tcp_subr.c revision 1.176 1 /* $NetBSD: tcp_subr.c,v 1.176 2004/12/19 06:42:24 christos Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.176 2004/12/19 06:42:24 christos Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcpip.h>
155
156 #ifdef IPSEC
157 #include <netinet6/ipsec.h>
158 #include <netkey/key.h>
159 #endif /*IPSEC*/
160
161 #ifdef FAST_IPSEC
162 #include <netipsec/ipsec.h>
163 #include <netipsec/xform.h>
164 #ifdef INET6
165 #include <netipsec/ipsec6.h>
166 #endif
167 #include <netipsec/key.h>
168 #endif /* FAST_IPSEC*/
169
170
171 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
172 struct tcpstat tcpstat; /* tcp statistics */
173 u_int32_t tcp_now; /* for RFC 1323 timestamps */
174
175 /* patchable/settable parameters for tcp */
176 int tcp_mssdflt = TCP_MSS;
177 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
178 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
179 #if NRND > 0
180 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
181 #endif
182 int tcp_do_sack = 1; /* selective acknowledgement */
183 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
184 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
185 int tcp_do_newreno = 1; /* Use the New Reno algorithms */
186 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
187 #ifndef TCP_INIT_WIN
188 #define TCP_INIT_WIN 0 /* initial slow start window */
189 #endif
190 #ifndef TCP_INIT_WIN_LOCAL
191 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
192 #endif
193 int tcp_init_win = TCP_INIT_WIN;
194 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
195 int tcp_mss_ifmtu = 0;
196 #ifdef TCP_COMPAT_42
197 int tcp_compat_42 = 1;
198 #else
199 int tcp_compat_42 = 0;
200 #endif
201 int tcp_rst_ppslim = 100; /* 100pps */
202 int tcp_ackdrop_ppslim = 100; /* 100pps */
203 int tcp_do_loopback_cksum = 0;
204
205 /* tcb hash */
206 #ifndef TCBHASHSIZE
207 #define TCBHASHSIZE 128
208 #endif
209 int tcbhashsize = TCBHASHSIZE;
210
211 /* syn hash parameters */
212 #define TCP_SYN_HASH_SIZE 293
213 #define TCP_SYN_BUCKET_SIZE 35
214 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
215 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
216 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
217 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
218
219 int tcp_freeq __P((struct tcpcb *));
220
221 #ifdef INET
222 void tcp_mtudisc_callback __P((struct in_addr));
223 #endif
224 #ifdef INET6
225 void tcp6_mtudisc_callback __P((struct in6_addr *));
226 #endif
227
228 void tcp_mtudisc __P((struct inpcb *, int));
229 #ifdef INET6
230 void tcp6_mtudisc __P((struct in6pcb *, int));
231 #endif
232
233 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
234
235 #ifdef TCP_CSUM_COUNTERS
236 #include <sys/device.h>
237
238 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
239 NULL, "tcp", "hwcsum bad");
240 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
241 NULL, "tcp", "hwcsum ok");
242 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
243 NULL, "tcp", "hwcsum data");
244 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
245 NULL, "tcp", "swcsum");
246
247 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
248 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
249 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
250 EVCNT_ATTACH_STATIC(tcp_swcsum);
251 #endif /* TCP_CSUM_COUNTERS */
252
253
254 #ifdef TCP_OUTPUT_COUNTERS
255 #include <sys/device.h>
256
257 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
258 NULL, "tcp", "output big header");
259 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
260 NULL, "tcp", "output predict hit");
261 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
262 NULL, "tcp", "output predict miss");
263 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264 NULL, "tcp", "output copy small");
265 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266 NULL, "tcp", "output copy big");
267 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268 NULL, "tcp", "output reference big");
269
270 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
271 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
272 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
273 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
274 EVCNT_ATTACH_STATIC(tcp_output_copybig);
275 EVCNT_ATTACH_STATIC(tcp_output_refbig);
276
277 #endif /* TCP_OUTPUT_COUNTERS */
278
279 #ifdef TCP_REASS_COUNTERS
280 #include <sys/device.h>
281
282 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
283 NULL, "tcp_reass", "calls");
284 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
285 &tcp_reass_, "tcp_reass", "insert into empty queue");
286 struct evcnt tcp_reass_iteration[8] = {
287 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
288 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
289 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
290 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
291 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
292 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
293 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
294 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
295 };
296 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
297 &tcp_reass_, "tcp_reass", "prepend to first");
298 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
299 &tcp_reass_, "tcp_reass", "prepend");
300 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
301 &tcp_reass_, "tcp_reass", "insert");
302 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
303 &tcp_reass_, "tcp_reass", "insert at tail");
304 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
305 &tcp_reass_, "tcp_reass", "append");
306 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
307 &tcp_reass_, "tcp_reass", "append to tail fragment");
308 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
309 &tcp_reass_, "tcp_reass", "overlap at end");
310 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
311 &tcp_reass_, "tcp_reass", "overlap at start");
312 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
313 &tcp_reass_, "tcp_reass", "duplicate segment");
314 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
315 &tcp_reass_, "tcp_reass", "duplicate fragment");
316
317 EVCNT_ATTACH_STATIC(tcp_reass_);
318 EVCNT_ATTACH_STATIC(tcp_reass_empty);
319 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
320 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
321 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
322 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
323 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
324 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
325 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
326 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
327 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
328 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
329 EVCNT_ATTACH_STATIC(tcp_reass_insert);
330 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
331 EVCNT_ATTACH_STATIC(tcp_reass_append);
332 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
333 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
334 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
335 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
336 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
337
338 #endif /* TCP_REASS_COUNTERS */
339
340 #ifdef MBUFTRACE
341 struct mowner tcp_mowner = { "tcp" };
342 struct mowner tcp_rx_mowner = { "tcp", "rx" };
343 struct mowner tcp_tx_mowner = { "tcp", "tx" };
344 #endif
345
346 /*
347 * Tcp initialization
348 */
349 void
350 tcp_init()
351 {
352 int hlen;
353
354 /* Initialize the TCPCB template. */
355 tcp_tcpcb_template();
356
357 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
358
359 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
360 #ifdef INET6
361 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
362 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
363 #endif
364 if (max_protohdr < hlen)
365 max_protohdr = hlen;
366 if (max_linkhdr + hlen > MHLEN)
367 panic("tcp_init");
368
369 #ifdef INET
370 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
371 #endif
372 #ifdef INET6
373 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
374 #endif
375
376 /* Initialize timer state. */
377 tcp_timer_init();
378
379 /* Initialize the compressed state engine. */
380 syn_cache_init();
381
382 MOWNER_ATTACH(&tcp_tx_mowner);
383 MOWNER_ATTACH(&tcp_rx_mowner);
384 MOWNER_ATTACH(&tcp_mowner);
385 }
386
387 /*
388 * Create template to be used to send tcp packets on a connection.
389 * Call after host entry created, allocates an mbuf and fills
390 * in a skeletal tcp/ip header, minimizing the amount of work
391 * necessary when the connection is used.
