Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.194
      1 /*	$NetBSD: tcp_subr.c,v 1.194 2005/08/10 13:05:16 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.194 2005/08/10 13:05:16 yamt Exp $");
    102 
    103 #include "opt_inet.h"
    104 #include "opt_ipsec.h"
    105 #include "opt_tcp_compat_42.h"
    106 #include "opt_inet_csum.h"
    107 #include "opt_mbuftrace.h"
    108 #include "rnd.h"
    109 
    110 #include <sys/param.h>
    111 #include <sys/proc.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/socket.h>
    116 #include <sys/socketvar.h>
    117 #include <sys/protosw.h>
    118 #include <sys/errno.h>
    119 #include <sys/kernel.h>
    120 #include <sys/pool.h>
    121 #if NRND > 0
    122 #include <sys/md5.h>
    123 #include <sys/rnd.h>
    124 #endif
    125 
    126 #include <net/route.h>
    127 #include <net/if.h>
    128 
    129 #include <netinet/in.h>
    130 #include <netinet/in_systm.h>
    131 #include <netinet/ip.h>
    132 #include <netinet/in_pcb.h>
    133 #include <netinet/ip_var.h>
    134 #include <netinet/ip_icmp.h>
    135 
    136 #ifdef INET6
    137 #ifndef INET
    138 #include <netinet/in.h>
    139 #endif
    140 #include <netinet/ip6.h>
    141 #include <netinet6/in6_pcb.h>
    142 #include <netinet6/ip6_var.h>
    143 #include <netinet6/in6_var.h>
    144 #include <netinet6/ip6protosw.h>
    145 #include <netinet/icmp6.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include <netinet/tcp.h>
    150 #include <netinet/tcp_fsm.h>
    151 #include <netinet/tcp_seq.h>
    152 #include <netinet/tcp_timer.h>
    153 #include <netinet/tcp_var.h>
    154 #include <netinet/tcpip.h>
    155 
    156 #ifdef IPSEC
    157 #include <netinet6/ipsec.h>
    158 #include <netkey/key.h>
    159 #endif /*IPSEC*/
    160 
    161 #ifdef FAST_IPSEC
    162 #include <netipsec/ipsec.h>
    163 #include <netipsec/xform.h>
    164 #ifdef INET6
    165 #include <netipsec/ipsec6.h>
    166 #endif
    167  #include <netipsec/key.h>
    168 #endif	/* FAST_IPSEC*/
    169 
    170 
    171 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    172 struct	tcpstat tcpstat;	/* tcp statistics */
    173 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
    174 
    175 /* patchable/settable parameters for tcp */
    176 int 	tcp_mssdflt = TCP_MSS;
    177 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    178 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    179 #if NRND > 0
    180 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    181 #endif
    182 int	tcp_do_sack = 1;	/* selective acknowledgement */
    183 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    184 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    185 int	tcp_do_newreno = 1;	/* Use the New Reno algorithms */
    186 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    187 #ifndef TCP_INIT_WIN
    188 #define	TCP_INIT_WIN	0	/* initial slow start window */
    189 #endif
    190 #ifndef TCP_INIT_WIN_LOCAL
    191 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    192 #endif
    193 int	tcp_init_win = TCP_INIT_WIN;
    194 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    195 int	tcp_mss_ifmtu = 0;
    196 #ifdef TCP_COMPAT_42
    197 int	tcp_compat_42 = 1;
    198 #else
    199 int	tcp_compat_42 = 0;
    200 #endif
    201 int	tcp_rst_ppslim = 100;	/* 100pps */
    202 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
    203 int	tcp_sack_tp_maxholes = 32;
    204 int	tcp_sack_globalmaxholes = 1024;
    205 int	tcp_sack_globalholes = 0;
    206 
    207 
    208 /* tcb hash */
    209 #ifndef TCBHASHSIZE
    210 #define	TCBHASHSIZE	128
    211 #endif
    212 int	tcbhashsize = TCBHASHSIZE;
    213 
    214 /* syn hash parameters */
    215 #define	TCP_SYN_HASH_SIZE	293
    216 #define	TCP_SYN_BUCKET_SIZE	35
    217 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    218 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    219 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    220 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    221 
    222 int	tcp_freeq(struct tcpcb *);
    223 
    224 #ifdef INET
    225 void	tcp_mtudisc_callback(struct in_addr);
    226 #endif
    227 #ifdef INET6
    228 void	tcp6_mtudisc_callback(struct in6_addr *);
    229 #endif
    230 
    231 #ifdef INET6
    232 void	tcp6_mtudisc(struct in6pcb *, int);
    233 #endif
    234 
    235 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
    236 
    237 #ifdef TCP_CSUM_COUNTERS
    238 #include <sys/device.h>
    239 
    240 #if defined(INET)
    241 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    242     NULL, "tcp", "hwcsum bad");
    243 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    244     NULL, "tcp", "hwcsum ok");
    245 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    246     NULL, "tcp", "hwcsum data");
    247 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    248     NULL, "tcp", "swcsum");
    249 
    250 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
    251 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
    252 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
    253 EVCNT_ATTACH_STATIC(tcp_swcsum);
    254 #endif /* defined(INET) */
    255 
    256 #if defined(INET6)
    257 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    258     NULL, "tcp6", "hwcsum bad");
    259 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    260     NULL, "tcp6", "hwcsum ok");
    261 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    262     NULL, "tcp6", "hwcsum data");
    263 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    264     NULL, "tcp6", "swcsum");
    265 
    266 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
    267 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
    268 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
    269 EVCNT_ATTACH_STATIC(tcp6_swcsum);
    270 #endif /* defined(INET6) */
    271 #endif /* TCP_CSUM_COUNTERS */
    272 
    273 
    274 #ifdef TCP_OUTPUT_COUNTERS
    275 #include <sys/device.h>
    276 
    277 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    278     NULL, "tcp", "output big header");
    279 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    280     NULL, "tcp", "output predict hit");
    281 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    282     NULL, "tcp", "output predict miss");
    283 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    284     NULL, "tcp", "output copy small");
    285 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    286     NULL, "tcp", "output copy big");
    287 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    288     NULL, "tcp", "output reference big");
    289 
    290 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
    291 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
    292 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
    293 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
    294 EVCNT_ATTACH_STATIC(tcp_output_copybig);
    295 EVCNT_ATTACH_STATIC(tcp_output_refbig);
    296 
    297 #endif /* TCP_OUTPUT_COUNTERS */
    298 
    299 #ifdef TCP_REASS_COUNTERS
    300 #include <sys/device.h>
    301 
    302 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    303     NULL, "tcp_reass", "calls");
    304 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    305     &tcp_reass_, "tcp_reass", "insert into empty queue");
    306 struct evcnt tcp_reass_iteration[8] = {
    307     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    308     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    309     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    310     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    311     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    312     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    315 };
    316 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    317     &tcp_reass_, "tcp_reass", "prepend to first");
    318 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    319     &tcp_reass_, "tcp_reass", "prepend");
    320 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    321     &tcp_reass_, "tcp_reass", "insert");
    322 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    323     &tcp_reass_, "tcp_reass", "insert at tail");
    324 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    325     &tcp_reass_, "tcp_reass", "append");
    326 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    327     &tcp_reass_, "tcp_reass", "append to tail fragment");
    328 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    329     &tcp_reass_, "tcp_reass", "overlap at end");
    330 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    331     &tcp_reass_, "tcp_reass", "overlap at start");
    332 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    333     &tcp_reass_, "tcp_reass", "duplicate segment");
    334 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    335     &tcp_reass_, "tcp_reass", "duplicate fragment");
    336 
    337 EVCNT_ATTACH_STATIC(tcp_reass_);
    338 EVCNT_ATTACH_STATIC(tcp_reass_empty);
    339 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
    340 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
    341 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
    342 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
    343 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
    344 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
    345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
    346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
    347 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
    348 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
    349 EVCNT_ATTACH_STATIC(tcp_reass_insert);
    350 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
    351 EVCNT_ATTACH_STATIC(tcp_reass_append);
    352 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
    353 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
    354 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
    355 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
    356 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
    357 
    358 #endif /* TCP_REASS_COUNTERS */
    359 
    360 #ifdef MBUFTRACE
    361 struct mowner tcp_mowner = { "tcp" };
    362 struct mowner tcp_rx_mowner = { "tcp", "rx" };
    363 struct mowner tcp_tx_mowner = { "tcp", "tx" };
    364 #endif
    365 
    366 /*
    367  * Tcp initialization
    368  */
    369 void
    370 tcp_init(void)
    371 {
    372 	int hlen;
    373 
    374 	/* Initialize the TCPCB template. */
    375 	tcp_tcpcb_template();
    376 
    377 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    378 
    379 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    380 #ifdef INET6
    381 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    382 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    383 #endif
    384 	if (max_protohdr < hlen)
    385 		max_protohdr = hlen;
    386 	if (max_linkhdr + hlen > MHLEN)
    387 		panic("tcp_init");
    388 
    389 #ifdef INET
    390 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    391 #endif
    392 #ifdef INET6
    393 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    394 #endif
    395 
    396 	/* Initialize timer state. */
    397 	tcp_timer_init();
    398 
    399 	/* Initialize the compressed state engine. */
    400 	syn_cache_init();
    401 
    402 	MOWNER_ATTACH(&tcp_tx_mowner);
    403 	MOWNER_ATTACH(&tcp_rx_mowner);
    404 	MOWNER_ATTACH(&tcp_mowner);
    405 }
    406 
    407 /*
    408  * Create template to be used to send tcp packets on a connection.
