Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.198
      1 /*	$NetBSD: tcp_subr.c,v 1.198 2006/04/15 02:30:39 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.198 2006/04/15 02:30:39 christos Exp $");
    102 
    103 #include "opt_inet.h"
    104 #include "opt_ipsec.h"
    105 #include "opt_tcp_compat_42.h"
    106 #include "opt_inet_csum.h"
    107 #include "opt_mbuftrace.h"
    108 #include "rnd.h"
    109 
    110 #include <sys/param.h>
    111 #include <sys/proc.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/socket.h>
    116 #include <sys/socketvar.h>
    117 #include <sys/protosw.h>
    118 #include <sys/errno.h>
    119 #include <sys/kernel.h>
    120 #include <sys/pool.h>
    121 #if NRND > 0
    122 #include <sys/md5.h>
    123 #include <sys/rnd.h>
    124 #endif
    125 
    126 #include <net/route.h>
    127 #include <net/if.h>
    128 
    129 #include <netinet/in.h>
    130 #include <netinet/in_systm.h>
    131 #include <netinet/ip.h>
    132 #include <netinet/in_pcb.h>
    133 #include <netinet/ip_var.h>
    134 #include <netinet/ip_icmp.h>
    135 
    136 #ifdef INET6
    137 #ifndef INET
    138 #include <netinet/in.h>
    139 #endif
    140 #include <netinet/ip6.h>
    141 #include <netinet6/in6_pcb.h>
    142 #include <netinet6/ip6_var.h>
    143 #include <netinet6/in6_var.h>
    144 #include <netinet6/ip6protosw.h>
    145 #include <netinet/icmp6.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include <netinet/tcp.h>
    150 #include <netinet/tcp_fsm.h>
    151 #include <netinet/tcp_seq.h>
    152 #include <netinet/tcp_timer.h>
    153 #include <netinet/tcp_var.h>
    154 #include <netinet/tcpip.h>
    155 
    156 #ifdef IPSEC
    157 #include <netinet6/ipsec.h>
    158 #include <netkey/key.h>
    159 #endif /*IPSEC*/
    160 
    161 #ifdef FAST_IPSEC
    162 #include <netipsec/ipsec.h>
    163 #include <netipsec/xform.h>
    164 #ifdef INET6
    165 #include <netipsec/ipsec6.h>
    166 #endif
    167  #include <netipsec/key.h>
    168 #endif	/* FAST_IPSEC*/
    169 
    170 
    171 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    172 struct	tcpstat tcpstat;	/* tcp statistics */
    173 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
    174 
    175 /* patchable/settable parameters for tcp */
    176 int 	tcp_mssdflt = TCP_MSS;
    177 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    178 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    179 #if NRND > 0
    180 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    181 #endif
    182 int	tcp_do_sack = 1;	/* selective acknowledgement */
    183 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    184 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    185 int	tcp_do_newreno = 1;	/* Use the New Reno algorithms */
    186 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    187 #ifndef TCP_INIT_WIN
    188 #define	TCP_INIT_WIN	0	/* initial slow start window */
    189 #endif
    190 #ifndef TCP_INIT_WIN_LOCAL
    191 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    192 #endif
    193 int	tcp_init_win = TCP_INIT_WIN;
    194 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    195 int	tcp_mss_ifmtu = 0;
    196 #ifdef TCP_COMPAT_42
    197 int	tcp_compat_42 = 1;
    198 #else
    199 int	tcp_compat_42 = 0;
    200 #endif
    201 int	tcp_rst_ppslim = 100;	/* 100pps */
    202 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
    203 int	tcp_do_loopback_cksum = 0;
    204 int	tcp_sack_tp_maxholes = 32;
    205 int	tcp_sack_globalmaxholes = 1024;
    206 int	tcp_sack_globalholes = 0;
    207 
    208 
    209 /* tcb hash */
    210 #ifndef TCBHASHSIZE
    211 #define	TCBHASHSIZE	128
    212 #endif
    213 int	tcbhashsize = TCBHASHSIZE;
    214 
    215 /* syn hash parameters */
    216 #define	TCP_SYN_HASH_SIZE	293
    217 #define	TCP_SYN_BUCKET_SIZE	35
    218 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    219 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    220 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    221 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    222 
    223 int	tcp_freeq(struct tcpcb *);
    224 
    225 #ifdef INET
    226 void	tcp_mtudisc_callback(struct in_addr);
    227 #endif
    228 #ifdef INET6
    229 void	tcp6_mtudisc_callback(struct in6_addr *);
    230 #endif
    231 
    232 #ifdef INET6
    233 void	tcp6_mtudisc(struct in6pcb *, int);
    234 #endif
    235 
    236 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
    237 
    238 #ifdef TCP_CSUM_COUNTERS
    239 #include <sys/device.h>
    240 
    241 #if defined(INET)
    242 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    243     NULL, "tcp", "hwcsum bad");
    244 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    245     NULL, "tcp", "hwcsum ok");
    246 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    247     NULL, "tcp", "hwcsum data");
    248 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    249     NULL, "tcp", "swcsum");
    250 
    251 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
    252 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
    253 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
    254 EVCNT_ATTACH_STATIC(tcp_swcsum);
    255 #endif /* defined(INET) */
    256 
    257 #if defined(INET6)
    258 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    259     NULL, "tcp6", "hwcsum bad");
    260 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    261     NULL, "tcp6", "hwcsum ok");
    262 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    263     NULL, "tcp6", "hwcsum data");
    264 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    265     NULL, "tcp6", "swcsum");
    266 
    267 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
    268 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
