Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.191
      1 /*	$NetBSD: tcp_subr.c,v 1.191 2005/05/29 21:41:23 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.191 2005/05/29 21:41:23 christos Exp $");
    102 
    103 #include "opt_inet.h"
    104 #include "opt_ipsec.h"
    105 #include "opt_tcp_compat_42.h"
    106 #include "opt_inet_csum.h"
    107 #include "opt_mbuftrace.h"
    108 #include "rnd.h"
    109 
    110 #include <sys/param.h>
    111 #include <sys/proc.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/socket.h>
    116 #include <sys/socketvar.h>
    117 #include <sys/protosw.h>
    118 #include <sys/errno.h>
    119 #include <sys/kernel.h>
    120 #include <sys/pool.h>
    121 #if NRND > 0
    122 #include <sys/md5.h>
    123 #include <sys/rnd.h>
    124 #endif
    125 
    126 #include <net/route.h>
    127 #include <net/if.h>
    128 
    129 #include <netinet/in.h>
    130 #include <netinet/in_systm.h>
    131 #include <netinet/ip.h>
    132 #include <netinet/in_pcb.h>
    133 #include <netinet/ip_var.h>
    134 #include <netinet/ip_icmp.h>
    135 
    136 #ifdef INET6
    137 #ifndef INET
    138 #include <netinet/in.h>
    139 #endif
    140 #include <netinet/ip6.h>
    141 #include <netinet6/in6_pcb.h>
    142 #include <netinet6/ip6_var.h>
    143 #include <netinet6/in6_var.h>
    144 #include <netinet6/ip6protosw.h>
    145 #include <netinet/icmp6.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include <netinet/tcp.h>
    150 #include <netinet/tcp_fsm.h>
    151 #include <netinet/tcp_seq.h>
    152 #include <netinet/tcp_timer.h>
    153 #include <netinet/tcp_var.h>
    154 #include <netinet/tcpip.h>
    155 
    156 #ifdef IPSEC
    157 #include <netinet6/ipsec.h>
    158 #include <netkey/key.h>
    159 #endif /*IPSEC*/
    160 
    161 #ifdef FAST_IPSEC
    162 #include <netipsec/ipsec.h>
    163 #include <netipsec/xform.h>
    164 #ifdef INET6
    165 #include <netipsec/ipsec6.h>
    166 #endif
    167  #include <netipsec/key.h>
    168 #endif	/* FAST_IPSEC*/
    169 
    170 
    171 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    172 struct	tcpstat tcpstat;	/* tcp statistics */
    173 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
    174 
    175 /* patchable/settable parameters for tcp */
    176 int 	tcp_mssdflt = TCP_MSS;
    177 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    178 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    179 #if NRND > 0
    180 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    181 #endif
    182 int	tcp_do_sack = 1;	/* selective acknowledgement */
    183 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    184 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    185 int	tcp_do_newreno = 1;	/* Use the New Reno algorithms */
    186 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    187 #ifndef TCP_INIT_WIN
    188 #define	TCP_INIT_WIN	0	/* initial slow start window */
    189 #endif
    190 #ifndef TCP_INIT_WIN_LOCAL
    191 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    192 #endif
    193 int	tcp_init_win = TCP_INIT_WIN;
    194 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    195 int	tcp_mss_ifmtu = 0;
    196 #ifdef TCP_COMPAT_42
    197 int	tcp_compat_42 = 1;
    198 #else
    199 int	tcp_compat_42 = 0;
    200 #endif
    201 int	tcp_rst_ppslim = 100;	/* 100pps */
    202 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
    203 int	tcp_sack_tp_maxholes = 32;
    204 int	tcp_sack_globalmaxholes = 1024;
    205 int	tcp_sack_globalholes = 0;
    206 
    207 
    208 /* tcb hash */
    209 #ifndef TCBHASHSIZE
    210 #define	TCBHASHSIZE	128
    211 #endif
    212 int	tcbhashsize = TCBHASHSIZE;
    213 
    214 /* syn hash parameters */
    215 #define	TCP_SYN_HASH_SIZE	293
    216 #define	TCP_SYN_BUCKET_SIZE	35
    217 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    218 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    219 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    220 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    221 
    222 int	tcp_freeq(struct tcpcb *);
    223 
    224 #ifdef INET
    225 void	tcp_mtudisc_callback(struct in_addr);
    226 #endif
    227 #ifdef INET6
    228 void	tcp6_mtudisc_callback(struct in6_addr *);
    229 #endif
    230 
    231 void	tcp_mtudisc(struct inpcb *, int);
    232 #ifdef INET6
    233 void	tcp6_mtudisc(struct in6pcb *, int);
    234 #endif
    235 
    236 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
    237 
    238 #ifdef TCP_CSUM_COUNTERS
    239 #include <sys/device.h>
    240 
    241 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    242     NULL, "tcp", "hwcsum bad");
    243 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    244     NULL, "tcp", "hwcsum ok");
    245 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    246     NULL, "tcp", "hwcsum data");
    247 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    248     NULL, "tcp", "swcsum");
    249 
    250 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
    251 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
    252 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
    253 EVCNT_ATTACH_STATIC(tcp_swcsum);
    254 #endif /* TCP_CSUM_COUNTERS */
    255 
    256 
    257 #ifdef TCP_OUTPUT_COUNTERS
    258 #include <sys/device.h>
    259 
    260 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    261     NULL, "tcp", "output big header");
    262 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    263     NULL, "tcp", "output predict hit");
    264 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    265     NULL, "tcp", "output predict miss");
    266 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    267     NULL, "tcp", "output copy small");
    268 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    269     NULL, "tcp", "output copy big");
    270 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    271     NULL, "tcp", "output reference big");
    272 
    273 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
    274 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
    275 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
    276 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
    277 EVCNT_ATTACH_STATIC(tcp_output_copybig);
    278 EVCNT_ATTACH_STATIC(tcp_output_refbig);
    279 
    280 #endif /* TCP_OUTPUT_COUNTERS */
    281 
    282 #ifdef TCP_REASS_COUNTERS
    283 #include <sys/device.h>
    284 
    285 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    286     NULL, "tcp_reass", "calls");
    287 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    288     &tcp_reass_, "tcp_reass", "insert into empty queue");
    289 struct evcnt tcp_reass_iteration[8] = {
    290     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    291     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    292     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    293     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    294     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    295     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    296     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    297     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    298 };
    299 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    300     &tcp_reass_, "tcp_reass", "prepend to first");
    301 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    302     &tcp_reass_, "tcp_reass", "prepend");
    303 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    304     &tcp_reass_, "tcp_reass", "insert");
    305 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    306     &tcp_reass_, "tcp_reass", "insert at tail");
    307 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    308     &tcp_reass_, "tcp_reass", "append");
    309 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    310     &tcp_reass_, "tcp_reass", "append to tail fragment");
    311 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    312     &tcp_reass_, "tcp_reass", "overlap at end");
    313 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    314     &tcp_reass_, "tcp_reass", "overlap at start");
    315 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    316     &tcp_reass_, "tcp_reass", "duplicate segment");
    317 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    318     &tcp_reass_, "tcp_reass", "duplicate fragment");
    319 
    320 EVCNT_ATTACH_STATIC(tcp_reass_);
    321 EVCNT_ATTACH_STATIC(tcp_reass_empty);
    322 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
    323 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
    324 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
    325 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
    326 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
    327 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
    328 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
    329 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
    330 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
    331 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
    332 EVCNT_ATTACH_STATIC(tcp_reass_insert);
    333 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
    334 EVCNT_ATTACH_STATIC(tcp_reass_append);
    335 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
    336 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
    337 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
    338 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
    339 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
    340 
    341 #endif /* TCP_REASS_COUNTERS */
    342 
    343 #ifdef MBUFTRACE
    344 struct mowner tcp_mowner = { "tcp" };
    345 struct mowner tcp_rx_mowner = { "tcp", "rx" };
    346 struct mowner tcp_tx_mowner = { "tcp", "tx" };
    347 #endif
    348 
    349 /*
    350  * Tcp initialization
    351  */
    352 void
    353 tcp_init(void)
    354 {
    355 	int hlen;
    356 
    357 	/* Initialize the TCPCB template. */
    358 	tcp_tcpcb_template();
    359 
    360 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    361 
    362 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    363 #ifdef INET6
    364 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    365 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    366 #endif
    367 	if (max_protohdr < hlen)
    368 		max_protohdr = hlen;
    369 	if (max_linkhdr + hlen > MHLEN)
    370 		panic("tcp_init");
    371 
    372 #ifdef INET
    373 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    374 #endif
    375 #ifdef INET6
    376 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    377 #endif
    378 
    379 	/* Initialize timer state. */
    380 	tcp_timer_init();
    381 
    382 	/* Initialize the compressed state engine. */
    383 	syn_cache_init();
    384 
    385 	MOWNER_ATTACH(&tcp_tx_mowner);
    386 	MOWNER_ATTACH(&tcp_rx_mowner);
    387 	MOWNER_ATTACH(&tcp_mowner);
    388 }
    389 
    390 /*
    391  * Create template to be used to send tcp packets on a connection.
