Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.192
      1 /*	$NetBSD: tcp_subr.c,v 1.192 2005/07/19 17:00:02 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.192 2005/07/19 17:00:02 christos Exp $");
    102 
    103 #include "opt_inet.h"
    104 #include "opt_ipsec.h"
    105 #include "opt_tcp_compat_42.h"
    106 #include "opt_inet_csum.h"
    107 #include "opt_mbuftrace.h"
    108 #include "rnd.h"
    109 
    110 #include <sys/param.h>
    111 #include <sys/proc.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/socket.h>
    116 #include <sys/socketvar.h>
    117 #include <sys/protosw.h>
    118 #include <sys/errno.h>
    119 #include <sys/kernel.h>
    120 #include <sys/pool.h>
    121 #if NRND > 0
    122 #include <sys/md5.h>
    123 #include <sys/rnd.h>
    124 #endif
    125 
    126 #include <net/route.h>
    127 #include <net/if.h>
    128 
    129 #include <netinet/in.h>
    130 #include <netinet/in_systm.h>
    131 #include <netinet/ip.h>
    132 #include <netinet/in_pcb.h>
    133 #include <netinet/ip_var.h>
    134 #include <netinet/ip_icmp.h>
    135 
    136 #ifdef INET6
    137 #ifndef INET
    138 #include <netinet/in.h>
    139 #endif
    140 #include <netinet/ip6.h>
    141 #include <netinet6/in6_pcb.h>
    142 #include <netinet6/ip6_var.h>
    143 #include <netinet6/in6_var.h>
    144 #include <netinet6/ip6protosw.h>
    145 #include <netinet/icmp6.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include <netinet/tcp.h>
    150 #include <netinet/tcp_fsm.h>
    151 #include <netinet/tcp_seq.h>
    152 #include <netinet/tcp_timer.h>
    153 #include <netinet/tcp_var.h>
    154 #include <netinet/tcpip.h>
    155 
    156 #ifdef IPSEC
    157 #include <netinet6/ipsec.h>
    158 #include <netkey/key.h>
    159 #endif /*IPSEC*/
    160 
    161 #ifdef FAST_IPSEC
    162 #include <netipsec/ipsec.h>
    163 #include <netipsec/xform.h>
    164 #ifdef INET6
    165 #include <netipsec/ipsec6.h>
    166 #endif
    167  #include <netipsec/key.h>
    168 #endif	/* FAST_IPSEC*/
    169 
    170 
    171 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    172 struct	tcpstat tcpstat;	/* tcp statistics */
    173 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
    174 
    175 /* patchable/settable parameters for tcp */
    176 int 	tcp_mssdflt = TCP_MSS;
    177 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    178 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    179 #if NRND > 0
    180 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    181 #endif
    182 int	tcp_do_sack = 1;	/* selective acknowledgement */
    183 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    184 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    185 int	tcp_do_newreno = 1;	/* Use the New Reno algorithms */
    186 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    187 #ifndef TCP_INIT_WIN
    188 #define	TCP_INIT_WIN	0	/* initial slow start window */
    189 #endif
    190 #ifndef TCP_INIT_WIN_LOCAL
    191 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    192 #endif
    193 int	tcp_init_win = TCP_INIT_WIN;
    194 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    195 int	tcp_mss_ifmtu = 0;
    196 #ifdef TCP_COMPAT_42
    197 int	tcp_compat_42 = 1;
    198 #else
    199 int	tcp_compat_42 = 0;
    200 #endif
    201 int	tcp_rst_ppslim = 100;	/* 100pps */
    202 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
    203 int	tcp_sack_tp_maxholes = 32;
    204 int	tcp_sack_globalmaxholes = 1024;
    205 int	tcp_sack_globalholes = 0;
    206 
    207 
    208 /* tcb hash */
    209 #ifndef TCBHASHSIZE
    210 #define	TCBHASHSIZE	128
    211 #endif
    212 int	tcbhashsize = TCBHASHSIZE;
    213 
    214 /* syn hash parameters */
    215 #define	TCP_SYN_HASH_SIZE	293
    216 #define	TCP_SYN_BUCKET_SIZE	35
    217 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    218 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    219 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    220 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    221 
    222 int	tcp_freeq(struct tcpcb *);
    223 
    224 #ifdef INET
    225 void	tcp_mtudisc_callback(struct in_addr);
    226 #endif
    227 #ifdef INET6
    228 void	tcp6_mtudisc_callback(struct in6_addr *);
    229 #endif
    230 
    231 #ifdef INET6
    232 void	tcp6_mtudisc(struct in6pcb *, int);
    233 #endif
    234 
    235 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
    236 
    237 #ifdef TCP_CSUM_COUNTERS
    238 #include <sys/device.h>
    239 
    240 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    241     NULL, "tcp", "hwcsum bad");
    242 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    243     NULL, "tcp", "hwcsum ok");
    244 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    245     NULL, "tcp", "hwcsum data");
    246 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    247     NULL, "tcp", "swcsum");
    248 
    249 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
    250 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
    251 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
    252 EVCNT_ATTACH_STATIC(tcp_swcsum);
    253 #endif /* TCP_CSUM_COUNTERS */
    254 
    255 
    256 #ifdef TCP_OUTPUT_COUNTERS
    257 #include <sys/device.h>
    258 
    259 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    260     NULL, "tcp", "output big header");
    261 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    262     NULL, "tcp", "output predict hit");
    263 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    264     NULL, "tcp", "output predict miss");
    265 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    266     NULL, "tcp", "output copy small");
    267 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    268     NULL, "tcp", "output copy big");
    269 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    270     NULL, "tcp", "output reference big");
    271 
    272 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
    273 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
    274 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
    275 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
    276 EVCNT_ATTACH_STATIC(tcp_output_copybig);
    277 EVCNT_ATTACH_STATIC(tcp_output_refbig);
    278 
    279 #endif /* TCP_OUTPUT_COUNTERS */
    280 
    281 #ifdef TCP_REASS_COUNTERS
    282 #include <sys/device.h>
    283 
    284 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    285     NULL, "tcp_reass", "calls");
    286 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    287     &tcp_reass_, "tcp_reass", "insert into empty queue");
    288 struct evcnt tcp_reass_iteration[8] = {
    289     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    290     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    291     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    292     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    293     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    294     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    295     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    296     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    297 };
    298 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    299     &tcp_reass_, "tcp_reass", "prepend to first");
    300 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    301     &tcp_reass_, "tcp_reass", "prepend");
    302 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    303     &tcp_reass_, "tcp_reass", "insert");
    304 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    305     &tcp_reass_, "tcp_reass", "insert at tail");
    306 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    307     &tcp_reass_, "tcp_reass", "append");
    308 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    309     &tcp_reass_, "tcp_reass", "append to tail fragment");
    310 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    311     &tcp_reass_, "tcp_reass", "overlap at end");
    312 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    313     &tcp_reass_, "tcp_reass", "overlap at start");
    314 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    315     &tcp_reass_, "tcp_reass", "duplicate segment");
    316 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    317     &tcp_reass_, "tcp_reass", "duplicate fragment");
    318 
    319 EVCNT_ATTACH_STATIC(tcp_reass_);
    320 EVCNT_ATTACH_STATIC(tcp_reass_empty);
    321 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
    322 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
    323 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
    324 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
    325 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
    326 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
    327 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
    328 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
    329 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
    330 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
    331 EVCNT_ATTACH_STATIC(tcp_reass_insert);
    332 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
    333 EVCNT_ATTACH_STATIC(tcp_reass_append);
    334 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
    335 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
    336 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
    337 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
    338 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
    339 
    340 #endif /* TCP_REASS_COUNTERS */
    341 
    342 #ifdef MBUFTRACE
    343 struct mowner tcp_mowner = { "tcp" };
    344 struct mowner tcp_rx_mowner = { "tcp", "rx" };
    345 struct mowner tcp_tx_mowner = { "tcp", "tx" };
    346 #endif
    347 
    348 /*
    349  * Tcp initialization
    350  */
    351 void
    352 tcp_init(void)
    353 {
    354 	int hlen;
    355 
    356 	/* Initialize the TCPCB template. */
    357 	tcp_tcpcb_template();
    358 
    359 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    360 
    361 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    362 #ifdef INET6
    363 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    364 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    365 #endif
    366 	if (max_protohdr < hlen)
    367 		max_protohdr = hlen;
    368 	if (max_linkhdr + hlen > MHLEN)
    369 		panic("tcp_init");
    370 
    371 #ifdef INET
    372 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    373 #endif
    374 #ifdef INET6
    375 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    376 #endif
    377 
    378 	/* Initialize timer state. */
    379 	tcp_timer_init();
    380 
    381 	/* Initialize the compressed state engine. */
    382 	syn_cache_init();
    383 
    384 	MOWNER_ATTACH(&tcp_tx_mowner);
    385 	MOWNER_ATTACH(&tcp_rx_mowner);
    386 	MOWNER_ATTACH(&tcp_mowner);
    387 }
    388 
    389 /*
    390  * Create template to be used to send tcp packets on a connection.
