcp_reass_, "tcp_reass", "insert");
301 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
302 &tcp_reass_, "tcp_reass", "insert at tail");
303 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
304 &tcp_reass_, "tcp_reass", "append");
305 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
306 &tcp_reass_, "tcp_reass", "append to tail fragment");
307 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
308 &tcp_reass_, "tcp_reass", "overlap at end");
309 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
310 &tcp_reass_, "tcp_reass", "overlap at start");
311 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
312 &tcp_reass_, "tcp_reass", "duplicate segment");
313 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
314 &tcp_reass_, "tcp_reass", "duplicate fragment");
315
316 EVCNT_ATTACH_STATIC(tcp_reass_);
317 EVCNT_ATTACH_STATIC(tcp_reass_empty);
318 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
319 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
320 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
321 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
322 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
323 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
324 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
325 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
326 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
327 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
328 EVCNT_ATTACH_STATIC(tcp_reass_insert);
329 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
330 EVCNT_ATTACH_STATIC(tcp_reass_append);
331 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
332 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
333 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
334 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
335 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
336
337 #endif /* TCP_REASS_COUNTERS */
338
339 #ifdef MBUFTRACE
340 struct mowner tcp_mowner = { "tcp" };
341 struct mowner tcp_rx_mowner = { "tcp", "rx" };
342 struct mowner tcp_tx_mowner = { "tcp", "tx" };
343 #endif
344
345 /*
346 * Tcp initialization
347 */
348 void
349 tcp_init()
350 {
351 int hlen;
352
353 /* Initialize the TCPCB template. */
354 tcp_tcpcb_template();
355
356 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
357
358 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
359 #ifdef INET6
360 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
361 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
362 #endif
363 if (max_protohdr < hlen)
364 max_protohdr = hlen;
365 if (max_linkhdr + hlen > MHLEN)
366 panic("tcp_init");
367
368 #ifdef INET
369 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
370 #endif
371 #ifdef INET6
372 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
373 #endif
374
375 /* Initialize timer state. */
376 tcp_timer_init();
377
378 /* Initialize the compressed state engine. */
379 syn_cache_init();
380
381 MOWNER_ATTACH(&tcp_tx_mowner);
382 MOWNER_ATTACH(&tcp_rx_mowner);
383 MOWNER_ATTACH(&tcp_mowner);
384 }
385
386 /*
387 * Create template to be used to send tcp packets on a connection.
388 * Call after host entry created, allocates an mbuf and fills
389 * in a skeletal tcp/ip header, minimizing the amount of work
390 * necessary when the connection is used.
391 */
392 struct mbuf *
393 tcp_template(tp)
394 struct tcpcb *tp;
395 {
396 struct inpcb *inp = tp->t_inpcb;
397 #ifdef INET6
398 struct in6pcb *in6p = tp->t_in6pcb;
399 #endif
400 struct tcphdr *n;
401 struct mbuf *m;
402 int hlen;
403
404 switch (tp->t_family) {
405 case AF_INET:
406 hlen = sizeof(struct ip);
407 if (inp)
408 break;
409 #ifdef INET6
410 if (in6p) {
411 /* mapped addr case */
412 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
413 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
414 break;
415 }
416 #endif
417 return NULL; /*EINVAL*/
418 #ifdef INET6
419 case AF_INET6:
420 hlen = sizeof(struct ip6_hdr);
421 if (in6p) {
422 /* more sainty check? */
423 break;
424 }
425 return NULL; /*EINVAL*/
426 #endif
427 default:
428 hlen = 0; /*pacify gcc*/
429 return NULL; /*EAFNOSUPPORT*/
430 }
431 #ifdef DIAGNOSTIC
432 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
433 panic("mclbytes too small for t_template");
434 #endif
435 m = tp->t_template;
436 if (m && m->m_len == hlen + sizeof(struct tcphdr))
437 ;
438 else {
439 if (m)
440 m_freem(m);
441 m = tp->t_template = NULL;
442 MGETHDR(m, M_DONTWAIT, MT_HEADER);
443 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
444 MCLGET(m, M_DONTWAIT);
445 if ((m->m_flags & M_EXT) == 0) {
446 m_free(m);
447 m = NULL;
448 }
449 }
450 if (m == NULL)
451 return NULL;
452 MCLAIM(m, &tcp_mowner);
453 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
454 }
455
456 bzero(mtod(m, caddr_t), m->m_len);
457
458 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
459
460 switch (tp->t_family) {
461 case AF_INET:
462 {
463 struct ipovly *ipov;
464 mtod(m, struct ip *)->ip_v = 4;
465 mtod(m, struct ip *)->ip_hl = hlen >> 2;
466 ipov = mtod(m, struct ipovly *);
467 ipov->ih_pr = IPPROTO_TCP;
468 ipov->ih_len = htons(sizeof(struct tcphdr));
469 if (inp) {
470 ipov->ih_src = inp->inp_laddr;
471 ipov->ih_dst = inp->inp_faddr;
472 }
473 #ifdef INET6
474 else if (in6p) {
475 /* mapped addr case */
476 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
477 sizeof(ipov->ih_src));
478 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
479 sizeof(ipov->ih_dst));
480 }
481 #endif
482 /*
483 * Compute the pseudo-header portion of the checksum
484 * now. We incrementally add in the TCP option and
485 * payload lengths later, and then compute the TCP
486 * checksum right before the packet is sent off onto
487 * the wire.
488 */
489 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
490 ipov->ih_dst.s_addr,
491 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
492 break;
493 }
494 #ifdef INET6
495 case AF_INET6:
496 {
497 struct ip6_hdr *ip6;
498 mtod(m, struct ip *)->ip_v = 6;
499 ip6 = mtod(m, struct ip6_hdr *);
500 ip6->ip6_nxt = IPPROTO_TCP;
501 ip6->ip6_plen = htons(sizeof(struct tcphdr));
502 ip6->ip6_src = in6p->in6p_laddr;
503 ip6->ip6_dst = in6p->in6p_faddr;
504 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
505 if (ip6_auto_flowlabel) {
506 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
507 ip6->ip6_flow |=
508 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
509 }
510 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
511 ip6->ip6_vfc |= IPV6_VERSION;
512
513 /*
514 * Compute the pseudo-header portion of the checksum
515 * now. We incrementally add in the TCP option and
516 * payload lengths later, and then compute the TCP
517 * checksum right before the packet is sent off onto
518 * the wire.
519 */
520 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
521 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
522 htonl(IPPROTO_TCP));
523 break;
524 }
525 #endif
526 }
527 if (inp) {
528 n->th_sport = inp->inp_lport;
529 n->th_dport = inp->inp_fport;
530 }
531 #ifdef INET6
532 else if (in6p) {
533 n->th_sport = in6p->in6p_lport;
534 n->th_dport = in6p->in6p_fport;
535 }
536 #endif
537 n->th_seq = 0;
538 n->th_ack = 0;
539 n->th_x2 = 0;
540 n->th_off = 5;
541 n->th_flags = 0;
542 n->th_win = 0;
543 n->th_urp = 0;
544 return (m);
545 }
546
547 /*
548 * Send a single message to the TCP at address specified by
549 * the given TCP/IP header. If m == 0, then we make a copy
550 * of the tcpiphdr at ti and send directly to the addressed host.
551 * This is used to force keep alive messages out using the TCP
552 * template for a connection tp->t_template. If flags are given
553 * then we send a message back to the TCP which originated the
554 * segment ti, and discard the mbuf containing it and any other
555 * attached mbufs.
556 *
557 * In any case the ack and sequence number of the transmitted
558 * segment are as specified by the parameters.
