tcp_subr.c revision 1.189 1 /* $NetBSD: tcp_subr.c,v 1.189 2005/04/05 01:07:17 kurahone Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.189 2005/04/05 01:07:17 kurahone Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcpip.h>
155
156 #ifdef IPSEC
157 #include <netinet6/ipsec.h>
158 #include <netkey/key.h>
159 #endif /*IPSEC*/
160
161 #ifdef FAST_IPSEC
162 #include <netipsec/ipsec.h>
163 #include <netipsec/xform.h>
164 #ifdef INET6
165 #include <netipsec/ipsec6.h>
166 #endif
167 #include <netipsec/key.h>
168 #endif /* FAST_IPSEC*/
169
170
171 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
172 struct tcpstat tcpstat; /* tcp statistics */
173 u_int32_t tcp_now; /* for RFC 1323 timestamps */
174
175 /* patchable/settable parameters for tcp */
176 int tcp_mssdflt = TCP_MSS;
177 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
178 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
179 #if NRND > 0
180 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
181 #endif
182 int tcp_do_sack = 1; /* selective acknowledgement */
183 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
184 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
185 int tcp_do_newreno = 1; /* Use the New Reno algorithms */
186 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
187 #ifndef TCP_INIT_WIN
188 #define TCP_INIT_WIN 0 /* initial slow start window */
189 #endif
190 #ifndef TCP_INIT_WIN_LOCAL
191 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
192 #endif
193 int tcp_init_win = TCP_INIT_WIN;
194 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
195 int tcp_mss_ifmtu = 0;
196 #ifdef TCP_COMPAT_42
197 int tcp_compat_42 = 1;
198 #else
199 int tcp_compat_42 = 0;
200 #endif
201 int tcp_rst_ppslim = 100; /* 100pps */
202 int tcp_ackdrop_ppslim = 100; /* 100pps */
203 int tcp_do_loopback_cksum = 0;
204 int tcp_sack_tp_maxholes = 32;
205 int tcp_sack_globalmaxholes = 1024;
206 int tcp_sack_globalholes = 0;
207
208
209 /* tcb hash */
210 #ifndef TCBHASHSIZE
211 #define TCBHASHSIZE 128
212 #endif
213 int tcbhashsize = TCBHASHSIZE;
214
215 /* syn hash parameters */
216 #define TCP_SYN_HASH_SIZE 293
217 #define TCP_SYN_BUCKET_SIZE 35
218 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
219 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
220 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
221 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
222
223 int tcp_freeq(struct tcpcb *);
224
225 #ifdef INET
226 void tcp_mtudisc_callback(struct in_addr);
227 #endif
228 #ifdef INET6
229 void tcp6_mtudisc_callback(struct in6_addr *);
230 #endif
231
232 void tcp_mtudisc(struct inpcb *, int);
233 #ifdef INET6
234 void tcp6_mtudisc(struct in6pcb *, int);
235 #endif
236
237 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
238
239 #ifdef TCP_CSUM_COUNTERS
240 #include <sys/device.h>
241
242 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
243 NULL, "tcp", "hwcsum bad");
244 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
245 NULL, "tcp", "hwcsum ok");
246 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
247 NULL, "tcp", "hwcsum data");
248 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
249 NULL, "tcp", "swcsum");
250
251 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
252 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
253 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
254 EVCNT_ATTACH_STATIC(tcp_swcsum);
255 #endif /* TCP_CSUM_COUNTERS */
256
257
258 #ifdef TCP_OUTPUT_COUNTERS
259 #include <sys/device.h>
260
261 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
262 NULL, "tcp", "output big header");
263 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
264 NULL, "tcp", "output predict hit");
265 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
266 NULL, "tcp", "output predict miss");
267 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
268 NULL, "tcp", "output copy small");
269 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
270 NULL, "tcp", "output copy big");
271 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
272 NULL, "tcp", "output reference big");
273
274 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
275 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
276 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
277 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
278 EVCNT_ATTACH_STATIC(tcp_output_copybig);
279 EVCNT_ATTACH_STATIC(tcp_output_refbig);
280
281 #endif /* TCP_OUTPUT_COUNTERS */
282
283 #ifdef TCP_REASS_COUNTERS
284 #include <sys/device.h>
285
286 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
287 NULL, "tcp_reass", "calls");
288 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
289 &tcp_reass_, "tcp_reass", "insert into empty queue");
290 struct evcnt tcp_reass_iteration[8] = {
291 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
292 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
293 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
294 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
295 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
296 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
297 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
298 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
299 };
300 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
301 &tcp_reass_, "tcp_reass", "prepend to first");
302 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
303 &tcp_reass_, "tcp_reass", "prepend");
304 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
305 &tcp_reass_, "tcp_reass", "insert");
306 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
307 &tcp_reass_, "tcp_reass", "insert at tail");
308 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
309 &tcp_reass_, "tcp_reass", "append");
310 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
311 &tcp_reass_, "tcp_reass", "append to tail fragment");
312 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
313 &tcp_reass_, "tcp_reass", "overlap at end");
314 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
315 &tcp_reass_, "tcp_reass", "overlap at start");
316 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
317 &tcp_reass_, "tcp_reass", "duplicate segment");
318 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
319 &tcp_reass_, "tcp_reass", "duplicate fragment");
320
321 EVCNT_ATTACH_STATIC(tcp_reass_);
322 EVCNT_ATTACH_STATIC(tcp_reass_empty);
323 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
324 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
325 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
326 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
327 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
328 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
329 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
330 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
331 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
332 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
333 EVCNT_ATTACH_STATIC(tcp_reass_insert);
334 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
335 EVCNT_ATTACH_STATIC(tcp_reass_append);
336 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
337 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
338 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
339 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
340 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
341
342 #endif /* TCP_REASS_COUNTERS */
343
344 #ifdef MBUFTRACE
345 struct mowner tcp_mowner = { "tcp" };
346 struct mowner tcp_rx_mowner = { "tcp", "rx" };
347 struct mowner tcp_tx_mowner = { "tcp", "tx" };
348 #endif
349
350 /*
351 * Tcp initialization
352 */
353 void
354 tcp_init(void)
355 {
356 int hlen;
357
358 /* Initialize the TCPCB template. */
359 tcp_tcpcb_template();
360
361 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
362
363 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
364 #ifdef INET6
365 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
366 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
367 #endif
368 if (max_protohdr < hlen)
369 max_protohdr = hlen;
370 if (max_linkhdr + hlen > MHLEN)
371 panic("tcp_init");
372
373 #ifdef INET
374 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
375 #endif
376 #ifdef INET6
377 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
378 #endif
379
380 /* Initialize timer state. */
381 tcp_timer_init();
382
383 /* Initialize the compressed state engine. */
384 syn_cache_init();
385
386 MOWNER_ATTACH(&tcp_tx_mowner);
387 MOWNER_ATTACH(&tcp_rx_mowner);
388 MOWNER_ATTACH(&tcp_mowner);
389 }
390
391 /*
392 * Create template to be used to send tcp packets on a connection.
393 * Call after host entry created, allocates an mbuf and fills
394 * in a skeletal tcp/ip header, minimizing the amount of work
395 * necessary when the connection is used.