392 */
393 struct mbuf *
394 tcp_template(tp)
395 struct tcpcb *tp;
396 {
397 struct inpcb *inp = tp->t_inpcb;
398 #ifdef INET6
399 struct in6pcb *in6p = tp->t_in6pcb;
400 #endif
401 struct tcphdr *n;
402 struct mbuf *m;
403 int hlen;
404
405 switch (tp->t_family) {
406 case AF_INET:
407 hlen = sizeof(struct ip);
408 if (inp)
409 break;
410 #ifdef INET6
411 if (in6p) {
412 /* mapped addr case */
413 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
414 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
415 break;
416 }
417 #endif
418 return NULL; /*EINVAL*/
419 #ifdef INET6
420 case AF_INET6:
421 hlen = sizeof(struct ip6_hdr);
422 if (in6p) {
423 /* more sainty check? */
424 break;
425 }
426 return NULL; /*EINVAL*/
427 #endif
428 default:
429 hlen = 0; /*pacify gcc*/
430 return NULL; /*EAFNOSUPPORT*/
431 }
432 #ifdef DIAGNOSTIC
433 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
434 panic("mclbytes too small for t_template");
435 #endif
436 m = tp->t_template;
437 if (m && m->m_len == hlen + sizeof(struct tcphdr))
438 ;
439 else {
440 if (m)
441 m_freem(m);
442 m = tp->t_template = NULL;
443 MGETHDR(m, M_DONTWAIT, MT_HEADER);
444 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
445 MCLGET(m, M_DONTWAIT);
446 if ((m->m_flags & M_EXT) == 0) {
447 m_free(m);
448 m = NULL;
449 }
450 }
451 if (m == NULL)
452 return NULL;
453 MCLAIM(m, &tcp_mowner);
454 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
455 }
456
457 bzero(mtod(m, caddr_t), m->m_len);
458
459 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
460
461 switch (tp->t_family) {
462 case AF_INET:
463 {
464 struct ipovly *ipov;
465 mtod(m, struct ip *)->ip_v = 4;
466 mtod(m, struct ip *)->ip_hl = hlen >> 2;
467 ipov = mtod(m, struct ipovly *);
468 ipov->ih_pr = IPPROTO_TCP;
469 ipov->ih_len = htons(sizeof(struct tcphdr));
470 if (inp) {
471 ipov->ih_src = inp->inp_laddr;
472 ipov->ih_dst = inp->inp_faddr;
473 }
474 #ifdef INET6
475 else if (in6p) {
476 /* mapped addr case */
477 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
478 sizeof(ipov->ih_src));
479 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
480 sizeof(ipov->ih_dst));
481 }
482 #endif
483 /*
484 * Compute the pseudo-header portion of the checksum
485 * now. We incrementally add in the TCP option and
486 * payload lengths later, and then compute the TCP
487 * checksum right before the packet is sent off onto
488 * the wire.
489 */
490 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
491 ipov->ih_dst.s_addr,
492 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
493 break;
494 }
495 #ifdef INET6
496 case AF_INET6:
497 {
498 struct ip6_hdr *ip6;
499 mtod(m, struct ip *)->ip_v = 6;
500 ip6 = mtod(m, struct ip6_hdr *);
501 ip6->ip6_nxt = IPPROTO_TCP;
502 ip6->ip6_plen = htons(sizeof(struct tcphdr));
503 ip6->ip6_src = in6p->in6p_laddr;
504 ip6->ip6_dst = in6p->in6p_faddr;
505 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
506 if (ip6_auto_flowlabel) {
507 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
508 ip6->ip6_flow |=
509 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
510 }
511 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
512 ip6->ip6_vfc |= IPV6_VERSION;
513
514 /*
515 * Compute the pseudo-header portion of the checksum
516 * now. We incrementally add in the TCP option and
517 * payload lengths later, and then compute the TCP
518 * checksum right before the packet is sent off onto
519 * the wire.
520 */
521 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
522 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
523 htonl(IPPROTO_TCP));
524 break;
525 }
526 #endif
527 }
528 if (inp) {
529 n->th_sport = inp->inp_lport;
530 n->th_dport = inp->inp_fport;
531 }
532 #ifdef INET6
533 else if (in6p) {
534 n->th_sport = in6p->in6p_lport;
535 n->th_dport = in6p->in6p_fport;
536 }
537 #endif
538 n->th_seq = 0;
539 n->th_ack = 0;
540 n->th_x2 = 0;
541 n->th_off = 5;
542 n->th_flags = 0;
543 n->th_win = 0;
544 n->th_urp = 0;
545 return (m);
546 }
547
548 /*
549 * Send a single message to the TCP at address specified by
550 * the given TCP/IP header. If m == 0, then we make a copy
551 * of the tcpiphdr at ti and send directly to the addressed host.
552 * This is used to force keep alive messages out using the TCP
553 * template for a connection tp->t_template. If flags are given
554 * then we send a message back to the TCP which originated the
555 * segment ti, and discard the mbuf containing it and any other
556 * attached mbufs.
557 *
558 * In any case the ack and sequence number of the transmitted
559 * segment are as specified by the parameters.
560 */
561 int
562 tcp_respond(tp, template, m, th0, ack, seq, flags)
563 struct tcpcb *tp;
564 struct mbuf *template;
565 struct mbuf *m;
566 struct tcphdr *th0;
567 tcp_seq ack, seq;
568 int flags;
569 {
570 struct route *ro;
571 int error, tlen, win = 0;
572 int hlen;
573 struct ip *ip;
574 #ifdef INET6
575 struct ip6_hdr *ip6;
576 #endif
577 int family; /* family on packet, not inpcb/in6pcb! */
578 struct tcphdr *th;
579 struct socket *so;
580
581 if (tp != NULL && (flags & TH_RST) == 0) {
582 #ifdef DIAGNOSTIC
583 if (tp->t_inpcb && tp->t_in6pcb)
584 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
585 #endif
586 #ifdef INET
587 if (tp->t_inpcb)
588 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
589 #endif
590 #ifdef INET6
591 if (tp->t_in6pcb)
592 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
593 #endif
594 }
595
596 th = NULL; /* Quell uninitialized warning */
597 ip = NULL;
598 #ifdef INET6
599 ip6 = NULL;
600 #endif
601 if (m == 0) {
602 if (!template)
603 return EINVAL;
604
605 /* get family information from template */
606 switch (mtod(template, struct ip *)->ip_v) {
607 case 4:
608 family = AF_INET;
609 hlen = sizeof(struct ip);
610 break;
611 #ifdef INET6
612 case 6:
613 family = AF_INET6;
614 hlen = sizeof(struct ip6_hdr);
615 break;
616 #endif
617 default:
618 return EAFNOSUPPORT;
619 }
620
621 MGETHDR(m, M_DONTWAIT, MT_HEADER);
622 if (m) {
623 MCLAIM(m, &tcp_tx_mowner);
624 MCLGET(m, M_DONTWAIT);
625 if ((m->m_flags & M_EXT) == 0) {
626 m_free(m);
627 m = NULL;
628 }
629 }
630 if (m == NULL)
631 return (ENOBUFS);
632
633 if (tcp_compat_42)
634 tlen = 1;
635 else
636 tlen = 0;
637
638 m->m_data += max_linkhdr;
639 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
640 template->m_len);
641 switch (family) {
642 case AF_INET:
643 ip = mtod(m, struct ip *);
644 th = (struct tcphdr *)(ip + 1);
645 break;
646 #ifdef INET6
647 case AF_INET6:
648 ip6 = mtod(m, struct ip6_hdr *);
649 th = (struct tcphdr *)(ip6 + 1);
650 break;
651 #endif
652 #if 0
653 default:
654 /* noone will visit here */
655 m_freem(m);
656 return EAFNOSUPPORT;
657 #endif
658 }
659 flags = TH_ACK;
660 } else {
661
662 if ((m->m_flags & M_PKTHDR) == 0) {
663 #if 0
664 printf("non PKTHDR to tcp_respond\n");
665 #endif
666 m_freem(m);
667 return EINVAL;
668 }
669 #ifdef DIAGNOSTIC
670 if (!th0)
671 panic("th0 == NULL in tcp_respond");
672 #endif
673
674 /* get family information from m */
675 switch (mtod(m, struct ip *)->ip_v) {
676 case 4:
677 family = AF_INET;
678 hlen = sizeof(struct ip);