559 */
560 int
561 tcp_respond(tp, template, m, th0, ack, seq, flags)
562 struct tcpcb *tp;
563 struct mbuf *template;
564 struct mbuf *m;
565 struct tcphdr *th0;
566 tcp_seq ack, seq;
567 int flags;
568 {
569 struct route *ro;
570 int error, tlen, win = 0;
571 int hlen;
572 struct ip *ip;
573 #ifdef INET6
574 struct ip6_hdr *ip6;
575 #endif
576 int family; /* family on packet, not inpcb/in6pcb! */
577 struct tcphdr *th;
578 struct socket *so;
579
580 if (tp != NULL && (flags & TH_RST) == 0) {
581 #ifdef DIAGNOSTIC
582 if (tp->t_inpcb && tp->t_in6pcb)
583 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
584 #endif
585 #ifdef INET
586 if (tp->t_inpcb)
587 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
588 #endif
589 #ifdef INET6
590 if (tp->t_in6pcb)
591 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
592 #endif
593 }
594
595 th = NULL; /* Quell uninitialized warning */
596 ip = NULL;
597 #ifdef INET6
598 ip6 = NULL;
599 #endif
600 if (m == 0) {
601 if (!template)
602 return EINVAL;
603
604 /* get family information from template */
605 switch (mtod(template, struct ip *)->ip_v) {
606 case 4:
607 family = AF_INET;
608 hlen = sizeof(struct ip);
609 break;
610 #ifdef INET6
611 case 6:
612 family = AF_INET6;
613 hlen = sizeof(struct ip6_hdr);
614 break;
615 #endif
616 default:
617 return EAFNOSUPPORT;
618 }
619
620 MGETHDR(m, M_DONTWAIT, MT_HEADER);
621 if (m) {
622 MCLAIM(m, &tcp_tx_mowner);
623 MCLGET(m, M_DONTWAIT);
624 if ((m->m_flags & M_EXT) == 0) {
625 m_free(m);
626 m = NULL;
627 }
628 }
629 if (m == NULL)
630 return (ENOBUFS);
631
632 if (tcp_compat_42)
633 tlen = 1;
634 else
635 tlen = 0;
636
637 m->m_data += max_linkhdr;
638 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
639 template->m_len);
640 switch (family) {
641 case AF_INET:
642 ip = mtod(m, struct ip *);
643 th = (struct tcphdr *)(ip + 1);
644 break;
645 #ifdef INET6
646 case AF_INET6:
647 ip6 = mtod(m, struct ip6_hdr *);
648 th = (struct tcphdr *)(ip6 + 1);
649 break;
650 #endif
651 #if 0
652 default:
653 /* noone will visit here */
654 m_freem(m);
655 return EAFNOSUPPORT;
656 #endif
657 }
658 flags = TH_ACK;
659 } else {
660
661 if ((m->m_flags & M_PKTHDR) == 0) {
662 #if 0
663 printf("non PKTHDR to tcp_respond\n");
664 #endif
665 m_freem(m);
666 return EINVAL;
667 }
668 #ifdef DIAGNOSTIC
669 if (!th0)
670 panic("th0 == NULL in tcp_respond");
671 #endif
672
673 /* get family information from m */
674 switch (mtod(m, struct ip *)->ip_v) {
675 case 4:
676 family = AF_INET;
677 hlen = sizeof(struct ip);
678 ip = mtod(m, struct ip *);
679 break;
680 #ifdef INET6
681 case 6:
682 family = AF_INET6;
683 hlen = sizeof(struct ip6_hdr);
684 ip6 = mtod(m, struct ip6_hdr *);
685 break;
686 #endif
687 default:
688 m_freem(m);
689 return EAFNOSUPPORT;
690 }
691 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
692 tlen = sizeof(*th0);
693 else
694 tlen = th0->th_off << 2;
695
696 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
697 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
698 m->m_len = hlen + tlen;
699 m_freem(m->m_next);
700 m->m_next = NULL;
701 } else {
702 struct mbuf *n;
703
704 #ifdef DIAGNOSTIC
705 if (max_linkhdr + hlen + tlen > MCLBYTES) {
706 m_freem(m);
707 return EMSGSIZE;
708 }
709 #endif
710 MGETHDR(n, M_DONTWAIT, MT_HEADER);
711 if (n && max_linkhdr + hlen + tlen > MHLEN) {
712 MCLGET(n, M_DONTWAIT);
713 if ((n->m_flags & M_EXT) == 0) {
714 m_freem(n);
715 n = NULL;
716 }
717 }
718 if (!n) {
719 m_freem(m);
720 return ENOBUFS;
721 }
722
723 MCLAIM(n, &tcp_tx_mowner);
724 n->m_data += max_linkhdr;
725 n->m_len = hlen + tlen;
726 m_copyback(n, 0, hlen, mtod(m, caddr_t));
727 m_copyback(n, hlen, tlen, (caddr_t)th0);
728
729 m_freem(m);
730 m = n;
731 n = NULL;
732 }
733
734 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
735 switch (family) {
736 case AF_INET:
737 ip = mtod(m, struct ip *);
738 th = (struct tcphdr *)(ip + 1);
739 ip->ip_p = IPPROTO_TCP;
740 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
741 ip->ip_p = IPPROTO_TCP;
742 break;
743 #ifdef INET6
744 case AF_INET6:
745 ip6 = mtod(m, struct ip6_hdr *);
746 th = (struct tcphdr *)(ip6 + 1);
747 ip6->ip6_nxt = IPPROTO_TCP;
748 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
749 ip6->ip6_nxt = IPPROTO_TCP;
750 break;
751 #endif
752 #if 0
753 default:
754 /* noone will visit here */
755 m_freem(m);
756 return EAFNOSUPPORT;
757 #endif
758 }
759 xchg(th->th_dport, th->th_sport, u_int16_t);
760 #undef xchg
761 tlen = 0; /*be friendly with the following code*/
762 }
763 th->th_seq = htonl(seq);
764 th->th_ack = htonl(ack);
765 th->th_x2 = 0;
766 if ((flags & TH_SYN) == 0) {
767 if (tp)
768 win >>= tp->rcv_scale;
769 if (win > TCP_MAXWIN)
770 win = TCP_MAXWIN;
771 th->th_win = htons((u_int16_t)win);
772 th->th_off = sizeof (struct tcphdr) >> 2;
773 tlen += sizeof(*th);
774 } else
775 tlen += th->th_off << 2;
776 m->m_len = hlen + tlen;
777 m->m_pkthdr.len = hlen + tlen;
778 m->m_pkthdr.rcvif = (struct ifnet *) 0;
779 th->th_flags = flags;
780 th->th_urp = 0;
781
782 switch (family) {
783 #ifdef INET
784 case AF_INET:
785 {
786 struct ipovly *ipov = (struct ipovly *)ip;
787 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
788 ipov->ih_len = htons((u_int16_t)tlen);
789
790 th->th_sum = 0;
791 th->th_sum = in_cksum(m, hlen + tlen);
792 ip->ip_len = htons(hlen + tlen);
793 ip->ip_ttl = ip_defttl;
794 break;
795 }
796 #endif
797 #ifdef INET6
798 case AF_INET6:
799 {
800 th->th_sum = 0;
801 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
802 tlen);
803 ip6->ip6_plen = ntohs(tlen);
804 if (tp && tp->t_in6pcb) {
805 struct ifnet *oifp;
806 ro = (struct route *)&tp->t_in6pcb->in6p_route;
807 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
808 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
809 } else
810 ip6->ip6_hlim = ip6_defhlim;
811 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
812 if (ip6_auto_flowlabel) {
813 ip6->ip6_flow |=
814 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
815 }
816 break;
817 }
818 #endif
819 }
820
821 if (tp && tp->t_inpcb)
822 so = tp->t_inpcb->inp_socket;
823 #ifdef INET6
824 else if (tp && tp->t_in6pcb)
825 so = tp->t_in6pcb->in6p_socket;
826 #endif
827 else
828 so = NULL;
829
830 if (tp != NULL && tp->t_inpcb != NULL) {
831 ro = &tp->t_inpcb->inp_route;
832 #ifdef DIAGNOSTIC
833 if (family != AF_INET)
834 panic("tcp_respond: address family mismatch");
835 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
836 panic("tcp_respond: ip_dst %x != inp_faddr %x",
837 ntohl(ip->ip_dst.s_addr),
838 ntohl(tp->t_inpcb->inp_faddr.s_addr));
839 }
840 #endif
841 }
842 #ifdef INET6
843 else if (tp != NULL && tp->t_in6pcb != NULL) {
844 ro = (struct route *)&tp->t_in6pcb->in6p_route;
845 #ifdef DIAGNOSTIC
846 if (family == AF_INET) {
847 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
848 panic("tcp_respond: not mapped addr");
849 if (bcmp(&ip->ip_dst,
850 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
851 sizeof(ip->ip_dst)) != 0) {
852 panic("tcp_respond: ip_dst != in6p_faddr");
853 }
854 } else if (family == AF_INET6) {
855 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
856 &tp->t_in6pcb->in6p_faddr))
857 panic("tcp_respond: ip6_dst != in6p_faddr");
858 } else
859 panic("tcp_respond: address family mismatch");
860 #endif
861 }
862 #endif
863 else
864 ro = NULL;
865
866 switch (family) {
867 #ifdef INET
868 case AF_INET:
869 error = ip_output(m, NULL, ro,
870 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
871 (struct ip_moptions *)0, so);
872 break;
873 #endif
874 #ifdef INET6
875 case AF_INET6:
876 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
877 (struct ip6_moptions *)0, so, NULL);
878 break;
879 #endif
880 default:
881 error = EAFNOSUPPORT;
882 break;
883 }
884
885 return (error);
886 }
887
888 /*
889 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
890 * a bunch of members individually, we maintain this template for the
891 * static and mostly-static components of the TCPCB, and copy it into
892 * the new TCPCB instead.
