tcp_subr.c revision 1.178 1 /* $NetBSD: tcp_subr.c,v 1.178 2005/02/02 21:41:55 perry Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.178 2005/02/02 21:41:55 perry Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcpip.h>
155
156 #ifdef IPSEC
157 #include <netinet6/ipsec.h>
158 #include <netkey/key.h>
159 #endif /*IPSEC*/
160
161 #ifdef FAST_IPSEC
162 #include <netipsec/ipsec.h>
163 #include <netipsec/xform.h>
164 #ifdef INET6
165 #include <netipsec/ipsec6.h>
166 #endif
167 #include <netipsec/key.h>
168 #endif /* FAST_IPSEC*/
169
170
171 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
172 struct tcpstat tcpstat; /* tcp statistics */
173 u_int32_t tcp_now; /* for RFC 1323 timestamps */
174
175 /* patchable/settable parameters for tcp */
176 int tcp_mssdflt = TCP_MSS;
177 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
178 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
179 #if NRND > 0
180 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
181 #endif
182 int tcp_do_sack = 1; /* selective acknowledgement */
183 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
184 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
185 int tcp_do_newreno = 1; /* Use the New Reno algorithms */
186 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
187 #ifndef TCP_INIT_WIN
188 #define TCP_INIT_WIN 0 /* initial slow start window */
189 #endif
190 #ifndef TCP_INIT_WIN_LOCAL
191 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
192 #endif
193 int tcp_init_win = TCP_INIT_WIN;
194 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
195 int tcp_mss_ifmtu = 0;
196 #ifdef TCP_COMPAT_42
197 int tcp_compat_42 = 1;
198 #else
199 int tcp_compat_42 = 0;
200 #endif
201 int tcp_rst_ppslim = 100; /* 100pps */
202 int tcp_ackdrop_ppslim = 100; /* 100pps */
203 int tcp_do_loopback_cksum = 0;
204
205 /* tcb hash */
206 #ifndef TCBHASHSIZE
207 #define TCBHASHSIZE 128
208 #endif
209 int tcbhashsize = TCBHASHSIZE;
210
211 /* syn hash parameters */
212 #define TCP_SYN_HASH_SIZE 293
213 #define TCP_SYN_BUCKET_SIZE 35
214 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
215 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
216 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
217 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
218
219 int tcp_freeq(struct tcpcb *);
220
221 #ifdef INET
222 void tcp_mtudisc_callback(struct in_addr);
223 #endif
224 #ifdef INET6
225 void tcp6_mtudisc_callback(struct in6_addr *);
226 #endif
227
228 void tcp_mtudisc(struct inpcb *, int);
229 #ifdef INET6
230 void tcp6_mtudisc(struct in6pcb *, int);
231 #endif
232
233 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
234
235 #ifdef TCP_CSUM_COUNTERS
236 #include <sys/device.h>
237
238 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
239 NULL, "tcp", "hwcsum bad");
240 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
241 NULL, "tcp", "hwcsum ok");
242 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
243 NULL, "tcp", "hwcsum data");
244 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
245 NULL, "tcp", "swcsum");
246
247 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
248 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
249 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
250 EVCNT_ATTACH_STATIC(tcp_swcsum);
251 #endif /* TCP_CSUM_COUNTERS */
252
253
254 #ifdef TCP_OUTPUT_COUNTERS
255 #include <sys/device.h>
256
257 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
258 NULL, "tcp", "output big header");
259 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
260 NULL, "tcp", "output predict hit");
261 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
262 NULL, "tcp", "output predict miss");
263 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264 NULL, "tcp", "output copy small");
265 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266 NULL, "tcp", "output copy big");
267 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268 NULL, "tcp", "output reference big");
269
270 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
271 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
272 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
273 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
274 EVCNT_ATTACH_STATIC(tcp_output_copybig);
275 EVCNT_ATTACH_STATIC(tcp_output_refbig);
276
277 #endif /* TCP_OUTPUT_COUNTERS */
278
279 #ifdef TCP_REASS_COUNTERS
280 #include <sys/device.h>
281
282 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
283 NULL, "tcp_reass", "calls");
284 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
285 &tcp_reass_, "tcp_reass", "insert into empty queue");
286 struct evcnt tcp_reass_iteration[8] = {
287 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
288 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
289 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
290 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
291 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
292 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
293 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
294 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
295 };
296 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
297 &tcp_reass_, "tcp_reass", "prepend to first");
298 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
299 &tcp_reass_, "tcp_reass", "prepend");
300 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
301 &tcp_reass_, "tcp_reass", "insert");
302 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
303 &tcp_reass_, "tcp_reass", "insert at tail");
304 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
305 &tcp_reass_, "tcp_reass", "append");
306 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
307 &tcp_reass_, "tcp_reass", "append to tail fragment");
308 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
309 &tcp_reass_, "tcp_reass", "overlap at end");
310 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
311 &tcp_reass_, "tcp_reass", "overlap at start");
312 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
313 &tcp_reass_, "tcp_reass", "duplicate segment");
314 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
315 &tcp_reass_, "tcp_reass", "duplicate fragment");
316
317 EVCNT_ATTACH_STATIC(tcp_reass_);
318 EVCNT_ATTACH_STATIC(tcp_reass_empty);
319 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
320 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
321 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
322 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
323 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
324 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
325 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
326 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
327 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
328 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
329 EVCNT_ATTACH_STATIC(tcp_reass_insert);
330 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
331 EVCNT_ATTACH_STATIC(tcp_reass_append);
332 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
333 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
334 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
335 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
336 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
337
338 #endif /* TCP_REASS_COUNTERS */
339
340 #ifdef MBUFTRACE
341 struct mowner tcp_mowner = { "tcp" };
342 struct mowner tcp_rx_mowner = { "tcp", "rx" };
343 struct mowner tcp_tx_mowner = { "tcp", "tx" };
344 #endif
345
346 /*
347 * Tcp initialization
348 */
349 void
350 tcp_init()
351 {
352 int hlen;
353
354 /* Initialize the TCPCB template. */
355 tcp_tcpcb_template();
356
357 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
358
359 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
360 #ifdef INET6
361 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
362 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
363 #endif
364 if (max_protohdr < hlen)
365 max_protohdr = hlen;
366 if (max_linkhdr + hlen > MHLEN)
367 panic("tcp_init");
368
369 #ifdef INET
370 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
371 #endif
372 #ifdef INET6
373 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
374 #endif
375
376 /* Initialize timer state. */
377 tcp_timer_init();
378
379 /* Initialize the compressed state engine. */
380 syn_cache_init();
381
382 MOWNER_ATTACH(&tcp_tx_mowner);
383 MOWNER_ATTACH(&tcp_rx_mowner);
384 MOWNER_ATTACH(&tcp_mowner);
385 }
386
387 /*
388 * Create template to be used to send tcp packets on a connection.
389 * Call after host entry created, allocates an mbuf and fills
390 * in a skeletal tcp/ip header, minimizing the amount of work
391 * necessary when the connection is used.