679 ip = mtod(m, struct ip *);
680 break;
681 #ifdef INET6
682 case 6:
683 family = AF_INET6;
684 hlen = sizeof(struct ip6_hdr);
685 ip6 = mtod(m, struct ip6_hdr *);
686 break;
687 #endif
688 default:
689 m_freem(m);
690 return EAFNOSUPPORT;
691 }
692 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
693 tlen = sizeof(*th0);
694 else
695 tlen = th0->th_off << 2;
696
697 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
698 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
699 m->m_len = hlen + tlen;
700 m_freem(m->m_next);
701 m->m_next = NULL;
702 } else {
703 struct mbuf *n;
704
705 #ifdef DIAGNOSTIC
706 if (max_linkhdr + hlen + tlen > MCLBYTES) {
707 m_freem(m);
708 return EMSGSIZE;
709 }
710 #endif
711 MGETHDR(n, M_DONTWAIT, MT_HEADER);
712 if (n && max_linkhdr + hlen + tlen > MHLEN) {
713 MCLGET(n, M_DONTWAIT);
714 if ((n->m_flags & M_EXT) == 0) {
715 m_freem(n);
716 n = NULL;
717 }
718 }
719 if (!n) {
720 m_freem(m);
721 return ENOBUFS;
722 }
723
724 MCLAIM(n, &tcp_tx_mowner);
725 n->m_data += max_linkhdr;
726 n->m_len = hlen + tlen;
727 m_copyback(n, 0, hlen, mtod(m, caddr_t));
728 m_copyback(n, hlen, tlen, (caddr_t)th0);
729
730 m_freem(m);
731 m = n;
732 n = NULL;
733 }
734
735 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
736 switch (family) {
737 case AF_INET:
738 ip = mtod(m, struct ip *);
739 th = (struct tcphdr *)(ip + 1);
740 ip->ip_p = IPPROTO_TCP;
741 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
742 ip->ip_p = IPPROTO_TCP;
743 break;
744 #ifdef INET6
745 case AF_INET6:
746 ip6 = mtod(m, struct ip6_hdr *);
747 th = (struct tcphdr *)(ip6 + 1);
748 ip6->ip6_nxt = IPPROTO_TCP;
749 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
750 ip6->ip6_nxt = IPPROTO_TCP;
751 break;
752 #endif
753 #if 0
754 default:
755 /* noone will visit here */
756 m_freem(m);
757 return EAFNOSUPPORT;
758 #endif
759 }
760 xchg(th->th_dport, th->th_sport, u_int16_t);
761 #undef xchg
762 tlen = 0; /*be friendly with the following code*/
763 }
764 th->th_seq = htonl(seq);
765 th->th_ack = htonl(ack);
766 th->th_x2 = 0;
767 if ((flags & TH_SYN) == 0) {
768 if (tp)
769 win >>= tp->rcv_scale;
770 if (win > TCP_MAXWIN)
771 win = TCP_MAXWIN;
772 th->th_win = htons((u_int16_t)win);
773 th->th_off = sizeof (struct tcphdr) >> 2;
774 tlen += sizeof(*th);
775 } else
776 tlen += th->th_off << 2;
777 m->m_len = hlen + tlen;
778 m->m_pkthdr.len = hlen + tlen;
779 m->m_pkthdr.rcvif = (struct ifnet *) 0;
780 th->th_flags = flags;
781 th->th_urp = 0;
782
783 switch (family) {
784 #ifdef INET
785 case AF_INET:
786 {
787 struct ipovly *ipov = (struct ipovly *)ip;
788 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
789 ipov->ih_len = htons((u_int16_t)tlen);
790
791 th->th_sum = 0;
792 th->th_sum = in_cksum(m, hlen + tlen);
793 ip->ip_len = htons(hlen + tlen);
794 ip->ip_ttl = ip_defttl;
795 break;
796 }
797 #endif
798 #ifdef INET6
799 case AF_INET6:
800 {
801 th->th_sum = 0;
802 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
803 tlen);
804 ip6->ip6_plen = ntohs(tlen);
805 if (tp && tp->t_in6pcb) {
806 struct ifnet *oifp;
807 ro = (struct route *)&tp->t_in6pcb->in6p_route;
808 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
809 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
810 } else
811 ip6->ip6_hlim = ip6_defhlim;
812 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
813 if (ip6_auto_flowlabel) {
814 ip6->ip6_flow |=
815 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
816 }
817 break;
818 }
819 #endif
820 }
821
822 if (tp && tp->t_inpcb)
823 so = tp->t_inpcb->inp_socket;
824 #ifdef INET6
825 else if (tp && tp->t_in6pcb)
826 so = tp->t_in6pcb->in6p_socket;
827 #endif
828 else
829 so = NULL;
830
831 if (tp != NULL && tp->t_inpcb != NULL) {
832 ro = &tp->t_inpcb->inp_route;
833 #ifdef DIAGNOSTIC
834 if (family != AF_INET)
835 panic("tcp_respond: address family mismatch");
836 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
837 panic("tcp_respond: ip_dst %x != inp_faddr %x",
838 ntohl(ip->ip_dst.s_addr),
839 ntohl(tp->t_inpcb->inp_faddr.s_addr));
840 }
841 #endif
842 }
843 #ifdef INET6
844 else if (tp != NULL && tp->t_in6pcb != NULL) {
845 ro = (struct route *)&tp->t_in6pcb->in6p_route;
846 #ifdef DIAGNOSTIC
847 if (family == AF_INET) {
848 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
849 panic("tcp_respond: not mapped addr");
850 if (bcmp(&ip->ip_dst,
851 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
852 sizeof(ip->ip_dst)) != 0) {
853 panic("tcp_respond: ip_dst != in6p_faddr");
854 }
855 } else if (family == AF_INET6) {
856 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
857 &tp->t_in6pcb->in6p_faddr))
858 panic("tcp_respond: ip6_dst != in6p_faddr");
859 } else
860 panic("tcp_respond: address family mismatch");
861 #endif
862 }
863 #endif
864 else
865 ro = NULL;
866
867 switch (family) {
868 #ifdef INET
869 case AF_INET:
870 error = ip_output(m, NULL, ro,
871 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
872 (struct ip_moptions *)0, so);
873 break;
874 #endif
875 #ifdef INET6
876 case AF_INET6:
877 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
878 (struct ip6_moptions *)0, so, NULL);
879 break;
880 #endif
881 default:
882 error = EAFNOSUPPORT;
883 break;
884 }
885
886 return (error);
887 }
888
889 /*
890 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
891 * a bunch of members individually, we maintain this template for the
892 * static and mostly-static components of the TCPCB, and copy it into
893 * the new TCPCB instead.
894 */
895 static struct tcpcb tcpcb_template = {
896 /*
897 * If TCP_NTIMERS ever changes, we'll need to update this
898 * initializer.
899 */
900 .t_timer = {
901 CALLOUT_INITIALIZER,
902 CALLOUT_INITIALIZER,
903 CALLOUT_INITIALIZER,
904 CALLOUT_INITIALIZER,
905 },
906 .t_delack_ch = CALLOUT_INITIALIZER,
907
908 .t_srtt = TCPTV_SRTTBASE,
909 .t_rttmin = TCPTV_MIN,
910
911 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
912 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
913 };
914
915 /*
916 * Updates the TCPCB template whenever a parameter that would affect
917 * the template is changed.
918 */
919 void
920 tcp_tcpcb_template(void)
921 {
922 struct tcpcb *tp = &tcpcb_template;
923 int flags;
924
925 tp->t_peermss = tcp_mssdflt;
926 tp->t_ourmss = tcp_mssdflt;
927 tp->t_segsz = tcp_mssdflt;
928
929 flags = 0;
930 if (tcp_do_rfc1323 && tcp_do_win_scale)
931 flags |= TF_REQ_SCALE;
932 if (tcp_do_rfc1323 && tcp_do_timestamps)
933 flags |= TF_REQ_TSTMP;
934 if (tcp_do_sack == 2)
935 flags |= TF_WILL_SACK;
936 else if (tcp_do_sack == 1)
937 flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
938 flags |= TF_CANT_TXSACK;
939 tp->t_flags = flags;
940
941 /*
942 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
943 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
944 * reasonable initial retransmit time.
945 */
946 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
947 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
948 TCPTV_MIN, TCPTV_REXMTMAX);
949 }
950
951 /*
952 * Create a new TCP control block, making an
953 * empty reassembly queue and hooking it to the argument
954 * protocol control block.