893 */
894 static struct tcpcb tcpcb_template = {
895 /*
896 * If TCP_NTIMERS ever changes, we'll need to update this
897 * initializer.
898 */
899 .t_timer = {
900 CALLOUT_INITIALIZER,
901 CALLOUT_INITIALIZER,
902 CALLOUT_INITIALIZER,
903 CALLOUT_INITIALIZER,
904 },
905 .t_delack_ch = CALLOUT_INITIALIZER,
906
907 .t_srtt = TCPTV_SRTTBASE,
908 .t_rttmin = TCPTV_MIN,
909
910 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
911 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
912 };
913
914 /*
915 * Updates the TCPCB template whenever a parameter that would affect
916 * the template is changed.
917 */
918 void
919 tcp_tcpcb_template(void)
920 {
921 struct tcpcb *tp = &tcpcb_template;
922 int flags;
923
924 tp->t_peermss = tcp_mssdflt;
925 tp->t_ourmss = tcp_mssdflt;
926 tp->t_segsz = tcp_mssdflt;
927
928 flags = 0;
929 if (tcp_do_rfc1323 && tcp_do_win_scale)
930 flags |= TF_REQ_SCALE;
931 if (tcp_do_rfc1323 && tcp_do_timestamps)
932 flags |= TF_REQ_TSTMP;
933 if (tcp_do_sack == 2)
934 flags |= TF_WILL_SACK;
935 else if (tcp_do_sack == 1)
936 flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
937 flags |= TF_CANT_TXSACK;
938 tp->t_flags = flags;
939
940 /*
941 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
942 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
943 * reasonable initial retransmit time.
944 */
945 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
946 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
947 TCPTV_MIN, TCPTV_REXMTMAX);
948 }
949
950 /*
951 * Create a new TCP control block, making an
952 * empty reassembly queue and hooking it to the argument
953 * protocol control block.
954 */
955 struct tcpcb *
956 tcp_newtcpcb(family, aux)
957 int family; /* selects inpcb, or in6pcb */
958 void *aux;
959 {
960 struct tcpcb *tp;
961 int i;
962
963 /* XXX Consider using a pool_cache for speed. */
964 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
965 if (tp == NULL)
966 return (NULL);
967 memcpy(tp, &tcpcb_template, sizeof(*tp));
968 TAILQ_INIT(&tp->segq);
969 TAILQ_INIT(&tp->timeq);
970 tp->t_family = family; /* may be overridden later on */
971 LIST_INIT(&tp->t_sc); /* XXX can template this */
972
973 /* Don't sweat this loop; hopefully the compiler will unroll it. */
974 for (i = 0; i < TCPT_NTIMERS; i++)
975 TCP_TIMER_INIT(tp, i);
976
977 switch (family) {
978 case AF_INET:
979 {
980 struct inpcb *inp = (struct inpcb *)aux;
981
982 inp->inp_ip.ip_ttl = ip_defttl;
983 inp->inp_ppcb = (caddr_t)tp;
984
985 tp->t_inpcb = inp;
986 tp->t_mtudisc = ip_mtudisc;
987 break;
988 }
989 #ifdef INET6
990 case AF_INET6:
991 {
992 struct in6pcb *in6p = (struct in6pcb *)aux;
993
994 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
995 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
996 : NULL);
997 in6p->in6p_ppcb = (caddr_t)tp;
998
999 tp->t_in6pcb = in6p;
1000 /* for IPv6, always try to run path MTU discovery */
1001 tp->t_mtudisc = 1;
1002 break;
1003 }
1004 #endif /* INET6 */
1005 default:
1006 pool_put(&tcpcb_pool, tp);
1007 return (NULL);
1008 }
1009
1010 /*
1011 * Initialize our timebase. When we send timestamps, we take
1012 * the delta from tcp_now -- this means each connection always
1013 * gets a timebase of 0, which makes it, among other things,
1014 * more difficult to determine how long a system has been up,
1015 * and thus how many TCP sequence increments have occurred.
1016 */
1017 tp->ts_timebase = tcp_now;
1018
1019 return (tp);
1020 }
1021
1022 /*
1023 * Drop a TCP connection, reporting
1024 * the specified error. If connection is synchronized,
1025 * then send a RST to peer.
1026 */
1027 struct tcpcb *
1028 tcp_drop(tp, errno)
1029 struct tcpcb *tp;
1030 int errno;
1031 {
1032 struct socket *so = NULL;
1033
1034 #ifdef DIAGNOSTIC
1035 if (tp->t_inpcb && tp->t_in6pcb)
1036 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1037 #endif
1038 #ifdef INET
1039 if (tp->t_inpcb)
1040 so = tp->t_inpcb->inp_socket;
1041 #endif
1042 #ifdef INET6
1043 if (tp->t_in6pcb)
1044 so = tp->t_in6pcb->in6p_socket;
1045 #endif
1046 if (!so)
1047 return NULL;
1048
1049 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1050 tp->t_state = TCPS_CLOSED;
1051 (void) tcp_output(tp);
1052 tcpstat.tcps_drops++;
1053 } else
1054 tcpstat.tcps_conndrops++;
1055 if (errno == ETIMEDOUT && tp->t_softerror)
1056 errno = tp->t_softerror;
1057 so->so_error = errno;
1058 return (tcp_close(tp));
1059 }
1060
1061 /*
1062 * Return whether this tcpcb is marked as dead, indicating
1063 * to the calling timer function that no further action should
1064 * be taken, as we are about to release this tcpcb. The release
1065 * of the storage will be done if this is the last timer running.
1066 *
1067 * This should be called from the callout handler function after
1068 * callout_ack() is done, so that the number of invoking timer
1069 * functions is 0.
1070 */
1071 int
1072 tcp_isdead(tp)
1073 struct tcpcb *tp;
1074 {
1075 int dead = (tp->t_flags & TF_DEAD);
1076
1077 if (__predict_false(dead)) {
1078 if (tcp_timers_invoking(tp) > 0)
1079 /* not quite there yet -- count separately? */
1080 return dead;
1081 tcpstat.tcps_delayed_free++;
1082 pool_put(&tcpcb_pool, tp);
1083 }
1084 return dead;
1085 }
1086
1087 /*
1088 * Close a TCP control block:
1089 * discard all space held by the tcp
1090 * discard internet protocol block
1091 * wake up any sleepers
1092 */
1093 struct tcpcb *
1094 tcp_close(tp)
1095 struct tcpcb *tp;
1096 {
1097 struct inpcb *inp;
1098 #ifdef INET6
1099 struct in6pcb *in6p;
1100 #endif
1101 struct socket *so;
1102 #ifdef RTV_RTT
1103 struct rtentry *rt;
1104 #endif
1105 struct route *ro;
1106
1107 inp = tp->t_inpcb;
1108 #ifdef INET6
1109 in6p = tp->t_in6pcb;
1110 #endif
1111 so = NULL;
1112 ro = NULL;
1113 if (inp) {
1114 so = inp->inp_socket;
1115 ro = &inp->inp_route;
1116 }
1117 #ifdef INET6
1118 else if (in6p) {
1119 so = in6p->in6p_socket;
1120 ro = (struct route *)&in6p->in6p_route;
1121 }
1122 #endif
1123
1124 #ifdef RTV_RTT
1125 /*
1126 * If we sent enough data to get some meaningful characteristics,
1127 * save them in the routing entry. 'Enough' is arbitrarily
1128 * defined as the sendpipesize (default 4K) * 16. This would
1129 * give us 16 rtt samples assuming we only get one sample per
1130 * window (the usual case on a long haul net). 16 samples is
1131 * enough for the srtt filter to converge to within 5% of the correct
1132 * value; fewer samples and we could save a very bogus rtt.
