Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.187
      1 /*	$NetBSD: tcp_subr.c,v 1.187 2005/03/16 00:39:57 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.187 2005/03/16 00:39:57 yamt Exp $");
    102 
    103 #include "opt_inet.h"
    104 #include "opt_ipsec.h"
    105 #include "opt_tcp_compat_42.h"
    106 #include "opt_inet_csum.h"
    107 #include "opt_mbuftrace.h"
    108 #include "rnd.h"
    109 
    110 #include <sys/param.h>
    111 #include <sys/proc.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/socket.h>
    116 #include <sys/socketvar.h>
    117 #include <sys/protosw.h>
    118 #include <sys/errno.h>
    119 #include <sys/kernel.h>
    120 #include <sys/pool.h>
    121 #if NRND > 0
    122 #include <sys/md5.h>
    123 #include <sys/rnd.h>
    124 #endif
    125 
    126 #include <net/route.h>
    127 #include <net/if.h>
    128 
    129 #include <netinet/in.h>
    130 #include <netinet/in_systm.h>
    131 #include <netinet/ip.h>
    132 #include <netinet/in_pcb.h>
    133 #include <netinet/ip_var.h>
    134 #include <netinet/ip_icmp.h>
    135 
    136 #ifdef INET6
    137 #ifndef INET
    138 #include <netinet/in.h>
    139 #endif
    140 #include <netinet/ip6.h>
    141 #include <netinet6/in6_pcb.h>
    142 #include <netinet6/ip6_var.h>
    143 #include <netinet6/in6_var.h>
    144 #include <netinet6/ip6protosw.h>
    145 #include <netinet/icmp6.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include <netinet/tcp.h>
    150 #include <netinet/tcp_fsm.h>
    151 #include <netinet/tcp_seq.h>
    152 #include <netinet/tcp_timer.h>
    153 #include <netinet/tcp_var.h>
    154 #include <netinet/tcpip.h>
    155 
    156 #ifdef IPSEC
    157 #include <netinet6/ipsec.h>
    158 #include <netkey/key.h>
    159 #endif /*IPSEC*/
    160 
    161 #ifdef FAST_IPSEC
    162 #include <netipsec/ipsec.h>
    163 #include <netipsec/xform.h>
    164 #ifdef INET6
    165 #include <netipsec/ipsec6.h>
    166 #endif
    167  #include <netipsec/key.h>
    168 #endif	/* FAST_IPSEC*/
    169 
    170 
    171 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    172 struct	tcpstat tcpstat;	/* tcp statistics */
    173 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
    174 
    175 /* patchable/settable parameters for tcp */
    176 int 	tcp_mssdflt = TCP_MSS;
    177 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    178 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    179 #if NRND > 0
    180 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    181 #endif
    182 int	tcp_do_sack = 1;	/* selective acknowledgement */
    183 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    184 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    185 int	tcp_do_newreno = 1;	/* Use the New Reno algorithms */
    186 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    187 #ifndef TCP_INIT_WIN
    188 #define	TCP_INIT_WIN	0	/* initial slow start window */
    189 #endif
    190 #ifndef TCP_INIT_WIN_LOCAL
    191 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    192 #endif
    193 int	tcp_init_win = TCP_INIT_WIN;
    194 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    195 int	tcp_mss_ifmtu = 0;
    196 #ifdef TCP_COMPAT_42
    197 int	tcp_compat_42 = 1;
    198 #else
    199 int	tcp_compat_42 = 0;
    200 #endif
    201 int	tcp_rst_ppslim = 100;	/* 100pps */
    202 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
    203 int	tcp_do_loopback_cksum = 0;
    204 
    205 /* tcb hash */
    206 #ifndef TCBHASHSIZE
    207 #define	TCBHASHSIZE	128
    208 #endif
    209 int	tcbhashsize = TCBHASHSIZE;
    210 
    211 /* syn hash parameters */
    212 #define	TCP_SYN_HASH_SIZE	293
    213 #define	TCP_SYN_BUCKET_SIZE	35
    214 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    215 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    216 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    217 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    218 
    219 int	tcp_freeq(struct tcpcb *);
    220 
    221 #ifdef INET
    222 void	tcp_mtudisc_callback(struct in_addr);
    223 #endif
    224 #ifdef INET6
    225 void	tcp6_mtudisc_callback(struct in6_addr *);
    226 #endif
    227 
    228 void	tcp_mtudisc(struct inpcb *, int);
    229 #ifdef INET6
    230 void	tcp6_mtudisc(struct in6pcb *, int);
    231 #endif
    232 
    233 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
    234 
    235 #ifdef TCP_CSUM_COUNTERS
    236 #include <sys/device.h>
    237 
    238 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    239     NULL, "tcp", "hwcsum bad");
    240 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    241     NULL, "tcp", "hwcsum ok");
    242 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    243     NULL, "tcp", "hwcsum data");
    244 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    245     NULL, "tcp", "swcsum");
    246 
    247 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
    248 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
    249 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
    250 EVCNT_ATTACH_STATIC(tcp_swcsum);
    251 #endif /* TCP_CSUM_COUNTERS */
    252 
    253 
    254 #ifdef TCP_OUTPUT_COUNTERS
    255 #include <sys/device.h>
    256 
    257 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    258     NULL, "tcp", "output big header");
    259 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    260     NULL, "tcp", "output predict hit");
    261 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    262     NULL, "tcp", "output predict miss");
    263 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    264     NULL, "tcp", "output copy small");
    265 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    266     NULL, "tcp", "output copy big");
    267 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    268     NULL, "tcp", "output reference big");
    269 
    270 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
    271 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
    272 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
    273 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
    274 EVCNT_ATTACH_STATIC(tcp_output_copybig);
    275 EVCNT_ATTACH_STATIC(tcp_output_refbig);
    276 
    277 #endif /* TCP_OUTPUT_COUNTERS */
    278 
    279 #ifdef TCP_REASS_COUNTERS
    280 #include <sys/device.h>
    281 
    282 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    283     NULL, "tcp_reass", "calls");
    284 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    285     &tcp_reass_, "tcp_reass", "insert into empty queue");
    286 struct evcnt tcp_reass_iteration[8] = {
    287     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    288     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    289     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    290     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    291     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    292     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    293     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    294     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    295 };
    296 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    297     &tcp_reass_, "tcp_reass", "prepend to first");
    298 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    299     &tcp_reass_, "tcp_reass", "prepend");
    300 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    301     &tcp_reass_, "tcp_reass", "insert");
    302 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    303     &tcp_reass_, "tcp_reass", "insert at tail");
    304 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    305     &tcp_reass_, "tcp_reass", "append");
    306 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    307     &tcp_reass_, "tcp_reass", "append to tail fragment");
    308 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    309     &tcp_reass_, "tcp_reass", "overlap at end");
    310 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    311     &tcp_reass_, "tcp_reass", "overlap at start");
    312 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    313     &tcp_reass_, "tcp_reass", "duplicate segment");
    314 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    315     &tcp_reass_, "tcp_reass", "duplicate fragment");
    316 
    317 EVCNT_ATTACH_STATIC(tcp_reass_);
    318 EVCNT_ATTACH_STATIC(tcp_reass_empty);
    319 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
    320 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
    321 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
    322 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
    323 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
    324 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
    325 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
    326 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
    327 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
    328 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
    329 EVCNT_ATTACH_STATIC(tcp_reass_insert);
    330 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
    331 EVCNT_ATTACH_STATIC(tcp_reass_append);
    332 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
    333 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
    334 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
    335 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
    336 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
    337 
    338 #endif /* TCP_REASS_COUNTERS */
    339 
    340 #ifdef MBUFTRACE
    341 struct mowner tcp_mowner = { "tcp" };
    342 struct mowner tcp_rx_mowner = { "tcp", "rx" };
    343 struct mowner tcp_tx_mowner = { "tcp", "tx" };
    344 #endif
    345 
    346 /*
    347  * Tcp initialization
    348  */
    349 void
    350 tcp_init(void)
    351 {
    352 	int hlen;
    353 
    354 	/* Initialize the TCPCB template. */
    355 	tcp_tcpcb_template();
    356 
    357 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    358 
    359 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    360 #ifdef INET6
    361 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    362 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    363 #endif
    364 	if (max_protohdr < hlen)
    365 		max_protohdr = hlen;
    366 	if (max_linkhdr + hlen > MHLEN)
    367 		panic("tcp_init");
    368 
    369 #ifdef INET
    370 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    371 #endif
    372 #ifdef INET6
    373 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    374 #endif
    375 
    376 	/* Initialize timer state. */
    377 	tcp_timer_init();
    378 
    379 	/* Initialize the compressed state engine. */
    380 	syn_cache_init();
    381 
    382 	MOWNER_ATTACH(&tcp_tx_mowner);
    383 	MOWNER_ATTACH(&tcp_rx_mowner);
    384 	MOWNER_ATTACH(&tcp_mowner);
    385 }
    386 
    387 /*
    388  * Create template to be used to send tcp packets on a connection.
