Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.189
      1 /*	$NetBSD: tcp_subr.c,v 1.189 2005/04/05 01:07:17 kurahone Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.189 2005/04/05 01:07:17 kurahone Exp $");
    102 
    103 #include "opt_inet.h"
    104 #include "opt_ipsec.h"
    105 #include "opt_tcp_compat_42.h"
    106 #include "opt_inet_csum.h"
    107 #include "opt_mbuftrace.h"
    108 #include "rnd.h"
    109 
    110 #include <sys/param.h>
    111 #include <sys/proc.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/socket.h>
    116 #include <sys/socketvar.h>
    117 #include <sys/protosw.h>
    118 #include <sys/errno.h>
    119 #include <sys/kernel.h>
    120 #include <sys/pool.h>
    121 #if NRND > 0
    122 #include <sys/md5.h>
    123 #include <sys/rnd.h>
    124 #endif
    125 
    126 #include <net/route.h>
    127 #include <net/if.h>
    128 
    129 #include <netinet/in.h>
    130 #include <netinet/in_systm.h>
    131 #include <netinet/ip.h>
    132 #include <netinet/in_pcb.h>
    133 #include <netinet/ip_var.h>
    134 #include <netinet/ip_icmp.h>
    135 
    136 #ifdef INET6
    137 #ifndef INET
    138 #include <netinet/in.h>
    139 #endif
    140 #include <netinet/ip6.h>
    141 #include <netinet6/in6_pcb.h>
    142 #include <netinet6/ip6_var.h>
    143 #include <netinet6/in6_var.h>
    144 #include <netinet6/ip6protosw.h>
    145 #include <netinet/icmp6.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include <netinet/tcp.h>
    150 #include <netinet/tcp_fsm.h>
    151 #include <netinet/tcp_seq.h>
    152 #include <netinet/tcp_timer.h>
    153 #include <netinet/tcp_var.h>
    154 #include <netinet/tcpip.h>
    155 
    156 #ifdef IPSEC
    157 #include <netinet6/ipsec.h>
    158 #include <netkey/key.h>
    159 #endif /*IPSEC*/
    160 
    161 #ifdef FAST_IPSEC
    162 #include <netipsec/ipsec.h>
    163 #include <netipsec/xform.h>
    164 #ifdef INET6
    165 #include <netipsec/ipsec6.h>
    166 #endif
    167  #include <netipsec/key.h>
    168 #endif	/* FAST_IPSEC*/
    169 
    170 
    171 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    172 struct	tcpstat tcpstat;	/* tcp statistics */
    173 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
    174 
    175 /* patchable/settable parameters for tcp */
    176 int 	tcp_mssdflt = TCP_MSS;
    177 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    178 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    179 #if NRND > 0
    180 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    181 #endif
    182 int	tcp_do_sack = 1;	/* selective acknowledgement */
    183 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    184 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    185 int	tcp_do_newreno = 1;	/* Use the New Reno algorithms */
    186 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    187 #ifndef TCP_INIT_WIN
    188 #define	TCP_INIT_WIN	0	/* initial slow start window */
    189 #endif
    190 #ifndef TCP_INIT_WIN_LOCAL
    191 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    192 #endif
    193 int	tcp_init_win = TCP_INIT_WIN;
    194 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    195 int	tcp_mss_ifmtu = 0;
    196 #ifdef TCP_COMPAT_42
    197 int	tcp_compat_42 = 1;
    198 #else
    199 int	tcp_compat_42 = 0;
    200 #endif
    201 int	tcp_rst_ppslim = 100;	/* 100pps */
    202 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
    203 int	tcp_do_loopback_cksum = 0;
    204 int	tcp_sack_tp_maxholes = 32;
    205 int	tcp_sack_globalmaxholes = 1024;
    206 int	tcp_sack_globalholes = 0;
    207 
    208 
    209 /* tcb hash */
    210 #ifndef TCBHASHSIZE
    211 #define	TCBHASHSIZE	128
    212 #endif
    213 int	tcbhashsize = TCBHASHSIZE;
    214 
    215 /* syn hash parameters */
    216 #define	TCP_SYN_HASH_SIZE	293
    217 #define	TCP_SYN_BUCKET_SIZE	35
    218 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    219 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    220 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    221 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    222 
    223 int	tcp_freeq(struct tcpcb *);
    224 
    225 #ifdef INET
    226 void	tcp_mtudisc_callback(struct in_addr);
    227 #endif
    228 #ifdef INET6
    229 void	tcp6_mtudisc_callback(struct in6_addr *);
    230 #endif
    231 
    232 void	tcp_mtudisc(struct inpcb *, int);
    233 #ifdef INET6
    234 void	tcp6_mtudisc(struct in6pcb *, int);
    235 #endif
    236 
    237 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
    238 
    239 #ifdef TCP_CSUM_COUNTERS
    240 #include <sys/device.h>
    241 
    242 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    243     NULL, "tcp", "hwcsum bad");
    244 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    245     NULL, "tcp", "hwcsum ok");
    246 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    247     NULL, "tcp", "hwcsum data");
    248 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    249     NULL, "tcp", "swcsum");
    250 
    251 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
    252 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
    253 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
    254 EVCNT_ATTACH_STATIC(tcp_swcsum);
    255 #endif /* TCP_CSUM_COUNTERS */
    256 
    257 
    258 #ifdef TCP_OUTPUT_COUNTERS
    259 #include <sys/device.h>
    260 
    261 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    262     NULL, "tcp", "output big header");
    263 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    264     NULL, "tcp", "output predict hit");
    265 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    266     NULL, "tcp", "output predict miss");
    267 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    268     NULL, "tcp", "output copy small");
    269 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    270     NULL, "tcp", "output copy big");
    271 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    272     NULL, "tcp", "output reference big");
    273 
    274 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
    275 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
    276 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
    277 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
    278 EVCNT_ATTACH_STATIC(tcp_output_copybig);
    279 EVCNT_ATTACH_STATIC(tcp_output_refbig);
    280 
    281 #endif /* TCP_OUTPUT_COUNTERS */
    282 
    283 #ifdef TCP_REASS_COUNTERS
    284 #include <sys/device.h>
    285 
    286 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    287     NULL, "tcp_reass", "calls");
    288 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    289     &tcp_reass_, "tcp_reass", "insert into empty queue");
    290 struct evcnt tcp_reass_iteration[8] = {
    291     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    292     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    293     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    294     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    295     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    296     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    297     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    298     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    299 };
    300 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    301     &tcp_reass_, "tcp_reass", "prepend to first");
    302 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    303     &tcp_reass_, "tcp_reass", "prepend");
    304 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    305     &tcp_reass_, "tcp_reass", "insert");
    306 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    307     &tcp_reass_, "tcp_reass", "insert at tail");
    308 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    309     &tcp_reass_, "tcp_reass", "append");
    310 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    311     &tcp_reass_, "tcp_reass", "append to tail fragment");
    312 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    313     &tcp_reass_, "tcp_reass", "overlap at end");
    314 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    315     &tcp_reass_, "tcp_reass", "overlap at start");
    316 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    317     &tcp_reass_, "tcp_reass", "duplicate segment");
    318 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    319     &tcp_reass_, "tcp_reass", "duplicate fragment");
    320 
    321 EVCNT_ATTACH_STATIC(tcp_reass_);
    322 EVCNT_ATTACH_STATIC(tcp_reass_empty);
    323 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
    324 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
    325 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
    326 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
    327 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
    328 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
    329 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
    330 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
    331 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
    332 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
    333 EVCNT_ATTACH_STATIC(tcp_reass_insert);
    334 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
    335 EVCNT_ATTACH_STATIC(tcp_reass_append);
    336 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
    337 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
    338 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
    339 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
    340 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
    341 
    342 #endif /* TCP_REASS_COUNTERS */
    343 
    344 #ifdef MBUFTRACE
    345 struct mowner tcp_mowner = { "tcp" };
    346 struct mowner tcp_rx_mowner = { "tcp", "rx" };
    347 struct mowner tcp_tx_mowner = { "tcp", "tx" };
    348 #endif
    349 
    350 /*
    351  * Tcp initialization
    352  */
    353 void
    354 tcp_init(void)
    355 {
    356 	int hlen;
    357 
    358 	/* Initialize the TCPCB template. */
    359 	tcp_tcpcb_template();
    360 
    361 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    362 
    363 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    364 #ifdef INET6
    365 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    366 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    367 #endif
    368 	if (max_protohdr < hlen)
    369 		max_protohdr = hlen;
    370 	if (max_linkhdr + hlen > MHLEN)
    371 		panic("tcp_init");
    372 
    373 #ifdef INET
    374 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    375 #endif
    376 #ifdef INET6
    377 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    378 #endif
    379 
    380 	/* Initialize timer state. */
    381 	tcp_timer_init();
    382 
    383 	/* Initialize the compressed state engine. */
    384 	syn_cache_init();
    385 
    386 	MOWNER_ATTACH(&tcp_tx_mowner);
    387 	MOWNER_ATTACH(&tcp_rx_mowner);
    388 	MOWNER_ATTACH(&tcp_mowner);
    389 }
    390 
    391 /*
    392  * Create template to be used to send tcp packets on a connection.
