tcp_subr.c revision 1.182 1 /* $NetBSD: tcp_subr.c,v 1.182 2005/02/26 22:45:12 perry Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.182 2005/02/26 22:45:12 perry Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcpip.h>
155
156 #ifdef IPSEC
157 #include <netinet6/ipsec.h>
158 #include <netkey/key.h>
159 #endif /*IPSEC*/
160
161 #ifdef FAST_IPSEC
162 #include <netipsec/ipsec.h>
163 #include <netipsec/xform.h>
164 #ifdef INET6
165 #include <netipsec/ipsec6.h>
166 #endif
167 #include <netipsec/key.h>
168 #endif /* FAST_IPSEC*/
169
170
171 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
172 struct tcpstat tcpstat; /* tcp statistics */
173 u_int32_t tcp_now; /* for RFC 1323 timestamps */
174
175 /* patchable/settable parameters for tcp */
176 int tcp_mssdflt = TCP_MSS;
177 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
178 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
179 #if NRND > 0
180 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
181 #endif
182 int tcp_do_sack = 1; /* selective acknowledgement */
183 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
184 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
185 int tcp_do_newreno = 1; /* Use the New Reno algorithms */
186 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
187 #ifndef TCP_INIT_WIN
188 #define TCP_INIT_WIN 0 /* initial slow start window */
189 #endif
190 #ifndef TCP_INIT_WIN_LOCAL
191 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
192 #endif
193 int tcp_init_win = TCP_INIT_WIN;
194 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
195 int tcp_mss_ifmtu = 0;
196 #ifdef TCP_COMPAT_42
197 int tcp_compat_42 = 1;
198 #else
199 int tcp_compat_42 = 0;
200 #endif
201 int tcp_rst_ppslim = 100; /* 100pps */
202 int tcp_ackdrop_ppslim = 100; /* 100pps */
203 int tcp_do_loopback_cksum = 0;
204
205 /* tcb hash */
206 #ifndef TCBHASHSIZE
207 #define TCBHASHSIZE 128
208 #endif
209 int tcbhashsize = TCBHASHSIZE;
210
211 /* syn hash parameters */
212 #define TCP_SYN_HASH_SIZE 293
213 #define TCP_SYN_BUCKET_SIZE 35
214 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
215 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
216 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
217 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
218
219 int tcp_freeq(struct tcpcb *);
220
221 #ifdef INET
222 void tcp_mtudisc_callback(struct in_addr);
223 #endif
224 #ifdef INET6
225 void tcp6_mtudisc_callback(struct in6_addr *);
226 #endif
227
228 void tcp_mtudisc(struct inpcb *, int);
229 #ifdef INET6
230 void tcp6_mtudisc(struct in6pcb *, int);
231 #endif
232
233 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
234
235 #ifdef TCP_CSUM_COUNTERS
236 #include <sys/device.h>
237
238 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
239 NULL, "tcp", "hwcsum bad");
240 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
241 NULL, "tcp", "hwcsum ok");
242 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
243 NULL, "tcp", "hwcsum data");
244 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
245 NULL, "tcp", "swcsum");
246
247 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
248 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
249 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
250 EVCNT_ATTACH_STATIC(tcp_swcsum);
251 #endif /* TCP_CSUM_COUNTERS */
252
253
254 #ifdef TCP_OUTPUT_COUNTERS
255 #include <sys/device.h>
256
257 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
258 NULL, "tcp", "output big header");
259 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
260 NULL, "tcp", "output predict hit");
261 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
262 NULL, "tcp", "output predict miss");
263 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264 NULL, "tcp", "output copy small");
265 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266 NULL, "tcp", "output copy big");
267 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268 NULL, "tcp", "output reference big");
269
270 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
271 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
272 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
273 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
274 EVCNT_ATTACH_STATIC(tcp_output_copybig);
275 EVCNT_ATTACH_STATIC(tcp_output_refbig);
276
277 #endif /* TCP_OUTPUT_COUNTERS */
278
279 #ifdef TCP_REASS_COUNTERS
280 #include <sys/device.h>
281
282 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
283 NULL, "tcp_reass", "calls");
284 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
285 &tcp_reass_, "tcp_reass", "insert into empty queue");
286 struct evcnt tcp_reass_iteration[8] = {
287 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
288 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
289 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
290 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
291 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
292 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
293 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
294 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
295 };
296 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
297 &tcp_reass_, "tcp_reass", "prepend to first");
298 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
299 &tcp_reass_, "tcp_reass", "prepend");
300 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
301 &tcp_reass_, "tcp_reass", "insert");
302 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
303 &tcp_reass_, "tcp_reass", "insert at tail");
304 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
305 &tcp_reass_, "tcp_reass", "append");
306 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
307 &tcp_reass_, "tcp_reass", "append to tail fragment");
308 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
309 &tcp_reass_, "tcp_reass", "overlap at end");
310 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
311 &tcp_reass_, "tcp_reass", "overlap at start");
312 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
313 &tcp_reass_, "tcp_reass", "duplicate segment");
314 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
315 &tcp_reass_, "tcp_reass", "duplicate fragment");
316
317 EVCNT_ATTACH_STATIC(tcp_reass_);
318 EVCNT_ATTACH_STATIC(tcp_reass_empty);
319 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
320 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
321 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
322 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
323 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
324 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
325 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
326 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
327 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
328 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
329 EVCNT_ATTACH_STATIC(tcp_reass_insert);
330 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
331 EVCNT_ATTACH_STATIC(tcp_reass_append);
332 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
333 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
334 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
335 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
336 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
337
338 #endif /* TCP_REASS_COUNTERS */
339
340 #ifdef MBUFTRACE
341 struct mowner tcp_mowner = { "tcp" };
342 struct mowner tcp_rx_mowner = { "tcp", "rx" };
343 struct mowner tcp_tx_mowner = { "tcp", "tx" };
344 #endif
345
346 /*
347 * Tcp initialization
348 */
349 void
350 tcp_init(void)
351 {
352 int hlen;
353
354 /* Initialize the TCPCB template. */
355 tcp_tcpcb_template();
356
357 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
358
359 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
360 #ifdef INET6
361 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
362 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
363 #endif
364 if (max_protohdr < hlen)
365 max_protohdr = hlen;
366 if (max_linkhdr + hlen > MHLEN)
367 panic("tcp_init");
368
369 #ifdef INET
370 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
371 #endif
372 #ifdef INET6
373 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
374 #endif
375
376 /* Initialize timer state. */
377 tcp_timer_init();
378
379 /* Initialize the compressed state engine. */
380 syn_cache_init();
381
382 MOWNER_ATTACH(&tcp_tx_mowner);
383 MOWNER_ATTACH(&tcp_rx_mowner);
384 MOWNER_ATTACH(&tcp_mowner);
385 }
386
387 /*
388 * Create template to be used to send tcp packets on a connection.
389 * Call after host entry created, allocates an mbuf and fills
390 * in a skeletal tcp/ip header, minimizing the amount of work
391 * necessary when the connection is used.