392 */
393 struct mbuf *
394 tcp_template(tp)
395 struct tcpcb *tp;
396 {
397 struct inpcb *inp = tp->t_inpcb;
398 #ifdef INET6
399 struct in6pcb *in6p = tp->t_in6pcb;
400 #endif
401 struct tcphdr *n;
402 struct mbuf *m;
403 int hlen;
404
405 switch (tp->t_family) {
406 case AF_INET:
407 hlen = sizeof(struct ip);
408 if (inp)
409 break;
410 #ifdef INET6
411 if (in6p) {
412 /* mapped addr case */
413 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
414 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
415 break;
416 }
417 #endif
418 return NULL; /*EINVAL*/
419 #ifdef INET6
420 case AF_INET6:
421 hlen = sizeof(struct ip6_hdr);
422 if (in6p) {
423 /* more sainty check? */
424 break;
425 }
426 return NULL; /*EINVAL*/
427 #endif
428 default:
429 hlen = 0; /*pacify gcc*/
430 return NULL; /*EAFNOSUPPORT*/
431 }
432 #ifdef DIAGNOSTIC
433 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
434 panic("mclbytes too small for t_template");
435 #endif
436 m = tp->t_template;
437 if (m && m->m_len == hlen + sizeof(struct tcphdr))
438 ;
439 else {
440 if (m)
441 m_freem(m);
442 m = tp->t_template = NULL;
443 MGETHDR(m, M_DONTWAIT, MT_HEADER);
444 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
445 MCLGET(m, M_DONTWAIT);
446 if ((m->m_flags & M_EXT) == 0) {
447 m_free(m);
448 m = NULL;
449 }
450 }
451 if (m == NULL)
452 return NULL;
453 MCLAIM(m, &tcp_mowner);
454 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
455 }
456
457 bzero(mtod(m, caddr_t), m->m_len);
458
459 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
460
461 switch (tp->t_family) {
462 case AF_INET:
463 {
464 struct ipovly *ipov;
465 mtod(m, struct ip *)->ip_v = 4;
466 mtod(m, struct ip *)->ip_hl = hlen >> 2;
467 ipov = mtod(m, struct ipovly *);
468 ipov->ih_pr = IPPROTO_TCP;
469 ipov->ih_len = htons(sizeof(struct tcphdr));
470 if (inp) {
471 ipov->ih_src = inp->inp_laddr;
472 ipov->ih_dst = inp->inp_faddr;
473 }
474 #ifdef INET6
475 else if (in6p) {
476 /* mapped addr case */
477 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
478 sizeof(ipov->ih_src));
479 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
480 sizeof(ipov->ih_dst));
481 }
482 #endif
483 /*
484 * Compute the pseudo-header portion of the checksum
485 * now. We incrementally add in the TCP option and
486 * payload lengths later, and then compute the TCP
487 * checksum right before the packet is sent off onto
488 * the wire.
489 */
490 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
491 ipov->ih_dst.s_addr,
492 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
493 break;
494 }
495 #ifdef INET6
496 case AF_INET6:
497 {
498 struct ip6_hdr *ip6;
499 mtod(m, struct ip *)->ip_v = 6;
500 ip6 = mtod(m, struct ip6_hdr *);
501 ip6->ip6_nxt = IPPROTO_TCP;
502 ip6->ip6_plen = htons(sizeof(struct tcphdr));
503 ip6->ip6_src = in6p->in6p_laddr;
504 ip6->ip6_dst = in6p->in6p_faddr;
505 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
506 if (ip6_auto_flowlabel) {
507 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
508 ip6->ip6_flow |=
509 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
510 }
511 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
512 ip6->ip6_vfc |= IPV6_VERSION;
513
514 /*
515 * Compute the pseudo-header portion of the checksum
516 * now. We incrementally add in the TCP option and
517 * payload lengths later, and then compute the TCP
518 * checksum right before the packet is sent off onto
519 * the wire.
520 */
521 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
522 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
523 htonl(IPPROTO_TCP));
524 break;
525 }
526 #endif
527 }
528 if (inp) {
529 n->th_sport = inp->inp_lport;
530 n->th_dport = inp->inp_fport;
531 }
532 #ifdef INET6
533 else if (in6p) {
534 n->th_sport = in6p->in6p_lport;
535 n->th_dport = in6p->in6p_fport;
536 }
537 #endif
538 n->th_seq = 0;
539 n->th_ack = 0;
540 n->th_x2 = 0;
541 n->th_off = 5;
542 n->th_flags = 0;
543 n->th_win = 0;
544 n->th_urp = 0;
545 return (m);
546 }
547
548 /*
549 * Send a single message to the TCP at address specified by
550 * the given TCP/IP header. If m == 0, then we make a copy
551 * of the tcpiphdr at ti and send directly to the addressed host.
552 * This is used to force keep alive messages out using the TCP
553 * template for a connection tp->t_template. If flags are given
554 * then we send a message back to the TCP which originated the
555 * segment ti, and discard the mbuf containing it and any other
556 * attached mbufs.
557 *
558 * In any case the ack and sequence number of the transmitted
559 * segment are as specified by the parameters.
560 */
561 int
562 tcp_respond(tp, template, m, th0, ack, seq, flags)
563 struct tcpcb *tp;
564 struct mbuf *template;
565 struct mbuf *m;
566 struct tcphdr *th0;
567 tcp_seq ack, seq;
568 int flags;
569 {
570 struct route *ro;
571 int error, tlen, win = 0;
572 int hlen;
573 struct ip *ip;
574 #ifdef INET6
575 struct ip6_hdr *ip6;
576 #endif
577 int family; /* family on packet, not inpcb/in6pcb! */
578 struct tcphdr *th;
579 struct socket *so;
580
581 if (tp != NULL && (flags & TH_RST) == 0) {
582 #ifdef DIAGNOSTIC
583 if (tp->t_inpcb && tp->t_in6pcb)
584 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
585 #endif
586 #ifdef INET
587 if (tp->t_inpcb)
588 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
589 #endif
590 #ifdef INET6
591 if (tp->t_in6pcb)
592 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
593 #endif
594 }
595
596 th = NULL; /* Quell uninitialized warning */
597 ip = NULL;
598 #ifdef INET6
599 ip6 = NULL;
600 #endif
601 if (m == 0) {
602 if (!template)
603 return EINVAL;
604
605 /* get family information from template */
606 switch (mtod(template, struct ip *)->ip_v) {
607 case 4:
608 family = AF_INET;
609 hlen = sizeof(struct ip);
610 break;
611 #ifdef INET6
612 case 6:
613 family = AF_INET6;
614 hlen = sizeof(struct ip6_hdr);
615 break;
616 #endif
617 default:
618 return EAFNOSUPPORT;
619 }
620
621 MGETHDR(m, M_DONTWAIT, MT_HEADER);
622 if (m) {
623 MCLAIM(m, &tcp_tx_mowner);
624 MCLGET(m, M_DONTWAIT);
625 if ((m->m_flags & M_EXT) == 0) {
626 m_free(m);
627 m = NULL;
628 }
629 }
630 if (m == NULL)
631 return (ENOBUFS);
632
633 if (tcp_compat_42)
634 tlen = 1;
635 else
636 tlen = 0;
637
638 m->m_data += max_linkhdr;
639 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
640 template->m_len);
641 switch (family) {
642 case AF_INET:
643 ip = mtod(m, struct ip *);
644 th = (struct tcphdr *)(ip + 1);
645 break;
646 #ifdef INET6
647 case AF_INET6:
648 ip6 = mtod(m, struct ip6_hdr *);
649 th = (struct tcphdr *)(ip6 + 1);
650 break;
651 #endif
652 #if 0
653 default:
654 /* noone will visit here */
655 m_freem(m);
656 return EAFNOSUPPORT;
657 #endif
658 }
659 flags = TH_ACK;
660 } else {
661
662 if ((m->m_flags & M_PKTHDR) == 0) {
663 #if 0
664 printf("non PKTHDR to tcp_respond\n");
665 #endif
666 m_freem(m);
667 return EINVAL;
668 }
669 #ifdef DIAGNOSTIC
670 if (!th0)
671 panic("th0 == NULL in tcp_respond");
672 #endif
673
674 /* get family information from m */
675 switch (mtod(m, struct ip *)->ip_v) {
676 case 4:
677 family = AF_INET;
678 hlen = sizeof(struct ip);
679 ip = mtod(m, struct ip *);
680 break;
681 #ifdef INET6