    393  * Call after host entry created, allocates an mbuf and fills
    394  * in a skeletal tcp/ip header, minimizing the amount of work
    395  * necessary when the connection is used.
    396  */
    397 struct mbuf *
    398 tcp_template(struct tcpcb *tp)
    399 {
    400 	struct inpcb *inp = tp->t_inpcb;
    401 #ifdef INET6
    402 	struct in6pcb *in6p = tp->t_in6pcb;
    403 #endif
    404 	struct tcphdr *n;
    405 	struct mbuf *m;
    406 	int hlen;
    407 
    408 	switch (tp->t_family) {
    409 	case AF_INET:
    410 		hlen = sizeof(struct ip);
    411 		if (inp)
    412 			break;
    413 #ifdef INET6
    414 		if (in6p) {
    415 			/* mapped addr case */
    416 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    417 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    418 				break;
    419 		}
    420 #endif
    421 		return NULL;	/*EINVAL*/
    422 #ifdef INET6
    423 	case AF_INET6:
    424 		hlen = sizeof(struct ip6_hdr);
    425 		if (in6p) {
    426 			/* more sainty check? */
    427 			break;
    428 		}
    429 		return NULL;	/*EINVAL*/
    430 #endif
    431 	default:
    432 		hlen = 0;	/*pacify gcc*/
    433 		return NULL;	/*EAFNOSUPPORT*/
    434 	}
    435 #ifdef DIAGNOSTIC
    436 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    437 		panic("mclbytes too small for t_template");
    438 #endif
    439 	m = tp->t_template;
    440 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    441 		;
    442 	else {
    443 		if (m)
    444 			m_freem(m);
    445 		m = tp->t_template = NULL;
    446 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    447 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    448 			MCLGET(m, M_DONTWAIT);
    449 			if ((m->m_flags & M_EXT) == 0) {
    450 				m_free(m);
    451 				m = NULL;
    452 			}
    453 		}
    454 		if (m == NULL)
    455 			return NULL;
    456 		MCLAIM(m, &tcp_mowner);
    457 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    458 	}
    459 
    460 	bzero(mtod(m, caddr_t), m->m_len);
    461 
    462 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
    463 
    464 	switch (tp->t_family) {
    465 	case AF_INET:
    466 	    {
    467 		struct ipovly *ipov;
    468 		mtod(m, struct ip *)->ip_v = 4;
    469 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
    470 		ipov = mtod(m, struct ipovly *);
    471 		ipov->ih_pr = IPPROTO_TCP;
    472 		ipov->ih_len = htons(sizeof(struct tcphdr));
    473 		if (inp) {
    474 			ipov->ih_src = inp->inp_laddr;
    475 			ipov->ih_dst = inp->inp_faddr;
    476 		}
    477 #ifdef INET6
    478 		else if (in6p) {
    479 			/* mapped addr case */
    480 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    481 				sizeof(ipov->ih_src));
    482 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    483 				sizeof(ipov->ih_dst));
    484 		}
    485 #endif
    486 		/*
    487 		 * Compute the pseudo-header portion of the checksum
    488 		 * now.  We incrementally add in the TCP option and
    489 		 * payload lengths later, and then compute the TCP
    490 		 * checksum right before the packet is sent off onto
    491 		 * the wire.
    492 		 */
    493 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    494 		    ipov->ih_dst.s_addr,
    495 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    496 		break;
    497 	    }
    498 #ifdef INET6
    499 	case AF_INET6:
    500 	    {
    501 		struct ip6_hdr *ip6;
    502 		mtod(m, struct ip *)->ip_v = 6;
    503 		ip6 = mtod(m, struct ip6_hdr *);
    504 		ip6->ip6_nxt = IPPROTO_TCP;
    505 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    506 		ip6->ip6_src = in6p->in6p_laddr;
    507 		ip6->ip6_dst = in6p->in6p_faddr;
    508 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    509 		if (ip6_auto_flowlabel) {
    510 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    511 			ip6->ip6_flow |=
    512 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    513 		}
    514 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    515 		ip6->ip6_vfc |= IPV6_VERSION;
    516 
    517 		/*
    518 		 * Compute the pseudo-header portion of the checksum
    519 		 * now.  We incrementally add in the TCP option and
    520 		 * payload lengths later, and then compute the TCP
    521 		 * checksum right before the packet is sent off onto
    522 		 * the wire.
    523 		 */
    524 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    525 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    526 		    htonl(IPPROTO_TCP));
    527 		break;
    528 	    }
    529 #endif
    530 	}
    531 	if (inp) {
    532 		n->th_sport = inp->inp_lport;
    533 		n->th_dport = inp->inp_fport;
    534 	}
    535 #ifdef INET6
    536 	else if (in6p) {
    537 		n->th_sport = in6p->in6p_lport;
    538 		n->th_dport = in6p->in6p_fport;
    539 	}
    540 #endif
    541 	n->th_seq = 0;
    542 	n->th_ack = 0;
    543 	n->th_x2 = 0;
    544 	n->th_off = 5;
    545 	n->th_flags = 0;
    546 	n->th_win = 0;
    547 	n->th_urp = 0;
    548 	return (m);
    549 }
    550 
    551 /*
    552  * Send a single message to the TCP at address specified by
    553  * the given TCP/IP header.  If m == 0, then we make a copy
    554  * of the tcpiphdr at ti and send directly to the addressed host.
    555  * This is used to force keep alive messages out using the TCP
    556  * template for a connection tp->t_template.  If flags are given
    557  * then we send a message back to the TCP which originated the
    558  * segment ti, and discard the mbuf containing it and any other
    559  * attached mbufs.
    560  *
    561  * In any case the ack and sequence number of the transmitted
    562  * segment are as specified by the parameters.