392 */
393 struct mbuf *
394 tcp_template(struct tcpcb *tp)
395 {
396 struct inpcb *inp = tp->t_inpcb;
397 #ifdef INET6
398 struct in6pcb *in6p = tp->t_in6pcb;
399 #endif
400 struct tcphdr *n;
401 struct mbuf *m;
402 int hlen;
403
404 switch (tp->t_family) {
405 case AF_INET:
406 hlen = sizeof(struct ip);
407 if (inp)
408 break;
409 #ifdef INET6
410 if (in6p) {
411 /* mapped addr case */
412 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
413 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
414 break;
415 }
416 #endif
417 return NULL; /*EINVAL*/
418 #ifdef INET6
419 case AF_INET6:
420 hlen = sizeof(struct ip6_hdr);
421 if (in6p) {
422 /* more sainty check? */
423 break;
424 }
425 return NULL; /*EINVAL*/
426 #endif
427 default:
428 hlen = 0; /*pacify gcc*/
429 return NULL; /*EAFNOSUPPORT*/
430 }
431 #ifdef DIAGNOSTIC
432 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
433 panic("mclbytes too small for t_template");
434 #endif
435 m = tp->t_template;
436 if (m && m->m_len == hlen + sizeof(struct tcphdr))
437 ;
438 else {
439 if (m)
440 m_freem(m);
441 m = tp->t_template = NULL;
442 MGETHDR(m, M_DONTWAIT, MT_HEADER);
443 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
444 MCLGET(m, M_DONTWAIT);
445 if ((m->m_flags & M_EXT) == 0) {
446 m_free(m);
447 m = NULL;
448 }
449 }
450 if (m == NULL)
451 return NULL;
452 MCLAIM(m, &tcp_mowner);
453 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
454 }
455
456 bzero(mtod(m, caddr_t), m->m_len);
457
458 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
459
460 switch (tp->t_family) {
461 case AF_INET:
462 {
463 struct ipovly *ipov;
464 mtod(m, struct ip *)->ip_v = 4;
465 mtod(m, struct ip *)->ip_hl = hlen >> 2;
466 ipov = mtod(m, struct ipovly *);
467 ipov->ih_pr = IPPROTO_TCP;
468 ipov->ih_len = htons(sizeof(struct tcphdr));
469 if (inp) {
470 ipov->ih_src = inp->inp_laddr;
471 ipov->ih_dst = inp->inp_faddr;
472 }
473 #ifdef INET6
474 else if (in6p) {
475 /* mapped addr case */
476 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
477 sizeof(ipov->ih_src));
478 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
479 sizeof(ipov->ih_dst));
480 }
481 #endif
482 /*
483 * Compute the pseudo-header portion of the checksum
484 * now. We incrementally add in the TCP option and
485 * payload lengths later, and then compute the TCP
486 * checksum right before the packet is sent off onto
487 * the wire.
488 */
489 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
490 ipov->ih_dst.s_addr,
491 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
492 break;
493 }
494 #ifdef INET6
495 case AF_INET6:
496 {
497 struct ip6_hdr *ip6;
498 mtod(m, struct ip *)->ip_v = 6;
499 ip6 = mtod(m, struct ip6_hdr *);
500 ip6->ip6_nxt = IPPROTO_TCP;
501 ip6->ip6_plen = htons(sizeof(struct tcphdr));
502 ip6->ip6_src = in6p->in6p_laddr;
503 ip6->ip6_dst = in6p->in6p_faddr;
504 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
505 if (ip6_auto_flowlabel) {
506 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
507 ip6->ip6_flow |=
508 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
509 }
510 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
511 ip6->ip6_vfc |= IPV6_VERSION;
512
513 /*
514 * Compute the pseudo-header portion of the checksum
515 * now. We incrementally add in the TCP option and
516 * payload lengths later, and then compute the TCP
517 * checksum right before the packet is sent off onto
518 * the wire.
519 */
520 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
521 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
522 htonl(IPPROTO_TCP));
523 break;
524 }
525 #endif
526 }
527 if (inp) {
528 n->th_sport = inp->inp_lport;
529 n->th_dport = inp->inp_fport;
530 }
531 #ifdef INET6
532 else if (in6p) {
533 n->th_sport = in6p->in6p_lport;
534 n->th_dport = in6p->in6p_fport;
535 }
536 #endif
537 n->th_seq = 0;
538 n->th_ack = 0;
539 n->th_x2 = 0;
540 n->th_off = 5;
541 n->th_flags = 0;
542 n->th_win = 0;
543 n->th_urp = 0;
544 return (m);
545 }
546
547 /*
548 * Send a single message to the TCP at address specified by
549 * the given TCP/IP header. If m == 0, then we make a copy
550 * of the tcpiphdr at ti and send directly to the addressed host.
551 * This is used to force keep alive messages out using the TCP
552 * template for a connection tp->t_template. If flags are given
553 * then we send a message back to the TCP which originated the
554 * segment ti, and discard the mbuf containing it and any other
555 * attached mbufs.
556 *
557 * In any case the ack and sequence number of the transmitted
558 * segment are as specified by the parameters.
559 */
560 int
561 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
562 struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
563 {
564 struct route *ro;
565 int error, tlen, win = 0;
566 int hlen;
567 struct ip *ip;
568 #ifdef INET6
569 struct ip6_hdr *ip6;
570 #endif
571 int family; /* family on packet, not inpcb/in6pcb! */
572 struct tcphdr *th;
573 struct socket *so;
574
575 if (tp != NULL && (flags & TH_RST) == 0) {
576 #ifdef DIAGNOSTIC
577 if (tp->t_inpcb && tp->t_in6pcb)
578 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
579 #endif
580 #ifdef INET
581 if (tp->t_inpcb)
582 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
583 #endif
584 #ifdef INET6
585 if (tp->t_in6pcb)
586 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
587 #endif
588 }
589
590 th = NULL; /* Quell uninitialized warning */
591 ip = NULL;
592 #ifdef INET6
593 ip6 = NULL;
594 #endif
595 if (m == 0) {
596 if (!template)
597 return EINVAL;
598
599 /* get family information from template */
600 switch (mtod(template, struct ip *)->ip_v) {
601 case 4:
602 family = AF_INET;
603 hlen = sizeof(struct ip);
604 break;
605 #ifdef INET6
606 case 6:
607 family = AF_INET6;
608 hlen = sizeof(struct ip6_hdr);
609 break;
610 #endif
611 default:
612 return EAFNOSUPPORT;
613 }
614
615 MGETHDR(m, M_DONTWAIT, MT_HEADER);
616 if (m) {
617 MCLAIM(m, &tcp_tx_mowner);
618 MCLGET(m, M_DONTWAIT);
619 if ((m->m_flags & M_EXT) == 0) {
620 m_free(m);
621 m = NULL;
622 }
623 }
624 if (m == NULL)
625 return (ENOBUFS);
626
627 if (tcp_compat_42)
628 tlen = 1;
629 else
630 tlen = 0;
631
632 m->m_data += max_linkhdr;
633 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
634 template->m_len);
635 switch (family) {
636 case AF_INET:
637 ip = mtod(m, struct ip *);
638 th = (struct tcphdr *)(ip + 1);
639 break;
640 #ifdef INET6
641 case AF_INET6:
642 ip6 = mtod(m, struct ip6_hdr *);
643 th = (struct tcphdr *)(ip6 + 1);
644 break;
645 #endif
646 #if 0
647 default:
648 /* noone will visit here */
649 m_freem(m);
650 return EAFNOSUPPORT;
651 #endif
652 }
653 flags = TH_ACK;
654 } else {
655
656 if ((m->m_flags & M_PKTHDR) == 0) {
657 #if 0
658 printf("non PKTHDR to tcp_respond\n");
659 #endif
660 m_freem(m);
661 return EINVAL;
662 }
663 #ifdef DIAGNOSTIC
664 if (!th0)
665 panic("th0 == NULL in tcp_respond");
666 #endif
667
668 /* get family information from m */
669 switch (mtod(m, struct ip *)->ip_v) {