1133 *
1134 * Don't update the default route's characteristics and don't
1135 * update anything that the user "locked".
1136 */
1137 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1138 ro && (rt = ro->ro_rt) &&
1139 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1140 u_long i = 0;
1141
1142 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1143 i = tp->t_srtt *
1144 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1145 if (rt->rt_rmx.rmx_rtt && i)
1146 /*
1147 * filter this update to half the old & half
1148 * the new values, converting scale.
1149 * See route.h and tcp_var.h for a
1150 * description of the scaling constants.
1151 */
1152 rt->rt_rmx.rmx_rtt =
1153 (rt->rt_rmx.rmx_rtt + i) / 2;
1154 else
1155 rt->rt_rmx.rmx_rtt = i;
1156 }
1157 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1158 i = tp->t_rttvar *
1159 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1160 if (rt->rt_rmx.rmx_rttvar && i)
1161 rt->rt_rmx.rmx_rttvar =
1162 (rt->rt_rmx.rmx_rttvar + i) / 2;
1163 else
1164 rt->rt_rmx.rmx_rttvar = i;
1165 }
1166 /*
1167 * update the pipelimit (ssthresh) if it has been updated
1168 * already or if a pipesize was specified & the threshhold
1169 * got below half the pipesize. I.e., wait for bad news
1170 * before we start updating, then update on both good
1171 * and bad news.
1172 */
1173 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1174 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1175 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1176 /*
1177 * convert the limit from user data bytes to
1178 * packets then to packet data bytes.
1179 */
1180 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1181 if (i < 2)
1182 i = 2;
1183 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1184 if (rt->rt_rmx.rmx_ssthresh)
1185 rt->rt_rmx.rmx_ssthresh =
1186 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1187 else
1188 rt->rt_rmx.rmx_ssthresh = i;
1189 }
1190 }
1191 #endif /* RTV_RTT */
1192 /* free the reassembly queue, if any */
1193 TCP_REASS_LOCK(tp);
1194 (void) tcp_freeq(tp);
1195 TCP_REASS_UNLOCK(tp);
1196
1197 tcp_canceltimers(tp);
1198 TCP_CLEAR_DELACK(tp);
1199 syn_cache_cleanup(tp);
1200
1201 if (tp->t_template) {
1202 m_free(tp->t_template);
1203 tp->t_template = NULL;
1204 }
1205 if (tcp_timers_invoking(tp))
1206 tp->t_flags |= TF_DEAD;
1207 else
1208 pool_put(&tcpcb_pool, tp);
1209
1210 if (inp) {
1211 inp->inp_ppcb = 0;
1212 soisdisconnected(so);
1213 in_pcbdetach(inp);
1214 }
1215 #ifdef INET6
1216 else if (in6p) {
1217 in6p->in6p_ppcb = 0;
1218 soisdisconnected(so);
1219 in6_pcbdetach(in6p);
1220 }
1221 #endif
1222 tcpstat.tcps_closed++;
1223 return ((struct tcpcb *)0);
1224 }
1225
1226 int
1227 tcp_freeq(tp)
1228 struct tcpcb *tp;
1229 {
1230 struct ipqent *qe;
1231 int rv = 0;
1232 #ifdef TCPREASS_DEBUG
1233 int i = 0;
1234 #endif
1235
1236 TCP_REASS_LOCK_CHECK(tp);
1237
1238 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1239 #ifdef TCPREASS_DEBUG
1240 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1241 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1242 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1243 #endif
1244 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1245 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1246 m_freem(qe->ipqe_m);
1247 pool_put(&ipqent_pool, qe);
1248 rv = 1;
1249 }
1250 return (rv);
1251 }
1252
1253 /*
1254 * Protocol drain routine. Called when memory is in short supply.
1255 */
1256 void
1257 tcp_drain()
1258 {
1259 struct inpcb_hdr *inph;
1260 struct tcpcb *tp;
1261
1262 /*
1263 * Free the sequence queue of all TCP connections.
1264 */
1265 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1266 switch (inph->inph_af) {
1267 case AF_INET:
1268 tp = intotcpcb((struct inpcb *)inph);
1269 break;
1270 #ifdef INET6
1271 case AF_INET6:
1272 tp = in6totcpcb((struct in6pcb *)inph);
1273 break;
1274 #endif
1275 default:
1276 tp = NULL;
1277 break;
1278 }
1279 if (tp != NULL) {
1280 /*
1281 * We may be called from a device's interrupt
1282 * context. If the tcpcb is already busy,
1283 * just bail out now.
1284 */
1285 if (tcp_reass_lock_try(tp) == 0)
1286 continue;
1287 if (tcp_freeq(tp))
1288 tcpstat.tcps_connsdrained++;
1289 TCP_REASS_UNLOCK(tp);
1290 }
1291 }
1292 }
1293
1294 /*
1295 * Notify a tcp user of an asynchronous error;
1296 * store error as soft error, but wake up user
1297 * (for now, won't do anything until can select for soft error).
1298 */
1299 void
1300 tcp_notify(inp, error)
1301 struct inpcb *inp;
1302 int error;
1303 {
1304 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1305 struct socket *so = inp->inp_socket;
1306
1307 /*
1308 * Ignore some errors if we are hooked up.
1309 * If connection hasn't completed, has retransmitted several times,
1310 * and receives a second error, give up now. This is better
1311 * than waiting a long time to establish a connection that
1312 * can never complete.
1313 */
1314 if (tp->t_state == TCPS_ESTABLISHED &&
1315 (error == EHOSTUNREACH || error == ENETUNREACH ||
1316 error == EHOSTDOWN)) {
1317 return;
1318 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1319 tp->t_rxtshift > 3 && tp->t_softerror)
1320 so->so_error = error;
1321 else
1322 tp->t_softerror = error;
1323 wakeup((caddr_t) &so->so_timeo);
1324 sorwakeup(so);
1325 sowwakeup(so);
1326 }
1327
1328 #ifdef INET6
1329 void
1330 tcp6_notify(in6p, error)
1331 struct in6pcb *in6p;
1332 int error;
1333 {
1334 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1335 struct socket *so = in6p->in6p_socket;
1336
1337 /*
1338 * Ignore some errors if we are hooked up.
1339 * If connection hasn't completed, has retransmitted several times,
1340 * and receives a second error, give up now. This is better
1341 * than waiting a long time to establish a connection that
1342 * can never complete.
1343 */
1344 if (tp->t_state == TCPS_ESTABLISHED &&
1345 (error == EHOSTUNREACH || error == ENETUNREACH ||
1346 error == EHOSTDOWN)) {
1347 return;
1348 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1349 tp->t_rxtshift > 3 && tp->t_softerror)
1350 so->so_error = error;
1351 else
1352 tp->t_softerror = error;
1353 wakeup((caddr_t) &so->so_timeo);
1354 sorwakeup(so);
1355 sowwakeup(so);
1356 }
1357 #endif
1358
1359 #ifdef INET6
1360 void
1361 tcp6_ctlinput(cmd, sa, d)
1362 int cmd;
1363 struct sockaddr *sa;
1364 void *d;
1365 {
1366 struct tcphdr th;
1367 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1368 int nmatch;
1369 struct ip6_hdr *ip6;
1370 const struct sockaddr_in6 *sa6_src = NULL;
1371 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1372 struct mbuf *m;
1373 int off;
1374
1375 if (sa->sa_family != AF_INET6 ||
1376 sa->sa_len != sizeof(struct sockaddr_in6))
1377 return;
1378 if ((unsigned)cmd >= PRC_NCMDS)
1379 return;
1380 else if (cmd == PRC_QUENCH) {
1381 /* XXX there's no PRC_QUENCH in IPv6 */
1382 notify = tcp6_quench;
1383 } else if (PRC_IS_REDIRECT(cmd))
1384 notify = in6_rtchange, d = NULL;
1385 else if (cmd == PRC_MSGSIZE)
1386 ; /* special code is present, see below */
1387 else if (cmd == PRC_HOSTDEAD)
1388 d = NULL;
1389 else if (inet6ctlerrmap[cmd] == 0)
1390 return;
1391
1392 /* if the parameter is from icmp6, decode it. */
1393 if (d != NULL) {
1394 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1395 m = ip6cp->ip6c_m;
1396 ip6 = ip6cp->ip6c_ip6;
1397 off = ip6cp->ip6c_off;
1398 sa6_src = ip6cp->ip6c_src;
1399 } else {
1400 m = NULL;
1401 ip6 = NULL;
1402 sa6_src = &sa6_any;
1403 off = 0;
1404 }
1405
1406 if (ip6) {
1407 /*
1408 * XXX: We assume that when ip6 is non NULL,
1409 * M and OFF are valid.