    409  * Call after host entry created, allocates an mbuf and fills
    410  * in a skeletal tcp/ip header, minimizing the amount of work
    411  * necessary when the connection is used.
    412  */
    413 struct mbuf *
    414 tcp_template(struct tcpcb *tp)
    415 {
    416 	struct inpcb *inp = tp->t_inpcb;
    417 #ifdef INET6
    418 	struct in6pcb *in6p = tp->t_in6pcb;
    419 #endif
    420 	struct tcphdr *n;
    421 	struct mbuf *m;
    422 	int hlen;
    423 
    424 	switch (tp->t_family) {
    425 	case AF_INET:
    426 		hlen = sizeof(struct ip);
    427 		if (inp)
    428 			break;
    429 #ifdef INET6
    430 		if (in6p) {
    431 			/* mapped addr case */
    432 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    433 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    434 				break;
    435 		}
    436 #endif
    437 		return NULL;	/*EINVAL*/
    438 #ifdef INET6
    439 	case AF_INET6:
    440 		hlen = sizeof(struct ip6_hdr);
    441 		if (in6p) {
    442 			/* more sainty check? */
    443 			break;
    444 		}
    445 		return NULL;	/*EINVAL*/
    446 #endif
    447 	default:
    448 		hlen = 0;	/*pacify gcc*/
    449 		return NULL;	/*EAFNOSUPPORT*/
    450 	}
    451 #ifdef DIAGNOSTIC
    452 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    453 		panic("mclbytes too small for t_template");
    454 #endif
    455 	m = tp->t_template;
    456 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    457 		;
    458 	else {
    459 		if (m)
    460 			m_freem(m);
    461 		m = tp->t_template = NULL;
    462 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    463 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    464 			MCLGET(m, M_DONTWAIT);
    465 			if ((m->m_flags & M_EXT) == 0) {
    466 				m_free(m);
    467 				m = NULL;
    468 			}
    469 		}
    470 		if (m == NULL)
    471 			return NULL;
    472 		MCLAIM(m, &tcp_mowner);
    473 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    474 	}
    475 
    476 	bzero(mtod(m, caddr_t), m->m_len);
    477 
    478 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
    479 
    480 	switch (tp->t_family) {
    481 	case AF_INET:
    482 	    {
    483 		struct ipovly *ipov;
    484 		mtod(m, struct ip *)->ip_v = 4;
    485 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
    486 		ipov = mtod(m, struct ipovly *);
    487 		ipov->ih_pr = IPPROTO_TCP;
    488 		ipov->ih_len = htons(sizeof(struct tcphdr));
    489 		if (inp) {
    490 			ipov->ih_src = inp->inp_laddr;
    491 			ipov->ih_dst = inp->inp_faddr;
    492 		}
    493 #ifdef INET6
    494 		else if (in6p) {
    495 			/* mapped addr case */
    496 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    497 				sizeof(ipov->ih_src));
    498 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    499 				sizeof(ipov->ih_dst));
    500 		}
    501 #endif
    502 		/*
    503 		 * Compute the pseudo-header portion of the checksum
    504 		 * now.  We incrementally add in the TCP option and
    505 		 * payload lengths later, and then compute the TCP
    506 		 * checksum right before the packet is sent off onto
    507 		 * the wire.
    508 		 */
    509 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    510 		    ipov->ih_dst.s_addr,
    511 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    512 		break;
    513 	    }
    514 #ifdef INET6
    515 	case AF_INET6:
    516 	    {
    517 		struct ip6_hdr *ip6;
    518 		mtod(m, struct ip *)->ip_v = 6;
    519 		ip6 = mtod(m, struct ip6_hdr *);
    520 		ip6->ip6_nxt = IPPROTO_TCP;
    521 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    522 		ip6->ip6_src = in6p->in6p_laddr;
    523 		ip6->ip6_dst = in6p->in6p_faddr;
    524 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    525 		if (ip6_auto_flowlabel) {
    526 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    527 			ip6->ip6_flow |=
    528 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    529 		}
    530 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    531 		ip6->ip6_vfc |= IPV6_VERSION;
    532 
    533 		/*
    534 		 * Compute the pseudo-header portion of the checksum
    535 		 * now.  We incrementally add in the TCP option and
    536 		 * payload lengths later, and then compute the TCP
    537 		 * checksum right before the packet is sent off onto
    538 		 * the wire.
    539 		 */
    540 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    541 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    542 		    htonl(IPPROTO_TCP));
    543 		break;
    544 	    }
    545 #endif
    546 	}
    547 	if (inp) {
    548 		n->th_sport = inp->inp_lport;
    549 		n->th_dport = inp->inp_fport;
    550 	}
    551 #ifdef INET6
    552 	else if (in6p) {
    553 		n->th_sport = in6p->in6p_lport;
    554 		n->th_dport = in6p->in6p_fport;
    555 	}
    556 #endif
    557 	n->th_seq = 0;
    558 	n->th_ack = 0;
    559 	n->th_x2 = 0;
    560 	n->th_off = 5;
    561 	n->th_flags = 0;
    562 	n->th_win = 0;
    563 	n->th_urp = 0;
    564 	return (m);
    565 }
    566 
    567 /*
    568  * Send a single message to the TCP at address specified by
    569  * the given TCP/IP header.  If m == 0, then we make a copy
    570  * of the tcpiphdr at ti and send directly to the addressed host.
    571  * This is used to force keep alive messages out using the TCP
    572  * template for a connection tp->t_template.  If flags are given
    573  * then we send a message back to the TCP which originated the
    574  * segment ti, and discard the mbuf containing it and any other
    575  * attached mbufs.
    576  *
    577  * In any case the ack and sequence number of the transmitted
    578  * segment are as specified by the parameters.
    579  */
    580 int
    581 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
    582     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
    583 {
    584 	struct route *ro;
    585 	int error, tlen, win = 0;
    586 	int hlen;
    587 	struct ip *ip;
    588 #ifdef INET6
    589 	struct ip6_hdr *ip6;
    590 #endif
    591 	int family;	/* family on packet, not inpcb/in6pcb! */
    592 	struct tcphdr *th;
    593 	struct socket *so;
    594 
    595 	if (tp != NULL && (flags & TH_RST) == 0) {
    596 #ifdef DIAGNOSTIC
    597 		if (tp->t_inpcb && tp->t_in6pcb)
    598 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    599 #endif
    600 #ifdef INET
    601 		if (tp->t_inpcb)
    602 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    603 #endif
    604 #ifdef INET6
    605 		if (tp->t_in6pcb)
    606 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    607 #endif
    608 	}
    609 
    610 	th = NULL;	/* Quell uninitialized warning */
    611 	ip = NULL;
    612 #ifdef INET6
    613 	ip6 = NULL;
    614 #endif
    615 	if (m == 0) {
    616 		if (!template)
    617 			return EINVAL;
    618 
    619 		/* get family information from template */
    620 		switch (mtod(template, struct ip *)->ip_v) {
    621 		case 4:
    622 			family = AF_INET;
    623 			hlen = sizeof(struct ip);
    624 			break;
    625 #ifdef INET6
    626 		case 6:
    627 			family = AF_INET6;
    628 			hlen = sizeof(struct ip6_hdr);
    629 			break;
    630 #endif
    631 		default:
    632 			return EAFNOSUPPORT;
    633 		}
    634 
    635 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    636 		if (m) {
    637 			MCLAIM(m, &tcp_tx_mowner);
    638 			MCLGET(m, M_DONTWAIT);
    639 			if ((m->m_flags & M_EXT) == 0) {
    640 				m_free(m);
    641 				m = NULL;
    642 			}
    643 		}
    644 		if (m == NULL)
    645 			return (ENOBUFS);
    646 
    647 		if (tcp_compat_42)
    648 			tlen = 1;
    649 		else
    650 			tlen = 0;
    651 
    652 		m->m_data += max_linkhdr;
    653 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
    654 			template->m_len);
    655 		switch (family) {
    656 		case AF_INET:
    657 			ip = mtod(m, struct ip *);
    658 			th = (struct tcphdr *)(ip + 1);
    659 			break;
    660 #ifdef INET6
    661 		case AF_INET6:
    662 			ip6 = mtod(m, struct ip6_hdr *);
    663 			th = (struct tcphdr *)(ip6 + 1);
    664 			break;
    665 #endif
    666 #if 0
    667 		default:
    668 			/* noone will visit here */
    669 			m_freem(m);
    670 			return EAFNOSUPPORT;
    671 #endif
    672 		}
    673 		flags = TH_ACK;
    674 	} else {
    675 
    676 		if ((m->m_flags & M_PKTHDR) == 0) {
    677 #if 0
    678 			printf("non PKTHDR to tcp_respond\n");
    679 #endif
    680 			m_freem(m);
    681 			return EINVAL;
    682 		}
    683 #ifdef DIAGNOSTIC
    684 		if (!th0)
    685 			panic("th0 == NULL in tcp_respond");
    686 #endif
    687 
    688 		/* get family information from m */
    689 		switch (mtod(m, struct ip *)->ip_v) {
    690 		case 4:
    691 			family = AF_INET;