    392  * Call after host entry created, allocates an mbuf and fills
    393  * in a skeletal tcp/ip header, minimizing the amount of work
    394  * necessary when the connection is used.
    395  */
    396 struct mbuf *
    397 tcp_template(struct tcpcb *tp)
    398 {
    399 	struct inpcb *inp = tp->t_inpcb;
    400 #ifdef INET6
    401 	struct in6pcb *in6p = tp->t_in6pcb;
    402 #endif
    403 	struct tcphdr *n;
    404 	struct mbuf *m;
    405 	int hlen;
    406 
    407 	switch (tp->t_family) {
    408 	case AF_INET:
    409 		hlen = sizeof(struct ip);
    410 		if (inp)
    411 			break;
    412 #ifdef INET6
    413 		if (in6p) {
    414 			/* mapped addr case */
    415 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    416 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    417 				break;
    418 		}
    419 #endif
    420 		return NULL;	/*EINVAL*/
    421 #ifdef INET6
    422 	case AF_INET6:
    423 		hlen = sizeof(struct ip6_hdr);
    424 		if (in6p) {
    425 			/* more sainty check? */
    426 			break;
    427 		}
    428 		return NULL;	/*EINVAL*/
    429 #endif
    430 	default:
    431 		hlen = 0;	/*pacify gcc*/
    432 		return NULL;	/*EAFNOSUPPORT*/
    433 	}
    434 #ifdef DIAGNOSTIC
    435 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    436 		panic("mclbytes too small for t_template");
    437 #endif
    438 	m = tp->t_template;
    439 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    440 		;
    441 	else {
    442 		if (m)
    443 			m_freem(m);
    444 		m = tp->t_template = NULL;
    445 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    446 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    447 			MCLGET(m, M_DONTWAIT);
    448 			if ((m->m_flags & M_EXT) == 0) {
    449 				m_free(m);
    450 				m = NULL;
    451 			}
    452 		}
    453 		if (m == NULL)
    454 			return NULL;
    455 		MCLAIM(m, &tcp_mowner);
    456 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    457 	}
    458 
    459 	bzero(mtod(m, caddr_t), m->m_len);
    460 
    461 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
    462 
    463 	switch (tp->t_family) {
    464 	case AF_INET:
    465 	    {
    466 		struct ipovly *ipov;
    467 		mtod(m, struct ip *)->ip_v = 4;
    468 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
    469 		ipov = mtod(m, struct ipovly *);
    470 		ipov->ih_pr = IPPROTO_TCP;
    471 		ipov->ih_len = htons(sizeof(struct tcphdr));
    472 		if (inp) {
    473 			ipov->ih_src = inp->inp_laddr;
    474 			ipov->ih_dst = inp->inp_faddr;
    475 		}
    476 #ifdef INET6
    477 		else if (in6p) {
    478 			/* mapped addr case */
    479 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    480 				sizeof(ipov->ih_src));
    481 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    482 				sizeof(ipov->ih_dst));
    483 		}
    484 #endif
    485 		/*
    486 		 * Compute the pseudo-header portion of the checksum
    487 		 * now.  We incrementally add in the TCP option and
    488 		 * payload lengths later, and then compute the TCP
    489 		 * checksum right before the packet is sent off onto
    490 		 * the wire.
    491 		 */
    492 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    493 		    ipov->ih_dst.s_addr,
    494 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    495 		break;
    496 	    }
    497 #ifdef INET6
    498 	case AF_INET6:
    499 	    {
    500 		struct ip6_hdr *ip6;
    501 		mtod(m, struct ip *)->ip_v = 6;
    502 		ip6 = mtod(m, struct ip6_hdr *);
    503 		ip6->ip6_nxt = IPPROTO_TCP;
    504 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    505 		ip6->ip6_src = in6p->in6p_laddr;
    506 		ip6->ip6_dst = in6p->in6p_faddr;
    507 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    508 		if (ip6_auto_flowlabel) {
    509 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    510 			ip6->ip6_flow |=
    511 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    512 		}
    513 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    514 		ip6->ip6_vfc |= IPV6_VERSION;
    515 
    516 		/*
    517 		 * Compute the pseudo-header portion of the checksum
    518 		 * now.  We incrementally add in the TCP option and
    519 		 * payload lengths later, and then compute the TCP
    520 		 * checksum right before the packet is sent off onto
    521 		 * the wire.
    522 		 */
    523 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    524 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    525 		    htonl(IPPROTO_TCP));
    526 		break;
    527 	    }
    528 #endif
    529 	}
    530 	if (inp) {
    531 		n->th_sport = inp->inp_lport;
    532 		n->th_dport = inp->inp_fport;
    533 	}
    534 #ifdef INET6
    535 	else if (in6p) {
    536 		n->th_sport = in6p->in6p_lport;
    537 		n->th_dport = in6p->in6p_fport;
    538 	}
    539 #endif
    540 	n->th_seq = 0;
    541 	n->th_ack = 0;
    542 	n->th_x2 = 0;
    543 	n->th_off = 5;
    544 	n->th_flags = 0;
    545 	n->th_win = 0;
    546 	n->th_urp = 0;
    547 	return (m);
    548 }
    549 
    550 /*
    551  * Send a single message to the TCP at address specified by
    552  * the given TCP/IP header.  If m == 0, then we make a copy
    553  * of the tcpiphdr at ti and send directly to the addressed host.
    554  * This is used to force keep alive messages out using the TCP
    555  * template for a connection tp->t_template.  If flags are given
    556  * then we send a message back to the TCP which originated the
    557  * segment ti, and discard the mbuf containing it and any other
    558  * attached mbufs.
    559  *
    560  * In any case the ack and sequence number of the transmitted
    561  * segment are as specified by the parameters.
    562  */
    563 int
    564 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
    565     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
    566 {
    567 	struct route *ro;
    568 	int error, tlen, win = 0;
    569 	int hlen;
    570 	struct ip *ip;
    571 #ifdef INET6
    572 	struct ip6_hdr *ip6;
    573 #endif
    574 	int family;	/* family on packet, not inpcb/in6pcb! */
    575 	struct tcphdr *th;
    576 	struct socket *so;
    577 
    578 	if (tp != NULL && (flags & TH_RST) == 0) {
    579 #ifdef DIAGNOSTIC
    580 		if (tp->t_inpcb && tp->t_in6pcb)
    581 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    582 #endif
    583 #ifdef INET
    584 		if (tp->t_inpcb)
    585 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    586 #endif
    587 #ifdef INET6
    588 		if (tp->t_in6pcb)
    589 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    590 #endif
    591 	}
    592 
    593 	th = NULL;	/* Quell uninitialized warning */
    594 	ip = NULL;
    595 #ifdef INET6
    596 	ip6 = NULL;
    597 #endif
    598 	if (m == 0) {
    599 		if (!template)
    600 			return EINVAL;
    601 
    602 		/* get family information from template */
    603 		switch (mtod(template, struct ip *)->ip_v) {
    604 		case 4:
    605 			family = AF_INET;
    606 			hlen = sizeof(struct ip);
    607 			break;
    608 #ifdef INET6
    609 		case 6:
    610 			family = AF_INET6;
    611 			hlen = sizeof(struct ip6_hdr);
    612 			break;
    613 #endif
    614 		default:
    615 			return EAFNOSUPPORT;
    616 		}
    617 
    618 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    619 		if (m) {
    620 			MCLAIM(m, &tcp_tx_mowner);
    621 			MCLGET(m, M_DONTWAIT);
    622 			if ((m->m_flags & M_EXT) == 0) {
    623 				m_free(m);
    624 				m = NULL;
    625 			}
    626 		}
    627 		if (m == NULL)
    628 			return (ENOBUFS);
    629 
    630 		if (tcp_compat_42)
    631 			tlen = 1;
    632 		else
    633 			tlen = 0;
    634 
    635 		m->m_data += max_linkhdr;
    636 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
    637 			template->m_len);
    638 		switch (family) {
    639 		case AF_INET:
    640 			ip = mtod(m, struct ip *);
    641 			th = (struct tcphdr *)(ip + 1);
    642 			break;
    643 #ifdef INET6
    644 		case AF_INET6:
    645 			ip6 = mtod(m, struct ip6_hdr *);
    646 			th = (struct tcphdr *)(ip6 + 1);
    647 			break;
    648 #endif
    649 #if 0
    650 		default:
    651 			/* noone will visit here */
    652 			m_freem(m);
    653 			return EAFNOSUPPORT;