955 */
956 struct tcpcb *
957 tcp_newtcpcb(family, aux)
958 int family; /* selects inpcb, or in6pcb */
959 void *aux;
960 {
961 struct tcpcb *tp;
962 int i;
963
964 /* XXX Consider using a pool_cache for speed. */
965 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
966 if (tp == NULL)
967 return (NULL);
968 memcpy(tp, &tcpcb_template, sizeof(*tp));
969 TAILQ_INIT(&tp->segq);
970 TAILQ_INIT(&tp->timeq);
971 tp->t_family = family; /* may be overridden later on */
972 LIST_INIT(&tp->t_sc); /* XXX can template this */
973
974 /* Don't sweat this loop; hopefully the compiler will unroll it. */
975 for (i = 0; i < TCPT_NTIMERS; i++)
976 TCP_TIMER_INIT(tp, i);
977
978 switch (family) {
979 case AF_INET:
980 {
981 struct inpcb *inp = (struct inpcb *)aux;
982
983 inp->inp_ip.ip_ttl = ip_defttl;
984 inp->inp_ppcb = (caddr_t)tp;
985
986 tp->t_inpcb = inp;
987 tp->t_mtudisc = ip_mtudisc;
988 break;
989 }
990 #ifdef INET6
991 case AF_INET6:
992 {
993 struct in6pcb *in6p = (struct in6pcb *)aux;
994
995 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
996 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
997 : NULL);
998 in6p->in6p_ppcb = (caddr_t)tp;
999
1000 tp->t_in6pcb = in6p;
1001 /* for IPv6, always try to run path MTU discovery */
1002 tp->t_mtudisc = 1;
1003 break;
1004 }
1005 #endif /* INET6 */
1006 default:
1007 pool_put(&tcpcb_pool, tp);
1008 return (NULL);
1009 }
1010
1011 /*
1012 * Initialize our timebase. When we send timestamps, we take
1013 * the delta from tcp_now -- this means each connection always
1014 * gets a timebase of 0, which makes it, among other things,
1015 * more difficult to determine how long a system has been up,
1016 * and thus how many TCP sequence increments have occurred.
1017 */
1018 tp->ts_timebase = tcp_now;
1019
1020 return (tp);
1021 }
1022
1023 /*
1024 * Drop a TCP connection, reporting
1025 * the specified error. If connection is synchronized,
1026 * then send a RST to peer.
1027 */
1028 struct tcpcb *
1029 tcp_drop(tp, errno)
1030 struct tcpcb *tp;
1031 int errno;
1032 {
1033 struct socket *so = NULL;
1034
1035 #ifdef DIAGNOSTIC
1036 if (tp->t_inpcb && tp->t_in6pcb)
1037 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1038 #endif
1039 #ifdef INET
1040 if (tp->t_inpcb)
1041 so = tp->t_inpcb->inp_socket;
1042 #endif
1043 #ifdef INET6
1044 if (tp->t_in6pcb)
1045 so = tp->t_in6pcb->in6p_socket;
1046 #endif
1047 if (!so)
1048 return NULL;
1049
1050 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1051 tp->t_state = TCPS_CLOSED;
1052 (void) tcp_output(tp);
1053 tcpstat.tcps_drops++;
1054 } else
1055 tcpstat.tcps_conndrops++;
1056 if (errno == ETIMEDOUT && tp->t_softerror)
1057 errno = tp->t_softerror;
1058 so->so_error = errno;
1059 return (tcp_close(tp));
1060 }
1061
1062 /*
1063 * Return whether this tcpcb is marked as dead, indicating
1064 * to the calling timer function that no further action should
1065 * be taken, as we are about to release this tcpcb. The release
1066 * of the storage will be done if this is the last timer running.
1067 *
1068 * This should be called from the callout handler function after
1069 * callout_ack() is done, so that the number of invoking timer
1070 * functions is 0.
1071 */
1072 int
1073 tcp_isdead(tp)
1074 struct tcpcb *tp;
1075 {
1076 int dead = (tp->t_flags & TF_DEAD);
1077
1078 if (__predict_false(dead)) {
1079 if (tcp_timers_invoking(tp) > 0)
1080 /* not quite there yet -- count separately? */
1081 return dead;
1082 tcpstat.tcps_delayed_free++;
1083 pool_put(&tcpcb_pool, tp);
1084 }
1085 return dead;
1086 }
1087
1088 /*
1089 * Close a TCP control block:
1090 * discard all space held by the tcp
1091 * discard internet protocol block
1092 * wake up any sleepers
1093 */
1094 struct tcpcb *
1095 tcp_close(tp)
1096 struct tcpcb *tp;
1097 {
1098 struct inpcb *inp;
1099 #ifdef INET6
1100 struct in6pcb *in6p;
1101 #endif
1102 struct socket *so;
1103 #ifdef RTV_RTT
1104 struct rtentry *rt;
1105 #endif
1106 struct route *ro;
1107
1108 inp = tp->t_inpcb;
1109 #ifdef INET6
1110 in6p = tp->t_in6pcb;
1111 #endif
1112 so = NULL;
1113 ro = NULL;
1114 if (inp) {
1115 so = inp->inp_socket;
1116 ro = &inp->inp_route;
1117 }
1118 #ifdef INET6
1119 else if (in6p) {
1120 so = in6p->in6p_socket;
1121 ro = (struct route *)&in6p->in6p_route;
1122 }
1123 #endif
1124
1125 #ifdef RTV_RTT
1126 /*
1127 * If we sent enough data to get some meaningful characteristics,
1128 * save them in the routing entry. 'Enough' is arbitrarily
1129 * defined as the sendpipesize (default 4K) * 16. This would
1130 * give us 16 rtt samples assuming we only get one sample per
1131 * window (the usual case on a long haul net). 16 samples is
1132 * enough for the srtt filter to converge to within 5% of the correct
1133 * value; fewer samples and we could save a very bogus rtt.
1134 *
1135 * Don't update the default route's characteristics and don't
1136 * update anything that the user "locked".
1137 */
1138 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1139 ro && (rt = ro->ro_rt) &&
1140 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1141 u_long i = 0;
1142
1143 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1144 i = tp->t_srtt *
1145 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1146 if (rt->rt_rmx.rmx_rtt && i)
1147 /*
1148 * filter this update to half the old & half
1149 * the new values, converting scale.
1150 * See route.h and tcp_var.h for a
1151 * description of the scaling constants.
1152 */
1153 rt->rt_rmx.rmx_rtt =
1154 (rt->rt_rmx.rmx_rtt + i) / 2;
1155 else
1156 rt->rt_rmx.rmx_rtt = i;
1157 }
1158 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1159 i = tp->t_rttvar *
1160 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1161 if (rt->rt_rmx.rmx_rttvar && i)
1162 rt->rt_rmx.rmx_rttvar =
1163 (rt->rt_rmx.rmx_rttvar + i) / 2;
1164 else
1165 rt->rt_rmx.rmx_rttvar = i;
1166 }
1167 /*
1168 * update the pipelimit (ssthresh) if it has been updated
1169 * already or if a pipesize was specified & the threshhold
1170 * got below half the pipesize. I.e., wait for bad news
1171 * before we start updating, then update on both good
1172 * and bad news.
1173 */
1174 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1175 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1176 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1177 /*
1178 * convert the limit from user data bytes to
1179 * packets then to packet data bytes.