    692 			hlen = sizeof(struct ip);
    693 			ip = mtod(m, struct ip *);
    694 			break;
    695 #ifdef INET6
    696 		case 6:
    697 			family = AF_INET6;
    698 			hlen = sizeof(struct ip6_hdr);
    699 			ip6 = mtod(m, struct ip6_hdr *);
    700 			break;
    701 #endif
    702 		default:
    703 			m_freem(m);
    704 			return EAFNOSUPPORT;
    705 		}
    706 		/* clear h/w csum flags inherited from rx packet */
    707 		m->m_pkthdr.csum_flags = 0;
    708 
    709 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    710 			tlen = sizeof(*th0);
    711 		else
    712 			tlen = th0->th_off << 2;
    713 
    714 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    715 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
    716 			m->m_len = hlen + tlen;
    717 			m_freem(m->m_next);
    718 			m->m_next = NULL;
    719 		} else {
    720 			struct mbuf *n;
    721 
    722 #ifdef DIAGNOSTIC
    723 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    724 				m_freem(m);
    725 				return EMSGSIZE;
    726 			}
    727 #endif
    728 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    729 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    730 				MCLGET(n, M_DONTWAIT);
    731 				if ((n->m_flags & M_EXT) == 0) {
    732 					m_freem(n);
    733 					n = NULL;
    734 				}
    735 			}
    736 			if (!n) {
    737 				m_freem(m);
    738 				return ENOBUFS;
    739 			}
    740 
    741 			MCLAIM(n, &tcp_tx_mowner);
    742 			n->m_data += max_linkhdr;
    743 			n->m_len = hlen + tlen;
    744 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
    745 			m_copyback(n, hlen, tlen, (caddr_t)th0);
    746 
    747 			m_freem(m);
    748 			m = n;
    749 			n = NULL;
    750 		}
    751 
    752 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    753 		switch (family) {
    754 		case AF_INET:
    755 			ip = mtod(m, struct ip *);
    756 			th = (struct tcphdr *)(ip + 1);
    757 			ip->ip_p = IPPROTO_TCP;
    758 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    759 			ip->ip_p = IPPROTO_TCP;
    760 			break;
    761 #ifdef INET6
    762 		case AF_INET6:
    763 			ip6 = mtod(m, struct ip6_hdr *);
    764 			th = (struct tcphdr *)(ip6 + 1);
    765 			ip6->ip6_nxt = IPPROTO_TCP;
    766 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    767 			ip6->ip6_nxt = IPPROTO_TCP;
    768 			break;
    769 #endif
    770 #if 0
    771 		default:
    772 			/* noone will visit here */
    773 			m_freem(m);
    774 			return EAFNOSUPPORT;
    775 #endif
    776 		}
    777 		xchg(th->th_dport, th->th_sport, u_int16_t);
    778 #undef xchg
    779 		tlen = 0;	/*be friendly with the following code*/
    780 	}
    781 	th->th_seq = htonl(seq);
    782 	th->th_ack = htonl(ack);
    783 	th->th_x2 = 0;
    784 	if ((flags & TH_SYN) == 0) {
    785 		if (tp)
    786 			win >>= tp->rcv_scale;
    787 		if (win > TCP_MAXWIN)
    788 			win = TCP_MAXWIN;
    789 		th->th_win = htons((u_int16_t)win);
    790 		th->th_off = sizeof (struct tcphdr) >> 2;
    791 		tlen += sizeof(*th);
    792 	} else
    793 		tlen += th->th_off << 2;
    794 	m->m_len = hlen + tlen;
    795 	m->m_pkthdr.len = hlen + tlen;
    796 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    797 	th->th_flags = flags;
    798 	th->th_urp = 0;
    799 
    800 	switch (family) {
    801 #ifdef INET
    802 	case AF_INET:
    803 	    {
    804 		struct ipovly *ipov = (struct ipovly *)ip;
    805 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    806 		ipov->ih_len = htons((u_int16_t)tlen);
    807 
    808 		th->th_sum = 0;
    809 		th->th_sum = in_cksum(m, hlen + tlen);
    810 		ip->ip_len = htons(hlen + tlen);
    811 		ip->ip_ttl = ip_defttl;
    812 		break;
    813 	    }
    814 #endif
    815 #ifdef INET6
    816 	case AF_INET6:
    817 	    {
    818 		th->th_sum = 0;
    819 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    820 				tlen);
    821 		ip6->ip6_plen = htons(tlen);
    822 		if (tp && tp->t_in6pcb) {
    823 			struct ifnet *oifp;
    824 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    825 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    826 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    827 		} else
    828 			ip6->ip6_hlim = ip6_defhlim;
    829 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    830 		if (ip6_auto_flowlabel) {
    831 			ip6->ip6_flow |=
    832 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    833 		}
    834 		break;
    835 	    }
    836 #endif
    837 	}
    838 
    839 	if (tp && tp->t_inpcb)
    840 		so = tp->t_inpcb->inp_socket;
    841 #ifdef INET6
    842 	else if (tp && tp->t_in6pcb)
    843 		so = tp->t_in6pcb->in6p_socket;
    844 #endif
    845 	else
    846 		so = NULL;
    847 
    848 	if (tp != NULL && tp->t_inpcb != NULL) {
    849 		ro = &tp->t_inpcb->inp_route;
    850 #ifdef DIAGNOSTIC
    851 		if (family != AF_INET)
    852 			panic("tcp_respond: address family mismatch");
    853 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    854 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    855 			    ntohl(ip->ip_dst.s_addr),
    856 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    857 		}
    858 #endif
    859 	}
    860 #ifdef INET6
    861 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    862 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    863 #ifdef DIAGNOSTIC
    864 		if (family == AF_INET) {
    865 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    866 				panic("tcp_respond: not mapped addr");
    867 			if (bcmp(&ip->ip_dst,
    868 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    869 			    sizeof(ip->ip_dst)) != 0) {
    870 				panic("tcp_respond: ip_dst != in6p_faddr");
    871 			}
    872 		} else if (family == AF_INET6) {
    873 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    874 			    &tp->t_in6pcb->in6p_faddr))
    875 				panic("tcp_respond: ip6_dst != in6p_faddr");
    876 		} else
    877 			panic("tcp_respond: address family mismatch");
    878 #endif
    879 	}
    880 #endif
    881 	else
    882 		ro = NULL;
    883 
    884 	switch (family) {
    885 #ifdef INET
    886 	case AF_INET:
    887 		error = ip_output(m, NULL, ro,
    888 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    889 		    (struct ip_moptions *)0, so);
    890 		break;
    891 #endif
    892 #ifdef INET6
    893 	case AF_INET6:
    894 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
    895 		    (struct ip6_moptions *)0, so, NULL);
    896 		break;
    897 #endif
    898 	default:
    899 		error = EAFNOSUPPORT;
    900 		break;
    901 	}
    902 
    903 	return (error);
    904 }
    905 
    906 /*
    907  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
    908  * a bunch of members individually, we maintain this template for the
    909  * static and mostly-static components of the TCPCB, and copy it into
    910  * the new TCPCB instead.
    911  */
    912 static struct tcpcb tcpcb_template = {
    913 	/*
    914 	 * If TCP_NTIMERS ever changes, we'll need to update this
    915 	 * initializer.
    916 	 */
    917 	.t_timer = {
    918 		CALLOUT_INITIALIZER,
    919 		CALLOUT_INITIALIZER,
    920 		CALLOUT_INITIALIZER,
    921 		CALLOUT_INITIALIZER,
    922 	},
    923 	.t_delack_ch = CALLOUT_INITIALIZER,
    924 
    925 	.t_srtt = TCPTV_SRTTBASE,
    926 	.t_rttmin = TCPTV_MIN,
    927 
    928 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    929 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    930 	.snd_numholes = 0,
    931 
    932 	.t_partialacks = -1,
    933 };
    934 
    935 /*
    936  * Updates the TCPCB template whenever a parameter that would affect
    937  * the template is changed.
    938  */
    939 void
    940 tcp_tcpcb_template(void)
    941 {
    942 	struct tcpcb *tp = &tcpcb_template;
    943 	int flags;
    944 
    945 	tp->t_peermss = tcp_mssdflt;
    946 	tp->t_ourmss = tcp_mssdflt;
    947 	tp->t_segsz = tcp_mssdflt;
    948 
    949 	flags = 0;
    950 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    951 		flags |= TF_REQ_SCALE;
    952 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    953 		flags |= TF_REQ_TSTMP;
    954 	tp->t_flags = flags;
    955 
    956 	/*
    957 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    958 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    959 	 * reasonable initial retransmit time.
    960 	 */
    961 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    962 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    963 	    TCPTV_MIN, TCPTV_REXMTMAX);
    964 }
    965 
    966 /*
    967  * Create a new TCP control block, making an
    968  * empty reassembly queue and hooking it to the argument
    969  * protocol control block.