    389  * Call after host entry created, allocates an mbuf and fills
    390  * in a skeletal tcp/ip header, minimizing the amount of work
    391  * necessary when the connection is used.
    392  */
    393 struct mbuf *
    394 tcp_template(struct tcpcb *tp)
    395 {
    396 	struct inpcb *inp = tp->t_inpcb;
    397 #ifdef INET6
    398 	struct in6pcb *in6p = tp->t_in6pcb;
    399 #endif
    400 	struct tcphdr *n;
    401 	struct mbuf *m;
    402 	int hlen;
    403 
    404 	switch (tp->t_family) {
    405 	case AF_INET:
    406 		hlen = sizeof(struct ip);
    407 		if (inp)
    408 			break;
    409 #ifdef INET6
    410 		if (in6p) {
    411 			/* mapped addr case */
    412 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    413 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    414 				break;
    415 		}
    416 #endif
    417 		return NULL;	/*EINVAL*/
    418 #ifdef INET6
    419 	case AF_INET6:
    420 		hlen = sizeof(struct ip6_hdr);
    421 		if (in6p) {
    422 			/* more sainty check? */
    423 			break;
    424 		}
    425 		return NULL;	/*EINVAL*/
    426 #endif
    427 	default:
    428 		hlen = 0;	/*pacify gcc*/
    429 		return NULL;	/*EAFNOSUPPORT*/
    430 	}
    431 #ifdef DIAGNOSTIC
    432 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    433 		panic("mclbytes too small for t_template");
    434 #endif
    435 	m = tp->t_template;
    436 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    437 		;
    438 	else {
    439 		if (m)
    440 			m_freem(m);
    441 		m = tp->t_template = NULL;
    442 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    443 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    444 			MCLGET(m, M_DONTWAIT);
    445 			if ((m->m_flags & M_EXT) == 0) {
    446 				m_free(m);
    447 				m = NULL;
    448 			}
    449 		}
    450 		if (m == NULL)
    451 			return NULL;
    452 		MCLAIM(m, &tcp_mowner);
    453 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    454 	}
    455 
    456 	bzero(mtod(m, caddr_t), m->m_len);
    457 
    458 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
    459 
    460 	switch (tp->t_family) {
    461 	case AF_INET:
    462 	    {
    463 		struct ipovly *ipov;
    464 		mtod(m, struct ip *)->ip_v = 4;
    465 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
    466 		ipov = mtod(m, struct ipovly *);
    467 		ipov->ih_pr = IPPROTO_TCP;
    468 		ipov->ih_len = htons(sizeof(struct tcphdr));
    469 		if (inp) {
    470 			ipov->ih_src = inp->inp_laddr;
    471 			ipov->ih_dst = inp->inp_faddr;
    472 		}
    473 #ifdef INET6
    474 		else if (in6p) {
    475 			/* mapped addr case */
    476 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    477 				sizeof(ipov->ih_src));
    478 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    479 				sizeof(ipov->ih_dst));
    480 		}
    481 #endif
    482 		/*
    483 		 * Compute the pseudo-header portion of the checksum
    484 		 * now.  We incrementally add in the TCP option and
    485 		 * payload lengths later, and then compute the TCP
    486 		 * checksum right before the packet is sent off onto
    487 		 * the wire.
    488 		 */
    489 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    490 		    ipov->ih_dst.s_addr,
    491 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    492 		break;
    493 	    }
    494 #ifdef INET6
    495 	case AF_INET6:
    496 	    {
    497 		struct ip6_hdr *ip6;
    498 		mtod(m, struct ip *)->ip_v = 6;
    499 		ip6 = mtod(m, struct ip6_hdr *);
    500 		ip6->ip6_nxt = IPPROTO_TCP;
    501 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    502 		ip6->ip6_src = in6p->in6p_laddr;
    503 		ip6->ip6_dst = in6p->in6p_faddr;
    504 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    505 		if (ip6_auto_flowlabel) {
    506 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    507 			ip6->ip6_flow |=
    508 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    509 		}
    510 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    511 		ip6->ip6_vfc |= IPV6_VERSION;
    512 
    513 		/*
    514 		 * Compute the pseudo-header portion of the checksum
    515 		 * now.  We incrementally add in the TCP option and
    516 		 * payload lengths later, and then compute the TCP
    517 		 * checksum right before the packet is sent off onto
    518 		 * the wire.
    519 		 */
    520 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    521 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    522 		    htonl(IPPROTO_TCP));
    523 		break;
    524 	    }
    525 #endif
    526 	}
    527 	if (inp) {
    528 		n->th_sport = inp->inp_lport;
    529 		n->th_dport = inp->inp_fport;
    530 	}
    531 #ifdef INET6
    532 	else if (in6p) {
    533 		n->th_sport = in6p->in6p_lport;
    534 		n->th_dport = in6p->in6p_fport;
    535 	}
    536 #endif
    537 	n->th_seq = 0;
    538 	n->th_ack = 0;
    539 	n->th_x2 = 0;
    540 	n->th_off = 5;
    541 	n->th_flags = 0;
    542 	n->th_win = 0;
    543 	n->th_urp = 0;
    544 	return (m);
    545 }
    546 
    547 /*
    548  * Send a single message to the TCP at address specified by
    549  * the given TCP/IP header.  If m == 0, then we make a copy
    550  * of the tcpiphdr at ti and send directly to the addressed host.
    551  * This is used to force keep alive messages out using the TCP
    552  * template for a connection tp->t_template.  If flags are given
    553  * then we send a message back to the TCP which originated the
    554  * segment ti, and discard the mbuf containing it and any other
    555  * attached mbufs.
    556  *
    557  * In any case the ack and sequence number of the transmitted
    558  * segment are as specified by the parameters.
    559  */
    560 int
    561 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
    562     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
    563 {
    564 	struct route *ro;
    565 	int error, tlen, win = 0;
    566 	int hlen;
    567 	struct ip *ip;
    568 #ifdef INET6
    569 	struct ip6_hdr *ip6;
    570 #endif
    571 	int family;	/* family on packet, not inpcb/in6pcb! */
    572 	struct tcphdr *th;
    573 	struct socket *so;
    574 
    575 	if (tp != NULL && (flags & TH_RST) == 0) {
    576 #ifdef DIAGNOSTIC
    577 		if (tp->t_inpcb && tp->t_in6pcb)
    578 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    579 #endif
    580 #ifdef INET
    581 		if (tp->t_inpcb)
    582 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    583 #endif
    584 #ifdef INET6
    585 		if (tp->t_in6pcb)
    586 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    587 #endif
    588 	}
    589 
    590 	th = NULL;	/* Quell uninitialized warning */
    591 	ip = NULL;
    592 #ifdef INET6
    593 	ip6 = NULL;
    594 #endif
    595 	if (m == 0) {
    596 		if (!template)
    597 			return EINVAL;
    598 
    599 		/* get family information from template */
    600 		switch (mtod(template, struct ip *)->ip_v) {
    601 		case 4:
    602 			family = AF_INET;
    603 			hlen = sizeof(struct ip);
    604 			break;
    605 #ifdef INET6
    606 		case 6:
    607 			family = AF_INET6;
    608 			hlen = sizeof(struct ip6_hdr);
    609 			break;
    610 #endif
    611 		default:
    612 			return EAFNOSUPPORT;
    613 		}
    614 
    615 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    616 		if (m) {
    617 			MCLAIM(m, &tcp_tx_mowner);
    618 			MCLGET(m, M_DONTWAIT);
    619 			if ((m->m_flags & M_EXT) == 0) {
    620 				m_free(m);
    621 				m = NULL;
    622 			}
    623 		}
    624 		if (m == NULL)
    625 			return (ENOBUFS);
    626 
    627 		if (tcp_compat_42)
    628 			tlen = 1;
    629 		else
    630 			tlen = 0;
    631 
    632 		m->m_data += max_linkhdr;
    633 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
    634 			template->m_len);
    635 		switch (family) {
    636 		case AF_INET:
    637 			ip = mtod(m, struct ip *);
    638 			th = (struct tcphdr *)(ip + 1);
    639 			break;
    640 #ifdef INET6
    641 		case AF_INET6:
    642 			ip6 = mtod(m, struct ip6_hdr *);
    643 			th = (struct tcphdr *)(ip6 + 1);
    644 			break;
    645 #endif
    646 #if 0
    647 		default:
    648 			/* noone will visit here */
    649 			m_freem(m);