1180 */
1181 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1182 if (i < 2)
1183 i = 2;
1184 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1185 if (rt->rt_rmx.rmx_ssthresh)
1186 rt->rt_rmx.rmx_ssthresh =
1187 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1188 else
1189 rt->rt_rmx.rmx_ssthresh = i;
1190 }
1191 }
1192 #endif /* RTV_RTT */
1193 /* free the reassembly queue, if any */
1194 TCP_REASS_LOCK(tp);
1195 (void) tcp_freeq(tp);
1196 TCP_REASS_UNLOCK(tp);
1197
1198 tcp_canceltimers(tp);
1199 TCP_CLEAR_DELACK(tp);
1200 syn_cache_cleanup(tp);
1201
1202 if (tp->t_template) {
1203 m_free(tp->t_template);
1204 tp->t_template = NULL;
1205 }
1206 if (tcp_timers_invoking(tp))
1207 tp->t_flags |= TF_DEAD;
1208 else
1209 pool_put(&tcpcb_pool, tp);
1210
1211 if (inp) {
1212 inp->inp_ppcb = 0;
1213 soisdisconnected(so);
1214 in_pcbdetach(inp);
1215 }
1216 #ifdef INET6
1217 else if (in6p) {
1218 in6p->in6p_ppcb = 0;
1219 soisdisconnected(so);
1220 in6_pcbdetach(in6p);
1221 }
1222 #endif
1223 tcpstat.tcps_closed++;
1224 return ((struct tcpcb *)0);
1225 }
1226
1227 int
1228 tcp_freeq(tp)
1229 struct tcpcb *tp;
1230 {
1231 struct ipqent *qe;
1232 int rv = 0;
1233 #ifdef TCPREASS_DEBUG
1234 int i = 0;
1235 #endif
1236
1237 TCP_REASS_LOCK_CHECK(tp);
1238
1239 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1240 #ifdef TCPREASS_DEBUG
1241 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1242 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1243 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1244 #endif
1245 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1246 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1247 m_freem(qe->ipqe_m);
1248 pool_put(&tcpipqent_pool, qe);
1249 rv = 1;
1250 }
1251 return (rv);
1252 }
1253
1254 /*
1255 * Protocol drain routine. Called when memory is in short supply.
1256 */
1257 void
1258 tcp_drain()
1259 {
1260 struct inpcb_hdr *inph;
1261 struct tcpcb *tp;
1262
1263 /*
1264 * Free the sequence queue of all TCP connections.
1265 */
1266 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1267 switch (inph->inph_af) {
1268 case AF_INET:
1269 tp = intotcpcb((struct inpcb *)inph);
1270 break;
1271 #ifdef INET6
1272 case AF_INET6:
1273 tp = in6totcpcb((struct in6pcb *)inph);
1274 break;
1275 #endif
1276 default:
1277 tp = NULL;
1278 break;
1279 }
1280 if (tp != NULL) {
1281 /*
1282 * We may be called from a device's interrupt
1283 * context. If the tcpcb is already busy,
1284 * just bail out now.
1285 */
1286 if (tcp_reass_lock_try(tp) == 0)
1287 continue;
1288 if (tcp_freeq(tp))
1289 tcpstat.tcps_connsdrained++;
1290 TCP_REASS_UNLOCK(tp);
1291 }
1292 }
1293 }
1294
1295 /*
1296 * Notify a tcp user of an asynchronous error;
1297 * store error as soft error, but wake up user
1298 * (for now, won't do anything until can select for soft error).
1299 */
1300 void
1301 tcp_notify(inp, error)
1302 struct inpcb *inp;
1303 int error;
1304 {
1305 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1306 struct socket *so = inp->inp_socket;
1307
1308 /*
1309 * Ignore some errors if we are hooked up.
1310 * If connection hasn't completed, has retransmitted several times,
1311 * and receives a second error, give up now. This is better
1312 * than waiting a long time to establish a connection that
1313 * can never complete.
1314 */
1315 if (tp->t_state == TCPS_ESTABLISHED &&
1316 (error == EHOSTUNREACH || error == ENETUNREACH ||
1317 error == EHOSTDOWN)) {
1318 return;
1319 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1320 tp->t_rxtshift > 3 && tp->t_softerror)
1321 so->so_error = error;
1322 else
1323 tp->t_softerror = error;
1324 wakeup((caddr_t) &so->so_timeo);
1325 sorwakeup(so);
1326 sowwakeup(so);
1327 }
1328
1329 #ifdef INET6
1330 void
1331 tcp6_notify(in6p, error)
1332 struct in6pcb *in6p;
1333 int error;
1334 {
1335 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1336 struct socket *so = in6p->in6p_socket;
1337
1338 /*
1339 * Ignore some errors if we are hooked up.
1340 * If connection hasn't completed, has retransmitted several times,
1341 * and receives a second error, give up now. This is better
1342 * than waiting a long time to establish a connection that
1343 * can never complete.
1344 */
1345 if (tp->t_state == TCPS_ESTABLISHED &&
1346 (error == EHOSTUNREACH || error == ENETUNREACH ||
1347 error == EHOSTDOWN)) {
1348 return;
1349 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1350 tp->t_rxtshift > 3 && tp->t_softerror)
1351 so->so_error = error;
1352 else
1353 tp->t_softerror = error;
1354 wakeup((caddr_t) &so->so_timeo);
1355 sorwakeup(so);
1356 sowwakeup(so);
1357 }
1358 #endif
1359
1360 #ifdef INET6
1361 void
1362 tcp6_ctlinput(cmd, sa, d)
1363 int cmd;
1364 struct sockaddr *sa;
1365 void *d;
1366 {
1367 struct tcphdr th;
1368 void (*notify) __P((struct in6pcb *, int)) = tcp6_notify;
1369 int nmatch;
1370 struct ip6_hdr *ip6;
1371 const struct sockaddr_in6 *sa6_src = NULL;
1372 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1373 struct mbuf *m;
1374 int off;
1375
1376 if (sa->sa_family != AF_INET6 ||
1377 sa->sa_len != sizeof(struct sockaddr_in6))
1378 return;
1379 if ((unsigned)cmd >= PRC_NCMDS)
1380 return;
1381 else if (cmd == PRC_QUENCH) {
1382 /* XXX there's no PRC_QUENCH in IPv6 */
1383 notify = tcp6_quench;
1384 } else if (PRC_IS_REDIRECT(cmd))
1385 notify = in6_rtchange, d = NULL;
1386 else if (cmd == PRC_MSGSIZE)
1387 ; /* special code is present, see below */
1388 else if (cmd == PRC_HOSTDEAD)
1389 d = NULL;
1390 else if (inet6ctlerrmap[cmd] == 0)
1391 return;
1392
1393 /* if the parameter is from icmp6, decode it. */
1394 if (d != NULL) {
1395 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1396 m = ip6cp->ip6c_m;
1397 ip6 = ip6cp->ip6c_ip6;
1398 off = ip6cp->ip6c_off;
1399 sa6_src = ip6cp->ip6c_src;
1400 } else {
1401 m = NULL;
1402 ip6 = NULL;
1403 sa6_src = &sa6_any;
1404 off = 0;
1405 }
1406
1407 if (ip6) {
1408 /*
1409 * XXX: We assume that when ip6 is non NULL,
1410 * M and OFF are valid.
1411 */
1412
1413 /* check if we can safely examine src and dst ports */
1414 if (m->m_pkthdr.len < off + sizeof(th)) {
1415 if (cmd == PRC_MSGSIZE)
1416 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1417 return;
1418 }
1419
1420 bzero(&th, sizeof(th));
1421 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1422
1423 if (cmd == PRC_MSGSIZE) {
1424 int valid = 0;
1425
1426 /*
1427 * Check to see if we have a valid TCP connection
1428 * corresponding to the address in the ICMPv6 message
1429 * payload.
1430 */
1431 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1432 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1433 th.th_sport, 0))
1434 valid++;
1435
1436 /*
1437 * Depending on the value of "valid" and routing table
1438 * size (mtudisc_{hi,lo}wat), we will:
1439 * - recalcurate the new MTU and create the
1440 * corresponding routing entry, or
1441 * - ignore the MTU change notification.