    654 #endif
    655 		}
    656 		flags = TH_ACK;
    657 	} else {
    658 
    659 		if ((m->m_flags & M_PKTHDR) == 0) {
    660 #if 0
    661 			printf("non PKTHDR to tcp_respond\n");
    662 #endif
    663 			m_freem(m);
    664 			return EINVAL;
    665 		}
    666 #ifdef DIAGNOSTIC
    667 		if (!th0)
    668 			panic("th0 == NULL in tcp_respond");
    669 #endif
    670 
    671 		/* get family information from m */
    672 		switch (mtod(m, struct ip *)->ip_v) {
    673 		case 4:
    674 			family = AF_INET;
    675 			hlen = sizeof(struct ip);
    676 			ip = mtod(m, struct ip *);
    677 			break;
    678 #ifdef INET6
    679 		case 6:
    680 			family = AF_INET6;
    681 			hlen = sizeof(struct ip6_hdr);
    682 			ip6 = mtod(m, struct ip6_hdr *);
    683 			break;
    684 #endif
    685 		default:
    686 			m_freem(m);
    687 			return EAFNOSUPPORT;
    688 		}
    689 		/* clear h/w csum flags inherited from rx packet */
    690 		m->m_pkthdr.csum_flags = 0;
    691 
    692 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    693 			tlen = sizeof(*th0);
    694 		else
    695 			tlen = th0->th_off << 2;
    696 
    697 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    698 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
    699 			m->m_len = hlen + tlen;
    700 			m_freem(m->m_next);
    701 			m->m_next = NULL;
    702 		} else {
    703 			struct mbuf *n;
    704 
    705 #ifdef DIAGNOSTIC
    706 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    707 				m_freem(m);
    708 				return EMSGSIZE;
    709 			}
    710 #endif
    711 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    712 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    713 				MCLGET(n, M_DONTWAIT);
    714 				if ((n->m_flags & M_EXT) == 0) {
    715 					m_freem(n);
    716 					n = NULL;
    717 				}
    718 			}
    719 			if (!n) {
    720 				m_freem(m);
    721 				return ENOBUFS;
    722 			}
    723 
    724 			MCLAIM(n, &tcp_tx_mowner);
    725 			n->m_data += max_linkhdr;
    726 			n->m_len = hlen + tlen;
    727 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
    728 			m_copyback(n, hlen, tlen, (caddr_t)th0);
    729 
    730 			m_freem(m);
    731 			m = n;
    732 			n = NULL;
    733 		}
    734 
    735 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    736 		switch (family) {
    737 		case AF_INET:
    738 			ip = mtod(m, struct ip *);
    739 			th = (struct tcphdr *)(ip + 1);
    740 			ip->ip_p = IPPROTO_TCP;
    741 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    742 			ip->ip_p = IPPROTO_TCP;
    743 			break;
    744 #ifdef INET6
    745 		case AF_INET6:
    746 			ip6 = mtod(m, struct ip6_hdr *);
    747 			th = (struct tcphdr *)(ip6 + 1);
    748 			ip6->ip6_nxt = IPPROTO_TCP;
    749 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    750 			ip6->ip6_nxt = IPPROTO_TCP;
    751 			break;
    752 #endif
    753 #if 0
    754 		default:
    755 			/* noone will visit here */
    756 			m_freem(m);
    757 			return EAFNOSUPPORT;
    758 #endif
    759 		}
    760 		xchg(th->th_dport, th->th_sport, u_int16_t);
    761 #undef xchg
    762 		tlen = 0;	/*be friendly with the following code*/
    763 	}
    764 	th->th_seq = htonl(seq);
    765 	th->th_ack = htonl(ack);
    766 	th->th_x2 = 0;
    767 	if ((flags & TH_SYN) == 0) {
    768 		if (tp)
    769 			win >>= tp->rcv_scale;
    770 		if (win > TCP_MAXWIN)
    771 			win = TCP_MAXWIN;
    772 		th->th_win = htons((u_int16_t)win);
    773 		th->th_off = sizeof (struct tcphdr) >> 2;
    774 		tlen += sizeof(*th);
    775 	} else
    776 		tlen += th->th_off << 2;
    777 	m->m_len = hlen + tlen;
    778 	m->m_pkthdr.len = hlen + tlen;
    779 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    780 	th->th_flags = flags;
    781 	th->th_urp = 0;
    782 
    783 	switch (family) {
    784 #ifdef INET
    785 	case AF_INET:
    786 	    {
    787 		struct ipovly *ipov = (struct ipovly *)ip;
    788 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    789 		ipov->ih_len = htons((u_int16_t)tlen);
    790 
    791 		th->th_sum = 0;
    792 		th->th_sum = in_cksum(m, hlen + tlen);
    793 		ip->ip_len = htons(hlen + tlen);
    794 		ip->ip_ttl = ip_defttl;
    795 		break;
    796 	    }
    797 #endif
    798 #ifdef INET6
    799 	case AF_INET6:
    800 	    {
    801 		th->th_sum = 0;
    802 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    803 				tlen);
    804 		ip6->ip6_plen = htons(tlen);
    805 		if (tp && tp->t_in6pcb) {
    806 			struct ifnet *oifp;
    807 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    808 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    809 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    810 		} else
    811 			ip6->ip6_hlim = ip6_defhlim;
    812 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    813 		if (ip6_auto_flowlabel) {
    814 			ip6->ip6_flow |=
    815 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    816 		}
    817 		break;
    818 	    }
    819 #endif
    820 	}
    821 
    822 	if (tp && tp->t_inpcb)
    823 		so = tp->t_inpcb->inp_socket;
    824 #ifdef INET6
    825 	else if (tp && tp->t_in6pcb)
    826 		so = tp->t_in6pcb->in6p_socket;
    827 #endif
    828 	else
    829 		so = NULL;
    830 
    831 	if (tp != NULL && tp->t_inpcb != NULL) {
    832 		ro = &tp->t_inpcb->inp_route;
    833 #ifdef DIAGNOSTIC
    834 		if (family != AF_INET)
    835 			panic("tcp_respond: address family mismatch");
    836 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    837 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    838 			    ntohl(ip->ip_dst.s_addr),
    839 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    840 		}
    841 #endif
    842 	}
    843 #ifdef INET6
    844 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    845 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    846 #ifdef DIAGNOSTIC
    847 		if (family == AF_INET) {
    848 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    849 				panic("tcp_respond: not mapped addr");
    850 			if (bcmp(&ip->ip_dst,
    851 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    852 			    sizeof(ip->ip_dst)) != 0) {
    853 				panic("tcp_respond: ip_dst != in6p_faddr");
    854 			}
    855 		} else if (family == AF_INET6) {
    856 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    857 			    &tp->t_in6pcb->in6p_faddr))
    858 				panic("tcp_respond: ip6_dst != in6p_faddr");
    859 		} else
    860 			panic("tcp_respond: address family mismatch");
    861 #endif
    862 	}
    863 #endif
    864 	else
    865 		ro = NULL;
    866 
    867 	switch (family) {
    868 #ifdef INET
    869 	case AF_INET:
    870 		error = ip_output(m, NULL, ro,
    871 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    872 		    (struct ip_moptions *)0, so);
    873 		break;
    874 #endif
    875 #ifdef INET6
    876 	case AF_INET6:
    877 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
    878 		    (struct ip6_moptions *)0, so, NULL);
    879 		break;
    880 #endif
    881 	default:
    882 		error = EAFNOSUPPORT;
    883 		break;
    884 	}
    885 
    886 	return (error);
    887 }
    888 
    889 /*
    890  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
    891  * a bunch of members individually, we maintain this template for the
    892  * static and mostly-static components of the TCPCB, and copy it into
    893  * the new TCPCB instead.
    894  */
    895 static struct tcpcb tcpcb_template = {
    896 	/*
    897 	 * If TCP_NTIMERS ever changes, we'll need to update this
    898 	 * initializer.
    899 	 */
    900 	.t_timer = {
    901 		CALLOUT_INITIALIZER,
    902 		CALLOUT_INITIALIZER,
    903 		CALLOUT_INITIALIZER,
    904 		CALLOUT_INITIALIZER,
    905 	},
    906 	.t_delack_ch = CALLOUT_INITIALIZER,
    907 
    908 	.t_srtt = TCPTV_SRTTBASE,
    909 	.t_rttmin = TCPTV_MIN,
    910 
    911 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    912 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    913 	.snd_numholes = 0,
    914 
    915 	.t_partialacks = -1,
    916 };
    917 
    918 /*
    919  * Updates the TCPCB template whenever a parameter that would affect
    920  * the template is changed.
