tcp_subr.c revision 1.180 1 /* $NetBSD: tcp_subr.c,v 1.180 2005/02/12 01:24:07 heas Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.180 2005/02/12 01:24:07 heas Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcpip.h>
155
156 #ifdef IPSEC
157 #include <netinet6/ipsec.h>
158 #include <netkey/key.h>
159 #endif /*IPSEC*/
160
161 #ifdef FAST_IPSEC
162 #include <netipsec/ipsec.h>
163 #include <netipsec/xform.h>
164 #ifdef INET6
165 #include <netipsec/ipsec6.h>
166 #endif
167 #include <netipsec/key.h>
168 #endif /* FAST_IPSEC*/
169
170
171 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
172 struct tcpstat tcpstat; /* tcp statistics */
173 u_int32_t tcp_now; /* for RFC 1323 timestamps */
174
175 /* patchable/settable parameters for tcp */
176 int tcp_mssdflt = TCP_MSS;
177 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
178 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
179 #if NRND > 0
180 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
181 #endif
182 int tcp_do_sack = 1; /* selective acknowledgement */
183 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
184 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
185 int tcp_do_newreno = 1; /* Use the New Reno algorithms */
186 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
187 #ifndef TCP_INIT_WIN
188 #define TCP_INIT_WIN 0 /* initial slow start window */
189 #endif
190 #ifndef TCP_INIT_WIN_LOCAL
191 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
192 #endif
193 int tcp_init_win = TCP_INIT_WIN;
194 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
195 int tcp_mss_ifmtu = 0;
196 #ifdef TCP_COMPAT_42
197 int tcp_compat_42 = 1;
198 #else
199 int tcp_compat_42 = 0;
200 #endif
201 int tcp_rst_ppslim = 100; /* 100pps */
202 int tcp_ackdrop_ppslim = 100; /* 100pps */
203 int tcp_do_loopback_cksum = 0;
204
205 /* tcb hash */
206 #ifndef TCBHASHSIZE
207 #define TCBHASHSIZE 128
208 #endif
209 int tcbhashsize = TCBHASHSIZE;
210
211 /* syn hash parameters */
212 #define TCP_SYN_HASH_SIZE 293
213 #define TCP_SYN_BUCKET_SIZE 35
214 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
215 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
216 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
217 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
218
219 int tcp_freeq(struct tcpcb *);
220
221 #ifdef INET
222 void tcp_mtudisc_callback(struct in_addr);
223 #endif
224 #ifdef INET6
225 void tcp6_mtudisc_callback(struct in6_addr *);
226 #endif
227
228 void tcp_mtudisc(struct inpcb *, int);
229 #ifdef INET6
230 void tcp6_mtudisc(struct in6pcb *, int);
231 #endif
232
233 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
234
235 #ifdef TCP_CSUM_COUNTERS
236 #include <sys/device.h>
237
238 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
239 NULL, "tcp", "hwcsum bad");
240 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
241 NULL, "tcp", "hwcsum ok");
242 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
243 NULL, "tcp", "hwcsum data");
244 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
245 NULL, "tcp", "swcsum");
246
247 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
248 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
249 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
250 EVCNT_ATTACH_STATIC(tcp_swcsum);
251 #endif /* TCP_CSUM_COUNTERS */
252
253
254 #ifdef TCP_OUTPUT_COUNTERS
255 #include <sys/device.h>
256
257 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
258 NULL, "tcp", "output big header");
259 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
260 NULL, "tcp", "output predict hit");
261 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
262 NULL, "tcp", "output predict miss");
263 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264 NULL, "tcp", "output copy small");
265 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266 NULL, "tcp", "output copy big");
267 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268 NULL, "tcp", "output reference big");
269
270 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
271 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
272 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
273 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
274 EVCNT_ATTACH_STATIC(tcp_output_copybig);
275 EVCNT_ATTACH_STATIC(tcp_output_refbig);
276
277 #endif /* TCP_OUTPUT_COUNTERS */
278
279 #ifdef TCP_REASS_COUNTERS
280 #include <sys/device.h>
281
282 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
283 NULL, "tcp_reass", "calls");
284 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
285 &tcp_reass_, "tcp_reass", "insert into empty queue");
286 struct evcnt tcp_reass_iteration[8] = {
287 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
288 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
289 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
290 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
291 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
292 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
293 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
294 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
295 };
296 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
297 &tcp_reass_, "tcp_reass", "prepend to first");
298 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
299 &tcp_reass_, "tcp_reass", "prepend");
300 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
301 &tcp_reass_, "tcp_reass", "insert");
302 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
303 &tcp_reass_, "tcp_reass", "insert at tail");
304 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
305 &tcp_reass_, "tcp_reass", "append");
306 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
307 &tcp_reass_, "tcp_reass", "append to tail fragment");
308 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
309 &tcp_reass_, "tcp_reass", "overlap at end");
310 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
311 &tcp_reass_, "tcp_reass", "overlap at start");
312 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
313 &tcp_reass_, "tcp_reass", "duplicate segment");
314 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
315 &tcp_reass_, "tcp_reass", "duplicate fragment");
316
317 EVCNT_ATTACH_STATIC(tcp_reass_);
318 EVCNT_ATTACH_STATIC(tcp_reass_empty);
319 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
320 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
321 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
322 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
323 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
324 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
325 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
326 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
327 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
328 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
329 EVCNT_ATTACH_STATIC(tcp_reass_insert);
330 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
331 EVCNT_ATTACH_STATIC(tcp_reass_append);
332 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
333 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
334 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
335 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
336 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
337
338 #endif /* TCP_REASS_COUNTERS */
339
340 #ifdef MBUFTRACE
341 struct mowner tcp_mowner = { "tcp" };
342 struct mowner tcp_rx_mowner = { "tcp", "rx" };
343 struct mowner tcp_tx_mowner = { "tcp", "tx" };
344 #endif
345
346 /*
347 * Tcp initialization
348 */
349 void
350 tcp_init(void)
351 {
352 int hlen;
353
354 /* Initialize the TCPCB template. */
355 tcp_tcpcb_template();
356
357 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
358
359 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
360 #ifdef INET6
361 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
362 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
363 #endif
364 if (max_protohdr < hlen)
365 max_protohdr = hlen;
366 if (max_linkhdr + hlen > MHLEN)
367 panic("tcp_init");
368
369 #ifdef INET
370 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
371 #endif
372 #ifdef INET6
373 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
374 #endif
375
376 /* Initialize timer state. */
377 tcp_timer_init();
378
379 /* Initialize the compressed state engine. */
380 syn_cache_init();
381
382 MOWNER_ATTACH(&tcp_tx_mowner);
383 MOWNER_ATTACH(&tcp_rx_mowner);
384 MOWNER_ATTACH(&tcp_mowner);
385 }
386
387 /*
388 * Create template to be used to send tcp packets on a connection.
389 * Call after host entry created, allocates an mbuf and fills
390 * in a skeletal tcp/ip header, minimizing the amount of work
391 * necessary when the connection is used.
