tcp_subr.c revision 1.187 1 /* $NetBSD: tcp_subr.c,v 1.187 2005/03/16 00:39:57 yamt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.187 2005/03/16 00:39:57 yamt Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcpip.h>
155
156 #ifdef IPSEC
157 #include <netinet6/ipsec.h>
158 #include <netkey/key.h>
159 #endif /*IPSEC*/
160
161 #ifdef FAST_IPSEC
162 #include <netipsec/ipsec.h>
163 #include <netipsec/xform.h>
164 #ifdef INET6
165 #include <netipsec/ipsec6.h>
166 #endif
167 #include <netipsec/key.h>
168 #endif /* FAST_IPSEC*/
169
170
171 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
172 struct tcpstat tcpstat; /* tcp statistics */
173 u_int32_t tcp_now; /* for RFC 1323 timestamps */
174
175 /* patchable/settable parameters for tcp */
176 int tcp_mssdflt = TCP_MSS;
177 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
178 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
179 #if NRND > 0
180 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
181 #endif
182 int tcp_do_sack = 1; /* selective acknowledgement */
183 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
184 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
185 int tcp_do_newreno = 1; /* Use the New Reno algorithms */
186 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
187 #ifndef TCP_INIT_WIN
188 #define TCP_INIT_WIN 0 /* initial slow start window */
189 #endif
190 #ifndef TCP_INIT_WIN_LOCAL
191 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
192 #endif
193 int tcp_init_win = TCP_INIT_WIN;
194 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
195 int tcp_mss_ifmtu = 0;
196 #ifdef TCP_COMPAT_42
197 int tcp_compat_42 = 1;
198 #else
199 int tcp_compat_42 = 0;
200 #endif
201 int tcp_rst_ppslim = 100; /* 100pps */
202 int tcp_ackdrop_ppslim = 100; /* 100pps */
203 int tcp_do_loopback_cksum = 0;
204
205 /* tcb hash */
206 #ifndef TCBHASHSIZE
207 #define TCBHASHSIZE 128
208 #endif
209 int tcbhashsize = TCBHASHSIZE;
210
211 /* syn hash parameters */
212 #define TCP_SYN_HASH_SIZE 293
213 #define TCP_SYN_BUCKET_SIZE 35
214 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
215 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
216 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
217 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
218
219 int tcp_freeq(struct tcpcb *);
220
221 #ifdef INET
222 void tcp_mtudisc_callback(struct in_addr);
223 #endif
224 #ifdef INET6
225 void tcp6_mtudisc_callback(struct in6_addr *);
226 #endif
227
228 void tcp_mtudisc(struct inpcb *, int);
229 #ifdef INET6
230 void tcp6_mtudisc(struct in6pcb *, int);
231 #endif
232
233 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
234
235 #ifdef TCP_CSUM_COUNTERS
236 #include <sys/device.h>
237
238 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
239 NULL, "tcp", "hwcsum bad");
240 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
241 NULL, "tcp", "hwcsum ok");
242 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
243 NULL, "tcp", "hwcsum data");
244 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
245 NULL, "tcp", "swcsum");
246
247 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
248 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
249 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
250 EVCNT_ATTACH_STATIC(tcp_swcsum);
251 #endif /* TCP_CSUM_COUNTERS */
252
253
254 #ifdef TCP_OUTPUT_COUNTERS
255 #include <sys/device.h>
256
257 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
258 NULL, "tcp", "output big header");
259 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
260 NULL, "tcp", "output predict hit");
261 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
262 NULL, "tcp", "output predict miss");
263 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264 NULL, "tcp", "output copy small");
265 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266 NULL, "tcp", "output copy big");
267 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268 NULL, "tcp", "output reference big");
269
270 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
271 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
272 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
273 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
274 EVCNT_ATTACH_STATIC(tcp_output_copybig);
275 EVCNT_ATTACH_STATIC(tcp_output_refbig);
276
277 #endif /* TCP_OUTPUT_COUNTERS */
278
279 #ifdef TCP_REASS_COUNTERS
280 #include <sys/device.h>
281
282 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
283 NULL, "tcp_reass", "calls");
284 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
285 &tcp_reass_, "tcp_reass", "insert into empty queue");
286 struct evcnt tcp_reass_iteration[8] = {
287 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
288 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
289 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
290 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
291 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
292 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
293 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
294 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
295 };
296 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
297 &tcp_reass_, "tcp_reass", "prepend to first");
298 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
299 &tcp_reass_, "tcp_reass", "prepend");
300 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
301 &tcp_reass_, "tcp_reass", "insert");
302 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
303 &tcp_reass_, "tcp_reass", "insert at tail");
304 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
305 &tcp_reass_, "tcp_reass", "append");
306 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
307 &tcp_reass_, "tcp_reass", "append to tail fragment");
308 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
309 &tcp_reass_, "tcp_reass", "overlap at end");
310 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
311 &tcp_reass_, "tcp_reass", "overlap at start");
312 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
313 &tcp_reass_, "tcp_reass", "duplicate segment");
314 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
315 &tcp_reass_, "tcp_reass", "duplicate fragment");
316
317 EVCNT_ATTACH_STATIC(tcp_reass_);
318 EVCNT_ATTACH_STATIC(tcp_reass_empty);
319 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
320 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
321 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
322 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
323 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
324 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
325 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
326 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
327 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
328 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
329 EVCNT_ATTACH_STATIC(tcp_reass_insert);
330 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
331 EVCNT_ATTACH_STATIC(tcp_reass_append);
332 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
333 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
334 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
335 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
336 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
337
338 #endif /* TCP_REASS_COUNTERS */
339
340 #ifdef MBUFTRACE
341 struct mowner tcp_mowner = { "tcp" };
342 struct mowner tcp_rx_mowner = { "tcp", "rx" };
343 struct mowner tcp_tx_mowner = { "tcp", "tx" };
344 #endif
345
346 /*
347 * Tcp initialization
348 */
349 void
350 tcp_init(void)
351 {
352 int hlen;
353
354 /* Initialize the TCPCB template. */
355 tcp_tcpcb_template();
356
357 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
358
359 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
360 #ifdef INET6
361 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
362 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
363 #endif
364 if (max_protohdr < hlen)
365 max_protohdr = hlen;
366 if (max_linkhdr + hlen > MHLEN)
367 panic("tcp_init");
368
369 #ifdef INET
370 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
371 #endif
372 #ifdef INET6
373 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
374 #endif
375
376 /* Initialize timer state. */
377 tcp_timer_init();
378
379 /* Initialize the compressed state engine. */
380 syn_cache_init();
381
382 MOWNER_ATTACH(&tcp_tx_mowner);
383 MOWNER_ATTACH(&tcp_rx_mowner);
384 MOWNER_ATTACH(&tcp_mowner);
385 }
386
387 /*
388 * Create template to be used to send tcp packets on a connection.
389 * Call after host entry created, allocates an mbuf and fills
390 * in a skeletal tcp/ip header, minimizing the amount of work
391 * necessary when the connection is used.