    921  */
    922 void
    923 tcp_tcpcb_template(void)
    924 {
    925 	struct tcpcb *tp = &tcpcb_template;
    926 	int flags;
    927 
    928 	tp->t_peermss = tcp_mssdflt;
    929 	tp->t_ourmss = tcp_mssdflt;
    930 	tp->t_segsz = tcp_mssdflt;
    931 
    932 	flags = 0;
    933 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    934 		flags |= TF_REQ_SCALE;
    935 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    936 		flags |= TF_REQ_TSTMP;
    937 	tp->t_flags = flags;
    938 
    939 	/*
    940 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    941 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    942 	 * reasonable initial retransmit time.
    943 	 */
    944 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    945 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    946 	    TCPTV_MIN, TCPTV_REXMTMAX);
    947 }
    948 
    949 /*
    950  * Create a new TCP control block, making an
    951  * empty reassembly queue and hooking it to the argument
    952  * protocol control block.
    953  */
    954 /* family selects inpcb, or in6pcb */
    955 struct tcpcb *
    956 tcp_newtcpcb(int family, void *aux)
    957 {
    958 	struct tcpcb *tp;
    959 	int i;
    960 
    961 	/* XXX Consider using a pool_cache for speed. */
    962 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    963 	if (tp == NULL)
    964 		return (NULL);
    965 	memcpy(tp, &tcpcb_template, sizeof(*tp));
    966 	TAILQ_INIT(&tp->segq);
    967 	TAILQ_INIT(&tp->timeq);
    968 	tp->t_family = family;		/* may be overridden later on */
    969 	TAILQ_INIT(&tp->snd_holes);
    970 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
    971 
    972 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
    973 	for (i = 0; i < TCPT_NTIMERS; i++)
    974 		TCP_TIMER_INIT(tp, i);
    975 
    976 	switch (family) {
    977 	case AF_INET:
    978 	    {
    979 		struct inpcb *inp = (struct inpcb *)aux;
    980 
    981 		inp->inp_ip.ip_ttl = ip_defttl;
    982 		inp->inp_ppcb = (caddr_t)tp;
    983 
    984 		tp->t_inpcb = inp;
    985 		tp->t_mtudisc = ip_mtudisc;
    986 		break;
    987 	    }
    988 #ifdef INET6
    989 	case AF_INET6:
    990 	    {
    991 		struct in6pcb *in6p = (struct in6pcb *)aux;
    992 
    993 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
    994 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
    995 					       : NULL);
    996 		in6p->in6p_ppcb = (caddr_t)tp;
    997 
    998 		tp->t_in6pcb = in6p;
    999 		/* for IPv6, always try to run path MTU discovery */
   1000 		tp->t_mtudisc = 1;
   1001 		break;
   1002 	    }
   1003 #endif /* INET6 */
   1004 	default:
   1005 		pool_put(&tcpcb_pool, tp);
   1006 		return (NULL);
   1007 	}
   1008 
   1009 	/*
   1010 	 * Initialize our timebase.  When we send timestamps, we take
   1011 	 * the delta from tcp_now -- this means each connection always
   1012 	 * gets a timebase of 0, which makes it, among other things,
   1013 	 * more difficult to determine how long a system has been up,
   1014 	 * and thus how many TCP sequence increments have occurred.
   1015 	 */
   1016 	tp->ts_timebase = tcp_now;
   1017 
   1018 	return (tp);
   1019 }
   1020 
   1021 /*
   1022  * Drop a TCP connection, reporting
   1023  * the specified error.  If connection is synchronized,
   1024  * then send a RST to peer.
   1025  */
   1026 struct tcpcb *
   1027 tcp_drop(struct tcpcb *tp, int errno)
   1028 {
   1029 	struct socket *so = NULL;
   1030 
   1031 #ifdef DIAGNOSTIC
   1032 	if (tp->t_inpcb && tp->t_in6pcb)
   1033 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1034 #endif
   1035 #ifdef INET
   1036 	if (tp->t_inpcb)
   1037 		so = tp->t_inpcb->inp_socket;
   1038 #endif
   1039 #ifdef INET6
   1040 	if (tp->t_in6pcb)
   1041 		so = tp->t_in6pcb->in6p_socket;
   1042 #endif
   1043 	if (!so)
   1044 		return NULL;
   1045 
   1046 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1047 		tp->t_state = TCPS_CLOSED;
   1048 		(void) tcp_output(tp);
   1049 		tcpstat.tcps_drops++;
   1050 	} else
   1051 		tcpstat.tcps_conndrops++;
   1052 	if (errno == ETIMEDOUT && tp->t_softerror)
   1053 		errno = tp->t_softerror;
   1054 	so->so_error = errno;
   1055 	return (tcp_close(tp));
   1056 }
   1057 
   1058 /*
   1059  * Return whether this tcpcb is marked as dead, indicating
   1060  * to the calling timer function that no further action should
   1061  * be taken, as we are about to release this tcpcb.  The release
   1062  * of the storage will be done if this is the last timer running.
   1063  *
   1064  * This should be called from the callout handler function after
   1065  * callout_ack() is done, so that the number of invoking timer
   1066  * functions is 0.
   1067  */
   1068 int
   1069 tcp_isdead(struct tcpcb *tp)
   1070 {
   1071 	int dead = (tp->t_flags & TF_DEAD);
   1072 
   1073 	if (__predict_false(dead)) {
   1074 		if (tcp_timers_invoking(tp) > 0)
   1075 				/* not quite there yet -- count separately? */
   1076 			return dead;
   1077 		tcpstat.tcps_delayed_free++;
   1078 		pool_put(&tcpcb_pool, tp);
   1079 	}
   1080 	return dead;
   1081 }
   1082 
   1083 /*
   1084  * Close a TCP control block:
   1085  *	discard all space held by the tcp
   1086  *	discard internet protocol block
   1087  *	wake up any sleepers
   1088  */
   1089 struct tcpcb *
   1090 tcp_close(struct tcpcb *tp)
   1091 {
   1092 	struct inpcb *inp;
   1093 #ifdef INET6
   1094 	struct in6pcb *in6p;
   1095 #endif
   1096 	struct socket *so;
   1097 #ifdef RTV_RTT
   1098 	struct rtentry *rt;
   1099 #endif
   1100 	struct route *ro;
   1101 
   1102 	inp = tp->t_inpcb;
   1103 #ifdef INET6
   1104 	in6p = tp->t_in6pcb;
   1105 #endif
   1106 	so = NULL;
   1107 	ro = NULL;
   1108 	if (inp) {
   1109 		so = inp->inp_socket;
   1110 		ro = &inp->inp_route;
   1111 	}
   1112 #ifdef INET6
   1113 	else if (in6p) {
   1114 		so = in6p->in6p_socket;
   1115 		ro = (struct route *)&in6p->in6p_route;
   1116 	}
   1117 #endif
   1118 
   1119 #ifdef RTV_RTT
   1120 	/*
   1121 	 * If we sent enough data to get some meaningful characteristics,
   1122 	 * save them in the routing entry.  'Enough' is arbitrarily
   1123 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1124 	 * give us 16 rtt samples assuming we only get one sample per
   1125 	 * window (the usual case on a long haul net).  16 samples is
   1126 	 * enough for the srtt filter to converge to within 5% of the correct
   1127 	 * value; fewer samples and we could save a very bogus rtt.
   1128 	 *
   1129 	 * Don't update the default route's characteristics and don't
   1130 	 * update anything that the user "locked".
   1131 	 */
   1132 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1133 	    ro && (rt = ro->ro_rt) &&
   1134 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
   1135 		u_long i = 0;
   1136 
   1137 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1138 			i = tp->t_srtt *
   1139 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1140 			if (rt->rt_rmx.rmx_rtt && i)
   1141 				/*
   1142 				 * filter this update to half the old & half
   1143 				 * the new values, converting scale.
   1144 				 * See route.h and tcp_var.h for a
   1145 				 * description of the scaling constants.
   1146 				 */
   1147 				rt->rt_rmx.rmx_rtt =
   1148 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1149 			else
   1150 				rt->rt_rmx.rmx_rtt = i;
   1151 		}
   1152 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1153 			i = tp->t_rttvar *
   1154 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1155 			if (rt->rt_rmx.rmx_rttvar && i)
   1156 				rt->rt_rmx.rmx_rttvar =
   1157 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1158 			else
   1159 				rt->rt_rmx.rmx_rttvar = i;
   1160 		}
   1161 		/*
   1162 		 * update the pipelimit (ssthresh) if it has been updated
   1163 		 * already or if a pipesize was specified & the threshhold
   1164 		 * got below half the pipesize.  I.e., wait for bad news
   1165 		 * before we start updating, then update on both good
   1166 		 * and bad news.