392 */
393 struct mbuf *
394 tcp_template(struct tcpcb *tp)
395 {
396 struct inpcb *inp = tp->t_inpcb;
397 #ifdef INET6
398 struct in6pcb *in6p = tp->t_in6pcb;
399 #endif
400 struct tcphdr *n;
401 struct mbuf *m;
402 int hlen;
403
404 switch (tp->t_family) {
405 case AF_INET:
406 hlen = sizeof(struct ip);
407 if (inp)
408 break;
409 #ifdef INET6
410 if (in6p) {
411 /* mapped addr case */
412 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
413 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
414 break;
415 }
416 #endif
417 return NULL; /*EINVAL*/
418 #ifdef INET6
419 case AF_INET6:
420 hlen = sizeof(struct ip6_hdr);
421 if (in6p) {
422 /* more sainty check? */
423 break;
424 }
425 return NULL; /*EINVAL*/
426 #endif
427 default:
428 hlen = 0; /*pacify gcc*/
429 return NULL; /*EAFNOSUPPORT*/
430 }
431 #ifdef DIAGNOSTIC
432 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
433 panic("mclbytes too small for t_template");
434 #endif
435 m = tp->t_template;
436 if (m && m->m_len == hlen + sizeof(struct tcphdr))
437 ;
438 else {
439 if (m)
440 m_freem(m);
441 m = tp->t_template = NULL;
442 MGETHDR(m, M_DONTWAIT, MT_HEADER);
443 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
444 MCLGET(m, M_DONTWAIT);
445 if ((m->m_flags & M_EXT) == 0) {
446 m_free(m);
447 m = NULL;
448 }
449 }
450 if (m == NULL)
451 return NULL;
452 MCLAIM(m, &tcp_mowner);
453 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
454 }
455
456 bzero(mtod(m, caddr_t), m->m_len);
457
458 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
459
460 switch (tp->t_family) {
461 case AF_INET:
462 {
463 struct ipovly *ipov;
464 mtod(m, struct ip *)->ip_v = 4;
465 mtod(m, struct ip *)->ip_hl = hlen >> 2;
466 ipov = mtod(m, struct ipovly *);
467 ipov->ih_pr = IPPROTO_TCP;
468 ipov->ih_len = htons(sizeof(struct tcphdr));
469 if (inp) {
470 ipov->ih_src = inp->inp_laddr;
471 ipov->ih_dst = inp->inp_faddr;
472 }
473 #ifdef INET6
474 else if (in6p) {
475 /* mapped addr case */
476 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
477 sizeof(ipov->ih_src));
478 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
479 sizeof(ipov->ih_dst));
480 }
481 #endif
482 /*
483 * Compute the pseudo-header portion of the checksum
484 * now. We incrementally add in the TCP option and
485 * payload lengths later, and then compute the TCP
486 * checksum right before the packet is sent off onto
487 * the wire.
488 */
489 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
490 ipov->ih_dst.s_addr,
491 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
492 break;
493 }
494 #ifdef INET6
495 case AF_INET6:
496 {
497 struct ip6_hdr *ip6;
498 mtod(m, struct ip *)->ip_v = 6;
499 ip6 = mtod(m, struct ip6_hdr *);
500 ip6->ip6_nxt = IPPROTO_TCP;
501 ip6->ip6_plen = htons(sizeof(struct tcphdr));
502 ip6->ip6_src = in6p->in6p_laddr;
503 ip6->ip6_dst = in6p->in6p_faddr;
504 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
505 if (ip6_auto_flowlabel) {
506 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
507 ip6->ip6_flow |=
508 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
509 }
510 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
511 ip6->ip6_vfc |= IPV6_VERSION;
512
513 /*
514 * Compute the pseudo-header portion of the checksum
515 * now. We incrementally add in the TCP option and
516 * payload lengths later, and then compute the TCP
517 * checksum right before the packet is sent off onto
518 * the wire.
519 */
520 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
521 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
522 htonl(IPPROTO_TCP));
523 break;
524 }
525 #endif
526 }
527 if (inp) {
528 n->th_sport = inp->inp_lport;
529 n->th_dport = inp->inp_fport;
530 }
531 #ifdef INET6
532 else if (in6p) {
533 n->th_sport = in6p->in6p_lport;
534 n->th_dport = in6p->in6p_fport;
535 }
536 #endif
537 n->th_seq = 0;
538 n->th_ack = 0;
539 n->th_x2 = 0;
540 n->th_off = 5;
541 n->th_flags = 0;
542 n->th_win = 0;
543 n->th_urp = 0;
544 return (m);
545 }
546
547 /*
548 * Send a single message to the TCP at address specified by
549 * the given TCP/IP header. If m == 0, then we make a copy
550 * of the tcpiphdr at ti and send directly to the addressed host.
551 * This is used to force keep alive messages out using the TCP
552 * template for a connection tp->t_template. If flags are given
553 * then we send a message back to the TCP which originated the
554 * segment ti, and discard the mbuf containing it and any other
555 * attached mbufs.
556 *
557 * In any case the ack and sequence number of the transmitted
558 * segment are as specified by the parameters.
559 */
560 int
561 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
562 struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
563 {
564 struct route *ro;
565 int error, tlen, win = 0;
566 int hlen;
567 struct ip *ip;
568 #ifdef INET6
569 struct ip6_hdr *ip6;
570 #endif
571 int family; /* family on packet, not inpcb/in6pcb! */
572 struct tcphdr *th;
573 struct socket *so;
574
575 if (tp != NULL && (flags & TH_RST) == 0) {
576 #ifdef DIAGNOSTIC
577 if (tp->t_inpcb && tp->t_in6pcb)
578 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
579 #endif
580 #ifdef INET
581 if (tp->t_inpcb)
582 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
583 #endif
584 #ifdef INET6
585 if (tp->t_in6pcb)
586 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
587 #endif
588 }
589
590 th = NULL; /* Quell uninitialized warning */
591 ip = NULL;
592 #ifdef INET6
593 ip6 = NULL;
594 #endif
595 if (m == 0) {
596 if (!template)
597 return EINVAL;
598
599 /* get family information from template */
600 switch (mtod(template, struct ip *)->ip_v) {
601 case 4:
602 family = AF_INET;
603 hlen = sizeof(struct ip);
604 break;
605 #ifdef INET6
606 case 6:
607 family = AF_INET6;
608 hlen = sizeof(struct ip6_hdr);
609 break;
610 #endif
611 default:
612 return EAFNOSUPPORT;
613 }
614
615 MGETHDR(m, M_DONTWAIT, MT_HEADER);
616 if (m) {
617 MCLAIM(m, &tcp_tx_mowner);
618 MCLGET(m, M_DONTWAIT);
619 if ((m->m_flags & M_EXT) == 0) {
620 m_free(m);
621 m = NULL;
622 }
623 }
624 if (m == NULL)
625 return (ENOBUFS);
626
627 if (tcp_compat_42)
628 tlen = 1;
629 else
630 tlen = 0;
631
632 m->m_data += max_linkhdr;
633 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
634 template->m_len);
635 switch (family) {
636 case AF_INET:
637 ip = mtod(m, struct ip *);
638 th = (struct tcphdr *)(ip + 1);
639 break;
640 #ifdef INET6
641 case AF_INET6:
642 ip6 = mtod(m, struct ip6_hdr *);
643 th = (struct tcphdr *)(ip6 + 1);
644 break;
645 #endif
646 #if 0
647 default:
648 /* noone will visit here */
649 m_freem(m);
650 return EAFNOSUPPORT;
651 #endif
652 }
653 flags = TH_ACK;
654 } else {
655
656 if ((m->m_flags & M_PKTHDR) == 0) {
657 #if 0
658 printf("non PKTHDR to tcp_respond\n");
659 #endif
660 m_freem(m);
661 return EINVAL;
662 }
663 #ifdef DIAGNOSTIC
664 if (!th0)
665 panic("th0 == NULL in tcp_respond");
666 #endif
667
668 /* get family information from m */
669 switch (mtod(m, struct ip *)->ip_v) {