    563  */
    564 int
    565 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
    566     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
    567 {
    568 	struct route *ro;
    569 	int error, tlen, win = 0;
    570 	int hlen;
    571 	struct ip *ip;
    572 #ifdef INET6
    573 	struct ip6_hdr *ip6;
    574 #endif
    575 	int family;	/* family on packet, not inpcb/in6pcb! */
    576 	struct tcphdr *th;
    577 	struct socket *so;
    578 
    579 	if (tp != NULL && (flags & TH_RST) == 0) {
    580 #ifdef DIAGNOSTIC
    581 		if (tp->t_inpcb && tp->t_in6pcb)
    582 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    583 #endif
    584 #ifdef INET
    585 		if (tp->t_inpcb)
    586 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    587 #endif
    588 #ifdef INET6
    589 		if (tp->t_in6pcb)
    590 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    591 #endif
    592 	}
    593 
    594 	th = NULL;	/* Quell uninitialized warning */
    595 	ip = NULL;
    596 #ifdef INET6
    597 	ip6 = NULL;
    598 #endif
    599 	if (m == 0) {
    600 		if (!template)
    601 			return EINVAL;
    602 
    603 		/* get family information from template */
    604 		switch (mtod(template, struct ip *)->ip_v) {
    605 		case 4:
    606 			family = AF_INET;
    607 			hlen = sizeof(struct ip);
    608 			break;
    609 #ifdef INET6
    610 		case 6:
    611 			family = AF_INET6;
    612 			hlen = sizeof(struct ip6_hdr);
    613 			break;
    614 #endif
    615 		default:
    616 			return EAFNOSUPPORT;
    617 		}
    618 
    619 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    620 		if (m) {
    621 			MCLAIM(m, &tcp_tx_mowner);
    622 			MCLGET(m, M_DONTWAIT);
    623 			if ((m->m_flags & M_EXT) == 0) {
    624 				m_free(m);
    625 				m = NULL;
    626 			}
    627 		}
    628 		if (m == NULL)
    629 			return (ENOBUFS);
    630 
    631 		if (tcp_compat_42)
    632 			tlen = 1;
    633 		else
    634 			tlen = 0;
    635 
    636 		m->m_data += max_linkhdr;
    637 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
    638 			template->m_len);
    639 		switch (family) {
    640 		case AF_INET:
    641 			ip = mtod(m, struct ip *);
    642 			th = (struct tcphdr *)(ip + 1);
    643 			break;
    644 #ifdef INET6
    645 		case AF_INET6:
    646 			ip6 = mtod(m, struct ip6_hdr *);
    647 			th = (struct tcphdr *)(ip6 + 1);
    648 			break;
    649 #endif
    650 #if 0
    651 		default:
    652 			/* noone will visit here */
    653 			m_freem(m);
    654 			return EAFNOSUPPORT;
    655 #endif
    656 		}
    657 		flags = TH_ACK;
    658 	} else {
    659 
    660 		if ((m->m_flags & M_PKTHDR) == 0) {
    661 #if 0
    662 			printf("non PKTHDR to tcp_respond\n");
    663 #endif
    664 			m_freem(m);
    665 			return EINVAL;
    666 		}
    667 #ifdef DIAGNOSTIC
    668 		if (!th0)
    669 			panic("th0 == NULL in tcp_respond");
    670 #endif
    671 
    672 		/* get family information from m */
    673 		switch (mtod(m, struct ip *)->ip_v) {
    674 		case 4:
    675 			family = AF_INET;
    676 			hlen = sizeof(struct ip);
    677 			ip = mtod(m, struct ip *);
    678 			break;
    679 #ifdef INET6
    680 		case 6:
    681 			family = AF_INET6;
    682 			hlen = sizeof(struct ip6_hdr);
    683 			ip6 = mtod(m, struct ip6_hdr *);
    684 			break;
    685 #endif
    686 		default:
    687 			m_freem(m);
    688 			return EAFNOSUPPORT;
    689 		}
    690 		/* clear h/w csum flags inherited from rx packet */
    691 		m->m_pkthdr.csum_flags = 0;
    692 
    693 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    694 			tlen = sizeof(*th0);
    695 		else
    696 			tlen = th0->th_off << 2;
    697 
    698 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    699 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
    700 			m->m_len = hlen + tlen;
    701 			m_freem(m->m_next);
    702 			m->m_next = NULL;
    703 		} else {
    704 			struct mbuf *n;
    705 
    706 #ifdef DIAGNOSTIC
    707 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    708 				m_freem(m);
    709 				return EMSGSIZE;
    710 			}
    711 #endif
    712 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    713 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    714 				MCLGET(n, M_DONTWAIT);
    715 				if ((n->m_flags & M_EXT) == 0) {
    716 					m_freem(n);
    717 					n = NULL;
    718 				}
    719 			}
    720 			if (!n) {
    721 				m_freem(m);
    722 				return ENOBUFS;
    723 			}
    724 
    725 			MCLAIM(n, &tcp_tx_mowner);
    726 			n->m_data += max_linkhdr;
    727 			n->m_len = hlen + tlen;
    728 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
    729 			m_copyback(n, hlen, tlen, (caddr_t)th0);
    730 
    731 			m_freem(m);
    732 			m = n;
    733 			n = NULL;
    734 		}
    735 
    736 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    737 		switch (family) {
    738 		case AF_INET:
    739 			ip = mtod(m, struct ip *);
    740 			th = (struct tcphdr *)(ip + 1);
    741 			ip->ip_p = IPPROTO_TCP;
    742 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    743 			ip->ip_p = IPPROTO_TCP;
    744 			break;
    745 #ifdef INET6
    746 		case AF_INET6:
    747 			ip6 = mtod(m, struct ip6_hdr *);
    748 			th = (struct tcphdr *)(ip6 + 1);
    749 			ip6->ip6_nxt = IPPROTO_TCP;
    750 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    751 			ip6->ip6_nxt = IPPROTO_TCP;
    752 			break;
    753 #endif
    754 #if 0
    755 		default:
    756 			/* noone will visit here */
    757 			m_freem(m);
    758 			return EAFNOSUPPORT;
    759 #endif
    760 		}
    761 		xchg(th->th_dport, th->th_sport, u_int16_t);
    762 #undef xchg
    763 		tlen = 0;	/*be friendly with the following code*/
    764 	}
    765 	th->th_seq = htonl(seq);
    766 	th->th_ack = htonl(ack);
    767 	th->th_x2 = 0;
    768 	if ((flags & TH_SYN) == 0) {
    769 		if (tp)
    770 			win >>= tp->rcv_scale;
    771 		if (win > TCP_MAXWIN)
    772 			win = TCP_MAXWIN;
    773 		th->th_win = htons((u_int16_t)win);
    774 		th->th_off = sizeof (struct tcphdr) >> 2;
    775 		tlen += sizeof(*th);
    776 	} else
    777 		tlen += th->th_off << 2;
    778 	m->m_len = hlen + tlen;
    779 	m->m_pkthdr.len = hlen + tlen;
    780 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    781 	th->th_flags = flags;
    782 	th->th_urp = 0;
    783 
    784 	switch (family) {
    785 #ifdef INET
    786 	case AF_INET:
    787 	    {
    788 		struct ipovly *ipov = (struct ipovly *)ip;
    789 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    790 		ipov->ih_len = htons((u_int16_t)tlen);
    791 
    792 		th->th_sum = 0;
    793 		th->th_sum = in_cksum(m, hlen + tlen);
    794 		ip->ip_len = htons(hlen + tlen);
    795 		ip->ip_ttl = ip_defttl;
    796 		break;
    797 	    }
    798 #endif
    799 #ifdef INET6
    800 	case AF_INET6:
    801 	    {
    802 		th->th_sum = 0;
    803 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    804 				tlen);
    805 		ip6->ip6_plen = htons(tlen);
    806 		if (tp && tp->t_in6pcb) {
    807 			struct ifnet *oifp;
    808 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    809 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    810 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    811 		} else
    812 			ip6->ip6_hlim = ip6_defhlim;
    813 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    814 		if (ip6_auto_flowlabel) {
    815 			ip6->ip6_flow |=
    816 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    817 		}
    818 		break;
    819 	    }
    820 #endif
    821 	}
    822 
    823 	if (tp && tp->t_inpcb)
    824 		so = tp->t_inpcb->inp_socket;
    825 #ifdef INET6
    826 	else if (tp && tp->t_in6pcb)
    827 		so = tp->t_in6pcb->in6p_socket;
    828 #endif
    829 	else
    830 		so = NULL;
    831 
    832 	if (tp != NULL && tp->t_inpcb != NULL) {
    833 		ro = &tp->t_inpcb->inp_route;
    834 #ifdef DIAGNOSTIC
    835 		if (family != AF_INET)
    836 			panic("tcp_respond: address family mismatch");
    837 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    838 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    839 			    ntohl(ip->ip_dst.s_addr),
    840 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    841 		}
    842 #endif
    843 	}
    844 #ifdef INET6
    845 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    846 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    847 #ifdef DIAGNOSTIC
    848 		if (family == AF_INET) {
    849 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    850 				panic("tcp_respond: not mapped addr");
    851 			if (bcmp(&ip->ip_dst,
    852 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    853 			    sizeof(ip->ip_dst)) != 0) {
    854 				panic("tcp_respond: ip_dst != in6p_faddr");
    855 			}
    856 		} else if (family == AF_INET6) {
    857 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    858 			    &tp->t_in6pcb->in6p_faddr))
    859 				panic("tcp_respond: ip6_dst != in6p_faddr");
    860 		} else
    861 			panic("tcp_respond: address family mismatch");
    862 #endif
    863 	}
    864 #endif
    865 	else
    866 		ro = NULL;
    867 
    868 	switch (family) {
    869 #ifdef INET
    870 	case AF_INET:
    871 		error = ip_output(m, NULL, ro,
    872 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    873 		    (struct ip_moptions *)0, so);
    874 		break;
    875 #endif
    876 #ifdef INET6
    877 	case AF_INET6:
    878 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
    879 		    (struct ip6_moptions *)0, so, NULL);
    880 		break;
    881 #endif
    882 	default:
    883 		error = EAFNOSUPPORT;
    884 		break;
    885 	}
    886 
    887 	return (error);
    888 }
    889 
    890 /*
    891  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
    892  * a bunch of members individually, we maintain this template for the
    893  * static and mostly-static components of the TCPCB, and copy it into
    894  * the new TCPCB instead.
    895  */
    896 static struct tcpcb tcpcb_template = {
    897 	/*
    898 	 * If TCP_NTIMERS ever changes, we'll need to update this
    899 	 * initializer.
    900 	 */
    901 	.t_timer = {
    902 		CALLOUT_INITIALIZER,
    903 		CALLOUT_INITIALIZER,
    904 		CALLOUT_INITIALIZER,
    905 		CALLOUT_INITIALIZER,
    906 	},
    907 	.t_delack_ch = CALLOUT_INITIALIZER,
    908 
    909 	.t_srtt = TCPTV_SRTTBASE,
    910 	.t_rttmin = TCPTV_MIN,
    911 
    912 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    913 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    914 	.snd_numholes = 0,
    915 
    916 	.t_partialacks = -1,
    917 };
    918 
    919 /*
    920  * Updates the TCPCB template whenever a parameter that would affect
    921  * the template is changed.