    650 			return EAFNOSUPPORT;
    651 #endif
    652 		}
    653 		flags = TH_ACK;
    654 	} else {
    655 
    656 		if ((m->m_flags & M_PKTHDR) == 0) {
    657 #if 0
    658 			printf("non PKTHDR to tcp_respond\n");
    659 #endif
    660 			m_freem(m);
    661 			return EINVAL;
    662 		}
    663 #ifdef DIAGNOSTIC
    664 		if (!th0)
    665 			panic("th0 == NULL in tcp_respond");
    666 #endif
    667 
    668 		/* get family information from m */
    669 		switch (mtod(m, struct ip *)->ip_v) {
    670 		case 4:
    671 			family = AF_INET;
    672 			hlen = sizeof(struct ip);
    673 			ip = mtod(m, struct ip *);
    674 			break;
    675 #ifdef INET6
    676 		case 6:
    677 			family = AF_INET6;
    678 			hlen = sizeof(struct ip6_hdr);
    679 			ip6 = mtod(m, struct ip6_hdr *);
    680 			break;
    681 #endif
    682 		default:
    683 			m_freem(m);
    684 			return EAFNOSUPPORT;
    685 		}
    686 		/* clear h/w csum flags inherited from rx packet */
    687 		m->m_pkthdr.csum_flags = 0;
    688 
    689 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    690 			tlen = sizeof(*th0);
    691 		else
    692 			tlen = th0->th_off << 2;
    693 
    694 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    695 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
    696 			m->m_len = hlen + tlen;
    697 			m_freem(m->m_next);
    698 			m->m_next = NULL;
    699 		} else {
    700 			struct mbuf *n;
    701 
    702 #ifdef DIAGNOSTIC
    703 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    704 				m_freem(m);
    705 				return EMSGSIZE;
    706 			}
    707 #endif
    708 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    709 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    710 				MCLGET(n, M_DONTWAIT);
    711 				if ((n->m_flags & M_EXT) == 0) {
    712 					m_freem(n);
    713 					n = NULL;
    714 				}
    715 			}
    716 			if (!n) {
    717 				m_freem(m);
    718 				return ENOBUFS;
    719 			}
    720 
    721 			MCLAIM(n, &tcp_tx_mowner);
    722 			n->m_data += max_linkhdr;
    723 			n->m_len = hlen + tlen;
    724 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
    725 			m_copyback(n, hlen, tlen, (caddr_t)th0);
    726 
    727 			m_freem(m);
    728 			m = n;
    729 			n = NULL;
    730 		}
    731 
    732 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    733 		switch (family) {
    734 		case AF_INET:
    735 			ip = mtod(m, struct ip *);
    736 			th = (struct tcphdr *)(ip + 1);
    737 			ip->ip_p = IPPROTO_TCP;
    738 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    739 			ip->ip_p = IPPROTO_TCP;
    740 			break;
    741 #ifdef INET6
    742 		case AF_INET6:
    743 			ip6 = mtod(m, struct ip6_hdr *);
    744 			th = (struct tcphdr *)(ip6 + 1);
    745 			ip6->ip6_nxt = IPPROTO_TCP;
    746 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    747 			ip6->ip6_nxt = IPPROTO_TCP;
    748 			break;
    749 #endif
    750 #if 0
    751 		default:
    752 			/* noone will visit here */
    753 			m_freem(m);
    754 			return EAFNOSUPPORT;
    755 #endif
    756 		}
    757 		xchg(th->th_dport, th->th_sport, u_int16_t);
    758 #undef xchg
    759 		tlen = 0;	/*be friendly with the following code*/
    760 	}
    761 	th->th_seq = htonl(seq);
    762 	th->th_ack = htonl(ack);
    763 	th->th_x2 = 0;
    764 	if ((flags & TH_SYN) == 0) {
    765 		if (tp)
    766 			win >>= tp->rcv_scale;
    767 		if (win > TCP_MAXWIN)
    768 			win = TCP_MAXWIN;
    769 		th->th_win = htons((u_int16_t)win);
    770 		th->th_off = sizeof (struct tcphdr) >> 2;
    771 		tlen += sizeof(*th);
    772 	} else
    773 		tlen += th->th_off << 2;
    774 	m->m_len = hlen + tlen;
    775 	m->m_pkthdr.len = hlen + tlen;
    776 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    777 	th->th_flags = flags;
    778 	th->th_urp = 0;
    779 
    780 	switch (family) {
    781 #ifdef INET
    782 	case AF_INET:
    783 	    {
    784 		struct ipovly *ipov = (struct ipovly *)ip;
    785 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    786 		ipov->ih_len = htons((u_int16_t)tlen);
    787 
    788 		th->th_sum = 0;
    789 		th->th_sum = in_cksum(m, hlen + tlen);
    790 		ip->ip_len = htons(hlen + tlen);
    791 		ip->ip_ttl = ip_defttl;
    792 		break;
    793 	    }
    794 #endif
    795 #ifdef INET6
    796 	case AF_INET6:
    797 	    {
    798 		th->th_sum = 0;
    799 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    800 				tlen);
    801 		ip6->ip6_plen = htons(tlen);
    802 		if (tp && tp->t_in6pcb) {
    803 			struct ifnet *oifp;
    804 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    805 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    806 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    807 		} else
    808 			ip6->ip6_hlim = ip6_defhlim;
    809 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    810 		if (ip6_auto_flowlabel) {
    811 			ip6->ip6_flow |=
    812 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    813 		}
    814 		break;
    815 	    }
    816 #endif
    817 	}
    818 
    819 	if (tp && tp->t_inpcb)
    820 		so = tp->t_inpcb->inp_socket;
    821 #ifdef INET6
    822 	else if (tp && tp->t_in6pcb)
    823 		so = tp->t_in6pcb->in6p_socket;
    824 #endif
    825 	else
    826 		so = NULL;
    827 
    828 	if (tp != NULL && tp->t_inpcb != NULL) {
    829 		ro = &tp->t_inpcb->inp_route;
    830 #ifdef DIAGNOSTIC
    831 		if (family != AF_INET)
    832 			panic("tcp_respond: address family mismatch");
    833 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    834 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    835 			    ntohl(ip->ip_dst.s_addr),
    836 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    837 		}
    838 #endif
    839 	}
    840 #ifdef INET6
    841 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    842 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    843 #ifdef DIAGNOSTIC
    844 		if (family == AF_INET) {
    845 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    846 				panic("tcp_respond: not mapped addr");
    847 			if (bcmp(&ip->ip_dst,
    848 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    849 			    sizeof(ip->ip_dst)) != 0) {
    850 				panic("tcp_respond: ip_dst != in6p_faddr");
    851 			}
    852 		} else if (family == AF_INET6) {
    853 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    854 			    &tp->t_in6pcb->in6p_faddr))
    855 				panic("tcp_respond: ip6_dst != in6p_faddr");
    856 		} else
    857 			panic("tcp_respond: address family mismatch");
    858 #endif
    859 	}
    860 #endif
    861 	else
    862 		ro = NULL;
    863 
    864 	switch (family) {
    865 #ifdef INET
    866 	case AF_INET:
    867 		error = ip_output(m, NULL, ro,
    868 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    869 		    (struct ip_moptions *)0, so);
    870 		break;
    871 #endif
    872 #ifdef INET6
    873 	case AF_INET6:
    874 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
    875 		    (struct ip6_moptions *)0, so, NULL);
    876 		break;
    877 #endif
    878 	default:
    879 		error = EAFNOSUPPORT;
    880 		break;
    881 	}
    882 
    883 	return (error);
    884 }
    885 
    886 /*
    887  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
    888  * a bunch of members individually, we maintain this template for the
    889  * static and mostly-static components of the TCPCB, and copy it into
    890  * the new TCPCB instead.
    891  */
    892 static struct tcpcb tcpcb_template = {
    893 	/*
    894 	 * If TCP_NTIMERS ever changes, we'll need to update this
    895 	 * initializer.
    896 	 */
    897 	.t_timer = {
    898 		CALLOUT_INITIALIZER,
    899 		CALLOUT_INITIALIZER,
    900 		CALLOUT_INITIALIZER,
    901 		CALLOUT_INITIALIZER,
    902 	},
    903 	.t_delack_ch = CALLOUT_INITIALIZER,
    904 
    905 	.t_srtt = TCPTV_SRTTBASE,
    906 	.t_rttmin = TCPTV_MIN,
    907 
    908 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    909 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    910 
    911 	.t_partialacks = -1,
    912 };
    913 
    914 /*
    915  * Updates the TCPCB template whenever a parameter that would affect
    916  * the template is changed.