396 */
397 struct mbuf *
398 tcp_template(struct tcpcb *tp)
399 {
400 struct inpcb *inp = tp->t_inpcb;
401 #ifdef INET6
402 struct in6pcb *in6p = tp->t_in6pcb;
403 #endif
404 struct tcphdr *n;
405 struct mbuf *m;
406 int hlen;
407
408 switch (tp->t_family) {
409 case AF_INET:
410 hlen = sizeof(struct ip);
411 if (inp)
412 break;
413 #ifdef INET6
414 if (in6p) {
415 /* mapped addr case */
416 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
417 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
418 break;
419 }
420 #endif
421 return NULL; /*EINVAL*/
422 #ifdef INET6
423 case AF_INET6:
424 hlen = sizeof(struct ip6_hdr);
425 if (in6p) {
426 /* more sainty check? */
427 break;
428 }
429 return NULL; /*EINVAL*/
430 #endif
431 default:
432 hlen = 0; /*pacify gcc*/
433 return NULL; /*EAFNOSUPPORT*/
434 }
435 #ifdef DIAGNOSTIC
436 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
437 panic("mclbytes too small for t_template");
438 #endif
439 m = tp->t_template;
440 if (m && m->m_len == hlen + sizeof(struct tcphdr))
441 ;
442 else {
443 if (m)
444 m_freem(m);
445 m = tp->t_template = NULL;
446 MGETHDR(m, M_DONTWAIT, MT_HEADER);
447 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
448 MCLGET(m, M_DONTWAIT);
449 if ((m->m_flags & M_EXT) == 0) {
450 m_free(m);
451 m = NULL;
452 }
453 }
454 if (m == NULL)
455 return NULL;
456 MCLAIM(m, &tcp_mowner);
457 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
458 }
459
460 bzero(mtod(m, caddr_t), m->m_len);
461
462 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
463
464 switch (tp->t_family) {
465 case AF_INET:
466 {
467 struct ipovly *ipov;
468 mtod(m, struct ip *)->ip_v = 4;
469 mtod(m, struct ip *)->ip_hl = hlen >> 2;
470 ipov = mtod(m, struct ipovly *);
471 ipov->ih_pr = IPPROTO_TCP;
472 ipov->ih_len = htons(sizeof(struct tcphdr));
473 if (inp) {
474 ipov->ih_src = inp->inp_laddr;
475 ipov->ih_dst = inp->inp_faddr;
476 }
477 #ifdef INET6
478 else if (in6p) {
479 /* mapped addr case */
480 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
481 sizeof(ipov->ih_src));
482 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
483 sizeof(ipov->ih_dst));
484 }
485 #endif
486 /*
487 * Compute the pseudo-header portion of the checksum
488 * now. We incrementally add in the TCP option and
489 * payload lengths later, and then compute the TCP
490 * checksum right before the packet is sent off onto
491 * the wire.
492 */
493 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
494 ipov->ih_dst.s_addr,
495 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
496 break;
497 }
498 #ifdef INET6
499 case AF_INET6:
500 {
501 struct ip6_hdr *ip6;
502 mtod(m, struct ip *)->ip_v = 6;
503 ip6 = mtod(m, struct ip6_hdr *);
504 ip6->ip6_nxt = IPPROTO_TCP;
505 ip6->ip6_plen = htons(sizeof(struct tcphdr));
506 ip6->ip6_src = in6p->in6p_laddr;
507 ip6->ip6_dst = in6p->in6p_faddr;
508 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
509 if (ip6_auto_flowlabel) {
510 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
511 ip6->ip6_flow |=
512 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
513 }
514 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
515 ip6->ip6_vfc |= IPV6_VERSION;
516
517 /*
518 * Compute the pseudo-header portion of the checksum
519 * now. We incrementally add in the TCP option and
520 * payload lengths later, and then compute the TCP
521 * checksum right before the packet is sent off onto
522 * the wire.
523 */
524 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
525 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
526 htonl(IPPROTO_TCP));
527 break;
528 }
529 #endif
530 }
531 if (inp) {
532 n->th_sport = inp->inp_lport;
533 n->th_dport = inp->inp_fport;
534 }
535 #ifdef INET6
536 else if (in6p) {
537 n->th_sport = in6p->in6p_lport;
538 n->th_dport = in6p->in6p_fport;
539 }
540 #endif
541 n->th_seq = 0;
542 n->th_ack = 0;
543 n->th_x2 = 0;
544 n->th_off = 5;
545 n->th_flags = 0;
546 n->th_win = 0;
547 n->th_urp = 0;
548 return (m);
549 }
550
551 /*
552 * Send a single message to the TCP at address specified by
553 * the given TCP/IP header. If m == 0, then we make a copy
554 * of the tcpiphdr at ti and send directly to the addressed host.
555 * This is used to force keep alive messages out using the TCP
556 * template for a connection tp->t_template. If flags are given
557 * then we send a message back to the TCP which originated the
558 * segment ti, and discard the mbuf containing it and any other
559 * attached mbufs.
560 *
561 * In any case the ack and sequence number of the transmitted
562 * segment are as specified by the parameters.
563 */
564 int
565 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
566 struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
567 {
568 struct route *ro;
569 int error, tlen, win = 0;
570 int hlen;
571 struct ip *ip;
572 #ifdef INET6
573 struct ip6_hdr *ip6;
574 #endif
575 int family; /* family on packet, not inpcb/in6pcb! */
576 struct tcphdr *th;
577 struct socket *so;
578
579 if (tp != NULL && (flags & TH_RST) == 0) {
580 #ifdef DIAGNOSTIC
581 if (tp->t_inpcb && tp->t_in6pcb)
582 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
583 #endif
584 #ifdef INET
585 if (tp->t_inpcb)
586 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
587 #endif
588 #ifdef INET6
589 if (tp->t_in6pcb)
590 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
591 #endif
592 }
593
594 th = NULL; /* Quell uninitialized warning */
595 ip = NULL;
596 #ifdef INET6
597 ip6 = NULL;
598 #endif
599 if (m == 0) {
600 if (!template)
601 return EINVAL;
602
603 /* get family information from template */
604 switch (mtod(template, struct ip *)->ip_v) {
605 case 4:
606 family = AF_INET;
607 hlen = sizeof(struct ip);
608 break;
609 #ifdef INET6
610 case 6:
611 family = AF_INET6;
612 hlen = sizeof(struct ip6_hdr);
613 break;
614 #endif
615 default:
616 return EAFNOSUPPORT;
617 }
618
619 MGETHDR(m, M_DONTWAIT, MT_HEADER);
620 if (m) {
621 MCLAIM(m, &tcp_tx_mowner);
622 MCLGET(m, M_DONTWAIT);
623 if ((m->m_flags & M_EXT) == 0) {
624 m_free(m);
625 m = NULL;
626 }
627 }
628 if (m == NULL)
629 return (ENOBUFS);
630
631 if (tcp_compat_42)
632 tlen = 1;
633 else
634 tlen = 0;
635
636 m->m_data += max_linkhdr;
637 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
638 template->m_len);
639 switch (family) {
640 case AF_INET:
641 ip = mtod(m, struct ip *);
642 th = (struct tcphdr *)(ip + 1);
643 break;
644 #ifdef INET6
645 case AF_INET6:
646 ip6 = mtod(m, struct ip6_hdr *);
647 th = (struct tcphdr *)(ip6 + 1);
648 break;
649 #endif
650 #if 0
651 default:
652 /* noone will visit here */
653 m_freem(m);
654 return EAFNOSUPPORT;
655 #endif
656 }
657 flags = TH_ACK;
658 } else {
659
660 if ((m->m_flags & M_PKTHDR) == 0) {
661 #if 0
662 printf("non PKTHDR to tcp_respond\n");
663 #endif
664 m_freem(m);
665 return EINVAL;
666 }
667 #ifdef DIAGNOSTIC
668 if (!th0)
669 panic("th0 == NULL in tcp_respond");
670 #endif
671
672 /* get family information from m */
673 switch (mtod(m, struct ip *)->ip_v) {
674 case 4:
675 family = AF_INET;
676 hlen = sizeof(struct ip);
677 ip = mtod(m, struct ip *);