    970  */
    971 /* family selects inpcb, or in6pcb */
    972 struct tcpcb *
    973 tcp_newtcpcb(int family, void *aux)
    974 {
    975 	struct tcpcb *tp;
    976 	int i;
    977 
    978 	/* XXX Consider using a pool_cache for speed. */
    979 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    980 	if (tp == NULL)
    981 		return (NULL);
    982 	memcpy(tp, &tcpcb_template, sizeof(*tp));
    983 	TAILQ_INIT(&tp->segq);
    984 	TAILQ_INIT(&tp->timeq);
    985 	tp->t_family = family;		/* may be overridden later on */
    986 	TAILQ_INIT(&tp->snd_holes);
    987 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
    988 
    989 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
    990 	for (i = 0; i < TCPT_NTIMERS; i++)
    991 		TCP_TIMER_INIT(tp, i);
    992 
    993 	switch (family) {
    994 	case AF_INET:
    995 	    {
    996 		struct inpcb *inp = (struct inpcb *)aux;
    997 
    998 		inp->inp_ip.ip_ttl = ip_defttl;
    999 		inp->inp_ppcb = (caddr_t)tp;
   1000 
   1001 		tp->t_inpcb = inp;
   1002 		tp->t_mtudisc = ip_mtudisc;
   1003 		break;
   1004 	    }
   1005 #ifdef INET6
   1006 	case AF_INET6:
   1007 	    {
   1008 		struct in6pcb *in6p = (struct in6pcb *)aux;
   1009 
   1010 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
   1011 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
   1012 					       : NULL);
   1013 		in6p->in6p_ppcb = (caddr_t)tp;
   1014 
   1015 		tp->t_in6pcb = in6p;
   1016 		/* for IPv6, always try to run path MTU discovery */
   1017 		tp->t_mtudisc = 1;
   1018 		break;
   1019 	    }
   1020 #endif /* INET6 */
   1021 	default:
   1022 		pool_put(&tcpcb_pool, tp);
   1023 		return (NULL);
   1024 	}
   1025 
   1026 	/*
   1027 	 * Initialize our timebase.  When we send timestamps, we take
   1028 	 * the delta from tcp_now -- this means each connection always
   1029 	 * gets a timebase of 0, which makes it, among other things,
   1030 	 * more difficult to determine how long a system has been up,
   1031 	 * and thus how many TCP sequence increments have occurred.
   1032 	 */
   1033 	tp->ts_timebase = tcp_now;
   1034 
   1035 	return (tp);
   1036 }
   1037 
   1038 /*
   1039  * Drop a TCP connection, reporting
   1040  * the specified error.  If connection is synchronized,
   1041  * then send a RST to peer.
   1042  */
   1043 struct tcpcb *
   1044 tcp_drop(struct tcpcb *tp, int errno)
   1045 {
   1046 	struct socket *so = NULL;
   1047 
   1048 #ifdef DIAGNOSTIC
   1049 	if (tp->t_inpcb && tp->t_in6pcb)
   1050 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1051 #endif
   1052 #ifdef INET
   1053 	if (tp->t_inpcb)
   1054 		so = tp->t_inpcb->inp_socket;
   1055 #endif
   1056 #ifdef INET6
   1057 	if (tp->t_in6pcb)
   1058 		so = tp->t_in6pcb->in6p_socket;
   1059 #endif
   1060 	if (!so)
   1061 		return NULL;
   1062 
   1063 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1064 		tp->t_state = TCPS_CLOSED;
   1065 		(void) tcp_output(tp);
   1066 		tcpstat.tcps_drops++;
   1067 	} else
   1068 		tcpstat.tcps_conndrops++;
   1069 	if (errno == ETIMEDOUT && tp->t_softerror)
   1070 		errno = tp->t_softerror;
   1071 	so->so_error = errno;
   1072 	return (tcp_close(tp));
   1073 }
   1074 
   1075 /*
   1076  * Return whether this tcpcb is marked as dead, indicating
   1077  * to the calling timer function that no further action should
   1078  * be taken, as we are about to release this tcpcb.  The release
   1079  * of the storage will be done if this is the last timer running.
   1080  *
   1081  * This should be called from the callout handler function after
   1082  * callout_ack() is done, so that the number of invoking timer
   1083  * functions is 0.
   1084  */
   1085 int
   1086 tcp_isdead(struct tcpcb *tp)
   1087 {
   1088 	int dead = (tp->t_flags & TF_DEAD);
   1089 
   1090 	if (__predict_false(dead)) {
   1091 		if (tcp_timers_invoking(tp) > 0)
   1092 				/* not quite there yet -- count separately? */
   1093 			return dead;
   1094 		tcpstat.tcps_delayed_free++;
   1095 		pool_put(&tcpcb_pool, tp);
   1096 	}
   1097 	return dead;
   1098 }
   1099 
   1100 /*
   1101  * Close a TCP control block:
   1102  *	discard all space held by the tcp
   1103  *	discard internet protocol block
   1104  *	wake up any sleepers
   1105  */
   1106 struct tcpcb *
   1107 tcp_close(struct tcpcb *tp)
   1108 {
   1109 	struct inpcb *inp;
   1110 #ifdef INET6
   1111 	struct in6pcb *in6p;
   1112 #endif
   1113 	struct socket *so;
   1114 #ifdef RTV_RTT
   1115 	struct rtentry *rt;
   1116 #endif
   1117 	struct route *ro;
   1118 
   1119 	inp = tp->t_inpcb;
   1120 #ifdef INET6
   1121 	in6p = tp->t_in6pcb;
   1122 #endif
   1123 	so = NULL;
   1124 	ro = NULL;
   1125 	if (inp) {
   1126 		so = inp->inp_socket;
   1127 		ro = &inp->inp_route;
   1128 	}
   1129 #ifdef INET6
   1130 	else if (in6p) {
   1131 		so = in6p->in6p_socket;
   1132 		ro = (struct route *)&in6p->in6p_route;
   1133 	}
   1134 #endif
   1135 
   1136 #ifdef RTV_RTT
   1137 	/*
   1138 	 * If we sent enough data to get some meaningful characteristics,
   1139 	 * save them in the routing entry.  'Enough' is arbitrarily
   1140 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1141 	 * give us 16 rtt samples assuming we only get one sample per
   1142 	 * window (the usual case on a long haul net).  16 samples is
   1143 	 * enough for the srtt filter to converge to within 5% of the correct
   1144 	 * value; fewer samples and we could save a very bogus rtt.
   1145 	 *
   1146 	 * Don't update the default route's characteristics and don't
   1147 	 * update anything that the user "locked".
   1148 	 */
   1149 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1150 	    ro && (rt = ro->ro_rt) &&
   1151 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
   1152 		u_long i = 0;
   1153 
   1154 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1155 			i = tp->t_srtt *
   1156 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1157 			if (rt->rt_rmx.rmx_rtt && i)
   1158 				/*
   1159 				 * filter this update to half the old & half
   1160 				 * the new values, converting scale.
   1161 				 * See route.h and tcp_var.h for a
   1162 				 * description of the scaling constants.
   1163 				 */
   1164 				rt->rt_rmx.rmx_rtt =
   1165 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1166 			else
   1167 				rt->rt_rmx.rmx_rtt = i;
   1168 		}
   1169 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1170 			i = tp->t_rttvar *
   1171 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1172 			if (rt->rt_rmx.rmx_rttvar && i)
   1173 				rt->rt_rmx.rmx_rttvar =
   1174 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1175 			else
   1176 				rt->rt_rmx.rmx_rttvar = i;
   1177 		}
   1178 		/*
   1179 		 * update the pipelimit (ssthresh) if it has been updated
   1180 		 * already or if a pipesize was specified & the threshhold
   1181 		 * got below half the pipesize.  I.e., wait for bad news
   1182 		 * before we start updating, then update on both good
   1183 		 * and bad news.
   1184 		 */
   1185 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1186 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1187 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1188 			/*
   1189 			 * convert the limit from user data bytes to
   1190 			 * packets then to packet data bytes.