    917  */
    918 void
    919 tcp_tcpcb_template(void)
    920 {
    921 	struct tcpcb *tp = &tcpcb_template;
    922 	int flags;
    923 
    924 	tp->t_peermss = tcp_mssdflt;
    925 	tp->t_ourmss = tcp_mssdflt;
    926 	tp->t_segsz = tcp_mssdflt;
    927 
    928 	flags = 0;
    929 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    930 		flags |= TF_REQ_SCALE;
    931 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    932 		flags |= TF_REQ_TSTMP;
    933 	tp->t_flags = flags;
    934 
    935 	/*
    936 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    937 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    938 	 * reasonable initial retransmit time.
    939 	 */
    940 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    941 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    942 	    TCPTV_MIN, TCPTV_REXMTMAX);
    943 }
    944 
    945 /*
    946  * Create a new TCP control block, making an
    947  * empty reassembly queue and hooking it to the argument
    948  * protocol control block.
    949  */
    950 /* family selects inpcb, or in6pcb */
    951 struct tcpcb *
    952 tcp_newtcpcb(int family, void *aux)
    953 {
    954 	struct tcpcb *tp;
    955 	int i;
    956 
    957 	/* XXX Consider using a pool_cache for speed. */
    958 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    959 	if (tp == NULL)
    960 		return (NULL);
    961 	memcpy(tp, &tcpcb_template, sizeof(*tp));
    962 	TAILQ_INIT(&tp->segq);
    963 	TAILQ_INIT(&tp->timeq);
    964 	tp->t_family = family;		/* may be overridden later on */
    965 	TAILQ_INIT(&tp->snd_holes);
    966 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
    967 
    968 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
    969 	for (i = 0; i < TCPT_NTIMERS; i++)
    970 		TCP_TIMER_INIT(tp, i);
    971 
    972 	switch (family) {
    973 	case AF_INET:
    974 	    {
    975 		struct inpcb *inp = (struct inpcb *)aux;
    976 
    977 		inp->inp_ip.ip_ttl = ip_defttl;
    978 		inp->inp_ppcb = (caddr_t)tp;
    979 
    980 		tp->t_inpcb = inp;
    981 		tp->t_mtudisc = ip_mtudisc;
    982 		break;
    983 	    }
    984 #ifdef INET6
    985 	case AF_INET6:
    986 	    {
    987 		struct in6pcb *in6p = (struct in6pcb *)aux;
    988 
    989 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
    990 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
    991 					       : NULL);
    992 		in6p->in6p_ppcb = (caddr_t)tp;
    993 
    994 		tp->t_in6pcb = in6p;
    995 		/* for IPv6, always try to run path MTU discovery */
    996 		tp->t_mtudisc = 1;
    997 		break;
    998 	    }
    999 #endif /* INET6 */
   1000 	default:
   1001 		pool_put(&tcpcb_pool, tp);
   1002 		return (NULL);
   1003 	}
   1004 
   1005 	/*
   1006 	 * Initialize our timebase.  When we send timestamps, we take
   1007 	 * the delta from tcp_now -- this means each connection always
   1008 	 * gets a timebase of 0, which makes it, among other things,
   1009 	 * more difficult to determine how long a system has been up,
   1010 	 * and thus how many TCP sequence increments have occurred.
   1011 	 */
   1012 	tp->ts_timebase = tcp_now;
   1013 
   1014 	return (tp);
   1015 }
   1016 
   1017 /*
   1018  * Drop a TCP connection, reporting
   1019  * the specified error.  If connection is synchronized,
   1020  * then send a RST to peer.
   1021  */
   1022 struct tcpcb *
   1023 tcp_drop(struct tcpcb *tp, int errno)
   1024 {
   1025 	struct socket *so = NULL;
   1026 
   1027 #ifdef DIAGNOSTIC
   1028 	if (tp->t_inpcb && tp->t_in6pcb)
   1029 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1030 #endif
   1031 #ifdef INET
   1032 	if (tp->t_inpcb)
   1033 		so = tp->t_inpcb->inp_socket;
   1034 #endif
   1035 #ifdef INET6
   1036 	if (tp->t_in6pcb)
   1037 		so = tp->t_in6pcb->in6p_socket;
   1038 #endif
   1039 	if (!so)
   1040 		return NULL;
   1041 
   1042 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1043 		tp->t_state = TCPS_CLOSED;
   1044 		(void) tcp_output(tp);
   1045 		tcpstat.tcps_drops++;
   1046 	} else
   1047 		tcpstat.tcps_conndrops++;
   1048 	if (errno == ETIMEDOUT && tp->t_softerror)
   1049 		errno = tp->t_softerror;
   1050 	so->so_error = errno;
   1051 	return (tcp_close(tp));
   1052 }
   1053 
   1054 /*
   1055  * Return whether this tcpcb is marked as dead, indicating
   1056  * to the calling timer function that no further action should
   1057  * be taken, as we are about to release this tcpcb.  The release
   1058  * of the storage will be done if this is the last timer running.
   1059  *
   1060  * This should be called from the callout handler function after
   1061  * callout_ack() is done, so that the number of invoking timer
   1062  * functions is 0.
   1063  */
   1064 int
   1065 tcp_isdead(struct tcpcb *tp)
   1066 {
   1067 	int dead = (tp->t_flags & TF_DEAD);
   1068 
   1069 	if (__predict_false(dead)) {
   1070 		if (tcp_timers_invoking(tp) > 0)
   1071 				/* not quite there yet -- count separately? */
   1072 			return dead;
   1073 		tcpstat.tcps_delayed_free++;
   1074 		pool_put(&tcpcb_pool, tp);
   1075 	}
   1076 	return dead;
   1077 }
   1078 
   1079 /*
   1080  * Close a TCP control block:
   1081  *	discard all space held by the tcp
   1082  *	discard internet protocol block
   1083  *	wake up any sleepers
   1084  */
   1085 struct tcpcb *
   1086 tcp_close(struct tcpcb *tp)
   1087 {
   1088 	struct inpcb *inp;
   1089 #ifdef INET6
   1090 	struct in6pcb *in6p;
   1091 #endif
   1092 	struct socket *so;
   1093 #ifdef RTV_RTT
   1094 	struct rtentry *rt;
   1095 #endif
   1096 	struct route *ro;
   1097 
   1098 	inp = tp->t_inpcb;
   1099 #ifdef INET6
   1100 	in6p = tp->t_in6pcb;
   1101 #endif
   1102 	so = NULL;
   1103 	ro = NULL;
   1104 	if (inp) {
   1105 		so = inp->inp_socket;
   1106 		ro = &inp->inp_route;
   1107 	}
   1108 #ifdef INET6
   1109 	else if (in6p) {
   1110 		so = in6p->in6p_socket;
   1111 		ro = (struct route *)&in6p->in6p_route;
   1112 	}
   1113 #endif
   1114 
   1115 #ifdef RTV_RTT
   1116 	/*
   1117 	 * If we sent enough data to get some meaningful characteristics,
   1118 	 * save them in the routing entry.  'Enough' is arbitrarily
   1119 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1120 	 * give us 16 rtt samples assuming we only get one sample per
   1121 	 * window (the usual case on a long haul net).  16 samples is
   1122 	 * enough for the srtt filter to converge to within 5% of the correct
   1123 	 * value; fewer samples and we could save a very bogus rtt.
   1124 	 *
   1125 	 * Don't update the default route's characteristics and don't
   1126 	 * update anything that the user "locked".
   1127 	 */
   1128 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1129 	    ro && (rt = ro->ro_rt) &&
   1130 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
   1131 		u_long i = 0;
   1132 
   1133 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1134 			i = tp->t_srtt *
   1135 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1136 			if (rt->rt_rmx.rmx_rtt && i)
   1137 				/*
   1138 				 * filter this update to half the old & half
   1139 				 * the new values, converting scale.
   1140 				 * See route.h and tcp_var.h for a
   1141 				 * description of the scaling constants.
   1142 				 */
   1143 				rt->rt_rmx.rmx_rtt =
   1144 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1145 			else
   1146 				rt->rt_rmx.rmx_rtt = i;
   1147 		}
   1148 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1149 			i = tp->t_rttvar *
   1150 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1151 			if (rt->rt_rmx.rmx_rttvar && i)
   1152 				rt->rt_rmx.rmx_rttvar =
   1153 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1154 			else
   1155 				rt->rt_rmx.rmx_rttvar = i;
   1156 		}
   1157 		/*
   1158 		 * update the pipelimit (ssthresh) if it has been updated
   1159 		 * already or if a pipesize was specified & the threshhold
   1160 		 * got below half the pipesize.  I.e., wait for bad news
   1161 		 * before we start updating, then update on both good
   1162 		 * and bad news.