678 break;
679 #ifdef INET6
680 case 6:
681 family = AF_INET6;
682 hlen = sizeof(struct ip6_hdr);
683 ip6 = mtod(m, struct ip6_hdr *);
684 break;
685 #endif
686 default:
687 m_freem(m);
688 return EAFNOSUPPORT;
689 }
690 /* clear h/w csum flags inherited from rx packet */
691 m->m_pkthdr.csum_flags = 0;
692
693 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
694 tlen = sizeof(*th0);
695 else
696 tlen = th0->th_off << 2;
697
698 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
699 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
700 m->m_len = hlen + tlen;
701 m_freem(m->m_next);
702 m->m_next = NULL;
703 } else {
704 struct mbuf *n;
705
706 #ifdef DIAGNOSTIC
707 if (max_linkhdr + hlen + tlen > MCLBYTES) {
708 m_freem(m);
709 return EMSGSIZE;
710 }
711 #endif
712 MGETHDR(n, M_DONTWAIT, MT_HEADER);
713 if (n && max_linkhdr + hlen + tlen > MHLEN) {
714 MCLGET(n, M_DONTWAIT);
715 if ((n->m_flags & M_EXT) == 0) {
716 m_freem(n);
717 n = NULL;
718 }
719 }
720 if (!n) {
721 m_freem(m);
722 return ENOBUFS;
723 }
724
725 MCLAIM(n, &tcp_tx_mowner);
726 n->m_data += max_linkhdr;
727 n->m_len = hlen + tlen;
728 m_copyback(n, 0, hlen, mtod(m, caddr_t));
729 m_copyback(n, hlen, tlen, (caddr_t)th0);
730
731 m_freem(m);
732 m = n;
733 n = NULL;
734 }
735
736 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
737 switch (family) {
738 case AF_INET:
739 ip = mtod(m, struct ip *);
740 th = (struct tcphdr *)(ip + 1);
741 ip->ip_p = IPPROTO_TCP;
742 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
743 ip->ip_p = IPPROTO_TCP;
744 break;
745 #ifdef INET6
746 case AF_INET6:
747 ip6 = mtod(m, struct ip6_hdr *);
748 th = (struct tcphdr *)(ip6 + 1);
749 ip6->ip6_nxt = IPPROTO_TCP;
750 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
751 ip6->ip6_nxt = IPPROTO_TCP;
752 break;
753 #endif
754 #if 0
755 default:
756 /* noone will visit here */
757 m_freem(m);
758 return EAFNOSUPPORT;
759 #endif
760 }
761 xchg(th->th_dport, th->th_sport, u_int16_t);
762 #undef xchg
763 tlen = 0; /*be friendly with the following code*/
764 }
765 th->th_seq = htonl(seq);
766 th->th_ack = htonl(ack);
767 th->th_x2 = 0;
768 if ((flags & TH_SYN) == 0) {
769 if (tp)
770 win >>= tp->rcv_scale;
771 if (win > TCP_MAXWIN)
772 win = TCP_MAXWIN;
773 th->th_win = htons((u_int16_t)win);
774 th->th_off = sizeof (struct tcphdr) >> 2;
775 tlen += sizeof(*th);
776 } else
777 tlen += th->th_off << 2;
778 m->m_len = hlen + tlen;
779 m->m_pkthdr.len = hlen + tlen;
780 m->m_pkthdr.rcvif = (struct ifnet *) 0;
781 th->th_flags = flags;
782 th->th_urp = 0;
783
784 switch (family) {
785 #ifdef INET
786 case AF_INET:
787 {
788 struct ipovly *ipov = (struct ipovly *)ip;
789 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
790 ipov->ih_len = htons((u_int16_t)tlen);
791
792 th->th_sum = 0;
793 th->th_sum = in_cksum(m, hlen + tlen);
794 ip->ip_len = htons(hlen + tlen);
795 ip->ip_ttl = ip_defttl;
796 break;
797 }
798 #endif
799 #ifdef INET6
800 case AF_INET6:
801 {
802 th->th_sum = 0;
803 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
804 tlen);
805 ip6->ip6_plen = htons(tlen);
806 if (tp && tp->t_in6pcb) {
807 struct ifnet *oifp;
808 ro = (struct route *)&tp->t_in6pcb->in6p_route;
809 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
810 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
811 } else
812 ip6->ip6_hlim = ip6_defhlim;
813 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
814 if (ip6_auto_flowlabel) {
815 ip6->ip6_flow |=
816 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
817 }
818 break;
819 }
820 #endif
821 }
822
823 if (tp && tp->t_inpcb)
824 so = tp->t_inpcb->inp_socket;
825 #ifdef INET6
826 else if (tp && tp->t_in6pcb)
827 so = tp->t_in6pcb->in6p_socket;
828 #endif
829 else
830 so = NULL;
831
832 if (tp != NULL && tp->t_inpcb != NULL) {
833 ro = &tp->t_inpcb->inp_route;
834 #ifdef DIAGNOSTIC
835 if (family != AF_INET)
836 panic("tcp_respond: address family mismatch");
837 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
838 panic("tcp_respond: ip_dst %x != inp_faddr %x",
839 ntohl(ip->ip_dst.s_addr),
840 ntohl(tp->t_inpcb->inp_faddr.s_addr));
841 }
842 #endif
843 }
844 #ifdef INET6
845 else if (tp != NULL && tp->t_in6pcb != NULL) {
846 ro = (struct route *)&tp->t_in6pcb->in6p_route;
847 #ifdef DIAGNOSTIC
848 if (family == AF_INET) {
849 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
850 panic("tcp_respond: not mapped addr");
851 if (bcmp(&ip->ip_dst,
852 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
853 sizeof(ip->ip_dst)) != 0) {
854 panic("tcp_respond: ip_dst != in6p_faddr");
855 }
856 } else if (family == AF_INET6) {
857 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
858 &tp->t_in6pcb->in6p_faddr))
859 panic("tcp_respond: ip6_dst != in6p_faddr");
860 } else
861 panic("tcp_respond: address family mismatch");
862 #endif
863 }
864 #endif
865 else
866 ro = NULL;
867
868 switch (family) {
869 #ifdef INET
870 case AF_INET:
871 error = ip_output(m, NULL, ro,
872 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
873 (struct ip_moptions *)0, so);
874 break;
875 #endif
876 #ifdef INET6
877 case AF_INET6:
878 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
879 (struct ip6_moptions *)0, so, NULL);
880 break;
881 #endif
882 default:
883 error = EAFNOSUPPORT;
884 break;
885 }
886
887 return (error);
888 }
889
890 /*
891 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
892 * a bunch of members individually, we maintain this template for the
893 * static and mostly-static components of the TCPCB, and copy it into
894 * the new TCPCB instead.
895 */
896 static struct tcpcb tcpcb_template = {
897 /*
898 * If TCP_NTIMERS ever changes, we'll need to update this
899 * initializer.
900 */
901 .t_timer = {
902 CALLOUT_INITIALIZER,
903 CALLOUT_INITIALIZER,
904 CALLOUT_INITIALIZER,
905 CALLOUT_INITIALIZER,
906 },
907 .t_delack_ch = CALLOUT_INITIALIZER,
908
909 .t_srtt = TCPTV_SRTTBASE,
910 .t_rttmin = TCPTV_MIN,
911
912 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
913 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
914 .snd_numholes = 0,
915
916 .t_partialacks = -1,
917 };
918
919 /*
920 * Updates the TCPCB template whenever a parameter that would affect
921 * the template is changed.
922 */
923 void
924 tcp_tcpcb_template(void)
925 {
926 struct tcpcb *tp = &tcpcb_template;
927 int flags;
928
929 tp->t_peermss = tcp_mssdflt;
930 tp->t_ourmss = tcp_mssdflt;
931 tp->t_segsz = tcp_mssdflt;
932
933 flags = 0;
934 if (tcp_do_rfc1323 && tcp_do_win_scale)
935 flags |= TF_REQ_SCALE;
936 if (tcp_do_rfc1323 && tcp_do_timestamps)
937 flags |= TF_REQ_TSTMP;
938 tp->t_flags = flags;
939
940 /*
941 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
942 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
943 * reasonable initial retransmit time.
944 */
945 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
946 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
947 TCPTV_MIN, TCPTV_REXMTMAX);
948 }
949
950 /*
951 * Create a new TCP control block, making an
952 * empty reassembly queue and hooking it to the argument
953 * protocol control block.