670 case 4:
671 family = AF_INET;
672 hlen = sizeof(struct ip);
673 ip = mtod(m, struct ip *);
674 break;
675 #ifdef INET6
676 case 6:
677 family = AF_INET6;
678 hlen = sizeof(struct ip6_hdr);
679 ip6 = mtod(m, struct ip6_hdr *);
680 break;
681 #endif
682 default:
683 m_freem(m);
684 return EAFNOSUPPORT;
685 }
686 /* clear h/w csum flags inherited from rx packet */
687 m->m_pkthdr.csum_flags = 0;
688
689 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
690 tlen = sizeof(*th0);
691 else
692 tlen = th0->th_off << 2;
693
694 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
695 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
696 m->m_len = hlen + tlen;
697 m_freem(m->m_next);
698 m->m_next = NULL;
699 } else {
700 struct mbuf *n;
701
702 #ifdef DIAGNOSTIC
703 if (max_linkhdr + hlen + tlen > MCLBYTES) {
704 m_freem(m);
705 return EMSGSIZE;
706 }
707 #endif
708 MGETHDR(n, M_DONTWAIT, MT_HEADER);
709 if (n && max_linkhdr + hlen + tlen > MHLEN) {
710 MCLGET(n, M_DONTWAIT);
711 if ((n->m_flags & M_EXT) == 0) {
712 m_freem(n);
713 n = NULL;
714 }
715 }
716 if (!n) {
717 m_freem(m);
718 return ENOBUFS;
719 }
720
721 MCLAIM(n, &tcp_tx_mowner);
722 n->m_data += max_linkhdr;
723 n->m_len = hlen + tlen;
724 m_copyback(n, 0, hlen, mtod(m, caddr_t));
725 m_copyback(n, hlen, tlen, (caddr_t)th0);
726
727 m_freem(m);
728 m = n;
729 n = NULL;
730 }
731
732 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
733 switch (family) {
734 case AF_INET:
735 ip = mtod(m, struct ip *);
736 th = (struct tcphdr *)(ip + 1);
737 ip->ip_p = IPPROTO_TCP;
738 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
739 ip->ip_p = IPPROTO_TCP;
740 break;
741 #ifdef INET6
742 case AF_INET6:
743 ip6 = mtod(m, struct ip6_hdr *);
744 th = (struct tcphdr *)(ip6 + 1);
745 ip6->ip6_nxt = IPPROTO_TCP;
746 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
747 ip6->ip6_nxt = IPPROTO_TCP;
748 break;
749 #endif
750 #if 0
751 default:
752 /* noone will visit here */
753 m_freem(m);
754 return EAFNOSUPPORT;
755 #endif
756 }
757 xchg(th->th_dport, th->th_sport, u_int16_t);
758 #undef xchg
759 tlen = 0; /*be friendly with the following code*/
760 }
761 th->th_seq = htonl(seq);
762 th->th_ack = htonl(ack);
763 th->th_x2 = 0;
764 if ((flags & TH_SYN) == 0) {
765 if (tp)
766 win >>= tp->rcv_scale;
767 if (win > TCP_MAXWIN)
768 win = TCP_MAXWIN;
769 th->th_win = htons((u_int16_t)win);
770 th->th_off = sizeof (struct tcphdr) >> 2;
771 tlen += sizeof(*th);
772 } else
773 tlen += th->th_off << 2;
774 m->m_len = hlen + tlen;
775 m->m_pkthdr.len = hlen + tlen;
776 m->m_pkthdr.rcvif = (struct ifnet *) 0;
777 th->th_flags = flags;
778 th->th_urp = 0;
779
780 switch (family) {
781 #ifdef INET
782 case AF_INET:
783 {
784 struct ipovly *ipov = (struct ipovly *)ip;
785 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
786 ipov->ih_len = htons((u_int16_t)tlen);
787
788 th->th_sum = 0;
789 th->th_sum = in_cksum(m, hlen + tlen);
790 ip->ip_len = htons(hlen + tlen);
791 ip->ip_ttl = ip_defttl;
792 break;
793 }
794 #endif
795 #ifdef INET6
796 case AF_INET6:
797 {
798 th->th_sum = 0;
799 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
800 tlen);
801 ip6->ip6_plen = htons(tlen);
802 if (tp && tp->t_in6pcb) {
803 struct ifnet *oifp;
804 ro = (struct route *)&tp->t_in6pcb->in6p_route;
805 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
806 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
807 } else
808 ip6->ip6_hlim = ip6_defhlim;
809 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
810 if (ip6_auto_flowlabel) {
811 ip6->ip6_flow |=
812 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
813 }
814 break;
815 }
816 #endif
817 }
818
819 if (tp && tp->t_inpcb)
820 so = tp->t_inpcb->inp_socket;
821 #ifdef INET6
822 else if (tp && tp->t_in6pcb)
823 so = tp->t_in6pcb->in6p_socket;
824 #endif
825 else
826 so = NULL;
827
828 if (tp != NULL && tp->t_inpcb != NULL) {
829 ro = &tp->t_inpcb->inp_route;
830 #ifdef DIAGNOSTIC
831 if (family != AF_INET)
832 panic("tcp_respond: address family mismatch");
833 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
834 panic("tcp_respond: ip_dst %x != inp_faddr %x",
835 ntohl(ip->ip_dst.s_addr),
836 ntohl(tp->t_inpcb->inp_faddr.s_addr));
837 }
838 #endif
839 }
840 #ifdef INET6
841 else if (tp != NULL && tp->t_in6pcb != NULL) {
842 ro = (struct route *)&tp->t_in6pcb->in6p_route;
843 #ifdef DIAGNOSTIC
844 if (family == AF_INET) {
845 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
846 panic("tcp_respond: not mapped addr");
847 if (bcmp(&ip->ip_dst,
848 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
849 sizeof(ip->ip_dst)) != 0) {
850 panic("tcp_respond: ip_dst != in6p_faddr");
851 }
852 } else if (family == AF_INET6) {
853 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
854 &tp->t_in6pcb->in6p_faddr))
855 panic("tcp_respond: ip6_dst != in6p_faddr");
856 } else
857 panic("tcp_respond: address family mismatch");
858 #endif
859 }
860 #endif
861 else
862 ro = NULL;
863
864 switch (family) {
865 #ifdef INET
866 case AF_INET:
867 error = ip_output(m, NULL, ro,
868 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
869 (struct ip_moptions *)0, so);
870 break;
871 #endif
872 #ifdef INET6
873 case AF_INET6:
874 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
875 (struct ip6_moptions *)0, so, NULL);
876 break;
877 #endif
878 default:
879 error = EAFNOSUPPORT;
880 break;
881 }
882
883 return (error);
884 }
885
886 /*
887 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
888 * a bunch of members individually, we maintain this template for the
889 * static and mostly-static components of the TCPCB, and copy it into
890 * the new TCPCB instead.
891 */
892 static struct tcpcb tcpcb_template = {
893 /*
894 * If TCP_NTIMERS ever changes, we'll need to update this
895 * initializer.
896 */
897 .t_timer = {
898 CALLOUT_INITIALIZER,
899 CALLOUT_INITIALIZER,
900 CALLOUT_INITIALIZER,
901 CALLOUT_INITIALIZER,
902 },
903 .t_delack_ch = CALLOUT_INITIALIZER,
904
905 .t_srtt = TCPTV_SRTTBASE,
906 .t_rttmin = TCPTV_MIN,
907
908 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
909 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
910
911 .t_partialacks = -1,
912 };
913
914 /*
915 * Updates the TCPCB template whenever a parameter that would affect
916 * the template is changed.
917 */
918 void
919 tcp_tcpcb_template(void)
920 {
921 struct tcpcb *tp = &tcpcb_template;
922 int flags;
923
924 tp->t_peermss = tcp_mssdflt;
925 tp->t_ourmss = tcp_mssdflt;
926 tp->t_segsz = tcp_mssdflt;
927
928 flags = 0;
929 if (tcp_do_rfc1323 && tcp_do_win_scale)
930 flags |= TF_REQ_SCALE;
931 if (tcp_do_rfc1323 && tcp_do_timestamps)
932 flags |= TF_REQ_TSTMP;
933 if (tcp_do_sack == 2)
934 flags |= TF_WILL_SACK;
935 else if (tcp_do_sack == 1)
936 flags |= TF_WILL_SACK|TF_IGNR_RXSACK;
937 flags |= TF_CANT_TXSACK;
938 tp->t_flags = flags;
939
940 /*
941 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
942 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
943 * reasonable initial retransmit time.