   1191 			 */
   1192 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1193 			if (i < 2)
   1194 				i = 2;
   1195 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1196 			if (rt->rt_rmx.rmx_ssthresh)
   1197 				rt->rt_rmx.rmx_ssthresh =
   1198 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1199 			else
   1200 				rt->rt_rmx.rmx_ssthresh = i;
   1201 		}
   1202 	}
   1203 #endif /* RTV_RTT */
   1204 	/* free the reassembly queue, if any */
   1205 	TCP_REASS_LOCK(tp);
   1206 	(void) tcp_freeq(tp);
   1207 	TCP_REASS_UNLOCK(tp);
   1208 
   1209 	/* free the SACK holes list. */
   1210 	tcp_free_sackholes(tp);
   1211 
   1212 	tcp_canceltimers(tp);
   1213 	TCP_CLEAR_DELACK(tp);
   1214 	syn_cache_cleanup(tp);
   1215 
   1216 	if (tp->t_template) {
   1217 		m_free(tp->t_template);
   1218 		tp->t_template = NULL;
   1219 	}
   1220 	if (tcp_timers_invoking(tp))
   1221 		tp->t_flags |= TF_DEAD;
   1222 	else
   1223 		pool_put(&tcpcb_pool, tp);
   1224 
   1225 	if (inp) {
   1226 		inp->inp_ppcb = 0;
   1227 		soisdisconnected(so);
   1228 		in_pcbdetach(inp);
   1229 	}
   1230 #ifdef INET6
   1231 	else if (in6p) {
   1232 		in6p->in6p_ppcb = 0;
   1233 		soisdisconnected(so);
   1234 		in6_pcbdetach(in6p);
   1235 	}
   1236 #endif
   1237 	tcpstat.tcps_closed++;
   1238 	return ((struct tcpcb *)0);
   1239 }
   1240 
   1241 int
   1242 tcp_freeq(tp)
   1243 	struct tcpcb *tp;
   1244 {
   1245 	struct ipqent *qe;
   1246 	int rv = 0;
   1247 #ifdef TCPREASS_DEBUG
   1248 	int i = 0;
   1249 #endif
   1250 
   1251 	TCP_REASS_LOCK_CHECK(tp);
   1252 
   1253 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1254 #ifdef TCPREASS_DEBUG
   1255 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1256 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1257 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1258 #endif
   1259 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1260 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1261 		m_freem(qe->ipqe_m);
   1262 		tcpipqent_free(qe);
   1263 		rv = 1;
   1264 	}
   1265 	tp->t_segqlen = 0;
   1266 	KASSERT(TAILQ_EMPTY(&tp->timeq));
   1267 	return (rv);
   1268 }
   1269 
   1270 /*
   1271  * Protocol drain routine.  Called when memory is in short supply.
   1272  */
   1273 void
   1274 tcp_drain(void)
   1275 {
   1276 	struct inpcb_hdr *inph;
   1277 	struct tcpcb *tp;
   1278 
   1279 	/*
   1280 	 * Free the sequence queue of all TCP connections.
   1281 	 */
   1282 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
   1283 		switch (inph->inph_af) {
   1284 		case AF_INET:
   1285 			tp = intotcpcb((struct inpcb *)inph);
   1286 			break;
   1287 #ifdef INET6
   1288 		case AF_INET6:
   1289 			tp = in6totcpcb((struct in6pcb *)inph);
   1290 			break;
   1291 #endif
   1292 		default:
   1293 			tp = NULL;
   1294 			break;
   1295 		}
   1296 		if (tp != NULL) {
   1297 			/*
   1298 			 * We may be called from a device's interrupt
   1299 			 * context.  If the tcpcb is already busy,
   1300 			 * just bail out now.
   1301 			 */
   1302 			if (tcp_reass_lock_try(tp) == 0)
   1303 				continue;
   1304 			if (tcp_freeq(tp))
   1305 				tcpstat.tcps_connsdrained++;
   1306 			TCP_REASS_UNLOCK(tp);
   1307 		}
   1308 	}
   1309 }
   1310 
   1311 /*
   1312  * Notify a tcp user of an asynchronous error;
   1313  * store error as soft error, but wake up user
   1314  * (for now, won't do anything until can select for soft error).
   1315  */
   1316 void
   1317 tcp_notify(struct inpcb *inp, int error)
   1318 {
   1319 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1320 	struct socket *so = inp->inp_socket;
   1321 
   1322 	/*
   1323 	 * Ignore some errors if we are hooked up.
   1324 	 * If connection hasn't completed, has retransmitted several times,
   1325 	 * and receives a second error, give up now.  This is better
   1326 	 * than waiting a long time to establish a connection that
   1327 	 * can never complete.
   1328 	 */
   1329 	if (tp->t_state == TCPS_ESTABLISHED &&
   1330 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1331 	      error == EHOSTDOWN)) {
   1332 		return;
   1333 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1334 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1335 		so->so_error = error;
   1336 	else
   1337 		tp->t_softerror = error;
   1338 	wakeup((caddr_t) &so->so_timeo);
   1339 	sorwakeup(so);
   1340 	sowwakeup(so);
   1341 }
   1342 
   1343 #ifdef INET6
   1344 void
   1345 tcp6_notify(struct in6pcb *in6p, int error)
   1346 {
   1347 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1348 	struct socket *so = in6p->in6p_socket;
   1349 
   1350 	/*
   1351 	 * Ignore some errors if we are hooked up.
   1352 	 * If connection hasn't completed, has retransmitted several times,
   1353 	 * and receives a second error, give up now.  This is better
   1354 	 * than waiting a long time to establish a connection that
   1355 	 * can never complete.
   1356 	 */
   1357 	if (tp->t_state == TCPS_ESTABLISHED &&
   1358 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1359 	      error == EHOSTDOWN)) {
   1360 		return;
   1361 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1362 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1363 		so->so_error = error;
   1364 	else
   1365 		tp->t_softerror = error;
   1366 	wakeup((caddr_t) &so->so_timeo);
   1367 	sorwakeup(so);
   1368 	sowwakeup(so);
   1369 }
   1370 #endif
   1371 
   1372 #ifdef INET6
   1373 void
   1374 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
   1375 {
   1376 	struct tcphdr th;
   1377 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
   1378 	int nmatch;
   1379 	struct ip6_hdr *ip6;
   1380 	const struct sockaddr_in6 *sa6_src = NULL;
   1381 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
   1382 	struct mbuf *m;
   1383 	int off;
   1384 
   1385 	if (sa->sa_family != AF_INET6 ||
   1386 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1387 		return;
   1388 	if ((unsigned)cmd >= PRC_NCMDS)
   1389 		return;
   1390 	else if (cmd == PRC_QUENCH) {
   1391 		/*
   1392 		 * Don't honor ICMP Source Quench messages meant for
   1393 		 * TCP connections.
   1394 		 */
   1395 		return;
   1396 	} else if (PRC_IS_REDIRECT(cmd))
   1397 		notify = in6_rtchange, d = NULL;
   1398 	else if (cmd == PRC_MSGSIZE)
   1399 		; /* special code is present, see below */
   1400 	else if (cmd == PRC_HOSTDEAD)
   1401 		d = NULL;
   1402 	else if (inet6ctlerrmap[cmd] == 0)
   1403 		return;
   1404 
   1405 	/* if the parameter is from icmp6, decode it. */
   1406 	if (d != NULL) {
   1407 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1408 		m = ip6cp->ip6c_m;
   1409 		ip6 = ip6cp->ip6c_ip6;
   1410 		off = ip6cp->ip6c_off;
   1411 		sa6_src = ip6cp->ip6c_src;
   1412 	} else {
   1413 		m = NULL;
   1414 		ip6 = NULL;
   1415 		sa6_src = &sa6_any;
   1416 		off = 0;
   1417 	}
   1418 
   1419 	if (ip6) {
   1420 		/*
   1421 		 * XXX: We assume that when ip6 is non NULL,
   1422 		 * M and OFF are valid.
   1423 		 */
   1424 
   1425 		/* check if we can safely examine src and dst ports */
   1426 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1427 			if (cmd == PRC_MSGSIZE)
   1428 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1429 			return;
   1430 		}
   1431 
   1432 		bzero(&th, sizeof(th));
   1433 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
   1434 
   1435 		if (cmd == PRC_MSGSIZE) {
   1436 			int valid = 0;
   1437 
   1438 			/*
   1439 			 * Check to see if we have a valid TCP connection
   1440 			 * corresponding to the address in the ICMPv6 message
   1441 			 * payload.
   1442 			 */
   1443 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
   1444 			    th.th_dport, (const struct in6_addr *)&sa6_src->sin6_addr,
   1445 			    th.th_sport, 0))
   1446 				valid++;
   1447 
   1448 			/*
   1449 			 * Depending on the value of "valid" and routing table
   1450 			 * size (mtudisc_{hi,lo}wat), we will:
   1451 			 * - recalcurate the new MTU and create the
   1452 			 *   corresponding routing entry, or
   1453 			 * - ignore the MTU change notification.
   1454 			 */
   1455 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1456 
   1457 			/*
   1458 			 * no need to call in6_pcbnotify, it should have been
   1459 			 * called via callback if necessary
   1460 			 */
   1461 			return;
   1462 		}
   1463 
   1464 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
   1465 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1466 		if (nmatch == 0 && syn_cache_count &&
   1467 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1468 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1469 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1470 			syn_cache_unreach((const struct sockaddr *)sa6_src,
   1471 					  sa, &th);
   1472 	} else {
   1473 		(void) in6_pcbnotify(&tcbtable, sa, 0,
   1474 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
   1475 	}
   1476 }
   1477 #endif
   1478 
   1479 #ifdef INET
   1480 /* assumes that ip header and tcp header are contiguous on mbuf */
   1481 void *
   1482 tcp_ctlinput(int cmd, struct sockaddr *sa, void *v)
   1483 {
   1484 	struct ip *ip = v;
   1485 	struct tcphdr *th;
   1486 	struct icmp *icp;
   1487 	extern const int inetctlerrmap[];
   1488 	void (*notify)(struct inpcb *, int) = tcp_notify;
   1489 	int errno;
   1490 	int nmatch;
   1491 	struct tcpcb *tp;
   1492 	u_int mtu;
   1493 	tcp_seq seq;
   1494 	struct inpcb *inp;
   1495 #ifdef INET6
   1496 	struct in6pcb *in6p;
   1497 	struct in6_addr src6, dst6;
   1498 #endif
   1499 
   1500 	if (sa->sa_family != AF_INET ||
   1501 	    sa->sa_len != sizeof(struct sockaddr_in))
   1502 		return NULL;
   1503 	if ((unsigned)cmd >= PRC_NCMDS)
   1504 		return NULL;
   1505 	errno = inetctlerrmap[cmd];
   1506 	if (cmd == PRC_QUENCH)
   1507 		/*
   1508 		 * Don't honor ICMP Source Quench messages meant for
   1509 		 * TCP connections.