954 */
955 /* family selects inpcb, or in6pcb */
956 struct tcpcb *
957 tcp_newtcpcb(int family, void *aux)
958 {
959 struct tcpcb *tp;
960 int i;
961
962 /* XXX Consider using a pool_cache for speed. */
963 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
964 if (tp == NULL)
965 return (NULL);
966 memcpy(tp, &tcpcb_template, sizeof(*tp));
967 TAILQ_INIT(&tp->segq);
968 TAILQ_INIT(&tp->timeq);
969 tp->t_family = family; /* may be overridden later on */
970 TAILQ_INIT(&tp->snd_holes);
971 LIST_INIT(&tp->t_sc); /* XXX can template this */
972
973 /* Don't sweat this loop; hopefully the compiler will unroll it. */
974 for (i = 0; i < TCPT_NTIMERS; i++)
975 TCP_TIMER_INIT(tp, i);
976
977 switch (family) {
978 case AF_INET:
979 {
980 struct inpcb *inp = (struct inpcb *)aux;
981
982 inp->inp_ip.ip_ttl = ip_defttl;
983 inp->inp_ppcb = (caddr_t)tp;
984
985 tp->t_inpcb = inp;
986 tp->t_mtudisc = ip_mtudisc;
987 break;
988 }
989 #ifdef INET6
990 case AF_INET6:
991 {
992 struct in6pcb *in6p = (struct in6pcb *)aux;
993
994 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
995 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
996 : NULL);
997 in6p->in6p_ppcb = (caddr_t)tp;
998
999 tp->t_in6pcb = in6p;
1000 /* for IPv6, always try to run path MTU discovery */
1001 tp->t_mtudisc = 1;
1002 break;
1003 }
1004 #endif /* INET6 */
1005 default:
1006 pool_put(&tcpcb_pool, tp);
1007 return (NULL);
1008 }
1009
1010 /*
1011 * Initialize our timebase. When we send timestamps, we take
1012 * the delta from tcp_now -- this means each connection always
1013 * gets a timebase of 0, which makes it, among other things,
1014 * more difficult to determine how long a system has been up,
1015 * and thus how many TCP sequence increments have occurred.
1016 */
1017 tp->ts_timebase = tcp_now;
1018
1019 return (tp);
1020 }
1021
1022 /*
1023 * Drop a TCP connection, reporting
1024 * the specified error. If connection is synchronized,
1025 * then send a RST to peer.
1026 */
1027 struct tcpcb *
1028 tcp_drop(struct tcpcb *tp, int errno)
1029 {
1030 struct socket *so = NULL;
1031
1032 #ifdef DIAGNOSTIC
1033 if (tp->t_inpcb && tp->t_in6pcb)
1034 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1035 #endif
1036 #ifdef INET
1037 if (tp->t_inpcb)
1038 so = tp->t_inpcb->inp_socket;
1039 #endif
1040 #ifdef INET6
1041 if (tp->t_in6pcb)
1042 so = tp->t_in6pcb->in6p_socket;
1043 #endif
1044 if (!so)
1045 return NULL;
1046
1047 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1048 tp->t_state = TCPS_CLOSED;
1049 (void) tcp_output(tp);
1050 tcpstat.tcps_drops++;
1051 } else
1052 tcpstat.tcps_conndrops++;
1053 if (errno == ETIMEDOUT && tp->t_softerror)
1054 errno = tp->t_softerror;
1055 so->so_error = errno;
1056 return (tcp_close(tp));
1057 }
1058
1059 /*
1060 * Return whether this tcpcb is marked as dead, indicating
1061 * to the calling timer function that no further action should
1062 * be taken, as we are about to release this tcpcb. The release
1063 * of the storage will be done if this is the last timer running.
1064 *
1065 * This should be called from the callout handler function after
1066 * callout_ack() is done, so that the number of invoking timer
1067 * functions is 0.
1068 */
1069 int
1070 tcp_isdead(struct tcpcb *tp)
1071 {
1072 int dead = (tp->t_flags & TF_DEAD);
1073
1074 if (__predict_false(dead)) {
1075 if (tcp_timers_invoking(tp) > 0)
1076 /* not quite there yet -- count separately? */
1077 return dead;
1078 tcpstat.tcps_delayed_free++;
1079 pool_put(&tcpcb_pool, tp);
1080 }
1081 return dead;
1082 }
1083
1084 /*
1085 * Close a TCP control block:
1086 * discard all space held by the tcp
1087 * discard internet protocol block
1088 * wake up any sleepers
1089 */
1090 struct tcpcb *
1091 tcp_close(struct tcpcb *tp)
1092 {
1093 struct inpcb *inp;
1094 #ifdef INET6
1095 struct in6pcb *in6p;
1096 #endif
1097 struct socket *so;
1098 #ifdef RTV_RTT
1099 struct rtentry *rt;
1100 #endif
1101 struct route *ro;
1102
1103 inp = tp->t_inpcb;
1104 #ifdef INET6
1105 in6p = tp->t_in6pcb;
1106 #endif
1107 so = NULL;
1108 ro = NULL;
1109 if (inp) {
1110 so = inp->inp_socket;
1111 ro = &inp->inp_route;
1112 }
1113 #ifdef INET6
1114 else if (in6p) {
1115 so = in6p->in6p_socket;
1116 ro = (struct route *)&in6p->in6p_route;
1117 }
1118 #endif
1119
1120 #ifdef RTV_RTT
1121 /*
1122 * If we sent enough data to get some meaningful characteristics,
1123 * save them in the routing entry. 'Enough' is arbitrarily
1124 * defined as the sendpipesize (default 4K) * 16. This would
1125 * give us 16 rtt samples assuming we only get one sample per
1126 * window (the usual case on a long haul net). 16 samples is
1127 * enough for the srtt filter to converge to within 5% of the correct
1128 * value; fewer samples and we could save a very bogus rtt.
1129 *
1130 * Don't update the default route's characteristics and don't
1131 * update anything that the user "locked".
1132 */
1133 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1134 ro && (rt = ro->ro_rt) &&
1135 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1136 u_long i = 0;
1137
1138 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1139 i = tp->t_srtt *
1140 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1141 if (rt->rt_rmx.rmx_rtt && i)
1142 /*
1143 * filter this update to half the old & half
1144 * the new values, converting scale.
1145 * See route.h and tcp_var.h for a
1146 * description of the scaling constants.
1147 */
1148 rt->rt_rmx.rmx_rtt =
1149 (rt->rt_rmx.rmx_rtt + i) / 2;
1150 else
1151 rt->rt_rmx.rmx_rtt = i;
1152 }
1153 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1154 i = tp->t_rttvar *
1155 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1156 if (rt->rt_rmx.rmx_rttvar && i)
1157 rt->rt_rmx.rmx_rttvar =
1158 (rt->rt_rmx.rmx_rttvar + i) / 2;
1159 else
1160 rt->rt_rmx.rmx_rttvar = i;
1161 }
1162 /*
1163 * update the pipelimit (ssthresh) if it has been updated
1164 * already or if a pipesize was specified & the threshhold
1165 * got below half the pipesize. I.e., wait for bad news
1166 * before we start updating, then update on both good
1167 * and bad news.
1168 */
1169 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1170 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1171 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1172 /*
1173 * convert the limit from user data bytes to
1174 * packets then to packet data bytes.