944 */
945 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
946 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
947 TCPTV_MIN, TCPTV_REXMTMAX);
948 }
949
950 /*
951 * Create a new TCP control block, making an
952 * empty reassembly queue and hooking it to the argument
953 * protocol control block.
954 */
955 /* family selects inpcb, or in6pcb */
956 struct tcpcb *
957 tcp_newtcpcb(int family, void *aux)
958 {
959 struct tcpcb *tp;
960 int i;
961
962 /* XXX Consider using a pool_cache for speed. */
963 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
964 if (tp == NULL)
965 return (NULL);
966 memcpy(tp, &tcpcb_template, sizeof(*tp));
967 TAILQ_INIT(&tp->segq);
968 TAILQ_INIT(&tp->timeq);
969 tp->t_family = family; /* may be overridden later on */
970 LIST_INIT(&tp->t_sc); /* XXX can template this */
971
972 /* Don't sweat this loop; hopefully the compiler will unroll it. */
973 for (i = 0; i < TCPT_NTIMERS; i++)
974 TCP_TIMER_INIT(tp, i);
975
976 switch (family) {
977 case AF_INET:
978 {
979 struct inpcb *inp = (struct inpcb *)aux;
980
981 inp->inp_ip.ip_ttl = ip_defttl;
982 inp->inp_ppcb = (caddr_t)tp;
983
984 tp->t_inpcb = inp;
985 tp->t_mtudisc = ip_mtudisc;
986 break;
987 }
988 #ifdef INET6
989 case AF_INET6:
990 {
991 struct in6pcb *in6p = (struct in6pcb *)aux;
992
993 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
994 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
995 : NULL);
996 in6p->in6p_ppcb = (caddr_t)tp;
997
998 tp->t_in6pcb = in6p;
999 /* for IPv6, always try to run path MTU discovery */
1000 tp->t_mtudisc = 1;
1001 break;
1002 }
1003 #endif /* INET6 */
1004 default:
1005 pool_put(&tcpcb_pool, tp);
1006 return (NULL);
1007 }
1008
1009 /*
1010 * Initialize our timebase. When we send timestamps, we take
1011 * the delta from tcp_now -- this means each connection always
1012 * gets a timebase of 0, which makes it, among other things,
1013 * more difficult to determine how long a system has been up,
1014 * and thus how many TCP sequence increments have occurred.
1015 */
1016 tp->ts_timebase = tcp_now;
1017
1018 return (tp);
1019 }
1020
1021 /*
1022 * Drop a TCP connection, reporting
1023 * the specified error. If connection is synchronized,
1024 * then send a RST to peer.
1025 */
1026 struct tcpcb *
1027 tcp_drop(struct tcpcb *tp, int errno)
1028 {
1029 struct socket *so = NULL;
1030
1031 #ifdef DIAGNOSTIC
1032 if (tp->t_inpcb && tp->t_in6pcb)
1033 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1034 #endif
1035 #ifdef INET
1036 if (tp->t_inpcb)
1037 so = tp->t_inpcb->inp_socket;
1038 #endif
1039 #ifdef INET6
1040 if (tp->t_in6pcb)
1041 so = tp->t_in6pcb->in6p_socket;
1042 #endif
1043 if (!so)
1044 return NULL;
1045
1046 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1047 tp->t_state = TCPS_CLOSED;
1048 (void) tcp_output(tp);
1049 tcpstat.tcps_drops++;
1050 } else
1051 tcpstat.tcps_conndrops++;
1052 if (errno == ETIMEDOUT && tp->t_softerror)
1053 errno = tp->t_softerror;
1054 so->so_error = errno;
1055 return (tcp_close(tp));
1056 }
1057
1058 /*
1059 * Return whether this tcpcb is marked as dead, indicating
1060 * to the calling timer function that no further action should
1061 * be taken, as we are about to release this tcpcb. The release
1062 * of the storage will be done if this is the last timer running.
1063 *
1064 * This should be called from the callout handler function after
1065 * callout_ack() is done, so that the number of invoking timer
1066 * functions is 0.
1067 */
1068 int
1069 tcp_isdead(struct tcpcb *tp)
1070 {
1071 int dead = (tp->t_flags & TF_DEAD);
1072
1073 if (__predict_false(dead)) {
1074 if (tcp_timers_invoking(tp) > 0)
1075 /* not quite there yet -- count separately? */
1076 return dead;
1077 tcpstat.tcps_delayed_free++;
1078 pool_put(&tcpcb_pool, tp);
1079 }
1080 return dead;
1081 }
1082
1083 /*
1084 * Close a TCP control block:
1085 * discard all space held by the tcp
1086 * discard internet protocol block
1087 * wake up any sleepers
1088 */
1089 struct tcpcb *
1090 tcp_close(struct tcpcb *tp)
1091 {
1092 struct inpcb *inp;
1093 #ifdef INET6
1094 struct in6pcb *in6p;
1095 #endif
1096 struct socket *so;
1097 #ifdef RTV_RTT
1098 struct rtentry *rt;
1099 #endif
1100 struct route *ro;
1101
1102 inp = tp->t_inpcb;
1103 #ifdef INET6
1104 in6p = tp->t_in6pcb;
1105 #endif
1106 so = NULL;
1107 ro = NULL;
1108 if (inp) {
1109 so = inp->inp_socket;
1110 ro = &inp->inp_route;
1111 }
1112 #ifdef INET6
1113 else if (in6p) {
1114 so = in6p->in6p_socket;
1115 ro = (struct route *)&in6p->in6p_route;
1116 }
1117 #endif
1118
1119 #ifdef RTV_RTT
1120 /*
1121 * If we sent enough data to get some meaningful characteristics,
1122 * save them in the routing entry. 'Enough' is arbitrarily
1123 * defined as the sendpipesize (default 4K) * 16. This would
1124 * give us 16 rtt samples assuming we only get one sample per
1125 * window (the usual case on a long haul net). 16 samples is
1126 * enough for the srtt filter to converge to within 5% of the correct
1127 * value; fewer samples and we could save a very bogus rtt.
1128 *
1129 * Don't update the default route's characteristics and don't
1130 * update anything that the user "locked".
1131 */
1132 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1133 ro && (rt = ro->ro_rt) &&
1134 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1135 u_long i = 0;
1136
1137 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1138 i = tp->t_srtt *
1139 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1140 if (rt->rt_rmx.rmx_rtt && i)
1141 /*
1142 * filter this update to half the old & half
1143 * the new values, converting scale.
1144 * See route.h and tcp_var.h for a
1145 * description of the scaling constants.
1146 */
1147 rt->rt_rmx.rmx_rtt =
1148 (rt->rt_rmx.rmx_rtt + i) / 2;
1149 else
1150 rt->rt_rmx.rmx_rtt = i;
1151 }
1152 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1153 i = tp->t_rttvar *
1154 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1155 if (rt->rt_rmx.rmx_rttvar && i)
1156 rt->rt_rmx.rmx_rttvar =
1157 (rt->rt_rmx.rmx_rttvar + i) / 2;
1158 else
1159 rt->rt_rmx.rmx_rttvar = i;
1160 }
1161 /*
1162 * update the pipelimit (ssthresh) if it has been updated
1163 * already or if a pipesize was specified & the threshhold
1164 * got below half the pipesize. I.e., wait for bad news
1165 * before we start updating, then update on both good
1166 * and bad news.
1167 */
1168 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1169 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1170 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1171 /*
1172 * convert the limit from user data bytes to
1173 * packets then to packet data bytes.