1410 */
1411
1412 /* check if we can safely examine src and dst ports */
1413 if (m->m_pkthdr.len < off + sizeof(th)) {
1414 if (cmd == PRC_MSGSIZE)
1415 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1416 return;
1417 }
1418
1419 bzero(&th, sizeof(th));
1420 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1421
1422 if (cmd == PRC_MSGSIZE) {
1423 int valid = 0;
1424
1425 /*
1426 * Check to see if we have a valid TCP connection
1427 * corresponding to the address in the ICMPv6 message
1428 * payload.
1429 */
1430 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1431 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1432 th.th_sport, 0))
1433 valid++;
1434
1435 /*
1436 * Depending on the value of "valid" and routing table
1437 * size (mtudisc_{hi,lo}wat), we will:
1438 * - recalcurate the new MTU and create the
1439 * corresponding routing entry, or
1440 * - ignore the MTU change notification.
1441 */
1442 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1443
1444 /*
1445 * no need to call in6_pcbnotify, it should have been
1446 * called via callback if necessary
1447 */
1448 return;
1449 }
1450
1451 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1452 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1453 if (nmatch == 0 && syn_cache_count &&
1454 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1455 inet6ctlerrmap[cmd] == ENETUNREACH ||
1456 inet6ctlerrmap[cmd] == EHOSTDOWN))
1457 syn_cache_unreach((struct sockaddr *)sa6_src,
1458 sa, &th);
1459 } else {
1460 (void) in6_pcbnotify(&tcbtable, sa, 0,
1461 (struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1462 }
1463 }
1464 #endif
1465
1466 #ifdef INET
1467 /* assumes that ip header and tcp header are contiguous on mbuf */
1468 void *
1469 tcp_ctlinput(cmd, sa, v)
1470 int cmd;
1471 struct sockaddr *sa;
1472 void *v;
1473 {
1474 struct ip *ip = v;
1475 struct tcphdr *th;
1476 struct icmp *icp;
1477 extern const int inetctlerrmap[];
1478 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1479 int errno;
1480 int nmatch;
1481 #ifdef INET6
1482 struct in6_addr src6, dst6;
1483 #endif
1484
1485 if (sa->sa_family != AF_INET ||
1486 sa->sa_len != sizeof(struct sockaddr_in))
1487 return NULL;
1488 if ((unsigned)cmd >= PRC_NCMDS)
1489 return NULL;
1490 errno = inetctlerrmap[cmd];
1491 if (cmd == PRC_QUENCH)
1492 notify = tcp_quench;
1493 else if (PRC_IS_REDIRECT(cmd))
1494 notify = in_rtchange, ip = 0;
1495 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1496 /*
1497 * Check to see if we have a valid TCP connection
1498 * corresponding to the address in the ICMP message
1499 * payload.
1500 *
1501 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1502 */
1503 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1504 #ifdef INET6
1505 memset(&src6, 0, sizeof(src6));
1506 memset(&dst6, 0, sizeof(dst6));
1507 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1508 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1509 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1510 #endif
1511 if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
1512 ip->ip_src, th->th_sport) != NULL)
1513 ;
1514 #ifdef INET6
1515 else if (in6_pcblookup_connect(&tcbtable, &dst6,
1516 th->th_dport, &src6, th->th_sport, 0) != NULL)
1517 ;
1518 #endif
1519 else
1520 return NULL;
1521
1522 /*
1523 * Now that we've validated that we are actually communicating
1524 * with the host indicated in the ICMP message, locate the
1525 * ICMP header, recalculate the new MTU, and create the
1526 * corresponding routing entry.
1527 */
1528 icp = (struct icmp *)((caddr_t)ip -
1529 offsetof(struct icmp, icmp_ip));
1530 icmp_mtudisc(icp, ip->ip_dst);
1531
1532 return NULL;
1533 } else if (cmd == PRC_HOSTDEAD)
1534 ip = 0;
1535 else if (errno == 0)
1536 return NULL;
1537 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1538 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1539 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1540 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1541 if (nmatch == 0 && syn_cache_count &&
1542 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1543 inetctlerrmap[cmd] == ENETUNREACH ||
1544 inetctlerrmap[cmd] == EHOSTDOWN)) {
1545 struct sockaddr_in sin;
1546 bzero(&sin, sizeof(sin));
1547 sin.sin_len = sizeof(sin);
1548 sin.sin_family = AF_INET;
1549 sin.sin_port = th->th_sport;
1550 sin.sin_addr = ip->ip_src;
1551 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1552 }
1553
1554 /* XXX mapped address case */
1555 } else
1556 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1557 notify);
1558 return NULL;
1559 }
1560
1561 /*
1562 * When a source quence is received, we are being notifed of congestion.
1563 * Close the congestion window down to the Loss Window (one segment).
1564 * We will gradually open it again as we proceed.
1565 */
1566 void
1567 tcp_quench(inp, errno)
1568 struct inpcb *inp;
1569 int errno;
1570 {
1571 struct tcpcb *tp = intotcpcb(inp);
1572
1573 if (tp)
1574 tp->snd_cwnd = tp->t_segsz;
1575 }
1576 #endif
1577
1578 #ifdef INET6
1579 void
1580 tcp6_quench(in6p, errno)
1581 struct in6pcb *in6p;
1582 int errno;
1583 {
1584 struct tcpcb *tp = in6totcpcb(in6p);
1585
1586 if (tp)
1587 tp->snd_cwnd = tp->t_segsz;
1588 }
1589 #endif
1590
1591 #ifdef INET
1592 /*
1593 * Path MTU Discovery handlers.
1594 */
1595 void
1596 tcp_mtudisc_callback(faddr)
1597 struct in_addr faddr;
1598 {
1599 #ifdef INET6
1600 struct in6_addr in6;
1601 #endif
1602
1603 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1604 #ifdef INET6
1605 memset(&in6, 0, sizeof(in6));
1606 in6.s6_addr16[5] = 0xffff;
1607 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1608 tcp6_mtudisc_callback(&in6);
1609 #endif
1610 }
1611
1612 #ifdef TCP_SIGNATURE
1613 /*
1614 * Callback function invoked by m_apply() to digest TCP segment data
1615 * contained within an mbuf chain.
1616 */
1617 static int
1618 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
1619 {
1620
1621 MD5Update(fstate, (u_char *)data, len);
1622 return (0);
1623 }
1624
1625 /*
1626 * Compute TCP-MD5 hash of a TCPv4 segment. (RFC2385)
1627 *
1628 * Parameters:
1629 * m pointer to head of mbuf chain
1630 * th pointer to tcp header
1631 * thoff offset to TCP header within the mbuf chain
1632 * (if you don't know the value, set to -1)
1633 * len length of TCP segment data, excluding options
1634 * optlen length of TCP segment options
1635 * buf pointer to storage for computed MD5 digest
1636 * direction direction of flow (IPSEC_DIR_INBOUND or OUTBOUND)
1637 *
1638 * We do this over ip, tcphdr, segment data, and the key in the SADB.
1639 * When called from tcp_input(), we can be sure that th_sum has been
1640 * zeroed out and verified already.
1641 *
1642 * Return 0 if successful, otherwise return -1.
1643 *
1644 * XXX The key is retrieved from the system's PF_KEY SADB, by keying a
1645 * search with the destination IP address, and a 'magic SPI' of 0x1000.
1646 * Another branch of this code exists which uses the SPD to specify
1647 * per-application flows, but it is unstable.