    922  */
    923 void
    924 tcp_tcpcb_template(void)
    925 {
    926 	struct tcpcb *tp = &tcpcb_template;
    927 	int flags;
    928 
    929 	tp->t_peermss = tcp_mssdflt;
    930 	tp->t_ourmss = tcp_mssdflt;
    931 	tp->t_segsz = tcp_mssdflt;
    932 
    933 	flags = 0;
    934 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    935 		flags |= TF_REQ_SCALE;
    936 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    937 		flags |= TF_REQ_TSTMP;
    938 	tp->t_flags = flags;
    939 
    940 	/*
    941 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    942 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    943 	 * reasonable initial retransmit time.
    944 	 */
    945 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    946 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    947 	    TCPTV_MIN, TCPTV_REXMTMAX);
    948 }
    949 
    950 /*
    951  * Create a new TCP control block, making an
    952  * empty reassembly queue and hooking it to the argument
    953  * protocol control block.
    954  */
    955 /* family selects inpcb, or in6pcb */
    956 struct tcpcb *
    957 tcp_newtcpcb(int family, void *aux)
    958 {
    959 	struct tcpcb *tp;
    960 	int i;
    961 
    962 	/* XXX Consider using a pool_cache for speed. */
    963 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    964 	if (tp == NULL)
    965 		return (NULL);
    966 	memcpy(tp, &tcpcb_template, sizeof(*tp));
    967 	TAILQ_INIT(&tp->segq);
    968 	TAILQ_INIT(&tp->timeq);
    969 	tp->t_family = family;		/* may be overridden later on */
    970 	TAILQ_INIT(&tp->snd_holes);
    971 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
    972 
    973 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
    974 	for (i = 0; i < TCPT_NTIMERS; i++)
    975 		TCP_TIMER_INIT(tp, i);
    976 
    977 	switch (family) {
    978 	case AF_INET:
    979 	    {
    980 		struct inpcb *inp = (struct inpcb *)aux;
    981 
    982 		inp->inp_ip.ip_ttl = ip_defttl;
    983 		inp->inp_ppcb = (caddr_t)tp;
    984 
    985 		tp->t_inpcb = inp;
    986 		tp->t_mtudisc = ip_mtudisc;
    987 		break;
    988 	    }
    989 #ifdef INET6
    990 	case AF_INET6:
    991 	    {
    992 		struct in6pcb *in6p = (struct in6pcb *)aux;
    993 
    994 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
    995 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
    996 					       : NULL);
    997 		in6p->in6p_ppcb = (caddr_t)tp;
    998 
    999 		tp->t_in6pcb = in6p;
   1000 		/* for IPv6, always try to run path MTU discovery */
   1001 		tp->t_mtudisc = 1;
   1002 		break;
   1003 	    }
   1004 #endif /* INET6 */
   1005 	default:
   1006 		pool_put(&tcpcb_pool, tp);
   1007 		return (NULL);
   1008 	}
   1009 
   1010 	/*
   1011 	 * Initialize our timebase.  When we send timestamps, we take
   1012 	 * the delta from tcp_now -- this means each connection always
   1013 	 * gets a timebase of 0, which makes it, among other things,
   1014 	 * more difficult to determine how long a system has been up,
   1015 	 * and thus how many TCP sequence increments have occurred.
   1016 	 */
   1017 	tp->ts_timebase = tcp_now;
   1018 
   1019 	return (tp);
   1020 }
   1021 
   1022 /*
   1023  * Drop a TCP connection, reporting
   1024  * the specified error.  If connection is synchronized,
   1025  * then send a RST to peer.
   1026  */
   1027 struct tcpcb *
   1028 tcp_drop(struct tcpcb *tp, int errno)
   1029 {
   1030 	struct socket *so = NULL;
   1031 
   1032 #ifdef DIAGNOSTIC
   1033 	if (tp->t_inpcb && tp->t_in6pcb)
   1034 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1035 #endif
   1036 #ifdef INET
   1037 	if (tp->t_inpcb)
   1038 		so = tp->t_inpcb->inp_socket;
   1039 #endif
   1040 #ifdef INET6
   1041 	if (tp->t_in6pcb)
   1042 		so = tp->t_in6pcb->in6p_socket;
   1043 #endif
   1044 	if (!so)
   1045 		return NULL;
   1046 
   1047 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1048 		tp->t_state = TCPS_CLOSED;
   1049 		(void) tcp_output(tp);
   1050 		tcpstat.tcps_drops++;
   1051 	} else
   1052 		tcpstat.tcps_conndrops++;
   1053 	if (errno == ETIMEDOUT && tp->t_softerror)
   1054 		errno = tp->t_softerror;
   1055 	so->so_error = errno;
   1056 	return (tcp_close(tp));
   1057 }
   1058 
   1059 /*
   1060  * Return whether this tcpcb is marked as dead, indicating
   1061  * to the calling timer function that no further action should
   1062  * be taken, as we are about to release this tcpcb.  The release
   1063  * of the storage will be done if this is the last timer running.
   1064  *
   1065  * This should be called from the callout handler function after
   1066  * callout_ack() is done, so that the number of invoking timer
   1067  * functions is 0.
   1068  */
   1069 int
   1070 tcp_isdead(struct tcpcb *tp)
   1071 {
   1072 	int dead = (tp->t_flags & TF_DEAD);
   1073 
   1074 	if (__predict_false(dead)) {
   1075 		if (tcp_timers_invoking(tp) > 0)
   1076 				/* not quite there yet -- count separately? */
   1077 			return dead;
   1078 		tcpstat.tcps_delayed_free++;
   1079 		pool_put(&tcpcb_pool, tp);
   1080 	}
   1081 	return dead;
   1082 }
   1083 
   1084 /*
   1085  * Close a TCP control block:
   1086  *	discard all space held by the tcp
   1087  *	discard internet protocol block
   1088  *	wake up any sleepers
   1089  */
   1090 struct tcpcb *
   1091 tcp_close(struct tcpcb *tp)
   1092 {
   1093 	struct inpcb *inp;
   1094 #ifdef INET6
   1095 	struct in6pcb *in6p;
   1096 #endif
   1097 	struct socket *so;
   1098 #ifdef RTV_RTT
   1099 	struct rtentry *rt;
   1100 #endif
   1101 	struct route *ro;
   1102 
   1103 	inp = tp->t_inpcb;
   1104 #ifdef INET6
   1105 	in6p = tp->t_in6pcb;
   1106 #endif
   1107 	so = NULL;
   1108 	ro = NULL;
   1109 	if (inp) {
   1110 		so = inp->inp_socket;
   1111 		ro = &inp->inp_route;
   1112 	}
   1113 #ifdef INET6
   1114 	else if (in6p) {
   1115 		so = in6p->in6p_socket;
   1116 		ro = (struct route *)&in6p->in6p_route;
   1117 	}
   1118 #endif
   1119 
   1120 #ifdef RTV_RTT
   1121 	/*
   1122 	 * If we sent enough data to get some meaningful characteristics,
   1123 	 * save them in the routing entry.  'Enough' is arbitrarily
   1124 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1125 	 * give us 16 rtt samples assuming we only get one sample per
   1126 	 * window (the usual case on a long haul net).  16 samples is
   1127 	 * enough for the srtt filter to converge to within 5% of the correct
   1128 	 * value; fewer samples and we could save a very bogus rtt.
   1129 	 *
   1130 	 * Don't update the default route's characteristics and don't
   1131 	 * update anything that the user "locked".
   1132 	 */
   1133 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1134 	    ro && (rt = ro->ro_rt) &&
   1135 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
   1136 		u_long i = 0;
   1137 
   1138 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1139 			i = tp->t_srtt *
   1140 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1141 			if (rt->rt_rmx.rmx_rtt && i)
   1142 				/*
   1143 				 * filter this update to half the old & half
   1144 				 * the new values, converting scale.
   1145 				 * See route.h and tcp_var.h for a
   1146 				 * description of the scaling constants.
   1147 				 */
   1148 				rt->rt_rmx.rmx_rtt =
   1149 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1150 			else
   1151 				rt->rt_rmx.rmx_rtt = i;
   1152 		}
   1153 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1154 			i = tp->t_rttvar *
   1155 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1156 			if (rt->rt_rmx.rmx_rttvar && i)
   1157 				rt->rt_rmx.rmx_rttvar =
   1158 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1159 			else
   1160 				rt->rt_rmx.rmx_rttvar = i;
   1161 		}
   1162 		/*
   1163 		 * update the pipelimit (ssthresh) if it has been updated
   1164 		 * already or if a pipesize was specified & the threshhold
   1165 		 * got below half the pipesize.  I.e., wait for bad news
   1166 		 * before we start updating, then update on both good
   1167 		 * and bad news.