1174 */
1175 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1176 if (i < 2)
1177 i = 2;
1178 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1179 if (rt->rt_rmx.rmx_ssthresh)
1180 rt->rt_rmx.rmx_ssthresh =
1181 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1182 else
1183 rt->rt_rmx.rmx_ssthresh = i;
1184 }
1185 }
1186 #endif /* RTV_RTT */
1187 /* free the reassembly queue, if any */
1188 TCP_REASS_LOCK(tp);
1189 (void) tcp_freeq(tp);
1190 TCP_REASS_UNLOCK(tp);
1191
1192 tcp_canceltimers(tp);
1193 TCP_CLEAR_DELACK(tp);
1194 syn_cache_cleanup(tp);
1195
1196 if (tp->t_template) {
1197 m_free(tp->t_template);
1198 tp->t_template = NULL;
1199 }
1200 if (tcp_timers_invoking(tp))
1201 tp->t_flags |= TF_DEAD;
1202 else
1203 pool_put(&tcpcb_pool, tp);
1204
1205 if (inp) {
1206 inp->inp_ppcb = 0;
1207 soisdisconnected(so);
1208 in_pcbdetach(inp);
1209 }
1210 #ifdef INET6
1211 else if (in6p) {
1212 in6p->in6p_ppcb = 0;
1213 soisdisconnected(so);
1214 in6_pcbdetach(in6p);
1215 }
1216 #endif
1217 tcpstat.tcps_closed++;
1218 return ((struct tcpcb *)0);
1219 }
1220
1221 int
1222 tcp_freeq(tp)
1223 struct tcpcb *tp;
1224 {
1225 struct ipqent *qe;
1226 int rv = 0;
1227 #ifdef TCPREASS_DEBUG
1228 int i = 0;
1229 #endif
1230
1231 TCP_REASS_LOCK_CHECK(tp);
1232
1233 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1234 #ifdef TCPREASS_DEBUG
1235 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1236 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1237 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1238 #endif
1239 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1240 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1241 m_freem(qe->ipqe_m);
1242 pool_put(&tcpipqent_pool, qe);
1243 rv = 1;
1244 }
1245 return (rv);
1246 }
1247
1248 /*
1249 * Protocol drain routine. Called when memory is in short supply.
1250 */
1251 void
1252 tcp_drain(void)
1253 {
1254 struct inpcb_hdr *inph;
1255 struct tcpcb *tp;
1256
1257 /*
1258 * Free the sequence queue of all TCP connections.
1259 */
1260 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1261 switch (inph->inph_af) {
1262 case AF_INET:
1263 tp = intotcpcb((struct inpcb *)inph);
1264 break;
1265 #ifdef INET6
1266 case AF_INET6:
1267 tp = in6totcpcb((struct in6pcb *)inph);
1268 break;
1269 #endif
1270 default:
1271 tp = NULL;
1272 break;
1273 }
1274 if (tp != NULL) {
1275 /*
1276 * We may be called from a device's interrupt
1277 * context. If the tcpcb is already busy,
1278 * just bail out now.
1279 */
1280 if (tcp_reass_lock_try(tp) == 0)
1281 continue;
1282 if (tcp_freeq(tp))
1283 tcpstat.tcps_connsdrained++;
1284 TCP_REASS_UNLOCK(tp);
1285 }
1286 }
1287 }
1288
1289 /*
1290 * Notify a tcp user of an asynchronous error;
1291 * store error as soft error, but wake up user
1292 * (for now, won't do anything until can select for soft error).
1293 */
1294 void
1295 tcp_notify(struct inpcb *inp, int error)
1296 {
1297 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1298 struct socket *so = inp->inp_socket;
1299
1300 /*
1301 * Ignore some errors if we are hooked up.
1302 * If connection hasn't completed, has retransmitted several times,
1303 * and receives a second error, give up now. This is better
1304 * than waiting a long time to establish a connection that
1305 * can never complete.
1306 */
1307 if (tp->t_state == TCPS_ESTABLISHED &&
1308 (error == EHOSTUNREACH || error == ENETUNREACH ||
1309 error == EHOSTDOWN)) {
1310 return;
1311 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1312 tp->t_rxtshift > 3 && tp->t_softerror)
1313 so->so_error = error;
1314 else
1315 tp->t_softerror = error;
1316 wakeup((caddr_t) &so->so_timeo);
1317 sorwakeup(so);
1318 sowwakeup(so);
1319 }
1320
1321 #ifdef INET6
1322 void
1323 tcp6_notify(struct in6pcb *in6p, int error)
1324 {
1325 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1326 struct socket *so = in6p->in6p_socket;
1327
1328 /*
1329 * Ignore some errors if we are hooked up.
1330 * If connection hasn't completed, has retransmitted several times,
1331 * and receives a second error, give up now. This is better
1332 * than waiting a long time to establish a connection that
1333 * can never complete.
1334 */
1335 if (tp->t_state == TCPS_ESTABLISHED &&
1336 (error == EHOSTUNREACH || error == ENETUNREACH ||
1337 error == EHOSTDOWN)) {
1338 return;
1339 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1340 tp->t_rxtshift > 3 && tp->t_softerror)
1341 so->so_error = error;
1342 else
1343 tp->t_softerror = error;
1344 wakeup((caddr_t) &so->so_timeo);
1345 sorwakeup(so);
1346 sowwakeup(so);
1347 }
1348 #endif
1349
1350 #ifdef INET6
1351 void
1352 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1353 {
1354 struct tcphdr th;
1355 void (*notify)(struct in6pcb *, int) = tcp6_notify;
1356 int nmatch;
1357 struct ip6_hdr *ip6;
1358 const struct sockaddr_in6 *sa6_src = NULL;
1359 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1360 struct mbuf *m;
1361 int off;
1362
1363 if (sa->sa_family != AF_INET6 ||
1364 sa->sa_len != sizeof(struct sockaddr_in6))
1365 return;
1366 if ((unsigned)cmd >= PRC_NCMDS)
1367 return;
1368 else if (cmd == PRC_QUENCH) {
1369 /* XXX there's no PRC_QUENCH in IPv6 */
1370 notify = tcp6_quench;
1371 } else if (PRC_IS_REDIRECT(cmd))
1372 notify = in6_rtchange, d = NULL;
1373 else if (cmd == PRC_MSGSIZE)
1374 ; /* special code is present, see below */
1375 else if (cmd == PRC_HOSTDEAD)
1376 d = NULL;
1377 else if (inet6ctlerrmap[cmd] == 0)
1378 return;
1379
1380 /* if the parameter is from icmp6, decode it. */
1381 if (d != NULL) {
1382 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1383 m = ip6cp->ip6c_m;
1384 ip6 = ip6cp->ip6c_ip6;
1385 off = ip6cp->ip6c_off;
1386 sa6_src = ip6cp->ip6c_src;
1387 } else {
1388 m = NULL;
1389 ip6 = NULL;
1390 sa6_src = &sa6_any;
1391 off = 0;
1392 }
1393
1394 if (ip6) {
1395 /*
1396 * XXX: We assume that when ip6 is non NULL,
1397 * M and OFF are valid.
1398 */
1399
1400 /* check if we can safely examine src and dst ports */
1401 if (m->m_pkthdr.len < off + sizeof(th)) {
1402 if (cmd == PRC_MSGSIZE)
1403 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1404 return;
1405 }
1406
1407 bzero(&th, sizeof(th));
1408 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1409
1410 if (cmd == PRC_MSGSIZE) {
1411 int valid = 0;
1412
1413 /*
1414 * Check to see if we have a valid TCP connection
1415 * corresponding to the address in the ICMPv6 message
1416 * payload.
1417 */
1418 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1419 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1420 th.th_sport, 0))
1421 valid++;
1422
1423 /*
1424 * Depending on the value of "valid" and routing table
1425 * size (mtudisc_{hi,lo}wat), we will:
1426 * - recalcurate the new MTU and create the
1427 * corresponding routing entry, or
1428 * - ignore the MTU change notification.