1175 */
1176 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1177 if (i < 2)
1178 i = 2;
1179 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1180 if (rt->rt_rmx.rmx_ssthresh)
1181 rt->rt_rmx.rmx_ssthresh =
1182 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1183 else
1184 rt->rt_rmx.rmx_ssthresh = i;
1185 }
1186 }
1187 #endif /* RTV_RTT */
1188 /* free the reassembly queue, if any */
1189 TCP_REASS_LOCK(tp);
1190 (void) tcp_freeq(tp);
1191 TCP_REASS_UNLOCK(tp);
1192
1193 /* free the SACK holes list. */
1194 tcp_free_sackholes(tp);
1195
1196 tcp_canceltimers(tp);
1197 TCP_CLEAR_DELACK(tp);
1198 syn_cache_cleanup(tp);
1199
1200 if (tp->t_template) {
1201 m_free(tp->t_template);
1202 tp->t_template = NULL;
1203 }
1204 if (tcp_timers_invoking(tp))
1205 tp->t_flags |= TF_DEAD;
1206 else
1207 pool_put(&tcpcb_pool, tp);
1208
1209 if (inp) {
1210 inp->inp_ppcb = 0;
1211 soisdisconnected(so);
1212 in_pcbdetach(inp);
1213 }
1214 #ifdef INET6
1215 else if (in6p) {
1216 in6p->in6p_ppcb = 0;
1217 soisdisconnected(so);
1218 in6_pcbdetach(in6p);
1219 }
1220 #endif
1221 tcpstat.tcps_closed++;
1222 return ((struct tcpcb *)0);
1223 }
1224
1225 int
1226 tcp_freeq(tp)
1227 struct tcpcb *tp;
1228 {
1229 struct ipqent *qe;
1230 int rv = 0;
1231 #ifdef TCPREASS_DEBUG
1232 int i = 0;
1233 #endif
1234
1235 TCP_REASS_LOCK_CHECK(tp);
1236
1237 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1238 #ifdef TCPREASS_DEBUG
1239 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1240 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1241 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1242 #endif
1243 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1244 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1245 m_freem(qe->ipqe_m);
1246 tcpipqent_free(qe);
1247 rv = 1;
1248 }
1249 tp->t_segqlen = 0;
1250 KASSERT(TAILQ_EMPTY(&tp->timeq));
1251 return (rv);
1252 }
1253
1254 /*
1255 * Protocol drain routine. Called when memory is in short supply.
1256 */
1257 void
1258 tcp_drain(void)
1259 {
1260 struct inpcb_hdr *inph;
1261 struct tcpcb *tp;
1262
1263 /*
1264 * Free the sequence queue of all TCP connections.
1265 */
1266 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1267 switch (inph->inph_af) {
1268 case AF_INET:
1269 tp = intotcpcb((struct inpcb *)inph);
1270 break;
1271 #ifdef INET6
1272 case AF_INET6:
1273 tp = in6totcpcb((struct in6pcb *)inph);
1274 break;
1275 #endif
1276 default:
1277 tp = NULL;
1278 break;
1279 }
1280 if (tp != NULL) {
1281 /*
1282 * We may be called from a device's interrupt
1283 * context. If the tcpcb is already busy,
1284 * just bail out now.
1285 */
1286 if (tcp_reass_lock_try(tp) == 0)
1287 continue;
1288 if (tcp_freeq(tp))
1289 tcpstat.tcps_connsdrained++;
1290 TCP_REASS_UNLOCK(tp);
1291 }
1292 }
1293 }
1294
1295 /*
1296 * Notify a tcp user of an asynchronous error;
1297 * store error as soft error, but wake up user
1298 * (for now, won't do anything until can select for soft error).
1299 */
1300 void
1301 tcp_notify(struct inpcb *inp, int error)
1302 {
1303 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1304 struct socket *so = inp->inp_socket;
1305
1306 /*
1307 * Ignore some errors if we are hooked up.
1308 * If connection hasn't completed, has retransmitted several times,
1309 * and receives a second error, give up now. This is better
1310 * than waiting a long time to establish a connection that
1311 * can never complete.
1312 */
1313 if (tp->t_state == TCPS_ESTABLISHED &&
1314 (error == EHOSTUNREACH || error == ENETUNREACH ||
1315 error == EHOSTDOWN)) {
1316 return;
1317 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1318 tp->t_rxtshift > 3 && tp->t_softerror)
1319 so->so_error = error;
1320 else
1321 tp->t_softerror = error;
1322 wakeup((caddr_t) &so->so_timeo);
1323 sorwakeup(so);
1324 sowwakeup(so);
1325 }
1326
1327 #ifdef INET6
1328 void
1329 tcp6_notify(struct in6pcb *in6p, int error)
1330 {
1331 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1332 struct socket *so = in6p->in6p_socket;
1333
1334 /*
1335 * Ignore some errors if we are hooked up.
1336 * If connection hasn't completed, has retransmitted several times,
1337 * and receives a second error, give up now. This is better
1338 * than waiting a long time to establish a connection that
1339 * can never complete.
1340 */
1341 if (tp->t_state == TCPS_ESTABLISHED &&
1342 (error == EHOSTUNREACH || error == ENETUNREACH ||
1343 error == EHOSTDOWN)) {
1344 return;
1345 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1346 tp->t_rxtshift > 3 && tp->t_softerror)
1347 so->so_error = error;
1348 else
1349 tp->t_softerror = error;
1350 wakeup((caddr_t) &so->so_timeo);
1351 sorwakeup(so);
1352 sowwakeup(so);
1353 }
1354 #endif
1355
1356 #ifdef INET6
1357 void
1358 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1359 {
1360 struct tcphdr th;
1361 void (*notify)(struct in6pcb *, int) = tcp6_notify;
1362 int nmatch;
1363 struct ip6_hdr *ip6;
1364 const struct sockaddr_in6 *sa6_src = NULL;
1365 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1366 struct mbuf *m;
1367 int off;
1368
1369 if (sa->sa_family != AF_INET6 ||
1370 sa->sa_len != sizeof(struct sockaddr_in6))
1371 return;
1372 if ((unsigned)cmd >= PRC_NCMDS)
1373 return;
1374 else if (cmd == PRC_QUENCH) {
1375 /* XXX there's no PRC_QUENCH in IPv6 */
1376 notify = tcp6_quench;
1377 } else if (PRC_IS_REDIRECT(cmd))
1378 notify = in6_rtchange, d = NULL;
1379 else if (cmd == PRC_MSGSIZE)
1380 ; /* special code is present, see below */
1381 else if (cmd == PRC_HOSTDEAD)
1382 d = NULL;
1383 else if (inet6ctlerrmap[cmd] == 0)
1384 return;
1385
1386 /* if the parameter is from icmp6, decode it. */
1387 if (d != NULL) {
1388 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1389 m = ip6cp->ip6c_m;
1390 ip6 = ip6cp->ip6c_ip6;
1391 off = ip6cp->ip6c_off;
1392 sa6_src = ip6cp->ip6c_src;
1393 } else {
1394 m = NULL;
1395 ip6 = NULL;
1396 sa6_src = &sa6_any;
1397 off = 0;
1398 }
1399
1400 if (ip6) {
1401 /*
1402 * XXX: We assume that when ip6 is non NULL,
1403 * M and OFF are valid.
1404 */
1405
1406 /* check if we can safely examine src and dst ports */
1407 if (m->m_pkthdr.len < off + sizeof(th)) {
1408 if (cmd == PRC_MSGSIZE)
1409 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1410 return;
1411 }
1412
1413 bzero(&th, sizeof(th));
1414 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1415
1416 if (cmd == PRC_MSGSIZE) {
1417 int valid = 0;
1418
1419 /*
1420 * Check to see if we have a valid TCP connection
1421 * corresponding to the address in the ICMPv6 message
1422 * payload.
1423 */
1424 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1425 th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
1426 th.th_sport, 0))
1427 valid++;
1428
1429 /*
1430 * Depending on the value of "valid" and routing table
1431 * size (mtudisc_{hi,lo}wat), we will:
1432 * - recalcurate the new MTU and create the
1433 * corresponding routing entry, or
1434 * - ignore the MTU change notification.