    391  * Call after host entry created, allocates an mbuf and fills
    392  * in a skeletal tcp/ip header, minimizing the amount of work
    393  * necessary when the connection is used.
    394  */
    395 struct mbuf *
    396 tcp_template(struct tcpcb *tp)
    397 {
    398 	struct inpcb *inp = tp->t_inpcb;
    399 #ifdef INET6
    400 	struct in6pcb *in6p = tp->t_in6pcb;
    401 #endif
    402 	struct tcphdr *n;
    403 	struct mbuf *m;
    404 	int hlen;
    405 
    406 	switch (tp->t_family) {
    407 	case AF_INET:
    408 		hlen = sizeof(struct ip);
    409 		if (inp)
    410 			break;
    411 #ifdef INET6
    412 		if (in6p) {
    413 			/* mapped addr case */
    414 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    415 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    416 				break;
    417 		}
    418 #endif
    419 		return NULL;	/*EINVAL*/
    420 #ifdef INET6
    421 	case AF_INET6:
    422 		hlen = sizeof(struct ip6_hdr);
    423 		if (in6p) {
    424 			/* more sainty check? */
    425 			break;
    426 		}
    427 		return NULL;	/*EINVAL*/
    428 #endif
    429 	default:
    430 		hlen = 0;	/*pacify gcc*/
    431 		return NULL;	/*EAFNOSUPPORT*/
    432 	}
    433 #ifdef DIAGNOSTIC
    434 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    435 		panic("mclbytes too small for t_template");
    436 #endif
    437 	m = tp->t_template;
    438 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    439 		;
    440 	else {
    441 		if (m)
    442 			m_freem(m);
    443 		m = tp->t_template = NULL;
    444 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    445 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    446 			MCLGET(m, M_DONTWAIT);
    447 			if ((m->m_flags & M_EXT) == 0) {
    448 				m_free(m);
    449 				m = NULL;
    450 			}
    451 		}
    452 		if (m == NULL)
    453 			return NULL;
    454 		MCLAIM(m, &tcp_mowner);
    455 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    456 	}
    457 
    458 	bzero(mtod(m, caddr_t), m->m_len);
    459 
    460 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
    461 
    462 	switch (tp->t_family) {
    463 	case AF_INET:
    464 	    {
    465 		struct ipovly *ipov;
    466 		mtod(m, struct ip *)->ip_v = 4;
    467 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
    468 		ipov = mtod(m, struct ipovly *);
    469 		ipov->ih_pr = IPPROTO_TCP;
    470 		ipov->ih_len = htons(sizeof(struct tcphdr));
    471 		if (inp) {
    472 			ipov->ih_src = inp->inp_laddr;
    473 			ipov->ih_dst = inp->inp_faddr;
    474 		}
    475 #ifdef INET6
    476 		else if (in6p) {
    477 			/* mapped addr case */
    478 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    479 				sizeof(ipov->ih_src));
    480 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    481 				sizeof(ipov->ih_dst));
    482 		}
    483 #endif
    484 		/*
    485 		 * Compute the pseudo-header portion of the checksum
    486 		 * now.  We incrementally add in the TCP option and
    487 		 * payload lengths later, and then compute the TCP
    488 		 * checksum right before the packet is sent off onto
    489 		 * the wire.
    490 		 */
    491 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    492 		    ipov->ih_dst.s_addr,
    493 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    494 		break;
    495 	    }
    496 #ifdef INET6
    497 	case AF_INET6:
    498 	    {
    499 		struct ip6_hdr *ip6;
    500 		mtod(m, struct ip *)->ip_v = 6;
    501 		ip6 = mtod(m, struct ip6_hdr *);
    502 		ip6->ip6_nxt = IPPROTO_TCP;
    503 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    504 		ip6->ip6_src = in6p->in6p_laddr;
    505 		ip6->ip6_dst = in6p->in6p_faddr;
    506 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    507 		if (ip6_auto_flowlabel) {
    508 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    509 			ip6->ip6_flow |=
    510 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    511 		}
    512 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    513 		ip6->ip6_vfc |= IPV6_VERSION;
    514 
    515 		/*
    516 		 * Compute the pseudo-header portion of the checksum
    517 		 * now.  We incrementally add in the TCP option and
    518 		 * payload lengths later, and then compute the TCP
    519 		 * checksum right before the packet is sent off onto
    520 		 * the wire.
    521 		 */
    522 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    523 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    524 		    htonl(IPPROTO_TCP));
    525 		break;
    526 	    }
    527 #endif
    528 	}
    529 	if (inp) {
    530 		n->th_sport = inp->inp_lport;
    531 		n->th_dport = inp->inp_fport;
    532 	}
    533 #ifdef INET6
    534 	else if (in6p) {
    535 		n->th_sport = in6p->in6p_lport;
    536 		n->th_dport = in6p->in6p_fport;
    537 	}
    538 #endif
    539 	n->th_seq = 0;
    540 	n->th_ack = 0;
    541 	n->th_x2 = 0;
    542 	n->th_off = 5;
    543 	n->th_flags = 0;
    544 	n->th_win = 0;
    545 	n->th_urp = 0;
    546 	return (m);
    547 }
    548 
    549 /*
    550  * Send a single message to the TCP at address specified by
    551  * the given TCP/IP header.  If m == 0, then we make a copy
    552  * of the tcpiphdr at ti and send directly to the addressed host.
    553  * This is used to force keep alive messages out using the TCP
    554  * template for a connection tp->t_template.  If flags are given
    555  * then we send a message back to the TCP which originated the
    556  * segment ti, and discard the mbuf containing it and any other
    557  * attached mbufs.
    558  *
    559  * In any case the ack and sequence number of the transmitted
    560  * segment are as specified by the parameters.
    561  */
    562 int
    563 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
    564     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
    565 {
    566 	struct route *ro;
    567 	int error, tlen, win = 0;
    568 	int hlen;
    569 	struct ip *ip;
    570 #ifdef INET6
    571 	struct ip6_hdr *ip6;
    572 #endif
    573 	int family;	/* family on packet, not inpcb/in6pcb! */
    574 	struct tcphdr *th;
    575 	struct socket *so;
    576 
    577 	if (tp != NULL && (flags & TH_RST) == 0) {
    578 #ifdef DIAGNOSTIC
    579 		if (tp->t_inpcb && tp->t_in6pcb)
    580 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    581 #endif
    582 #ifdef INET
    583 		if (tp->t_inpcb)
    584 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    585 #endif
    586 #ifdef INET6
    587 		if (tp->t_in6pcb)
    588 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    589 #endif
    590 	}
    591 
    592 	th = NULL;	/* Quell uninitialized warning */
    593 	ip = NULL;
    594 #ifdef INET6
    595 	ip6 = NULL;
    596 #endif
    597 	if (m == 0) {
    598 		if (!template)
    599 			return EINVAL;
    600 
    601 		/* get family information from template */
    602 		switch (mtod(template, struct ip *)->ip_v) {
    603 		case 4:
    604 			family = AF_INET;
    605 			hlen = sizeof(struct ip);
    606 			break;
    607 #ifdef INET6
    608 		case 6:
    609 			family = AF_INET6;
    610 			hlen = sizeof(struct ip6_hdr);
    611 			break;
    612 #endif
    613 		default:
    614 			return EAFNOSUPPORT;
    615 		}
    616 
    617 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    618 		if (m) {
    619 			MCLAIM(m, &tcp_tx_mowner);
    620 			MCLGET(m, M_DONTWAIT);
    621 			if ((m->m_flags & M_EXT) == 0) {
    622 				m_free(m);
    623 				m = NULL;
    624 			}
    625 		}
    626 		if (m == NULL)
    627 			return (ENOBUFS);
    628 
    629 		if (tcp_compat_42)
    630 			tlen = 1;
    631 		else
    632 			tlen = 0;
    633 
    634 		m->m_data += max_linkhdr;
    635 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
    636 			template->m_len);
    637 		switch (family) {
    638 		case AF_INET:
    639 			ip = mtod(m, struct ip *);
    640 			th = (struct tcphdr *)(ip + 1);
    641 			break;
    642 #ifdef INET6
    643 		case AF_INET6:
    644 			ip6 = mtod(m, struct ip6_hdr *);
    645 			th = (struct tcphdr *)(ip6 + 1);
    646 			break;
    647 #endif
    648 #if 0
    649 		default:
    650 			/* noone will visit here */
    651 			m_freem(m);
    652 			return EAFNOSUPPORT;
    653 #endif
    654 		}
    655 		flags = TH_ACK;
    656 	} else {
    657 
    658 		if ((m->m_flags & M_PKTHDR) == 0) {
    659 #if 0
    660 			printf("non PKTHDR to tcp_respond\n");
    661 #endif
    662 			m_freem(m);
    663 			return EINVAL;
    664 		}
    665 #ifdef DIAGNOSTIC
    666 		if (!th0)
    667 			panic("th0 == NULL in tcp_respond");
    668 #endif
    669 
    670 		/* get family information from m */
    671 		switch (mtod(m, struct ip *)->ip_v) {
    672 		case 4:
    673 			family = AF_INET;