   1168 		 */
   1169 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1170 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1171 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1172 			/*
   1173 			 * convert the limit from user data bytes to
   1174 			 * packets then to packet data bytes.
   1175 			 */
   1176 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1177 			if (i < 2)
   1178 				i = 2;
   1179 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1180 			if (rt->rt_rmx.rmx_ssthresh)
   1181 				rt->rt_rmx.rmx_ssthresh =
   1182 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1183 			else
   1184 				rt->rt_rmx.rmx_ssthresh = i;
   1185 		}
   1186 	}
   1187 #endif /* RTV_RTT */
   1188 	/* free the reassembly queue, if any */
   1189 	TCP_REASS_LOCK(tp);
   1190 	(void) tcp_freeq(tp);
   1191 	TCP_REASS_UNLOCK(tp);
   1192 
   1193 	/* free the SACK holes list. */
   1194 	tcp_free_sackholes(tp);
   1195 
   1196 	tcp_canceltimers(tp);
   1197 	TCP_CLEAR_DELACK(tp);
   1198 	syn_cache_cleanup(tp);
   1199 
   1200 	if (tp->t_template) {
   1201 		m_free(tp->t_template);
   1202 		tp->t_template = NULL;
   1203 	}
   1204 	if (tcp_timers_invoking(tp))
   1205 		tp->t_flags |= TF_DEAD;
   1206 	else
   1207 		pool_put(&tcpcb_pool, tp);
   1208 
   1209 	if (inp) {
   1210 		inp->inp_ppcb = 0;
   1211 		soisdisconnected(so);
   1212 		in_pcbdetach(inp);
   1213 	}
   1214 #ifdef INET6
   1215 	else if (in6p) {
   1216 		in6p->in6p_ppcb = 0;
   1217 		soisdisconnected(so);
   1218 		in6_pcbdetach(in6p);
   1219 	}
   1220 #endif
   1221 	tcpstat.tcps_closed++;
   1222 	return ((struct tcpcb *)0);
   1223 }
   1224 
   1225 int
   1226 tcp_freeq(tp)
   1227 	struct tcpcb *tp;
   1228 {
   1229 	struct ipqent *qe;
   1230 	int rv = 0;
   1231 #ifdef TCPREASS_DEBUG
   1232 	int i = 0;
   1233 #endif
   1234 
   1235 	TCP_REASS_LOCK_CHECK(tp);
   1236 
   1237 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1238 #ifdef TCPREASS_DEBUG
   1239 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1240 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1241 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1242 #endif
   1243 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1244 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1245 		m_freem(qe->ipqe_m);
   1246 		tcpipqent_free(qe);
   1247 		rv = 1;
   1248 	}
   1249 	tp->t_segqlen = 0;
   1250 	KASSERT(TAILQ_EMPTY(&tp->timeq));
   1251 	return (rv);
   1252 }
   1253 
   1254 /*
   1255  * Protocol drain routine.  Called when memory is in short supply.
   1256  */
   1257 void
   1258 tcp_drain(void)
   1259 {
   1260 	struct inpcb_hdr *inph;
   1261 	struct tcpcb *tp;
   1262 
   1263 	/*
   1264 	 * Free the sequence queue of all TCP connections.
   1265 	 */
   1266 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
   1267 		switch (inph->inph_af) {
   1268 		case AF_INET:
   1269 			tp = intotcpcb((struct inpcb *)inph);
   1270 			break;
   1271 #ifdef INET6
   1272 		case AF_INET6:
   1273 			tp = in6totcpcb((struct in6pcb *)inph);
   1274 			break;
   1275 #endif
   1276 		default:
   1277 			tp = NULL;
   1278 			break;
   1279 		}
   1280 		if (tp != NULL) {
   1281 			/*
   1282 			 * We may be called from a device's interrupt
   1283 			 * context.  If the tcpcb is already busy,
   1284 			 * just bail out now.
   1285 			 */
   1286 			if (tcp_reass_lock_try(tp) == 0)
   1287 				continue;
   1288 			if (tcp_freeq(tp))
   1289 				tcpstat.tcps_connsdrained++;
   1290 			TCP_REASS_UNLOCK(tp);
   1291 		}
   1292 	}
   1293 }
   1294 
   1295 /*
   1296  * Notify a tcp user of an asynchronous error;
   1297  * store error as soft error, but wake up user
   1298  * (for now, won't do anything until can select for soft error).
   1299  */
   1300 void
   1301 tcp_notify(struct inpcb *inp, int error)
   1302 {
   1303 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1304 	struct socket *so = inp->inp_socket;
   1305 
   1306 	/*
   1307 	 * Ignore some errors if we are hooked up.
   1308 	 * If connection hasn't completed, has retransmitted several times,
   1309 	 * and receives a second error, give up now.  This is better
   1310 	 * than waiting a long time to establish a connection that
   1311 	 * can never complete.
   1312 	 */
   1313 	if (tp->t_state == TCPS_ESTABLISHED &&
   1314 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1315 	      error == EHOSTDOWN)) {
   1316 		return;
   1317 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1318 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1319 		so->so_error = error;
   1320 	else
   1321 		tp->t_softerror = error;
   1322 	wakeup((caddr_t) &so->so_timeo);
   1323 	sorwakeup(so);
   1324 	sowwakeup(so);
   1325 }
   1326 
   1327 #ifdef INET6
   1328 void
   1329 tcp6_notify(struct in6pcb *in6p, int error)
   1330 {
   1331 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1332 	struct socket *so = in6p->in6p_socket;
   1333 
   1334 	/*
   1335 	 * Ignore some errors if we are hooked up.
   1336 	 * If connection hasn't completed, has retransmitted several times,
   1337 	 * and receives a second error, give up now.  This is better
   1338 	 * than waiting a long time to establish a connection that
   1339 	 * can never complete.
   1340 	 */
   1341 	if (tp->t_state == TCPS_ESTABLISHED &&
   1342 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1343 	      error == EHOSTDOWN)) {
   1344 		return;
   1345 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1346 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1347 		so->so_error = error;
   1348 	else
   1349 		tp->t_softerror = error;
   1350 	wakeup((caddr_t) &so->so_timeo);
   1351 	sorwakeup(so);
   1352 	sowwakeup(so);
   1353 }
   1354 #endif
   1355 
   1356 #ifdef INET6
   1357 void
   1358 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
   1359 {
   1360 	struct tcphdr th;
   1361 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
   1362 	int nmatch;
   1363 	struct ip6_hdr *ip6;
   1364 	const struct sockaddr_in6 *sa6_src = NULL;
   1365 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
   1366 	struct mbuf *m;
   1367 	int off;
   1368 
   1369 	if (sa->sa_family != AF_INET6 ||
   1370 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1371 		return;
   1372 	if ((unsigned)cmd >= PRC_NCMDS)
   1373 		return;
   1374 	else if (cmd == PRC_QUENCH) {
   1375 		/* XXX there's no PRC_QUENCH in IPv6 */
   1376 		notify = tcp6_quench;
   1377 	} else if (PRC_IS_REDIRECT(cmd))
   1378 		notify = in6_rtchange, d = NULL;
   1379 	else if (cmd == PRC_MSGSIZE)
   1380 		; /* special code is present, see below */
   1381 	else if (cmd == PRC_HOSTDEAD)
   1382 		d = NULL;
   1383 	else if (inet6ctlerrmap[cmd] == 0)
   1384 		return;
   1385 
   1386 	/* if the parameter is from icmp6, decode it. */
   1387 	if (d != NULL) {
   1388 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1389 		m = ip6cp->ip6c_m;
   1390 		ip6 = ip6cp->ip6c_ip6;
   1391 		off = ip6cp->ip6c_off;
   1392 		sa6_src = ip6cp->ip6c_src;
   1393 	} else {
   1394 		m = NULL;
   1395 		ip6 = NULL;
   1396 		sa6_src = &sa6_any;
   1397 		off = 0;
   1398 	}
   1399 
   1400 	if (ip6) {
   1401 		/*
   1402 		 * XXX: We assume that when ip6 is non NULL,
   1403 		 * M and OFF are valid.
   1404 		 */
   1405 
   1406 		/* check if we can safely examine src and dst ports */
   1407 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1408 			if (cmd == PRC_MSGSIZE)
   1409 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1410 			return;
   1411 		}
   1412 
   1413 		bzero(&th, sizeof(th));
   1414 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
   1415 
   1416 		if (cmd == PRC_MSGSIZE) {
   1417 			int valid = 0;
   1418 
   1419 			/*
   1420 			 * Check to see if we have a valid TCP connection
   1421 			 * corresponding to the address in the ICMPv6 message
   1422 			 * payload.