   1167 		 */
   1168 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1169 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1170 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1171 			/*
   1172 			 * convert the limit from user data bytes to
   1173 			 * packets then to packet data bytes.
   1174 			 */
   1175 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1176 			if (i < 2)
   1177 				i = 2;
   1178 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1179 			if (rt->rt_rmx.rmx_ssthresh)
   1180 				rt->rt_rmx.rmx_ssthresh =
   1181 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1182 			else
   1183 				rt->rt_rmx.rmx_ssthresh = i;
   1184 		}
   1185 	}
   1186 #endif /* RTV_RTT */
   1187 	/* free the reassembly queue, if any */
   1188 	TCP_REASS_LOCK(tp);
   1189 	(void) tcp_freeq(tp);
   1190 	TCP_REASS_UNLOCK(tp);
   1191 
   1192 	/* free the SACK holes list. */
   1193 	tcp_free_sackholes(tp);
   1194 
   1195 	tcp_canceltimers(tp);
   1196 	TCP_CLEAR_DELACK(tp);
   1197 	syn_cache_cleanup(tp);
   1198 
   1199 	if (tp->t_template) {
   1200 		m_free(tp->t_template);
   1201 		tp->t_template = NULL;
   1202 	}
   1203 	if (tcp_timers_invoking(tp))
   1204 		tp->t_flags |= TF_DEAD;
   1205 	else
   1206 		pool_put(&tcpcb_pool, tp);
   1207 
   1208 	if (inp) {
   1209 		inp->inp_ppcb = 0;
   1210 		soisdisconnected(so);
   1211 		in_pcbdetach(inp);
   1212 	}
   1213 #ifdef INET6
   1214 	else if (in6p) {
   1215 		in6p->in6p_ppcb = 0;
   1216 		soisdisconnected(so);
   1217 		in6_pcbdetach(in6p);
   1218 	}
   1219 #endif
   1220 	tcpstat.tcps_closed++;
   1221 	return ((struct tcpcb *)0);
   1222 }
   1223 
   1224 int
   1225 tcp_freeq(tp)
   1226 	struct tcpcb *tp;
   1227 {
   1228 	struct ipqent *qe;
   1229 	int rv = 0;
   1230 #ifdef TCPREASS_DEBUG
   1231 	int i = 0;
   1232 #endif
   1233 
   1234 	TCP_REASS_LOCK_CHECK(tp);
   1235 
   1236 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1237 #ifdef TCPREASS_DEBUG
   1238 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1239 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1240 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1241 #endif
   1242 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1243 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1244 		m_freem(qe->ipqe_m);
   1245 		tcpipqent_free(qe);
   1246 		rv = 1;
   1247 	}
   1248 	tp->t_segqlen = 0;
   1249 	KASSERT(TAILQ_EMPTY(&tp->timeq));
   1250 	return (rv);
   1251 }
   1252 
   1253 /*
   1254  * Protocol drain routine.  Called when memory is in short supply.
   1255  */
   1256 void
   1257 tcp_drain(void)
   1258 {
   1259 	struct inpcb_hdr *inph;
   1260 	struct tcpcb *tp;
   1261 
   1262 	/*
   1263 	 * Free the sequence queue of all TCP connections.
   1264 	 */
   1265 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
   1266 		switch (inph->inph_af) {
   1267 		case AF_INET:
   1268 			tp = intotcpcb((struct inpcb *)inph);
   1269 			break;
   1270 #ifdef INET6
   1271 		case AF_INET6:
   1272 			tp = in6totcpcb((struct in6pcb *)inph);
   1273 			break;
   1274 #endif
   1275 		default:
   1276 			tp = NULL;
   1277 			break;
   1278 		}
   1279 		if (tp != NULL) {
   1280 			/*
   1281 			 * We may be called from a device's interrupt
   1282 			 * context.  If the tcpcb is already busy,
   1283 			 * just bail out now.
   1284 			 */
   1285 			if (tcp_reass_lock_try(tp) == 0)
   1286 				continue;
   1287 			if (tcp_freeq(tp))
   1288 				tcpstat.tcps_connsdrained++;
   1289 			TCP_REASS_UNLOCK(tp);
   1290 		}
   1291 	}
   1292 }
   1293 
   1294 /*
   1295  * Notify a tcp user of an asynchronous error;
   1296  * store error as soft error, but wake up user
   1297  * (for now, won't do anything until can select for soft error).
   1298  */
   1299 void
   1300 tcp_notify(struct inpcb *inp, int error)
   1301 {
   1302 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1303 	struct socket *so = inp->inp_socket;
   1304 
   1305 	/*
   1306 	 * Ignore some errors if we are hooked up.
   1307 	 * If connection hasn't completed, has retransmitted several times,
   1308 	 * and receives a second error, give up now.  This is better
   1309 	 * than waiting a long time to establish a connection that
   1310 	 * can never complete.
   1311 	 */
   1312 	if (tp->t_state == TCPS_ESTABLISHED &&
   1313 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1314 	      error == EHOSTDOWN)) {
   1315 		return;
   1316 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1317 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1318 		so->so_error = error;
   1319 	else
   1320 		tp->t_softerror = error;
   1321 	wakeup((caddr_t) &so->so_timeo);
   1322 	sorwakeup(so);
   1323 	sowwakeup(so);
   1324 }
   1325 
   1326 #ifdef INET6
   1327 void
   1328 tcp6_notify(struct in6pcb *in6p, int error)
   1329 {
   1330 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1331 	struct socket *so = in6p->in6p_socket;
   1332 
   1333 	/*
   1334 	 * Ignore some errors if we are hooked up.
   1335 	 * If connection hasn't completed, has retransmitted several times,
   1336 	 * and receives a second error, give up now.  This is better
   1337 	 * than waiting a long time to establish a connection that
   1338 	 * can never complete.
   1339 	 */
   1340 	if (tp->t_state == TCPS_ESTABLISHED &&
   1341 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1342 	      error == EHOSTDOWN)) {
   1343 		return;
   1344 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1345 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1346 		so->so_error = error;
   1347 	else
   1348 		tp->t_softerror = error;
   1349 	wakeup((caddr_t) &so->so_timeo);
   1350 	sorwakeup(so);
   1351 	sowwakeup(so);
   1352 }
   1353 #endif
   1354 
   1355 #ifdef INET6
   1356 void
   1357 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
   1358 {
   1359 	struct tcphdr th;
   1360 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
   1361 	int nmatch;
   1362 	struct ip6_hdr *ip6;
   1363 	const struct sockaddr_in6 *sa6_src = NULL;
   1364 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
   1365 	struct mbuf *m;
   1366 	int off;
   1367 
   1368 	if (sa->sa_family != AF_INET6 ||
   1369 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1370 		return;
   1371 	if ((unsigned)cmd >= PRC_NCMDS)
   1372 		return;
   1373 	else if (cmd == PRC_QUENCH) {
   1374 		/* XXX there's no PRC_QUENCH in IPv6 */
   1375 		notify = tcp6_quench;
   1376 	} else if (PRC_IS_REDIRECT(cmd))
   1377 		notify = in6_rtchange, d = NULL;
   1378 	else if (cmd == PRC_MSGSIZE)
   1379 		; /* special code is present, see below */
   1380 	else if (cmd == PRC_HOSTDEAD)
   1381 		d = NULL;
   1382 	else if (inet6ctlerrmap[cmd] == 0)
   1383 		return;
   1384 
   1385 	/* if the parameter is from icmp6, decode it. */
   1386 	if (d != NULL) {
   1387 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1388 		m = ip6cp->ip6c_m;
   1389 		ip6 = ip6cp->ip6c_ip6;
   1390 		off = ip6cp->ip6c_off;
   1391 		sa6_src = ip6cp->ip6c_src;
   1392 	} else {
   1393 		m = NULL;
   1394 		ip6 = NULL;
   1395 		sa6_src = &sa6_any;
   1396 		off = 0;
   1397 	}
   1398 
   1399 	if (ip6) {
   1400 		/*
   1401 		 * XXX: We assume that when ip6 is non NULL,
   1402 		 * M and OFF are valid.
   1403 		 */
   1404 
   1405 		/* check if we can safely examine src and dst ports */
   1406 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1407 			if (cmd == PRC_MSGSIZE)
   1408 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1409 			return;
   1410 		}
   1411 
   1412 		bzero(&th, sizeof(th));
   1413 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
   1414 
   1415 		if (cmd == PRC_MSGSIZE) {
   1416 			int valid = 0;
   1417 
   1418 			/*
   1419 			 * Check to see if we have a valid TCP connection
   1420 			 * corresponding to the address in the ICMPv6 message
   1421 			 * payload.