   1163 		 */
   1164 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1165 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1166 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1167 			/*
   1168 			 * convert the limit from user data bytes to
   1169 			 * packets then to packet data bytes.
   1170 			 */
   1171 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1172 			if (i < 2)
   1173 				i = 2;
   1174 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1175 			if (rt->rt_rmx.rmx_ssthresh)
   1176 				rt->rt_rmx.rmx_ssthresh =
   1177 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1178 			else
   1179 				rt->rt_rmx.rmx_ssthresh = i;
   1180 		}
   1181 	}
   1182 #endif /* RTV_RTT */
   1183 	/* free the reassembly queue, if any */
   1184 	TCP_REASS_LOCK(tp);
   1185 	(void) tcp_freeq(tp);
   1186 	TCP_REASS_UNLOCK(tp);
   1187 
   1188 	/* free the SACK holes list. */
   1189 	tcp_free_sackholes(tp);
   1190 
   1191 	tcp_canceltimers(tp);
   1192 	TCP_CLEAR_DELACK(tp);
   1193 	syn_cache_cleanup(tp);
   1194 
   1195 	if (tp->t_template) {
   1196 		m_free(tp->t_template);
   1197 		tp->t_template = NULL;
   1198 	}
   1199 	if (tcp_timers_invoking(tp))
   1200 		tp->t_flags |= TF_DEAD;
   1201 	else
   1202 		pool_put(&tcpcb_pool, tp);
   1203 
   1204 	if (inp) {
   1205 		inp->inp_ppcb = 0;
   1206 		soisdisconnected(so);
   1207 		in_pcbdetach(inp);
   1208 	}
   1209 #ifdef INET6
   1210 	else if (in6p) {
   1211 		in6p->in6p_ppcb = 0;
   1212 		soisdisconnected(so);
   1213 		in6_pcbdetach(in6p);
   1214 	}
   1215 #endif
   1216 	tcpstat.tcps_closed++;
   1217 	return ((struct tcpcb *)0);
   1218 }
   1219 
   1220 int
   1221 tcp_freeq(tp)
   1222 	struct tcpcb *tp;
   1223 {
   1224 	struct ipqent *qe;
   1225 	int rv = 0;
   1226 #ifdef TCPREASS_DEBUG
   1227 	int i = 0;
   1228 #endif
   1229 
   1230 	TCP_REASS_LOCK_CHECK(tp);
   1231 
   1232 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1233 #ifdef TCPREASS_DEBUG
   1234 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1235 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1236 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1237 #endif
   1238 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1239 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1240 		m_freem(qe->ipqe_m);
   1241 		pool_put(&tcpipqent_pool, qe);
   1242 		rv = 1;
   1243 	}
   1244 	tp->t_segqlen = 0;
   1245 	KASSERT(TAILQ_EMPTY(&tp->timeq));
   1246 	return (rv);
   1247 }
   1248 
   1249 /*
   1250  * Protocol drain routine.  Called when memory is in short supply.
   1251  */
   1252 void
   1253 tcp_drain(void)
   1254 {
   1255 	struct inpcb_hdr *inph;
   1256 	struct tcpcb *tp;
   1257 
   1258 	/*
   1259 	 * Free the sequence queue of all TCP connections.
   1260 	 */
   1261 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
   1262 		switch (inph->inph_af) {
   1263 		case AF_INET:
   1264 			tp = intotcpcb((struct inpcb *)inph);
   1265 			break;
   1266 #ifdef INET6
   1267 		case AF_INET6:
   1268 			tp = in6totcpcb((struct in6pcb *)inph);
   1269 			break;
   1270 #endif
   1271 		default:
   1272 			tp = NULL;
   1273 			break;
   1274 		}
   1275 		if (tp != NULL) {
   1276 			/*
   1277 			 * We may be called from a device's interrupt
   1278 			 * context.  If the tcpcb is already busy,
   1279 			 * just bail out now.
   1280 			 */
   1281 			if (tcp_reass_lock_try(tp) == 0)
   1282 				continue;
   1283 			if (tcp_freeq(tp))
   1284 				tcpstat.tcps_connsdrained++;
   1285 			TCP_REASS_UNLOCK(tp);
   1286 		}
   1287 	}
   1288 }
   1289 
   1290 /*
   1291  * Notify a tcp user of an asynchronous error;
   1292  * store error as soft error, but wake up user
   1293  * (for now, won't do anything until can select for soft error).
   1294  */
   1295 void
   1296 tcp_notify(struct inpcb *inp, int error)
   1297 {
   1298 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1299 	struct socket *so = inp->inp_socket;
   1300 
   1301 	/*
   1302 	 * Ignore some errors if we are hooked up.
   1303 	 * If connection hasn't completed, has retransmitted several times,
   1304 	 * and receives a second error, give up now.  This is better
   1305 	 * than waiting a long time to establish a connection that
   1306 	 * can never complete.
   1307 	 */
   1308 	if (tp->t_state == TCPS_ESTABLISHED &&
   1309 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1310 	      error == EHOSTDOWN)) {
   1311 		return;
   1312 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1313 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1314 		so->so_error = error;
   1315 	else
   1316 		tp->t_softerror = error;
   1317 	wakeup((caddr_t) &so->so_timeo);
   1318 	sorwakeup(so);
   1319 	sowwakeup(so);
   1320 }
   1321 
   1322 #ifdef INET6
   1323 void
   1324 tcp6_notify(struct in6pcb *in6p, int error)
   1325 {
   1326 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1327 	struct socket *so = in6p->in6p_socket;
   1328 
   1329 	/*
   1330 	 * Ignore some errors if we are hooked up.
   1331 	 * If connection hasn't completed, has retransmitted several times,
   1332 	 * and receives a second error, give up now.  This is better
   1333 	 * than waiting a long time to establish a connection that
   1334 	 * can never complete.
   1335 	 */
   1336 	if (tp->t_state == TCPS_ESTABLISHED &&
   1337 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1338 	      error == EHOSTDOWN)) {
   1339 		return;
   1340 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1341 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1342 		so->so_error = error;
   1343 	else
   1344 		tp->t_softerror = error;
   1345 	wakeup((caddr_t) &so->so_timeo);
   1346 	sorwakeup(so);
   1347 	sowwakeup(so);
   1348 }
   1349 #endif
   1350 
   1351 #ifdef INET6
   1352 void
   1353 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
   1354 {
   1355 	struct tcphdr th;
   1356 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
   1357 	int nmatch;
   1358 	struct ip6_hdr *ip6;
   1359 	const struct sockaddr_in6 *sa6_src = NULL;
   1360 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
   1361 	struct mbuf *m;
   1362 	int off;
   1363 
   1364 	if (sa->sa_family != AF_INET6 ||
   1365 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1366 		return;
   1367 	if ((unsigned)cmd >= PRC_NCMDS)
   1368 		return;
   1369 	else if (cmd == PRC_QUENCH) {
   1370 		/* XXX there's no PRC_QUENCH in IPv6 */
   1371 		notify = tcp6_quench;
   1372 	} else if (PRC_IS_REDIRECT(cmd))
   1373 		notify = in6_rtchange, d = NULL;
   1374 	else if (cmd == PRC_MSGSIZE)
   1375 		; /* special code is present, see below */
   1376 	else if (cmd == PRC_HOSTDEAD)
   1377 		d = NULL;
   1378 	else if (inet6ctlerrmap[cmd] == 0)
   1379 		return;
   1380 
   1381 	/* if the parameter is from icmp6, decode it. */
   1382 	if (d != NULL) {
   1383 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1384 		m = ip6cp->ip6c_m;
   1385 		ip6 = ip6cp->ip6c_ip6;
   1386 		off = ip6cp->ip6c_off;
   1387 		sa6_src = ip6cp->ip6c_src;
   1388 	} else {
   1389 		m = NULL;
   1390 		ip6 = NULL;
   1391 		sa6_src = &sa6_any;
   1392 		off = 0;
   1393 	}
   1394 
   1395 	if (ip6) {
   1396 		/*
   1397 		 * XXX: We assume that when ip6 is non NULL,
   1398 		 * M and OFF are valid.
   1399 		 */
   1400 
   1401 		/* check if we can safely examine src and dst ports */
   1402 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1403 			if (cmd == PRC_MSGSIZE)
   1404 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1405 			return;
   1406 		}
   1407 
   1408 		bzero(&th, sizeof(th));
   1409 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
   1410 
   1411 		if (cmd == PRC_MSGSIZE) {
   1412 			int valid = 0;
   1413 
   1414 			/*
   1415 			 * Check to see if we have a valid TCP connection
   1416 			 * corresponding to the address in the ICMPv6 message
   1417 			 * payload.