670 case 4:
671 family = AF_INET;
672 hlen = sizeof(struct ip);
673 ip = mtod(m, struct ip *);
674 break;
675 #ifdef INET6
676 case 6:
677 family = AF_INET6;
678 hlen = sizeof(struct ip6_hdr);
679 ip6 = mtod(m, struct ip6_hdr *);
680 break;
681 #endif
682 default:
683 m_freem(m);
684 return EAFNOSUPPORT;
685 }
686 /* clear h/w csum flags inherited from rx packet */
687 m->m_pkthdr.csum_flags = 0;
688
689 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
690 tlen = sizeof(*th0);
691 else
692 tlen = th0->th_off << 2;
693
694 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
695 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
696 m->m_len = hlen + tlen;
697 m_freem(m->m_next);
698 m->m_next = NULL;
699 } else {
700 struct mbuf *n;
701
702 #ifdef DIAGNOSTIC
703 if (max_linkhdr + hlen + tlen > MCLBYTES) {
704 m_freem(m);
705 return EMSGSIZE;
706 }
707 #endif
708 MGETHDR(n, M_DONTWAIT, MT_HEADER);
709 if (n && max_linkhdr + hlen + tlen > MHLEN) {
710 MCLGET(n, M_DONTWAIT);
711 if ((n->m_flags & M_EXT) == 0) {
712 m_freem(n);
713 n = NULL;
714 }
715 }
716 if (!n) {
717 m_freem(m);
718 return ENOBUFS;
719 }
720
721 MCLAIM(n, &tcp_tx_mowner);
722 n->m_data += max_linkhdr;
723 n->m_len = hlen + tlen;
724 m_copyback(n, 0, hlen, mtod(m, caddr_t));
725 m_copyback(n, hlen, tlen, (caddr_t)th0);
726
727 m_freem(m);
728 m = n;
729 n = NULL;
730 }
731
732 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
733 switch (family) {
734 case AF_INET:
735 ip = mtod(m, struct ip *);
736 th = (struct tcphdr *)(ip + 1);
737 ip->ip_p = IPPROTO_TCP;
738 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
739 ip->ip_p = IPPROTO_TCP;
740 break;
741 #ifdef INET6
742 case AF_INET6:
743 ip6 = mtod(m, struct ip6_hdr *);
744 th = (struct tcphdr *)(ip6 + 1);
745 ip6->ip6_nxt = IPPROTO_TCP;
746 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
747 ip6->ip6_nxt = IPPROTO_TCP;
748 break;
749 #endif
750 #if 0
751 default:
752 /* noone will visit here */
753 m_freem(m);
754 return EAFNOSUPPORT;
755 #endif
756 }
757 xchg(th->th_dport, th->th_sport, u_int16_t);
758 #undef xchg
759 tlen = 0; /*be friendly with the following code*/
760 }
761 th->th_seq = htonl(seq);
762 th->th_ack = htonl(ack);
763 th->th_x2 = 0;
764 if ((flags & TH_SYN) == 0) {
765 if (tp)
766 win >>= tp->rcv_scale;
767 if (win > TCP_MAXWIN)
768 win = TCP_MAXWIN;
769 th->th_win = htons((u_int16_t)win);
770 th->th_off = sizeof (struct tcphdr) >> 2;
771 tlen += sizeof(*th);
772 } else
773 tlen += th->th_off << 2;
774 m->m_len = hlen + tlen;
775 m->m_pkthdr.len = hlen + tlen;
776 m->m_pkthdr.rcvif = (struct ifnet *) 0;
777 th->th_flags = flags;
778 th->th_urp = 0;
779
780 switch (family) {
781 #ifdef INET
782 case AF_INET:
783 {
784 struct ipovly *ipov = (struct ipovly *)ip;
785 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
786 ipov->ih_len = htons((u_int16_t)tlen);
787
788 th->th_sum = 0;
789 th->th_sum = in_cksum(m, hlen + tlen);
790 ip->ip_len = htons(hlen + tlen);
791 ip->ip_ttl = ip_defttl;
792 break;
793 }
794 #endif
795 #ifdef INET6
796 case AF_INET6:
797 {
798 th->th_sum = 0;
799 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
800 tlen);
801 ip6->ip6_plen = htons(tlen);
802 if (tp && tp->t_in6pcb) {
803 struct ifnet *oifp;
804 ro = (struct route *)&tp->t_in6pcb->in6p_route;
805 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
806 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
807 } else
808 ip6->ip6_hlim = ip6_defhlim;
809 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
810 if (ip6_auto_flowlabel) {
811 ip6->ip6_flow |=
812 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
813 }
814 break;
815 }
816 #endif
817 }
818
819 if (tp && tp->t_inpcb)
820 so = tp->t_inpcb->inp_socket;
821 #ifdef INET6
822 else if (tp && tp->t_in6pcb)
823 so = tp->t_in6pcb->in6p_socket;
824 #endif
825 else
826 so = NULL;
827
828 if (tp != NULL && tp->t_inpcb != NULL) {
829 ro = &tp->t_inpcb->inp_route;
830 #ifdef DIAGNOSTIC
831 if (family != AF_INET)
832 panic("tcp_respond: address family mismatch");
833 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
834 panic("tcp_respond: ip_dst %x != inp_faddr %x",
835 ntohl(ip->ip_dst.s_addr),
836 ntohl(tp->t_inpcb->inp_faddr.s_addr));
837 }
838 #endif
839 }
840 #ifdef INET6
841 else if (tp != NULL && tp->t_in6pcb != NULL) {
842 ro = (struct route *)&tp->t_in6pcb->in6p_route;
843 #ifdef DIAGNOSTIC
844 if (family == AF_INET) {
845 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
846 panic("tcp_respond: not mapped addr");
847 if (bcmp(&ip->ip_dst,
848 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
849 sizeof(ip->ip_dst)) != 0) {
850 panic("tcp_respond: ip_dst != in6p_faddr");
851 }
852 } else if (family == AF_INET6) {
853 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
854 &tp->t_in6pcb->in6p_faddr))
855 panic("tcp_respond: ip6_dst != in6p_faddr");
856 } else
857 panic("tcp_respond: address family mismatch");
858 #endif
859 }
860 #endif
861 else
862 ro = NULL;
863
864 switch (family) {
865 #ifdef INET
866 case AF_INET:
867 error = ip_output(m, NULL, ro,
868 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
869 (struct ip_moptions *)0, so);
870 break;
871 #endif
872 #ifdef INET6
873 case AF_INET6:
874 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
875 (struct ip6_moptions *)0, so, NULL);
876 break;
877 #endif
878 default:
879 error = EAFNOSUPPORT;
880 break;
881 }
882
883 return (error);
884 }
885
886 /*
887 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
888 * a bunch of members individually, we maintain this template for the
889 * static and mostly-static components of the TCPCB, and copy it into
890 * the new TCPCB instead.
891 */
892 static struct tcpcb tcpcb_template = {
893 /*
894 * If TCP_NTIMERS ever changes, we'll need to update this
895 * initializer.
896 */
897 .t_timer = {
898 CALLOUT_INITIALIZER,
899 CALLOUT_INITIALIZER,
900 CALLOUT_INITIALIZER,
901 CALLOUT_INITIALIZER,
902 },
903 .t_delack_ch = CALLOUT_INITIALIZER,
904
905 .t_srtt = TCPTV_SRTTBASE,
906 .t_rttmin = TCPTV_MIN,
907
908 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
909 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
910 };
911
912 /*
913 * Updates the TCPCB template whenever a parameter that would affect
914 * the template is changed.
915 */
916 void
917 tcp_tcpcb_template(void)
918 {
919 struct tcpcb *tp = &tcpcb_template;
920 int flags;
921
922 tp->t_peermss = tcp_mssdflt;
923 tp->t_ourmss = tcp_mssdflt;
924 tp->t_segsz = tcp_mssdflt;
925
926 flags = 0;
927 if (tcp_do_rfc1323 && tcp_do_win_scale)
928 flags |= TF_REQ_SCALE;
929 if (tcp_do_rfc1323 && tcp_do_timestamps)
930 flags |= TF_REQ_TSTMP;
931 if (tcp_do_sack == 2)
932 flags |= TF_WILL_SACK;
933 else if (tcp_do_sack == 1)
934 flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
935 flags |= TF_CANT_TXSACK;
936 tp->t_flags = flags;
937
938 /*
939 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
940 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
941 * reasonable initial retransmit time.