    674 			hlen = sizeof(struct ip);
    675 			ip = mtod(m, struct ip *);
    676 			break;
    677 #ifdef INET6
    678 		case 6:
    679 			family = AF_INET6;
    680 			hlen = sizeof(struct ip6_hdr);
    681 			ip6 = mtod(m, struct ip6_hdr *);
    682 			break;
    683 #endif
    684 		default:
    685 			m_freem(m);
    686 			return EAFNOSUPPORT;
    687 		}
    688 		/* clear h/w csum flags inherited from rx packet */
    689 		m->m_pkthdr.csum_flags = 0;
    690 
    691 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    692 			tlen = sizeof(*th0);
    693 		else
    694 			tlen = th0->th_off << 2;
    695 
    696 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    697 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
    698 			m->m_len = hlen + tlen;
    699 			m_freem(m->m_next);
    700 			m->m_next = NULL;
    701 		} else {
    702 			struct mbuf *n;
    703 
    704 #ifdef DIAGNOSTIC
    705 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    706 				m_freem(m);
    707 				return EMSGSIZE;
    708 			}
    709 #endif
    710 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    711 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    712 				MCLGET(n, M_DONTWAIT);
    713 				if ((n->m_flags & M_EXT) == 0) {
    714 					m_freem(n);
    715 					n = NULL;
    716 				}
    717 			}
    718 			if (!n) {
    719 				m_freem(m);
    720 				return ENOBUFS;
    721 			}
    722 
    723 			MCLAIM(n, &tcp_tx_mowner);
    724 			n->m_data += max_linkhdr;
    725 			n->m_len = hlen + tlen;
    726 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
    727 			m_copyback(n, hlen, tlen, (caddr_t)th0);
    728 
    729 			m_freem(m);
    730 			m = n;
    731 			n = NULL;
    732 		}
    733 
    734 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    735 		switch (family) {
    736 		case AF_INET:
    737 			ip = mtod(m, struct ip *);
    738 			th = (struct tcphdr *)(ip + 1);
    739 			ip->ip_p = IPPROTO_TCP;
    740 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    741 			ip->ip_p = IPPROTO_TCP;
    742 			break;
    743 #ifdef INET6
    744 		case AF_INET6:
    745 			ip6 = mtod(m, struct ip6_hdr *);
    746 			th = (struct tcphdr *)(ip6 + 1);
    747 			ip6->ip6_nxt = IPPROTO_TCP;
    748 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    749 			ip6->ip6_nxt = IPPROTO_TCP;
    750 			break;
    751 #endif
    752 #if 0
    753 		default:
    754 			/* noone will visit here */
    755 			m_freem(m);
    756 			return EAFNOSUPPORT;
    757 #endif
    758 		}
    759 		xchg(th->th_dport, th->th_sport, u_int16_t);
    760 #undef xchg
    761 		tlen = 0;	/*be friendly with the following code*/
    762 	}
    763 	th->th_seq = htonl(seq);
    764 	th->th_ack = htonl(ack);
    765 	th->th_x2 = 0;
    766 	if ((flags & TH_SYN) == 0) {
    767 		if (tp)
    768 			win >>= tp->rcv_scale;
    769 		if (win > TCP_MAXWIN)
    770 			win = TCP_MAXWIN;
    771 		th->th_win = htons((u_int16_t)win);
    772 		th->th_off = sizeof (struct tcphdr) >> 2;
    773 		tlen += sizeof(*th);
    774 	} else
    775 		tlen += th->th_off << 2;
    776 	m->m_len = hlen + tlen;
    777 	m->m_pkthdr.len = hlen + tlen;
    778 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    779 	th->th_flags = flags;
    780 	th->th_urp = 0;
    781 
    782 	switch (family) {
    783 #ifdef INET
    784 	case AF_INET:
    785 	    {
    786 		struct ipovly *ipov = (struct ipovly *)ip;
    787 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    788 		ipov->ih_len = htons((u_int16_t)tlen);
    789 
    790 		th->th_sum = 0;
    791 		th->th_sum = in_cksum(m, hlen + tlen);
    792 		ip->ip_len = htons(hlen + tlen);
    793 		ip->ip_ttl = ip_defttl;
    794 		break;
    795 	    }
    796 #endif
    797 #ifdef INET6
    798 	case AF_INET6:
    799 	    {
    800 		th->th_sum = 0;
    801 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    802 				tlen);
    803 		ip6->ip6_plen = htons(tlen);
    804 		if (tp && tp->t_in6pcb) {
    805 			struct ifnet *oifp;
    806 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    807 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    808 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    809 		} else
    810 			ip6->ip6_hlim = ip6_defhlim;
    811 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    812 		if (ip6_auto_flowlabel) {
    813 			ip6->ip6_flow |=
    814 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    815 		}
    816 		break;
    817 	    }
    818 #endif
    819 	}
    820 
    821 	if (tp && tp->t_inpcb)
    822 		so = tp->t_inpcb->inp_socket;
    823 #ifdef INET6
    824 	else if (tp && tp->t_in6pcb)
    825 		so = tp->t_in6pcb->in6p_socket;
    826 #endif
    827 	else
    828 		so = NULL;
    829 
    830 	if (tp != NULL && tp->t_inpcb != NULL) {
    831 		ro = &tp->t_inpcb->inp_route;
    832 #ifdef DIAGNOSTIC
    833 		if (family != AF_INET)
    834 			panic("tcp_respond: address family mismatch");
    835 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    836 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    837 			    ntohl(ip->ip_dst.s_addr),
    838 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    839 		}
    840 #endif
    841 	}
    842 #ifdef INET6
    843 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    844 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    845 #ifdef DIAGNOSTIC
    846 		if (family == AF_INET) {
    847 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    848 				panic("tcp_respond: not mapped addr");
    849 			if (bcmp(&ip->ip_dst,
    850 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    851 			    sizeof(ip->ip_dst)) != 0) {
    852 				panic("tcp_respond: ip_dst != in6p_faddr");
    853 			}
    854 		} else if (family == AF_INET6) {
    855 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    856 			    &tp->t_in6pcb->in6p_faddr))
    857 				panic("tcp_respond: ip6_dst != in6p_faddr");
    858 		} else
    859 			panic("tcp_respond: address family mismatch");
    860 #endif
    861 	}
    862 #endif
    863 	else
    864 		ro = NULL;
    865 
    866 	switch (family) {
    867 #ifdef INET
    868 	case AF_INET:
    869 		error = ip_output(m, NULL, ro,
    870 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    871 		    (struct ip_moptions *)0, so);
    872 		break;
    873 #endif
    874 #ifdef INET6
    875 	case AF_INET6:
    876 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
    877 		    (struct ip6_moptions *)0, so, NULL);
    878 		break;
    879 #endif
    880 	default:
    881 		error = EAFNOSUPPORT;
    882 		break;
    883 	}
    884 
    885 	return (error);
    886 }
    887 
    888 /*
    889  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
    890  * a bunch of members individually, we maintain this template for the
    891  * static and mostly-static components of the TCPCB, and copy it into
    892  * the new TCPCB instead.
    893  */
    894 static struct tcpcb tcpcb_template = {
    895 	/*
    896 	 * If TCP_NTIMERS ever changes, we'll need to update this
    897 	 * initializer.
    898 	 */
    899 	.t_timer = {
    900 		CALLOUT_INITIALIZER,
    901 		CALLOUT_INITIALIZER,
    902 		CALLOUT_INITIALIZER,
    903 		CALLOUT_INITIALIZER,
    904 	},
    905 	.t_delack_ch = CALLOUT_INITIALIZER,
    906 
    907 	.t_srtt = TCPTV_SRTTBASE,
    908 	.t_rttmin = TCPTV_MIN,
    909 
    910 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    911 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    912 	.snd_numholes = 0,
    913 
    914 	.t_partialacks = -1,
    915 };
    916 
    917 /*
    918  * Updates the TCPCB template whenever a parameter that would affect
    919  * the template is changed.
    920  */
    921 void
    922 tcp_tcpcb_template(void)
    923 {
    924 	struct tcpcb *tp = &tcpcb_template;
    925 	int flags;
    926 
    927 	tp->t_peermss = tcp_mssdflt;
    928 	tp->t_ourmss = tcp_mssdflt;
    929 	tp->t_segsz = tcp_mssdflt;
    930 
    931 	flags = 0;
    932 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    933 		flags |= TF_REQ_SCALE;
    934 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    935 		flags |= TF_REQ_TSTMP;
    936 	tp->t_flags = flags;
    937 
    938 	/*
    939 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    940 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    941 	 * reasonable initial retransmit time.
    942 	 */
    943 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    944 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    945 	    TCPTV_MIN, TCPTV_REXMTMAX);
    946 }
    947 
    948 /*
    949  * Create a new TCP control block, making an
    950  * empty reassembly queue and hooking it to the argument
    951  * protocol control block.