1429 */
1430 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1431
1432 /*
1433 * no need to call in6_pcbnotify, it should have been
1434 * called via callback if necessary
1435 */
1436 return;
1437 }
1438
1439 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1440 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1441 if (nmatch == 0 && syn_cache_count &&
1442 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1443 inet6ctlerrmap[cmd] == ENETUNREACH ||
1444 inet6ctlerrmap[cmd] == EHOSTDOWN))
1445 syn_cache_unreach((struct sockaddr *)sa6_src,
1446 sa, &th);
1447 } else {
1448 (void) in6_pcbnotify(&tcbtable, sa, 0,
1449 (struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1450 }
1451 }
1452 #endif
1453
1454 #ifdef INET
1455 /* assumes that ip header and tcp header are contiguous on mbuf */
1456 void *
1457 tcp_ctlinput(int cmd, struct sockaddr *sa, void *v)
1458 {
1459 struct ip *ip = v;
1460 struct tcphdr *th;
1461 struct icmp *icp;
1462 extern const int inetctlerrmap[];
1463 void (*notify)(struct inpcb *, int) = tcp_notify;
1464 int errno;
1465 int nmatch;
1466 #ifdef INET6
1467 struct in6_addr src6, dst6;
1468 #endif
1469
1470 if (sa->sa_family != AF_INET ||
1471 sa->sa_len != sizeof(struct sockaddr_in))
1472 return NULL;
1473 if ((unsigned)cmd >= PRC_NCMDS)
1474 return NULL;
1475 errno = inetctlerrmap[cmd];
1476 if (cmd == PRC_QUENCH)
1477 notify = tcp_quench;
1478 else if (PRC_IS_REDIRECT(cmd))
1479 notify = in_rtchange, ip = 0;
1480 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1481 /*
1482 * Check to see if we have a valid TCP connection
1483 * corresponding to the address in the ICMP message
1484 * payload.
1485 *
1486 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1487 */
1488 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1489 #ifdef INET6
1490 memset(&src6, 0, sizeof(src6));
1491 memset(&dst6, 0, sizeof(dst6));
1492 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1493 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1494 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1495 #endif
1496 if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
1497 ip->ip_src, th->th_sport) != NULL)
1498 ;
1499 #ifdef INET6
1500 else if (in6_pcblookup_connect(&tcbtable, &dst6,
1501 th->th_dport, &src6, th->th_sport, 0) != NULL)
1502 ;
1503 #endif
1504 else
1505 return NULL;
1506
1507 /*
1508 * Now that we've validated that we are actually communicating
1509 * with the host indicated in the ICMP message, locate the
1510 * ICMP header, recalculate the new MTU, and create the
1511 * corresponding routing entry.
1512 */
1513 icp = (struct icmp *)((caddr_t)ip -
1514 offsetof(struct icmp, icmp_ip));
1515 icmp_mtudisc(icp, ip->ip_dst);
1516
1517 return NULL;
1518 } else if (cmd == PRC_HOSTDEAD)
1519 ip = 0;
1520 else if (errno == 0)
1521 return NULL;
1522 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1523 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1524 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1525 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1526 if (nmatch == 0 && syn_cache_count &&
1527 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1528 inetctlerrmap[cmd] == ENETUNREACH ||
1529 inetctlerrmap[cmd] == EHOSTDOWN)) {
1530 struct sockaddr_in sin;
1531 bzero(&sin, sizeof(sin));
1532 sin.sin_len = sizeof(sin);
1533 sin.sin_family = AF_INET;
1534 sin.sin_port = th->th_sport;
1535 sin.sin_addr = ip->ip_src;
1536 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1537 }
1538
1539 /* XXX mapped address case */
1540 } else
1541 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1542 notify);
1543 return NULL;
1544 }
1545
1546 /*
1547 * When a source quence is received, we are being notifed of congestion.
1548 * Close the congestion window down to the Loss Window (one segment).
1549 * We will gradually open it again as we proceed.
1550 */
1551 void
1552 tcp_quench(struct inpcb *inp, int errno)
1553 {
1554 struct tcpcb *tp = intotcpcb(inp);
1555
1556 if (tp)
1557 tp->snd_cwnd = tp->t_segsz;
1558 }
1559 #endif
1560
1561 #ifdef INET6
1562 void
1563 tcp6_quench(struct in6pcb *in6p, int errno)
1564 {
1565 struct tcpcb *tp = in6totcpcb(in6p);
1566
1567 if (tp)
1568 tp->snd_cwnd = tp->t_segsz;
1569 }
1570 #endif
1571
1572 #ifdef INET
1573 /*
1574 * Path MTU Discovery handlers.
1575 */
1576 void
1577 tcp_mtudisc_callback(struct in_addr faddr)
1578 {
1579 #ifdef INET6
1580 struct in6_addr in6;
1581 #endif
1582
1583 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1584 #ifdef INET6
1585 memset(&in6, 0, sizeof(in6));
1586 in6.s6_addr16[5] = 0xffff;
1587 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1588 tcp6_mtudisc_callback(&in6);
1589 #endif
1590 }
1591
1592 /*
1593 * On receipt of path MTU corrections, flush old route and replace it
1594 * with the new one. Retransmit all unacknowledged packets, to ensure
1595 * that all packets will be received.
1596 */
1597 void
1598 tcp_mtudisc(struct inpcb *inp, int errno)
1599 {
1600 struct tcpcb *tp = intotcpcb(inp);
1601 struct rtentry *rt = in_pcbrtentry(inp);
1602
1603 if (tp != 0) {
1604 if (rt != 0) {
1605 /*
1606 * If this was not a host route, remove and realloc.
1607 */
1608 if ((rt->rt_flags & RTF_HOST) == 0) {
1609 in_rtchange(inp, errno);
1610 if ((rt = in_pcbrtentry(inp)) == 0)
1611 return;
1612 }
1613
1614 /*
1615 * Slow start out of the error condition. We
1616 * use the MTU because we know it's smaller
1617 * than the previously transmitted segment.
1618 *
1619 * Note: This is more conservative than the
1620 * suggestion in draft-floyd-incr-init-win-03.
1621 */
1622 if (rt->rt_rmx.rmx_mtu != 0)
1623 tp->snd_cwnd =
1624 TCP_INITIAL_WINDOW(tcp_init_win,
1625 rt->rt_rmx.rmx_mtu);
1626 }
1627
1628 /*
1629 * Resend unacknowledged packets.
1630 */
1631 tp->snd_nxt = tp->snd_una;
1632 tcp_output(tp);
1633 }
1634 }
1635 #endif
1636
1637 #ifdef INET6
1638 /*
1639 * Path MTU Discovery handlers.
1640 */
1641 void
1642 tcp6_mtudisc_callback(struct in6_addr *faddr)
1643 {
1644 struct sockaddr_in6 sin6;
1645
1646 bzero(&sin6, sizeof(sin6));
1647 sin6.sin6_family = AF_INET6;
1648 sin6.sin6_len = sizeof(struct sockaddr_in6);
1649 sin6.sin6_addr = *faddr;
1650 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1651 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1652 }
1653
1654 void
1655 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1656 {
1657 struct tcpcb *tp = in6totcpcb(in6p);
1658 struct rtentry *rt = in6_pcbrtentry(in6p);
1659
1660 if (tp != 0) {
1661 if (rt != 0) {
1662 /*
1663 * If this was not a host route, remove and realloc.
1664 */
1665 if ((rt->rt_flags & RTF_HOST) == 0) {
1666 in6_rtchange(in6p, errno);
1667 if ((rt = in6_pcbrtentry(in6p)) == 0)
1668 return;
1669 }
1670
1671 /*
1672 * Slow start out of the error condition. We
1673 * use the MTU because we know it's smaller
1674 * than the previously transmitted segment.
1675 *
1676 * Note: This is more conservative than the
1677 * suggestion in draft-floyd-incr-init-win-03.
1678 */
1679 if (rt->rt_rmx.rmx_mtu != 0)
1680 tp->snd_cwnd =
1681 TCP_INITIAL_WINDOW(tcp_init_win,
1682 rt->rt_rmx.rmx_mtu);
1683 }
1684
1685 /*
1686 * Resend unacknowledged packets.