    269 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
    270 EVCNT_ATTACH_STATIC(tcp6_swcsum);
    271 #endif /* defined(INET6) */
    272 #endif /* TCP_CSUM_COUNTERS */
    273 
    274 
    275 #ifdef TCP_OUTPUT_COUNTERS
    276 #include <sys/device.h>
    277 
    278 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    279     NULL, "tcp", "output big header");
    280 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    281     NULL, "tcp", "output predict hit");
    282 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    283     NULL, "tcp", "output predict miss");
    284 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    285     NULL, "tcp", "output copy small");
    286 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    287     NULL, "tcp", "output copy big");
    288 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    289     NULL, "tcp", "output reference big");
    290 
    291 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
    292 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
    293 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
    294 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
    295 EVCNT_ATTACH_STATIC(tcp_output_copybig);
    296 EVCNT_ATTACH_STATIC(tcp_output_refbig);
    297 
    298 #endif /* TCP_OUTPUT_COUNTERS */
    299 
    300 #ifdef TCP_REASS_COUNTERS
    301 #include <sys/device.h>
    302 
    303 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    304     NULL, "tcp_reass", "calls");
    305 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    306     &tcp_reass_, "tcp_reass", "insert into empty queue");
    307 struct evcnt tcp_reass_iteration[8] = {
    308     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    309     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    310     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    311     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    312     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    316 };
    317 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    318     &tcp_reass_, "tcp_reass", "prepend to first");
    319 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    320     &tcp_reass_, "tcp_reass", "prepend");
    321 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    322     &tcp_reass_, "tcp_reass", "insert");
    323 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    324     &tcp_reass_, "tcp_reass", "insert at tail");
    325 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    326     &tcp_reass_, "tcp_reass", "append");
    327 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    328     &tcp_reass_, "tcp_reass", "append to tail fragment");
    329 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    330     &tcp_reass_, "tcp_reass", "overlap at end");
    331 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    332     &tcp_reass_, "tcp_reass", "overlap at start");
    333 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    334     &tcp_reass_, "tcp_reass", "duplicate segment");
    335 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    336     &tcp_reass_, "tcp_reass", "duplicate fragment");
    337 
    338 EVCNT_ATTACH_STATIC(tcp_reass_);
    339 EVCNT_ATTACH_STATIC(tcp_reass_empty);
    340 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
    341 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
    342 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
    343 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
    344 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
    345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
    346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
    347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
    348 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
    349 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
    350 EVCNT_ATTACH_STATIC(tcp_reass_insert);
    351 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
    352 EVCNT_ATTACH_STATIC(tcp_reass_append);
    353 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
    354 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
    355 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
    356 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
    357 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
    358 
    359 #endif /* TCP_REASS_COUNTERS */
    360 
    361 #ifdef MBUFTRACE
    362 struct mowner tcp_mowner = { "tcp" };
    363 struct mowner tcp_rx_mowner = { "tcp", "rx" };
    364 struct mowner tcp_tx_mowner = { "tcp", "tx" };
    365 #endif
    366 
    367 /*
    368  * Tcp initialization
    369  */
    370 void
    371 tcp_init(void)
    372 {
    373 	int hlen;
    374 
    375 	/* Initialize the TCPCB template. */
    376 	tcp_tcpcb_template();
    377 
    378 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    379 
    380 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    381 #ifdef INET6
    382 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    383 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    384 #endif
    385 	if (max_protohdr < hlen)
    386 		max_protohdr = hlen;
    387 	if (max_linkhdr + hlen > MHLEN)
    388 		panic("tcp_init");
    389 
    390 #ifdef INET
    391 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    392 #endif
    393 #ifdef INET6
    394 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    395 #endif
    396 
    397 	/* Initialize timer state. */
    398 	tcp_timer_init();
    399 
    400 	/* Initialize the compressed state engine. */
    401 	syn_cache_init();
    402 
    403 	MOWNER_ATTACH(&tcp_tx_mowner);
    404 	MOWNER_ATTACH(&tcp_rx_mowner);
    405 	MOWNER_ATTACH(&tcp_mowner);
    406 }
    407 
    408 /*
    409  * Create template to be used to send tcp packets on a connection.