    952  */
    953 /* family selects inpcb, or in6pcb */
    954 struct tcpcb *
    955 tcp_newtcpcb(int family, void *aux)
    956 {
    957 	struct tcpcb *tp;
    958 	int i;
    959 
    960 	/* XXX Consider using a pool_cache for speed. */
    961 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    962 	if (tp == NULL)
    963 		return (NULL);
    964 	memcpy(tp, &tcpcb_template, sizeof(*tp));
    965 	TAILQ_INIT(&tp->segq);
    966 	TAILQ_INIT(&tp->timeq);
    967 	tp->t_family = family;		/* may be overridden later on */
    968 	TAILQ_INIT(&tp->snd_holes);
    969 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
    970 
    971 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
    972 	for (i = 0; i < TCPT_NTIMERS; i++)
    973 		TCP_TIMER_INIT(tp, i);
    974 
    975 	switch (family) {
    976 	case AF_INET:
    977 	    {
    978 		struct inpcb *inp = (struct inpcb *)aux;
    979 
    980 		inp->inp_ip.ip_ttl = ip_defttl;
    981 		inp->inp_ppcb = (caddr_t)tp;
    982 
    983 		tp->t_inpcb = inp;
    984 		tp->t_mtudisc = ip_mtudisc;
    985 		break;
    986 	    }
    987 #ifdef INET6
    988 	case AF_INET6:
    989 	    {
    990 		struct in6pcb *in6p = (struct in6pcb *)aux;
    991 
    992 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
    993 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
    994 					       : NULL);
    995 		in6p->in6p_ppcb = (caddr_t)tp;
    996 
    997 		tp->t_in6pcb = in6p;
    998 		/* for IPv6, always try to run path MTU discovery */
    999 		tp->t_mtudisc = 1;
   1000 		break;
   1001 	    }
   1002 #endif /* INET6 */
   1003 	default:
   1004 		pool_put(&tcpcb_pool, tp);
   1005 		return (NULL);
   1006 	}
   1007 
   1008 	/*
   1009 	 * Initialize our timebase.  When we send timestamps, we take
   1010 	 * the delta from tcp_now -- this means each connection always
   1011 	 * gets a timebase of 0, which makes it, among other things,
   1012 	 * more difficult to determine how long a system has been up,
   1013 	 * and thus how many TCP sequence increments have occurred.
   1014 	 */
   1015 	tp->ts_timebase = tcp_now;
   1016 
   1017 	return (tp);
   1018 }
   1019 
   1020 /*
   1021  * Drop a TCP connection, reporting
   1022  * the specified error.  If connection is synchronized,
   1023  * then send a RST to peer.
   1024  */
   1025 struct tcpcb *
   1026 tcp_drop(struct tcpcb *tp, int errno)
   1027 {
   1028 	struct socket *so = NULL;
   1029 
   1030 #ifdef DIAGNOSTIC
   1031 	if (tp->t_inpcb && tp->t_in6pcb)
   1032 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1033 #endif
   1034 #ifdef INET
   1035 	if (tp->t_inpcb)
   1036 		so = tp->t_inpcb->inp_socket;
   1037 #endif
   1038 #ifdef INET6
   1039 	if (tp->t_in6pcb)
   1040 		so = tp->t_in6pcb->in6p_socket;
   1041 #endif
   1042 	if (!so)
   1043 		return NULL;
   1044 
   1045 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1046 		tp->t_state = TCPS_CLOSED;
   1047 		(void) tcp_output(tp);
   1048 		tcpstat.tcps_drops++;
   1049 	} else
   1050 		tcpstat.tcps_conndrops++;
   1051 	if (errno == ETIMEDOUT && tp->t_softerror)
   1052 		errno = tp->t_softerror;
   1053 	so->so_error = errno;
   1054 	return (tcp_close(tp));
   1055 }
   1056 
   1057 /*
   1058  * Return whether this tcpcb is marked as dead, indicating
   1059  * to the calling timer function that no further action should
   1060  * be taken, as we are about to release this tcpcb.  The release
   1061  * of the storage will be done if this is the last timer running.
   1062  *
   1063  * This should be called from the callout handler function after
   1064  * callout_ack() is done, so that the number of invoking timer
   1065  * functions is 0.
   1066  */
   1067 int
   1068 tcp_isdead(struct tcpcb *tp)
   1069 {
   1070 	int dead = (tp->t_flags & TF_DEAD);
   1071 
   1072 	if (__predict_false(dead)) {
   1073 		if (tcp_timers_invoking(tp) > 0)
   1074 				/* not quite there yet -- count separately? */
   1075 			return dead;
   1076 		tcpstat.tcps_delayed_free++;
   1077 		pool_put(&tcpcb_pool, tp);
   1078 	}
   1079 	return dead;
   1080 }
   1081 
   1082 /*
   1083  * Close a TCP control block:
   1084  *	discard all space held by the tcp
   1085  *	discard internet protocol block
   1086  *	wake up any sleepers
   1087  */
   1088 struct tcpcb *
   1089 tcp_close(struct tcpcb *tp)
   1090 {
   1091 	struct inpcb *inp;
   1092 #ifdef INET6
   1093 	struct in6pcb *in6p;
   1094 #endif
   1095 	struct socket *so;
   1096 #ifdef RTV_RTT
   1097 	struct rtentry *rt;
   1098 #endif
   1099 	struct route *ro;
   1100 
   1101 	inp = tp->t_inpcb;
   1102 #ifdef INET6
   1103 	in6p = tp->t_in6pcb;
   1104 #endif
   1105 	so = NULL;
   1106 	ro = NULL;
   1107 	if (inp) {
   1108 		so = inp->inp_socket;
   1109 		ro = &inp->inp_route;
   1110 	}
   1111 #ifdef INET6
   1112 	else if (in6p) {
   1113 		so = in6p->in6p_socket;
   1114 		ro = (struct route *)&in6p->in6p_route;
   1115 	}
   1116 #endif
   1117 
   1118 #ifdef RTV_RTT
   1119 	/*
   1120 	 * If we sent enough data to get some meaningful characteristics,
   1121 	 * save them in the routing entry.  'Enough' is arbitrarily
   1122 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1123 	 * give us 16 rtt samples assuming we only get one sample per
   1124 	 * window (the usual case on a long haul net).  16 samples is
   1125 	 * enough for the srtt filter to converge to within 5% of the correct
   1126 	 * value; fewer samples and we could save a very bogus rtt.
   1127 	 *
   1128 	 * Don't update the default route's characteristics and don't
   1129 	 * update anything that the user "locked".
   1130 	 */
   1131 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1132 	    ro && (rt = ro->ro_rt) &&
   1133 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
   1134 		u_long i = 0;
   1135 
   1136 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1137 			i = tp->t_srtt *
   1138 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1139 			if (rt->rt_rmx.rmx_rtt && i)
   1140 				/*
   1141 				 * filter this update to half the old & half
   1142 				 * the new values, converting scale.
   1143 				 * See route.h and tcp_var.h for a
   1144 				 * description of the scaling constants.
   1145 				 */
   1146 				rt->rt_rmx.rmx_rtt =
   1147 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1148 			else
   1149 				rt->rt_rmx.rmx_rtt = i;
   1150 		}
   1151 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1152 			i = tp->t_rttvar *
   1153 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1154 			if (rt->rt_rmx.rmx_rttvar && i)
   1155 				rt->rt_rmx.rmx_rttvar =
   1156 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1157 			else
   1158 				rt->rt_rmx.rmx_rttvar = i;
   1159 		}
   1160 		/*
   1161 		 * update the pipelimit (ssthresh) if it has been updated
   1162 		 * already or if a pipesize was specified & the threshhold
   1163 		 * got below half the pipesize.  I.e., wait for bad news
   1164 		 * before we start updating, then update on both good
   1165 		 * and bad news.
   1166 		 */
   1167 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1168 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1169 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1170 			/*
   1171 			 * convert the limit from user data bytes to
   1172 			 * packets then to packet data bytes.