   1422 			 */
   1423 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
   1424 			    th.th_dport, (const struct in6_addr *)&sa6_src->sin6_addr,
   1425 			    th.th_sport, 0))
   1426 				valid++;
   1427 
   1428 			/*
   1429 			 * Depending on the value of "valid" and routing table
   1430 			 * size (mtudisc_{hi,lo}wat), we will:
   1431 			 * - recalcurate the new MTU and create the
   1432 			 *   corresponding routing entry, or
   1433 			 * - ignore the MTU change notification.
   1434 			 */
   1435 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1436 
   1437 			/*
   1438 			 * no need to call in6_pcbnotify, it should have been
   1439 			 * called via callback if necessary
   1440 			 */
   1441 			return;
   1442 		}
   1443 
   1444 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
   1445 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1446 		if (nmatch == 0 && syn_cache_count &&
   1447 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1448 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1449 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1450 			syn_cache_unreach((const struct sockaddr *)sa6_src,
   1451 					  sa, &th);
   1452 	} else {
   1453 		(void) in6_pcbnotify(&tcbtable, sa, 0,
   1454 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
   1455 	}
   1456 }
   1457 #endif
   1458 
   1459 #ifdef INET
   1460 /* assumes that ip header and tcp header are contiguous on mbuf */
   1461 void *
   1462 tcp_ctlinput(int cmd, struct sockaddr *sa, void *v)
   1463 {
   1464 	struct ip *ip = v;
   1465 	struct tcphdr *th;
   1466 	struct icmp *icp;
   1467 	extern const int inetctlerrmap[];
   1468 	void (*notify)(struct inpcb *, int) = tcp_notify;
   1469 	int errno;
   1470 	int nmatch;
   1471 #ifdef INET6
   1472 	struct in6_addr src6, dst6;
   1473 #endif
   1474 
   1475 	if (sa->sa_family != AF_INET ||
   1476 	    sa->sa_len != sizeof(struct sockaddr_in))
   1477 		return NULL;
   1478 	if ((unsigned)cmd >= PRC_NCMDS)
   1479 		return NULL;
   1480 	errno = inetctlerrmap[cmd];
   1481 	if (cmd == PRC_QUENCH)
   1482 		notify = tcp_quench;
   1483 	else if (PRC_IS_REDIRECT(cmd))
   1484 		notify = in_rtchange, ip = 0;
   1485 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1486 		/*
   1487 		 * Check to see if we have a valid TCP connection
   1488 		 * corresponding to the address in the ICMP message
   1489 		 * payload.
   1490 		 *
   1491 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1492 		 */
   1493 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1494 #ifdef INET6
   1495 		memset(&src6, 0, sizeof(src6));
   1496 		memset(&dst6, 0, sizeof(dst6));
   1497 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1498 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1499 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1500 #endif
   1501 		if (in_pcblookup_connect(&tcbtable, ip->ip_dst, th->th_dport,
   1502 		    ip->ip_src, th->th_sport) != NULL)
   1503 			;
   1504 #ifdef INET6
   1505 		else if (in6_pcblookup_connect(&tcbtable, &dst6,
   1506 		    th->th_dport, &src6, th->th_sport, 0) != NULL)
   1507 			;
   1508 #endif
   1509 		else
   1510 			return NULL;
   1511 
   1512 		/*
   1513 		 * Now that we've validated that we are actually communicating
   1514 		 * with the host indicated in the ICMP message, locate the
   1515 		 * ICMP header, recalculate the new MTU, and create the
   1516 		 * corresponding routing entry.
   1517 		 */
   1518 		icp = (struct icmp *)((caddr_t)ip -
   1519 		    offsetof(struct icmp, icmp_ip));
   1520 		icmp_mtudisc(icp, ip->ip_dst);
   1521 
   1522 		return NULL;
   1523 	} else if (cmd == PRC_HOSTDEAD)
   1524 		ip = 0;
   1525 	else if (errno == 0)
   1526 		return NULL;
   1527 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1528 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1529 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
   1530 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1531 		if (nmatch == 0 && syn_cache_count &&
   1532 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1533 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1534 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1535 			struct sockaddr_in sin;
   1536 			bzero(&sin, sizeof(sin));
   1537 			sin.sin_len = sizeof(sin);
   1538 			sin.sin_family = AF_INET;
   1539 			sin.sin_port = th->th_sport;
   1540 			sin.sin_addr = ip->ip_src;
   1541 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1542 		}
   1543 
   1544 		/* XXX mapped address case */
   1545 	} else
   1546 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
   1547 		    notify);
   1548 	return NULL;
   1549 }
   1550 
   1551 /*
   1552  * When a source quench is received, we are being notified of congestion.
   1553  * Close the congestion window down to the Loss Window (one segment).
   1554  * We will gradually open it again as we proceed.
   1555  */
   1556 void
   1557 tcp_quench(struct inpcb *inp, int errno)
   1558 {
   1559 	struct tcpcb *tp = intotcpcb(inp);
   1560 
   1561 	if (tp)
   1562 		tp->snd_cwnd = tp->t_segsz;
   1563 }
   1564 #endif
   1565 
   1566 #ifdef INET6
   1567 void
   1568 tcp6_quench(struct in6pcb *in6p, int errno)
   1569 {
   1570 	struct tcpcb *tp = in6totcpcb(in6p);
   1571 
   1572 	if (tp)
   1573 		tp->snd_cwnd = tp->t_segsz;
   1574 }
   1575 #endif
   1576 
   1577 #ifdef INET
   1578 /*
   1579  * Path MTU Discovery handlers.
   1580  */
   1581 void
   1582 tcp_mtudisc_callback(struct in_addr faddr)
   1583 {
   1584 #ifdef INET6
   1585 	struct in6_addr in6;
   1586 #endif
   1587 
   1588 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1589 #ifdef INET6
   1590 	memset(&in6, 0, sizeof(in6));
   1591 	in6.s6_addr16[5] = 0xffff;
   1592 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1593 	tcp6_mtudisc_callback(&in6);
   1594 #endif
   1595 }
   1596 
   1597 /*
   1598  * On receipt of path MTU corrections, flush old route and replace it
   1599  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1600  * that all packets will be received.
   1601  */
   1602 void
   1603 tcp_mtudisc(struct inpcb *inp, int errno)
   1604 {
   1605 	struct tcpcb *tp = intotcpcb(inp);
   1606 	struct rtentry *rt = in_pcbrtentry(inp);
   1607 
   1608 	if (tp != 0) {
   1609 		if (rt != 0) {
   1610 			/*
   1611 			 * If this was not a host route, remove and realloc.
   1612 			 */
   1613 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1614 				in_rtchange(inp, errno);
   1615 				if ((rt = in_pcbrtentry(inp)) == 0)
   1616 					return;
   1617 			}
   1618 
   1619 			/*
   1620 			 * Slow start out of the error condition.  We
   1621 			 * use the MTU because we know it's smaller
   1622 			 * than the previously transmitted segment.
   1623 			 *
   1624 			 * Note: This is more conservative than the
   1625 			 * suggestion in draft-floyd-incr-init-win-03.
   1626 			 */
   1627 			if (rt->rt_rmx.rmx_mtu != 0)
   1628 				tp->snd_cwnd =
   1629 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1630 				    rt->rt_rmx.rmx_mtu);
   1631 		}
   1632 
   1633 		/*
   1634 		 * Resend unacknowledged packets.
   1635 		 */
   1636 		tp->snd_nxt = tp->snd_una;
   1637 		tcp_output(tp);
   1638 	}
   1639 }
   1640 #endif
   1641 
   1642 #ifdef INET6
   1643 /*
   1644  * Path MTU Discovery handlers.
   1645  */
   1646 void
   1647 tcp6_mtudisc_callback(struct in6_addr *faddr)
   1648 {
   1649 	struct sockaddr_in6 sin6;
   1650 
   1651 	bzero(&sin6, sizeof(sin6));
   1652 	sin6.sin6_family = AF_INET6;
   1653 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1654 	sin6.sin6_addr = *faddr;
   1655 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
   1656 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1657 }
   1658 
   1659 void
   1660 tcp6_mtudisc(struct in6pcb *in6p, int errno)
   1661 {
   1662 	struct tcpcb *tp = in6totcpcb(in6p);
   1663 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1664 
   1665 	if (tp != 0) {
   1666 		if (rt != 0) {
   1667 			/*
   1668 			 * If this was not a host route, remove and realloc.
   1669 			 */
   1670 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1671 				in6_rtchange(in6p, errno);
   1672 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1673 					return;
   1674 			}
   1675 
   1676 			/*
   1677 			 * Slow start out of the error condition.  We
   1678 			 * use the MTU because we know it's smaller
   1679 			 * than the previously transmitted segment.