    410  * Call after host entry created, allocates an mbuf and fills
    411  * in a skeletal tcp/ip header, minimizing the amount of work
    412  * necessary when the connection is used.
    413  */
    414 struct mbuf *
    415 tcp_template(struct tcpcb *tp)
    416 {
    417 	struct inpcb *inp = tp->t_inpcb;
    418 #ifdef INET6
    419 	struct in6pcb *in6p = tp->t_in6pcb;
    420 #endif
    421 	struct tcphdr *n;
    422 	struct mbuf *m;
    423 	int hlen;
    424 
    425 	switch (tp->t_family) {
    426 	case AF_INET:
    427 		hlen = sizeof(struct ip);
    428 		if (inp)
    429 			break;
    430 #ifdef INET6
    431 		if (in6p) {
    432 			/* mapped addr case */
    433 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    434 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    435 				break;
    436 		}
    437 #endif
    438 		return NULL;	/*EINVAL*/
    439 #ifdef INET6
    440 	case AF_INET6:
    441 		hlen = sizeof(struct ip6_hdr);
    442 		if (in6p) {
    443 			/* more sainty check? */
    444 			break;
    445 		}
    446 		return NULL;	/*EINVAL*/
    447 #endif
    448 	default:
    449 		hlen = 0;	/*pacify gcc*/
    450 		return NULL;	/*EAFNOSUPPORT*/
    451 	}
    452 #ifdef DIAGNOSTIC
    453 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    454 		panic("mclbytes too small for t_template");
    455 #endif
    456 	m = tp->t_template;
    457 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    458 		;
    459 	else {
    460 		if (m)
    461 			m_freem(m);
    462 		m = tp->t_template = NULL;
    463 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    464 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    465 			MCLGET(m, M_DONTWAIT);
    466 			if ((m->m_flags & M_EXT) == 0) {
    467 				m_free(m);
    468 				m = NULL;
    469 			}
    470 		}
    471 		if (m == NULL)
    472 			return NULL;
    473 		MCLAIM(m, &tcp_mowner);
    474 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    475 	}
    476 
    477 	bzero(mtod(m, caddr_t), m->m_len);
    478 
    479 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
    480 
    481 	switch (tp->t_family) {
    482 	case AF_INET:
    483 	    {
    484 		struct ipovly *ipov;
    485 		mtod(m, struct ip *)->ip_v = 4;
    486 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
    487 		ipov = mtod(m, struct ipovly *);
    488 		ipov->ih_pr = IPPROTO_TCP;
    489 		ipov->ih_len = htons(sizeof(struct tcphdr));
    490 		if (inp) {
    491 			ipov->ih_src = inp->inp_laddr;
    492 			ipov->ih_dst = inp->inp_faddr;
    493 		}
    494 #ifdef INET6
    495 		else if (in6p) {
    496 			/* mapped addr case */
    497 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    498 				sizeof(ipov->ih_src));
    499 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    500 				sizeof(ipov->ih_dst));
    501 		}
    502 #endif
    503 		/*
    504 		 * Compute the pseudo-header portion of the checksum
    505 		 * now.  We incrementally add in the TCP option and
    506 		 * payload lengths later, and then compute the TCP
    507 		 * checksum right before the packet is sent off onto
    508 		 * the wire.