392 */
393 struct mbuf *
394 tcp_template(struct tcpcb *tp)
395 {
396 struct inpcb *inp = tp->t_inpcb;
397 #ifdef INET6
398 struct in6pcb *in6p = tp->t_in6pcb;
399 #endif
400 struct tcphdr *n;
401 struct mbuf *m;
402 int hlen;
403
404 switch (tp->t_family) {
405 case AF_INET:
406 hlen = sizeof(struct ip);
407 if (inp)
408 break;
409 #ifdef INET6
410 if (in6p) {
411 /* mapped addr case */
412 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
413 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
414 break;
415 }
416 #endif
417 return NULL; /*EINVAL*/
418 #ifdef INET6
419 case AF_INET6:
420 hlen = sizeof(struct ip6_hdr);
421 if (in6p) {
422 /* more sainty check? */
423 break;
424 }
425 return NULL; /*EINVAL*/
426 #endif
427 default:
428 hlen = 0; /*pacify gcc*/
429 return NULL; /*EAFNOSUPPORT*/
430 }
431 #ifdef DIAGNOSTIC
432 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
433 panic("mclbytes too small for t_template");
434 #endif
435 m = tp->t_template;
436 if (m && m->m_len == hlen + sizeof(struct tcphdr))
437 ;
438 else {
439 if (m)
440 m_freem(m);
441 m = tp->t_template = NULL;
442 MGETHDR(m, M_DONTWAIT, MT_HEADER);
443 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
444 MCLGET(m, M_DONTWAIT);
445 if ((m->m_flags & M_EXT) == 0) {
446 m_free(m);
447 m = NULL;
448 }
449 }
450 if (m == NULL)
451 return NULL;
452 MCLAIM(m, &tcp_mowner);
453 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
454 }
455
456 bzero(mtod(m, caddr_t), m->m_len);
457
458 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
459
460 switch (tp->t_family) {
461 case AF_INET:
462 {
463 struct ipovly *ipov;
464 mtod(m, struct ip *)->ip_v = 4;
465 mtod(m, struct ip *)->ip_hl = hlen >> 2;
466 ipov = mtod(m, struct ipovly *);
467 ipov->ih_pr = IPPROTO_TCP;
468 ipov->ih_len = htons(sizeof(struct tcphdr));
469 if (inp) {
470 ipov->ih_src = inp->inp_laddr;
471 ipov->ih_dst = inp->inp_faddr;
472 }
473 #ifdef INET6
474 else if (in6p) {
475 /* mapped addr case */
476 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
477 sizeof(ipov->ih_src));
478 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
479 sizeof(ipov->ih_dst));
480 }
481 #endif
482 /*
483 * Compute the pseudo-header portion of the checksum
484 * now. We incrementally add in the TCP option and
485 * payload lengths later, and then compute the TCP
486 * checksum right before the packet is sent off onto
487 * the wire.
488 */
489 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
490 ipov->ih_dst.s_addr,
491 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
492 break;
493 }
494 #ifdef INET6
495 case AF_INET6:
496 {
497 struct ip6_hdr *ip6;
498 mtod(m, struct ip *)->ip_v = 6;
499 ip6 = mtod(m, struct ip6_hdr *);
500 ip6->ip6_nxt = IPPROTO_TCP;
501 ip6->ip6_plen = htons(sizeof(struct tcphdr));
502 ip6->ip6_src = in6p->in6p_laddr;
503 ip6->ip6_dst = in6p->in6p_faddr;
504 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
505 if (ip6_auto_flowlabel) {
506 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
507 ip6->ip6_flow |=
508 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
509 }
510 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
511 ip6->ip6_vfc |= IPV6_VERSION;
512
513 /*
514 * Compute the pseudo-header portion of the checksum
515 * now. We incrementally add in the TCP option and
516 * payload lengths later, and then compute the TCP
517 * checksum right before the packet is sent off onto
518 * the wire.
519 */
520 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
521 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
522 htonl(IPPROTO_TCP));
523 break;
524 }
525 #endif
526 }
527 if (inp) {
528 n->th_sport = inp->inp_lport;
529 n->th_dport = inp->inp_fport;
530 }
531 #ifdef INET6
532 else if (in6p) {
533 n->th_sport = in6p->in6p_lport;
534 n->th_dport = in6p->in6p_fport;
535 }
536 #endif
537 n->th_seq = 0;
538 n->th_ack = 0;
539 n->th_x2 = 0;
540 n->th_off = 5;
541 n->th_flags = 0;
542 n->th_win = 0;
543 n->th_urp = 0;
544 return (m);
545 }
546
547 /*
548 * Send a single message to the TCP at address specified by
549 * the given TCP/IP header. If m == 0, then we make a copy
550 * of the tcpiphdr at ti and send directly to the addressed host.
551 * This is used to force keep alive messages out using the TCP
552 * template for a connection tp->t_template. If flags are given
553 * then we send a message back to the TCP which originated the
554 * segment ti, and discard the mbuf containing it and any other
555 * attached mbufs.
556 *
557 * In any case the ack and sequence number of the transmitted
558 * segment are as specified by the parameters.
559 */
560 int
561 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
562 struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
563 {
564 struct route *ro;
565 int error, tlen, win = 0;
566 int hlen;
567 struct ip *ip;
568 #ifdef INET6
569 struct ip6_hdr *ip6;
570 #endif
571 int family; /* family on packet, not inpcb/in6pcb! */
572 struct tcphdr *th;
573 struct socket *so;
574
575 if (tp != NULL && (flags & TH_RST) == 0) {
576 #ifdef DIAGNOSTIC
577 if (tp->t_inpcb && tp->t_in6pcb)
578 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
579 #endif
580 #ifdef INET
581 if (tp->t_inpcb)
582 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
583 #endif
584 #ifdef INET6
585 if (tp->t_in6pcb)
586 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
587 #endif
588 }
589
590 th = NULL; /* Quell uninitialized warning */
591 ip = NULL;
592 #ifdef INET6
593 ip6 = NULL;
594 #endif
595 if (m == 0) {
596 if (!template)
597 return EINVAL;
598
599 /* get family information from template */
600 switch (mtod(template, struct ip *)->ip_v) {
601 case 4:
602 family = AF_INET;
603 hlen = sizeof(struct ip);
604 break;
605 #ifdef INET6
606 case 6:
607 family = AF_INET6;
608 hlen = sizeof(struct ip6_hdr);
609 break;
610 #endif
611 default:
612 return EAFNOSUPPORT;
613 }
614
615 MGETHDR(m, M_DONTWAIT, MT_HEADER);
616 if (m) {
617 MCLAIM(m, &tcp_tx_mowner);
618 MCLGET(m, M_DONTWAIT);
619 if ((m->m_flags & M_EXT) == 0) {
620 m_free(m);
621 m = NULL;
622 }
623 }
624 if (m == NULL)
625 return (ENOBUFS);
626
627 if (tcp_compat_42)
628 tlen = 1;
629 else
630 tlen = 0;
631
632 m->m_data += max_linkhdr;
633 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
634 template->m_len);
635 switch (family) {
636 case AF_INET:
637 ip = mtod(m, struct ip *);
638 th = (struct tcphdr *)(ip + 1);
639 break;
640 #ifdef INET6
641 case AF_INET6:
642 ip6 = mtod(m, struct ip6_hdr *);
643 th = (struct tcphdr *)(ip6 + 1);
644 break;
645 #endif
646 #if 0
647 default:
648 /* noone will visit here */
649 m_freem(m);
650 return EAFNOSUPPORT;
651 #endif
652 }
653 flags = TH_ACK;
654 } else {
655
656 if ((m->m_flags & M_PKTHDR) == 0) {
657 #if 0
658 printf("non PKTHDR to tcp_respond\n");
659 #endif
660 m_freem(m);
661 return EINVAL;
662 }
663 #ifdef DIAGNOSTIC
664 if (!th0)
665 panic("th0 == NULL in tcp_respond");
666 #endif
667
668 /* get family information from m */
669 switch (mtod(m, struct ip *)->ip_v) {
670 case 4:
671 family = AF_INET;
672 hlen = sizeof(struct ip);
673 ip = mtod(m, struct ip *);