682 case 6:
683 family = AF_INET6;
684 hlen = sizeof(struct ip6_hdr);
685 ip6 = mtod(m, struct ip6_hdr *);
686 break;
687 #endif
688 default:
689 m_freem(m);
690 return EAFNOSUPPORT;
691 }
692 /* clear h/w csum flags inherited from rx packet */
693 m->m_pkthdr.csum_flags = 0;
694
695 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
696 tlen = sizeof(*th0);
697 else
698 tlen = th0->th_off << 2;
699
700 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
701 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
702 m->m_len = hlen + tlen;
703 m_freem(m->m_next);
704 m->m_next = NULL;
705 } else {
706 struct mbuf *n;
707
708 #ifdef DIAGNOSTIC
709 if (max_linkhdr + hlen + tlen > MCLBYTES) {
710 m_freem(m);
711 return EMSGSIZE;
712 }
713 #endif
714 MGETHDR(n, M_DONTWAIT, MT_HEADER);
715 if (n && max_linkhdr + hlen + tlen > MHLEN) {
716 MCLGET(n, M_DONTWAIT);
717 if ((n->m_flags & M_EXT) == 0) {
718 m_freem(n);
719 n = NULL;
720 }
721 }
722 if (!n) {
723 m_freem(m);
724 return ENOBUFS;
725 }
726
727 MCLAIM(n, &tcp_tx_mowner);
728 n->m_data += max_linkhdr;
729 n->m_len = hlen + tlen;
730 m_copyback(n, 0, hlen, mtod(m, caddr_t));
731 m_copyback(n, hlen, tlen, (caddr_t)th0);
732
733 m_freem(m);
734 m = n;
735 n = NULL;
736 }
737
738 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
739 switch (family) {
740 case AF_INET:
741 ip = mtod(m, struct ip *);
742 th = (struct tcphdr *)(ip + 1);
743 ip->ip_p = IPPROTO_TCP;
744 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
745 ip->ip_p = IPPROTO_TCP;
746 break;
747 #ifdef INET6
748 case AF_INET6:
749 ip6 = mtod(m, struct ip6_hdr *);
750 th = (struct tcphdr *)(ip6 + 1);
751 ip6->ip6_nxt = IPPROTO_TCP;
752 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
753 ip6->ip6_nxt = IPPROTO_TCP;
754 break;
755 #endif
756 #if 0
757 default:
758 /* noone will visit here */
759 m_freem(m);
760 return EAFNOSUPPORT;
761 #endif
762 }
763 xchg(th->th_dport, th->th_sport, u_int16_t);
764 #undef xchg
765 tlen = 0; /*be friendly with the following code*/
766 }
767 th->th_seq = htonl(seq);
768 th->th_ack = htonl(ack);
769 th->th_x2 = 0;
770 if ((flags & TH_SYN) == 0) {
771 if (tp)
772 win >>= tp->rcv_scale;
773 if (win > TCP_MAXWIN)
774 win = TCP_MAXWIN;
775 th->th_win = htons((u_int16_t)win);
776 th->th_off = sizeof (struct tcphdr) >> 2;
777 tlen += sizeof(*th);
778 } else
779 tlen += th->th_off << 2;
780 m->m_len = hlen + tlen;
781 m->m_pkthdr.len = hlen + tlen;
782 m->m_pkthdr.rcvif = (struct ifnet *) 0;
783 th->th_flags = flags;
784 th->th_urp = 0;
785
786 switch (family) {
787 #ifdef INET
788 case AF_INET:
789 {
790 struct ipovly *ipov = (struct ipovly *)ip;
791 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
792 ipov->ih_len = htons((u_int16_t)tlen);
793
794 th->th_sum = 0;
795 th->th_sum = in_cksum(m, hlen + tlen);
796 ip->ip_len = htons(hlen + tlen);
797 ip->ip_ttl = ip_defttl;
798 break;
799 }
800 #endif
801 #ifdef INET6
802 case AF_INET6:
803 {
804 th->th_sum = 0;
805 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
806 tlen);
807 ip6->ip6_plen = ntohs(tlen);
808 if (tp && tp->t_in6pcb) {
809 struct ifnet *oifp;
810 ro = (struct route *)&tp->t_in6pcb->in6p_route;
811 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
812 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
813 } else
814 ip6->ip6_hlim = ip6_defhlim;
815 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
816 if (ip6_auto_flowlabel) {
817 ip6->ip6_flow |=
818 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
819 }
820 break;
821 }
822 #endif
823 }
824
825 if (tp && tp->t_inpcb)
826 so = tp->t_inpcb->inp_socket;
827 #ifdef INET6
828 else if (tp && tp->t_in6pcb)
829 so = tp->t_in6pcb->in6p_socket;
830 #endif
831 else
832 so = NULL;
833
834 if (tp != NULL && tp->t_inpcb != NULL) {
835 ro = &tp->t_inpcb->inp_route;
836 #ifdef DIAGNOSTIC
837 if (family != AF_INET)
838 panic("tcp_respond: address family mismatch");
839 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
840 panic("tcp_respond: ip_dst %x != inp_faddr %x",
841 ntohl(ip->ip_dst.s_addr),
842 ntohl(tp->t_inpcb->inp_faddr.s_addr));
843 }
844 #endif
845 }
846 #ifdef INET6
847 else if (tp != NULL && tp->t_in6pcb != NULL) {
848 ro = (struct route *)&tp->t_in6pcb->in6p_route;
849 #ifdef DIAGNOSTIC
850 if (family == AF_INET) {
851 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
852 panic("tcp_respond: not mapped addr");
853 if (bcmp(&ip->ip_dst,
854 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
855 sizeof(ip->ip_dst)) != 0) {
856 panic("tcp_respond: ip_dst != in6p_faddr");
857 }
858 } else if (family == AF_INET6) {
859 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
860 &tp->t_in6pcb->in6p_faddr))
861 panic("tcp_respond: ip6_dst != in6p_faddr");
862 } else
863 panic("tcp_respond: address family mismatch");
864 #endif
865 }
866 #endif
867 else
868 ro = NULL;
869
870 switch (family) {
871 #ifdef INET
872 case AF_INET:
873 error = ip_output(m, NULL, ro,
874 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
875 (struct ip_moptions *)0, so);
876 break;
877 #endif
878 #ifdef INET6
879 case AF_INET6:
880 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
881 (struct ip6_moptions *)0, so, NULL);
882 break;
883 #endif
884 default:
885 error = EAFNOSUPPORT;
886 break;
887 }
888
889 return (error);
890 }
891
892 /*
893 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
894 * a bunch of members individually, we maintain this template for the
895 * static and mostly-static components of the TCPCB, and copy it into
896 * the new TCPCB instead.
897 */
898 static struct tcpcb tcpcb_template = {
899 /*
900 * If TCP_NTIMERS ever changes, we'll need to update this
901 * initializer.
902 */
903 .t_timer = {
904 CALLOUT_INITIALIZER,
905 CALLOUT_INITIALIZER,
906 CALLOUT_INITIALIZER,
907 CALLOUT_INITIALIZER,
908 },
909 .t_delack_ch = CALLOUT_INITIALIZER,
910
911 .t_srtt = TCPTV_SRTTBASE,
912 .t_rttmin = TCPTV_MIN,
913
914 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
915 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
916 };
917
918 /*
919 * Updates the TCPCB template whenever a parameter that would affect
920 * the template is changed.
921 */
922 void
923 tcp_tcpcb_template(void)
924 {
925 struct tcpcb *tp = &tcpcb_template;
926 int flags;
927
928 tp->t_peermss = tcp_mssdflt;
929 tp->t_ourmss = tcp_mssdflt;
930 tp->t_segsz = tcp_mssdflt;
931
932 flags = 0;
933 if (tcp_do_rfc1323 && tcp_do_win_scale)
934 flags |= TF_REQ_SCALE;
935 if (tcp_do_rfc1323 && tcp_do_timestamps)
936 flags |= TF_REQ_TSTMP;
937 if (tcp_do_sack == 2)
938 flags |= TF_WILL_SACK;
939 else if (tcp_do_sack == 1)
940 flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
941 flags |= TF_CANT_TXSACK;
942 tp->t_flags = flags;
943
944 /*
945 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
946 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
947 * reasonable initial retransmit time.
948 */
949 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
950 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
951 TCPTV_MIN, TCPTV_REXMTMAX);
952 }
953
954 /*
955 * Create a new TCP control block, making an
956 * empty reassembly queue and hooking it to the argument
957 * protocol control block.