    509 		 */
    510 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    511 		    ipov->ih_dst.s_addr,
    512 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    513 		break;
    514 	    }
    515 #ifdef INET6
    516 	case AF_INET6:
    517 	    {
    518 		struct ip6_hdr *ip6;
    519 		mtod(m, struct ip *)->ip_v = 6;
    520 		ip6 = mtod(m, struct ip6_hdr *);
    521 		ip6->ip6_nxt = IPPROTO_TCP;
    522 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    523 		ip6->ip6_src = in6p->in6p_laddr;
    524 		ip6->ip6_dst = in6p->in6p_faddr;
    525 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    526 		if (ip6_auto_flowlabel) {
    527 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    528 			ip6->ip6_flow |=
    529 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    530 		}
    531 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    532 		ip6->ip6_vfc |= IPV6_VERSION;
    533 
    534 		/*
    535 		 * Compute the pseudo-header portion of the checksum
    536 		 * now.  We incrementally add in the TCP option and
    537 		 * payload lengths later, and then compute the TCP
    538 		 * checksum right before the packet is sent off onto
    539 		 * the wire.
    540 		 */
    541 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    542 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    543 		    htonl(IPPROTO_TCP));
    544 		break;
    545 	    }
    546 #endif
    547 	}
    548 	if (inp) {
    549 		n->th_sport = inp->inp_lport;
    550 		n->th_dport = inp->inp_fport;
    551 	}
    552 #ifdef INET6
    553 	else if (in6p) {
    554 		n->th_sport = in6p->in6p_lport;
    555 		n->th_dport = in6p->in6p_fport;
    556 	}
    557 #endif
    558 	n->th_seq = 0;
    559 	n->th_ack = 0;
    560 	n->th_x2 = 0;
    561 	n->th_off = 5;
    562 	n->th_flags = 0;
    563 	n->th_win = 0;
    564 	n->th_urp = 0;
    565 	return (m);
    566 }
    567 
    568 /*
    569  * Send a single message to the TCP at address specified by
    570  * the given TCP/IP header.  If m == 0, then we make a copy
    571  * of the tcpiphdr at ti and send directly to the addressed host.
    572  * This is used to force keep alive messages out using the TCP
    573  * template for a connection tp->t_template.  If flags are given
    574  * then we send a message back to the TCP which originated the
    575  * segment ti, and discard the mbuf containing it and any other
    576  * attached mbufs.
    577  *
    578  * In any case the ack and sequence number of the transmitted
    579  * segment are as specified by the parameters.
    580  */
    581 int
    582 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
    583     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
    584 {
    585 	struct route *ro;
    586 	int error, tlen, win = 0;
    587 	int hlen;
    588 	struct ip *ip;
    589 #ifdef INET6
    590 	struct ip6_hdr *ip6;
    591 #endif
    592 	int family;	/* family on packet, not inpcb/in6pcb! */
    593 	struct tcphdr *th;
    594 	struct socket *so;
    595 
    596 	if (tp != NULL && (flags & TH_RST) == 0) {
    597 #ifdef DIAGNOSTIC
    598 		if (tp->t_inpcb && tp->t_in6pcb)
    599 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    600 #endif
    601 #ifdef INET
    602 		if (tp->t_inpcb)
    603 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    604 #endif
    605 #ifdef INET6
    606 		if (tp->t_in6pcb)
    607 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    608 #endif
    609 	}
    610 
    611 	th = NULL;	/* Quell uninitialized warning */
    612 	ip = NULL;
    613 #ifdef INET6
    614 	ip6 = NULL;
    615 #endif
    616 	if (m == 0) {
    617 		if (!template)
    618 			return EINVAL;
    619 
    620 		/* get family information from template */
    621 		switch (mtod(template, struct ip *)->ip_v) {
    622 		case 4:
    623 			family = AF_INET;
    624 			hlen = sizeof(struct ip);
    625 			break;
    626 #ifdef INET6
    627 		case 6:
    628 			family = AF_INET6;
    629 			hlen = sizeof(struct ip6_hdr);
    630 			break;
    631 #endif
    632 		default:
    633 			return EAFNOSUPPORT;
    634 		}
    635 
    636 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    637 		if (m) {