942 */
943 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
944 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
945 TCPTV_MIN, TCPTV_REXMTMAX);
946 }
947
948 /*
949 * Create a new TCP control block, making an
950 * empty reassembly queue and hooking it to the argument
951 * protocol control block.
952 */
953 /* family selects inpcb, or in6pcb */
954 struct tcpcb *
955 tcp_newtcpcb(int family, void *aux)
956 {
957 struct tcpcb *tp;
958 int i;
959
960 /* XXX Consider using a pool_cache for speed. */
961 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
962 if (tp == NULL)
963 return (NULL);
964 memcpy(tp, &tcpcb_template, sizeof(*tp));
965 TAILQ_INIT(&tp->segq);
966 TAILQ_INIT(&tp->timeq);
967 tp->t_family = family; /* may be overridden later on */
968 LIST_INIT(&tp->t_sc); /* XXX can template this */
969
970 /* Don't sweat this loop; hopefully the compiler will unroll it. */
971 for (i = 0; i < TCPT_NTIMERS; i++)
972 TCP_TIMER_INIT(tp, i);
973
974 switch (family) {
975 case AF_INET:
976 {
977 struct inpcb *inp = (struct inpcb *)aux;
978
979 inp->inp_ip.ip_ttl = ip_defttl;
980 inp->inp_ppcb = (caddr_t)tp;
981
982 tp->t_inpcb = inp;
983 tp->t_mtudisc = ip_mtudisc;
984 break;
985 }
986 #ifdef INET6
987 case AF_INET6:
988 {
989 struct in6pcb *in6p = (struct in6pcb *)aux;
990
991 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
992 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
993 : NULL);
994 in6p->in6p_ppcb = (caddr_t)tp;
995
996 tp->t_in6pcb = in6p;
997 /* for IPv6, always try to run path MTU discovery */
998 tp->t_mtudisc = 1;
999 break;
1000 }
1001 #endif /* INET6 */
1002 default:
1003 pool_put(&tcpcb_pool, tp);
1004 return (NULL);
1005 }
1006
1007 /*
1008 * Initialize our timebase. When we send timestamps, we take
1009 * the delta from tcp_now -- this means each connection always
1010 * gets a timebase of 0, which makes it, among other things,
1011 * more difficult to determine how long a system has been up,
1012 * and thus how many TCP sequence increments have occurred.
1013 */
1014 tp->ts_timebase = tcp_now;
1015
1016 return (tp);
1017 }
1018
1019 /*
1020 * Drop a TCP connection, reporting
1021 * the specified error. If connection is synchronized,
1022 * then send a RST to peer.
1023 */
1024 struct tcpcb *
1025 tcp_drop(struct tcpcb *tp, int errno)
1026 {
1027 struct socket *so = NULL;
1028
1029 #ifdef DIAGNOSTIC
1030 if (tp->t_inpcb && tp->t_in6pcb)
1031 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1032 #endif
1033 #ifdef INET
1034 if (tp->t_inpcb)
1035 so = tp->t_inpcb->inp_socket;
1036 #endif
1037 #ifdef INET6
1038 if (tp->t_in6pcb)
1039 so = tp->t_in6pcb->in6p_socket;
1040 #endif
1041 if (!so)
1042 return NULL;
1043
1044 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1045 tp->t_state = TCPS_CLOSED;
1046 (void) tcp_output(tp);
1047 tcpstat.tcps_drops++;
1048 } else
1049 tcpstat.tcps_conndrops++;
1050 if (errno == ETIMEDOUT && tp->t_softerror)
1051 errno = tp->t_softerror;
1052 so->so_error = errno;
1053 return (tcp_close(tp));
1054 }
1055
1056 /*
1057 * Return whether this tcpcb is marked as dead, indicating
1058 * to the calling timer function that no further action should
1059 * be taken, as we are about to release this tcpcb. The release
1060 * of the storage will be done if this is the last timer running.
1061 *
1062 * This should be called from the callout handler function after
1063 * callout_ack() is done, so that the number of invoking timer
1064 * functions is 0.
1065 */
1066 int
1067 tcp_isdead(struct tcpcb *tp)
1068 {
1069 int dead = (tp->t_flags & TF_DEAD);
1070
1071 if (__predict_false(dead)) {
1072 if (tcp_timers_invoking(tp) > 0)
1073 /* not quite there yet -- count separately? */
1074 return dead;
1075 tcpstat.tcps_delayed_free++;
1076 pool_put(&tcpcb_pool, tp);
1077 }
1078 return dead;
1079 }
1080
1081 /*
1082 * Close a TCP control block:
1083 * discard all space held by the tcp
1084 * discard internet protocol block
1085 * wake up any sleepers
1086 */
1087 struct tcpcb *
1088 tcp_close(struct tcpcb *tp)
1089 {
1090 struct inpcb *inp;
1091 #ifdef INET6
1092 struct in6pcb *in6p;
1093 #endif
1094 struct socket *so;
1095 #ifdef RTV_RTT
1096 struct rtentry *rt;
1097 #endif
1098 struct route *ro;
1099
1100 inp = tp->t_inpcb;
1101 #ifdef INET6
1102 in6p = tp->t_in6pcb;
1103 #endif
1104 so = NULL;
1105 ro = NULL;
1106 if (inp) {
1107 so = inp->inp_socket;
1108 ro = &inp->inp_route;
1109 }
1110 #ifdef INET6
1111 else if (in6p) {
1112 so = in6p->in6p_socket;
1113 ro = (struct route *)&in6p->in6p_route;
1114 }
1115 #endif
1116
1117 #ifdef RTV_RTT
1118 /*
1119 * If we sent enough data to get some meaningful characteristics,
1120 * save them in the routing entry. 'Enough' is arbitrarily
1121 * defined as the sendpipesize (default 4K) * 16. This would
1122 * give us 16 rtt samples assuming we only get one sample per
1123 * window (the usual case on a long haul net). 16 samples is
1124 * enough for the srtt filter to converge to within 5% of the correct
1125 * value; fewer samples and we could save a very bogus rtt.
1126 *
1127 * Don't update the default route's characteristics and don't
1128 * update anything that the user "locked".
1129 */
1130 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1131 ro && (rt = ro->ro_rt) &&
1132 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1133 u_long i = 0;
1134
1135 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1136 i = tp->t_srtt *
1137 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1138 if (rt->rt_rmx.rmx_rtt && i)
1139 /*
1140 * filter this update to half the old & half
1141 * the new values, converting scale.
1142 * See route.h and tcp_var.h for a
1143 * description of the scaling constants.
1144 */
1145 rt->rt_rmx.rmx_rtt =
1146 (rt->rt_rmx.rmx_rtt + i) / 2;
1147 else
1148 rt->rt_rmx.rmx_rtt = i;
1149 }
1150 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1151 i = tp->t_rttvar *
1152 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1153 if (rt->rt_rmx.rmx_rttvar && i)
1154 rt->rt_rmx.rmx_rttvar =
1155 (rt->rt_rmx.rmx_rttvar + i) / 2;
1156 else
1157 rt->rt_rmx.rmx_rttvar = i;
1158 }
1159 /*
1160 * update the pipelimit (ssthresh) if it has been updated
1161 * already or if a pipesize was specified & the threshhold
1162 * got below half the pipesize. I.e., wait for bad news
1163 * before we start updating, then update on both good
1164 * and bad news.
1165 */
1166 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1167 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1168 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1169 /*
1170 * convert the limit from user data bytes to
1171 * packets then to packet data bytes.