   1173 			 */
   1174 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1175 			if (i < 2)
   1176 				i = 2;
   1177 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1178 			if (rt->rt_rmx.rmx_ssthresh)
   1179 				rt->rt_rmx.rmx_ssthresh =
   1180 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1181 			else
   1182 				rt->rt_rmx.rmx_ssthresh = i;
   1183 		}
   1184 	}
   1185 #endif /* RTV_RTT */
   1186 	/* free the reassembly queue, if any */
   1187 	TCP_REASS_LOCK(tp);
   1188 	(void) tcp_freeq(tp);
   1189 	TCP_REASS_UNLOCK(tp);
   1190 
   1191 	/* free the SACK holes list. */
   1192 	tcp_free_sackholes(tp);
   1193 
   1194 	tcp_canceltimers(tp);
   1195 	TCP_CLEAR_DELACK(tp);
   1196 	syn_cache_cleanup(tp);
   1197 
   1198 	if (tp->t_template) {
   1199 		m_free(tp->t_template);
   1200 		tp->t_template = NULL;
   1201 	}
   1202 	if (tcp_timers_invoking(tp))
   1203 		tp->t_flags |= TF_DEAD;
   1204 	else
   1205 		pool_put(&tcpcb_pool, tp);
   1206 
   1207 	if (inp) {
   1208 		inp->inp_ppcb = 0;
   1209 		soisdisconnected(so);
   1210 		in_pcbdetach(inp);
   1211 	}
   1212 #ifdef INET6
   1213 	else if (in6p) {
   1214 		in6p->in6p_ppcb = 0;
   1215 		soisdisconnected(so);
   1216 		in6_pcbdetach(in6p);
   1217 	}
   1218 #endif
   1219 	tcpstat.tcps_closed++;
   1220 	return ((struct tcpcb *)0);
   1221 }
   1222 
   1223 int
   1224 tcp_freeq(tp)
   1225 	struct tcpcb *tp;
   1226 {
   1227 	struct ipqent *qe;
   1228 	int rv = 0;
   1229 #ifdef TCPREASS_DEBUG
   1230 	int i = 0;
   1231 #endif
   1232 
   1233 	TCP_REASS_LOCK_CHECK(tp);
   1234 
   1235 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1236 #ifdef TCPREASS_DEBUG
   1237 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1238 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1239 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1240 #endif
   1241 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1242 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1243 		m_freem(qe->ipqe_m);
   1244 		tcpipqent_free(qe);
   1245 		rv = 1;
   1246 	}
   1247 	tp->t_segqlen = 0;
   1248 	KASSERT(TAILQ_EMPTY(&tp->timeq));
   1249 	return (rv);
   1250 }
   1251 
   1252 /*
   1253  * Protocol drain routine.  Called when memory is in short supply.
   1254  */
   1255 void
   1256 tcp_drain(void)
   1257 {
   1258 	struct inpcb_hdr *inph;
   1259 	struct tcpcb *tp;
   1260 
   1261 	/*
   1262 	 * Free the sequence queue of all TCP connections.
   1263 	 */
   1264 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
   1265 		switch (inph->inph_af) {
   1266 		case AF_INET:
   1267 			tp = intotcpcb((struct inpcb *)inph);
   1268 			break;
   1269 #ifdef INET6
   1270 		case AF_INET6:
   1271 			tp = in6totcpcb((struct in6pcb *)inph);
   1272 			break;
   1273 #endif
   1274 		default:
   1275 			tp = NULL;
   1276 			break;
   1277 		}
   1278 		if (tp != NULL) {
   1279 			/*
   1280 			 * We may be called from a device's interrupt
   1281 			 * context.  If the tcpcb is already busy,
   1282 			 * just bail out now.
   1283 			 */
   1284 			if (tcp_reass_lock_try(tp) == 0)
   1285 				continue;
   1286 			if (tcp_freeq(tp))
   1287 				tcpstat.tcps_connsdrained++;
   1288 			TCP_REASS_UNLOCK(tp);
   1289 		}
   1290 	}
   1291 }
   1292 
   1293 /*
   1294  * Notify a tcp user of an asynchronous error;
   1295  * store error as soft error, but wake up user
   1296  * (for now, won't do anything until can select for soft error).
   1297  */
   1298 void
   1299 tcp_notify(struct inpcb *inp, int error)
   1300 {
   1301 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1302 	struct socket *so = inp->inp_socket;
   1303 
   1304 	/*
   1305 	 * Ignore some errors if we are hooked up.
   1306 	 * If connection hasn't completed, has retransmitted several times,
   1307 	 * and receives a second error, give up now.  This is better
   1308 	 * than waiting a long time to establish a connection that
   1309 	 * can never complete.
   1310 	 */
   1311 	if (tp->t_state == TCPS_ESTABLISHED &&
   1312 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1313 	      error == EHOSTDOWN)) {
   1314 		return;
   1315 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1316 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1317 		so->so_error = error;
   1318 	else
   1319 		tp->t_softerror = error;
   1320 	wakeup((caddr_t) &so->so_timeo);
   1321 	sorwakeup(so);
   1322 	sowwakeup(so);
   1323 }
   1324 
   1325 #ifdef INET6
   1326 void
   1327 tcp6_notify(struct in6pcb *in6p, int error)
   1328 {
   1329 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1330 	struct socket *so = in6p->in6p_socket;
   1331 
   1332 	/*
   1333 	 * Ignore some errors if we are hooked up.
   1334 	 * If connection hasn't completed, has retransmitted several times,
   1335 	 * and receives a second error, give up now.  This is better
   1336 	 * than waiting a long time to establish a connection that
   1337 	 * can never complete.
   1338 	 */
   1339 	if (tp->t_state == TCPS_ESTABLISHED &&
   1340 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1341 	      error == EHOSTDOWN)) {
   1342 		return;
   1343 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1344 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1345 		so->so_error = error;
   1346 	else
   1347 		tp->t_softerror = error;
   1348 	wakeup((caddr_t) &so->so_timeo);
   1349 	sorwakeup(so);
   1350 	sowwakeup(so);
   1351 }
   1352 #endif
   1353 
   1354 #ifdef INET6
   1355 void
   1356 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
   1357 {
   1358 	struct tcphdr th;
   1359 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
   1360 	int nmatch;
   1361 	struct ip6_hdr *ip6;
   1362 	const struct sockaddr_in6 *sa6_src = NULL;
   1363 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
   1364 	struct mbuf *m;
   1365 	int off;
   1366 
   1367 	if (sa->sa_family != AF_INET6 ||
   1368 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1369 		return;
   1370 	if ((unsigned)cmd >= PRC_NCMDS)
   1371 		return;
   1372 	else if (cmd == PRC_QUENCH) {
   1373 		/*
   1374 		 * Don't honor ICMP Source Quench messages meant for
   1375 		 * TCP connections.
   1376 		 */
   1377 		return;
   1378 	} else if (PRC_IS_REDIRECT(cmd))
   1379 		notify = in6_rtchange, d = NULL;
   1380 	else if (cmd == PRC_MSGSIZE)
   1381 		; /* special code is present, see below */
   1382 	else if (cmd == PRC_HOSTDEAD)
   1383 		d = NULL;
   1384 	else if (inet6ctlerrmap[cmd] == 0)
   1385 		return;
   1386 
   1387 	/* if the parameter is from icmp6, decode it. */
   1388 	if (d != NULL) {
   1389 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1390 		m = ip6cp->ip6c_m;
   1391 		ip6 = ip6cp->ip6c_ip6;
   1392 		off = ip6cp->ip6c_off;
   1393 		sa6_src = ip6cp->ip6c_src;
   1394 	} else {
   1395 		m = NULL;
   1396 		ip6 = NULL;
   1397 		sa6_src = &sa6_any;
   1398 		off = 0;
   1399 	}
   1400 
   1401 	if (ip6) {
   1402 		/*
   1403 		 * XXX: We assume that when ip6 is non NULL,
   1404 		 * M and OFF are valid.
   1405 		 */
   1406 
   1407 		/* check if we can safely examine src and dst ports */
   1408 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1409 			if (cmd == PRC_MSGSIZE)
   1410 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1411 			return;
   1412 		}
   1413 
   1414 		bzero(&th, sizeof(th));
   1415 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
   1416 
   1417 		if (cmd == PRC_MSGSIZE) {
   1418 			int valid = 0;
   1419 
   1420 			/*
   1421 			 * Check to see if we have a valid TCP connection
   1422 			 * corresponding to the address in the ICMPv6 message
   1423 			 * payload.
   1424 			 */
   1425 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
   1426 			    th.th_dport, (const struct in6_addr *)&sa6_src->sin6_addr,
   1427 			    th.th_sport, 0))
   1428 				valid++;
   1429 
   1430 			/*
   1431 			 * Depending on the value of "valid" and routing table
   1432 			 * size (mtudisc_{hi,lo}wat), we will:
   1433 			 * - recalcurate the new MTU and create the
   1434 			 *   corresponding routing entry, or
   1435 			 * - ignore the MTU change notification.
   1436 			 */
   1437 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1438 
   1439 			/*
   1440 			 * no need to call in6_pcbnotify, it should have been
   1441 			 * called via callback if necessary
   1442 			 */
   1443 			return;
   1444 		}
   1445 
   1446 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
   1447 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1448 		if (nmatch == 0 && syn_cache_count &&
   1449 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1450 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1451 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1452 			syn_cache_unreach((const struct sockaddr *)sa6_src,
   1453 					  sa, &th);
   1454 	} else {
   1455 		(void) in6_pcbnotify(&tcbtable, sa, 0,
   1456 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
   1457 	}
   1458 }
   1459 #endif
   1460 
   1461 #ifdef INET
   1462 /* assumes that ip header and tcp header are contiguous on mbuf */
   1463 void *
   1464 tcp_ctlinput(int cmd, struct sockaddr *sa, void *v)
   1465 {
   1466 	struct ip *ip = v;
   1467 	struct tcphdr *th;
   1468 	struct icmp *icp;
   1469 	extern const int inetctlerrmap[];
   1470 	void (*notify)(struct inpcb *, int) = tcp_notify;
   1471 	int errno;
   1472 	int nmatch;
   1473 	struct tcpcb *tp;
   1474 	u_int mtu;
   1475 	tcp_seq seq;
   1476 	struct inpcb *inp;
   1477 #ifdef INET6
   1478 	struct in6pcb *in6p;
   1479 	struct in6_addr src6, dst6;
   1480 #endif
   1481 
   1482 	if (sa->sa_family != AF_INET ||
   1483 	    sa->sa_len != sizeof(struct sockaddr_in))
   1484 		return NULL;
   1485 	if ((unsigned)cmd >= PRC_NCMDS)
   1486 		return NULL;
   1487 	errno = inetctlerrmap[cmd];
   1488 	if (cmd == PRC_QUENCH)
   1489 		/*
   1490 		 * Don't honor ICMP Source Quench messages meant for
   1491 		 * TCP connections.