    638 			MCLAIM(m, &tcp_tx_mowner);
    639 			MCLGET(m, M_DONTWAIT);
    640 			if ((m->m_flags & M_EXT) == 0) {
    641 				m_free(m);
    642 				m = NULL;
    643 			}
    644 		}
    645 		if (m == NULL)
    646 			return (ENOBUFS);
    647 
    648 		if (tcp_compat_42)
    649 			tlen = 1;
    650 		else
    651 			tlen = 0;
    652 
    653 		m->m_data += max_linkhdr;
    654 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
    655 			template->m_len);
    656 		switch (family) {
    657 		case AF_INET:
    658 			ip = mtod(m, struct ip *);
    659 			th = (struct tcphdr *)(ip + 1);
    660 			break;
    661 #ifdef INET6
    662 		case AF_INET6:
    663 			ip6 = mtod(m, struct ip6_hdr *);
    664 			th = (struct tcphdr *)(ip6 + 1);
    665 			break;
    666 #endif
    667 #if 0
    668 		default:
    669 			/* noone will visit here */
    670 			m_freem(m);
    671 			return EAFNOSUPPORT;
    672 #endif
    673 		}
    674 		flags = TH_ACK;
    675 	} else {
    676 
    677 		if ((m->m_flags & M_PKTHDR) == 0) {
    678 #if 0
    679 			printf("non PKTHDR to tcp_respond\n");
    680 #endif
    681 			m_freem(m);
    682 			return EINVAL;
    683 		}
    684 #ifdef DIAGNOSTIC
    685 		if (!th0)
    686 			panic("th0 == NULL in tcp_respond");
    687 #endif
    688 
    689 		/* get family information from m */
    690 		switch (mtod(m, struct ip *)->ip_v) {
    691 		case 4:
    692 			family = AF_INET;
    693 			hlen = sizeof(struct ip);
    694 			ip = mtod(m, struct ip *);
    695 			break;
    696 #ifdef INET6
    697 		case 6:
    698 			family = AF_INET6;
    699 			hlen = sizeof(struct ip6_hdr);
    700 			ip6 = mtod(m, struct ip6_hdr *);
    701 			break;
    702 #endif
    703 		default:
    704 			m_freem(m);
    705 			return EAFNOSUPPORT;
    706 		}
    707 		/* clear h/w csum flags inherited from rx packet */
    708 		m->m_pkthdr.csum_flags = 0;
    709 
    710 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    711 			tlen = sizeof(*th0);
    712 		else
    713 			tlen = th0->th_off << 2;
    714 
    715 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    716 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
    717 			m->m_len = hlen + tlen;
    718 			m_freem(m->m_next);
    719 			m->m_next = NULL;
    720 		} else {
    721 			struct mbuf *n;
    722 
    723 #ifdef DIAGNOSTIC
    724 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    725 				m_freem(m);
    726 				return EMSGSIZE;
    727 			}
    728 #endif
    729 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    730 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    731 				MCLGET(n, M_DONTWAIT);
    732 				if ((n->m_flags & M_EXT) == 0) {
    733 					m_freem(n);
    734 					n = NULL;
    735 				}
    736 			}
    737 			if (!n) {
    738 				m_freem(m);
    739 				return ENOBUFS;
    740 			}
    741 
    742 			MCLAIM(n, &tcp_tx_mowner);
    743 			n->m_data += max_linkhdr;
    744 			n->m_len = hlen + tlen;
    745 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
    746 			m_copyback(n, hlen, tlen, (caddr_t)th0);
    747 
    748 			m_freem(m);
    749 			m = n;
    750 			n = NULL;
    751 		}
    752 
    753 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    754 		switch (family) {
    755 		case AF_INET:
    756 			ip = mtod(m, struct ip *);
    757 			th = (struct tcphdr *)(ip + 1);
    758 			ip->ip_p = IPPROTO_TCP;
    759 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    760 			ip->ip_p = IPPROTO_TCP;
    761 			break;
    762 #ifdef INET6
    763 		case AF_INET6:
    764 			ip6 = mtod(m, struct ip6_hdr *);
    765 			th = (struct tcphdr *)(ip6 + 1);
    766 			ip6->ip6_nxt = IPPROTO_TCP;
    767 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    768 			ip6->ip6_nxt = IPPROTO_TCP;
    769 			break;
    770 #endif
    771 #if 0
    772 		default:
    773 			/* noone will visit here */
    774 			m_freem(m);
    775 			return EAFNOSUPPORT;
    776 #endif
    777 		}
    778 		xchg(th->th_dport, th->th_sport, u_int16_t);
    779 #undef xchg
    780 		tlen = 0;	/*be friendly with the following code*/
    781 	}
    782 	th->th_seq = htonl(seq);
    783 	th->th_ack = htonl(ack);