1648 */
1649 int
1650 tcp_signature_compute(struct mbuf *m, struct tcphdr *th, int thoff,
1651 int len, int optlen, u_char *buf, u_int direction)
1652 {
1653 #ifdef FAST_IPSEC
1654 union sockaddr_union dst;
1655 #endif
1656 MD5_CTX ctx;
1657 int doff;
1658 struct ip *ip;
1659 struct ipovly *ipovly;
1660 struct ip6_hdr *ip6;
1661 struct secasvar *sav;
1662 u_int16_t savecsum;
1663 struct ippseudo ippseudo;
1664 struct ip6_ext ip6e;
1665 struct ip6_hdr_pseudo ip6pseudo;
1666 u_int8_t nxt;
1667
1668 KASSERT(m != NULL /*, ("NULL mbuf chain")*/);
1669 KASSERT(buf != NULL /*, ("NULL signature pointer")*/);
1670
1671 ip = mtod(m, struct ip *);
1672 ip6 = NULL;
1673 if (ip->ip_v == 6) {
1674 ip = NULL;
1675 ip6 = mtod(m, struct ip6_hdr *);
1676 }
1677
1678 /* look for TCP header offset - it won't take too long */
1679 if (thoff >= 0) {
1680 nxt = IPPROTO_TCP;
1681 goto found;
1682 }
1683
1684 thoff = ip ? sizeof(*ip) : sizeof(*ip6);
1685 nxt = ip ? ip->ip_p : ip6->ip6_nxt;
1686
1687 while (1) {
1688 switch (nxt) {
1689 case IPPROTO_TCP:
1690 goto found;
1691 case IPPROTO_AH:
1692 m_copydata(m, thoff, sizeof(ip6e), (caddr_t)&ip6e);
1693 thoff += (ip6e.ip6e_len + 2) << 2;
1694 break;
1695 case IPPROTO_DSTOPTS:
1696 case IPPROTO_ROUTING:
1697 case IPPROTO_HOPOPTS:
1698 m_copydata(m, thoff, sizeof(ip6e), (caddr_t)&ip6e);
1699 thoff += (ip6e.ip6e_len + 1) << 3;
1700 break;
1701 default:
1702 return EINVAL;
1703 }
1704
1705 nxt = ip6e.ip6e_nxt;
1706 }
1707
1708 found:
1709
1710 #ifdef FAST_IPSEC
1711 /* Extract the destination from the IP header in the mbuf. */
1712 bzero(&dst, sizeof(union sockaddr_union));
1713 dst.sa.sa_len = sizeof(struct sockaddr_in);
1714 dst.sa.sa_family = AF_INET;
1715 dst.sin.sin_addr = (direction == IPSEC_DIR_INBOUND) ?
1716 ip->ip_src : ip->ip_dst;
1717
1718 /* Look up an SADB entry which matches the address of the peer. */
1719 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
1720 #else
1721 if (ip)
1722 sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src,
1723 (caddr_t)&ip->ip_dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
1724 else
1725 sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src,
1726 (caddr_t)&ip6->ip6_dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
1727 #endif
1728 if (sav == NULL) {
1729 printf("%s: SADB lookup failed\n", __func__);
1730 return (EINVAL);
1731 }
1732
1733 MD5Init(&ctx);
1734 doff = thoff + sizeof(struct tcphdr) + optlen;
1735
1736 /*
1737 * Step 1: Update MD5 hash with IP pseudo-header.
1738 *
1739 * XXX The ippseudo header MUST be digested in network byte order,
1740 * or else we'll fail the regression test. Assume all fields we've
1741 * been doing arithmetic on have been in host byte order.
1742 * XXX One cannot depend on ipovly->ih_len here. When called from
1743 * tcp_output(), the underlying ip_len member has not yet been set.
1744 */
1745 if (ip) {
1746 memset(&ippseudo, 0, sizeof(ippseudo));
1747 ipovly = (struct ipovly *)ip;
1748 ippseudo.ippseudo_src = ipovly->ih_src;
1749 ippseudo.ippseudo_dst = ipovly->ih_dst;
1750 ippseudo.ippseudo_pad = 0;
1751 ippseudo.ippseudo_p = IPPROTO_TCP;
1752 ippseudo.ippseudo_len =
1753 htons(len + sizeof(struct tcphdr) + optlen);
1754 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
1755 } else {
1756 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
1757 ip6pseudo.ip6ph_src = ip6->ip6_src;
1758 in6_clearscope(&ip6pseudo.ip6ph_src);
1759 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
1760 in6_clearscope(&ip6pseudo.ip6ph_dst);
1761 ip6pseudo.ip6ph_len =
1762 htonl(len + sizeof(struct tcphdr) + optlen);
1763 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
1764 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
1765 }
1766
1767 /*
1768 * Step 2: Update MD5 hash with TCP header, excluding options.
1769 * The TCP checksum must be set to zero.
1770 */
1771 savecsum = th->th_sum;
1772 th->th_sum = 0;
1773 MD5Update(&ctx, (char *)th, sizeof(struct tcphdr));
1774 th->th_sum = savecsum;
1775
1776 /*
1777 * Step 3: Update MD5 hash with TCP segment data.
1778 * Use m_apply() to avoid an early m_pullup().
1779 */
1780 if (len > 0)
1781 m_apply(m, doff, len, tcp_signature_apply, &ctx);
1782
1783 /*
1784 * Step 4: Update MD5 hash with shared secret.
1785 */
1786 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
1787 MD5Final(buf, &ctx);
1788
1789 key_sa_recordxfer(sav, m);
1790 #ifdef FAST_IPSEC
1791 KEY_FREESAV(&sav);
1792 #else
1793 key_freesav(sav);
1794 #endif
1795 return (0);
1796 }
1797 #endif /* TCP_SIGNATURE */
1798
1799 /*
1800 * On receipt of path MTU corrections, flush old route and replace it
1801 * with the new one. Retransmit all unacknowledged packets, to ensure
1802 * that all packets will be received.
1803 */
1804 void
1805 tcp_mtudisc(inp, errno)
1806 struct inpcb *inp;
1807 int errno;
1808 {
1809 struct tcpcb *tp = intotcpcb(inp);
1810 struct rtentry *rt = in_pcbrtentry(inp);
1811
1812 if (tp != 0) {
1813 if (rt != 0) {
1814 /*
1815 * If this was not a host route, remove and realloc.
1816 */
1817 if ((rt->rt_flags & RTF_HOST) == 0) {
1818 in_rtchange(inp, errno);
1819 if ((rt = in_pcbrtentry(inp)) == 0)
1820 return;
1821 }
1822
1823 /*
1824 * Slow start out of the error condition. We
1825 * use the MTU because we know it's smaller
1826 * than the previously transmitted segment.
1827 *
1828 * Note: This is more conservative than the
1829 * suggestion in draft-floyd-incr-init-win-03.
1830 */
1831 if (rt->rt_rmx.rmx_mtu != 0)
1832 tp->snd_cwnd =
1833 TCP_INITIAL_WINDOW(tcp_init_win,
1834 rt->rt_rmx.rmx_mtu);
1835 }
1836
1837 /*
1838 * Resend unacknowledged packets.
1839 */
1840 tp->snd_nxt = tp->snd_una;
1841 tcp_output(tp);
1842 }
1843 }
1844 #endif
1845
1846 #ifdef INET6
1847 /*
1848 * Path MTU Discovery handlers.
1849 */
1850 void
1851 tcp6_mtudisc_callback(faddr)
1852 struct in6_addr *faddr;
1853 {
1854 struct sockaddr_in6 sin6;
1855
1856 bzero(&sin6, sizeof(sin6));
1857 sin6.sin6_family = AF_INET6;
1858 sin6.sin6_len = sizeof(struct sockaddr_in6);
1859 sin6.sin6_addr = *faddr;
1860 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1861 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1862 }
1863
1864 void
1865 tcp6_mtudisc(in6p, errno)
1866 struct in6pcb *in6p;
1867 int errno;
1868 {
1869 struct tcpcb *tp = in6totcpcb(in6p);
1870 struct rtentry *rt = in6_pcbrtentry(in6p);
1871
1872 if (tp != 0) {
1873 if (rt != 0) {
1874 /*
1875 * If this was not a host route, remove and realloc.
1876 */
1877 if ((rt->rt_flags & RTF_HOST) == 0) {
1878 in6_rtchange(in6p, errno);
1879 if ((rt = in6_pcbrtentry(in6p)) == 0)
1880 return;
1881 }
1882
1883 /*
1884 * Slow start out of the error condition. We
1885 * use the MTU because we know it's smaller
1886 * than the previously transmitted segment.