   1492 		 */
   1493 		return NULL;
   1494 	else if (PRC_IS_REDIRECT(cmd))
   1495 		notify = in_rtchange, ip = 0;
   1496 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1497 		/*
   1498 		 * Check to see if we have a valid TCP connection
   1499 		 * corresponding to the address in the ICMP message
   1500 		 * payload.
   1501 		 *
   1502 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1503 		 */
   1504 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1505 #ifdef INET6
   1506 		memset(&src6, 0, sizeof(src6));
   1507 		memset(&dst6, 0, sizeof(dst6));
   1508 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1509 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1510 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1511 #endif
   1512 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
   1513 		    th->th_dport, ip->ip_src, th->th_sport)) != NULL)
   1514 			in6p = NULL;
   1515 #ifdef INET6
   1516 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
   1517 		    th->th_dport, &src6, th->th_sport, 0)) != NULL)
   1518 			;
   1519 #endif
   1520 		else
   1521 			return NULL;
   1522 
   1523 		/*
   1524 		 * Now that we've validated that we are actually communicating
   1525 		 * with the host indicated in the ICMP message, locate the
   1526 		 * ICMP header, recalculate the new MTU, and create the
   1527 		 * corresponding routing entry.
   1528 		 */
   1529 		icp = (struct icmp *)((caddr_t)ip -
   1530 		    offsetof(struct icmp, icmp_ip));
   1531 		if (inp) {
   1532 			if ((tp = intotcpcb(inp)) == NULL)
   1533 				return NULL;
   1534 		}
   1535 #ifdef INET6
   1536 		else if (in6p) {
   1537 			if ((tp = in6totcpcb(in6p)) == NULL)
   1538 				return NULL;
   1539 		}
   1540 #endif
   1541 		else
   1542 			return NULL;
   1543 		seq = ntohl(th->th_seq);
   1544 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
   1545 			return NULL;
   1546 		/*
   1547 		 * If the ICMP message advertises a Next-Hop MTU
   1548 		 * equal or larger than the maximum packet size we have
   1549 		 * ever sent, drop the message.
   1550 		 */
   1551 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
   1552 		if (mtu >= tp->t_pmtud_mtu_sent)
   1553 			return NULL;
   1554 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
   1555 			/*
   1556 			 * Calculate new MTU, and create corresponding
   1557 			 * route (traditional PMTUD).
   1558 			 */
   1559 			tp->t_flags &= ~TF_PMTUD_PEND;
   1560 			icmp_mtudisc(icp, ip->ip_dst);
   1561 		} else {
   1562 			/*
   1563 			 * Record the information got in the ICMP
   1564 			 * message; act on it later.
   1565 			 * If we had already recorded an ICMP message,
   1566 			 * replace the old one only if the new message
   1567 			 * refers to an older TCP segment
   1568 			 */
   1569 			if (tp->t_flags & TF_PMTUD_PEND) {
   1570 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
   1571 					return NULL;
   1572 			} else
   1573 				tp->t_flags |= TF_PMTUD_PEND;
   1574 			tp->t_pmtud_th_seq = seq;
   1575 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
   1576 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
   1577 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
   1578 		}
   1579 		return NULL;
   1580 	} else if (cmd == PRC_HOSTDEAD)
   1581 		ip = 0;
   1582 	else if (errno == 0)
   1583 		return NULL;
   1584 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1585 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1586 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
   1587 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1588 		if (nmatch == 0 && syn_cache_count &&
   1589 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1590 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1591 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1592 			struct sockaddr_in sin;
   1593 			bzero(&sin, sizeof(sin));
   1594 			sin.sin_len = sizeof(sin);
   1595 			sin.sin_family = AF_INET;
   1596 			sin.sin_port = th->th_sport;
   1597 			sin.sin_addr = ip->ip_src;
   1598 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1599 		}
   1600 
   1601 		/* XXX mapped address case */
   1602 	} else
   1603 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
   1604 		    notify);
   1605 	return NULL;
   1606 }
   1607 
   1608 /*
   1609  * When a source quench is received, we are being notified of congestion.
   1610  * Close the congestion window down to the Loss Window (one segment).
   1611  * We will gradually open it again as we proceed.
   1612  */
   1613 void
   1614 tcp_quench(struct inpcb *inp, int errno)
   1615 {
   1616 	struct tcpcb *tp = intotcpcb(inp);
   1617 
   1618 	if (tp)
   1619 		tp->snd_cwnd = tp->t_segsz;
   1620 }
   1621 #endif
   1622 
   1623 #ifdef INET6
   1624 void
   1625 tcp6_quench(struct in6pcb *in6p, int errno)
   1626 {
   1627 	struct tcpcb *tp = in6totcpcb(in6p);
   1628 
   1629 	if (tp)
   1630 		tp->snd_cwnd = tp->t_segsz;
   1631 }
   1632 #endif
   1633 
   1634 #ifdef INET
   1635 /*
   1636  * Path MTU Discovery handlers.
   1637  */
   1638 void
   1639 tcp_mtudisc_callback(struct in_addr faddr)
   1640 {
   1641 #ifdef INET6
   1642 	struct in6_addr in6;
   1643 #endif
   1644 
   1645 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1646 #ifdef INET6
   1647 	memset(&in6, 0, sizeof(in6));
   1648 	in6.s6_addr16[5] = 0xffff;
   1649 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1650 	tcp6_mtudisc_callback(&in6);
   1651 #endif
   1652 }
   1653 
   1654 /*
   1655  * On receipt of path MTU corrections, flush old route and replace it
   1656  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1657  * that all packets will be received.
   1658  */
   1659 void
   1660 tcp_mtudisc(struct inpcb *inp, int errno)
   1661 {
   1662 	struct tcpcb *tp = intotcpcb(inp);
   1663 	struct rtentry *rt = in_pcbrtentry(inp);
   1664 
   1665 	if (tp != 0) {
   1666 		if (rt != 0) {
   1667 			/*
   1668 			 * If this was not a host route, remove and realloc.
   1669 			 */
   1670 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1671 				in_rtchange(inp, errno);
   1672 				if ((rt = in_pcbrtentry(inp)) == 0)
   1673 					return;
   1674 			}
   1675 
   1676 			/*
   1677 			 * Slow start out of the error condition.  We
   1678 			 * use the MTU because we know it's smaller
   1679 			 * than the previously transmitted segment.
   1680 			 *
   1681 			 * Note: This is more conservative than the
   1682 			 * suggestion in draft-floyd-incr-init-win-03.
   1683 			 */
   1684 			if (rt->rt_rmx.rmx_mtu != 0)
   1685 				tp->snd_cwnd =
   1686 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1687 				    rt->rt_rmx.rmx_mtu);
   1688 		}
   1689 
   1690 		/*
   1691 		 * Resend unacknowledged packets.
   1692 		 */
   1693 		tp->snd_nxt = tp->snd_una;
   1694 		tcp_output(tp);
   1695 	}
   1696 }
   1697 #endif
   1698 
   1699 #ifdef INET6
   1700 /*
   1701  * Path MTU Discovery handlers.
   1702  */
   1703 void
   1704 tcp6_mtudisc_callback(struct in6_addr *faddr)
   1705 {
   1706 	struct sockaddr_in6 sin6;
   1707 
   1708 	bzero(&sin6, sizeof(sin6));
   1709 	sin6.sin6_family = AF_INET6;
   1710 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1711 	sin6.sin6_addr = *faddr;
   1712 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
   1713 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1714 }
   1715 
   1716 void
   1717 tcp6_mtudisc(struct in6pcb *in6p, int errno)
   1718 {
   1719 	struct tcpcb *tp = in6totcpcb(in6p);
   1720 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1721 
   1722 	if (tp != 0) {
   1723 		if (rt != 0) {
   1724 			/*
   1725 			 * If this was not a host route, remove and realloc.
   1726 			 */
   1727 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1728 				in6_rtchange(in6p, errno);
   1729 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1730 					return;
   1731 			}
   1732 
   1733 			/*
   1734 			 * Slow start out of the error condition.  We
   1735 			 * use the MTU because we know it's smaller
   1736 			 * than the previously transmitted segment.
   1737 			 *
   1738 			 * Note: This is more conservative than the
   1739 			 * suggestion in draft-floyd-incr-init-win-03.