   1423 			 */
   1424 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
   1425 			    th.th_dport, (struct in6_addr *)&sa6_src->sin6_addr,
   1426 			    th.th_sport, 0))
   1427 				valid++;
   1428 
   1429 			/*
   1430 			 * Depending on the value of "valid" and routing table
   1431 			 * size (mtudisc_{hi,lo}wat), we will:
   1432 			 * - recalcurate the new MTU and create the
   1433 			 *   corresponding routing entry, or
   1434 			 * - ignore the MTU change notification.
   1435 			 */
   1436 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1437 
   1438 			/*
   1439 			 * no need to call in6_pcbnotify, it should have been
   1440 			 * called via callback if necessary
   1441 			 */
   1442 			return;
   1443 		}
   1444 
   1445 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
   1446 		    (struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1447 		if (nmatch == 0 && syn_cache_count &&
   1448 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1449 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1450 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1451 			syn_cache_unreach((struct sockaddr *)sa6_src,
   1452 					  sa, &th);
   1453 	} else {
   1454 		(void) in6_pcbnotify(&tcbtable, sa, 0,
   1455 		    (struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
   1456 	}
   1457 }
   1458 #endif
   1459 
   1460 #ifdef INET
   1461 /* assumes that ip header and tcp header are contiguous on mbuf */
   1462 void *
   1463 tcp_ctlinput(int cmd, struct sockaddr *sa, void *v)
   1464 {
   1465 	struct ip *ip = v;
   1466 	struct tcphdr *th;
   1467 	struct icmp *icp;
   1468 	extern const int inetctlerrmap[];
   1469 	void (*notify)(struct inpcb *, int) = tcp_notify;
   1470 	int errno;
   1471 	int nmatch;
   1472 #ifdef INET6
   1473 	struct in6_addr src6, dst6;
   1474 #endif
   1475 
   1476 	if (sa->sa_family != AF_INET ||
   1477 	    sa->sa_len != sizeof(struct sockaddr_in))
   1478 		return NULL;
   1479 	if ((unsigned)cmd >= PRC_NCMDS)
   1480 		return NULL;
   1481 	errno = inetctlerrmap[cmd];
   1482 	if (cmd == PRC_QUENCH)
   1483 		notify = tcp_quench;
   1484 	else if (PRC_IS_REDIRECT(cmd))
   1485 		notify = in_rtchange, ip = 0;
   1486 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1487 		/*
   1488 		 * Check to see if we have a valid TCP connection
   1489 		 * corresponding to the address in the ICMP message
   1490 		 * payload.
   1491 		 *
   1492 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1493 		 */
   1494 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1495 #ifdef INET6
   1496 		memset(&src6, 0, sizeof(src6));
   1497 		memset(&dst6, 0, sizeof(dst6));
   1498 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1499 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1500 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1501 #endif
   1502 		if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
   1503 		    ip->ip_src, th->th_sport) != NULL)
   1504 			;
   1505 #ifdef INET6
   1506 		else if (in6_pcblookup_connect(&tcbtable, &dst6,
   1507 		    th->th_dport, &src6, th->th_sport, 0) != NULL)
   1508 			;
   1509 #endif
   1510 		else
   1511 			return NULL;
   1512 
   1513 		/*
   1514 		 * Now that we've validated that we are actually communicating
   1515 		 * with the host indicated in the ICMP message, locate the
   1516 		 * ICMP header, recalculate the new MTU, and create the
   1517 		 * corresponding routing entry.
   1518 		 */
   1519 		icp = (struct icmp *)((caddr_t)ip -
   1520 		    offsetof(struct icmp, icmp_ip));
   1521 		icmp_mtudisc(icp, ip->ip_dst);
   1522 
   1523 		return NULL;
   1524 	} else if (cmd == PRC_HOSTDEAD)
   1525 		ip = 0;
   1526 	else if (errno == 0)
   1527 		return NULL;
   1528 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1529 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1530 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
   1531 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1532 		if (nmatch == 0 && syn_cache_count &&
   1533 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1534 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1535 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1536 			struct sockaddr_in sin;
   1537 			bzero(&sin, sizeof(sin));
   1538 			sin.sin_len = sizeof(sin);
   1539 			sin.sin_family = AF_INET;
   1540 			sin.sin_port = th->th_sport;
   1541 			sin.sin_addr = ip->ip_src;
   1542 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1543 		}
   1544 
   1545 		/* XXX mapped address case */
   1546 	} else
   1547 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
   1548 		    notify);
   1549 	return NULL;
   1550 }
   1551 
   1552 /*
   1553  * When a source quench is received, we are being notified of congestion.
   1554  * Close the congestion window down to the Loss Window (one segment).
   1555  * We will gradually open it again as we proceed.
   1556  */
   1557 void
   1558 tcp_quench(struct inpcb *inp, int errno)
   1559 {
   1560 	struct tcpcb *tp = intotcpcb(inp);
   1561 
   1562 	if (tp)
   1563 		tp->snd_cwnd = tp->t_segsz;
   1564 }
   1565 #endif
   1566 
   1567 #ifdef INET6
   1568 void
   1569 tcp6_quench(struct in6pcb *in6p, int errno)
   1570 {
   1571 	struct tcpcb *tp = in6totcpcb(in6p);
   1572 
   1573 	if (tp)
   1574 		tp->snd_cwnd = tp->t_segsz;
   1575 }
   1576 #endif
   1577 
   1578 #ifdef INET
   1579 /*
   1580  * Path MTU Discovery handlers.
   1581  */
   1582 void
   1583 tcp_mtudisc_callback(struct in_addr faddr)
   1584 {
   1585 #ifdef INET6
   1586 	struct in6_addr in6;
   1587 #endif
   1588 
   1589 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1590 #ifdef INET6
   1591 	memset(&in6, 0, sizeof(in6));
   1592 	in6.s6_addr16[5] = 0xffff;
   1593 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1594 	tcp6_mtudisc_callback(&in6);
   1595 #endif
   1596 }
   1597 
   1598 /*
   1599  * On receipt of path MTU corrections, flush old route and replace it
   1600  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1601  * that all packets will be received.
   1602  */
   1603 void
   1604 tcp_mtudisc(struct inpcb *inp, int errno)
   1605 {
   1606 	struct tcpcb *tp = intotcpcb(inp);
   1607 	struct rtentry *rt = in_pcbrtentry(inp);
   1608 
   1609 	if (tp != 0) {
   1610 		if (rt != 0) {
   1611 			/*
   1612 			 * If this was not a host route, remove and realloc.
   1613 			 */
   1614 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1615 				in_rtchange(inp, errno);
   1616 				if ((rt = in_pcbrtentry(inp)) == 0)
   1617 					return;
   1618 			}
   1619 
   1620 			/*
   1621 			 * Slow start out of the error condition.  We
   1622 			 * use the MTU because we know it's smaller
   1623 			 * than the previously transmitted segment.
   1624 			 *
   1625 			 * Note: This is more conservative than the
   1626 			 * suggestion in draft-floyd-incr-init-win-03.
   1627 			 */
   1628 			if (rt->rt_rmx.rmx_mtu != 0)
   1629 				tp->snd_cwnd =
   1630 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1631 				    rt->rt_rmx.rmx_mtu);
   1632 		}
   1633 
   1634 		/*
   1635 		 * Resend unacknowledged packets.
   1636 		 */
   1637 		tp->snd_nxt = tp->snd_una;
   1638 		tcp_output(tp);
   1639 	}
   1640 }
   1641 #endif
   1642 
   1643 #ifdef INET6
   1644 /*
   1645  * Path MTU Discovery handlers.
   1646  */
   1647 void
   1648 tcp6_mtudisc_callback(struct in6_addr *faddr)
   1649 {
   1650 	struct sockaddr_in6 sin6;
   1651 
   1652 	bzero(&sin6, sizeof(sin6));
   1653 	sin6.sin6_family = AF_INET6;
   1654 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1655 	sin6.sin6_addr = *faddr;
   1656 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
   1657 	    (struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1658 }
   1659 
   1660 void
   1661 tcp6_mtudisc(struct in6pcb *in6p, int errno)
   1662 {
   1663 	struct tcpcb *tp = in6totcpcb(in6p);
   1664 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1665 
   1666 	if (tp != 0) {
   1667 		if (rt != 0) {
   1668 			/*
   1669 			 * If this was not a host route, remove and realloc.
   1670 			 */
   1671 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1672 				in6_rtchange(in6p, errno);
   1673 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1674 					return;
   1675 			}
   1676 
   1677 			/*
   1678 			 * Slow start out of the error condition.  We
   1679 			 * use the MTU because we know it's smaller
   1680 			 * than the previously transmitted segment.