674 break;
675 #ifdef INET6
676 case 6:
677 family = AF_INET6;
678 hlen = sizeof(struct ip6_hdr);
679 ip6 = mtod(m, struct ip6_hdr *);
680 break;
681 #endif
682 default:
683 m_freem(m);
684 return EAFNOSUPPORT;
685 }
686 /* clear h/w csum flags inherited from rx packet */
687 m->m_pkthdr.csum_flags = 0;
688
689 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
690 tlen = sizeof(*th0);
691 else
692 tlen = th0->th_off << 2;
693
694 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
695 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
696 m->m_len = hlen + tlen;
697 m_freem(m->m_next);
698 m->m_next = NULL;
699 } else {
700 struct mbuf *n;
701
702 #ifdef DIAGNOSTIC
703 if (max_linkhdr + hlen + tlen > MCLBYTES) {
704 m_freem(m);
705 return EMSGSIZE;
706 }
707 #endif
708 MGETHDR(n, M_DONTWAIT, MT_HEADER);
709 if (n && max_linkhdr + hlen + tlen > MHLEN) {
710 MCLGET(n, M_DONTWAIT);
711 if ((n->m_flags & M_EXT) == 0) {
712 m_freem(n);
713 n = NULL;
714 }
715 }
716 if (!n) {
717 m_freem(m);
718 return ENOBUFS;
719 }
720
721 MCLAIM(n, &tcp_tx_mowner);
722 n->m_data += max_linkhdr;
723 n->m_len = hlen + tlen;
724 m_copyback(n, 0, hlen, mtod(m, caddr_t));
725 m_copyback(n, hlen, tlen, (caddr_t)th0);
726
727 m_freem(m);
728 m = n;
729 n = NULL;
730 }
731
732 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
733 switch (family) {
734 case AF_INET:
735 ip = mtod(m, struct ip *);
736 th = (struct tcphdr *)(ip + 1);
737 ip->ip_p = IPPROTO_TCP;
738 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
739 ip->ip_p = IPPROTO_TCP;
740 break;
741 #ifdef INET6
742 case AF_INET6:
743 ip6 = mtod(m, struct ip6_hdr *);
744 th = (struct tcphdr *)(ip6 + 1);
745 ip6->ip6_nxt = IPPROTO_TCP;
746 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
747 ip6->ip6_nxt = IPPROTO_TCP;
748 break;
749 #endif
750 #if 0
751 default:
752 /* noone will visit here */
753 m_freem(m);
754 return EAFNOSUPPORT;
755 #endif
756 }
757 xchg(th->th_dport, th->th_sport, u_int16_t);
758 #undef xchg
759 tlen = 0; /*be friendly with the following code*/
760 }
761 th->th_seq = htonl(seq);
762 th->th_ack = htonl(ack);
763 th->th_x2 = 0;
764 if ((flags & TH_SYN) == 0) {
765 if (tp)
766 win >>= tp->rcv_scale;
767 if (win > TCP_MAXWIN)
768 win = TCP_MAXWIN;
769 th->th_win = htons((u_int16_t)win);
770 th->th_off = sizeof (struct tcphdr) >> 2;
771 tlen += sizeof(*th);
772 } else
773 tlen += th->th_off << 2;
774 m->m_len = hlen + tlen;
775 m->m_pkthdr.len = hlen + tlen;
776 m->m_pkthdr.rcvif = (struct ifnet *) 0;
777 th->th_flags = flags;
778 th->th_urp = 0;
779
780 switch (family) {
781 #ifdef INET
782 case AF_INET:
783 {
784 struct ipovly *ipov = (struct ipovly *)ip;
785 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
786 ipov->ih_len = htons((u_int16_t)tlen);
787
788 th->th_sum = 0;
789 th->th_sum = in_cksum(m, hlen + tlen);
790 ip->ip_len = htons(hlen + tlen);
791 ip->ip_ttl = ip_defttl;
792 break;
793 }
794 #endif
795 #ifdef INET6
796 case AF_INET6:
797 {
798 th->th_sum = 0;
799 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
800 tlen);
801 ip6->ip6_plen = htons(tlen);
802 if (tp && tp->t_in6pcb) {
803 struct ifnet *oifp;
804 ro = (struct route *)&tp->t_in6pcb->in6p_route;
805 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
806 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
807 } else
808 ip6->ip6_hlim = ip6_defhlim;
809 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
810 if (ip6_auto_flowlabel) {
811 ip6->ip6_flow |=
812 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
813 }
814 break;
815 }
816 #endif
817 }
818
819 if (tp && tp->t_inpcb)
820 so = tp->t_inpcb->inp_socket;
821 #ifdef INET6
822 else if (tp && tp->t_in6pcb)
823 so = tp->t_in6pcb->in6p_socket;
824 #endif
825 else
826 so = NULL;
827
828 if (tp != NULL && tp->t_inpcb != NULL) {
829 ro = &tp->t_inpcb->inp_route;
830 #ifdef DIAGNOSTIC
831 if (family != AF_INET)
832 panic("tcp_respond: address family mismatch");
833 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
834 panic("tcp_respond: ip_dst %x != inp_faddr %x",
835 ntohl(ip->ip_dst.s_addr),
836 ntohl(tp->t_inpcb->inp_faddr.s_addr));
837 }
838 #endif
839 }
840 #ifdef INET6
841 else if (tp != NULL && tp->t_in6pcb != NULL) {
842 ro = (struct route *)&tp->t_in6pcb->in6p_route;
843 #ifdef DIAGNOSTIC
844 if (family == AF_INET) {
845 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
846 panic("tcp_respond: not mapped addr");
847 if (bcmp(&ip->ip_dst,
848 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
849 sizeof(ip->ip_dst)) != 0) {
850 panic("tcp_respond: ip_dst != in6p_faddr");
851 }
852 } else if (family == AF_INET6) {
853 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
854 &tp->t_in6pcb->in6p_faddr))
855 panic("tcp_respond: ip6_dst != in6p_faddr");
856 } else
857 panic("tcp_respond: address family mismatch");
858 #endif
859 }
860 #endif
861 else
862 ro = NULL;
863
864 switch (family) {
865 #ifdef INET
866 case AF_INET:
867 error = ip_output(m, NULL, ro,
868 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
869 (struct ip_moptions *)0, so);
870 break;
871 #endif
872 #ifdef INET6
873 case AF_INET6:
874 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
875 (struct ip6_moptions *)0, so, NULL);
876 break;
877 #endif
878 default:
879 error = EAFNOSUPPORT;
880 break;
881 }
882
883 return (error);
884 }
885
886 /*
887 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
888 * a bunch of members individually, we maintain this template for the
889 * static and mostly-static components of the TCPCB, and copy it into
890 * the new TCPCB instead.
891 */
892 static struct tcpcb tcpcb_template = {
893 /*
894 * If TCP_NTIMERS ever changes, we'll need to update this
895 * initializer.
896 */
897 .t_timer = {
898 CALLOUT_INITIALIZER,
899 CALLOUT_INITIALIZER,
900 CALLOUT_INITIALIZER,
901 CALLOUT_INITIALIZER,
902 },
903 .t_delack_ch = CALLOUT_INITIALIZER,
904
905 .t_srtt = TCPTV_SRTTBASE,
906 .t_rttmin = TCPTV_MIN,
907
908 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
909 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
910
911 .t_partialacks = -1,
912 };
913
914 /*
915 * Updates the TCPCB template whenever a parameter that would affect
916 * the template is changed.
917 */
918 void
919 tcp_tcpcb_template(void)
920 {
921 struct tcpcb *tp = &tcpcb_template;
922 int flags;
923
924 tp->t_peermss = tcp_mssdflt;
925 tp->t_ourmss = tcp_mssdflt;
926 tp->t_segsz = tcp_mssdflt;
927
928 flags = 0;
929 if (tcp_do_rfc1323 && tcp_do_win_scale)
930 flags |= TF_REQ_SCALE;
931 if (tcp_do_rfc1323 && tcp_do_timestamps)
932 flags |= TF_REQ_TSTMP;
933 tp->t_flags = flags;
934
935 /*
936 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
937 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
938 * reasonable initial retransmit time.
939 */
940 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
941 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
942 TCPTV_MIN, TCPTV_REXMTMAX);
943 }
944
945 /*
946 * Create a new TCP control block, making an
947 * empty reassembly queue and hooking it to the argument
948 * protocol control block.