1442 */
1443 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1444
1445 /*
1446 * no need to call in6_pcbnotify, it should have been
1447 * called via callback if necessary
1448 */
1449 return;
1450 }
1451
1452 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1453 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1454 if (nmatch == 0 && syn_cache_count &&
1455 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1456 inet6ctlerrmap[cmd] == ENETUNREACH ||
1457 inet6ctlerrmap[cmd] == EHOSTDOWN))
1458 syn_cache_unreach((struct sockaddr *)sa6_src,
1459 sa, &th);
1460 } else {
1461 (void) in6_pcbnotify(&tcbtable, sa, 0,
1462 (struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1463 }
1464 }
1465 #endif
1466
1467 #ifdef INET
1468 /* assumes that ip header and tcp header are contiguous on mbuf */
1469 void *
1470 tcp_ctlinput(cmd, sa, v)
1471 int cmd;
1472 struct sockaddr *sa;
1473 void *v;
1474 {
1475 struct ip *ip = v;
1476 struct tcphdr *th;
1477 struct icmp *icp;
1478 extern const int inetctlerrmap[];
1479 void (*notify) __P((struct inpcb *, int)) = tcp_notify;
1480 int errno;
1481 int nmatch;
1482 #ifdef INET6
1483 struct in6_addr src6, dst6;
1484 #endif
1485
1486 if (sa->sa_family != AF_INET ||
1487 sa->sa_len != sizeof(struct sockaddr_in))
1488 return NULL;
1489 if ((unsigned)cmd >= PRC_NCMDS)
1490 return NULL;
1491 errno = inetctlerrmap[cmd];
1492 if (cmd == PRC_QUENCH)
1493 notify = tcp_quench;
1494 else if (PRC_IS_REDIRECT(cmd))
1495 notify = in_rtchange, ip = 0;
1496 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1497 /*
1498 * Check to see if we have a valid TCP connection
1499 * corresponding to the address in the ICMP message
1500 * payload.
1501 *
1502 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1503 */
1504 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1505 #ifdef INET6
1506 memset(&src6, 0, sizeof(src6));
1507 memset(&dst6, 0, sizeof(dst6));
1508 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1509 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1510 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1511 #endif
1512 if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
1513 ip->ip_src, th->th_sport) != NULL)
1514 ;
1515 #ifdef INET6
1516 else if (in6_pcblookup_connect(&tcbtable, &dst6,
1517 th->th_dport, &src6, th->th_sport, 0) != NULL)
1518 ;
1519 #endif
1520 else
1521 return NULL;
1522
1523 /*
1524 * Now that we've validated that we are actually communicating
1525 * with the host indicated in the ICMP message, locate the
1526 * ICMP header, recalculate the new MTU, and create the
1527 * corresponding routing entry.
1528 */
1529 icp = (struct icmp *)((caddr_t)ip -
1530 offsetof(struct icmp, icmp_ip));
1531 icmp_mtudisc(icp, ip->ip_dst);
1532
1533 return NULL;
1534 } else if (cmd == PRC_HOSTDEAD)
1535 ip = 0;
1536 else if (errno == 0)
1537 return NULL;
1538 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1539 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1540 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1541 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1542 if (nmatch == 0 && syn_cache_count &&
1543 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1544 inetctlerrmap[cmd] == ENETUNREACH ||
1545 inetctlerrmap[cmd] == EHOSTDOWN)) {
1546 struct sockaddr_in sin;
1547 bzero(&sin, sizeof(sin));
1548 sin.sin_len = sizeof(sin);
1549 sin.sin_family = AF_INET;
1550 sin.sin_port = th->th_sport;
1551 sin.sin_addr = ip->ip_src;
1552 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1553 }
1554
1555 /* XXX mapped address case */
1556 } else
1557 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1558 notify);
1559 return NULL;
1560 }
1561
1562 /*
1563 * When a source quence is received, we are being notifed of congestion.
1564 * Close the congestion window down to the Loss Window (one segment).
1565 * We will gradually open it again as we proceed.
1566 */
1567 void
1568 tcp_quench(inp, errno)
1569 struct inpcb *inp;
1570 int errno;
1571 {
1572 struct tcpcb *tp = intotcpcb(inp);
1573
1574 if (tp)
1575 tp->snd_cwnd = tp->t_segsz;
1576 }
1577 #endif
1578
1579 #ifdef INET6
1580 void
1581 tcp6_quench(in6p, errno)
1582 struct in6pcb *in6p;
1583 int errno;
1584 {
1585 struct tcpcb *tp = in6totcpcb(in6p);
1586
1587 if (tp)
1588 tp->snd_cwnd = tp->t_segsz;
1589 }
1590 #endif
1591
1592 #ifdef INET
1593 /*
1594 * Path MTU Discovery handlers.
1595 */
1596 void
1597 tcp_mtudisc_callback(faddr)
1598 struct in_addr faddr;
1599 {
1600 #ifdef INET6
1601 struct in6_addr in6;
1602 #endif
1603
1604 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1605 #ifdef INET6
1606 memset(&in6, 0, sizeof(in6));
1607 in6.s6_addr16[5] = 0xffff;
1608 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1609 tcp6_mtudisc_callback(&in6);
1610 #endif
1611 }
1612
1613 /*
1614 * On receipt of path MTU corrections, flush old route and replace it
1615 * with the new one. Retransmit all unacknowledged packets, to ensure
1616 * that all packets will be received.
1617 */
1618 void
1619 tcp_mtudisc(inp, errno)
1620 struct inpcb *inp;
1621 int errno;
1622 {
1623 struct tcpcb *tp = intotcpcb(inp);
1624 struct rtentry *rt = in_pcbrtentry(inp);
1625
1626 if (tp != 0) {
1627 if (rt != 0) {
1628 /*
1629 * If this was not a host route, remove and realloc.
1630 */
1631 if ((rt->rt_flags & RTF_HOST) == 0) {
1632 in_rtchange(inp, errno);
1633 if ((rt = in_pcbrtentry(inp)) == 0)
1634 return;
1635 }
1636
1637 /*
1638 * Slow start out of the error condition. We
1639 * use the MTU because we know it's smaller
1640 * than the previously transmitted segment.
1641 *
1642 * Note: This is more conservative than the
1643 * suggestion in draft-floyd-incr-init-win-03.
1644 */
1645 if (rt->rt_rmx.rmx_mtu != 0)
1646 tp->snd_cwnd =
1647 TCP_INITIAL_WINDOW(tcp_init_win,
1648 rt->rt_rmx.rmx_mtu);
1649 }
1650
1651 /*
1652 * Resend unacknowledged packets.
1653 */
1654 tp->snd_nxt = tp->snd_una;
1655 tcp_output(tp);
1656 }
1657 }
1658 #endif
1659
1660 #ifdef INET6
1661 /*
1662 * Path MTU Discovery handlers.
1663 */
1664 void
1665 tcp6_mtudisc_callback(faddr)
1666 struct in6_addr *faddr;
1667 {
1668 struct sockaddr_in6 sin6;
1669
1670 bzero(&sin6, sizeof(sin6));
1671 sin6.sin6_family = AF_INET6;
1672 sin6.sin6_len = sizeof(struct sockaddr_in6);
1673 sin6.sin6_addr = *faddr;
1674 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1675 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1676 }
1677
1678 void
1679 tcp6_mtudisc(in6p, errno)
1680 struct in6pcb *in6p;
1681 int errno;
1682 {
1683 struct tcpcb *tp = in6totcpcb(in6p);
1684 struct rtentry *rt = in6_pcbrtentry(in6p);
1685
1686 if (tp != 0) {
1687 if (rt != 0) {
1688 /*
1689 * If this was not a host route, remove and realloc.
1690 */
1691 if ((rt->rt_flags & RTF_HOST) == 0) {
1692 in6_rtchange(in6p, errno);
1693 if ((rt = in6_pcbrtentry(in6p)) == 0)
1694 return;
1695 }
1696
1697 /*
1698 * Slow start out of the error condition. We
1699 * use the MTU because we know it's smaller
1700 * than the previously transmitted segment.
1701 *
1702 * Note: This is more conservative than the
1703 * suggestion in draft-floyd-incr-init-win-03.
1704 */
1705 if (rt->rt_rmx.rmx_mtu != 0)
1706 tp->snd_cwnd =
1707 TCP_INITIAL_WINDOW(tcp_init_win,
1708 rt->rt_rmx.rmx_mtu);
1709 }
1710
1711 /*
1712 * Resend unacknowledged packets.