    784 	th->th_x2 = 0;
    785 	if ((flags & TH_SYN) == 0) {
    786 		if (tp)
    787 			win >>= tp->rcv_scale;
    788 		if (win > TCP_MAXWIN)
    789 			win = TCP_MAXWIN;
    790 		th->th_win = htons((u_int16_t)win);
    791 		th->th_off = sizeof (struct tcphdr) >> 2;
    792 		tlen += sizeof(*th);
    793 	} else
    794 		tlen += th->th_off << 2;
    795 	m->m_len = hlen + tlen;
    796 	m->m_pkthdr.len = hlen + tlen;
    797 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    798 	th->th_flags = flags;
    799 	th->th_urp = 0;
    800 
    801 	switch (family) {
    802 #ifdef INET
    803 	case AF_INET:
    804 	    {
    805 		struct ipovly *ipov = (struct ipovly *)ip;
    806 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    807 		ipov->ih_len = htons((u_int16_t)tlen);
    808 
    809 		th->th_sum = 0;
    810 		th->th_sum = in_cksum(m, hlen + tlen);
    811 		ip->ip_len = htons(hlen + tlen);
    812 		ip->ip_ttl = ip_defttl;
    813 		break;
    814 	    }
    815 #endif
    816 #ifdef INET6
    817 	case AF_INET6:
    818 	    {
    819 		th->th_sum = 0;
    820 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    821 				tlen);
    822 		ip6->ip6_plen = htons(tlen);
    823 		if (tp && tp->t_in6pcb) {
    824 			struct ifnet *oifp;
    825 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    826 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    827 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    828 		} else
    829 			ip6->ip6_hlim = ip6_defhlim;
    830 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    831 		if (ip6_auto_flowlabel) {
    832 			ip6->ip6_flow |=
    833 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    834 		}
    835 		break;
    836 	    }
    837 #endif
    838 	}
    839 
    840 	if (tp && tp->t_inpcb)
    841 		so = tp->t_inpcb->inp_socket;
    842 #ifdef INET6
    843 	else if (tp && tp->t_in6pcb)
    844 		so = tp->t_in6pcb->in6p_socket;
    845 #endif
    846 	else
    847 		so = NULL;
    848 
    849 	if (tp != NULL && tp->t_inpcb != NULL) {
    850 		ro = &tp->t_inpcb->inp_route;
    851 #ifdef DIAGNOSTIC
    852 		if (family != AF_INET)
    853 			panic("tcp_respond: address family mismatch");
    854 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    855 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    856 			    ntohl(ip->ip_dst.s_addr),
    857 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    858 		}
    859 #endif
    860 	}
    861 #ifdef INET6
    862 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    863 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    864 #ifdef DIAGNOSTIC
    865 		if (family == AF_INET) {
    866 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    867 				panic("tcp_respond: not mapped addr");
    868 			if (bcmp(&ip->ip_dst,
    869 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    870 			    sizeof(ip->ip_dst)) != 0) {
    871 				panic("tcp_respond: ip_dst != in6p_faddr");
    872 			}
    873 		} else if (family == AF_INET6) {
    874 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    875 			    &tp->t_in6pcb->in6p_faddr))
    876 				panic("tcp_respond: ip6_dst != in6p_faddr");
    877 		} else
    878 			panic("tcp_respond: address family mismatch");
    879 #endif
    880 	}
    881 #endif
    882 	else
    883 		ro = NULL;
    884 
    885 	switch (family) {
    886 #ifdef INET
    887 	case AF_INET:
    888 		error = ip_output(m, NULL, ro,
    889 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    890 		    (struct ip_moptions *)0, so);
    891 		break;
    892 #endif
    893 #ifdef INET6
    894 	case AF_INET6:
    895 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
    896 		    (struct ip6_moptions *)0, so, NULL);
    897 		break;
    898 #endif
    899 	default:
    900 		error = EAFNOSUPPORT;
    901 		break;
    902 	}
    903 
    904 	return (error);
    905 }
    906 
    907 /*
    908  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
    909  * a bunch of members individually, we maintain this template for the
    910  * static and mostly-static components of the TCPCB, and copy it into
    911  * the new TCPCB instead.