949 */
950 /* family selects inpcb, or in6pcb */
951 struct tcpcb *
952 tcp_newtcpcb(int family, void *aux)
953 {
954 struct tcpcb *tp;
955 int i;
956
957 /* XXX Consider using a pool_cache for speed. */
958 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
959 if (tp == NULL)
960 return (NULL);
961 memcpy(tp, &tcpcb_template, sizeof(*tp));
962 TAILQ_INIT(&tp->segq);
963 TAILQ_INIT(&tp->timeq);
964 tp->t_family = family; /* may be overridden later on */
965 TAILQ_INIT(&tp->snd_holes);
966 LIST_INIT(&tp->t_sc); /* XXX can template this */
967
968 /* Don't sweat this loop; hopefully the compiler will unroll it. */
969 for (i = 0; i < TCPT_NTIMERS; i++)
970 TCP_TIMER_INIT(tp, i);
971
972 switch (family) {
973 case AF_INET:
974 {
975 struct inpcb *inp = (struct inpcb *)aux;
976
977 inp->inp_ip.ip_ttl = ip_defttl;
978 inp->inp_ppcb = (caddr_t)tp;
979
980 tp->t_inpcb = inp;
981 tp->t_mtudisc = ip_mtudisc;
982 break;
983 }
984 #ifdef INET6
985 case AF_INET6:
986 {
987 struct in6pcb *in6p = (struct in6pcb *)aux;
988
989 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
990 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
991 : NULL);
992 in6p->in6p_ppcb = (caddr_t)tp;
993
994 tp->t_in6pcb = in6p;
995 /* for IPv6, always try to run path MTU discovery */
996 tp->t_mtudisc = 1;
997 break;
998 }
999 #endif /* INET6 */
1000 default:
1001 pool_put(&tcpcb_pool, tp);
1002 return (NULL);
1003 }
1004
1005 /*
1006 * Initialize our timebase. When we send timestamps, we take
1007 * the delta from tcp_now -- this means each connection always
1008 * gets a timebase of 0, which makes it, among other things,
1009 * more difficult to determine how long a system has been up,
1010 * and thus how many TCP sequence increments have occurred.
1011 */
1012 tp->ts_timebase = tcp_now;
1013
1014 return (tp);
1015 }
1016
1017 /*
1018 * Drop a TCP connection, reporting
1019 * the specified error. If connection is synchronized,
1020 * then send a RST to peer.
1021 */
1022 struct tcpcb *
1023 tcp_drop(struct tcpcb *tp, int errno)
1024 {
1025 struct socket *so = NULL;
1026
1027 #ifdef DIAGNOSTIC
1028 if (tp->t_inpcb && tp->t_in6pcb)
1029 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1030 #endif
1031 #ifdef INET
1032 if (tp->t_inpcb)
1033 so = tp->t_inpcb->inp_socket;
1034 #endif
1035 #ifdef INET6
1036 if (tp->t_in6pcb)
1037 so = tp->t_in6pcb->in6p_socket;
1038 #endif
1039 if (!so)
1040 return NULL;
1041
1042 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1043 tp->t_state = TCPS_CLOSED;
1044 (void) tcp_output(tp);
1045 tcpstat.tcps_drops++;
1046 } else
1047 tcpstat.tcps_conndrops++;
1048 if (errno == ETIMEDOUT && tp->t_softerror)
1049 errno = tp->t_softerror;
1050 so->so_error = errno;
1051 return (tcp_close(tp));
1052 }
1053
1054 /*
1055 * Return whether this tcpcb is marked as dead, indicating
1056 * to the calling timer function that no further action should
1057 * be taken, as we are about to release this tcpcb. The release
1058 * of the storage will be done if this is the last timer running.
1059 *
1060 * This should be called from the callout handler function after
1061 * callout_ack() is done, so that the number of invoking timer
1062 * functions is 0.
1063 */
1064 int
1065 tcp_isdead(struct tcpcb *tp)
1066 {
1067 int dead = (tp->t_flags & TF_DEAD);
1068
1069 if (__predict_false(dead)) {
1070 if (tcp_timers_invoking(tp) > 0)
1071 /* not quite there yet -- count separately? */
1072 return dead;
1073 tcpstat.tcps_delayed_free++;
1074 pool_put(&tcpcb_pool, tp);
1075 }
1076 return dead;
1077 }
1078
1079 /*
1080 * Close a TCP control block:
1081 * discard all space held by the tcp
1082 * discard internet protocol block
1083 * wake up any sleepers
1084 */
1085 struct tcpcb *
1086 tcp_close(struct tcpcb *tp)
1087 {
1088 struct inpcb *inp;
1089 #ifdef INET6
1090 struct in6pcb *in6p;
1091 #endif
1092 struct socket *so;
1093 #ifdef RTV_RTT
1094 struct rtentry *rt;
1095 #endif
1096 struct route *ro;
1097
1098 inp = tp->t_inpcb;
1099 #ifdef INET6
1100 in6p = tp->t_in6pcb;
1101 #endif
1102 so = NULL;
1103 ro = NULL;
1104 if (inp) {
1105 so = inp->inp_socket;
1106 ro = &inp->inp_route;
1107 }
1108 #ifdef INET6
1109 else if (in6p) {
1110 so = in6p->in6p_socket;
1111 ro = (struct route *)&in6p->in6p_route;
1112 }
1113 #endif
1114
1115 #ifdef RTV_RTT
1116 /*
1117 * If we sent enough data to get some meaningful characteristics,
1118 * save them in the routing entry. 'Enough' is arbitrarily
1119 * defined as the sendpipesize (default 4K) * 16. This would
1120 * give us 16 rtt samples assuming we only get one sample per
1121 * window (the usual case on a long haul net). 16 samples is
1122 * enough for the srtt filter to converge to within 5% of the correct
1123 * value; fewer samples and we could save a very bogus rtt.
1124 *
1125 * Don't update the default route's characteristics and don't
1126 * update anything that the user "locked".
1127 */
1128 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1129 ro && (rt = ro->ro_rt) &&
1130 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1131 u_long i = 0;
1132
1133 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1134 i = tp->t_srtt *
1135 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1136 if (rt->rt_rmx.rmx_rtt && i)
1137 /*
1138 * filter this update to half the old & half
1139 * the new values, converting scale.
1140 * See route.h and tcp_var.h for a
1141 * description of the scaling constants.
1142 */
1143 rt->rt_rmx.rmx_rtt =
1144 (rt->rt_rmx.rmx_rtt + i) / 2;
1145 else
1146 rt->rt_rmx.rmx_rtt = i;
1147 }
1148 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1149 i = tp->t_rttvar *
1150 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1151 if (rt->rt_rmx.rmx_rttvar && i)
1152 rt->rt_rmx.rmx_rttvar =
1153 (rt->rt_rmx.rmx_rttvar + i) / 2;
1154 else
1155 rt->rt_rmx.rmx_rttvar = i;
1156 }
1157 /*
1158 * update the pipelimit (ssthresh) if it has been updated
1159 * already or if a pipesize was specified & the threshhold
1160 * got below half the pipesize. I.e., wait for bad news
1161 * before we start updating, then update on both good
1162 * and bad news.
1163 */
1164 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1165 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1166 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1167 /*
1168 * convert the limit from user data bytes to
1169 * packets then to packet data bytes.