1687 */
1688 tp->snd_nxt = tp->snd_una;
1689 tcp_output(tp);
1690 }
1691 }
1692 #endif /* INET6 */
1693
1694 /*
1695 * Compute the MSS to advertise to the peer. Called only during
1696 * the 3-way handshake. If we are the server (peer initiated
1697 * connection), we are called with a pointer to the interface
1698 * on which the SYN packet arrived. If we are the client (we
1699 * initiated connection), we are called with a pointer to the
1700 * interface out which this connection should go.
1701 *
1702 * NOTE: Do not subtract IP option/extension header size nor IPsec
1703 * header size from MSS advertisement. MSS option must hold the maximum
1704 * segment size we can accept, so it must always be:
1705 * max(if mtu) - ip header - tcp header
1706 */
1707 u_long
1708 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1709 {
1710 extern u_long in_maxmtu;
1711 u_long mss = 0;
1712 u_long hdrsiz;
1713
1714 /*
1715 * In order to avoid defeating path MTU discovery on the peer,
1716 * we advertise the max MTU of all attached networks as our MSS,
1717 * per RFC 1191, section 3.1.
1718 *
1719 * We provide the option to advertise just the MTU of
1720 * the interface on which we hope this connection will
1721 * be receiving. If we are responding to a SYN, we
1722 * will have a pretty good idea about this, but when
1723 * initiating a connection there is a bit more doubt.
1724 *
1725 * We also need to ensure that loopback has a large enough
1726 * MSS, as the loopback MTU is never included in in_maxmtu.
1727 */
1728
1729 if (ifp != NULL)
1730 switch (af) {
1731 case AF_INET:
1732 mss = ifp->if_mtu;
1733 break;
1734 #ifdef INET6
1735 case AF_INET6:
1736 mss = IN6_LINKMTU(ifp);
1737 break;
1738 #endif
1739 }
1740
1741 if (tcp_mss_ifmtu == 0)
1742 switch (af) {
1743 case AF_INET:
1744 mss = max(in_maxmtu, mss);
1745 break;
1746 #ifdef INET6
1747 case AF_INET6:
1748 mss = max(in6_maxmtu, mss);
1749 break;
1750 #endif
1751 }
1752
1753 switch (af) {
1754 case AF_INET:
1755 hdrsiz = sizeof(struct ip);
1756 break;
1757 #ifdef INET6
1758 case AF_INET6:
1759 hdrsiz = sizeof(struct ip6_hdr);
1760 break;
1761 #endif
1762 default:
1763 hdrsiz = 0;
1764 break;
1765 }
1766 hdrsiz += sizeof(struct tcphdr);
1767 if (mss > hdrsiz)
1768 mss -= hdrsiz;
1769
1770 mss = max(tcp_mssdflt, mss);
1771 return (mss);
1772 }
1773
1774 /*
1775 * Set connection variables based on the peer's advertised MSS.
1776 * We are passed the TCPCB for the actual connection. If we
1777 * are the server, we are called by the compressed state engine
1778 * when the 3-way handshake is complete. If we are the client,
1779 * we are called when we receive the SYN,ACK from the server.
1780 *
1781 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1782 * before this routine is called!
1783 */
1784 void
1785 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1786 {
1787 struct socket *so;
1788 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1789 struct rtentry *rt;
1790 #endif
1791 u_long bufsize;
1792 int mss;
1793
1794 #ifdef DIAGNOSTIC
1795 if (tp->t_inpcb && tp->t_in6pcb)
1796 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1797 #endif
1798 so = NULL;
1799 rt = NULL;
1800 #ifdef INET
1801 if (tp->t_inpcb) {
1802 so = tp->t_inpcb->inp_socket;
1803 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1804 rt = in_pcbrtentry(tp->t_inpcb);
1805 #endif
1806 }
1807 #endif
1808 #ifdef INET6
1809 if (tp->t_in6pcb) {
1810 so = tp->t_in6pcb->in6p_socket;
1811 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1812 rt = in6_pcbrtentry(tp->t_in6pcb);
1813 #endif
1814 }
1815 #endif
1816
1817 /*
1818 * As per RFC1122, use the default MSS value, unless they
1819 * sent us an offer. Do not accept offers less than 256 bytes.
1820 */
1821 mss = tcp_mssdflt;
1822 if (offer)
1823 mss = offer;
1824 mss = max(mss, 256); /* sanity */
1825 tp->t_peermss = mss;
1826 mss -= tcp_optlen(tp);
1827 #ifdef INET
1828 if (tp->t_inpcb)
1829 mss -= ip_optlen(tp->t_inpcb);
1830 #endif
1831 #ifdef INET6
1832 if (tp->t_in6pcb)
1833 mss -= ip6_optlen(tp->t_in6pcb);
1834 #endif
1835
1836 /*
1837 * If there's a pipesize, change the socket buffer to that size.
1838 * Make the socket buffer an integral number of MSS units. If
1839 * the MSS is larger than the socket buffer, artificially decrease
1840 * the MSS.
1841 */
1842 #ifdef RTV_SPIPE
1843 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1844 bufsize = rt->rt_rmx.rmx_sendpipe;
1845 else
1846 #endif
1847 bufsize = so->so_snd.sb_hiwat;
1848 if (bufsize < mss)
1849 mss = bufsize;
1850 else {
1851 bufsize = roundup(bufsize, mss);
1852 if (bufsize > sb_max)
1853 bufsize = sb_max;
1854 (void) sbreserve(&so->so_snd, bufsize, so);
1855 }
1856 tp->t_segsz = mss;
1857
1858 #ifdef RTV_SSTHRESH
1859 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1860 /*
1861 * There's some sort of gateway or interface buffer
1862 * limit on the path. Use this to set the slow
1863 * start threshold, but set the threshold to no less
1864 * than 2 * MSS.
1865 */
1866 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1867 }
1868 #endif
1869 }
1870
1871 /*
1872 * Processing necessary when a TCP connection is established.
1873 */
1874 void
1875 tcp_established(struct tcpcb *tp)
1876 {
1877 struct socket *so;
1878 #ifdef RTV_RPIPE
1879 struct rtentry *rt;
1880 #endif
1881 u_long bufsize;
1882
1883 #ifdef DIAGNOSTIC
1884 if (tp->t_inpcb && tp->t_in6pcb)
1885 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1886 #endif
1887 so = NULL;
1888 rt = NULL;
1889 #ifdef INET
1890 if (tp->t_inpcb) {
1891 so = tp->t_inpcb->inp_socket;
1892 #if defined(RTV_RPIPE)
1893 rt = in_pcbrtentry(tp->t_inpcb);
1894 #endif
1895 }
1896 #endif
1897 #ifdef INET6
1898 if (tp->t_in6pcb) {
1899 so = tp->t_in6pcb->in6p_socket;
1900 #if defined(RTV_RPIPE)
1901 rt = in6_pcbrtentry(tp->t_in6pcb);
1902 #endif
1903 }
1904 #endif
1905
1906 tp->t_state = TCPS_ESTABLISHED;
1907 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1908
1909 #ifdef RTV_RPIPE
1910 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1911 bufsize = rt->rt_rmx.rmx_recvpipe;
1912 else
1913 #endif
1914 bufsize = so->so_rcv.sb_hiwat;
1915 if (bufsize > tp->t_ourmss) {
1916 bufsize = roundup(bufsize, tp->t_ourmss);
1917 if (bufsize > sb_max)
1918 bufsize = sb_max;
1919 (void) sbreserve(&so->so_rcv, bufsize, so);
1920 }
1921 }
1922
1923 /*
1924 * Check if there's an initial rtt or rttvar. Convert from the
1925 * route-table units to scaled multiples of the slow timeout timer.