   1740 			 */
   1741 			if (rt->rt_rmx.rmx_mtu != 0)
   1742 				tp->snd_cwnd =
   1743 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1744 				    rt->rt_rmx.rmx_mtu);
   1745 		}
   1746 
   1747 		/*
   1748 		 * Resend unacknowledged packets.
   1749 		 */
   1750 		tp->snd_nxt = tp->snd_una;
   1751 		tcp_output(tp);
   1752 	}
   1753 }
   1754 #endif /* INET6 */
   1755 
   1756 /*
   1757  * Compute the MSS to advertise to the peer.  Called only during
   1758  * the 3-way handshake.  If we are the server (peer initiated
   1759  * connection), we are called with a pointer to the interface
   1760  * on which the SYN packet arrived.  If we are the client (we
   1761  * initiated connection), we are called with a pointer to the
   1762  * interface out which this connection should go.
   1763  *
   1764  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1765  * header size from MSS advertisement.  MSS option must hold the maximum
   1766  * segment size we can accept, so it must always be:
   1767  *	 max(if mtu) - ip header - tcp header
   1768  */
   1769 u_long
   1770 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
   1771 {
   1772 	extern u_long in_maxmtu;
   1773 	u_long mss = 0;
   1774 	u_long hdrsiz;
   1775 
   1776 	/*
   1777 	 * In order to avoid defeating path MTU discovery on the peer,
   1778 	 * we advertise the max MTU of all attached networks as our MSS,
   1779 	 * per RFC 1191, section 3.1.
   1780 	 *
   1781 	 * We provide the option to advertise just the MTU of
   1782 	 * the interface on which we hope this connection will
   1783 	 * be receiving.  If we are responding to a SYN, we
   1784 	 * will have a pretty good idea about this, but when
   1785 	 * initiating a connection there is a bit more doubt.
   1786 	 *
   1787 	 * We also need to ensure that loopback has a large enough
   1788 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1789 	 */
   1790 
   1791 	if (ifp != NULL)
   1792 		switch (af) {
   1793 		case AF_INET:
   1794 			mss = ifp->if_mtu;
   1795 			break;
   1796 #ifdef INET6
   1797 		case AF_INET6:
   1798 			mss = IN6_LINKMTU(ifp);
   1799 			break;
   1800 #endif
   1801 		}
   1802 
   1803 	if (tcp_mss_ifmtu == 0)
   1804 		switch (af) {
   1805 		case AF_INET:
   1806 			mss = max(in_maxmtu, mss);
   1807 			break;
   1808 #ifdef INET6
   1809 		case AF_INET6:
   1810 			mss = max(in6_maxmtu, mss);
   1811 			break;
   1812 #endif
   1813 		}
   1814 
   1815 	switch (af) {
   1816 	case AF_INET:
   1817 		hdrsiz = sizeof(struct ip);
   1818 		break;
   1819 #ifdef INET6
   1820 	case AF_INET6:
   1821 		hdrsiz = sizeof(struct ip6_hdr);
   1822 		break;
   1823 #endif
   1824 	default:
   1825 		hdrsiz = 0;
   1826 		break;
   1827 	}
   1828 	hdrsiz += sizeof(struct tcphdr);
   1829 	if (mss > hdrsiz)
   1830 		mss -= hdrsiz;
   1831 
   1832 	mss = max(tcp_mssdflt, mss);
   1833 	return (mss);
   1834 }
   1835 
   1836 /*
   1837  * Set connection variables based on the peer's advertised MSS.
   1838  * We are passed the TCPCB for the actual connection.  If we
   1839  * are the server, we are called by the compressed state engine
   1840  * when the 3-way handshake is complete.  If we are the client,
   1841  * we are called when we receive the SYN,ACK from the server.
   1842  *
   1843  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1844  * before this routine is called!
   1845  */
   1846 void
   1847 tcp_mss_from_peer(struct tcpcb *tp, int offer)
   1848 {
   1849 	struct socket *so;
   1850 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1851 	struct rtentry *rt;
   1852 #endif
   1853 	u_long bufsize;
   1854 	int mss;
   1855 
   1856 #ifdef DIAGNOSTIC
   1857 	if (tp->t_inpcb && tp->t_in6pcb)
   1858 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1859 #endif
   1860 	so = NULL;
   1861 	rt = NULL;
   1862 #ifdef INET
   1863 	if (tp->t_inpcb) {
   1864 		so = tp->t_inpcb->inp_socket;
   1865 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1866 		rt = in_pcbrtentry(tp->t_inpcb);
   1867 #endif
   1868 	}
   1869 #endif
   1870 #ifdef INET6
   1871 	if (tp->t_in6pcb) {
   1872 		so = tp->t_in6pcb->in6p_socket;
   1873 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1874 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1875 #endif
   1876 	}
   1877 #endif
   1878 
   1879 	/*
   1880 	 * As per RFC1122, use the default MSS value, unless they
   1881 	 * sent us an offer.  Do not accept offers less than 256 bytes.
   1882 	 */
   1883 	mss = tcp_mssdflt;
   1884 	if (offer)
   1885 		mss = offer;
   1886 	mss = max(mss, 256);		/* sanity */
   1887 	tp->t_peermss = mss;
   1888 	mss -= tcp_optlen(tp);
   1889 #ifdef INET
   1890 	if (tp->t_inpcb)
   1891 		mss -= ip_optlen(tp->t_inpcb);
   1892 #endif
   1893 #ifdef INET6
   1894 	if (tp->t_in6pcb)
   1895 		mss -= ip6_optlen(tp->t_in6pcb);
   1896 #endif
   1897 
   1898 	/*
   1899 	 * If there's a pipesize, change the socket buffer to that size.
   1900 	 * Make the socket buffer an integral number of MSS units.  If
   1901 	 * the MSS is larger than the socket buffer, artificially decrease
   1902 	 * the MSS.
   1903 	 */
   1904 #ifdef RTV_SPIPE
   1905 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1906 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1907 	else
   1908 #endif
   1909 		bufsize = so->so_snd.sb_hiwat;
   1910 	if (bufsize < mss)
   1911 		mss = bufsize;
   1912 	else {
   1913 		bufsize = roundup(bufsize, mss);
   1914 		if (bufsize > sb_max)
   1915 			bufsize = sb_max;
   1916 		(void) sbreserve(&so->so_snd, bufsize, so);
   1917 	}
   1918 	tp->t_segsz = mss;
   1919 
   1920 #ifdef RTV_SSTHRESH
   1921 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1922 		/*
   1923 		 * There's some sort of gateway or interface buffer
   1924 		 * limit on the path.  Use this to set the slow
   1925 		 * start threshold, but set the threshold to no less
   1926 		 * than 2 * MSS.
   1927 		 */
   1928 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1929 	}
   1930 #endif
   1931 }
   1932 
   1933 /*
   1934  * Processing necessary when a TCP connection is established.
   1935  */
   1936 void
   1937 tcp_established(struct tcpcb *tp)
   1938 {
   1939 	struct socket *so;
   1940 #ifdef RTV_RPIPE
   1941 	struct rtentry *rt;
   1942 #endif
   1943 	u_long bufsize;
   1944 
   1945 #ifdef DIAGNOSTIC
   1946 	if (tp->t_inpcb && tp->t_in6pcb)
   1947 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   1948 #endif
   1949 	so = NULL;
   1950 	rt = NULL;
   1951 #ifdef INET
   1952 	if (tp->t_inpcb) {
   1953 		so = tp->t_inpcb->inp_socket;
   1954 #if defined(RTV_RPIPE)
   1955 		rt = in_pcbrtentry(tp->t_inpcb);
   1956 #endif
   1957 	}
   1958 #endif
   1959 #ifdef INET6
   1960 	if (tp->t_in6pcb) {
   1961 		so = tp->t_in6pcb->in6p_socket;
   1962 #if defined(RTV_RPIPE)
   1963 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1964 #endif
   1965 	}
   1966 #endif
   1967 
   1968 	tp->t_state = TCPS_ESTABLISHED;
   1969 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1970 
   1971 #ifdef RTV_RPIPE
   1972 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   1973 		bufsize = rt->rt_rmx.rmx_recvpipe;
   1974 	else
   1975 #endif
   1976 		bufsize = so->so_rcv.sb_hiwat;
   1977 	if (bufsize > tp->t_ourmss) {
   1978 		bufsize = roundup(bufsize, tp->t_ourmss);
   1979 		if (bufsize > sb_max)
   1980 			bufsize = sb_max;
   1981 		(void) sbreserve(&so->so_rcv, bufsize, so);
   1982 	}
   1983 }
   1984 
   1985 /*
   1986  * Check if there's an initial rtt or rttvar.  Convert from the
   1987  * route-table units to scaled multiples of the slow timeout timer.
   1988  * Called only during the 3-way handshake.