    912  */
    913 static struct tcpcb tcpcb_template = {
    914 	/*
    915 	 * If TCP_NTIMERS ever changes, we'll need to update this
    916 	 * initializer.
    917 	 */
    918 	.t_timer = {
    919 		CALLOUT_INITIALIZER,
    920 		CALLOUT_INITIALIZER,
    921 		CALLOUT_INITIALIZER,
    922 		CALLOUT_INITIALIZER,
    923 	},
    924 	.t_delack_ch = CALLOUT_INITIALIZER,
    925 
    926 	.t_srtt = TCPTV_SRTTBASE,
    927 	.t_rttmin = TCPTV_MIN,
    928 
    929 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    930 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    931 	.snd_numholes = 0,
    932 
    933 	.t_partialacks = -1,
    934 };
    935 
    936 /*
    937  * Updates the TCPCB template whenever a parameter that would affect
    938  * the template is changed.
    939  */
    940 void
    941 tcp_tcpcb_template(void)
    942 {
    943 	struct tcpcb *tp = &tcpcb_template;
    944 	int flags;
    945 
    946 	tp->t_peermss = tcp_mssdflt;
    947 	tp->t_ourmss = tcp_mssdflt;
    948 	tp->t_segsz = tcp_mssdflt;
    949 
    950 	flags = 0;
    951 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    952 		flags |= TF_REQ_SCALE;
    953 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    954 		flags |= TF_REQ_TSTMP;
    955 	tp->t_flags = flags;
    956 
    957 	/*
    958 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    959 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    960 	 * reasonable initial retransmit time.
    961 	 */
    962 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    963 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    964 	    TCPTV_MIN, TCPTV_REXMTMAX);
    965 }
    966 
    967 /*
    968  * Create a new TCP control block, making an
    969  * empty reassembly queue and hooking it to the argument
    970  * protocol control block.
    971  */
    972 /* family selects inpcb, or in6pcb */
    973 struct tcpcb *
    974 tcp_newtcpcb(int family, void *aux)
    975 {
    976 	struct tcpcb *tp;
    977 	int i;
    978 
    979 	/* XXX Consider using a pool_cache for speed. */
    980 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);
    981 	if (tp == NULL)
    982 		return (NULL);
    983 	memcpy(tp, &tcpcb_template, sizeof(*tp));
    984 	TAILQ_INIT(&tp->segq);
    985 	TAILQ_INIT(&tp->timeq);
    986 	tp->t_family = family;		/* may be overridden later on */
    987 	TAILQ_INIT(&tp->snd_holes);
    988 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
    989 
    990 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
    991 	for (i = 0; i < TCPT_NTIMERS; i++)
    992 		TCP_TIMER_INIT(tp, i);
    993 
    994 	switch (family) {
    995 	case AF_INET:
    996 	    {
    997 		struct inpcb *inp = (struct inpcb *)aux;
    998 
    999 		inp->inp_ip.ip_ttl = ip_defttl;
   1000 		inp->inp_ppcb = (caddr_t)tp;
   1001 
   1002 		tp->t_inpcb = inp;
   1003 		tp->t_mtudisc = ip_mtudisc;
   1004 		break;
   1005 	    }
   1006 #ifdef INET6
   1007 	case AF_INET6:
   1008 	    {
   1009 		struct in6pcb *in6p = (struct in6pcb *)aux;
   1010 
   1011 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
   1012 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
   1013 					       : NULL);
   1014 		in6p->in6p_ppcb = (caddr_t)tp;
   1015 
   1016 		tp->t_in6pcb = in6p;
   1017 		/* for IPv6, always try to run path MTU discovery */
   1018 		tp->t_mtudisc = 1;
   1019 		break;
   1020 	    }
   1021 #endif /* INET6 */
   1022 	default:
   1023 		pool_put(&tcpcb_pool, tp);
   1024 		return (NULL);
   1025 	}
   1026 
   1027 	/*
   1028 	 * Initialize our timebase.  When we send timestamps, we take
   1029 	 * the delta from tcp_now -- this means each connection always
   1030 	 * gets a timebase of 0, which makes it, among other things,
   1031 	 * more difficult to determine how long a system has been up,
   1032 	 * and thus how many TCP sequence increments have occurred.