1435 */
1436 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1437
1438 /*
1439 * no need to call in6_pcbnotify, it should have been
1440 * called via callback if necessary
1441 */
1442 return;
1443 }
1444
1445 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1446 (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1447 if (nmatch == 0 && syn_cache_count &&
1448 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1449 inet6ctlerrmap[cmd] == ENETUNREACH ||
1450 inet6ctlerrmap[cmd] == EHOSTDOWN))
1451 syn_cache_unreach((struct sockaddr *)sa6_src,
1452 sa, &th);
1453 } else {
1454 (void) in6_pcbnotify(&tcbtable, sa, 0,
1455 (struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1456 }
1457 }
1458 #endif
1459
1460 #ifdef INET
1461 /* assumes that ip header and tcp header are contiguous on mbuf */
1462 void *
1463 tcp_ctlinput(int cmd, struct sockaddr *sa, void *v)
1464 {
1465 struct ip *ip = v;
1466 struct tcphdr *th;
1467 struct icmp *icp;
1468 extern const int inetctlerrmap[];
1469 void (*notify)(struct inpcb *, int) = tcp_notify;
1470 int errno;
1471 int nmatch;
1472 #ifdef INET6
1473 struct in6_addr src6, dst6;
1474 #endif
1475
1476 if (sa->sa_family != AF_INET ||
1477 sa->sa_len != sizeof(struct sockaddr_in))
1478 return NULL;
1479 if ((unsigned)cmd >= PRC_NCMDS)
1480 return NULL;
1481 errno = inetctlerrmap[cmd];
1482 if (cmd == PRC_QUENCH)
1483 notify = tcp_quench;
1484 else if (PRC_IS_REDIRECT(cmd))
1485 notify = in_rtchange, ip = 0;
1486 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1487 /*
1488 * Check to see if we have a valid TCP connection
1489 * corresponding to the address in the ICMP message
1490 * payload.
1491 *
1492 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1493 */
1494 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1495 #ifdef INET6
1496 memset(&src6, 0, sizeof(src6));
1497 memset(&dst6, 0, sizeof(dst6));
1498 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1499 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1500 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1501 #endif
1502 if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
1503 ip->ip_src, th->th_sport) != NULL)
1504 ;
1505 #ifdef INET6
1506 else if (in6_pcblookup_connect(&tcbtable, &dst6,
1507 th->th_dport, &src6, th->th_sport, 0) != NULL)
1508 ;
1509 #endif
1510 else
1511 return NULL;
1512
1513 /*
1514 * Now that we've validated that we are actually communicating
1515 * with the host indicated in the ICMP message, locate the
1516 * ICMP header, recalculate the new MTU, and create the
1517 * corresponding routing entry.
1518 */
1519 icp = (struct icmp *)((caddr_t)ip -
1520 offsetof(struct icmp, icmp_ip));
1521 icmp_mtudisc(icp, ip->ip_dst);
1522
1523 return NULL;
1524 } else if (cmd == PRC_HOSTDEAD)
1525 ip = 0;
1526 else if (errno == 0)
1527 return NULL;
1528 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1529 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1530 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1531 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1532 if (nmatch == 0 && syn_cache_count &&
1533 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1534 inetctlerrmap[cmd] == ENETUNREACH ||
1535 inetctlerrmap[cmd] == EHOSTDOWN)) {
1536 struct sockaddr_in sin;
1537 bzero(&sin, sizeof(sin));
1538 sin.sin_len = sizeof(sin);
1539 sin.sin_family = AF_INET;
1540 sin.sin_port = th->th_sport;
1541 sin.sin_addr = ip->ip_src;
1542 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1543 }
1544
1545 /* XXX mapped address case */
1546 } else
1547 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1548 notify);
1549 return NULL;
1550 }
1551
1552 /*
1553 * When a source quench is received, we are being notified of congestion.
1554 * Close the congestion window down to the Loss Window (one segment).
1555 * We will gradually open it again as we proceed.
1556 */
1557 void
1558 tcp_quench(struct inpcb *inp, int errno)
1559 {
1560 struct tcpcb *tp = intotcpcb(inp);
1561
1562 if (tp)
1563 tp->snd_cwnd = tp->t_segsz;
1564 }
1565 #endif
1566
1567 #ifdef INET6
1568 void
1569 tcp6_quench(struct in6pcb *in6p, int errno)
1570 {
1571 struct tcpcb *tp = in6totcpcb(in6p);
1572
1573 if (tp)
1574 tp->snd_cwnd = tp->t_segsz;
1575 }
1576 #endif
1577
1578 #ifdef INET
1579 /*
1580 * Path MTU Discovery handlers.
1581 */
1582 void
1583 tcp_mtudisc_callback(struct in_addr faddr)
1584 {
1585 #ifdef INET6
1586 struct in6_addr in6;
1587 #endif
1588
1589 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1590 #ifdef INET6
1591 memset(&in6, 0, sizeof(in6));
1592 in6.s6_addr16[5] = 0xffff;
1593 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1594 tcp6_mtudisc_callback(&in6);
1595 #endif
1596 }
1597
1598 /*
1599 * On receipt of path MTU corrections, flush old route and replace it
1600 * with the new one. Retransmit all unacknowledged packets, to ensure
1601 * that all packets will be received.
1602 */
1603 void
1604 tcp_mtudisc(struct inpcb *inp, int errno)
1605 {
1606 struct tcpcb *tp = intotcpcb(inp);
1607 struct rtentry *rt = in_pcbrtentry(inp);
1608
1609 if (tp != 0) {
1610 if (rt != 0) {
1611 /*
1612 * If this was not a host route, remove and realloc.
1613 */
1614 if ((rt->rt_flags & RTF_HOST) == 0) {
1615 in_rtchange(inp, errno);
1616 if ((rt = in_pcbrtentry(inp)) == 0)
1617 return;
1618 }
1619
1620 /*
1621 * Slow start out of the error condition. We
1622 * use the MTU because we know it's smaller
1623 * than the previously transmitted segment.
1624 *
1625 * Note: This is more conservative than the
1626 * suggestion in draft-floyd-incr-init-win-03.
1627 */
1628 if (rt->rt_rmx.rmx_mtu != 0)
1629 tp->snd_cwnd =
1630 TCP_INITIAL_WINDOW(tcp_init_win,
1631 rt->rt_rmx.rmx_mtu);
1632 }
1633
1634 /*
1635 * Resend unacknowledged packets.
1636 */
1637 tp->snd_nxt = tp->snd_una;
1638 tcp_output(tp);
1639 }
1640 }
1641 #endif
1642
1643 #ifdef INET6
1644 /*
1645 * Path MTU Discovery handlers.
1646 */
1647 void
1648 tcp6_mtudisc_callback(struct in6_addr *faddr)
1649 {
1650 struct sockaddr_in6 sin6;
1651
1652 bzero(&sin6, sizeof(sin6));
1653 sin6.sin6_family = AF_INET6;
1654 sin6.sin6_len = sizeof(struct sockaddr_in6);
1655 sin6.sin6_addr = *faddr;
1656 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1657 (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1658 }
1659
1660 void
1661 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1662 {
1663 struct tcpcb *tp = in6totcpcb(in6p);
1664 struct rtentry *rt = in6_pcbrtentry(in6p);
1665
1666 if (tp != 0) {
1667 if (rt != 0) {
1668 /*
1669 * If this was not a host route, remove and realloc.
1670 */
1671 if ((rt->rt_flags & RTF_HOST) == 0) {
1672 in6_rtchange(in6p, errno);
1673 if ((rt = in6_pcbrtentry(in6p)) == 0)
1674 return;
1675 }
1676
1677 /*
1678 * Slow start out of the error condition. We
1679 * use the MTU because we know it's smaller
1680 * than the previously transmitted segment.
1681 *
1682 * Note: This is more conservative than the
1683 * suggestion in draft-floyd-incr-init-win-03.
1684 */
1685 if (rt->rt_rmx.rmx_mtu != 0)
1686 tp->snd_cwnd =
1687 TCP_INITIAL_WINDOW(tcp_init_win,
1688 rt->rt_rmx.rmx_mtu);
1689 }
1690
1691 /*
1692 * Resend unacknowledged packets.