1887 *
1888 * Note: This is more conservative than the
1889 * suggestion in draft-floyd-incr-init-win-03.
1890 */
1891 if (rt->rt_rmx.rmx_mtu != 0)
1892 tp->snd_cwnd =
1893 TCP_INITIAL_WINDOW(tcp_init_win,
1894 rt->rt_rmx.rmx_mtu);
1895 }
1896
1897 /*
1898 * Resend unacknowledged packets.
1899 */
1900 tp->snd_nxt = tp->snd_una;
1901 tcp_output(tp);
1902 }
1903 }
1904 #endif /* INET6 */
1905
1906 /*
1907 * Compute the MSS to advertise to the peer. Called only during
1908 * the 3-way handshake. If we are the server (peer initiated
1909 * connection), we are called with a pointer to the interface
1910 * on which the SYN packet arrived. If we are the client (we
1911 * initiated connection), we are called with a pointer to the
1912 * interface out which this connection should go.
1913 *
1914 * NOTE: Do not subtract IP option/extension header size nor IPsec
1915 * header size from MSS advertisement. MSS option must hold the maximum
1916 * segment size we can accept, so it must always be:
1917 * max(if mtu) - ip header - tcp header
1918 */
1919 u_long
1920 tcp_mss_to_advertise(ifp, af)
1921 const struct ifnet *ifp;
1922 int af;
1923 {
1924 extern u_long in_maxmtu;
1925 u_long mss = 0;
1926 u_long hdrsiz;
1927
1928 /*
1929 * In order to avoid defeating path MTU discovery on the peer,
1930 * we advertise the max MTU of all attached networks as our MSS,
1931 * per RFC 1191, section 3.1.
1932 *
1933 * We provide the option to advertise just the MTU of
1934 * the interface on which we hope this connection will
1935 * be receiving. If we are responding to a SYN, we
1936 * will have a pretty good idea about this, but when
1937 * initiating a connection there is a bit more doubt.
1938 *
1939 * We also need to ensure that loopback has a large enough
1940 * MSS, as the loopback MTU is never included in in_maxmtu.
1941 */
1942
1943 if (ifp != NULL)
1944 switch (af) {
1945 case AF_INET:
1946 mss = ifp->if_mtu;
1947 break;
1948 #ifdef INET6
1949 case AF_INET6:
1950 mss = IN6_LINKMTU(ifp);
1951 break;
1952 #endif
1953 }
1954
1955 if (tcp_mss_ifmtu == 0)
1956 switch (af) {
1957 case AF_INET:
1958 mss = max(in_maxmtu, mss);
1959 break;
1960 #ifdef INET6
1961 case AF_INET6:
1962 mss = max(in6_maxmtu, mss);
1963 break;
1964 #endif
1965 }
1966
1967 switch (af) {
1968 case AF_INET:
1969 hdrsiz = sizeof(struct ip);
1970 break;
1971 #ifdef INET6
1972 case AF_INET6:
1973 hdrsiz = sizeof(struct ip6_hdr);
1974 break;
1975 #endif
1976 default:
1977 hdrsiz = 0;
1978 break;
1979 }
1980 hdrsiz += sizeof(struct tcphdr);
1981 if (mss > hdrsiz)
1982 mss -= hdrsiz;
1983
1984 mss = max(tcp_mssdflt, mss);
1985 return (mss);
1986 }
1987
1988 /*
1989 * Set connection variables based on the peer's advertised MSS.
1990 * We are passed the TCPCB for the actual connection. If we
1991 * are the server, we are called by the compressed state engine
1992 * when the 3-way handshake is complete. If we are the client,
1993 * we are called when we receive the SYN,ACK from the server.
1994 *
1995 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1996 * before this routine is called!
1997 */
1998 void
1999 tcp_mss_from_peer(tp, offer)
2000 struct tcpcb *tp;
2001 int offer;
2002 {
2003 struct socket *so;
2004 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
2005 struct rtentry *rt;
2006 #endif
2007 u_long bufsize;
2008 int mss;
2009
2010 #ifdef DIAGNOSTIC
2011 if (tp->t_inpcb && tp->t_in6pcb)
2012 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
2013 #endif
2014 so = NULL;
2015 rt = NULL;
2016 #ifdef INET
2017 if (tp->t_inpcb) {
2018 so = tp->t_inpcb->inp_socket;
2019 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
2020 rt = in_pcbrtentry(tp->t_inpcb);
2021 #endif
2022 }
2023 #endif
2024 #ifdef INET6
2025 if (tp->t_in6pcb) {
2026 so = tp->t_in6pcb->in6p_socket;
2027 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
2028 rt = in6_pcbrtentry(tp->t_in6pcb);
2029 #endif
2030 }
2031 #endif
2032
2033 /*
2034 * As per RFC1122, use the default MSS value, unless they
2035 * sent us an offer. Do not accept offers less than 256 bytes.
2036 */
2037 mss = tcp_mssdflt;
2038 if (offer)
2039 mss = offer;
2040 mss = max(mss, 256); /* sanity */
2041 tp->t_peermss = mss;
2042 mss -= tcp_optlen(tp);
2043 #ifdef INET
2044 if (tp->t_inpcb)
2045 mss -= ip_optlen(tp->t_inpcb);
2046 #endif
2047 #ifdef INET6
2048 if (tp->t_in6pcb)
2049 mss -= ip6_optlen(tp->t_in6pcb);
2050 #endif
2051
2052 /*
2053 * If there's a pipesize, change the socket buffer to that size.
2054 * Make the socket buffer an integral number of MSS units. If
2055 * the MSS is larger than the socket buffer, artificially decrease
2056 * the MSS.
2057 */
2058 #ifdef RTV_SPIPE
2059 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
2060 bufsize = rt->rt_rmx.rmx_sendpipe;
2061 else
2062 #endif
2063 bufsize = so->so_snd.sb_hiwat;
2064 if (bufsize < mss)
2065 mss = bufsize;
2066 else {
2067 bufsize = roundup(bufsize, mss);
2068 if (bufsize > sb_max)
2069 bufsize = sb_max;
2070 (void) sbreserve(&so->so_snd, bufsize, so);
2071 }
2072 tp->t_segsz = mss;
2073
2074 #ifdef RTV_SSTHRESH
2075 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
2076 /*
2077 * There's some sort of gateway or interface buffer
2078 * limit on the path. Use this to set the slow
2079 * start threshold, but set the threshold to no less
2080 * than 2 * MSS.
2081 */
2082 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
2083 }
2084 #endif
2085 }
2086
2087 /*
2088 * Processing necessary when a TCP connection is established.
2089 */
2090 void
2091 tcp_established(tp)
2092 struct tcpcb *tp;
2093 {
2094 struct socket *so;
2095 #ifdef RTV_RPIPE
2096 struct rtentry *rt;
2097 #endif
2098 u_long bufsize;
2099
2100 #ifdef DIAGNOSTIC
2101 if (tp->t_inpcb && tp->t_in6pcb)
2102 panic("tcp_established: both t_inpcb and t_in6pcb are set");
2103 #endif
2104 so = NULL;
2105 rt = NULL;
2106 #ifdef INET
2107 if (tp->t_inpcb) {
2108 so = tp->t_inpcb->inp_socket;
2109 #if defined(RTV_RPIPE)
2110 rt = in_pcbrtentry(tp->t_inpcb);
2111 #endif
2112 }
2113 #endif
2114 #ifdef INET6
2115 if (tp->t_in6pcb) {
2116 so = tp->t_in6pcb->in6p_socket;
2117 #if defined(RTV_RPIPE)
2118 rt = in6_pcbrtentry(tp->t_in6pcb);
2119 #endif
2120 }
2121 #endif
2122
2123 tp->t_state = TCPS_ESTABLISHED;
2124 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
2125
2126 #ifdef RTV_RPIPE
2127 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2128 bufsize = rt->rt_rmx.rmx_recvpipe;
2129 else
2130 #endif
2131 bufsize = so->so_rcv.sb_hiwat;
2132 if (bufsize > tp->t_ourmss) {
2133 bufsize = roundup(bufsize, tp->t_ourmss);
2134 if (bufsize > sb_max)
2135 bufsize = sb_max;
2136 (void) sbreserve(&so->so_rcv, bufsize, so);
2137 }
2138 }
2139
2140 /*
2141 * Check if there's an initial rtt or rttvar. Convert from the
2142 * route-table units to scaled multiples of the slow timeout timer.