   1418 			 */
   1419 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
   1420 			    th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
   1421 			    th.th_sport, 0))
   1422 				valid++;
   1423 
   1424 			/*
   1425 			 * Depending on the value of "valid" and routing table
   1426 			 * size (mtudisc_{hi,lo}wat), we will:
   1427 			 * - recalcurate the new MTU and create the
   1428 			 *   corresponding routing entry, or
   1429 			 * - ignore the MTU change notification.
   1430 			 */
   1431 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1432 
   1433 			/*
   1434 			 * no need to call in6_pcbnotify, it should have been
   1435 			 * called via callback if necessary
   1436 			 */
   1437 			return;
   1438 		}
   1439 
   1440 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
   1441 		    (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1442 		if (nmatch == 0 && syn_cache_count &&
   1443 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1444 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1445 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1446 			syn_cache_unreach((struct sockaddr *)sa6_src,
   1447 					  sa, &th);
   1448 	} else {
   1449 		(void) in6_pcbnotify(&tcbtable, sa, 0,
   1450 		    (struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
   1451 	}
   1452 }
   1453 #endif
   1454 
   1455 #ifdef INET
   1456 /* assumes that ip header and tcp header are contiguous on mbuf */
   1457 void *
   1458 tcp_ctlinput(int cmd, struct sockaddr *sa, void *v)
   1459 {
   1460 	struct ip *ip = v;
   1461 	struct tcphdr *th;
   1462 	struct icmp *icp;
   1463 	extern const int inetctlerrmap[];
   1464 	void (*notify)(struct inpcb *, int) = tcp_notify;
   1465 	int errno;
   1466 	int nmatch;
   1467 #ifdef INET6
   1468 	struct in6_addr src6, dst6;
   1469 #endif
   1470 
   1471 	if (sa->sa_family != AF_INET ||
   1472 	    sa->sa_len != sizeof(struct sockaddr_in))
   1473 		return NULL;
   1474 	if ((unsigned)cmd >= PRC_NCMDS)
   1475 		return NULL;
   1476 	errno = inetctlerrmap[cmd];
   1477 	if (cmd == PRC_QUENCH)
   1478 		notify = tcp_quench;
   1479 	else if (PRC_IS_REDIRECT(cmd))
   1480 		notify = in_rtchange, ip = 0;
   1481 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1482 		/*
   1483 		 * Check to see if we have a valid TCP connection
   1484 		 * corresponding to the address in the ICMP message
   1485 		 * payload.
   1486 		 *
   1487 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1488 		 */
   1489 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1490 #ifdef INET6
   1491 		memset(&src6, 0, sizeof(src6));
   1492 		memset(&dst6, 0, sizeof(dst6));
   1493 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1494 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1495 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1496 #endif
   1497 		if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
   1498 		    ip->ip_src, th->th_sport) != NULL)
   1499 			;
   1500 #ifdef INET6
   1501 		else if (in6_pcblookup_connect(&tcbtable, &dst6,
   1502 		    th->th_dport, &src6, th->th_sport, 0) != NULL)
   1503 			;
   1504 #endif
   1505 		else
   1506 			return NULL;
   1507 
   1508 		/*
   1509 		 * Now that we've validated that we are actually communicating
   1510 		 * with the host indicated in the ICMP message, locate the
   1511 		 * ICMP header, recalculate the new MTU, and create the
   1512 		 * corresponding routing entry.
   1513 		 */
   1514 		icp = (struct icmp *)((caddr_t)ip -
   1515 		    offsetof(struct icmp, icmp_ip));
   1516 		icmp_mtudisc(icp, ip->ip_dst);
   1517 
   1518 		return NULL;
   1519 	} else if (cmd == PRC_HOSTDEAD)
   1520 		ip = 0;
   1521 	else if (errno == 0)
   1522 		return NULL;
   1523 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1524 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1525 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
   1526 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1527 		if (nmatch == 0 && syn_cache_count &&
   1528 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1529 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1530 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1531 			struct sockaddr_in sin;
   1532 			bzero(&sin, sizeof(sin));
   1533 			sin.sin_len = sizeof(sin);
   1534 			sin.sin_family = AF_INET;
   1535 			sin.sin_port = th->th_sport;
   1536 			sin.sin_addr = ip->ip_src;
   1537 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1538 		}
   1539 
   1540 		/* XXX mapped address case */
   1541 	} else
   1542 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
   1543 		    notify);
   1544 	return NULL;
   1545 }
   1546 
   1547 /*
   1548  * When a source quench is received, we are being notified of congestion.
   1549  * Close the congestion window down to the Loss Window (one segment).
   1550  * We will gradually open it again as we proceed.
   1551  */
   1552 void
   1553 tcp_quench(struct inpcb *inp, int errno)
   1554 {
   1555 	struct tcpcb *tp = intotcpcb(inp);
   1556 
   1557 	if (tp)
   1558 		tp->snd_cwnd = tp->t_segsz;
   1559 }
   1560 #endif
   1561 
   1562 #ifdef INET6
   1563 void
   1564 tcp6_quench(struct in6pcb *in6p, int errno)
   1565 {
   1566 	struct tcpcb *tp = in6totcpcb(in6p);
   1567 
   1568 	if (tp)
   1569 		tp->snd_cwnd = tp->t_segsz;
   1570 }
   1571 #endif
   1572 
   1573 #ifdef INET
   1574 /*
   1575  * Path MTU Discovery handlers.
   1576  */
   1577 void
   1578 tcp_mtudisc_callback(struct in_addr faddr)
   1579 {
   1580 #ifdef INET6
   1581 	struct in6_addr in6;
   1582 #endif
   1583 
   1584 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1585 #ifdef INET6
   1586 	memset(&in6, 0, sizeof(in6));
   1587 	in6.s6_addr16[5] = 0xffff;
   1588 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1589 	tcp6_mtudisc_callback(&in6);
   1590 #endif
   1591 }
   1592 
   1593 /*
   1594  * On receipt of path MTU corrections, flush old route and replace it
   1595  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1596  * that all packets will be received.
   1597  */
   1598 void
   1599 tcp_mtudisc(struct inpcb *inp, int errno)
   1600 {
   1601 	struct tcpcb *tp = intotcpcb(inp);
   1602 	struct rtentry *rt = in_pcbrtentry(inp);
   1603 
   1604 	if (tp != 0) {
   1605 		if (rt != 0) {
   1606 			/*
   1607 			 * If this was not a host route, remove and realloc.
   1608 			 */
   1609 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1610 				in_rtchange(inp, errno);
   1611 				if ((rt = in_pcbrtentry(inp)) == 0)
   1612 					return;
   1613 			}
   1614 
   1615 			/*
   1616 			 * Slow start out of the error condition.  We
   1617 			 * use the MTU because we know it's smaller
   1618 			 * than the previously transmitted segment.
   1619 			 *
   1620 			 * Note: This is more conservative than the
   1621 			 * suggestion in draft-floyd-incr-init-win-03.
   1622 			 */
   1623 			if (rt->rt_rmx.rmx_mtu != 0)
   1624 				tp->snd_cwnd =
   1625 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1626 				    rt->rt_rmx.rmx_mtu);
   1627 		}
   1628 
   1629 		/*
   1630 		 * Resend unacknowledged packets.
   1631 		 */
   1632 		tp->snd_nxt = tp->snd_una;
   1633 		tcp_output(tp);
   1634 	}
   1635 }
   1636 #endif
   1637 
   1638 #ifdef INET6
   1639 /*
   1640  * Path MTU Discovery handlers.
   1641  */
   1642 void
   1643 tcp6_mtudisc_callback(struct in6_addr *faddr)
   1644 {
   1645 	struct sockaddr_in6 sin6;
   1646 
   1647 	bzero(&sin6, sizeof(sin6));
   1648 	sin6.sin6_family = AF_INET6;
   1649 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1650 	sin6.sin6_addr = *faddr;
   1651 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
   1652 	    (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1653 }
   1654 
   1655 void
   1656 tcp6_mtudisc(struct in6pcb *in6p, int errno)
   1657 {
   1658 	struct tcpcb *tp = in6totcpcb(in6p);
   1659 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1660 
   1661 	if (tp != 0) {
   1662 		if (rt != 0) {
   1663 			/*
   1664 			 * If this was not a host route, remove and realloc.
   1665 			 */
   1666 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1667 				in6_rtchange(in6p, errno);
   1668 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1669 					return;
   1670 			}
   1671 
   1672 			/*
   1673 			 * Slow start out of the error condition.  We
   1674 			 * use the MTU because we know it's smaller
   1675 			 * than the previously transmitted segment.
   1676 			 *
   1677 			 * Note: This is more conservative than the
   1678 			 * suggestion in draft-floyd-incr-init-win-03.