1693 */
1694 tp->snd_nxt = tp->snd_una;
1695 tcp_output(tp);
1696 }
1697 }
1698 #endif /* INET6 */
1699
1700 /*
1701 * Compute the MSS to advertise to the peer. Called only during
1702 * the 3-way handshake. If we are the server (peer initiated
1703 * connection), we are called with a pointer to the interface
1704 * on which the SYN packet arrived. If we are the client (we
1705 * initiated connection), we are called with a pointer to the
1706 * interface out which this connection should go.
1707 *
1708 * NOTE: Do not subtract IP option/extension header size nor IPsec
1709 * header size from MSS advertisement. MSS option must hold the maximum
1710 * segment size we can accept, so it must always be:
1711 * max(if mtu) - ip header - tcp header
1712 */
1713 u_long
1714 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1715 {
1716 extern u_long in_maxmtu;
1717 u_long mss = 0;
1718 u_long hdrsiz;
1719
1720 /*
1721 * In order to avoid defeating path MTU discovery on the peer,
1722 * we advertise the max MTU of all attached networks as our MSS,
1723 * per RFC 1191, section 3.1.
1724 *
1725 * We provide the option to advertise just the MTU of
1726 * the interface on which we hope this connection will
1727 * be receiving. If we are responding to a SYN, we
1728 * will have a pretty good idea about this, but when
1729 * initiating a connection there is a bit more doubt.
1730 *
1731 * We also need to ensure that loopback has a large enough
1732 * MSS, as the loopback MTU is never included in in_maxmtu.
1733 */
1734
1735 if (ifp != NULL)
1736 switch (af) {
1737 case AF_INET:
1738 mss = ifp->if_mtu;
1739 break;
1740 #ifdef INET6
1741 case AF_INET6:
1742 mss = IN6_LINKMTU(ifp);
1743 break;
1744 #endif
1745 }
1746
1747 if (tcp_mss_ifmtu == 0)
1748 switch (af) {
1749 case AF_INET:
1750 mss = max(in_maxmtu, mss);
1751 break;
1752 #ifdef INET6
1753 case AF_INET6:
1754 mss = max(in6_maxmtu, mss);
1755 break;
1756 #endif
1757 }
1758
1759 switch (af) {
1760 case AF_INET:
1761 hdrsiz = sizeof(struct ip);
1762 break;
1763 #ifdef INET6
1764 case AF_INET6:
1765 hdrsiz = sizeof(struct ip6_hdr);
1766 break;
1767 #endif
1768 default:
1769 hdrsiz = 0;
1770 break;
1771 }
1772 hdrsiz += sizeof(struct tcphdr);
1773 if (mss > hdrsiz)
1774 mss -= hdrsiz;
1775
1776 mss = max(tcp_mssdflt, mss);
1777 return (mss);
1778 }
1779
1780 /*
1781 * Set connection variables based on the peer's advertised MSS.
1782 * We are passed the TCPCB for the actual connection. If we
1783 * are the server, we are called by the compressed state engine
1784 * when the 3-way handshake is complete. If we are the client,
1785 * we are called when we receive the SYN,ACK from the server.
1786 *
1787 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1788 * before this routine is called!
1789 */
1790 void
1791 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1792 {
1793 struct socket *so;
1794 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1795 struct rtentry *rt;
1796 #endif
1797 u_long bufsize;
1798 int mss;
1799
1800 #ifdef DIAGNOSTIC
1801 if (tp->t_inpcb && tp->t_in6pcb)
1802 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1803 #endif
1804 so = NULL;
1805 rt = NULL;
1806 #ifdef INET
1807 if (tp->t_inpcb) {
1808 so = tp->t_inpcb->inp_socket;
1809 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1810 rt = in_pcbrtentry(tp->t_inpcb);
1811 #endif
1812 }
1813 #endif
1814 #ifdef INET6
1815 if (tp->t_in6pcb) {
1816 so = tp->t_in6pcb->in6p_socket;
1817 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1818 rt = in6_pcbrtentry(tp->t_in6pcb);
1819 #endif
1820 }
1821 #endif
1822
1823 /*
1824 * As per RFC1122, use the default MSS value, unless they
1825 * sent us an offer. Do not accept offers less than 256 bytes.
1826 */
1827 mss = tcp_mssdflt;
1828 if (offer)
1829 mss = offer;
1830 mss = max(mss, 256); /* sanity */
1831 tp->t_peermss = mss;
1832 mss -= tcp_optlen(tp);
1833 #ifdef INET
1834 if (tp->t_inpcb)
1835 mss -= ip_optlen(tp->t_inpcb);
1836 #endif
1837 #ifdef INET6
1838 if (tp->t_in6pcb)
1839 mss -= ip6_optlen(tp->t_in6pcb);
1840 #endif
1841
1842 /*
1843 * If there's a pipesize, change the socket buffer to that size.
1844 * Make the socket buffer an integral number of MSS units. If
1845 * the MSS is larger than the socket buffer, artificially decrease
1846 * the MSS.
1847 */
1848 #ifdef RTV_SPIPE
1849 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1850 bufsize = rt->rt_rmx.rmx_sendpipe;
1851 else
1852 #endif
1853 bufsize = so->so_snd.sb_hiwat;
1854 if (bufsize < mss)
1855 mss = bufsize;
1856 else {
1857 bufsize = roundup(bufsize, mss);
1858 if (bufsize > sb_max)
1859 bufsize = sb_max;
1860 (void) sbreserve(&so->so_snd, bufsize, so);
1861 }
1862 tp->t_segsz = mss;
1863
1864 #ifdef RTV_SSTHRESH
1865 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1866 /*
1867 * There's some sort of gateway or interface buffer
1868 * limit on the path. Use this to set the slow
1869 * start threshold, but set the threshold to no less
1870 * than 2 * MSS.
1871 */
1872 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1873 }
1874 #endif
1875 }
1876
1877 /*
1878 * Processing necessary when a TCP connection is established.
1879 */
1880 void
1881 tcp_established(struct tcpcb *tp)
1882 {
1883 struct socket *so;
1884 #ifdef RTV_RPIPE
1885 struct rtentry *rt;
1886 #endif
1887 u_long bufsize;
1888
1889 #ifdef DIAGNOSTIC
1890 if (tp->t_inpcb && tp->t_in6pcb)
1891 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1892 #endif
1893 so = NULL;
1894 rt = NULL;
1895 #ifdef INET
1896 if (tp->t_inpcb) {
1897 so = tp->t_inpcb->inp_socket;
1898 #if defined(RTV_RPIPE)
1899 rt = in_pcbrtentry(tp->t_inpcb);
1900 #endif
1901 }
1902 #endif
1903 #ifdef INET6
1904 if (tp->t_in6pcb) {
1905 so = tp->t_in6pcb->in6p_socket;
1906 #if defined(RTV_RPIPE)
1907 rt = in6_pcbrtentry(tp->t_in6pcb);
1908 #endif
1909 }
1910 #endif
1911
1912 tp->t_state = TCPS_ESTABLISHED;
1913 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1914
1915 #ifdef RTV_RPIPE
1916 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1917 bufsize = rt->rt_rmx.rmx_recvpipe;
1918 else
1919 #endif
1920 bufsize = so->so_rcv.sb_hiwat;
1921 if (bufsize > tp->t_ourmss) {
1922 bufsize = roundup(bufsize, tp->t_ourmss);
1923 if (bufsize > sb_max)
1924 bufsize = sb_max;
1925 (void) sbreserve(&so->so_rcv, bufsize, so);
1926 }
1927 }
1928
1929 /*
1930 * Check if there's an initial rtt or rttvar. Convert from the
1931 * route-table units to scaled multiples of the slow timeout timer.
1932 * Called only during the 3-way handshake.