1172 */
1173 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1174 if (i < 2)
1175 i = 2;
1176 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1177 if (rt->rt_rmx.rmx_ssthresh)
1178 rt->rt_rmx.rmx_ssthresh =
1179 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1180 else
1181 rt->rt_rmx.rmx_ssthresh = i;
1182 }
1183 }
1184 #endif /* RTV_RTT */
1185 /* free the reassembly queue, if any */
1186 TCP_REASS_LOCK(tp);
1187 (void) tcp_freeq(tp);
1188 TCP_REASS_UNLOCK(tp);
1189
1190 tcp_canceltimers(tp);
1191 TCP_CLEAR_DELACK(tp);
1192 syn_cache_cleanup(tp);
1193
1194 if (tp->t_template) {
1195 m_free(tp->t_template);
1196 tp->t_template = NULL;
1197 }
1198 if (tcp_timers_invoking(tp))
1199 tp->t_flags |= TF_DEAD;
1200 else
1201 pool_put(&tcpcb_pool, tp);
1202
1203 if (inp) {
1204 inp->inp_ppcb = 0;
1205 soisdisconnected(so);
1206 in_pcbdetach(inp);
1207 }
1208 #ifdef INET6
1209 else if (in6p) {
1210 in6p->in6p_ppcb = 0;
1211 soisdisconnected(so);
1212 in6_pcbdetach(in6p);
1213 }
1214 #endif
1215 tcpstat.tcps_closed++;
1216 return ((struct tcpcb *)0);
1217 }
1218
1219 int
1220 tcp_freeq(tp)
1221 struct tcpcb *tp;
1222 {
1223 struct ipqent *qe;
1224 int rv = 0;
1225 #ifdef TCPREASS_DEBUG
1226 int i = 0;
1227 #endif
1228
1229 TCP_REASS_LOCK_CHECK(tp);
1230
1231 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1232 #ifdef TCPREASS_DEBUG
1233 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1234 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1235 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1236 #endif
1237 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1238 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1239 m_freem(qe->ipqe_m);
1240 pool_put(&tcpipqent_pool, qe);
1241 rv = 1;
1242 }
1243 return (rv);
1244 }
1245
1246 /*
1247 * Protocol drain routine. Called when memory is in short supply.
1248 */
1249 void
1250 tcp_drain(void)
1251 {
1252 struct inpcb_hdr *inph;
1253 struct tcpcb *tp;
1254
1255 /*
1256 * Free the sequence queue of all TCP connections.
1257 */
1258 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1259 switch (inph->inph_af) {
1260 case AF_INET:
1261 tp = intotcpcb((struct inpcb *)inph);
1262 break;
1263 #ifdef INET6
1264 case AF_INET6:
1265 tp = in6totcpcb((struct in6pcb *)inph);
1266 break;
1267 #endif
1268 default:
1269 tp = NULL;
1270 break;
1271 }
1272 if (tp != NULL) {
1273 /*
1274 * We may be called from a device's interrupt
1275 * context. If the tcpcb is already busy,
1276 * just bail out now.
1277 */
1278 if (tcp_reass_lock_try(tp) == 0)
1279 continue;
1280 if (tcp_freeq(tp))
1281 tcpstat.tcps_connsdrained++;
1282 TCP_REASS_UNLOCK(tp);
1283 }
1284 }
1285 }
1286
1287 /*
1288 * Notify a tcp user of an asynchronous error;
1289 * store error as soft error, but wake up user
1290 * (for now, won't do anything until can select for soft error).
1291 */
1292 void
1293 tcp_notify(struct inpcb *inp, int error)
1294 {
1295 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1296 struct socket *so = inp->inp_socket;
1297
1298 /*
1299 * Ignore some errors if we are hooked up.
1300 * If connection hasn't completed, has retransmitted several times,
1301 * and receives a second error, give up now. This is better
1302 * than waiting a long time to establish a connection that
1303 * can never complete.
1304 */
1305 if (tp->t_state == TCPS_ESTABLISHED &&
1306 (error == EHOSTUNREACH || error == ENETUNREACH ||
1307 error == EHOSTDOWN)) {
1308 return;
1309 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1310 tp->t_rxtshift > 3 && tp->t_softerror)
1311 so->so_error = error;
1312 else
1313 tp->t_softerror = error;
1314 wakeup((caddr_t) &so->so_timeo);
1315 sorwakeup(so);
1316 sowwakeup(so);
1317 }
1318
1319 #ifdef INET6
1320 void
1321 tcp6_notify(struct in6pcb *in6p, int error)
1322 {
1323 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1324 struct socket *so = in6p->in6p_socket;
1325
1326 /*
1327 * Ignore some errors if we are hooked up.
1328 * If connection hasn't completed, has retransmitted several times,
1329 * and receives a second error, give up now. This is better
1330 * than waiting a long time to establish a connection that
1331 * can never complete.
1332 */
1333 if (tp->t_state == TCPS_ESTABLISHED &&
1334 (error == EHOSTUNREACH || error == ENETUNREACH ||
1335 error == EHOSTDOWN)) {
1336 return;
1337 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1338 tp->t_rxtshift > 3 && tp->t_softerror)
1339 so->so_error = error;
1340 else
1341 tp->t_softerror = error;
1342 wakeup((caddr_t) &so->so_timeo);
1343 sorwakeup(so);
1344 sowwakeup(so);
1345 }
1346 #endif
1347
1348 #ifdef INET6
1349 void
1350 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1351 {
1352 struct tcphdr th;
1353 void (*notify)(struct in6pcb *, int) = tcp6_notify;
1354 int nmatch;
1355 struct ip6_hdr *ip6;
1356 const struct sockaddr_in6 *sa6_src = NULL;
1357 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1358 struct mbuf *m;
1359 int off;
1360
1361 if (sa->sa_family != AF_INET6 ||
1362 sa->sa_len != sizeof(struct sockaddr_in6))
1363 return;
1364 if ((unsigned)cmd >= PRC_NCMDS)
1365 return;
1366 else if (cmd == PRC_QUENCH) {
1367 /* XXX there's no PRC_QUENCH in IPv6 */
1368 notify = tcp6_quench;
1369 } else if (PRC_IS_REDIRECT(cmd))
1370 notify = in6_rtchange, d = NULL;
1371 else if (cmd == PRC_MSGSIZE)
1372 ; /* special code is present, see below */
1373 else if (cmd == PRC_HOSTDEAD)
1374 d = NULL;
1375 else if (inet6ctlerrmap[cmd] == 0)
1376 return;
1377
1378 /* if the parameter is from icmp6, decode it. */
1379 if (d != NULL) {
1380 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1381 m = ip6cp->ip6c_m;
1382 ip6 = ip6cp->ip6c_ip6;
1383 off = ip6cp->ip6c_off;
1384 sa6_src = ip6cp->ip6c_src;
1385 } else {
1386 m = NULL;
1387 ip6 = NULL;
1388 sa6_src = &sa6_any;
1389 off = 0;
1390 }
1391
1392 if (ip6) {
1393 /*
1394 * XXX: We assume that when ip6 is non NULL,
1395 * M and OFF are valid.
1396 */
1397
1398 /* check if we can safely examine src and dst ports */
1399 if (m->m_pkthdr.len < off + sizeof(th)) {
1400 if (cmd == PRC_MSGSIZE)
1401 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1402 return;
1403 }
1404
1405 bzero(&th, sizeof(th));
1406 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1407
1408 if (cmd == PRC_MSGSIZE) {
1409 int valid = 0;
1410
1411 /*
1412 * Check to see if we have a valid TCP connection
1413 * corresponding to the address in the ICMPv6 message
1414 * payload.
1415 */
1416 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1417 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1418 th.th_sport, 0))
1419 valid++;
1420
1421 /*
1422 * Depending on the value of "valid" and routing table
1423 * size (mtudisc_{hi,lo}wat), we will:
1424 * - recalcurate the new MTU and create the
1425 * corresponding routing entry, or
1426 * - ignore the MTU change notification.