958 */
959 struct tcpcb *
960 tcp_newtcpcb(family, aux)
961 int family; /* selects inpcb, or in6pcb */
962 void *aux;
963 {
964 struct tcpcb *tp;
965 int i;
966
967 /* XXX Consider using a pool_cache for speed. */
968 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
969 if (tp == NULL)
970 return (NULL);
971 memcpy(tp, &tcpcb_template, sizeof(*tp));
972 TAILQ_INIT(&tp->segq);
973 TAILQ_INIT(&tp->timeq);
974 tp->t_family = family; /* may be overridden later on */
975 LIST_INIT(&tp->t_sc); /* XXX can template this */
976
977 /* Don't sweat this loop; hopefully the compiler will unroll it. */
978 for (i = 0; i < TCPT_NTIMERS; i++)
979 TCP_TIMER_INIT(tp, i);
980
981 switch (family) {
982 case AF_INET:
983 {
984 struct inpcb *inp = (struct inpcb *)aux;
985
986 inp->inp_ip.ip_ttl = ip_defttl;
987 inp->inp_ppcb = (caddr_t)tp;
988
989 tp->t_inpcb = inp;
990 tp->t_mtudisc = ip_mtudisc;
991 break;
992 }
993 #ifdef INET6
994 case AF_INET6:
995 {
996 struct in6pcb *in6p = (struct in6pcb *)aux;
997
998 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
999 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
1000 : NULL);
1001 in6p->in6p_ppcb = (caddr_t)tp;
1002
1003 tp->t_in6pcb = in6p;
1004 /* for IPv6, always try to run path MTU discovery */
1005 tp->t_mtudisc = 1;
1006 break;
1007 }
1008 #endif /* INET6 */
1009 default:
1010 pool_put(&tcpcb_pool, tp);
1011 return (NULL);
1012 }
1013
1014 /*
1015 * Initialize our timebase. When we send timestamps, we take
1016 * the delta from tcp_now -- this means each connection always
1017 * gets a timebase of 0, which makes it, among other things,
1018 * more difficult to determine how long a system has been up,
1019 * and thus how many TCP sequence increments have occurred.
1020 */
1021 tp->ts_timebase = tcp_now;
1022
1023 return (tp);
1024 }
1025
1026 /*
1027 * Drop a TCP connection, reporting
1028 * the specified error. If connection is synchronized,
1029 * then send a RST to peer.
1030 */
1031 struct tcpcb *
1032 tcp_drop(tp, errno)
1033 struct tcpcb *tp;
1034 int errno;
1035 {
1036 struct socket *so = NULL;
1037
1038 #ifdef DIAGNOSTIC
1039 if (tp->t_inpcb && tp->t_in6pcb)
1040 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1041 #endif
1042 #ifdef INET
1043 if (tp->t_inpcb)
1044 so = tp->t_inpcb->inp_socket;
1045 #endif
1046 #ifdef INET6
1047 if (tp->t_in6pcb)
1048 so = tp->t_in6pcb->in6p_socket;
1049 #endif
1050 if (!so)
1051 return NULL;
1052
1053 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1054 tp->t_state = TCPS_CLOSED;
1055 (void) tcp_output(tp);
1056 tcpstat.tcps_drops++;
1057 } else
1058 tcpstat.tcps_conndrops++;
1059 if (errno == ETIMEDOUT && tp->t_softerror)
1060 errno = tp->t_softerror;
1061 so->so_error = errno;
1062 return (tcp_close(tp));
1063 }
1064
1065 /*
1066 * Return whether this tcpcb is marked as dead, indicating
1067 * to the calling timer function that no further action should
1068 * be taken, as we are about to release this tcpcb. The release
1069 * of the storage will be done if this is the last timer running.
1070 *
1071 * This should be called from the callout handler function after
1072 * callout_ack() is done, so that the number of invoking timer
1073 * functions is 0.
1074 */
1075 int
1076 tcp_isdead(tp)
1077 struct tcpcb *tp;
1078 {
1079 int dead = (tp->t_flags & TF_DEAD);
1080
1081 if (__predict_false(dead)) {
1082 if (tcp_timers_invoking(tp) > 0)
1083 /* not quite there yet -- count separately? */
1084 return dead;
1085 tcpstat.tcps_delayed_free++;
1086 pool_put(&tcpcb_pool, tp);
1087 }
1088 return dead;
1089 }
1090
1091 /*
1092 * Close a TCP control block:
1093 * discard all space held by the tcp
1094 * discard internet protocol block
1095 * wake up any sleepers
1096 */
1097 struct tcpcb *
1098 tcp_close(tp)
1099 struct tcpcb *tp;
1100 {
1101 struct inpcb *inp;
1102 #ifdef INET6
1103 struct in6pcb *in6p;
1104 #endif
1105 struct socket *so;
1106 #ifdef RTV_RTT
1107 struct rtentry *rt;
1108 #endif
1109 struct route *ro;
1110
1111 inp = tp->t_inpcb;
1112 #ifdef INET6
1113 in6p = tp->t_in6pcb;
1114 #endif
1115 so = NULL;
1116 ro = NULL;
1117 if (inp) {
1118 so = inp->inp_socket;
1119 ro = &inp->inp_route;
1120 }
1121 #ifdef INET6
1122 else if (in6p) {
1123 so = in6p->in6p_socket;
1124 ro = (struct route *)&in6p->in6p_route;
1125 }
1126 #endif
1127
1128 #ifdef RTV_RTT
1129 /*
1130 * If we sent enough data to get some meaningful characteristics,
1131 * save them in the routing entry. 'Enough' is arbitrarily
1132 * defined as the sendpipesize (default 4K) * 16. This would
1133 * give us 16 rtt samples assuming we only get one sample per
1134 * window (the usual case on a long haul net). 16 samples is
1135 * enough for the srtt filter to converge to within 5% of the correct
1136 * value; fewer samples and we could save a very bogus rtt.
1137 *
1138 * Don't update the default route's characteristics and don't
1139 * update anything that the user "locked".
1140 */
1141 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1142 ro && (rt = ro->ro_rt) &&
1143 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1144 u_long i = 0;
1145
1146 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1147 i = tp->t_srtt *
1148 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1149 if (rt->rt_rmx.rmx_rtt && i)
1150 /*
1151 * filter this update to half the old & half
1152 * the new values, converting scale.
1153 * See route.h and tcp_var.h for a
1154 * description of the scaling constants.
1155 */
1156 rt->rt_rmx.rmx_rtt =
1157 (rt->rt_rmx.rmx_rtt + i) / 2;
1158 else
1159 rt->rt_rmx.rmx_rtt = i;
1160 }
1161 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1162 i = tp->t_rttvar *
1163 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1164 if (rt->rt_rmx.rmx_rttvar && i)
1165 rt->rt_rmx.rmx_rttvar =
1166 (rt->rt_rmx.rmx_rttvar + i) / 2;
1167 else
1168 rt->rt_rmx.rmx_rttvar = i;
1169 }
1170 /*
1171 * update the pipelimit (ssthresh) if it has been updated
1172 * already or if a pipesize was specified & the threshhold
1173 * got below half the pipesize. I.e., wait for bad news
1174 * before we start updating, then update on both good
1175 * and bad news.
1176 */
1177 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1178 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1179 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1180 /*
1181 * convert the limit from user data bytes to
1182 * packets then to packet data bytes.