1933 */
1934 void
1935 tcp_rmx_rtt(struct tcpcb *tp)
1936 {
1937 #ifdef RTV_RTT
1938 struct rtentry *rt = NULL;
1939 int rtt;
1940
1941 #ifdef DIAGNOSTIC
1942 if (tp->t_inpcb && tp->t_in6pcb)
1943 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
1944 #endif
1945 #ifdef INET
1946 if (tp->t_inpcb)
1947 rt = in_pcbrtentry(tp->t_inpcb);
1948 #endif
1949 #ifdef INET6
1950 if (tp->t_in6pcb)
1951 rt = in6_pcbrtentry(tp->t_in6pcb);
1952 #endif
1953 if (rt == NULL)
1954 return;
1955
1956 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1957 /*
1958 * XXX The lock bit for MTU indicates that the value
1959 * is also a minimum value; this is subject to time.
1960 */
1961 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1962 TCPT_RANGESET(tp->t_rttmin,
1963 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
1964 TCPTV_MIN, TCPTV_REXMTMAX);
1965 tp->t_srtt = rtt /
1966 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1967 if (rt->rt_rmx.rmx_rttvar) {
1968 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1969 ((RTM_RTTUNIT / PR_SLOWHZ) >>
1970 (TCP_RTTVAR_SHIFT + 2));
1971 } else {
1972 /* Default variation is +- 1 rtt */
1973 tp->t_rttvar =
1974 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1975 }
1976 TCPT_RANGESET(tp->t_rxtcur,
1977 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1978 tp->t_rttmin, TCPTV_REXMTMAX);
1979 }
1980 #endif
1981 }
1982
1983 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
1984 #if NRND > 0
1985 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
1986 #endif
1987
1988 /*
1989 * Get a new sequence value given a tcp control block
1990 */
1991 tcp_seq
1992 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
1993 {
1994
1995 #ifdef INET
1996 if (tp->t_inpcb != NULL) {
1997 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
1998 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
1999 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2000 addin));
2001 }
2002 #endif
2003 #ifdef INET6
2004 if (tp->t_in6pcb != NULL) {
2005 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2006 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2007 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2008 addin));
2009 }
2010 #endif
2011 /* Not possible. */
2012 panic("tcp_new_iss");
2013 }
2014
2015 /*
2016 * This routine actually generates a new TCP initial sequence number.
2017 */
2018 tcp_seq
2019 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2020 size_t addrsz, tcp_seq addin)
2021 {
2022 tcp_seq tcp_iss;
2023
2024 #if NRND > 0
2025 static int beenhere;
2026
2027 /*
2028 * If we haven't been here before, initialize our cryptographic
2029 * hash secret.
2030 */
2031 if (beenhere == 0) {
2032 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2033 RND_EXTRACT_ANY);
2034 beenhere = 1;
2035 }
2036
2037 if (tcp_do_rfc1948) {
2038 MD5_CTX ctx;
2039 u_int8_t hash[16]; /* XXX MD5 knowledge */
2040
2041 /*
2042 * Compute the base value of the ISS. It is a hash
2043 * of (saddr, sport, daddr, dport, secret).
2044 */
2045 MD5Init(&ctx);
2046
2047 MD5Update(&ctx, (u_char *) laddr, addrsz);
2048 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2049
2050 MD5Update(&ctx, (u_char *) faddr, addrsz);
2051 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2052
2053 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2054
2055 MD5Final(hash, &ctx);
2056
2057 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2058
2059 /*
2060 * Now increment our "timer", and add it in to
2061 * the computed value.
2062 *
2063 * XXX Use `addin'?
2064 * XXX TCP_ISSINCR too large to use?
2065 */
2066 tcp_iss_seq += TCP_ISSINCR;
2067 #ifdef TCPISS_DEBUG
2068 printf("ISS hash 0x%08x, ", tcp_iss);
2069 #endif
2070 tcp_iss += tcp_iss_seq + addin;
2071 #ifdef TCPISS_DEBUG
2072 printf("new ISS 0x%08x\n", tcp_iss);
2073 #endif
2074 } else
2075 #endif /* NRND > 0 */
2076 {
2077 /*
2078 * Randomize.
2079 */
2080 #if NRND > 0
2081 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2082 #else
2083 tcp_iss = arc4random();
2084 #endif
2085
2086 /*
2087 * If we were asked to add some amount to a known value,
2088 * we will take a random value obtained above, mask off
2089 * the upper bits, and add in the known value. We also
2090 * add in a constant to ensure that we are at least a
2091 * certain distance from the original value.
2092 *
2093 * This is used when an old connection is in timed wait
2094 * and we have a new one coming in, for instance.
2095 */
2096 if (addin != 0) {
2097 #ifdef TCPISS_DEBUG
2098 printf("Random %08x, ", tcp_iss);
2099 #endif
2100 tcp_iss &= TCP_ISS_RANDOM_MASK;
2101 tcp_iss += addin + TCP_ISSINCR;
2102 #ifdef TCPISS_DEBUG
2103 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2104 #endif
2105 } else {
2106 tcp_iss &= TCP_ISS_RANDOM_MASK;
2107 tcp_iss += tcp_iss_seq;
2108 tcp_iss_seq += TCP_ISSINCR;
2109 #ifdef TCPISS_DEBUG
2110 printf("ISS %08x\n", tcp_iss);
2111 #endif
2112 }
2113 }
2114
2115 if (tcp_compat_42) {
2116 /*
2117 * Limit it to the positive range for really old TCP
2118 * implementations.
2119 * Just AND off the top bit instead of checking if
2120 * is set first - saves a branch 50% of the time.
2121 */
2122 tcp_iss &= 0x7fffffff; /* XXX */
2123 }
2124
2125 return (tcp_iss);
2126 }
2127
2128 #if defined(IPSEC) || defined(FAST_IPSEC)
2129 /* compute ESP/AH header size for TCP, including outer IP header. */
2130 size_t
2131 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2132 {
2133 struct inpcb *inp;
2134 size_t hdrsiz;
2135
2136 /* XXX mapped addr case (tp->t_in6pcb) */
2137 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2138 return 0;
2139 switch (tp->t_family) {
2140 case AF_INET:
2141 /* XXX: should use currect direction. */
2142 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2143 break;
2144 default:
2145 hdrsiz = 0;
2146 break;
2147 }
2148
2149 return hdrsiz;
2150 }
2151
2152 #ifdef INET6
2153 size_t
2154 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2155 {
2156 struct in6pcb *in6p;
2157 size_t hdrsiz;
2158
2159 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2160 return 0;
2161 switch (tp->t_family) {
2162 case AF_INET6:
2163 /* XXX: should use currect direction. */
2164 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2165 break;
2166 case AF_INET:
2167 /* mapped address case - tricky */
2168 default:
2169 hdrsiz = 0;
2170 break;
2171 }
2172
2173 return hdrsiz;
2174 }
2175 #endif
2176 #endif /*IPSEC*/
2177
2178 /*
2179 * Determine the length of the TCP options for this connection.
2180 *
2181 * XXX: What do we do for SACK, when we add that? Just reserve
2182 * all of the space? Otherwise we can't exactly be incrementing
2183 * cwnd by an amount that varies depending on the amount we last
2184 * had to SACK!
2185 */
2186
2187 u_int
2188 tcp_optlen(struct tcpcb *tp)
2189 {
2190 u_int optlen;
2191
2192 optlen = 0;
2193 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2194 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2195 optlen += TCPOLEN_TSTAMP_APPA;
2196
2197 #ifdef TCP_SIGNATURE
2198 #if defined(INET6) && defined(FAST_IPSEC)
2199 if (tp->t_family == AF_INET)
2200 #endif
2201 if (tp->t_flags & TF_SIGNATURE)
2202 optlen += TCPOLEN_SIGNATURE + 2;
2203 #endif /* TCP_SIGNATURE */
2204
2205 return optlen;
2206 }
2207