   1989  */
   1990 void
   1991 tcp_rmx_rtt(struct tcpcb *tp)
   1992 {
   1993 #ifdef RTV_RTT
   1994 	struct rtentry *rt = NULL;
   1995 	int rtt;
   1996 
   1997 #ifdef DIAGNOSTIC
   1998 	if (tp->t_inpcb && tp->t_in6pcb)
   1999 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   2000 #endif
   2001 #ifdef INET
   2002 	if (tp->t_inpcb)
   2003 		rt = in_pcbrtentry(tp->t_inpcb);
   2004 #endif
   2005 #ifdef INET6
   2006 	if (tp->t_in6pcb)
   2007 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2008 #endif
   2009 	if (rt == NULL)
   2010 		return;
   2011 
   2012 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   2013 		/*
   2014 		 * XXX The lock bit for MTU indicates that the value
   2015 		 * is also a minimum value; this is subject to time.
   2016 		 */
   2017 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   2018 			TCPT_RANGESET(tp->t_rttmin,
   2019 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   2020 			    TCPTV_MIN, TCPTV_REXMTMAX);
   2021 		tp->t_srtt = rtt /
   2022 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   2023 		if (rt->rt_rmx.rmx_rttvar) {
   2024 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   2025 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   2026 				(TCP_RTTVAR_SHIFT + 2));
   2027 		} else {
   2028 			/* Default variation is +- 1 rtt */
   2029 			tp->t_rttvar =
   2030 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   2031 		}
   2032 		TCPT_RANGESET(tp->t_rxtcur,
   2033 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   2034 		    tp->t_rttmin, TCPTV_REXMTMAX);
   2035 	}
   2036 #endif
   2037 }
   2038 
   2039 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   2040 #if NRND > 0
   2041 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   2042 #endif
   2043 
   2044 /*
   2045  * Get a new sequence value given a tcp control block
   2046  */
   2047 tcp_seq
   2048 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   2049 {
   2050 
   2051 #ifdef INET
   2052 	if (tp->t_inpcb != NULL) {
   2053 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   2054 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   2055 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   2056 		    addin));
   2057 	}
   2058 #endif
   2059 #ifdef INET6
   2060 	if (tp->t_in6pcb != NULL) {
   2061 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   2062 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   2063 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   2064 		    addin));
   2065 	}
   2066 #endif
   2067 	/* Not possible. */
   2068 	panic("tcp_new_iss");
   2069 }
   2070 
   2071 /*
   2072  * This routine actually generates a new TCP initial sequence number.
   2073  */
   2074 tcp_seq
   2075 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2076     size_t addrsz, tcp_seq addin)
   2077 {
   2078 	tcp_seq tcp_iss;
   2079 
   2080 #if NRND > 0
   2081 	static int beenhere;
   2082 
   2083 	/*
   2084 	 * If we haven't been here before, initialize our cryptographic
   2085 	 * hash secret.
   2086 	 */
   2087 	if (beenhere == 0) {
   2088 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   2089 		    RND_EXTRACT_ANY);
   2090 		beenhere = 1;
   2091 	}
   2092 
   2093 	if (tcp_do_rfc1948) {
   2094 		MD5_CTX ctx;
   2095 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2096 
   2097 		/*
   2098 		 * Compute the base value of the ISS.  It is a hash
   2099 		 * of (saddr, sport, daddr, dport, secret).
   2100 		 */
   2101 		MD5Init(&ctx);
   2102 
   2103 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2104 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2105 
   2106 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2107 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2108 
   2109 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2110 
   2111 		MD5Final(hash, &ctx);
   2112 
   2113 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2114 
   2115 		/*
   2116 		 * Now increment our "timer", and add it in to
   2117 		 * the computed value.
   2118 		 *
   2119 		 * XXX Use `addin'?
   2120 		 * XXX TCP_ISSINCR too large to use?
   2121 		 */
   2122 		tcp_iss_seq += TCP_ISSINCR;
   2123 #ifdef TCPISS_DEBUG
   2124 		printf("ISS hash 0x%08x, ", tcp_iss);
   2125 #endif
   2126 		tcp_iss += tcp_iss_seq + addin;
   2127 #ifdef TCPISS_DEBUG
   2128 		printf("new ISS 0x%08x\n", tcp_iss);
   2129 #endif
   2130 	} else
   2131 #endif /* NRND > 0 */
   2132 	{
   2133 		/*
   2134 		 * Randomize.
   2135 		 */
   2136 #if NRND > 0
   2137 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2138 #else
   2139 		tcp_iss = arc4random();
   2140 #endif
   2141 
   2142 		/*
   2143 		 * If we were asked to add some amount to a known value,
   2144 		 * we will take a random value obtained above, mask off
   2145 		 * the upper bits, and add in the known value.  We also
   2146 		 * add in a constant to ensure that we are at least a
   2147 		 * certain distance from the original value.
   2148 		 *
   2149 		 * This is used when an old connection is in timed wait
   2150 		 * and we have a new one coming in, for instance.
   2151 		 */
   2152 		if (addin != 0) {
   2153 #ifdef TCPISS_DEBUG
   2154 			printf("Random %08x, ", tcp_iss);
   2155 #endif
   2156 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2157 			tcp_iss += addin + TCP_ISSINCR;
   2158 #ifdef TCPISS_DEBUG
   2159 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2160 #endif
   2161 		} else {
   2162 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2163 			tcp_iss += tcp_iss_seq;
   2164 			tcp_iss_seq += TCP_ISSINCR;
   2165 #ifdef TCPISS_DEBUG
   2166 			printf("ISS %08x\n", tcp_iss);
   2167 #endif
   2168 		}
   2169 	}
   2170 
   2171 	if (tcp_compat_42) {
   2172 		/*
   2173 		 * Limit it to the positive range for really old TCP
   2174 		 * implementations.
   2175 		 * Just AND off the top bit instead of checking if
   2176 		 * is set first - saves a branch 50% of the time.
   2177 		 */
   2178 		tcp_iss &= 0x7fffffff;		/* XXX */
   2179 	}
   2180 
   2181 	return (tcp_iss);
   2182 }
   2183 
   2184 #if defined(IPSEC) || defined(FAST_IPSEC)
   2185 /* compute ESP/AH header size for TCP, including outer IP header. */
   2186 size_t
   2187 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
   2188 {
   2189 	struct inpcb *inp;
   2190 	size_t hdrsiz;
   2191 
   2192 	/* XXX mapped addr case (tp->t_in6pcb) */
   2193 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2194 		return 0;
   2195 	switch (tp->t_family) {
   2196 	case AF_INET:
   2197 		/* XXX: should use currect direction. */
   2198 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2199 		break;
   2200 	default:
   2201 		hdrsiz = 0;
   2202 		break;
   2203 	}
   2204 
   2205 	return hdrsiz;
   2206 }
   2207 
   2208 #ifdef INET6
   2209 size_t
   2210 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
   2211 {
   2212 	struct in6pcb *in6p;
   2213 	size_t hdrsiz;
   2214 
   2215 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2216 		return 0;
   2217 	switch (tp->t_family) {
   2218 	case AF_INET6:
   2219 		/* XXX: should use currect direction. */
   2220 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2221 		break;
   2222 	case AF_INET:
   2223 		/* mapped address case - tricky */
   2224 	default:
   2225 		hdrsiz = 0;
   2226 		break;
   2227 	}
   2228 
   2229 	return hdrsiz;
   2230 }
   2231 #endif
   2232 #endif /*IPSEC*/
   2233 
   2234 /*
   2235  * Determine the length of the TCP options for this connection.
   2236  *
   2237  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2238  *       all of the space?  Otherwise we can't exactly be incrementing
   2239  *       cwnd by an amount that varies depending on the amount we last
   2240  *       had to SACK!
   2241  */
   2242 
   2243 u_int
   2244 tcp_optlen(struct tcpcb *tp)
   2245 {
   2246 	u_int optlen;
   2247 
   2248 	optlen = 0;
   2249 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2250 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2251 		optlen += TCPOLEN_TSTAMP_APPA;
   2252 
   2253 #ifdef TCP_SIGNATURE
   2254 #if defined(INET6) && defined(FAST_IPSEC)
   2255 	if (tp->t_family == AF_INET)
   2256 #endif
   2257 	if (tp->t_flags & TF_SIGNATURE)
   2258 		optlen += TCPOLEN_SIGNATURE + 2;
   2259 #endif /* TCP_SIGNATURE */
   2260 
   2261 	return optlen;
   2262 }
   2263 
   2264 u_int
   2265 tcp_hdrsz(struct tcpcb *tp)
   2266 {
   2267 	u_int hlen;
   2268 
   2269 	switch (tp->t_family) {
   2270 #ifdef INET6
   2271 	case AF_INET6:
   2272 		hlen = sizeof(struct ip6_hdr);
   2273 		break;
   2274 #endif
   2275 	case AF_INET:
   2276 		hlen = sizeof(struct ip);
   2277 		break;
   2278 	default:
   2279 		hlen = 0;
   2280 		break;
   2281 	}
   2282 	hlen += sizeof(struct tcphdr);
   2283 
   2284 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
   2285 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
   2286 		hlen += TCPOLEN_TSTAMP_APPA;
   2287 #ifdef TCP_SIGNATURE
   2288 	if (tp->t_flags & TF_SIGNATURE)
   2289 		hlen += TCPOLEN_SIGLEN;
   2290 #endif
   2291 	return hlen;
   2292 }
   2293