1183 */
1184 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1185 if (i < 2)
1186 i = 2;
1187 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1188 if (rt->rt_rmx.rmx_ssthresh)
1189 rt->rt_rmx.rmx_ssthresh =
1190 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1191 else
1192 rt->rt_rmx.rmx_ssthresh = i;
1193 }
1194 }
1195 #endif /* RTV_RTT */
1196 /* free the reassembly queue, if any */
1197 TCP_REASS_LOCK(tp);
1198 (void) tcp_freeq(tp);
1199 TCP_REASS_UNLOCK(tp);
1200
1201 tcp_canceltimers(tp);
1202 TCP_CLEAR_DELACK(tp);
1203 syn_cache_cleanup(tp);
1204
1205 if (tp->t_template) {
1206 m_free(tp->t_template);
1207 tp->t_template = NULL;
1208 }
1209 if (tcp_timers_invoking(tp))
1210 tp->t_flags |= TF_DEAD;
1211 else
1212 pool_put(&tcpcb_pool, tp);
1213
1214 if (inp) {
1215 inp->inp_ppcb = 0;
1216 soisdisconnected(so);
1217 in_pcbdetach(inp);
1218 }
1219 #ifdef INET6
1220 else if (in6p) {
1221 in6p->in6p_ppcb = 0;
1222 soisdisconnected(so);
1223 in6_pcbdetach(in6p);
1224 }
1225 #endif
1226 tcpstat.tcps_closed++;
1227 return ((struct tcpcb *)0);
1228 }
1229
1230 int
1231 tcp_freeq(tp)
1232 struct tcpcb *tp;
1233 {
1234 struct ipqent *qe;
1235 int rv = 0;
1236 #ifdef TCPREASS_DEBUG
1237 int i = 0;
1238 #endif
1239
1240 TCP_REASS_LOCK_CHECK(tp);
1241
1242 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1243 #ifdef TCPREASS_DEBUG
1244 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1245 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1246 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1247 #endif
1248 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1249 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1250 m_freem(qe->ipqe_m);
1251 pool_put(&tcpipqent_pool, qe);
1252 rv = 1;
1253 }
1254 return (rv);
1255 }
1256
1257 /*
1258 * Protocol drain routine. Called when memory is in short supply.
1259 */
1260 void
1261 tcp_drain()
1262 {
1263 struct inpcb_hdr *inph;
1264 struct tcpcb *tp;
1265
1266 /*
1267 * Free the sequence queue of all TCP connections.
1268 */
1269 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1270 switch (inph->inph_af) {
1271 case AF_INET:
1272 tp = intotcpcb((struct inpcb *)inph);
1273 break;
1274 #ifdef INET6
1275 case AF_INET6:
1276 tp = in6totcpcb((struct in6pcb *)inph);
1277 break;
1278 #endif
1279 default:
1280 tp = NULL;
1281 break;
1282 }
1283 if (tp != NULL) {
1284 /*
1285 * We may be called from a device's interrupt
1286 * context. If the tcpcb is already busy,
1287 * just bail out now.
1288 */
1289 if (tcp_reass_lock_try(tp) == 0)
1290 continue;
1291 if (tcp_freeq(tp))
1292 tcpstat.tcps_connsdrained++;
1293 TCP_REASS_UNLOCK(tp);
1294 }
1295 }
1296 }
1297
1298 /*
1299 * Notify a tcp user of an asynchronous error;
1300 * store error as soft error, but wake up user
1301 * (for now, won't do anything until can select for soft error).
1302 */
1303 void
1304 tcp_notify(inp, error)
1305 struct inpcb *inp;
1306 int error;
1307 {
1308 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1309 struct socket *so = inp->inp_socket;
1310
1311 /*
1312 * Ignore some errors if we are hooked up.
1313 * If connection hasn't completed, has retransmitted several times,
1314 * and receives a second error, give up now. This is better
1315 * than waiting a long time to establish a connection that
1316 * can never complete.
1317 */
1318 if (tp->t_state == TCPS_ESTABLISHED &&
1319 (error == EHOSTUNREACH || error == ENETUNREACH ||
1320 error == EHOSTDOWN)) {
1321 return;
1322 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1323 tp->t_rxtshift > 3 && tp->t_softerror)
1324 so->so_error = error;
1325 else
1326 tp->t_softerror = error;
1327 wakeup((caddr_t) &so->so_timeo);
1328 sorwakeup(so);
1329 sowwakeup(so);
1330 }
1331
1332 #ifdef INET6
1333 void
1334 tcp6_notify(in6p, error)
1335 struct in6pcb *in6p;
1336 int error;
1337 {
1338 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1339 struct socket *so = in6p->in6p_socket;
1340
1341 /*
1342 * Ignore some errors if we are hooked up.
1343 * If connection hasn't completed, has retransmitted several times,
1344 * and receives a second error, give up now. This is better
1345 * than waiting a long time to establish a connection that
1346 * can never complete.
1347 */
1348 if (tp->t_state == TCPS_ESTABLISHED &&
1349 (error == EHOSTUNREACH || error == ENETUNREACH ||
1350 error == EHOSTDOWN)) {
1351 return;
1352 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1353 tp->t_rxtshift > 3 && tp->t_softerror)
1354 so->so_error = error;
1355 else
1356 tp->t_softerror = error;
1357 wakeup((caddr_t) &so->so_timeo);
1358 sorwakeup(so);
1359 sowwakeup(so);
1360 }
1361 #endif
1362
1363 #ifdef INET6
1364 void
1365 tcp6_ctlinput(cmd, sa, d)
1366 int cmd;
1367 struct sockaddr *sa;
1368 void *d;
1369 {
1370 struct tcphdr th;
1371 void (*notify)(struct in6pcb *, int) = tcp6_notify;
1372 int nmatch;
1373 struct ip6_hdr *ip6;
1374 const struct sockaddr_in6 *sa6_src = NULL;
1375 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1376 struct mbuf *m;
1377 int off;
1378
1379 if (sa->sa_family != AF_INET6 ||
1380 sa->sa_len != sizeof(struct sockaddr_in6))
1381 return;
1382 if ((unsigned)cmd >= PRC_NCMDS)
1383 return;
1384 else if (cmd == PRC_QUENCH) {
1385 /* XXX there's no PRC_QUENCH in IPv6 */
1386 notify = tcp6_quench;
1387 } else if (PRC_IS_REDIRECT(cmd))
1388 notify = in6_rtchange, d = NULL;
1389 else if (cmd == PRC_MSGSIZE)
1390 ; /* special code is present, see below */
1391 else if (cmd == PRC_HOSTDEAD)
1392 d = NULL;
1393 else if (inet6ctlerrmap[cmd] == 0)
1394 return;
1395
1396 /* if the parameter is from icmp6, decode it. */
1397 if (d != NULL) {
1398 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1399 m = ip6cp->ip6c_m;
1400 ip6 = ip6cp->ip6c_ip6;
1401 off = ip6cp->ip6c_off;
1402 sa6_src = ip6cp->ip6c_src;
1403 } else {
1404 m = NULL;
1405 ip6 = NULL;
1406 sa6_src = &sa6_any;
1407 off = 0;
1408 }
1409
1410 if (ip6) {
1411 /*
1412 * XXX: We assume that when ip6 is non NULL,
1413 * M and OFF are valid.
1414 */
1415
1416 /* check if we can safely examine src and dst ports */
1417 if (m->m_pkthdr.len < off + sizeof(th)) {
1418 if (cmd == PRC_MSGSIZE)
1419 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1420 return;
1421 }
1422
1423 bzero(&th, sizeof(th));
1424 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1425
1426 if (cmd == PRC_MSGSIZE) {
1427 int valid = 0;
1428
1429 /*
1430 * Check to see if we have a valid TCP connection
1431 * corresponding to the address in the ICMPv6 message
1432 * payload.
1433 */
1434 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1435 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1436 th.th_sport, 0))
1437 valid++;
1438
1439 /*
1440 * Depending on the value of "valid" and routing table
1441 * size (mtudisc_{hi,lo}wat), we will:
1442 * - recalcurate the new MTU and create the
1443 * corresponding routing entry, or
1444 * - ignore the MTU change notification.