   1680 			 *
   1681 			 * Note: This is more conservative than the
   1682 			 * suggestion in draft-floyd-incr-init-win-03.
   1683 			 */
   1684 			if (rt->rt_rmx.rmx_mtu != 0)
   1685 				tp->snd_cwnd =
   1686 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1687 				    rt->rt_rmx.rmx_mtu);
   1688 		}
   1689 
   1690 		/*
   1691 		 * Resend unacknowledged packets.
   1692 		 */
   1693 		tp->snd_nxt = tp->snd_una;
   1694 		tcp_output(tp);
   1695 	}
   1696 }
   1697 #endif /* INET6 */
   1698 
   1699 /*
   1700  * Compute the MSS to advertise to the peer.  Called only during
   1701  * the 3-way handshake.  If we are the server (peer initiated
   1702  * connection), we are called with a pointer to the interface
   1703  * on which the SYN packet arrived.  If we are the client (we
   1704  * initiated connection), we are called with a pointer to the
   1705  * interface out which this connection should go.
   1706  *
   1707  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1708  * header size from MSS advertisement.  MSS option must hold the maximum
   1709  * segment size we can accept, so it must always be:
   1710  *	 max(if mtu) - ip header - tcp header
   1711  */
   1712 u_long
   1713 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
   1714 {
   1715 	extern u_long in_maxmtu;
   1716 	u_long mss = 0;
   1717 	u_long hdrsiz;
   1718 
   1719 	/*
   1720 	 * In order to avoid defeating path MTU discovery on the peer,
   1721 	 * we advertise the max MTU of all attached networks as our MSS,
   1722 	 * per RFC 1191, section 3.1.
   1723 	 *
   1724 	 * We provide the option to advertise just the MTU of
   1725 	 * the interface on which we hope this connection will
   1726 	 * be receiving.  If we are responding to a SYN, we
   1727 	 * will have a pretty good idea about this, but when
   1728 	 * initiating a connection there is a bit more doubt.
   1729 	 *
   1730 	 * We also need to ensure that loopback has a large enough
   1731 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1732 	 */
   1733 
   1734 	if (ifp != NULL)
   1735 		switch (af) {
   1736 		case AF_INET:
   1737 			mss = ifp->if_mtu;
   1738 			break;
   1739 #ifdef INET6
   1740 		case AF_INET6:
   1741 			mss = IN6_LINKMTU(ifp);
   1742 			break;
   1743 #endif
   1744 		}
   1745 
   1746 	if (tcp_mss_ifmtu == 0)
   1747 		switch (af) {
   1748 		case AF_INET:
   1749 			mss = max(in_maxmtu, mss);
   1750 			break;
   1751 #ifdef INET6
   1752 		case AF_INET6:
   1753 			mss = max(in6_maxmtu, mss);
   1754 			break;
   1755 #endif
   1756 		}
   1757 
   1758 	switch (af) {
   1759 	case AF_INET:
   1760 		hdrsiz = sizeof(struct ip);
   1761 		break;
   1762 #ifdef INET6
   1763 	case AF_INET6:
   1764 		hdrsiz = sizeof(struct ip6_hdr);
   1765 		break;
   1766 #endif
   1767 	default:
   1768 		hdrsiz = 0;
   1769 		break;
   1770 	}
   1771 	hdrsiz += sizeof(struct tcphdr);
   1772 	if (mss > hdrsiz)
   1773 		mss -= hdrsiz;
   1774 
   1775 	mss = max(tcp_mssdflt, mss);
   1776 	return (mss);
   1777 }
   1778 
   1779 /*
   1780  * Set connection variables based on the peer's advertised MSS.
   1781  * We are passed the TCPCB for the actual connection.  If we
   1782  * are the server, we are called by the compressed state engine
   1783  * when the 3-way handshake is complete.  If we are the client,
   1784  * we are called when we receive the SYN,ACK from the server.
   1785  *
   1786  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1787  * before this routine is called!
   1788  */
   1789 void
   1790 tcp_mss_from_peer(struct tcpcb *tp, int offer)
   1791 {
   1792 	struct socket *so;
   1793 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1794 	struct rtentry *rt;
   1795 #endif
   1796 	u_long bufsize;
   1797 	int mss;
   1798 
   1799 #ifdef DIAGNOSTIC
   1800 	if (tp->t_inpcb && tp->t_in6pcb)
   1801 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1802 #endif
   1803 	so = NULL;
   1804 	rt = NULL;
   1805 #ifdef INET
   1806 	if (tp->t_inpcb) {
   1807 		so = tp->t_inpcb->inp_socket;
   1808 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1809 		rt = in_pcbrtentry(tp->t_inpcb);
   1810 #endif
   1811 	}
   1812 #endif
   1813 #ifdef INET6
   1814 	if (tp->t_in6pcb) {
   1815 		so = tp->t_in6pcb->in6p_socket;
   1816 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1817 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1818 #endif
   1819 	}
   1820 #endif
   1821 
   1822 	/*
   1823 	 * As per RFC1122, use the default MSS value, unless they
   1824 	 * sent us an offer.  Do not accept offers less than 256 bytes.
   1825 	 */
   1826 	mss = tcp_mssdflt;
   1827 	if (offer)
   1828 		mss = offer;
   1829 	mss = max(mss, 256);		/* sanity */
   1830 	tp->t_peermss = mss;
   1831 	mss -= tcp_optlen(tp);
   1832 #ifdef INET
   1833 	if (tp->t_inpcb)
   1834 		mss -= ip_optlen(tp->t_inpcb);
   1835 #endif
   1836 #ifdef INET6
   1837 	if (tp->t_in6pcb)
   1838 		mss -= ip6_optlen(tp->t_in6pcb);
   1839 #endif
   1840 
   1841 	/*
   1842 	 * If there's a pipesize, change the socket buffer to that size.
   1843 	 * Make the socket buffer an integral number of MSS units.  If
   1844 	 * the MSS is larger than the socket buffer, artificially decrease
   1845 	 * the MSS.
   1846 	 */
   1847 #ifdef RTV_SPIPE
   1848 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1849 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1850 	else
   1851 #endif
   1852 		bufsize = so->so_snd.sb_hiwat;
   1853 	if (bufsize < mss)
   1854 		mss = bufsize;
   1855 	else {
   1856 		bufsize = roundup(bufsize, mss);
   1857 		if (bufsize > sb_max)
   1858 			bufsize = sb_max;
   1859 		(void) sbreserve(&so->so_snd, bufsize, so);
   1860 	}
   1861 	tp->t_segsz = mss;
   1862 
   1863 #ifdef RTV_SSTHRESH
   1864 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1865 		/*
   1866 		 * There's some sort of gateway or interface buffer
   1867 		 * limit on the path.  Use this to set the slow
   1868 		 * start threshold, but set the threshold to no less
   1869 		 * than 2 * MSS.
   1870 		 */
   1871 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1872 	}
   1873 #endif
   1874 }
   1875 
   1876 /*
   1877  * Processing necessary when a TCP connection is established.
   1878  */
   1879 void
   1880 tcp_established(struct tcpcb *tp)
   1881 {
   1882 	struct socket *so;
   1883 #ifdef RTV_RPIPE
   1884 	struct rtentry *rt;
   1885 #endif
   1886 	u_long bufsize;
   1887 
   1888 #ifdef DIAGNOSTIC
   1889 	if (tp->t_inpcb && tp->t_in6pcb)
   1890 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   1891 #endif
   1892 	so = NULL;
   1893 	rt = NULL;
   1894 #ifdef INET
   1895 	if (tp->t_inpcb) {
   1896 		so = tp->t_inpcb->inp_socket;
   1897 #if defined(RTV_RPIPE)
   1898 		rt = in_pcbrtentry(tp->t_inpcb);
   1899 #endif
   1900 	}
   1901 #endif
   1902 #ifdef INET6
   1903 	if (tp->t_in6pcb) {
   1904 		so = tp->t_in6pcb->in6p_socket;
   1905 #if defined(RTV_RPIPE)
   1906 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1907 #endif
   1908 	}
   1909 #endif
   1910 
   1911 	tp->t_state = TCPS_ESTABLISHED;
   1912 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1913 
   1914 #ifdef RTV_RPIPE
   1915 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   1916 		bufsize = rt->rt_rmx.rmx_recvpipe;
   1917 	else
   1918 #endif
   1919 		bufsize = so->so_rcv.sb_hiwat;
   1920 	if (bufsize > tp->t_ourmss) {
   1921 		bufsize = roundup(bufsize, tp->t_ourmss);
   1922 		if (bufsize > sb_max)
   1923 			bufsize = sb_max;
   1924 		(void) sbreserve(&so->so_rcv, bufsize, so);
   1925 	}
   1926 }
   1927 
   1928 /*
   1929  * Check if there's an initial rtt or rttvar.  Convert from the
   1930  * route-table units to scaled multiples of the slow timeout timer.