   1679 			 */
   1680 			if (rt->rt_rmx.rmx_mtu != 0)
   1681 				tp->snd_cwnd =
   1682 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1683 				    rt->rt_rmx.rmx_mtu);
   1684 		}
   1685 
   1686 		/*
   1687 		 * Resend unacknowledged packets.
   1688 		 */
   1689 		tp->snd_nxt = tp->snd_una;
   1690 		tcp_output(tp);
   1691 	}
   1692 }
   1693 #endif /* INET6 */
   1694 
   1695 /*
   1696  * Compute the MSS to advertise to the peer.  Called only during
   1697  * the 3-way handshake.  If we are the server (peer initiated
   1698  * connection), we are called with a pointer to the interface
   1699  * on which the SYN packet arrived.  If we are the client (we
   1700  * initiated connection), we are called with a pointer to the
   1701  * interface out which this connection should go.
   1702  *
   1703  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1704  * header size from MSS advertisement.  MSS option must hold the maximum
   1705  * segment size we can accept, so it must always be:
   1706  *	 max(if mtu) - ip header - tcp header
   1707  */
   1708 u_long
   1709 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
   1710 {
   1711 	extern u_long in_maxmtu;
   1712 	u_long mss = 0;
   1713 	u_long hdrsiz;
   1714 
   1715 	/*
   1716 	 * In order to avoid defeating path MTU discovery on the peer,
   1717 	 * we advertise the max MTU of all attached networks as our MSS,
   1718 	 * per RFC 1191, section 3.1.
   1719 	 *
   1720 	 * We provide the option to advertise just the MTU of
   1721 	 * the interface on which we hope this connection will
   1722 	 * be receiving.  If we are responding to a SYN, we
   1723 	 * will have a pretty good idea about this, but when
   1724 	 * initiating a connection there is a bit more doubt.
   1725 	 *
   1726 	 * We also need to ensure that loopback has a large enough
   1727 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1728 	 */
   1729 
   1730 	if (ifp != NULL)
   1731 		switch (af) {
   1732 		case AF_INET:
   1733 			mss = ifp->if_mtu;
   1734 			break;
   1735 #ifdef INET6
   1736 		case AF_INET6:
   1737 			mss = IN6_LINKMTU(ifp);
   1738 			break;
   1739 #endif
   1740 		}
   1741 
   1742 	if (tcp_mss_ifmtu == 0)
   1743 		switch (af) {
   1744 		case AF_INET:
   1745 			mss = max(in_maxmtu, mss);
   1746 			break;
   1747 #ifdef INET6
   1748 		case AF_INET6:
   1749 			mss = max(in6_maxmtu, mss);
   1750 			break;
   1751 #endif
   1752 		}
   1753 
   1754 	switch (af) {
   1755 	case AF_INET:
   1756 		hdrsiz = sizeof(struct ip);
   1757 		break;
   1758 #ifdef INET6
   1759 	case AF_INET6:
   1760 		hdrsiz = sizeof(struct ip6_hdr);
   1761 		break;
   1762 #endif
   1763 	default:
   1764 		hdrsiz = 0;
   1765 		break;
   1766 	}
   1767 	hdrsiz += sizeof(struct tcphdr);
   1768 	if (mss > hdrsiz)
   1769 		mss -= hdrsiz;
   1770 
   1771 	mss = max(tcp_mssdflt, mss);
   1772 	return (mss);
   1773 }
   1774 
   1775 /*
   1776  * Set connection variables based on the peer's advertised MSS.
   1777  * We are passed the TCPCB for the actual connection.  If we
   1778  * are the server, we are called by the compressed state engine
   1779  * when the 3-way handshake is complete.  If we are the client,
   1780  * we are called when we receive the SYN,ACK from the server.
   1781  *
   1782  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1783  * before this routine is called!
   1784  */
   1785 void
   1786 tcp_mss_from_peer(struct tcpcb *tp, int offer)
   1787 {
   1788 	struct socket *so;
   1789 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1790 	struct rtentry *rt;
   1791 #endif
   1792 	u_long bufsize;
   1793 	int mss;
   1794 
   1795 #ifdef DIAGNOSTIC
   1796 	if (tp->t_inpcb && tp->t_in6pcb)
   1797 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1798 #endif
   1799 	so = NULL;
   1800 	rt = NULL;
   1801 #ifdef INET
   1802 	if (tp->t_inpcb) {
   1803 		so = tp->t_inpcb->inp_socket;
   1804 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1805 		rt = in_pcbrtentry(tp->t_inpcb);
   1806 #endif
   1807 	}
   1808 #endif
   1809 #ifdef INET6
   1810 	if (tp->t_in6pcb) {
   1811 		so = tp->t_in6pcb->in6p_socket;
   1812 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1813 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1814 #endif
   1815 	}
   1816 #endif
   1817 
   1818 	/*
   1819 	 * As per RFC1122, use the default MSS value, unless they
   1820 	 * sent us an offer.  Do not accept offers less than 256 bytes.
   1821 	 */
   1822 	mss = tcp_mssdflt;
   1823 	if (offer)
   1824 		mss = offer;
   1825 	mss = max(mss, 256);		/* sanity */
   1826 	tp->t_peermss = mss;
   1827 	mss -= tcp_optlen(tp);
   1828 #ifdef INET
   1829 	if (tp->t_inpcb)
   1830 		mss -= ip_optlen(tp->t_inpcb);
   1831 #endif
   1832 #ifdef INET6
   1833 	if (tp->t_in6pcb)
   1834 		mss -= ip6_optlen(tp->t_in6pcb);
   1835 #endif
   1836 
   1837 	/*
   1838 	 * If there's a pipesize, change the socket buffer to that size.
   1839 	 * Make the socket buffer an integral number of MSS units.  If
   1840 	 * the MSS is larger than the socket buffer, artificially decrease
   1841 	 * the MSS.
   1842 	 */
   1843 #ifdef RTV_SPIPE
   1844 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1845 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1846 	else
   1847 #endif
   1848 		bufsize = so->so_snd.sb_hiwat;
   1849 	if (bufsize < mss)
   1850 		mss = bufsize;
   1851 	else {
   1852 		bufsize = roundup(bufsize, mss);
   1853 		if (bufsize > sb_max)
   1854 			bufsize = sb_max;
   1855 		(void) sbreserve(&so->so_snd, bufsize, so);
   1856 	}
   1857 	tp->t_segsz = mss;
   1858 
   1859 #ifdef RTV_SSTHRESH
   1860 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1861 		/*
   1862 		 * There's some sort of gateway or interface buffer
   1863 		 * limit on the path.  Use this to set the slow
   1864 		 * start threshold, but set the threshold to no less
   1865 		 * than 2 * MSS.
   1866 		 */
   1867 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1868 	}
   1869 #endif
   1870 }
   1871 
   1872 /*
   1873  * Processing necessary when a TCP connection is established.
   1874  */
   1875 void
   1876 tcp_established(struct tcpcb *tp)
   1877 {
   1878 	struct socket *so;
   1879 #ifdef RTV_RPIPE
   1880 	struct rtentry *rt;
   1881 #endif
   1882 	u_long bufsize;
   1883 
   1884 #ifdef DIAGNOSTIC
   1885 	if (tp->t_inpcb && tp->t_in6pcb)
   1886 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   1887 #endif
   1888 	so = NULL;
   1889 	rt = NULL;
   1890 #ifdef INET
   1891 	if (tp->t_inpcb) {
   1892 		so = tp->t_inpcb->inp_socket;
   1893 #if defined(RTV_RPIPE)
   1894 		rt = in_pcbrtentry(tp->t_inpcb);
   1895 #endif
   1896 	}
   1897 #endif
   1898 #ifdef INET6
   1899 	if (tp->t_in6pcb) {
   1900 		so = tp->t_in6pcb->in6p_socket;
   1901 #if defined(RTV_RPIPE)
   1902 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1903 #endif
   1904 	}
   1905 #endif
   1906 
   1907 	tp->t_state = TCPS_ESTABLISHED;
   1908 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1909 
   1910 #ifdef RTV_RPIPE
   1911 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   1912 		bufsize = rt->rt_rmx.rmx_recvpipe;
   1913 	else
   1914 #endif
   1915 		bufsize = so->so_rcv.sb_hiwat;
   1916 	if (bufsize > tp->t_ourmss) {
   1917 		bufsize = roundup(bufsize, tp->t_ourmss);
   1918 		if (bufsize > sb_max)
   1919 			bufsize = sb_max;
   1920 		(void) sbreserve(&so->so_rcv, bufsize, so);
   1921 	}
   1922 }
   1923 
   1924 /*
   1925  * Check if there's an initial rtt or rttvar.  Convert from the
   1926  * route-table units to scaled multiples of the slow timeout timer.