1445 */
1446 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1447
1448 /*
1449 * no need to call in6_pcbnotify, it should have been
1450 * called via callback if necessary
1451 */
1452 return;
1453 }
1454
1455 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1456 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1457 if (nmatch == 0 && syn_cache_count &&
1458 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1459 inet6ctlerrmap[cmd] == ENETUNREACH ||
1460 inet6ctlerrmap[cmd] == EHOSTDOWN))
1461 syn_cache_unreach((struct sockaddr *)sa6_src,
1462 sa, &th);
1463 } else {
1464 (void) in6_pcbnotify(&tcbtable, sa, 0,
1465 (struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1466 }
1467 }
1468 #endif
1469
1470 #ifdef INET
1471 /* assumes that ip header and tcp header are contiguous on mbuf */
1472 void *
1473 tcp_ctlinput(cmd, sa, v)
1474 int cmd;
1475 struct sockaddr *sa;
1476 void *v;
1477 {
1478 struct ip *ip = v;
1479 struct tcphdr *th;
1480 struct icmp *icp;
1481 extern const int inetctlerrmap[];
1482 void (*notify)(struct inpcb *, int) = tcp_notify;
1483 int errno;
1484 int nmatch;
1485 #ifdef INET6
1486 struct in6_addr src6, dst6;
1487 #endif
1488
1489 if (sa->sa_family != AF_INET ||
1490 sa->sa_len != sizeof(struct sockaddr_in))
1491 return NULL;
1492 if ((unsigned)cmd >= PRC_NCMDS)
1493 return NULL;
1494 errno = inetctlerrmap[cmd];
1495 if (cmd == PRC_QUENCH)
1496 notify = tcp_quench;
1497 else if (PRC_IS_REDIRECT(cmd))
1498 notify = in_rtchange, ip = 0;
1499 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1500 /*
1501 * Check to see if we have a valid TCP connection
1502 * corresponding to the address in the ICMP message
1503 * payload.
1504 *
1505 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1506 */
1507 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1508 #ifdef INET6
1509 memset(&src6, 0, sizeof(src6));
1510 memset(&dst6, 0, sizeof(dst6));
1511 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1512 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1513 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1514 #endif
1515 if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
1516 ip->ip_src, th->th_sport) != NULL)
1517 ;
1518 #ifdef INET6
1519 else if (in6_pcblookup_connect(&tcbtable, &dst6,
1520 th->th_dport, &src6, th->th_sport, 0) != NULL)
1521 ;
1522 #endif
1523 else
1524 return NULL;
1525
1526 /*
1527 * Now that we've validated that we are actually communicating
1528 * with the host indicated in the ICMP message, locate the
1529 * ICMP header, recalculate the new MTU, and create the
1530 * corresponding routing entry.
1531 */
1532 icp = (struct icmp *)((caddr_t)ip -
1533 offsetof(struct icmp, icmp_ip));
1534 icmp_mtudisc(icp, ip->ip_dst);
1535
1536 return NULL;
1537 } else if (cmd == PRC_HOSTDEAD)
1538 ip = 0;
1539 else if (errno == 0)
1540 return NULL;
1541 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1542 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1543 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1544 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1545 if (nmatch == 0 && syn_cache_count &&
1546 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1547 inetctlerrmap[cmd] == ENETUNREACH ||
1548 inetctlerrmap[cmd] == EHOSTDOWN)) {
1549 struct sockaddr_in sin;
1550 bzero(&sin, sizeof(sin));
1551 sin.sin_len = sizeof(sin);
1552 sin.sin_family = AF_INET;
1553 sin.sin_port = th->th_sport;
1554 sin.sin_addr = ip->ip_src;
1555 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1556 }
1557
1558 /* XXX mapped address case */
1559 } else
1560 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1561 notify);
1562 return NULL;
1563 }
1564
1565 /*
1566 * When a source quence is received, we are being notifed of congestion.
1567 * Close the congestion window down to the Loss Window (one segment).
1568 * We will gradually open it again as we proceed.
1569 */
1570 void
1571 tcp_quench(inp, errno)
1572 struct inpcb *inp;
1573 int errno;
1574 {
1575 struct tcpcb *tp = intotcpcb(inp);
1576
1577 if (tp)
1578 tp->snd_cwnd = tp->t_segsz;
1579 }
1580 #endif
1581
1582 #ifdef INET6
1583 void
1584 tcp6_quench(in6p, errno)
1585 struct in6pcb *in6p;
1586 int errno;
1587 {
1588 struct tcpcb *tp = in6totcpcb(in6p);
1589
1590 if (tp)
1591 tp->snd_cwnd = tp->t_segsz;
1592 }
1593 #endif
1594
1595 #ifdef INET
1596 /*
1597 * Path MTU Discovery handlers.
1598 */
1599 void
1600 tcp_mtudisc_callback(faddr)
1601 struct in_addr faddr;
1602 {
1603 #ifdef INET6
1604 struct in6_addr in6;
1605 #endif
1606
1607 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1608 #ifdef INET6
1609 memset(&in6, 0, sizeof(in6));
1610 in6.s6_addr16[5] = 0xffff;
1611 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1612 tcp6_mtudisc_callback(&in6);
1613 #endif
1614 }
1615
1616 /*
1617 * On receipt of path MTU corrections, flush old route and replace it
1618 * with the new one. Retransmit all unacknowledged packets, to ensure
1619 * that all packets will be received.
1620 */
1621 void
1622 tcp_mtudisc(inp, errno)
1623 struct inpcb *inp;
1624 int errno;
1625 {
1626 struct tcpcb *tp = intotcpcb(inp);
1627 struct rtentry *rt = in_pcbrtentry(inp);
1628
1629 if (tp != 0) {
1630 if (rt != 0) {
1631 /*
1632 * If this was not a host route, remove and realloc.
1633 */
1634 if ((rt->rt_flags & RTF_HOST) == 0) {
1635 in_rtchange(inp, errno);
1636 if ((rt = in_pcbrtentry(inp)) == 0)
1637 return;
1638 }
1639
1640 /*
1641 * Slow start out of the error condition. We
1642 * use the MTU because we know it's smaller
1643 * than the previously transmitted segment.
1644 *
1645 * Note: This is more conservative than the
1646 * suggestion in draft-floyd-incr-init-win-03.
1647 */
1648 if (rt->rt_rmx.rmx_mtu != 0)
1649 tp->snd_cwnd =
1650 TCP_INITIAL_WINDOW(tcp_init_win,
1651 rt->rt_rmx.rmx_mtu);
1652 }
1653
1654 /*
1655 * Resend unacknowledged packets.
1656 */
1657 tp->snd_nxt = tp->snd_una;
1658 tcp_output(tp);
1659 }
1660 }
1661 #endif
1662
1663 #ifdef INET6
1664 /*
1665 * Path MTU Discovery handlers.
1666 */
1667 void
1668 tcp6_mtudisc_callback(faddr)
1669 struct in6_addr *faddr;
1670 {
1671 struct sockaddr_in6 sin6;
1672
1673 bzero(&sin6, sizeof(sin6));
1674 sin6.sin6_family = AF_INET6;
1675 sin6.sin6_len = sizeof(struct sockaddr_in6);
1676 sin6.sin6_addr = *faddr;
1677 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1678 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1679 }
1680
1681 void
1682 tcp6_mtudisc(in6p, errno)
1683 struct in6pcb *in6p;
1684 int errno;
1685 {
1686 struct tcpcb *tp = in6totcpcb(in6p);
1687 struct rtentry *rt = in6_pcbrtentry(in6p);
1688
1689 if (tp != 0) {
1690 if (rt != 0) {
1691 /*
1692 * If this was not a host route, remove and realloc.
1693 */
1694 if ((rt->rt_flags & RTF_HOST) == 0) {
1695 in6_rtchange(in6p, errno);
1696 if ((rt = in6_pcbrtentry(in6p)) == 0)
1697 return;
1698 }
1699
1700 /*
1701 * Slow start out of the error condition. We
1702 * use the MTU because we know it's smaller
1703 * than the previously transmitted segment.
1704 *
1705 * Note: This is more conservative than the
1706 * suggestion in draft-floyd-incr-init-win-03.
1707 */
1708 if (rt->rt_rmx.rmx_mtu != 0)
1709 tp->snd_cwnd =
1710 TCP_INITIAL_WINDOW(tcp_init_win,
1711 rt->rt_rmx.rmx_mtu);
1712 }
1713
1714 /*
1715 * Resend unacknowledged packets.