1427 */
1428 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1429
1430 /*
1431 * no need to call in6_pcbnotify, it should have been
1432 * called via callback if necessary
1433 */
1434 return;
1435 }
1436
1437 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1438 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1439 if (nmatch == 0 && syn_cache_count &&
1440 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1441 inet6ctlerrmap[cmd] == ENETUNREACH ||
1442 inet6ctlerrmap[cmd] == EHOSTDOWN))
1443 syn_cache_unreach((struct sockaddr *)sa6_src,
1444 sa, &th);
1445 } else {
1446 (void) in6_pcbnotify(&tcbtable, sa, 0,
1447 (struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1448 }
1449 }
1450 #endif
1451
1452 #ifdef INET
1453 /* assumes that ip header and tcp header are contiguous on mbuf */
1454 void *
1455 tcp_ctlinput(int cmd, struct sockaddr *sa, void *v)
1456 {
1457 struct ip *ip = v;
1458 struct tcphdr *th;
1459 struct icmp *icp;
1460 extern const int inetctlerrmap[];
1461 void (*notify)(struct inpcb *, int) = tcp_notify;
1462 int errno;
1463 int nmatch;
1464 #ifdef INET6
1465 struct in6_addr src6, dst6;
1466 #endif
1467
1468 if (sa->sa_family != AF_INET ||
1469 sa->sa_len != sizeof(struct sockaddr_in))
1470 return NULL;
1471 if ((unsigned)cmd >= PRC_NCMDS)
1472 return NULL;
1473 errno = inetctlerrmap[cmd];
1474 if (cmd == PRC_QUENCH)
1475 notify = tcp_quench;
1476 else if (PRC_IS_REDIRECT(cmd))
1477 notify = in_rtchange, ip = 0;
1478 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1479 /*
1480 * Check to see if we have a valid TCP connection
1481 * corresponding to the address in the ICMP message
1482 * payload.
1483 *
1484 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1485 */
1486 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1487 #ifdef INET6
1488 memset(&src6, 0, sizeof(src6));
1489 memset(&dst6, 0, sizeof(dst6));
1490 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1491 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1492 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1493 #endif
1494 if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
1495 ip->ip_src, th->th_sport) != NULL)
1496 ;
1497 #ifdef INET6
1498 else if (in6_pcblookup_connect(&tcbtable, &dst6,
1499 th->th_dport, &src6, th->th_sport, 0) != NULL)
1500 ;
1501 #endif
1502 else
1503 return NULL;
1504
1505 /*
1506 * Now that we've validated that we are actually communicating
1507 * with the host indicated in the ICMP message, locate the
1508 * ICMP header, recalculate the new MTU, and create the
1509 * corresponding routing entry.
1510 */
1511 icp = (struct icmp *)((caddr_t)ip -
1512 offsetof(struct icmp, icmp_ip));
1513 icmp_mtudisc(icp, ip->ip_dst);
1514
1515 return NULL;
1516 } else if (cmd == PRC_HOSTDEAD)
1517 ip = 0;
1518 else if (errno == 0)
1519 return NULL;
1520 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1521 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1522 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1523 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1524 if (nmatch == 0 && syn_cache_count &&
1525 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1526 inetctlerrmap[cmd] == ENETUNREACH ||
1527 inetctlerrmap[cmd] == EHOSTDOWN)) {
1528 struct sockaddr_in sin;
1529 bzero(&sin, sizeof(sin));
1530 sin.sin_len = sizeof(sin);
1531 sin.sin_family = AF_INET;
1532 sin.sin_port = th->th_sport;
1533 sin.sin_addr = ip->ip_src;
1534 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1535 }
1536
1537 /* XXX mapped address case */
1538 } else
1539 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1540 notify);
1541 return NULL;
1542 }
1543
1544 /*
1545 * When a source quence is received, we are being notifed of congestion.
1546 * Close the congestion window down to the Loss Window (one segment).
1547 * We will gradually open it again as we proceed.
1548 */
1549 void
1550 tcp_quench(struct inpcb *inp, int errno)
1551 {
1552 struct tcpcb *tp = intotcpcb(inp);
1553
1554 if (tp)
1555 tp->snd_cwnd = tp->t_segsz;
1556 }
1557 #endif
1558
1559 #ifdef INET6
1560 void
1561 tcp6_quench(struct in6pcb *in6p, int errno)
1562 {
1563 struct tcpcb *tp = in6totcpcb(in6p);
1564
1565 if (tp)
1566 tp->snd_cwnd = tp->t_segsz;
1567 }
1568 #endif
1569
1570 #ifdef INET
1571 /*
1572 * Path MTU Discovery handlers.
1573 */
1574 void
1575 tcp_mtudisc_callback(struct in_addr faddr)
1576 {
1577 #ifdef INET6
1578 struct in6_addr in6;
1579 #endif
1580
1581 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1582 #ifdef INET6
1583 memset(&in6, 0, sizeof(in6));
1584 in6.s6_addr16[5] = 0xffff;
1585 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1586 tcp6_mtudisc_callback(&in6);
1587 #endif
1588 }
1589
1590 /*
1591 * On receipt of path MTU corrections, flush old route and replace it
1592 * with the new one. Retransmit all unacknowledged packets, to ensure
1593 * that all packets will be received.
1594 */
1595 void
1596 tcp_mtudisc(struct inpcb *inp, int errno)
1597 {
1598 struct tcpcb *tp = intotcpcb(inp);
1599 struct rtentry *rt = in_pcbrtentry(inp);
1600
1601 if (tp != 0) {
1602 if (rt != 0) {
1603 /*
1604 * If this was not a host route, remove and realloc.
1605 */
1606 if ((rt->rt_flags & RTF_HOST) == 0) {
1607 in_rtchange(inp, errno);
1608 if ((rt = in_pcbrtentry(inp)) == 0)
1609 return;
1610 }
1611
1612 /*
1613 * Slow start out of the error condition. We
1614 * use the MTU because we know it's smaller
1615 * than the previously transmitted segment.
1616 *
1617 * Note: This is more conservative than the
1618 * suggestion in draft-floyd-incr-init-win-03.
1619 */
1620 if (rt->rt_rmx.rmx_mtu != 0)
1621 tp->snd_cwnd =
1622 TCP_INITIAL_WINDOW(tcp_init_win,
1623 rt->rt_rmx.rmx_mtu);
1624 }
1625
1626 /*
1627 * Resend unacknowledged packets.
1628 */
1629 tp->snd_nxt = tp->snd_una;
1630 tcp_output(tp);
1631 }
1632 }
1633 #endif
1634
1635 #ifdef INET6
1636 /*
1637 * Path MTU Discovery handlers.
1638 */
1639 void
1640 tcp6_mtudisc_callback(struct in6_addr *faddr)
1641 {
1642 struct sockaddr_in6 sin6;
1643
1644 bzero(&sin6, sizeof(sin6));
1645 sin6.sin6_family = AF_INET6;
1646 sin6.sin6_len = sizeof(struct sockaddr_in6);
1647 sin6.sin6_addr = *faddr;
1648 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1649 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1650 }
1651
1652 void
1653 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1654 {
1655 struct tcpcb *tp = in6totcpcb(in6p);
1656 struct rtentry *rt = in6_pcbrtentry(in6p);
1657
1658 if (tp != 0) {
1659 if (rt != 0) {
1660 /*
1661 * If this was not a host route, remove and realloc.
1662 */
1663 if ((rt->rt_flags & RTF_HOST) == 0) {
1664 in6_rtchange(in6p, errno);
1665 if ((rt = in6_pcbrtentry(in6p)) == 0)
1666 return;
1667 }
1668
1669 /*
1670 * Slow start out of the error condition. We
1671 * use the MTU because we know it's smaller
1672 * than the previously transmitted segment.
1673 *
1674 * Note: This is more conservative than the
1675 * suggestion in draft-floyd-incr-init-win-03.
1676 */
1677 if (rt->rt_rmx.rmx_mtu != 0)
1678 tp->snd_cwnd =
1679 TCP_INITIAL_WINDOW(tcp_init_win,
1680 rt->rt_rmx.rmx_mtu);
1681 }
1682
1683 /*
1684 * Resend unacknowledged packets.