   1510 		 */
   1511 		return NULL;
   1512 	else if (PRC_IS_REDIRECT(cmd))
   1513 		notify = in_rtchange, ip = 0;
   1514 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1515 		/*
   1516 		 * Check to see if we have a valid TCP connection
   1517 		 * corresponding to the address in the ICMP message
   1518 		 * payload.
   1519 		 *
   1520 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1521 		 */
   1522 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1523 #ifdef INET6
   1524 		memset(&src6, 0, sizeof(src6));
   1525 		memset(&dst6, 0, sizeof(dst6));
   1526 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1527 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1528 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1529 #endif
   1530 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
   1531 		    th->th_dport, ip->ip_src, th->th_sport)) != NULL)
   1532 #ifdef INET6
   1533 			in6p = NULL;
   1534 #else
   1535 			;
   1536 #endif
   1537 #ifdef INET6
   1538 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
   1539 		    th->th_dport, &src6, th->th_sport, 0)) != NULL)
   1540 			;
   1541 #endif
   1542 		else
   1543 			return NULL;
   1544 
   1545 		/*
   1546 		 * Now that we've validated that we are actually communicating
   1547 		 * with the host indicated in the ICMP message, locate the
   1548 		 * ICMP header, recalculate the new MTU, and create the
   1549 		 * corresponding routing entry.
   1550 		 */
   1551 		icp = (struct icmp *)((caddr_t)ip -
   1552 		    offsetof(struct icmp, icmp_ip));
   1553 		if (inp) {
   1554 			if ((tp = intotcpcb(inp)) == NULL)
   1555 				return NULL;
   1556 		}
   1557 #ifdef INET6
   1558 		else if (in6p) {
   1559 			if ((tp = in6totcpcb(in6p)) == NULL)
   1560 				return NULL;
   1561 		}
   1562 #endif
   1563 		else
   1564 			return NULL;
   1565 		seq = ntohl(th->th_seq);
   1566 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
   1567 			return NULL;
   1568 		/*
   1569 		 * If the ICMP message advertises a Next-Hop MTU
   1570 		 * equal or larger than the maximum packet size we have
   1571 		 * ever sent, drop the message.
   1572 		 */
   1573 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
   1574 		if (mtu >= tp->t_pmtud_mtu_sent)
   1575 			return NULL;
   1576 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
   1577 			/*
   1578 			 * Calculate new MTU, and create corresponding
   1579 			 * route (traditional PMTUD).
   1580 			 */
   1581 			tp->t_flags &= ~TF_PMTUD_PEND;
   1582 			icmp_mtudisc(icp, ip->ip_dst);
   1583 		} else {
   1584 			/*
   1585 			 * Record the information got in the ICMP
   1586 			 * message; act on it later.
   1587 			 * If we had already recorded an ICMP message,
   1588 			 * replace the old one only if the new message
   1589 			 * refers to an older TCP segment
   1590 			 */
   1591 			if (tp->t_flags & TF_PMTUD_PEND) {
   1592 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
   1593 					return NULL;
   1594 			} else
   1595 				tp->t_flags |= TF_PMTUD_PEND;
   1596 			tp->t_pmtud_th_seq = seq;
   1597 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
   1598 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
   1599 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
   1600 		}
   1601 		return NULL;
   1602 	} else if (cmd == PRC_HOSTDEAD)
   1603 		ip = 0;
   1604 	else if (errno == 0)
   1605 		return NULL;
   1606 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1607 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1608 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
   1609 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1610 		if (nmatch == 0 && syn_cache_count &&
   1611 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1612 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1613 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1614 			struct sockaddr_in sin;
   1615 			bzero(&sin, sizeof(sin));
   1616 			sin.sin_len = sizeof(sin);
   1617 			sin.sin_family = AF_INET;
   1618 			sin.sin_port = th->th_sport;
   1619 			sin.sin_addr = ip->ip_src;
   1620 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1621 		}
   1622 
   1623 		/* XXX mapped address case */
   1624 	} else
   1625 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
   1626 		    notify);
   1627 	return NULL;
   1628 }
   1629 
   1630 /*
   1631  * When a source quench is received, we are being notified of congestion.
   1632  * Close the congestion window down to the Loss Window (one segment).
   1633  * We will gradually open it again as we proceed.
   1634  */
   1635 void
   1636 tcp_quench(struct inpcb *inp, int errno)
   1637 {
   1638 	struct tcpcb *tp = intotcpcb(inp);
   1639 
   1640 	if (tp)
   1641 		tp->snd_cwnd = tp->t_segsz;
   1642 }
   1643 #endif
   1644 
   1645 #ifdef INET6
   1646 void
   1647 tcp6_quench(struct in6pcb *in6p, int errno)
   1648 {
   1649 	struct tcpcb *tp = in6totcpcb(in6p);
   1650 
   1651 	if (tp)
   1652 		tp->snd_cwnd = tp->t_segsz;
   1653 }
   1654 #endif
   1655 
   1656 #ifdef INET
   1657 /*
   1658  * Path MTU Discovery handlers.
   1659  */
   1660 void
   1661 tcp_mtudisc_callback(struct in_addr faddr)
   1662 {
   1663 #ifdef INET6
   1664 	struct in6_addr in6;
   1665 #endif
   1666 
   1667 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1668 #ifdef INET6
   1669 	memset(&in6, 0, sizeof(in6));
   1670 	in6.s6_addr16[5] = 0xffff;
   1671 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1672 	tcp6_mtudisc_callback(&in6);
   1673 #endif
   1674 }
   1675 
   1676 /*
   1677  * On receipt of path MTU corrections, flush old route and replace it
   1678  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1679  * that all packets will be received.
   1680  */
   1681 void
   1682 tcp_mtudisc(struct inpcb *inp, int errno)
   1683 {
   1684 	struct tcpcb *tp = intotcpcb(inp);
   1685 	struct rtentry *rt = in_pcbrtentry(inp);
   1686 
   1687 	if (tp != 0) {
   1688 		if (rt != 0) {
   1689 			/*
   1690 			 * If this was not a host route, remove and realloc.
   1691 			 */
   1692 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1693 				in_rtchange(inp, errno);
   1694 				if ((rt = in_pcbrtentry(inp)) == 0)
   1695 					return;
   1696 			}
   1697 
   1698 			/*
   1699 			 * Slow start out of the error condition.  We
   1700 			 * use the MTU because we know it's smaller
   1701 			 * than the previously transmitted segment.
   1702 			 *
   1703 			 * Note: This is more conservative than the
   1704 			 * suggestion in draft-floyd-incr-init-win-03.
   1705 			 */
   1706 			if (rt->rt_rmx.rmx_mtu != 0)
   1707 				tp->snd_cwnd =
   1708 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1709 				    rt->rt_rmx.rmx_mtu);
   1710 		}
   1711 
   1712 		/*
   1713 		 * Resend unacknowledged packets.
   1714 		 */
   1715 		tp->snd_nxt = tp->snd_una;
   1716 		tcp_output(tp);
   1717 	}
   1718 }
   1719 #endif
   1720 
   1721 #ifdef INET6
   1722 /*
   1723  * Path MTU Discovery handlers.
   1724  */
   1725 void
   1726 tcp6_mtudisc_callback(struct in6_addr *faddr)
   1727 {
   1728 	struct sockaddr_in6 sin6;
   1729 
   1730 	bzero(&sin6, sizeof(sin6));
   1731 	sin6.sin6_family = AF_INET6;
   1732 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1733 	sin6.sin6_addr = *faddr;
   1734 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
   1735 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1736 }
   1737 
   1738 void
   1739 tcp6_mtudisc(struct in6pcb *in6p, int errno)
   1740 {
   1741 	struct tcpcb *tp = in6totcpcb(in6p);
   1742 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1743 
   1744 	if (tp != 0) {
   1745 		if (rt != 0) {
   1746 			/*
   1747 			 * If this was not a host route, remove and realloc.
   1748 			 */
   1749 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1750 				in6_rtchange(in6p, errno);
   1751 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1752 					return;
   1753 			}
   1754 
   1755 			/*
   1756 			 * Slow start out of the error condition.  We
   1757 			 * use the MTU because we know it's smaller
   1758 			 * than the previously transmitted segment.
   1759 			 *
   1760 			 * Note: This is more conservative than the
   1761 			 * suggestion in draft-floyd-incr-init-win-03.