1170 */
1171 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1172 if (i < 2)
1173 i = 2;
1174 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1175 if (rt->rt_rmx.rmx_ssthresh)
1176 rt->rt_rmx.rmx_ssthresh =
1177 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1178 else
1179 rt->rt_rmx.rmx_ssthresh = i;
1180 }
1181 }
1182 #endif /* RTV_RTT */
1183 /* free the reassembly queue, if any */
1184 TCP_REASS_LOCK(tp);
1185 (void) tcp_freeq(tp);
1186 TCP_REASS_UNLOCK(tp);
1187
1188 /* free the SACK holes list. */
1189 tcp_free_sackholes(tp);
1190
1191 tcp_canceltimers(tp);
1192 TCP_CLEAR_DELACK(tp);
1193 syn_cache_cleanup(tp);
1194
1195 if (tp->t_template) {
1196 m_free(tp->t_template);
1197 tp->t_template = NULL;
1198 }
1199 if (tcp_timers_invoking(tp))
1200 tp->t_flags |= TF_DEAD;
1201 else
1202 pool_put(&tcpcb_pool, tp);
1203
1204 if (inp) {
1205 inp->inp_ppcb = 0;
1206 soisdisconnected(so);
1207 in_pcbdetach(inp);
1208 }
1209 #ifdef INET6
1210 else if (in6p) {
1211 in6p->in6p_ppcb = 0;
1212 soisdisconnected(so);
1213 in6_pcbdetach(in6p);
1214 }
1215 #endif
1216 tcpstat.tcps_closed++;
1217 return ((struct tcpcb *)0);
1218 }
1219
1220 int
1221 tcp_freeq(tp)
1222 struct tcpcb *tp;
1223 {
1224 struct ipqent *qe;
1225 int rv = 0;
1226 #ifdef TCPREASS_DEBUG
1227 int i = 0;
1228 #endif
1229
1230 TCP_REASS_LOCK_CHECK(tp);
1231
1232 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1233 #ifdef TCPREASS_DEBUG
1234 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1235 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1236 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1237 #endif
1238 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1239 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1240 m_freem(qe->ipqe_m);
1241 pool_put(&tcpipqent_pool, qe);
1242 rv = 1;
1243 }
1244 tp->t_segqlen = 0;
1245 KASSERT(TAILQ_EMPTY(&tp->timeq));
1246 return (rv);
1247 }
1248
1249 /*
1250 * Protocol drain routine. Called when memory is in short supply.
1251 */
1252 void
1253 tcp_drain(void)
1254 {
1255 struct inpcb_hdr *inph;
1256 struct tcpcb *tp;
1257
1258 /*
1259 * Free the sequence queue of all TCP connections.
1260 */
1261 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1262 switch (inph->inph_af) {
1263 case AF_INET:
1264 tp = intotcpcb((struct inpcb *)inph);
1265 break;
1266 #ifdef INET6
1267 case AF_INET6:
1268 tp = in6totcpcb((struct in6pcb *)inph);
1269 break;
1270 #endif
1271 default:
1272 tp = NULL;
1273 break;
1274 }
1275 if (tp != NULL) {
1276 /*
1277 * We may be called from a device's interrupt
1278 * context. If the tcpcb is already busy,
1279 * just bail out now.
1280 */
1281 if (tcp_reass_lock_try(tp) == 0)
1282 continue;
1283 if (tcp_freeq(tp))
1284 tcpstat.tcps_connsdrained++;
1285 TCP_REASS_UNLOCK(tp);
1286 }
1287 }
1288 }
1289
1290 /*
1291 * Notify a tcp user of an asynchronous error;
1292 * store error as soft error, but wake up user
1293 * (for now, won't do anything until can select for soft error).
1294 */
1295 void
1296 tcp_notify(struct inpcb *inp, int error)
1297 {
1298 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1299 struct socket *so = inp->inp_socket;
1300
1301 /*
1302 * Ignore some errors if we are hooked up.
1303 * If connection hasn't completed, has retransmitted several times,
1304 * and receives a second error, give up now. This is better
1305 * than waiting a long time to establish a connection that
1306 * can never complete.
1307 */
1308 if (tp->t_state == TCPS_ESTABLISHED &&
1309 (error == EHOSTUNREACH || error == ENETUNREACH ||
1310 error == EHOSTDOWN)) {
1311 return;
1312 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1313 tp->t_rxtshift > 3 && tp->t_softerror)
1314 so->so_error = error;
1315 else
1316 tp->t_softerror = error;
1317 wakeup((caddr_t) &so->so_timeo);
1318 sorwakeup(so);
1319 sowwakeup(so);
1320 }
1321
1322 #ifdef INET6
1323 void
1324 tcp6_notify(struct in6pcb *in6p, int error)
1325 {
1326 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1327 struct socket *so = in6p->in6p_socket;
1328
1329 /*
1330 * Ignore some errors if we are hooked up.
1331 * If connection hasn't completed, has retransmitted several times,
1332 * and receives a second error, give up now. This is better
1333 * than waiting a long time to establish a connection that
1334 * can never complete.
1335 */
1336 if (tp->t_state == TCPS_ESTABLISHED &&
1337 (error == EHOSTUNREACH || error == ENETUNREACH ||
1338 error == EHOSTDOWN)) {
1339 return;
1340 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1341 tp->t_rxtshift > 3 && tp->t_softerror)
1342 so->so_error = error;
1343 else
1344 tp->t_softerror = error;
1345 wakeup((caddr_t) &so->so_timeo);
1346 sorwakeup(so);
1347 sowwakeup(so);
1348 }
1349 #endif
1350
1351 #ifdef INET6
1352 void
1353 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1354 {
1355 struct tcphdr th;
1356 void (*notify)(struct in6pcb *, int) = tcp6_notify;
1357 int nmatch;
1358 struct ip6_hdr *ip6;
1359 const struct sockaddr_in6 *sa6_src = NULL;
1360 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1361 struct mbuf *m;
1362 int off;
1363
1364 if (sa->sa_family != AF_INET6 ||
1365 sa->sa_len != sizeof(struct sockaddr_in6))
1366 return;
1367 if ((unsigned)cmd >= PRC_NCMDS)
1368 return;
1369 else if (cmd == PRC_QUENCH) {
1370 /* XXX there's no PRC_QUENCH in IPv6 */
1371 notify = tcp6_quench;
1372 } else if (PRC_IS_REDIRECT(cmd))
1373 notify = in6_rtchange, d = NULL;
1374 else if (cmd == PRC_MSGSIZE)
1375 ; /* special code is present, see below */
1376 else if (cmd == PRC_HOSTDEAD)
1377 d = NULL;
1378 else if (inet6ctlerrmap[cmd] == 0)
1379 return;
1380
1381 /* if the parameter is from icmp6, decode it. */
1382 if (d != NULL) {
1383 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1384 m = ip6cp->ip6c_m;
1385 ip6 = ip6cp->ip6c_ip6;
1386 off = ip6cp->ip6c_off;
1387 sa6_src = ip6cp->ip6c_src;
1388 } else {
1389 m = NULL;
1390 ip6 = NULL;
1391 sa6_src = &sa6_any;
1392 off = 0;
1393 }
1394
1395 if (ip6) {
1396 /*
1397 * XXX: We assume that when ip6 is non NULL,
1398 * M and OFF are valid.
1399 */
1400
1401 /* check if we can safely examine src and dst ports */
1402 if (m->m_pkthdr.len < off + sizeof(th)) {
1403 if (cmd == PRC_MSGSIZE)
1404 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1405 return;
1406 }
1407
1408 bzero(&th, sizeof(th));
1409 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1410
1411 if (cmd == PRC_MSGSIZE) {
1412 int valid = 0;
1413
1414 /*
1415 * Check to see if we have a valid TCP connection
1416 * corresponding to the address in the ICMPv6 message
1417 * payload.
1418 */
1419 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1420 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1421 th.th_sport, 0))
1422 valid++;
1423
1424 /*
1425 * Depending on the value of "valid" and routing table
1426 * size (mtudisc_{hi,lo}wat), we will:
1427 * - recalcurate the new MTU and create the
1428 * corresponding routing entry, or
1429 * - ignore the MTU change notification.