1685 */
1686 tp->snd_nxt = tp->snd_una;
1687 tcp_output(tp);
1688 }
1689 }
1690 #endif /* INET6 */
1691
1692 /*
1693 * Compute the MSS to advertise to the peer. Called only during
1694 * the 3-way handshake. If we are the server (peer initiated
1695 * connection), we are called with a pointer to the interface
1696 * on which the SYN packet arrived. If we are the client (we
1697 * initiated connection), we are called with a pointer to the
1698 * interface out which this connection should go.
1699 *
1700 * NOTE: Do not subtract IP option/extension header size nor IPsec
1701 * header size from MSS advertisement. MSS option must hold the maximum
1702 * segment size we can accept, so it must always be:
1703 * max(if mtu) - ip header - tcp header
1704 */
1705 u_long
1706 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1707 {
1708 extern u_long in_maxmtu;
1709 u_long mss = 0;
1710 u_long hdrsiz;
1711
1712 /*
1713 * In order to avoid defeating path MTU discovery on the peer,
1714 * we advertise the max MTU of all attached networks as our MSS,
1715 * per RFC 1191, section 3.1.
1716 *
1717 * We provide the option to advertise just the MTU of
1718 * the interface on which we hope this connection will
1719 * be receiving. If we are responding to a SYN, we
1720 * will have a pretty good idea about this, but when
1721 * initiating a connection there is a bit more doubt.
1722 *
1723 * We also need to ensure that loopback has a large enough
1724 * MSS, as the loopback MTU is never included in in_maxmtu.
1725 */
1726
1727 if (ifp != NULL)
1728 switch (af) {
1729 case AF_INET:
1730 mss = ifp->if_mtu;
1731 break;
1732 #ifdef INET6
1733 case AF_INET6:
1734 mss = IN6_LINKMTU(ifp);
1735 break;
1736 #endif
1737 }
1738
1739 if (tcp_mss_ifmtu == 0)
1740 switch (af) {
1741 case AF_INET:
1742 mss = max(in_maxmtu, mss);
1743 break;
1744 #ifdef INET6
1745 case AF_INET6:
1746 mss = max(in6_maxmtu, mss);
1747 break;
1748 #endif
1749 }
1750
1751 switch (af) {
1752 case AF_INET:
1753 hdrsiz = sizeof(struct ip);
1754 break;
1755 #ifdef INET6
1756 case AF_INET6:
1757 hdrsiz = sizeof(struct ip6_hdr);
1758 break;
1759 #endif
1760 default:
1761 hdrsiz = 0;
1762 break;
1763 }
1764 hdrsiz += sizeof(struct tcphdr);
1765 if (mss > hdrsiz)
1766 mss -= hdrsiz;
1767
1768 mss = max(tcp_mssdflt, mss);
1769 return (mss);
1770 }
1771
1772 /*
1773 * Set connection variables based on the peer's advertised MSS.
1774 * We are passed the TCPCB for the actual connection. If we
1775 * are the server, we are called by the compressed state engine
1776 * when the 3-way handshake is complete. If we are the client,
1777 * we are called when we receive the SYN,ACK from the server.
1778 *
1779 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1780 * before this routine is called!
1781 */
1782 void
1783 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1784 {
1785 struct socket *so;
1786 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1787 struct rtentry *rt;
1788 #endif
1789 u_long bufsize;
1790 int mss;
1791
1792 #ifdef DIAGNOSTIC
1793 if (tp->t_inpcb && tp->t_in6pcb)
1794 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1795 #endif
1796 so = NULL;
1797 rt = NULL;
1798 #ifdef INET
1799 if (tp->t_inpcb) {
1800 so = tp->t_inpcb->inp_socket;
1801 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1802 rt = in_pcbrtentry(tp->t_inpcb);
1803 #endif
1804 }
1805 #endif
1806 #ifdef INET6
1807 if (tp->t_in6pcb) {
1808 so = tp->t_in6pcb->in6p_socket;
1809 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1810 rt = in6_pcbrtentry(tp->t_in6pcb);
1811 #endif
1812 }
1813 #endif
1814
1815 /*
1816 * As per RFC1122, use the default MSS value, unless they
1817 * sent us an offer. Do not accept offers less than 256 bytes.
1818 */
1819 mss = tcp_mssdflt;
1820 if (offer)
1821 mss = offer;
1822 mss = max(mss, 256); /* sanity */
1823 tp->t_peermss = mss;
1824 mss -= tcp_optlen(tp);
1825 #ifdef INET
1826 if (tp->t_inpcb)
1827 mss -= ip_optlen(tp->t_inpcb);
1828 #endif
1829 #ifdef INET6
1830 if (tp->t_in6pcb)
1831 mss -= ip6_optlen(tp->t_in6pcb);
1832 #endif
1833
1834 /*
1835 * If there's a pipesize, change the socket buffer to that size.
1836 * Make the socket buffer an integral number of MSS units. If
1837 * the MSS is larger than the socket buffer, artificially decrease
1838 * the MSS.
1839 */
1840 #ifdef RTV_SPIPE
1841 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1842 bufsize = rt->rt_rmx.rmx_sendpipe;
1843 else
1844 #endif
1845 bufsize = so->so_snd.sb_hiwat;
1846 if (bufsize < mss)
1847 mss = bufsize;
1848 else {
1849 bufsize = roundup(bufsize, mss);
1850 if (bufsize > sb_max)
1851 bufsize = sb_max;
1852 (void) sbreserve(&so->so_snd, bufsize, so);
1853 }
1854 tp->t_segsz = mss;
1855
1856 #ifdef RTV_SSTHRESH
1857 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1858 /*
1859 * There's some sort of gateway or interface buffer
1860 * limit on the path. Use this to set the slow
1861 * start threshold, but set the threshold to no less
1862 * than 2 * MSS.
1863 */
1864 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1865 }
1866 #endif
1867 }
1868
1869 /*
1870 * Processing necessary when a TCP connection is established.
1871 */
1872 void
1873 tcp_established(struct tcpcb *tp)
1874 {
1875 struct socket *so;
1876 #ifdef RTV_RPIPE
1877 struct rtentry *rt;
1878 #endif
1879 u_long bufsize;
1880
1881 #ifdef DIAGNOSTIC
1882 if (tp->t_inpcb && tp->t_in6pcb)
1883 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1884 #endif
1885 so = NULL;
1886 rt = NULL;
1887 #ifdef INET
1888 if (tp->t_inpcb) {
1889 so = tp->t_inpcb->inp_socket;
1890 #if defined(RTV_RPIPE)
1891 rt = in_pcbrtentry(tp->t_inpcb);
1892 #endif
1893 }
1894 #endif
1895 #ifdef INET6
1896 if (tp->t_in6pcb) {
1897 so = tp->t_in6pcb->in6p_socket;
1898 #if defined(RTV_RPIPE)
1899 rt = in6_pcbrtentry(tp->t_in6pcb);
1900 #endif
1901 }
1902 #endif
1903
1904 tp->t_state = TCPS_ESTABLISHED;
1905 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1906
1907 #ifdef RTV_RPIPE
1908 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1909 bufsize = rt->rt_rmx.rmx_recvpipe;
1910 else
1911 #endif
1912 bufsize = so->so_rcv.sb_hiwat;
1913 if (bufsize > tp->t_ourmss) {
1914 bufsize = roundup(bufsize, tp->t_ourmss);
1915 if (bufsize > sb_max)
1916 bufsize = sb_max;
1917 (void) sbreserve(&so->so_rcv, bufsize, so);
1918 }
1919 }
1920
1921 /*
1922 * Check if there's an initial rtt or rttvar. Convert from the
1923 * route-table units to scaled multiples of the slow timeout timer.
1924 * Called only during the 3-way handshake.