1926 * Called only during the 3-way handshake.
1927 */
1928 void
1929 tcp_rmx_rtt(struct tcpcb *tp)
1930 {
1931 #ifdef RTV_RTT
1932 struct rtentry *rt = NULL;
1933 int rtt;
1934
1935 #ifdef DIAGNOSTIC
1936 if (tp->t_inpcb && tp->t_in6pcb)
1937 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1938 #endif
1939 #ifdef INET
1940 if (tp->t_inpcb)
1941 rt = in_pcbrtentry(tp->t_inpcb);
1942 #endif
1943 #ifdef INET6
1944 if (tp->t_in6pcb)
1945 rt = in6_pcbrtentry(tp->t_in6pcb);
1946 #endif
1947 if (rt == NULL)
1948 return;
1949
1950 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1951 /*
1952 * XXX The lock bit for MTU indicates that the value
1953 * is also a minimum value; this is subject to time.
1954 */
1955 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1956 TCPT_RANGESET(tp->t_rttmin,
1957 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1958 TCPTV_MIN, TCPTV_REXMTMAX);
1959 tp->t_srtt = rtt /
1960 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1961 if (rt->rt_rmx.rmx_rttvar) {
1962 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1963 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1964 (TCP_RTTVAR_SHIFT + 2));
1965 } else {
1966 /* Default variation is +- 1 rtt */
1967 tp->t_rttvar =
1968 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1969 }
1970 TCPT_RANGESET(tp->t_rxtcur,
1971 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1972 tp->t_rttmin, TCPTV_REXMTMAX);
1973 }
1974 #endif
1975 }
1976
1977 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1978 #if NRND > 0
1979 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
1980 #endif
1981
1982 /*
1983 * Get a new sequence value given a tcp control block
1984 */
1985 tcp_seq
1986 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
1987 {
1988
1989 #ifdef INET
1990 if (tp->t_inpcb != NULL) {
1991 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
1992 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
1993 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
1994 addin));
1995 }
1996 #endif
1997 #ifdef INET6
1998 if (tp->t_in6pcb != NULL) {
1999 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2000 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2001 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2002 addin));
2003 }
2004 #endif
2005 /* Not possible. */
2006 panic("tcp_new_iss");
2007 }
2008
2009 /*
2010 * This routine actually generates a new TCP initial sequence number.
2011 */
2012 tcp_seq
2013 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2014 size_t addrsz, tcp_seq addin)
2015 {
2016 tcp_seq tcp_iss;
2017
2018 #if NRND > 0
2019 static int beenhere;
2020
2021 /*
2022 * If we haven't been here before, initialize our cryptographic
2023 * hash secret.
2024 */
2025 if (beenhere == 0) {
2026 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2027 RND_EXTRACT_ANY);
2028 beenhere = 1;
2029 }
2030
2031 if (tcp_do_rfc1948) {
2032 MD5_CTX ctx;
2033 u_int8_t hash[16]; /* XXX MD5 knowledge */
2034
2035 /*
2036 * Compute the base value of the ISS. It is a hash
2037 * of (saddr, sport, daddr, dport, secret).
2038 */
2039 MD5Init(&ctx);
2040
2041 MD5Update(&ctx, (u_char *) laddr, addrsz);
2042 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2043
2044 MD5Update(&ctx, (u_char *) faddr, addrsz);
2045 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2046
2047 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2048
2049 MD5Final(hash, &ctx);
2050
2051 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2052
2053 /*
2054 * Now increment our "timer", and add it in to
2055 * the computed value.
2056 *
2057 * XXX Use `addin'?
2058 * XXX TCP_ISSINCR too large to use?
2059 */
2060 tcp_iss_seq += TCP_ISSINCR;
2061 #ifdef TCPISS_DEBUG
2062 printf("ISS hash 0x%08x, ", tcp_iss);
2063 #endif
2064 tcp_iss += tcp_iss_seq + addin;
2065 #ifdef TCPISS_DEBUG
2066 printf("new ISS 0x%08x\n", tcp_iss);
2067 #endif
2068 } else
2069 #endif /* NRND > 0 */
2070 {
2071 /*
2072 * Randomize.
2073 */
2074 #if NRND > 0
2075 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2076 #else
2077 tcp_iss = arc4random();
2078 #endif
2079
2080 /*
2081 * If we were asked to add some amount to a known value,
2082 * we will take a random value obtained above, mask off
2083 * the upper bits, and add in the known value. We also
2084 * add in a constant to ensure that we are at least a
2085 * certain distance from the original value.
2086 *
2087 * This is used when an old connection is in timed wait
2088 * and we have a new one coming in, for instance.
2089 */
2090 if (addin != 0) {
2091 #ifdef TCPISS_DEBUG
2092 printf("Random %08x, ", tcp_iss);
2093 #endif
2094 tcp_iss &= TCP_ISS_RANDOM_MASK;
2095 tcp_iss += addin + TCP_ISSINCR;
2096 #ifdef TCPISS_DEBUG
2097 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2098 #endif
2099 } else {
2100 tcp_iss &= TCP_ISS_RANDOM_MASK;
2101 tcp_iss += tcp_iss_seq;
2102 tcp_iss_seq += TCP_ISSINCR;
2103 #ifdef TCPISS_DEBUG
2104 printf("ISS %08x\n", tcp_iss);
2105 #endif
2106 }
2107 }
2108
2109 if (tcp_compat_42) {
2110 /*
2111 * Limit it to the positive range for really old TCP
2112 * implementations.
2113 * Just AND off the top bit instead of checking if
2114 * is set first - saves a branch 50% of the time.
2115 */
2116 tcp_iss &= 0x7fffffff; /* XXX */
2117 }
2118
2119 return (tcp_iss);
2120 }
2121
2122 #if defined(IPSEC) || defined(FAST_IPSEC)
2123 /* compute ESP/AH header size for TCP, including outer IP header. */
2124 size_t
2125 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2126 {
2127 struct inpcb *inp;
2128 size_t hdrsiz;
2129
2130 /* XXX mapped addr case (tp->t_in6pcb) */
2131 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2132 return 0;
2133 switch (tp->t_family) {
2134 case AF_INET:
2135 /* XXX: should use currect direction. */
2136 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2137 break;
2138 default:
2139 hdrsiz = 0;
2140 break;
2141 }
2142
2143 return hdrsiz;
2144 }
2145
2146 #ifdef INET6
2147 size_t
2148 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2149 {
2150 struct in6pcb *in6p;
2151 size_t hdrsiz;
2152
2153 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2154 return 0;
2155 switch (tp->t_family) {
2156 case AF_INET6:
2157 /* XXX: should use currect direction. */
2158 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2159 break;
2160 case AF_INET:
2161 /* mapped address case - tricky */
2162 default:
2163 hdrsiz = 0;
2164 break;
2165 }
2166
2167 return hdrsiz;
2168 }
2169 #endif
2170 #endif /*IPSEC*/
2171
2172 /*
2173 * Determine the length of the TCP options for this connection.
2174 *
2175 * XXX: What do we do for SACK, when we add that? Just reserve
2176 * all of the space? Otherwise we can't exactly be incrementing
2177 * cwnd by an amount that varies depending on the amount we last
2178 * had to SACK!
2179 */
2180
2181 u_int
2182 tcp_optlen(struct tcpcb *tp)
2183 {
2184 u_int optlen;
2185
2186 optlen = 0;
2187 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2188 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2189 optlen += TCPOLEN_TSTAMP_APPA;
2190
2191 #ifdef TCP_SIGNATURE
2192 #if defined(INET6) && defined(FAST_IPSEC)
2193 if (tp->t_family == AF_INET)
2194 #endif
2195 if (tp->t_flags & TF_SIGNATURE)
2196 optlen += TCPOLEN_SIGNATURE + 2;
2197 #endif /* TCP_SIGNATURE */
2198
2199 return optlen;
2200 }
2201