1430 */
1431 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1432
1433 /*
1434 * no need to call in6_pcbnotify, it should have been
1435 * called via callback if necessary
1436 */
1437 return;
1438 }
1439
1440 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1441 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1442 if (nmatch == 0 && syn_cache_count &&
1443 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1444 inet6ctlerrmap[cmd] == ENETUNREACH ||
1445 inet6ctlerrmap[cmd] == EHOSTDOWN))
1446 syn_cache_unreach((struct sockaddr *)sa6_src,
1447 sa, &th);
1448 } else {
1449 (void) in6_pcbnotify(&tcbtable, sa, 0,
1450 (struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1451 }
1452 }
1453 #endif
1454
1455 #ifdef INET
1456 /* assumes that ip header and tcp header are contiguous on mbuf */
1457 void *
1458 tcp_ctlinput(int cmd, struct sockaddr *sa, void *v)
1459 {
1460 struct ip *ip = v;
1461 struct tcphdr *th;
1462 struct icmp *icp;
1463 extern const int inetctlerrmap[];
1464 void (*notify)(struct inpcb *, int) = tcp_notify;
1465 int errno;
1466 int nmatch;
1467 #ifdef INET6
1468 struct in6_addr src6, dst6;
1469 #endif
1470
1471 if (sa->sa_family != AF_INET ||
1472 sa->sa_len != sizeof(struct sockaddr_in))
1473 return NULL;
1474 if ((unsigned)cmd >= PRC_NCMDS)
1475 return NULL;
1476 errno = inetctlerrmap[cmd];
1477 if (cmd == PRC_QUENCH)
1478 notify = tcp_quench;
1479 else if (PRC_IS_REDIRECT(cmd))
1480 notify = in_rtchange, ip = 0;
1481 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1482 /*
1483 * Check to see if we have a valid TCP connection
1484 * corresponding to the address in the ICMP message
1485 * payload.
1486 *
1487 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1488 */
1489 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1490 #ifdef INET6
1491 memset(&src6, 0, sizeof(src6));
1492 memset(&dst6, 0, sizeof(dst6));
1493 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1494 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1495 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1496 #endif
1497 if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
1498 ip->ip_src, th->th_sport) != NULL)
1499 ;
1500 #ifdef INET6
1501 else if (in6_pcblookup_connect(&tcbtable, &dst6,
1502 th->th_dport, &src6, th->th_sport, 0) != NULL)
1503 ;
1504 #endif
1505 else
1506 return NULL;
1507
1508 /*
1509 * Now that we've validated that we are actually communicating
1510 * with the host indicated in the ICMP message, locate the
1511 * ICMP header, recalculate the new MTU, and create the
1512 * corresponding routing entry.
1513 */
1514 icp = (struct icmp *)((caddr_t)ip -
1515 offsetof(struct icmp, icmp_ip));
1516 icmp_mtudisc(icp, ip->ip_dst);
1517
1518 return NULL;
1519 } else if (cmd == PRC_HOSTDEAD)
1520 ip = 0;
1521 else if (errno == 0)
1522 return NULL;
1523 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1524 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1525 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1526 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1527 if (nmatch == 0 && syn_cache_count &&
1528 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1529 inetctlerrmap[cmd] == ENETUNREACH ||
1530 inetctlerrmap[cmd] == EHOSTDOWN)) {
1531 struct sockaddr_in sin;
1532 bzero(&sin, sizeof(sin));
1533 sin.sin_len = sizeof(sin);
1534 sin.sin_family = AF_INET;
1535 sin.sin_port = th->th_sport;
1536 sin.sin_addr = ip->ip_src;
1537 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1538 }
1539
1540 /* XXX mapped address case */
1541 } else
1542 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1543 notify);
1544 return NULL;
1545 }
1546
1547 /*
1548 * When a source quench is received, we are being notified of congestion.
1549 * Close the congestion window down to the Loss Window (one segment).
1550 * We will gradually open it again as we proceed.
1551 */
1552 void
1553 tcp_quench(struct inpcb *inp, int errno)
1554 {
1555 struct tcpcb *tp = intotcpcb(inp);
1556
1557 if (tp)
1558 tp->snd_cwnd = tp->t_segsz;
1559 }
1560 #endif
1561
1562 #ifdef INET6
1563 void
1564 tcp6_quench(struct in6pcb *in6p, int errno)
1565 {
1566 struct tcpcb *tp = in6totcpcb(in6p);
1567
1568 if (tp)
1569 tp->snd_cwnd = tp->t_segsz;
1570 }
1571 #endif
1572
1573 #ifdef INET
1574 /*
1575 * Path MTU Discovery handlers.
1576 */
1577 void
1578 tcp_mtudisc_callback(struct in_addr faddr)
1579 {
1580 #ifdef INET6
1581 struct in6_addr in6;
1582 #endif
1583
1584 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1585 #ifdef INET6
1586 memset(&in6, 0, sizeof(in6));
1587 in6.s6_addr16[5] = 0xffff;
1588 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1589 tcp6_mtudisc_callback(&in6);
1590 #endif
1591 }
1592
1593 /*
1594 * On receipt of path MTU corrections, flush old route and replace it
1595 * with the new one. Retransmit all unacknowledged packets, to ensure
1596 * that all packets will be received.
1597 */
1598 void
1599 tcp_mtudisc(struct inpcb *inp, int errno)
1600 {
1601 struct tcpcb *tp = intotcpcb(inp);
1602 struct rtentry *rt = in_pcbrtentry(inp);
1603
1604 if (tp != 0) {
1605 if (rt != 0) {
1606 /*
1607 * If this was not a host route, remove and realloc.
1608 */
1609 if ((rt->rt_flags & RTF_HOST) == 0) {
1610 in_rtchange(inp, errno);
1611 if ((rt = in_pcbrtentry(inp)) == 0)
1612 return;
1613 }
1614
1615 /*
1616 * Slow start out of the error condition. We
1617 * use the MTU because we know it's smaller
1618 * than the previously transmitted segment.
1619 *
1620 * Note: This is more conservative than the
1621 * suggestion in draft-floyd-incr-init-win-03.
1622 */
1623 if (rt->rt_rmx.rmx_mtu != 0)
1624 tp->snd_cwnd =
1625 TCP_INITIAL_WINDOW(tcp_init_win,
1626 rt->rt_rmx.rmx_mtu);
1627 }
1628
1629 /*
1630 * Resend unacknowledged packets.
1631 */
1632 tp->snd_nxt = tp->snd_una;
1633 tcp_output(tp);
1634 }
1635 }
1636 #endif
1637
1638 #ifdef INET6
1639 /*
1640 * Path MTU Discovery handlers.
1641 */
1642 void
1643 tcp6_mtudisc_callback(struct in6_addr *faddr)
1644 {
1645 struct sockaddr_in6 sin6;
1646
1647 bzero(&sin6, sizeof(sin6));
1648 sin6.sin6_family = AF_INET6;
1649 sin6.sin6_len = sizeof(struct sockaddr_in6);
1650 sin6.sin6_addr = *faddr;
1651 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1652 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1653 }
1654
1655 void
1656 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1657 {
1658 struct tcpcb *tp = in6totcpcb(in6p);
1659 struct rtentry *rt = in6_pcbrtentry(in6p);
1660
1661 if (tp != 0) {
1662 if (rt != 0) {
1663 /*
1664 * If this was not a host route, remove and realloc.
1665 */
1666 if ((rt->rt_flags & RTF_HOST) == 0) {
1667 in6_rtchange(in6p, errno);
1668 if ((rt = in6_pcbrtentry(in6p)) == 0)
1669 return;
1670 }
1671
1672 /*
1673 * Slow start out of the error condition. We
1674 * use the MTU because we know it's smaller
1675 * than the previously transmitted segment.
1676 *
1677 * Note: This is more conservative than the
1678 * suggestion in draft-floyd-incr-init-win-03.
1679 */
1680 if (rt->rt_rmx.rmx_mtu != 0)
1681 tp->snd_cwnd =
1682 TCP_INITIAL_WINDOW(tcp_init_win,
1683 rt->rt_rmx.rmx_mtu);
1684 }
1685
1686 /*
1687 * Resend unacknowledged packets.