1925 */
1926 void
1927 tcp_rmx_rtt(struct tcpcb *tp)
1928 {
1929 #ifdef RTV_RTT
1930 struct rtentry *rt = NULL;
1931 int rtt;
1932
1933 #ifdef DIAGNOSTIC
1934 if (tp->t_inpcb && tp->t_in6pcb)
1935 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1936 #endif
1937 #ifdef INET
1938 if (tp->t_inpcb)
1939 rt = in_pcbrtentry(tp->t_inpcb);
1940 #endif
1941 #ifdef INET6
1942 if (tp->t_in6pcb)
1943 rt = in6_pcbrtentry(tp->t_in6pcb);
1944 #endif
1945 if (rt == NULL)
1946 return;
1947
1948 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1949 /*
1950 * XXX The lock bit for MTU indicates that the value
1951 * is also a minimum value; this is subject to time.
1952 */
1953 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1954 TCPT_RANGESET(tp->t_rttmin,
1955 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1956 TCPTV_MIN, TCPTV_REXMTMAX);
1957 tp->t_srtt = rtt /
1958 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1959 if (rt->rt_rmx.rmx_rttvar) {
1960 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1961 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1962 (TCP_RTTVAR_SHIFT + 2));
1963 } else {
1964 /* Default variation is +- 1 rtt */
1965 tp->t_rttvar =
1966 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1967 }
1968 TCPT_RANGESET(tp->t_rxtcur,
1969 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1970 tp->t_rttmin, TCPTV_REXMTMAX);
1971 }
1972 #endif
1973 }
1974
1975 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1976 #if NRND > 0
1977 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
1978 #endif
1979
1980 /*
1981 * Get a new sequence value given a tcp control block
1982 */
1983 tcp_seq
1984 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
1985 {
1986
1987 #ifdef INET
1988 if (tp->t_inpcb != NULL) {
1989 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
1990 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
1991 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
1992 addin));
1993 }
1994 #endif
1995 #ifdef INET6
1996 if (tp->t_in6pcb != NULL) {
1997 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
1998 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
1999 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2000 addin));
2001 }
2002 #endif
2003 /* Not possible. */
2004 panic("tcp_new_iss");
2005 }
2006
2007 /*
2008 * This routine actually generates a new TCP initial sequence number.
2009 */
2010 tcp_seq
2011 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2012 size_t addrsz, tcp_seq addin)
2013 {
2014 tcp_seq tcp_iss;
2015
2016 #if NRND > 0
2017 static int beenhere;
2018
2019 /*
2020 * If we haven't been here before, initialize our cryptographic
2021 * hash secret.
2022 */
2023 if (beenhere == 0) {
2024 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2025 RND_EXTRACT_ANY);
2026 beenhere = 1;
2027 }
2028
2029 if (tcp_do_rfc1948) {
2030 MD5_CTX ctx;
2031 u_int8_t hash[16]; /* XXX MD5 knowledge */
2032
2033 /*
2034 * Compute the base value of the ISS. It is a hash
2035 * of (saddr, sport, daddr, dport, secret).
2036 */
2037 MD5Init(&ctx);
2038
2039 MD5Update(&ctx, (u_char *) laddr, addrsz);
2040 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2041
2042 MD5Update(&ctx, (u_char *) faddr, addrsz);
2043 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2044
2045 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2046
2047 MD5Final(hash, &ctx);
2048
2049 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2050
2051 /*
2052 * Now increment our "timer", and add it in to
2053 * the computed value.
2054 *
2055 * XXX Use `addin'?
2056 * XXX TCP_ISSINCR too large to use?
2057 */
2058 tcp_iss_seq += TCP_ISSINCR;
2059 #ifdef TCPISS_DEBUG
2060 printf("ISS hash 0x%08x, ", tcp_iss);
2061 #endif
2062 tcp_iss += tcp_iss_seq + addin;
2063 #ifdef TCPISS_DEBUG
2064 printf("new ISS 0x%08x\n", tcp_iss);
2065 #endif
2066 } else
2067 #endif /* NRND > 0 */
2068 {
2069 /*
2070 * Randomize.
2071 */
2072 #if NRND > 0
2073 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2074 #else
2075 tcp_iss = arc4random();
2076 #endif
2077
2078 /*
2079 * If we were asked to add some amount to a known value,
2080 * we will take a random value obtained above, mask off
2081 * the upper bits, and add in the known value. We also
2082 * add in a constant to ensure that we are at least a
2083 * certain distance from the original value.
2084 *
2085 * This is used when an old connection is in timed wait
2086 * and we have a new one coming in, for instance.
2087 */
2088 if (addin != 0) {
2089 #ifdef TCPISS_DEBUG
2090 printf("Random %08x, ", tcp_iss);
2091 #endif
2092 tcp_iss &= TCP_ISS_RANDOM_MASK;
2093 tcp_iss += addin + TCP_ISSINCR;
2094 #ifdef TCPISS_DEBUG
2095 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2096 #endif
2097 } else {
2098 tcp_iss &= TCP_ISS_RANDOM_MASK;
2099 tcp_iss += tcp_iss_seq;
2100 tcp_iss_seq += TCP_ISSINCR;
2101 #ifdef TCPISS_DEBUG
2102 printf("ISS %08x\n", tcp_iss);
2103 #endif
2104 }
2105 }
2106
2107 if (tcp_compat_42) {
2108 /*
2109 * Limit it to the positive range for really old TCP
2110 * implementations.
2111 * Just AND off the top bit instead of checking if
2112 * is set first - saves a branch 50% of the time.
2113 */
2114 tcp_iss &= 0x7fffffff; /* XXX */
2115 }
2116
2117 return (tcp_iss);
2118 }
2119
2120 #if defined(IPSEC) || defined(FAST_IPSEC)
2121 /* compute ESP/AH header size for TCP, including outer IP header. */
2122 size_t
2123 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2124 {
2125 struct inpcb *inp;
2126 size_t hdrsiz;
2127
2128 /* XXX mapped addr case (tp->t_in6pcb) */
2129 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2130 return 0;
2131 switch (tp->t_family) {
2132 case AF_INET:
2133 /* XXX: should use currect direction. */
2134 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2135 break;
2136 default:
2137 hdrsiz = 0;
2138 break;
2139 }
2140
2141 return hdrsiz;
2142 }
2143
2144 #ifdef INET6
2145 size_t
2146 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2147 {
2148 struct in6pcb *in6p;
2149 size_t hdrsiz;
2150
2151 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2152 return 0;
2153 switch (tp->t_family) {
2154 case AF_INET6:
2155 /* XXX: should use currect direction. */
2156 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2157 break;
2158 case AF_INET:
2159 /* mapped address case - tricky */
2160 default:
2161 hdrsiz = 0;
2162 break;
2163 }
2164
2165 return hdrsiz;
2166 }
2167 #endif
2168 #endif /*IPSEC*/
2169
2170 /*
2171 * Determine the length of the TCP options for this connection.
2172 *
2173 * XXX: What do we do for SACK, when we add that? Just reserve
2174 * all of the space? Otherwise we can't exactly be incrementing
2175 * cwnd by an amount that varies depending on the amount we last
2176 * had to SACK!
2177 */
2178
2179 u_int
2180 tcp_optlen(struct tcpcb *tp)
2181 {
2182 u_int optlen;
2183
2184 optlen = 0;
2185 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2186 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2187 optlen += TCPOLEN_TSTAMP_APPA;
2188
2189 #ifdef TCP_SIGNATURE
2190 #if defined(INET6) && defined(FAST_IPSEC)
2191 if (tp->t_family == AF_INET)
2192 #endif
2193 if (tp->t_flags & TF_SIGNATURE)
2194 optlen += TCPOLEN_SIGNATURE + 2;
2195 #endif /* TCP_SIGNATURE */
2196
2197 return optlen;
2198 }
2199