   1931  * Called only during the 3-way handshake.
   1932  */
   1933 void
   1934 tcp_rmx_rtt(struct tcpcb *tp)
   1935 {
   1936 #ifdef RTV_RTT
   1937 	struct rtentry *rt = NULL;
   1938 	int rtt;
   1939 
   1940 #ifdef DIAGNOSTIC
   1941 	if (tp->t_inpcb && tp->t_in6pcb)
   1942 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   1943 #endif
   1944 #ifdef INET
   1945 	if (tp->t_inpcb)
   1946 		rt = in_pcbrtentry(tp->t_inpcb);
   1947 #endif
   1948 #ifdef INET6
   1949 	if (tp->t_in6pcb)
   1950 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1951 #endif
   1952 	if (rt == NULL)
   1953 		return;
   1954 
   1955 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   1956 		/*
   1957 		 * XXX The lock bit for MTU indicates that the value
   1958 		 * is also a minimum value; this is subject to time.
   1959 		 */
   1960 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   1961 			TCPT_RANGESET(tp->t_rttmin,
   1962 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   1963 			    TCPTV_MIN, TCPTV_REXMTMAX);
   1964 		tp->t_srtt = rtt /
   1965 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1966 		if (rt->rt_rmx.rmx_rttvar) {
   1967 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   1968 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   1969 				(TCP_RTTVAR_SHIFT + 2));
   1970 		} else {
   1971 			/* Default variation is +- 1 rtt */
   1972 			tp->t_rttvar =
   1973 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   1974 		}
   1975 		TCPT_RANGESET(tp->t_rxtcur,
   1976 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   1977 		    tp->t_rttmin, TCPTV_REXMTMAX);
   1978 	}
   1979 #endif
   1980 }
   1981 
   1982 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   1983 #if NRND > 0
   1984 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   1985 #endif
   1986 
   1987 /*
   1988  * Get a new sequence value given a tcp control block
   1989  */
   1990 tcp_seq
   1991 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   1992 {
   1993 
   1994 #ifdef INET
   1995 	if (tp->t_inpcb != NULL) {
   1996 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   1997 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   1998 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   1999 		    addin));
   2000 	}
   2001 #endif
   2002 #ifdef INET6
   2003 	if (tp->t_in6pcb != NULL) {
   2004 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   2005 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   2006 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   2007 		    addin));
   2008 	}
   2009 #endif
   2010 	/* Not possible. */
   2011 	panic("tcp_new_iss");
   2012 }
   2013 
   2014 /*
   2015  * This routine actually generates a new TCP initial sequence number.
   2016  */
   2017 tcp_seq
   2018 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2019     size_t addrsz, tcp_seq addin)
   2020 {
   2021 	tcp_seq tcp_iss;
   2022 
   2023 #if NRND > 0
   2024 	static int beenhere;
   2025 
   2026 	/*
   2027 	 * If we haven't been here before, initialize our cryptographic
   2028 	 * hash secret.
   2029 	 */
   2030 	if (beenhere == 0) {
   2031 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   2032 		    RND_EXTRACT_ANY);
   2033 		beenhere = 1;
   2034 	}
   2035 
   2036 	if (tcp_do_rfc1948) {
   2037 		MD5_CTX ctx;
   2038 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2039 
   2040 		/*
   2041 		 * Compute the base value of the ISS.  It is a hash
   2042 		 * of (saddr, sport, daddr, dport, secret).
   2043 		 */
   2044 		MD5Init(&ctx);
   2045 
   2046 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2047 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2048 
   2049 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2050 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2051 
   2052 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2053 
   2054 		MD5Final(hash, &ctx);
   2055 
   2056 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2057 
   2058 		/*
   2059 		 * Now increment our "timer", and add it in to
   2060 		 * the computed value.
   2061 		 *
   2062 		 * XXX Use `addin'?
   2063 		 * XXX TCP_ISSINCR too large to use?
   2064 		 */
   2065 		tcp_iss_seq += TCP_ISSINCR;
   2066 #ifdef TCPISS_DEBUG
   2067 		printf("ISS hash 0x%08x, ", tcp_iss);
   2068 #endif
   2069 		tcp_iss += tcp_iss_seq + addin;
   2070 #ifdef TCPISS_DEBUG
   2071 		printf("new ISS 0x%08x\n", tcp_iss);
   2072 #endif
   2073 	} else
   2074 #endif /* NRND > 0 */
   2075 	{
   2076 		/*
   2077 		 * Randomize.
   2078 		 */
   2079 #if NRND > 0
   2080 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2081 #else
   2082 		tcp_iss = arc4random();
   2083 #endif
   2084 
   2085 		/*
   2086 		 * If we were asked to add some amount to a known value,
   2087 		 * we will take a random value obtained above, mask off
   2088 		 * the upper bits, and add in the known value.  We also
   2089 		 * add in a constant to ensure that we are at least a
   2090 		 * certain distance from the original value.
   2091 		 *
   2092 		 * This is used when an old connection is in timed wait
   2093 		 * and we have a new one coming in, for instance.
   2094 		 */
   2095 		if (addin != 0) {
   2096 #ifdef TCPISS_DEBUG
   2097 			printf("Random %08x, ", tcp_iss);
   2098 #endif
   2099 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2100 			tcp_iss += addin + TCP_ISSINCR;
   2101 #ifdef TCPISS_DEBUG
   2102 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2103 #endif
   2104 		} else {
   2105 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2106 			tcp_iss += tcp_iss_seq;
   2107 			tcp_iss_seq += TCP_ISSINCR;
   2108 #ifdef TCPISS_DEBUG
   2109 			printf("ISS %08x\n", tcp_iss);
   2110 #endif
   2111 		}
   2112 	}
   2113 
   2114 	if (tcp_compat_42) {
   2115 		/*
   2116 		 * Limit it to the positive range for really old TCP
   2117 		 * implementations.
   2118 		 * Just AND off the top bit instead of checking if
   2119 		 * is set first - saves a branch 50% of the time.
   2120 		 */
   2121 		tcp_iss &= 0x7fffffff;		/* XXX */
   2122 	}
   2123 
   2124 	return (tcp_iss);
   2125 }
   2126 
   2127 #if defined(IPSEC) || defined(FAST_IPSEC)
   2128 /* compute ESP/AH header size for TCP, including outer IP header. */
   2129 size_t
   2130 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
   2131 {
   2132 	struct inpcb *inp;
   2133 	size_t hdrsiz;
   2134 
   2135 	/* XXX mapped addr case (tp->t_in6pcb) */
   2136 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2137 		return 0;
   2138 	switch (tp->t_family) {
   2139 	case AF_INET:
   2140 		/* XXX: should use currect direction. */
   2141 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2142 		break;
   2143 	default:
   2144 		hdrsiz = 0;
   2145 		break;
   2146 	}
   2147 
   2148 	return hdrsiz;
   2149 }
   2150 
   2151 #ifdef INET6
   2152 size_t
   2153 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
   2154 {
   2155 	struct in6pcb *in6p;
   2156 	size_t hdrsiz;
   2157 
   2158 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2159 		return 0;
   2160 	switch (tp->t_family) {
   2161 	case AF_INET6:
   2162 		/* XXX: should use currect direction. */
   2163 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2164 		break;
   2165 	case AF_INET:
   2166 		/* mapped address case - tricky */
   2167 	default:
   2168 		hdrsiz = 0;
   2169 		break;
   2170 	}
   2171 
   2172 	return hdrsiz;
   2173 }
   2174 #endif
   2175 #endif /*IPSEC*/
   2176 
   2177 /*
   2178  * Determine the length of the TCP options for this connection.
   2179  *
   2180  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2181  *       all of the space?  Otherwise we can't exactly be incrementing
   2182  *       cwnd by an amount that varies depending on the amount we last
   2183  *       had to SACK!
   2184  */
   2185 
   2186 u_int
   2187 tcp_optlen(struct tcpcb *tp)
   2188 {
   2189 	u_int optlen;
   2190 
   2191 	optlen = 0;
   2192 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2193 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2194 		optlen += TCPOLEN_TSTAMP_APPA;
   2195 
   2196 #ifdef TCP_SIGNATURE
   2197 #if defined(INET6) && defined(FAST_IPSEC)
   2198 	if (tp->t_family == AF_INET)
   2199 #endif
   2200 	if (tp->t_flags & TF_SIGNATURE)
   2201 		optlen += TCPOLEN_SIGNATURE + 2;
   2202 #endif /* TCP_SIGNATURE */
   2203 
   2204 	return optlen;
   2205 }
   2206