   1762 			 */
   1763 			if (rt->rt_rmx.rmx_mtu != 0)
   1764 				tp->snd_cwnd =
   1765 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1766 				    rt->rt_rmx.rmx_mtu);
   1767 		}
   1768 
   1769 		/*
   1770 		 * Resend unacknowledged packets.
   1771 		 */
   1772 		tp->snd_nxt = tp->snd_una;
   1773 		tcp_output(tp);
   1774 	}
   1775 }
   1776 #endif /* INET6 */
   1777 
   1778 /*
   1779  * Compute the MSS to advertise to the peer.  Called only during
   1780  * the 3-way handshake.  If we are the server (peer initiated
   1781  * connection), we are called with a pointer to the interface
   1782  * on which the SYN packet arrived.  If we are the client (we
   1783  * initiated connection), we are called with a pointer to the
   1784  * interface out which this connection should go.
   1785  *
   1786  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1787  * header size from MSS advertisement.  MSS option must hold the maximum
   1788  * segment size we can accept, so it must always be:
   1789  *	 max(if mtu) - ip header - tcp header
   1790  */
   1791 u_long
   1792 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
   1793 {
   1794 	extern u_long in_maxmtu;
   1795 	u_long mss = 0;
   1796 	u_long hdrsiz;
   1797 
   1798 	/*
   1799 	 * In order to avoid defeating path MTU discovery on the peer,
   1800 	 * we advertise the max MTU of all attached networks as our MSS,
   1801 	 * per RFC 1191, section 3.1.
   1802 	 *
   1803 	 * We provide the option to advertise just the MTU of
   1804 	 * the interface on which we hope this connection will
   1805 	 * be receiving.  If we are responding to a SYN, we
   1806 	 * will have a pretty good idea about this, but when
   1807 	 * initiating a connection there is a bit more doubt.
   1808 	 *
   1809 	 * We also need to ensure that loopback has a large enough
   1810 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1811 	 */
   1812 
   1813 	if (ifp != NULL)
   1814 		switch (af) {
   1815 		case AF_INET:
   1816 			mss = ifp->if_mtu;
   1817 			break;
   1818 #ifdef INET6
   1819 		case AF_INET6:
   1820 			mss = IN6_LINKMTU(ifp);
   1821 			break;
   1822 #endif
   1823 		}
   1824 
   1825 	if (tcp_mss_ifmtu == 0)
   1826 		switch (af) {
   1827 		case AF_INET:
   1828 			mss = max(in_maxmtu, mss);
   1829 			break;
   1830 #ifdef INET6
   1831 		case AF_INET6:
   1832 			mss = max(in6_maxmtu, mss);
   1833 			break;
   1834 #endif
   1835 		}
   1836 
   1837 	switch (af) {
   1838 	case AF_INET:
   1839 		hdrsiz = sizeof(struct ip);
   1840 		break;
   1841 #ifdef INET6
   1842 	case AF_INET6:
   1843 		hdrsiz = sizeof(struct ip6_hdr);
   1844 		break;
   1845 #endif
   1846 	default:
   1847 		hdrsiz = 0;
   1848 		break;
   1849 	}
   1850 	hdrsiz += sizeof(struct tcphdr);
   1851 	if (mss > hdrsiz)
   1852 		mss -= hdrsiz;
   1853 
   1854 	mss = max(tcp_mssdflt, mss);
   1855 	return (mss);
   1856 }
   1857 
   1858 /*
   1859  * Set connection variables based on the peer's advertised MSS.
   1860  * We are passed the TCPCB for the actual connection.  If we
   1861  * are the server, we are called by the compressed state engine
   1862  * when the 3-way handshake is complete.  If we are the client,
   1863  * we are called when we receive the SYN,ACK from the server.
   1864  *
   1865  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1866  * before this routine is called!
   1867  */
   1868 void
   1869 tcp_mss_from_peer(struct tcpcb *tp, int offer)
   1870 {
   1871 	struct socket *so;
   1872 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1873 	struct rtentry *rt;
   1874 #endif
   1875 	u_long bufsize;
   1876 	int mss;
   1877 
   1878 #ifdef DIAGNOSTIC
   1879 	if (tp->t_inpcb && tp->t_in6pcb)
   1880 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1881 #endif
   1882 	so = NULL;
   1883 	rt = NULL;
   1884 #ifdef INET
   1885 	if (tp->t_inpcb) {
   1886 		so = tp->t_inpcb->inp_socket;
   1887 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1888 		rt = in_pcbrtentry(tp->t_inpcb);
   1889 #endif
   1890 	}
   1891 #endif
   1892 #ifdef INET6
   1893 	if (tp->t_in6pcb) {
   1894 		so = tp->t_in6pcb->in6p_socket;
   1895 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1896 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1897 #endif
   1898 	}
   1899 #endif
   1900 
   1901 	/*
   1902 	 * As per RFC1122, use the default MSS value, unless they
   1903 	 * sent us an offer.  Do not accept offers less than 256 bytes.
   1904 	 */
   1905 	mss = tcp_mssdflt;
   1906 	if (offer)
   1907 		mss = offer;
   1908 	mss = max(mss, 256);		/* sanity */
   1909 	tp->t_peermss = mss;
   1910 	mss -= tcp_optlen(tp);
   1911 #ifdef INET
   1912 	if (tp->t_inpcb)
   1913 		mss -= ip_optlen(tp->t_inpcb);
   1914 #endif
   1915 #ifdef INET6
   1916 	if (tp->t_in6pcb)
   1917 		mss -= ip6_optlen(tp->t_in6pcb);
   1918 #endif
   1919 
   1920 	/*
   1921 	 * If there's a pipesize, change the socket buffer to that size.
   1922 	 * Make the socket buffer an integral number of MSS units.  If
   1923 	 * the MSS is larger than the socket buffer, artificially decrease
   1924 	 * the MSS.
   1925 	 */
   1926 #ifdef RTV_SPIPE
   1927 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1928 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1929 	else
   1930 #endif
   1931 		bufsize = so->so_snd.sb_hiwat;
   1932 	if (bufsize < mss)
   1933 		mss = bufsize;
   1934 	else {
   1935 		bufsize = roundup(bufsize, mss);
   1936 		if (bufsize > sb_max)
   1937 			bufsize = sb_max;
   1938 		(void) sbreserve(&so->so_snd, bufsize, so);
   1939 	}
   1940 	tp->t_segsz = mss;
   1941 
   1942 #ifdef RTV_SSTHRESH
   1943 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1944 		/*
   1945 		 * There's some sort of gateway or interface buffer
   1946 		 * limit on the path.  Use this to set the slow
   1947 		 * start threshold, but set the threshold to no less
   1948 		 * than 2 * MSS.
   1949 		 */
   1950 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1951 	}
   1952 #endif
   1953 }
   1954 
   1955 /*
   1956  * Processing necessary when a TCP connection is established.
   1957  */
   1958 void
   1959 tcp_established(struct tcpcb *tp)
   1960 {
   1961 	struct socket *so;
   1962 #ifdef RTV_RPIPE
   1963 	struct rtentry *rt;
   1964 #endif
   1965 	u_long bufsize;
   1966 
   1967 #ifdef DIAGNOSTIC
   1968 	if (tp->t_inpcb && tp->t_in6pcb)
   1969 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   1970 #endif
   1971 	so = NULL;
   1972 	rt = NULL;
   1973 #ifdef INET
   1974 	if (tp->t_inpcb) {
   1975 		so = tp->t_inpcb->inp_socket;
   1976 #if defined(RTV_RPIPE)
   1977 		rt = in_pcbrtentry(tp->t_inpcb);
   1978 #endif
   1979 	}
   1980 #endif
   1981 #ifdef INET6
   1982 	if (tp->t_in6pcb) {
   1983 		so = tp->t_in6pcb->in6p_socket;
   1984 #if defined(RTV_RPIPE)
   1985 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1986 #endif
   1987 	}
   1988 #endif
   1989 
   1990 	tp->t_state = TCPS_ESTABLISHED;
   1991 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1992 
   1993 #ifdef RTV_RPIPE
   1994 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   1995 		bufsize = rt->rt_rmx.rmx_recvpipe;
   1996 	else
   1997 #endif
   1998 		bufsize = so->so_rcv.sb_hiwat;
   1999 	if (bufsize > tp->t_ourmss) {
   2000 		bufsize = roundup(bufsize, tp->t_ourmss);
   2001 		if (bufsize > sb_max)
   2002 			bufsize = sb_max;
   2003 		(void) sbreserve(&so->so_rcv, bufsize, so);
   2004 	}
   2005 }
   2006 
   2007 /*
   2008  * Check if there's an initial rtt or rttvar.  Convert from the
   2009  * route-table units to scaled multiples of the slow timeout timer.
   2010  * Called only during the 3-way handshake.