1713 */
1714 tp->snd_nxt = tp->snd_una;
1715 tcp_output(tp);
1716 }
1717 }
1718 #endif /* INET6 */
1719
1720 /*
1721 * Compute the MSS to advertise to the peer. Called only during
1722 * the 3-way handshake. If we are the server (peer initiated
1723 * connection), we are called with a pointer to the interface
1724 * on which the SYN packet arrived. If we are the client (we
1725 * initiated connection), we are called with a pointer to the
1726 * interface out which this connection should go.
1727 *
1728 * NOTE: Do not subtract IP option/extension header size nor IPsec
1729 * header size from MSS advertisement. MSS option must hold the maximum
1730 * segment size we can accept, so it must always be:
1731 * max(if mtu) - ip header - tcp header
1732 */
1733 u_long
1734 tcp_mss_to_advertise(ifp, af)
1735 const struct ifnet *ifp;
1736 int af;
1737 {
1738 extern u_long in_maxmtu;
1739 u_long mss = 0;
1740 u_long hdrsiz;
1741
1742 /*
1743 * In order to avoid defeating path MTU discovery on the peer,
1744 * we advertise the max MTU of all attached networks as our MSS,
1745 * per RFC 1191, section 3.1.
1746 *
1747 * We provide the option to advertise just the MTU of
1748 * the interface on which we hope this connection will
1749 * be receiving. If we are responding to a SYN, we
1750 * will have a pretty good idea about this, but when
1751 * initiating a connection there is a bit more doubt.
1752 *
1753 * We also need to ensure that loopback has a large enough
1754 * MSS, as the loopback MTU is never included in in_maxmtu.
1755 */
1756
1757 if (ifp != NULL)
1758 switch (af) {
1759 case AF_INET:
1760 mss = ifp->if_mtu;
1761 break;
1762 #ifdef INET6
1763 case AF_INET6:
1764 mss = IN6_LINKMTU(ifp);
1765 break;
1766 #endif
1767 }
1768
1769 if (tcp_mss_ifmtu == 0)
1770 switch (af) {
1771 case AF_INET:
1772 mss = max(in_maxmtu, mss);
1773 break;
1774 #ifdef INET6
1775 case AF_INET6:
1776 mss = max(in6_maxmtu, mss);
1777 break;
1778 #endif
1779 }
1780
1781 switch (af) {
1782 case AF_INET:
1783 hdrsiz = sizeof(struct ip);
1784 break;
1785 #ifdef INET6
1786 case AF_INET6:
1787 hdrsiz = sizeof(struct ip6_hdr);
1788 break;
1789 #endif
1790 default:
1791 hdrsiz = 0;
1792 break;
1793 }
1794 hdrsiz += sizeof(struct tcphdr);
1795 if (mss > hdrsiz)
1796 mss -= hdrsiz;
1797
1798 mss = max(tcp_mssdflt, mss);
1799 return (mss);
1800 }
1801
1802 /*
1803 * Set connection variables based on the peer's advertised MSS.
1804 * We are passed the TCPCB for the actual connection. If we
1805 * are the server, we are called by the compressed state engine
1806 * when the 3-way handshake is complete. If we are the client,
1807 * we are called when we receive the SYN,ACK from the server.
1808 *
1809 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1810 * before this routine is called!
1811 */
1812 void
1813 tcp_mss_from_peer(tp, offer)
1814 struct tcpcb *tp;
1815 int offer;
1816 {
1817 struct socket *so;
1818 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1819 struct rtentry *rt;
1820 #endif
1821 u_long bufsize;
1822 int mss;
1823
1824 #ifdef DIAGNOSTIC
1825 if (tp->t_inpcb && tp->t_in6pcb)
1826 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1827 #endif
1828 so = NULL;
1829 rt = NULL;
1830 #ifdef INET
1831 if (tp->t_inpcb) {
1832 so = tp->t_inpcb->inp_socket;
1833 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1834 rt = in_pcbrtentry(tp->t_inpcb);
1835 #endif
1836 }
1837 #endif
1838 #ifdef INET6
1839 if (tp->t_in6pcb) {
1840 so = tp->t_in6pcb->in6p_socket;
1841 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1842 rt = in6_pcbrtentry(tp->t_in6pcb);
1843 #endif
1844 }
1845 #endif
1846
1847 /*
1848 * As per RFC1122, use the default MSS value, unless they
1849 * sent us an offer. Do not accept offers less than 256 bytes.
1850 */
1851 mss = tcp_mssdflt;
1852 if (offer)
1853 mss = offer;
1854 mss = max(mss, 256); /* sanity */
1855 tp->t_peermss = mss;
1856 mss -= tcp_optlen(tp);
1857 #ifdef INET
1858 if (tp->t_inpcb)
1859 mss -= ip_optlen(tp->t_inpcb);
1860 #endif
1861 #ifdef INET6
1862 if (tp->t_in6pcb)
1863 mss -= ip6_optlen(tp->t_in6pcb);
1864 #endif
1865
1866 /*
1867 * If there's a pipesize, change the socket buffer to that size.
1868 * Make the socket buffer an integral number of MSS units. If
1869 * the MSS is larger than the socket buffer, artificially decrease
1870 * the MSS.
1871 */
1872 #ifdef RTV_SPIPE
1873 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1874 bufsize = rt->rt_rmx.rmx_sendpipe;
1875 else
1876 #endif
1877 bufsize = so->so_snd.sb_hiwat;
1878 if (bufsize < mss)
1879 mss = bufsize;
1880 else {
1881 bufsize = roundup(bufsize, mss);
1882 if (bufsize > sb_max)
1883 bufsize = sb_max;
1884 (void) sbreserve(&so->so_snd, bufsize, so);
1885 }
1886 tp->t_segsz = mss;
1887
1888 #ifdef RTV_SSTHRESH
1889 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1890 /*
1891 * There's some sort of gateway or interface buffer
1892 * limit on the path. Use this to set the slow
1893 * start threshold, but set the threshold to no less
1894 * than 2 * MSS.
1895 */
1896 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1897 }
1898 #endif
1899 }
1900
1901 /*
1902 * Processing necessary when a TCP connection is established.
1903 */
1904 void
1905 tcp_established(tp)
1906 struct tcpcb *tp;
1907 {
1908 struct socket *so;
1909 #ifdef RTV_RPIPE
1910 struct rtentry *rt;
1911 #endif
1912 u_long bufsize;
1913
1914 #ifdef DIAGNOSTIC
1915 if (tp->t_inpcb && tp->t_in6pcb)
1916 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1917 #endif
1918 so = NULL;
1919 rt = NULL;
1920 #ifdef INET
1921 if (tp->t_inpcb) {
1922 so = tp->t_inpcb->inp_socket;
1923 #if defined(RTV_RPIPE)
1924 rt = in_pcbrtentry(tp->t_inpcb);
1925 #endif
1926 }
1927 #endif
1928 #ifdef INET6
1929 if (tp->t_in6pcb) {
1930 so = tp->t_in6pcb->in6p_socket;
1931 #if defined(RTV_RPIPE)
1932 rt = in6_pcbrtentry(tp->t_in6pcb);
1933 #endif
1934 }
1935 #endif
1936
1937 tp->t_state = TCPS_ESTABLISHED;
1938 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1939
1940 #ifdef RTV_RPIPE
1941 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1942 bufsize = rt->rt_rmx.rmx_recvpipe;
1943 else
1944 #endif
1945 bufsize = so->so_rcv.sb_hiwat;
1946 if (bufsize > tp->t_ourmss) {
1947 bufsize = roundup(bufsize, tp->t_ourmss);
1948 if (bufsize > sb_max)
1949 bufsize = sb_max;
1950 (void) sbreserve(&so->so_rcv, bufsize, so);
1951 }
1952 }
1953
1954 /*
1955 * Check if there's an initial rtt or rttvar. Convert from the
1956 * route-table units to scaled multiples of the slow timeout timer.
1957 * Called only during the 3-way handshake.