1716 */
1717 tp->snd_nxt = tp->snd_una;
1718 tcp_output(tp);
1719 }
1720 }
1721 #endif /* INET6 */
1722
1723 /*
1724 * Compute the MSS to advertise to the peer. Called only during
1725 * the 3-way handshake. If we are the server (peer initiated
1726 * connection), we are called with a pointer to the interface
1727 * on which the SYN packet arrived. If we are the client (we
1728 * initiated connection), we are called with a pointer to the
1729 * interface out which this connection should go.
1730 *
1731 * NOTE: Do not subtract IP option/extension header size nor IPsec
1732 * header size from MSS advertisement. MSS option must hold the maximum
1733 * segment size we can accept, so it must always be:
1734 * max(if mtu) - ip header - tcp header
1735 */
1736 u_long
1737 tcp_mss_to_advertise(ifp, af)
1738 const struct ifnet *ifp;
1739 int af;
1740 {
1741 extern u_long in_maxmtu;
1742 u_long mss = 0;
1743 u_long hdrsiz;
1744
1745 /*
1746 * In order to avoid defeating path MTU discovery on the peer,
1747 * we advertise the max MTU of all attached networks as our MSS,
1748 * per RFC 1191, section 3.1.
1749 *
1750 * We provide the option to advertise just the MTU of
1751 * the interface on which we hope this connection will
1752 * be receiving. If we are responding to a SYN, we
1753 * will have a pretty good idea about this, but when
1754 * initiating a connection there is a bit more doubt.
1755 *
1756 * We also need to ensure that loopback has a large enough
1757 * MSS, as the loopback MTU is never included in in_maxmtu.
1758 */
1759
1760 if (ifp != NULL)
1761 switch (af) {
1762 case AF_INET:
1763 mss = ifp->if_mtu;
1764 break;
1765 #ifdef INET6
1766 case AF_INET6:
1767 mss = IN6_LINKMTU(ifp);
1768 break;
1769 #endif
1770 }
1771
1772 if (tcp_mss_ifmtu == 0)
1773 switch (af) {
1774 case AF_INET:
1775 mss = max(in_maxmtu, mss);
1776 break;
1777 #ifdef INET6
1778 case AF_INET6:
1779 mss = max(in6_maxmtu, mss);
1780 break;
1781 #endif
1782 }
1783
1784 switch (af) {
1785 case AF_INET:
1786 hdrsiz = sizeof(struct ip);
1787 break;
1788 #ifdef INET6
1789 case AF_INET6:
1790 hdrsiz = sizeof(struct ip6_hdr);
1791 break;
1792 #endif
1793 default:
1794 hdrsiz = 0;
1795 break;
1796 }
1797 hdrsiz += sizeof(struct tcphdr);
1798 if (mss > hdrsiz)
1799 mss -= hdrsiz;
1800
1801 mss = max(tcp_mssdflt, mss);
1802 return (mss);
1803 }
1804
1805 /*
1806 * Set connection variables based on the peer's advertised MSS.
1807 * We are passed the TCPCB for the actual connection. If we
1808 * are the server, we are called by the compressed state engine
1809 * when the 3-way handshake is complete. If we are the client,
1810 * we are called when we receive the SYN,ACK from the server.
1811 *
1812 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1813 * before this routine is called!
1814 */
1815 void
1816 tcp_mss_from_peer(tp, offer)
1817 struct tcpcb *tp;
1818 int offer;
1819 {
1820 struct socket *so;
1821 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1822 struct rtentry *rt;
1823 #endif
1824 u_long bufsize;
1825 int mss;
1826
1827 #ifdef DIAGNOSTIC
1828 if (tp->t_inpcb && tp->t_in6pcb)
1829 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1830 #endif
1831 so = NULL;
1832 rt = NULL;
1833 #ifdef INET
1834 if (tp->t_inpcb) {
1835 so = tp->t_inpcb->inp_socket;
1836 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1837 rt = in_pcbrtentry(tp->t_inpcb);
1838 #endif
1839 }
1840 #endif
1841 #ifdef INET6
1842 if (tp->t_in6pcb) {
1843 so = tp->t_in6pcb->in6p_socket;
1844 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1845 rt = in6_pcbrtentry(tp->t_in6pcb);
1846 #endif
1847 }
1848 #endif
1849
1850 /*
1851 * As per RFC1122, use the default MSS value, unless they
1852 * sent us an offer. Do not accept offers less than 256 bytes.
1853 */
1854 mss = tcp_mssdflt;
1855 if (offer)
1856 mss = offer;
1857 mss = max(mss, 256); /* sanity */
1858 tp->t_peermss = mss;
1859 mss -= tcp_optlen(tp);
1860 #ifdef INET
1861 if (tp->t_inpcb)
1862 mss -= ip_optlen(tp->t_inpcb);
1863 #endif
1864 #ifdef INET6
1865 if (tp->t_in6pcb)
1866 mss -= ip6_optlen(tp->t_in6pcb);
1867 #endif
1868
1869 /*
1870 * If there's a pipesize, change the socket buffer to that size.
1871 * Make the socket buffer an integral number of MSS units. If
1872 * the MSS is larger than the socket buffer, artificially decrease
1873 * the MSS.
1874 */
1875 #ifdef RTV_SPIPE
1876 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1877 bufsize = rt->rt_rmx.rmx_sendpipe;
1878 else
1879 #endif
1880 bufsize = so->so_snd.sb_hiwat;
1881 if (bufsize < mss)
1882 mss = bufsize;
1883 else {
1884 bufsize = roundup(bufsize, mss);
1885 if (bufsize > sb_max)
1886 bufsize = sb_max;
1887 (void) sbreserve(&so->so_snd, bufsize, so);
1888 }
1889 tp->t_segsz = mss;
1890
1891 #ifdef RTV_SSTHRESH
1892 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1893 /*
1894 * There's some sort of gateway or interface buffer
1895 * limit on the path. Use this to set the slow
1896 * start threshold, but set the threshold to no less
1897 * than 2 * MSS.
1898 */
1899 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1900 }
1901 #endif
1902 }
1903
1904 /*
1905 * Processing necessary when a TCP connection is established.
1906 */
1907 void
1908 tcp_established(tp)
1909 struct tcpcb *tp;
1910 {
1911 struct socket *so;
1912 #ifdef RTV_RPIPE
1913 struct rtentry *rt;
1914 #endif
1915 u_long bufsize;
1916
1917 #ifdef DIAGNOSTIC
1918 if (tp->t_inpcb && tp->t_in6pcb)
1919 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1920 #endif
1921 so = NULL;
1922 rt = NULL;
1923 #ifdef INET
1924 if (tp->t_inpcb) {
1925 so = tp->t_inpcb->inp_socket;
1926 #if defined(RTV_RPIPE)
1927 rt = in_pcbrtentry(tp->t_inpcb);
1928 #endif
1929 }
1930 #endif
1931 #ifdef INET6
1932 if (tp->t_in6pcb) {
1933 so = tp->t_in6pcb->in6p_socket;
1934 #if defined(RTV_RPIPE)
1935 rt = in6_pcbrtentry(tp->t_in6pcb);
1936 #endif
1937 }
1938 #endif
1939
1940 tp->t_state = TCPS_ESTABLISHED;
1941 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1942
1943 #ifdef RTV_RPIPE
1944 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1945 bufsize = rt->rt_rmx.rmx_recvpipe;
1946 else
1947 #endif
1948 bufsize = so->so_rcv.sb_hiwat;
1949 if (bufsize > tp->t_ourmss) {
1950 bufsize = roundup(bufsize, tp->t_ourmss);
1951 if (bufsize > sb_max)
1952 bufsize = sb_max;
1953 (void) sbreserve(&so->so_rcv, bufsize, so);
1954 }
1955 }
1956
1957 /*
1958 * Check if there's an initial rtt or rttvar. Convert from the
1959 * route-table units to scaled multiples of the slow timeout timer.
1960 * Called only during the 3-way handshake.