1688 */
1689 tp->snd_nxt = tp->snd_una;
1690 tcp_output(tp);
1691 }
1692 }
1693 #endif /* INET6 */
1694
1695 /*
1696 * Compute the MSS to advertise to the peer. Called only during
1697 * the 3-way handshake. If we are the server (peer initiated
1698 * connection), we are called with a pointer to the interface
1699 * on which the SYN packet arrived. If we are the client (we
1700 * initiated connection), we are called with a pointer to the
1701 * interface out which this connection should go.
1702 *
1703 * NOTE: Do not subtract IP option/extension header size nor IPsec
1704 * header size from MSS advertisement. MSS option must hold the maximum
1705 * segment size we can accept, so it must always be:
1706 * max(if mtu) - ip header - tcp header
1707 */
1708 u_long
1709 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1710 {
1711 extern u_long in_maxmtu;
1712 u_long mss = 0;
1713 u_long hdrsiz;
1714
1715 /*
1716 * In order to avoid defeating path MTU discovery on the peer,
1717 * we advertise the max MTU of all attached networks as our MSS,
1718 * per RFC 1191, section 3.1.
1719 *
1720 * We provide the option to advertise just the MTU of
1721 * the interface on which we hope this connection will
1722 * be receiving. If we are responding to a SYN, we
1723 * will have a pretty good idea about this, but when
1724 * initiating a connection there is a bit more doubt.
1725 *
1726 * We also need to ensure that loopback has a large enough
1727 * MSS, as the loopback MTU is never included in in_maxmtu.
1728 */
1729
1730 if (ifp != NULL)
1731 switch (af) {
1732 case AF_INET:
1733 mss = ifp->if_mtu;
1734 break;
1735 #ifdef INET6
1736 case AF_INET6:
1737 mss = IN6_LINKMTU(ifp);
1738 break;
1739 #endif
1740 }
1741
1742 if (tcp_mss_ifmtu == 0)
1743 switch (af) {
1744 case AF_INET:
1745 mss = max(in_maxmtu, mss);
1746 break;
1747 #ifdef INET6
1748 case AF_INET6:
1749 mss = max(in6_maxmtu, mss);
1750 break;
1751 #endif
1752 }
1753
1754 switch (af) {
1755 case AF_INET:
1756 hdrsiz = sizeof(struct ip);
1757 break;
1758 #ifdef INET6
1759 case AF_INET6:
1760 hdrsiz = sizeof(struct ip6_hdr);
1761 break;
1762 #endif
1763 default:
1764 hdrsiz = 0;
1765 break;
1766 }
1767 hdrsiz += sizeof(struct tcphdr);
1768 if (mss > hdrsiz)
1769 mss -= hdrsiz;
1770
1771 mss = max(tcp_mssdflt, mss);
1772 return (mss);
1773 }
1774
1775 /*
1776 * Set connection variables based on the peer's advertised MSS.
1777 * We are passed the TCPCB for the actual connection. If we
1778 * are the server, we are called by the compressed state engine
1779 * when the 3-way handshake is complete. If we are the client,
1780 * we are called when we receive the SYN,ACK from the server.
1781 *
1782 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1783 * before this routine is called!
1784 */
1785 void
1786 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1787 {
1788 struct socket *so;
1789 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1790 struct rtentry *rt;
1791 #endif
1792 u_long bufsize;
1793 int mss;
1794
1795 #ifdef DIAGNOSTIC
1796 if (tp->t_inpcb && tp->t_in6pcb)
1797 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1798 #endif
1799 so = NULL;
1800 rt = NULL;
1801 #ifdef INET
1802 if (tp->t_inpcb) {
1803 so = tp->t_inpcb->inp_socket;
1804 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1805 rt = in_pcbrtentry(tp->t_inpcb);
1806 #endif
1807 }
1808 #endif
1809 #ifdef INET6
1810 if (tp->t_in6pcb) {
1811 so = tp->t_in6pcb->in6p_socket;
1812 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1813 rt = in6_pcbrtentry(tp->t_in6pcb);
1814 #endif
1815 }
1816 #endif
1817
1818 /*
1819 * As per RFC1122, use the default MSS value, unless they
1820 * sent us an offer. Do not accept offers less than 256 bytes.
1821 */
1822 mss = tcp_mssdflt;
1823 if (offer)
1824 mss = offer;
1825 mss = max(mss, 256); /* sanity */
1826 tp->t_peermss = mss;
1827 mss -= tcp_optlen(tp);
1828 #ifdef INET
1829 if (tp->t_inpcb)
1830 mss -= ip_optlen(tp->t_inpcb);
1831 #endif
1832 #ifdef INET6
1833 if (tp->t_in6pcb)
1834 mss -= ip6_optlen(tp->t_in6pcb);
1835 #endif
1836
1837 /*
1838 * If there's a pipesize, change the socket buffer to that size.
1839 * Make the socket buffer an integral number of MSS units. If
1840 * the MSS is larger than the socket buffer, artificially decrease
1841 * the MSS.
1842 */
1843 #ifdef RTV_SPIPE
1844 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1845 bufsize = rt->rt_rmx.rmx_sendpipe;
1846 else
1847 #endif
1848 bufsize = so->so_snd.sb_hiwat;
1849 if (bufsize < mss)
1850 mss = bufsize;
1851 else {
1852 bufsize = roundup(bufsize, mss);
1853 if (bufsize > sb_max)
1854 bufsize = sb_max;
1855 (void) sbreserve(&so->so_snd, bufsize, so);
1856 }
1857 tp->t_segsz = mss;
1858
1859 #ifdef RTV_SSTHRESH
1860 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1861 /*
1862 * There's some sort of gateway or interface buffer
1863 * limit on the path. Use this to set the slow
1864 * start threshold, but set the threshold to no less
1865 * than 2 * MSS.
1866 */
1867 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1868 }
1869 #endif
1870 }
1871
1872 /*
1873 * Processing necessary when a TCP connection is established.
1874 */
1875 void
1876 tcp_established(struct tcpcb *tp)
1877 {
1878 struct socket *so;
1879 #ifdef RTV_RPIPE
1880 struct rtentry *rt;
1881 #endif
1882 u_long bufsize;
1883
1884 #ifdef DIAGNOSTIC
1885 if (tp->t_inpcb && tp->t_in6pcb)
1886 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1887 #endif
1888 so = NULL;
1889 rt = NULL;
1890 #ifdef INET
1891 if (tp->t_inpcb) {
1892 so = tp->t_inpcb->inp_socket;
1893 #if defined(RTV_RPIPE)
1894 rt = in_pcbrtentry(tp->t_inpcb);
1895 #endif
1896 }
1897 #endif
1898 #ifdef INET6
1899 if (tp->t_in6pcb) {
1900 so = tp->t_in6pcb->in6p_socket;
1901 #if defined(RTV_RPIPE)
1902 rt = in6_pcbrtentry(tp->t_in6pcb);
1903 #endif
1904 }
1905 #endif
1906
1907 tp->t_state = TCPS_ESTABLISHED;
1908 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1909
1910 #ifdef RTV_RPIPE
1911 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1912 bufsize = rt->rt_rmx.rmx_recvpipe;
1913 else
1914 #endif
1915 bufsize = so->so_rcv.sb_hiwat;
1916 if (bufsize > tp->t_ourmss) {
1917 bufsize = roundup(bufsize, tp->t_ourmss);
1918 if (bufsize > sb_max)
1919 bufsize = sb_max;
1920 (void) sbreserve(&so->so_rcv, bufsize, so);
1921 }
1922 }
1923
1924 /*
1925 * Check if there's an initial rtt or rttvar. Convert from the
1926 * route-table units to scaled multiples of the slow timeout timer.