1958 */
1959 void
1960 tcp_rmx_rtt(tp)
1961 struct tcpcb *tp;
1962 {
1963 #ifdef RTV_RTT
1964 struct rtentry *rt = NULL;
1965 int rtt;
1966
1967 #ifdef DIAGNOSTIC
1968 if (tp->t_inpcb && tp->t_in6pcb)
1969 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1970 #endif
1971 #ifdef INET
1972 if (tp->t_inpcb)
1973 rt = in_pcbrtentry(tp->t_inpcb);
1974 #endif
1975 #ifdef INET6
1976 if (tp->t_in6pcb)
1977 rt = in6_pcbrtentry(tp->t_in6pcb);
1978 #endif
1979 if (rt == NULL)
1980 return;
1981
1982 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1983 /*
1984 * XXX The lock bit for MTU indicates that the value
1985 * is also a minimum value; this is subject to time.
1986 */
1987 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1988 TCPT_RANGESET(tp->t_rttmin,
1989 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1990 TCPTV_MIN, TCPTV_REXMTMAX);
1991 tp->t_srtt = rtt /
1992 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1993 if (rt->rt_rmx.rmx_rttvar) {
1994 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1995 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1996 (TCP_RTTVAR_SHIFT + 2));
1997 } else {
1998 /* Default variation is +- 1 rtt */
1999 tp->t_rttvar =
2000 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2001 }
2002 TCPT_RANGESET(tp->t_rxtcur,
2003 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2004 tp->t_rttmin, TCPTV_REXMTMAX);
2005 }
2006 #endif
2007 }
2008
2009 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2010 #if NRND > 0
2011 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2012 #endif
2013
2014 /*
2015 * Get a new sequence value given a tcp control block
2016 */
2017 tcp_seq
2018 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2019 {
2020
2021 #ifdef INET
2022 if (tp->t_inpcb != NULL) {
2023 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2024 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2025 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2026 addin));
2027 }
2028 #endif
2029 #ifdef INET6
2030 if (tp->t_in6pcb != NULL) {
2031 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2032 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2033 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2034 addin));
2035 }
2036 #endif
2037 /* Not possible. */
2038 panic("tcp_new_iss");
2039 }
2040
2041 /*
2042 * This routine actually generates a new TCP initial sequence number.
2043 */
2044 tcp_seq
2045 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2046 size_t addrsz, tcp_seq addin)
2047 {
2048 tcp_seq tcp_iss;
2049
2050 #if NRND > 0
2051 static int beenhere;
2052
2053 /*
2054 * If we haven't been here before, initialize our cryptographic
2055 * hash secret.
2056 */
2057 if (beenhere == 0) {
2058 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2059 RND_EXTRACT_ANY);
2060 beenhere = 1;
2061 }
2062
2063 if (tcp_do_rfc1948) {
2064 MD5_CTX ctx;
2065 u_int8_t hash[16]; /* XXX MD5 knowledge */
2066
2067 /*
2068 * Compute the base value of the ISS. It is a hash
2069 * of (saddr, sport, daddr, dport, secret).
2070 */
2071 MD5Init(&ctx);
2072
2073 MD5Update(&ctx, (u_char *) laddr, addrsz);
2074 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2075
2076 MD5Update(&ctx, (u_char *) faddr, addrsz);
2077 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2078
2079 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2080
2081 MD5Final(hash, &ctx);
2082
2083 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2084
2085 /*
2086 * Now increment our "timer", and add it in to
2087 * the computed value.
2088 *
2089 * XXX Use `addin'?
2090 * XXX TCP_ISSINCR too large to use?
2091 */
2092 tcp_iss_seq += TCP_ISSINCR;
2093 #ifdef TCPISS_DEBUG
2094 printf("ISS hash 0x%08x, ", tcp_iss);
2095 #endif
2096 tcp_iss += tcp_iss_seq + addin;
2097 #ifdef TCPISS_DEBUG
2098 printf("new ISS 0x%08x\n", tcp_iss);
2099 #endif
2100 } else
2101 #endif /* NRND > 0 */
2102 {
2103 /*
2104 * Randomize.
2105 */
2106 #if NRND > 0
2107 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2108 #else
2109 tcp_iss = arc4random();
2110 #endif
2111
2112 /*
2113 * If we were asked to add some amount to a known value,
2114 * we will take a random value obtained above, mask off
2115 * the upper bits, and add in the known value. We also
2116 * add in a constant to ensure that we are at least a
2117 * certain distance from the original value.
2118 *
2119 * This is used when an old connection is in timed wait
2120 * and we have a new one coming in, for instance.
2121 */
2122 if (addin != 0) {
2123 #ifdef TCPISS_DEBUG
2124 printf("Random %08x, ", tcp_iss);
2125 #endif
2126 tcp_iss &= TCP_ISS_RANDOM_MASK;
2127 tcp_iss += addin + TCP_ISSINCR;
2128 #ifdef TCPISS_DEBUG
2129 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2130 #endif
2131 } else {
2132 tcp_iss &= TCP_ISS_RANDOM_MASK;
2133 tcp_iss += tcp_iss_seq;
2134 tcp_iss_seq += TCP_ISSINCR;
2135 #ifdef TCPISS_DEBUG
2136 printf("ISS %08x\n", tcp_iss);
2137 #endif
2138 }
2139 }
2140
2141 if (tcp_compat_42) {
2142 /*
2143 * Limit it to the positive range for really old TCP
2144 * implementations.
2145 * Just AND off the top bit instead of checking if
2146 * is set first - saves a branch 50% of the time.
2147 */
2148 tcp_iss &= 0x7fffffff; /* XXX */
2149 }
2150
2151 return (tcp_iss);
2152 }
2153
2154 #if defined(IPSEC) || defined(FAST_IPSEC)
2155 /* compute ESP/AH header size for TCP, including outer IP header. */
2156 size_t
2157 ipsec4_hdrsiz_tcp(tp)
2158 struct tcpcb *tp;
2159 {
2160 struct inpcb *inp;
2161 size_t hdrsiz;
2162
2163 /* XXX mapped addr case (tp->t_in6pcb) */
2164 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2165 return 0;
2166 switch (tp->t_family) {
2167 case AF_INET:
2168 /* XXX: should use currect direction. */
2169 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2170 break;
2171 default:
2172 hdrsiz = 0;
2173 break;
2174 }
2175
2176 return hdrsiz;
2177 }
2178
2179 #ifdef INET6
2180 size_t
2181 ipsec6_hdrsiz_tcp(tp)
2182 struct tcpcb *tp;
2183 {
2184 struct in6pcb *in6p;
2185 size_t hdrsiz;
2186
2187 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2188 return 0;
2189 switch (tp->t_family) {
2190 case AF_INET6:
2191 /* XXX: should use currect direction. */
2192 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2193 break;
2194 case AF_INET:
2195 /* mapped address case - tricky */
2196 default:
2197 hdrsiz = 0;
2198 break;
2199 }
2200
2201 return hdrsiz;
2202 }
2203 #endif
2204 #endif /*IPSEC*/
2205
2206 /*
2207 * Determine the length of the TCP options for this connection.
2208 *
2209 * XXX: What do we do for SACK, when we add that? Just reserve
2210 * all of the space? Otherwise we can't exactly be incrementing
2211 * cwnd by an amount that varies depending on the amount we last
2212 * had to SACK!
2213 */
2214
2215 u_int
2216 tcp_optlen(tp)
2217 struct tcpcb *tp;
2218 {
2219 u_int optlen;
2220
2221 optlen = 0;
2222 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2223 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2224 optlen += TCPOLEN_TSTAMP_APPA;
2225
2226 #ifdef TCP_SIGNATURE
2227 #if defined(INET6) && defined(FAST_IPSEC)
2228 if (tp->t_family == AF_INET)
2229 #endif
2230 if (tp->t_flags & TF_SIGNATURE)
2231 optlen += TCPOLEN_SIGNATURE + 2;
2232 #endif /* TCP_SIGNATURE */
2233
2234 return optlen;
2235 }
2236