   1681 			 *
   1682 			 * Note: This is more conservative than the
   1683 			 * suggestion in draft-floyd-incr-init-win-03.
   1684 			 */
   1685 			if (rt->rt_rmx.rmx_mtu != 0)
   1686 				tp->snd_cwnd =
   1687 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1688 				    rt->rt_rmx.rmx_mtu);
   1689 		}
   1690 
   1691 		/*
   1692 		 * Resend unacknowledged packets.
   1693 		 */
   1694 		tp->snd_nxt = tp->snd_una;
   1695 		tcp_output(tp);
   1696 	}
   1697 }
   1698 #endif /* INET6 */
   1699 
   1700 /*
   1701  * Compute the MSS to advertise to the peer.  Called only during
   1702  * the 3-way handshake.  If we are the server (peer initiated
   1703  * connection), we are called with a pointer to the interface
   1704  * on which the SYN packet arrived.  If we are the client (we
   1705  * initiated connection), we are called with a pointer to the
   1706  * interface out which this connection should go.
   1707  *
   1708  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1709  * header size from MSS advertisement.  MSS option must hold the maximum
   1710  * segment size we can accept, so it must always be:
   1711  *	 max(if mtu) - ip header - tcp header
   1712  */
   1713 u_long
   1714 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
   1715 {
   1716 	extern u_long in_maxmtu;
   1717 	u_long mss = 0;
   1718 	u_long hdrsiz;
   1719 
   1720 	/*
   1721 	 * In order to avoid defeating path MTU discovery on the peer,
   1722 	 * we advertise the max MTU of all attached networks as our MSS,
   1723 	 * per RFC 1191, section 3.1.
   1724 	 *
   1725 	 * We provide the option to advertise just the MTU of
   1726 	 * the interface on which we hope this connection will
   1727 	 * be receiving.  If we are responding to a SYN, we
   1728 	 * will have a pretty good idea about this, but when
   1729 	 * initiating a connection there is a bit more doubt.
   1730 	 *
   1731 	 * We also need to ensure that loopback has a large enough
   1732 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1733 	 */
   1734 
   1735 	if (ifp != NULL)
   1736 		switch (af) {
   1737 		case AF_INET:
   1738 			mss = ifp->if_mtu;
   1739 			break;
   1740 #ifdef INET6
   1741 		case AF_INET6:
   1742 			mss = IN6_LINKMTU(ifp);
   1743 			break;
   1744 #endif
   1745 		}
   1746 
   1747 	if (tcp_mss_ifmtu == 0)
   1748 		switch (af) {
   1749 		case AF_INET:
   1750 			mss = max(in_maxmtu, mss);
   1751 			break;
   1752 #ifdef INET6
   1753 		case AF_INET6:
   1754 			mss = max(in6_maxmtu, mss);
   1755 			break;
   1756 #endif
   1757 		}
   1758 
   1759 	switch (af) {
   1760 	case AF_INET:
   1761 		hdrsiz = sizeof(struct ip);
   1762 		break;
   1763 #ifdef INET6
   1764 	case AF_INET6:
   1765 		hdrsiz = sizeof(struct ip6_hdr);
   1766 		break;
   1767 #endif
   1768 	default:
   1769 		hdrsiz = 0;
   1770 		break;
   1771 	}
   1772 	hdrsiz += sizeof(struct tcphdr);
   1773 	if (mss > hdrsiz)
   1774 		mss -= hdrsiz;
   1775 
   1776 	mss = max(tcp_mssdflt, mss);
   1777 	return (mss);
   1778 }
   1779 
   1780 /*
   1781  * Set connection variables based on the peer's advertised MSS.
   1782  * We are passed the TCPCB for the actual connection.  If we
   1783  * are the server, we are called by the compressed state engine
   1784  * when the 3-way handshake is complete.  If we are the client,
   1785  * we are called when we receive the SYN,ACK from the server.
   1786  *
   1787  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1788  * before this routine is called!
   1789  */
   1790 void
   1791 tcp_mss_from_peer(struct tcpcb *tp, int offer)
   1792 {
   1793 	struct socket *so;
   1794 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1795 	struct rtentry *rt;
   1796 #endif
   1797 	u_long bufsize;
   1798 	int mss;
   1799 
   1800 #ifdef DIAGNOSTIC
   1801 	if (tp->t_inpcb && tp->t_in6pcb)
   1802 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1803 #endif
   1804 	so = NULL;
   1805 	rt = NULL;
   1806 #ifdef INET
   1807 	if (tp->t_inpcb) {
   1808 		so = tp->t_inpcb->inp_socket;
   1809 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1810 		rt = in_pcbrtentry(tp->t_inpcb);
   1811 #endif
   1812 	}
   1813 #endif
   1814 #ifdef INET6
   1815 	if (tp->t_in6pcb) {
   1816 		so = tp->t_in6pcb->in6p_socket;
   1817 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1818 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1819 #endif
   1820 	}
   1821 #endif
   1822 
   1823 	/*
   1824 	 * As per RFC1122, use the default MSS value, unless they
   1825 	 * sent us an offer.  Do not accept offers less than 256 bytes.
   1826 	 */
   1827 	mss = tcp_mssdflt;
   1828 	if (offer)
   1829 		mss = offer;
   1830 	mss = max(mss, 256);		/* sanity */
   1831 	tp->t_peermss = mss;
   1832 	mss -= tcp_optlen(tp);
   1833 #ifdef INET
   1834 	if (tp->t_inpcb)
   1835 		mss -= ip_optlen(tp->t_inpcb);
   1836 #endif
   1837 #ifdef INET6
   1838 	if (tp->t_in6pcb)
   1839 		mss -= ip6_optlen(tp->t_in6pcb);
   1840 #endif
   1841 
   1842 	/*
   1843 	 * If there's a pipesize, change the socket buffer to that size.
   1844 	 * Make the socket buffer an integral number of MSS units.  If
   1845 	 * the MSS is larger than the socket buffer, artificially decrease
   1846 	 * the MSS.
   1847 	 */
   1848 #ifdef RTV_SPIPE
   1849 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1850 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1851 	else
   1852 #endif
   1853 		bufsize = so->so_snd.sb_hiwat;
   1854 	if (bufsize < mss)
   1855 		mss = bufsize;
   1856 	else {
   1857 		bufsize = roundup(bufsize, mss);
   1858 		if (bufsize > sb_max)
   1859 			bufsize = sb_max;
   1860 		(void) sbreserve(&so->so_snd, bufsize, so);
   1861 	}
   1862 	tp->t_segsz = mss;
   1863 
   1864 #ifdef RTV_SSTHRESH
   1865 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1866 		/*
   1867 		 * There's some sort of gateway or interface buffer
   1868 		 * limit on the path.  Use this to set the slow
   1869 		 * start threshold, but set the threshold to no less
   1870 		 * than 2 * MSS.
   1871 		 */
   1872 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1873 	}
   1874 #endif
   1875 }
   1876 
   1877 /*
   1878  * Processing necessary when a TCP connection is established.
   1879  */
   1880 void
   1881 tcp_established(struct tcpcb *tp)
   1882 {
   1883 	struct socket *so;
   1884 #ifdef RTV_RPIPE
   1885 	struct rtentry *rt;
   1886 #endif
   1887 	u_long bufsize;
   1888 
   1889 #ifdef DIAGNOSTIC
   1890 	if (tp->t_inpcb && tp->t_in6pcb)
   1891 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   1892 #endif
   1893 	so = NULL;
   1894 	rt = NULL;
   1895 #ifdef INET
   1896 	if (tp->t_inpcb) {
   1897 		so = tp->t_inpcb->inp_socket;
   1898 #if defined(RTV_RPIPE)
   1899 		rt = in_pcbrtentry(tp->t_inpcb);
   1900 #endif
   1901 	}
   1902 #endif
   1903 #ifdef INET6
   1904 	if (tp->t_in6pcb) {
   1905 		so = tp->t_in6pcb->in6p_socket;
   1906 #if defined(RTV_RPIPE)
   1907 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1908 #endif
   1909 	}
   1910 #endif
   1911 
   1912 	tp->t_state = TCPS_ESTABLISHED;
   1913 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1914 
   1915 #ifdef RTV_RPIPE
   1916 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   1917 		bufsize = rt->rt_rmx.rmx_recvpipe;
   1918 	else
   1919 #endif
   1920 		bufsize = so->so_rcv.sb_hiwat;
   1921 	if (bufsize > tp->t_ourmss) {
   1922 		bufsize = roundup(bufsize, tp->t_ourmss);
   1923 		if (bufsize > sb_max)
   1924 			bufsize = sb_max;
   1925 		(void) sbreserve(&so->so_rcv, bufsize, so);
   1926 	}
   1927 }
   1928 
   1929 /*
   1930  * Check if there's an initial rtt or rttvar.  Convert from the
   1931  * route-table units to scaled multiples of the slow timeout timer.