1927 * Called only during the 3-way handshake.
1928 */
1929 void
1930 tcp_rmx_rtt(struct tcpcb *tp)
1931 {
1932 #ifdef RTV_RTT
1933 struct rtentry *rt = NULL;
1934 int rtt;
1935
1936 #ifdef DIAGNOSTIC
1937 if (tp->t_inpcb && tp->t_in6pcb)
1938 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1939 #endif
1940 #ifdef INET
1941 if (tp->t_inpcb)
1942 rt = in_pcbrtentry(tp->t_inpcb);
1943 #endif
1944 #ifdef INET6
1945 if (tp->t_in6pcb)
1946 rt = in6_pcbrtentry(tp->t_in6pcb);
1947 #endif
1948 if (rt == NULL)
1949 return;
1950
1951 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1952 /*
1953 * XXX The lock bit for MTU indicates that the value
1954 * is also a minimum value; this is subject to time.
1955 */
1956 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1957 TCPT_RANGESET(tp->t_rttmin,
1958 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1959 TCPTV_MIN, TCPTV_REXMTMAX);
1960 tp->t_srtt = rtt /
1961 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1962 if (rt->rt_rmx.rmx_rttvar) {
1963 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1964 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1965 (TCP_RTTVAR_SHIFT + 2));
1966 } else {
1967 /* Default variation is +- 1 rtt */
1968 tp->t_rttvar =
1969 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1970 }
1971 TCPT_RANGESET(tp->t_rxtcur,
1972 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1973 tp->t_rttmin, TCPTV_REXMTMAX);
1974 }
1975 #endif
1976 }
1977
1978 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1979 #if NRND > 0
1980 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
1981 #endif
1982
1983 /*
1984 * Get a new sequence value given a tcp control block
1985 */
1986 tcp_seq
1987 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
1988 {
1989
1990 #ifdef INET
1991 if (tp->t_inpcb != NULL) {
1992 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
1993 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
1994 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
1995 addin));
1996 }
1997 #endif
1998 #ifdef INET6
1999 if (tp->t_in6pcb != NULL) {
2000 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2001 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2002 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2003 addin));
2004 }
2005 #endif
2006 /* Not possible. */
2007 panic("tcp_new_iss");
2008 }
2009
2010 /*
2011 * This routine actually generates a new TCP initial sequence number.
2012 */
2013 tcp_seq
2014 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2015 size_t addrsz, tcp_seq addin)
2016 {
2017 tcp_seq tcp_iss;
2018
2019 #if NRND > 0
2020 static int beenhere;
2021
2022 /*
2023 * If we haven't been here before, initialize our cryptographic
2024 * hash secret.
2025 */
2026 if (beenhere == 0) {
2027 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2028 RND_EXTRACT_ANY);
2029 beenhere = 1;
2030 }
2031
2032 if (tcp_do_rfc1948) {
2033 MD5_CTX ctx;
2034 u_int8_t hash[16]; /* XXX MD5 knowledge */
2035
2036 /*
2037 * Compute the base value of the ISS. It is a hash
2038 * of (saddr, sport, daddr, dport, secret).
2039 */
2040 MD5Init(&ctx);
2041
2042 MD5Update(&ctx, (u_char *) laddr, addrsz);
2043 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2044
2045 MD5Update(&ctx, (u_char *) faddr, addrsz);
2046 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2047
2048 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2049
2050 MD5Final(hash, &ctx);
2051
2052 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2053
2054 /*
2055 * Now increment our "timer", and add it in to
2056 * the computed value.
2057 *
2058 * XXX Use `addin'?
2059 * XXX TCP_ISSINCR too large to use?
2060 */
2061 tcp_iss_seq += TCP_ISSINCR;
2062 #ifdef TCPISS_DEBUG
2063 printf("ISS hash 0x%08x, ", tcp_iss);
2064 #endif
2065 tcp_iss += tcp_iss_seq + addin;
2066 #ifdef TCPISS_DEBUG
2067 printf("new ISS 0x%08x\n", tcp_iss);
2068 #endif
2069 } else
2070 #endif /* NRND > 0 */
2071 {
2072 /*
2073 * Randomize.
2074 */
2075 #if NRND > 0
2076 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2077 #else
2078 tcp_iss = arc4random();
2079 #endif
2080
2081 /*
2082 * If we were asked to add some amount to a known value,
2083 * we will take a random value obtained above, mask off
2084 * the upper bits, and add in the known value. We also
2085 * add in a constant to ensure that we are at least a
2086 * certain distance from the original value.
2087 *
2088 * This is used when an old connection is in timed wait
2089 * and we have a new one coming in, for instance.
2090 */
2091 if (addin != 0) {
2092 #ifdef TCPISS_DEBUG
2093 printf("Random %08x, ", tcp_iss);
2094 #endif
2095 tcp_iss &= TCP_ISS_RANDOM_MASK;
2096 tcp_iss += addin + TCP_ISSINCR;
2097 #ifdef TCPISS_DEBUG
2098 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2099 #endif
2100 } else {
2101 tcp_iss &= TCP_ISS_RANDOM_MASK;
2102 tcp_iss += tcp_iss_seq;
2103 tcp_iss_seq += TCP_ISSINCR;
2104 #ifdef TCPISS_DEBUG
2105 printf("ISS %08x\n", tcp_iss);
2106 #endif
2107 }
2108 }
2109
2110 if (tcp_compat_42) {
2111 /*
2112 * Limit it to the positive range for really old TCP
2113 * implementations.
2114 * Just AND off the top bit instead of checking if
2115 * is set first - saves a branch 50% of the time.
2116 */
2117 tcp_iss &= 0x7fffffff; /* XXX */
2118 }
2119
2120 return (tcp_iss);
2121 }
2122
2123 #if defined(IPSEC) || defined(FAST_IPSEC)
2124 /* compute ESP/AH header size for TCP, including outer IP header. */
2125 size_t
2126 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2127 {
2128 struct inpcb *inp;
2129 size_t hdrsiz;
2130
2131 /* XXX mapped addr case (tp->t_in6pcb) */
2132 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2133 return 0;
2134 switch (tp->t_family) {
2135 case AF_INET:
2136 /* XXX: should use currect direction. */
2137 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2138 break;
2139 default:
2140 hdrsiz = 0;
2141 break;
2142 }
2143
2144 return hdrsiz;
2145 }
2146
2147 #ifdef INET6
2148 size_t
2149 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2150 {
2151 struct in6pcb *in6p;
2152 size_t hdrsiz;
2153
2154 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2155 return 0;
2156 switch (tp->t_family) {
2157 case AF_INET6:
2158 /* XXX: should use currect direction. */
2159 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2160 break;
2161 case AF_INET:
2162 /* mapped address case - tricky */
2163 default:
2164 hdrsiz = 0;
2165 break;
2166 }
2167
2168 return hdrsiz;
2169 }
2170 #endif
2171 #endif /*IPSEC*/
2172
2173 /*
2174 * Determine the length of the TCP options for this connection.
2175 *
2176 * XXX: What do we do for SACK, when we add that? Just reserve
2177 * all of the space? Otherwise we can't exactly be incrementing
2178 * cwnd by an amount that varies depending on the amount we last
2179 * had to SACK!
2180 */
2181
2182 u_int
2183 tcp_optlen(struct tcpcb *tp)
2184 {
2185 u_int optlen;
2186
2187 optlen = 0;
2188 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2189 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2190 optlen += TCPOLEN_TSTAMP_APPA;
2191
2192 #ifdef TCP_SIGNATURE
2193 #if defined(INET6) && defined(FAST_IPSEC)
2194 if (tp->t_family == AF_INET)
2195 #endif
2196 if (tp->t_flags & TF_SIGNATURE)
2197 optlen += TCPOLEN_SIGNATURE + 2;
2198 #endif /* TCP_SIGNATURE */
2199
2200 return optlen;
2201 }
2202