   1927  * Called only during the 3-way handshake.
   1928  */
   1929 void
   1930 tcp_rmx_rtt(struct tcpcb *tp)
   1931 {
   1932 #ifdef RTV_RTT
   1933 	struct rtentry *rt = NULL;
   1934 	int rtt;
   1935 
   1936 #ifdef DIAGNOSTIC
   1937 	if (tp->t_inpcb && tp->t_in6pcb)
   1938 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   1939 #endif
   1940 #ifdef INET
   1941 	if (tp->t_inpcb)
   1942 		rt = in_pcbrtentry(tp->t_inpcb);
   1943 #endif
   1944 #ifdef INET6
   1945 	if (tp->t_in6pcb)
   1946 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1947 #endif
   1948 	if (rt == NULL)
   1949 		return;
   1950 
   1951 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   1952 		/*
   1953 		 * XXX The lock bit for MTU indicates that the value
   1954 		 * is also a minimum value; this is subject to time.
   1955 		 */
   1956 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   1957 			TCPT_RANGESET(tp->t_rttmin,
   1958 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   1959 			    TCPTV_MIN, TCPTV_REXMTMAX);
   1960 		tp->t_srtt = rtt /
   1961 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1962 		if (rt->rt_rmx.rmx_rttvar) {
   1963 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   1964 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   1965 				(TCP_RTTVAR_SHIFT + 2));
   1966 		} else {
   1967 			/* Default variation is +- 1 rtt */
   1968 			tp->t_rttvar =
   1969 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   1970 		}
   1971 		TCPT_RANGESET(tp->t_rxtcur,
   1972 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   1973 		    tp->t_rttmin, TCPTV_REXMTMAX);
   1974 	}
   1975 #endif
   1976 }
   1977 
   1978 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   1979 #if NRND > 0
   1980 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   1981 #endif
   1982 
   1983 /*
   1984  * Get a new sequence value given a tcp control block
   1985  */
   1986 tcp_seq
   1987 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   1988 {
   1989 
   1990 #ifdef INET
   1991 	if (tp->t_inpcb != NULL) {
   1992 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   1993 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   1994 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   1995 		    addin));
   1996 	}
   1997 #endif
   1998 #ifdef INET6
   1999 	if (tp->t_in6pcb != NULL) {
   2000 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   2001 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   2002 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   2003 		    addin));
   2004 	}
   2005 #endif
   2006 	/* Not possible. */
   2007 	panic("tcp_new_iss");
   2008 }
   2009 
   2010 /*
   2011  * This routine actually generates a new TCP initial sequence number.
   2012  */
   2013 tcp_seq
   2014 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2015     size_t addrsz, tcp_seq addin)
   2016 {
   2017 	tcp_seq tcp_iss;
   2018 
   2019 #if NRND > 0
   2020 	static int beenhere;
   2021 
   2022 	/*
   2023 	 * If we haven't been here before, initialize our cryptographic
   2024 	 * hash secret.
   2025 	 */
   2026 	if (beenhere == 0) {
   2027 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   2028 		    RND_EXTRACT_ANY);
   2029 		beenhere = 1;
   2030 	}
   2031 
   2032 	if (tcp_do_rfc1948) {
   2033 		MD5_CTX ctx;
   2034 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2035 
   2036 		/*
   2037 		 * Compute the base value of the ISS.  It is a hash
   2038 		 * of (saddr, sport, daddr, dport, secret).
   2039 		 */
   2040 		MD5Init(&ctx);
   2041 
   2042 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2043 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2044 
   2045 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2046 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2047 
   2048 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2049 
   2050 		MD5Final(hash, &ctx);
   2051 
   2052 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2053 
   2054 		/*
   2055 		 * Now increment our "timer", and add it in to
   2056 		 * the computed value.
   2057 		 *
   2058 		 * XXX Use `addin'?
   2059 		 * XXX TCP_ISSINCR too large to use?
   2060 		 */
   2061 		tcp_iss_seq += TCP_ISSINCR;
   2062 #ifdef TCPISS_DEBUG
   2063 		printf("ISS hash 0x%08x, ", tcp_iss);
   2064 #endif
   2065 		tcp_iss += tcp_iss_seq + addin;
   2066 #ifdef TCPISS_DEBUG
   2067 		printf("new ISS 0x%08x\n", tcp_iss);
   2068 #endif
   2069 	} else
   2070 #endif /* NRND > 0 */
   2071 	{
   2072 		/*
   2073 		 * Randomize.
   2074 		 */
   2075 #if NRND > 0
   2076 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2077 #else
   2078 		tcp_iss = arc4random();
   2079 #endif
   2080 
   2081 		/*
   2082 		 * If we were asked to add some amount to a known value,
   2083 		 * we will take a random value obtained above, mask off
   2084 		 * the upper bits, and add in the known value.  We also
   2085 		 * add in a constant to ensure that we are at least a
   2086 		 * certain distance from the original value.
   2087 		 *
   2088 		 * This is used when an old connection is in timed wait
   2089 		 * and we have a new one coming in, for instance.
   2090 		 */
   2091 		if (addin != 0) {
   2092 #ifdef TCPISS_DEBUG
   2093 			printf("Random %08x, ", tcp_iss);
   2094 #endif
   2095 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2096 			tcp_iss += addin + TCP_ISSINCR;
   2097 #ifdef TCPISS_DEBUG
   2098 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2099 #endif
   2100 		} else {
   2101 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2102 			tcp_iss += tcp_iss_seq;
   2103 			tcp_iss_seq += TCP_ISSINCR;
   2104 #ifdef TCPISS_DEBUG
   2105 			printf("ISS %08x\n", tcp_iss);
   2106 #endif
   2107 		}
   2108 	}
   2109 
   2110 	if (tcp_compat_42) {
   2111 		/*
   2112 		 * Limit it to the positive range for really old TCP
   2113 		 * implementations.
   2114 		 * Just AND off the top bit instead of checking if
   2115 		 * is set first - saves a branch 50% of the time.
   2116 		 */
   2117 		tcp_iss &= 0x7fffffff;		/* XXX */
   2118 	}
   2119 
   2120 	return (tcp_iss);
   2121 }
   2122 
   2123 #if defined(IPSEC) || defined(FAST_IPSEC)
   2124 /* compute ESP/AH header size for TCP, including outer IP header. */
   2125 size_t
   2126 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
   2127 {
   2128 	struct inpcb *inp;
   2129 	size_t hdrsiz;
   2130 
   2131 	/* XXX mapped addr case (tp->t_in6pcb) */
   2132 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2133 		return 0;
   2134 	switch (tp->t_family) {
   2135 	case AF_INET:
   2136 		/* XXX: should use currect direction. */
   2137 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2138 		break;
   2139 	default:
   2140 		hdrsiz = 0;
   2141 		break;
   2142 	}
   2143 
   2144 	return hdrsiz;
   2145 }
   2146 
   2147 #ifdef INET6
   2148 size_t
   2149 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
   2150 {
   2151 	struct in6pcb *in6p;
   2152 	size_t hdrsiz;
   2153 
   2154 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2155 		return 0;
   2156 	switch (tp->t_family) {
   2157 	case AF_INET6:
   2158 		/* XXX: should use currect direction. */
   2159 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2160 		break;
   2161 	case AF_INET:
   2162 		/* mapped address case - tricky */
   2163 	default:
   2164 		hdrsiz = 0;
   2165 		break;
   2166 	}
   2167 
   2168 	return hdrsiz;
   2169 }
   2170 #endif
   2171 #endif /*IPSEC*/
   2172 
   2173 /*
   2174  * Determine the length of the TCP options for this connection.
   2175  *
   2176  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2177  *       all of the space?  Otherwise we can't exactly be incrementing
   2178  *       cwnd by an amount that varies depending on the amount we last
   2179  *       had to SACK!
   2180  */
   2181 
   2182 u_int
   2183 tcp_optlen(struct tcpcb *tp)
   2184 {
   2185 	u_int optlen;
   2186 
   2187 	optlen = 0;
   2188 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2189 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2190 		optlen += TCPOLEN_TSTAMP_APPA;
   2191 
   2192 #ifdef TCP_SIGNATURE
   2193 #if defined(INET6) && defined(FAST_IPSEC)
   2194 	if (tp->t_family == AF_INET)
   2195 #endif
   2196 	if (tp->t_flags & TF_SIGNATURE)
   2197 		optlen += TCPOLEN_SIGNATURE + 2;
   2198 #endif /* TCP_SIGNATURE */
   2199 
   2200 	return optlen;
   2201 }
   2202