   2011  */
   2012 void
   2013 tcp_rmx_rtt(struct tcpcb *tp)
   2014 {
   2015 #ifdef RTV_RTT
   2016 	struct rtentry *rt = NULL;
   2017 	int rtt;
   2018 
   2019 #ifdef DIAGNOSTIC
   2020 	if (tp->t_inpcb && tp->t_in6pcb)
   2021 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   2022 #endif
   2023 #ifdef INET
   2024 	if (tp->t_inpcb)
   2025 		rt = in_pcbrtentry(tp->t_inpcb);
   2026 #endif
   2027 #ifdef INET6
   2028 	if (tp->t_in6pcb)
   2029 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2030 #endif
   2031 	if (rt == NULL)
   2032 		return;
   2033 
   2034 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   2035 		/*
   2036 		 * XXX The lock bit for MTU indicates that the value
   2037 		 * is also a minimum value; this is subject to time.
   2038 		 */
   2039 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   2040 			TCPT_RANGESET(tp->t_rttmin,
   2041 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   2042 			    TCPTV_MIN, TCPTV_REXMTMAX);
   2043 		tp->t_srtt = rtt /
   2044 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   2045 		if (rt->rt_rmx.rmx_rttvar) {
   2046 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   2047 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   2048 				(TCP_RTTVAR_SHIFT + 2));
   2049 		} else {
   2050 			/* Default variation is +- 1 rtt */
   2051 			tp->t_rttvar =
   2052 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   2053 		}
   2054 		TCPT_RANGESET(tp->t_rxtcur,
   2055 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   2056 		    tp->t_rttmin, TCPTV_REXMTMAX);
   2057 	}
   2058 #endif
   2059 }
   2060 
   2061 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   2062 #if NRND > 0
   2063 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   2064 #endif
   2065 
   2066 /*
   2067  * Get a new sequence value given a tcp control block
   2068  */
   2069 tcp_seq
   2070 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   2071 {
   2072 
   2073 #ifdef INET
   2074 	if (tp->t_inpcb != NULL) {
   2075 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   2076 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   2077 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   2078 		    addin));
   2079 	}
   2080 #endif
   2081 #ifdef INET6
   2082 	if (tp->t_in6pcb != NULL) {
   2083 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   2084 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   2085 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   2086 		    addin));
   2087 	}
   2088 #endif
   2089 	/* Not possible. */
   2090 	panic("tcp_new_iss");
   2091 }
   2092 
   2093 /*
   2094  * This routine actually generates a new TCP initial sequence number.
   2095  */
   2096 tcp_seq
   2097 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2098     size_t addrsz, tcp_seq addin)
   2099 {
   2100 	tcp_seq tcp_iss;
   2101 
   2102 #if NRND > 0
   2103 	static int beenhere;
   2104 
   2105 	/*
   2106 	 * If we haven't been here before, initialize our cryptographic
   2107 	 * hash secret.
   2108 	 */
   2109 	if (beenhere == 0) {
   2110 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   2111 		    RND_EXTRACT_ANY);
   2112 		beenhere = 1;
   2113 	}
   2114 
   2115 	if (tcp_do_rfc1948) {
   2116 		MD5_CTX ctx;
   2117 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2118 
   2119 		/*
   2120 		 * Compute the base value of the ISS.  It is a hash
   2121 		 * of (saddr, sport, daddr, dport, secret).
   2122 		 */
   2123 		MD5Init(&ctx);
   2124 
   2125 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2126 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2127 
   2128 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2129 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2130 
   2131 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2132 
   2133 		MD5Final(hash, &ctx);
   2134 
   2135 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2136 
   2137 		/*
   2138 		 * Now increment our "timer", and add it in to
   2139 		 * the computed value.
   2140 		 *
   2141 		 * XXX Use `addin'?
   2142 		 * XXX TCP_ISSINCR too large to use?
   2143 		 */
   2144 		tcp_iss_seq += TCP_ISSINCR;
   2145 #ifdef TCPISS_DEBUG
   2146 		printf("ISS hash 0x%08x, ", tcp_iss);
   2147 #endif
   2148 		tcp_iss += tcp_iss_seq + addin;
   2149 #ifdef TCPISS_DEBUG
   2150 		printf("new ISS 0x%08x\n", tcp_iss);
   2151 #endif
   2152 	} else
   2153 #endif /* NRND > 0 */
   2154 	{
   2155 		/*
   2156 		 * Randomize.
   2157 		 */
   2158 #if NRND > 0
   2159 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2160 #else
   2161 		tcp_iss = arc4random();
   2162 #endif
   2163 
   2164 		/*
   2165 		 * If we were asked to add some amount to a known value,
   2166 		 * we will take a random value obtained above, mask off
   2167 		 * the upper bits, and add in the known value.  We also
   2168 		 * add in a constant to ensure that we are at least a
   2169 		 * certain distance from the original value.
   2170 		 *
   2171 		 * This is used when an old connection is in timed wait
   2172 		 * and we have a new one coming in, for instance.
   2173 		 */
   2174 		if (addin != 0) {
   2175 #ifdef TCPISS_DEBUG
   2176 			printf("Random %08x, ", tcp_iss);
   2177 #endif
   2178 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2179 			tcp_iss += addin + TCP_ISSINCR;
   2180 #ifdef TCPISS_DEBUG
   2181 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2182 #endif
   2183 		} else {
   2184 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2185 			tcp_iss += tcp_iss_seq;
   2186 			tcp_iss_seq += TCP_ISSINCR;
   2187 #ifdef TCPISS_DEBUG
   2188 			printf("ISS %08x\n", tcp_iss);
   2189 #endif
   2190 		}
   2191 	}
   2192 
   2193 	if (tcp_compat_42) {
   2194 		/*
   2195 		 * Limit it to the positive range for really old TCP
   2196 		 * implementations.
   2197 		 * Just AND off the top bit instead of checking if
   2198 		 * is set first - saves a branch 50% of the time.
   2199 		 */
   2200 		tcp_iss &= 0x7fffffff;		/* XXX */
   2201 	}
   2202 
   2203 	return (tcp_iss);
   2204 }
   2205 
   2206 #if defined(IPSEC) || defined(FAST_IPSEC)
   2207 /* compute ESP/AH header size for TCP, including outer IP header. */
   2208 size_t
   2209 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
   2210 {
   2211 	struct inpcb *inp;
   2212 	size_t hdrsiz;
   2213 
   2214 	/* XXX mapped addr case (tp->t_in6pcb) */
   2215 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2216 		return 0;
   2217 	switch (tp->t_family) {
   2218 	case AF_INET:
   2219 		/* XXX: should use currect direction. */
   2220 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2221 		break;
   2222 	default:
   2223 		hdrsiz = 0;
   2224 		break;
   2225 	}
   2226 
   2227 	return hdrsiz;
   2228 }
   2229 
   2230 #ifdef INET6
   2231 size_t
   2232 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
   2233 {
   2234 	struct in6pcb *in6p;
   2235 	size_t hdrsiz;
   2236 
   2237 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2238 		return 0;
   2239 	switch (tp->t_family) {
   2240 	case AF_INET6:
   2241 		/* XXX: should use currect direction. */
   2242 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2243 		break;
   2244 	case AF_INET:
   2245 		/* mapped address case - tricky */
   2246 	default:
   2247 		hdrsiz = 0;
   2248 		break;
   2249 	}
   2250 
   2251 	return hdrsiz;
   2252 }
   2253 #endif
   2254 #endif /*IPSEC*/
   2255 
   2256 /*
   2257  * Determine the length of the TCP options for this connection.
   2258  *
   2259  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2260  *       all of the space?  Otherwise we can't exactly be incrementing
   2261  *       cwnd by an amount that varies depending on the amount we last
   2262  *       had to SACK!
   2263  */
   2264 
   2265 u_int
   2266 tcp_optlen(struct tcpcb *tp)
   2267 {
   2268 	u_int optlen;
   2269 
   2270 	optlen = 0;
   2271 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2272 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2273 		optlen += TCPOLEN_TSTAMP_APPA;
   2274 
   2275 #ifdef TCP_SIGNATURE
   2276 #if defined(INET6) && defined(FAST_IPSEC)
   2277 	if (tp->t_family == AF_INET)
   2278 #endif
   2279 	if (tp->t_flags & TF_SIGNATURE)
   2280 		optlen += TCPOLEN_SIGNATURE + 2;
   2281 #endif /* TCP_SIGNATURE */
   2282 
   2283 	return optlen;
   2284 }
   2285 
   2286 u_int
   2287 tcp_hdrsz(struct tcpcb *tp)
   2288 {
   2289 	u_int hlen;
   2290 
   2291 	switch (tp->t_family) {
   2292 #ifdef INET6
   2293 	case AF_INET6:
   2294 		hlen = sizeof(struct ip6_hdr);
   2295 		break;
   2296 #endif
   2297 	case AF_INET:
   2298 		hlen = sizeof(struct ip);
   2299 		break;
   2300 	default:
   2301 		hlen = 0;
   2302 		break;
   2303 	}
   2304 	hlen += sizeof(struct tcphdr);
   2305 
   2306 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
   2307 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
   2308 		hlen += TCPOLEN_TSTAMP_APPA;
   2309 #ifdef TCP_SIGNATURE
   2310 	if (tp->t_flags & TF_SIGNATURE)
   2311 		hlen += TCPOLEN_SIGLEN;
   2312 #endif
   2313 	return hlen;
   2314 }
   2315