1961 */
1962 void
1963 tcp_rmx_rtt(tp)
1964 struct tcpcb *tp;
1965 {
1966 #ifdef RTV_RTT
1967 struct rtentry *rt = NULL;
1968 int rtt;
1969
1970 #ifdef DIAGNOSTIC
1971 if (tp->t_inpcb && tp->t_in6pcb)
1972 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1973 #endif
1974 #ifdef INET
1975 if (tp->t_inpcb)
1976 rt = in_pcbrtentry(tp->t_inpcb);
1977 #endif
1978 #ifdef INET6
1979 if (tp->t_in6pcb)
1980 rt = in6_pcbrtentry(tp->t_in6pcb);
1981 #endif
1982 if (rt == NULL)
1983 return;
1984
1985 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1986 /*
1987 * XXX The lock bit for MTU indicates that the value
1988 * is also a minimum value; this is subject to time.
1989 */
1990 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1991 TCPT_RANGESET(tp->t_rttmin,
1992 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1993 TCPTV_MIN, TCPTV_REXMTMAX);
1994 tp->t_srtt = rtt /
1995 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1996 if (rt->rt_rmx.rmx_rttvar) {
1997 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1998 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1999 (TCP_RTTVAR_SHIFT + 2));
2000 } else {
2001 /* Default variation is +- 1 rtt */
2002 tp->t_rttvar =
2003 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2004 }
2005 TCPT_RANGESET(tp->t_rxtcur,
2006 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2007 tp->t_rttmin, TCPTV_REXMTMAX);
2008 }
2009 #endif
2010 }
2011
2012 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2013 #if NRND > 0
2014 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2015 #endif
2016
2017 /*
2018 * Get a new sequence value given a tcp control block
2019 */
2020 tcp_seq
2021 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2022 {
2023
2024 #ifdef INET
2025 if (tp->t_inpcb != NULL) {
2026 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2027 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2028 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2029 addin));
2030 }
2031 #endif
2032 #ifdef INET6
2033 if (tp->t_in6pcb != NULL) {
2034 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2035 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2036 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2037 addin));
2038 }
2039 #endif
2040 /* Not possible. */
2041 panic("tcp_new_iss");
2042 }
2043
2044 /*
2045 * This routine actually generates a new TCP initial sequence number.
2046 */
2047 tcp_seq
2048 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2049 size_t addrsz, tcp_seq addin)
2050 {
2051 tcp_seq tcp_iss;
2052
2053 #if NRND > 0
2054 static int beenhere;
2055
2056 /*
2057 * If we haven't been here before, initialize our cryptographic
2058 * hash secret.
2059 */
2060 if (beenhere == 0) {
2061 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2062 RND_EXTRACT_ANY);
2063 beenhere = 1;
2064 }
2065
2066 if (tcp_do_rfc1948) {
2067 MD5_CTX ctx;
2068 u_int8_t hash[16]; /* XXX MD5 knowledge */
2069
2070 /*
2071 * Compute the base value of the ISS. It is a hash
2072 * of (saddr, sport, daddr, dport, secret).
2073 */
2074 MD5Init(&ctx);
2075
2076 MD5Update(&ctx, (u_char *) laddr, addrsz);
2077 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2078
2079 MD5Update(&ctx, (u_char *) faddr, addrsz);
2080 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2081
2082 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2083
2084 MD5Final(hash, &ctx);
2085
2086 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2087
2088 /*
2089 * Now increment our "timer", and add it in to
2090 * the computed value.
2091 *
2092 * XXX Use `addin'?
2093 * XXX TCP_ISSINCR too large to use?
2094 */
2095 tcp_iss_seq += TCP_ISSINCR;
2096 #ifdef TCPISS_DEBUG
2097 printf("ISS hash 0x%08x, ", tcp_iss);
2098 #endif
2099 tcp_iss += tcp_iss_seq + addin;
2100 #ifdef TCPISS_DEBUG
2101 printf("new ISS 0x%08x\n", tcp_iss);
2102 #endif
2103 } else
2104 #endif /* NRND > 0 */
2105 {
2106 /*
2107 * Randomize.
2108 */
2109 #if NRND > 0
2110 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2111 #else
2112 tcp_iss = arc4random();
2113 #endif
2114
2115 /*
2116 * If we were asked to add some amount to a known value,
2117 * we will take a random value obtained above, mask off
2118 * the upper bits, and add in the known value. We also
2119 * add in a constant to ensure that we are at least a
2120 * certain distance from the original value.
2121 *
2122 * This is used when an old connection is in timed wait
2123 * and we have a new one coming in, for instance.
2124 */
2125 if (addin != 0) {
2126 #ifdef TCPISS_DEBUG
2127 printf("Random %08x, ", tcp_iss);
2128 #endif
2129 tcp_iss &= TCP_ISS_RANDOM_MASK;
2130 tcp_iss += addin + TCP_ISSINCR;
2131 #ifdef TCPISS_DEBUG
2132 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2133 #endif
2134 } else {
2135 tcp_iss &= TCP_ISS_RANDOM_MASK;
2136 tcp_iss += tcp_iss_seq;
2137 tcp_iss_seq += TCP_ISSINCR;
2138 #ifdef TCPISS_DEBUG
2139 printf("ISS %08x\n", tcp_iss);
2140 #endif
2141 }
2142 }
2143
2144 if (tcp_compat_42) {
2145 /*
2146 * Limit it to the positive range for really old TCP
2147 * implementations.
2148 * Just AND off the top bit instead of checking if
2149 * is set first - saves a branch 50% of the time.
2150 */
2151 tcp_iss &= 0x7fffffff; /* XXX */
2152 }
2153
2154 return (tcp_iss);
2155 }
2156
2157 #if defined(IPSEC) || defined(FAST_IPSEC)
2158 /* compute ESP/AH header size for TCP, including outer IP header. */
2159 size_t
2160 ipsec4_hdrsiz_tcp(tp)
2161 struct tcpcb *tp;
2162 {
2163 struct inpcb *inp;
2164 size_t hdrsiz;
2165
2166 /* XXX mapped addr case (tp->t_in6pcb) */
2167 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2168 return 0;
2169 switch (tp->t_family) {
2170 case AF_INET:
2171 /* XXX: should use currect direction. */
2172 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2173 break;
2174 default:
2175 hdrsiz = 0;
2176 break;
2177 }
2178
2179 return hdrsiz;
2180 }
2181
2182 #ifdef INET6
2183 size_t
2184 ipsec6_hdrsiz_tcp(tp)
2185 struct tcpcb *tp;
2186 {
2187 struct in6pcb *in6p;
2188 size_t hdrsiz;
2189
2190 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2191 return 0;
2192 switch (tp->t_family) {
2193 case AF_INET6:
2194 /* XXX: should use currect direction. */
2195 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2196 break;
2197 case AF_INET:
2198 /* mapped address case - tricky */
2199 default:
2200 hdrsiz = 0;
2201 break;
2202 }
2203
2204 return hdrsiz;
2205 }
2206 #endif
2207 #endif /*IPSEC*/
2208
2209 /*
2210 * Determine the length of the TCP options for this connection.
2211 *
2212 * XXX: What do we do for SACK, when we add that? Just reserve
2213 * all of the space? Otherwise we can't exactly be incrementing
2214 * cwnd by an amount that varies depending on the amount we last
2215 * had to SACK!
2216 */
2217
2218 u_int
2219 tcp_optlen(tp)
2220 struct tcpcb *tp;
2221 {
2222 u_int optlen;
2223
2224 optlen = 0;
2225 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2226 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2227 optlen += TCPOLEN_TSTAMP_APPA;
2228
2229 #ifdef TCP_SIGNATURE
2230 #if defined(INET6) && defined(FAST_IPSEC)
2231 if (tp->t_family == AF_INET)
2232 #endif
2233 if (tp->t_flags & TF_SIGNATURE)
2234 optlen += TCPOLEN_SIGNATURE + 2;
2235 #endif /* TCP_SIGNATURE */
2236
2237 return optlen;
2238 }
2239