2143 * Called only during the 3-way handshake.
2144 */
2145 void
2146 tcp_rmx_rtt(tp)
2147 struct tcpcb *tp;
2148 {
2149 #ifdef RTV_RTT
2150 struct rtentry *rt = NULL;
2151 int rtt;
2152
2153 #ifdef DIAGNOSTIC
2154 if (tp->t_inpcb && tp->t_in6pcb)
2155 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2156 #endif
2157 #ifdef INET
2158 if (tp->t_inpcb)
2159 rt = in_pcbrtentry(tp->t_inpcb);
2160 #endif
2161 #ifdef INET6
2162 if (tp->t_in6pcb)
2163 rt = in6_pcbrtentry(tp->t_in6pcb);
2164 #endif
2165 if (rt == NULL)
2166 return;
2167
2168 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2169 /*
2170 * XXX The lock bit for MTU indicates that the value
2171 * is also a minimum value; this is subject to time.
2172 */
2173 if (rt->rt_rmx.rmx_locks & RTV_RTT)
2174 TCPT_RANGESET(tp->t_rttmin,
2175 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2176 TCPTV_MIN, TCPTV_REXMTMAX);
2177 tp->t_srtt = rtt /
2178 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2179 if (rt->rt_rmx.rmx_rttvar) {
2180 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2181 ((RTM_RTTUNIT / PR_SLOWHZ) >>
2182 (TCP_RTTVAR_SHIFT + 2));
2183 } else {
2184 /* Default variation is +- 1 rtt */
2185 tp->t_rttvar =
2186 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2187 }
2188 TCPT_RANGESET(tp->t_rxtcur,
2189 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2190 tp->t_rttmin, TCPTV_REXMTMAX);
2191 }
2192 #endif
2193 }
2194
2195 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2196 #if NRND > 0
2197 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2198 #endif
2199
2200 /*
2201 * Get a new sequence value given a tcp control block
2202 */
2203 tcp_seq
2204 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2205 {
2206
2207 #ifdef INET
2208 if (tp->t_inpcb != NULL) {
2209 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2210 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2211 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2212 addin));
2213 }
2214 #endif
2215 #ifdef INET6
2216 if (tp->t_in6pcb != NULL) {
2217 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2218 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2219 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2220 addin));
2221 }
2222 #endif
2223 /* Not possible. */
2224 panic("tcp_new_iss");
2225 }
2226
2227 /*
2228 * This routine actually generates a new TCP initial sequence number.
2229 */
2230 tcp_seq
2231 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2232 size_t addrsz, tcp_seq addin)
2233 {
2234 tcp_seq tcp_iss;
2235
2236 #if NRND > 0
2237 static int beenhere;
2238
2239 /*
2240 * If we haven't been here before, initialize our cryptographic
2241 * hash secret.
2242 */
2243 if (beenhere == 0) {
2244 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2245 RND_EXTRACT_ANY);
2246 beenhere = 1;
2247 }
2248
2249 if (tcp_do_rfc1948) {
2250 MD5_CTX ctx;
2251 u_int8_t hash[16]; /* XXX MD5 knowledge */
2252
2253 /*
2254 * Compute the base value of the ISS. It is a hash
2255 * of (saddr, sport, daddr, dport, secret).
2256 */
2257 MD5Init(&ctx);
2258
2259 MD5Update(&ctx, (u_char *) laddr, addrsz);
2260 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2261
2262 MD5Update(&ctx, (u_char *) faddr, addrsz);
2263 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2264
2265 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2266
2267 MD5Final(hash, &ctx);
2268
2269 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2270
2271 /*
2272 * Now increment our "timer", and add it in to
2273 * the computed value.
2274 *
2275 * XXX Use `addin'?
2276 * XXX TCP_ISSINCR too large to use?
2277 */
2278 tcp_iss_seq += TCP_ISSINCR;
2279 #ifdef TCPISS_DEBUG
2280 printf("ISS hash 0x%08x, ", tcp_iss);
2281 #endif
2282 tcp_iss += tcp_iss_seq + addin;
2283 #ifdef TCPISS_DEBUG
2284 printf("new ISS 0x%08x\n", tcp_iss);
2285 #endif
2286 } else
2287 #endif /* NRND > 0 */
2288 {
2289 /*
2290 * Randomize.
2291 */
2292 #if NRND > 0
2293 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2294 #else
2295 tcp_iss = arc4random();
2296 #endif
2297
2298 /*
2299 * If we were asked to add some amount to a known value,
2300 * we will take a random value obtained above, mask off
2301 * the upper bits, and add in the known value. We also
2302 * add in a constant to ensure that we are at least a
2303 * certain distance from the original value.
2304 *
2305 * This is used when an old connection is in timed wait
2306 * and we have a new one coming in, for instance.
2307 */
2308 if (addin != 0) {
2309 #ifdef TCPISS_DEBUG
2310 printf("Random %08x, ", tcp_iss);
2311 #endif
2312 tcp_iss &= TCP_ISS_RANDOM_MASK;
2313 tcp_iss += addin + TCP_ISSINCR;
2314 #ifdef TCPISS_DEBUG
2315 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2316 #endif
2317 } else {
2318 tcp_iss &= TCP_ISS_RANDOM_MASK;
2319 tcp_iss += tcp_iss_seq;
2320 tcp_iss_seq += TCP_ISSINCR;
2321 #ifdef TCPISS_DEBUG
2322 printf("ISS %08x\n", tcp_iss);
2323 #endif
2324 }
2325 }
2326
2327 if (tcp_compat_42) {
2328 /*
2329 * Limit it to the positive range for really old TCP
2330 * implementations.
2331 * Just AND off the top bit instead of checking if
2332 * is set first - saves a branch 50% of the time.
2333 */
2334 tcp_iss &= 0x7fffffff; /* XXX */
2335 }
2336
2337 return (tcp_iss);
2338 }
2339
2340 #if defined(IPSEC) || defined(FAST_IPSEC)
2341 /* compute ESP/AH header size for TCP, including outer IP header. */
2342 size_t
2343 ipsec4_hdrsiz_tcp(tp)
2344 struct tcpcb *tp;
2345 {
2346 struct inpcb *inp;
2347 size_t hdrsiz;
2348
2349 /* XXX mapped addr case (tp->t_in6pcb) */
2350 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2351 return 0;
2352 switch (tp->t_family) {
2353 case AF_INET:
2354 /* XXX: should use currect direction. */
2355 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2356 break;
2357 default:
2358 hdrsiz = 0;
2359 break;
2360 }
2361
2362 return hdrsiz;
2363 }
2364
2365 #ifdef INET6
2366 size_t
2367 ipsec6_hdrsiz_tcp(tp)
2368 struct tcpcb *tp;
2369 {
2370 struct in6pcb *in6p;
2371 size_t hdrsiz;
2372
2373 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2374 return 0;
2375 switch (tp->t_family) {
2376 case AF_INET6:
2377 /* XXX: should use currect direction. */
2378 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2379 break;
2380 case AF_INET:
2381 /* mapped address case - tricky */
2382 default:
2383 hdrsiz = 0;
2384 break;
2385 }
2386
2387 return hdrsiz;
2388 }
2389 #endif
2390 #endif /*IPSEC*/
2391
2392 /*
2393 * Determine the length of the TCP options for this connection.
2394 *
2395 * XXX: What do we do for SACK, when we add that? Just reserve
2396 * all of the space? Otherwise we can't exactly be incrementing
2397 * cwnd by an amount that varies depending on the amount we last
2398 * had to SACK!
2399 */
2400
2401 u_int
2402 tcp_optlen(tp)
2403 struct tcpcb *tp;
2404 {
2405 u_int optlen;
2406
2407 optlen = 0;
2408 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2409 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2410 optlen += TCPOLEN_TSTAMP_APPA;
2411
2412 #ifdef TCP_SIGNATURE
2413 #if defined(INET6) && defined(FAST_IPSEC)
2414 if (tp->t_family == AF_INET)
2415 #endif
2416 if (tp->t_flags & TF_SIGNATURE)
2417 optlen += TCPOLEN_SIGNATURE + 2;
2418 #endif /* TCP_SIGNATURE */
2419
2420 return optlen;
2421 }
2422