   1932  * Called only during the 3-way handshake.
   1933  */
   1934 void
   1935 tcp_rmx_rtt(struct tcpcb *tp)
   1936 {
   1937 #ifdef RTV_RTT
   1938 	struct rtentry *rt = NULL;
   1939 	int rtt;
   1940 
   1941 #ifdef DIAGNOSTIC
   1942 	if (tp->t_inpcb && tp->t_in6pcb)
   1943 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   1944 #endif
   1945 #ifdef INET
   1946 	if (tp->t_inpcb)
   1947 		rt = in_pcbrtentry(tp->t_inpcb);
   1948 #endif
   1949 #ifdef INET6
   1950 	if (tp->t_in6pcb)
   1951 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1952 #endif
   1953 	if (rt == NULL)
   1954 		return;
   1955 
   1956 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   1957 		/*
   1958 		 * XXX The lock bit for MTU indicates that the value
   1959 		 * is also a minimum value; this is subject to time.
   1960 		 */
   1961 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   1962 			TCPT_RANGESET(tp->t_rttmin,
   1963 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   1964 			    TCPTV_MIN, TCPTV_REXMTMAX);
   1965 		tp->t_srtt = rtt /
   1966 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1967 		if (rt->rt_rmx.rmx_rttvar) {
   1968 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   1969 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   1970 				(TCP_RTTVAR_SHIFT + 2));
   1971 		} else {
   1972 			/* Default variation is +- 1 rtt */
   1973 			tp->t_rttvar =
   1974 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   1975 		}
   1976 		TCPT_RANGESET(tp->t_rxtcur,
   1977 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   1978 		    tp->t_rttmin, TCPTV_REXMTMAX);
   1979 	}
   1980 #endif
   1981 }
   1982 
   1983 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   1984 #if NRND > 0
   1985 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   1986 #endif
   1987 
   1988 /*
   1989  * Get a new sequence value given a tcp control block
   1990  */
   1991 tcp_seq
   1992 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   1993 {
   1994 
   1995 #ifdef INET
   1996 	if (tp->t_inpcb != NULL) {
   1997 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   1998 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   1999 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   2000 		    addin));
   2001 	}
   2002 #endif
   2003 #ifdef INET6
   2004 	if (tp->t_in6pcb != NULL) {
   2005 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   2006 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   2007 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   2008 		    addin));
   2009 	}
   2010 #endif
   2011 	/* Not possible. */
   2012 	panic("tcp_new_iss");
   2013 }
   2014 
   2015 /*
   2016  * This routine actually generates a new TCP initial sequence number.
   2017  */
   2018 tcp_seq
   2019 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2020     size_t addrsz, tcp_seq addin)
   2021 {
   2022 	tcp_seq tcp_iss;
   2023 
   2024 #if NRND > 0
   2025 	static int beenhere;
   2026 
   2027 	/*
   2028 	 * If we haven't been here before, initialize our cryptographic
   2029 	 * hash secret.
   2030 	 */
   2031 	if (beenhere == 0) {
   2032 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   2033 		    RND_EXTRACT_ANY);
   2034 		beenhere = 1;
   2035 	}
   2036 
   2037 	if (tcp_do_rfc1948) {
   2038 		MD5_CTX ctx;
   2039 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2040 
   2041 		/*
   2042 		 * Compute the base value of the ISS.  It is a hash
   2043 		 * of (saddr, sport, daddr, dport, secret).
   2044 		 */
   2045 		MD5Init(&ctx);
   2046 
   2047 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2048 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2049 
   2050 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2051 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2052 
   2053 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2054 
   2055 		MD5Final(hash, &ctx);
   2056 
   2057 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2058 
   2059 		/*
   2060 		 * Now increment our "timer", and add it in to
   2061 		 * the computed value.
   2062 		 *
   2063 		 * XXX Use `addin'?
   2064 		 * XXX TCP_ISSINCR too large to use?
   2065 		 */
   2066 		tcp_iss_seq += TCP_ISSINCR;
   2067 #ifdef TCPISS_DEBUG
   2068 		printf("ISS hash 0x%08x, ", tcp_iss);
   2069 #endif
   2070 		tcp_iss += tcp_iss_seq + addin;
   2071 #ifdef TCPISS_DEBUG
   2072 		printf("new ISS 0x%08x\n", tcp_iss);
   2073 #endif
   2074 	} else
   2075 #endif /* NRND > 0 */
   2076 	{
   2077 		/*
   2078 		 * Randomize.
   2079 		 */
   2080 #if NRND > 0
   2081 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2082 #else
   2083 		tcp_iss = arc4random();
   2084 #endif
   2085 
   2086 		/*
   2087 		 * If we were asked to add some amount to a known value,
   2088 		 * we will take a random value obtained above, mask off
   2089 		 * the upper bits, and add in the known value.  We also
   2090 		 * add in a constant to ensure that we are at least a
   2091 		 * certain distance from the original value.
   2092 		 *
   2093 		 * This is used when an old connection is in timed wait
   2094 		 * and we have a new one coming in, for instance.
   2095 		 */
   2096 		if (addin != 0) {
   2097 #ifdef TCPISS_DEBUG
   2098 			printf("Random %08x, ", tcp_iss);
   2099 #endif
   2100 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2101 			tcp_iss += addin + TCP_ISSINCR;
   2102 #ifdef TCPISS_DEBUG
   2103 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2104 #endif
   2105 		} else {
   2106 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2107 			tcp_iss += tcp_iss_seq;
   2108 			tcp_iss_seq += TCP_ISSINCR;
   2109 #ifdef TCPISS_DEBUG
   2110 			printf("ISS %08x\n", tcp_iss);
   2111 #endif
   2112 		}
   2113 	}
   2114 
   2115 	if (tcp_compat_42) {
   2116 		/*
   2117 		 * Limit it to the positive range for really old TCP
   2118 		 * implementations.
   2119 		 * Just AND off the top bit instead of checking if
   2120 		 * is set first - saves a branch 50% of the time.
   2121 		 */
   2122 		tcp_iss &= 0x7fffffff;		/* XXX */
   2123 	}
   2124 
   2125 	return (tcp_iss);
   2126 }
   2127 
   2128 #if defined(IPSEC) || defined(FAST_IPSEC)
   2129 /* compute ESP/AH header size for TCP, including outer IP header. */
   2130 size_t
   2131 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
   2132 {
   2133 	struct inpcb *inp;
   2134 	size_t hdrsiz;
   2135 
   2136 	/* XXX mapped addr case (tp->t_in6pcb) */
   2137 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2138 		return 0;
   2139 	switch (tp->t_family) {
   2140 	case AF_INET:
   2141 		/* XXX: should use currect direction. */
   2142 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2143 		break;
   2144 	default:
   2145 		hdrsiz = 0;
   2146 		break;
   2147 	}
   2148 
   2149 	return hdrsiz;
   2150 }
   2151 
   2152 #ifdef INET6
   2153 size_t
   2154 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
   2155 {
   2156 	struct in6pcb *in6p;
   2157 	size_t hdrsiz;
   2158 
   2159 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2160 		return 0;
   2161 	switch (tp->t_family) {
   2162 	case AF_INET6:
   2163 		/* XXX: should use currect direction. */
   2164 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2165 		break;
   2166 	case AF_INET:
   2167 		/* mapped address case - tricky */
   2168 	default:
   2169 		hdrsiz = 0;
   2170 		break;
   2171 	}
   2172 
   2173 	return hdrsiz;
   2174 }
   2175 #endif
   2176 #endif /*IPSEC*/
   2177 
   2178 /*
   2179  * Determine the length of the TCP options for this connection.
   2180  *
   2181  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2182  *       all of the space?  Otherwise we can't exactly be incrementing
   2183  *       cwnd by an amount that varies depending on the amount we last
   2184  *       had to SACK!
   2185  */
   2186 
   2187 u_int
   2188 tcp_optlen(struct tcpcb *tp)
   2189 {
   2190 	u_int optlen;
   2191 
   2192 	optlen = 0;
   2193 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2194 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2195 		optlen += TCPOLEN_TSTAMP_APPA;
   2196 
   2197 #ifdef TCP_SIGNATURE
   2198 #if defined(INET6) && defined(FAST_IPSEC)
   2199 	if (tp->t_family == AF_INET)
   2200 #endif
   2201 	if (tp->t_flags & TF_SIGNATURE)
   2202 		optlen += TCPOLEN_SIGNATURE + 2;
   2203 #endif /* TCP_SIGNATURE */
   2204 
   2205 	return optlen;
   2206 }
   2207