   1033 	 */
   1034 	tp->ts_timebase = tcp_now;
   1035 
   1036 	return (tp);
   1037 }
   1038 
   1039 /*
   1040  * Drop a TCP connection, reporting
   1041  * the specified error.  If connection is synchronized,
   1042  * then send a RST to peer.
   1043  */
   1044 struct tcpcb *
   1045 tcp_drop(struct tcpcb *tp, int errno)
   1046 {
   1047 	struct socket *so = NULL;
   1048 
   1049 #ifdef DIAGNOSTIC
   1050 	if (tp->t_inpcb && tp->t_in6pcb)
   1051 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1052 #endif
   1053 #ifdef INET
   1054 	if (tp->t_inpcb)
   1055 		so = tp->t_inpcb->inp_socket;
   1056 #endif
   1057 #ifdef INET6
   1058 	if (tp->t_in6pcb)
   1059 		so = tp->t_in6pcb->in6p_socket;
   1060 #endif
   1061 	if (!so)
   1062 		return NULL;
   1063 
   1064 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1065 		tp->t_state = TCPS_CLOSED;
   1066 		(void) tcp_output(tp);
   1067 		tcpstat.tcps_drops++;
   1068 	} else
   1069 		tcpstat.tcps_conndrops++;
   1070 	if (errno == ETIMEDOUT && tp->t_softerror)
   1071 		errno = tp->t_softerror;
   1072 	so->so_error = errno;
   1073 	return (tcp_close(tp));
   1074 }
   1075 
   1076 /*
   1077  * Return whether this tcpcb is marked as dead, indicating
   1078  * to the calling timer function that no further action should
   1079  * be taken, as we are about to release this tcpcb.  The release
   1080  * of the storage will be done if this is the last timer running.
   1081  *
   1082  * This should be called from the callout handler function after
   1083  * callout_ack() is done, so that the number of invoking timer
   1084  * functions is 0.
   1085  */
   1086 int
   1087 tcp_isdead(struct tcpcb *tp)
   1088 {
   1089 	int dead = (tp->t_flags & TF_DEAD);
   1090 
   1091 	if (__predict_false(dead)) {
   1092 		if (tcp_timers_invoking(tp) > 0)
   1093 				/* not quite there yet -- count separately? */
   1094 			return dead;
   1095 		tcpstat.tcps_delayed_free++;
   1096 		pool_put(&tcpcb_pool, tp);
   1097 	}
   1098 	return dead;
   1099 }
   1100 
   1101 /*
   1102  * Close a TCP control block:
   1103  *	discard all space held by the tcp
   1104  *	discard internet protocol block
   1105  *	wake up any sleepers
   1106  */
   1107 struct tcpcb *
   1108 tcp_close(struct tcpcb *tp)
   1109 {
   1110 	struct inpcb *inp;
   1111 #ifdef INET6
   1112 	struct in6pcb *in6p;
   1113 #endif
   1114 	struct socket *so;
   1115 #ifdef RTV_RTT
   1116 	struct rtentry *rt;
   1117 #endif
   1118 	struct route *ro;
   1119 
   1120 	inp = tp->t_inpcb;
   1121 #ifdef INET6
   1122 	in6p = tp->t_in6pcb;
   1123 #endif
   1124 	so = NULL;
   1125 	ro = NULL;
   1126 	if (inp) {
   1127 		so = inp->inp_socket;
   1128 		ro = &inp->inp_route;
   1129 	}
   1130 #ifdef INET6
   1131 	else if (in6p) {
   1132 		so = in6p->in6p_socket;
   1133 		ro = (struct route *)&in6p->in6p_route;
   1134 	}
   1135 #endif
   1136 
   1137 #ifdef RTV_RTT
   1138 	/*
   1139 	 * If we sent enough data to get some meaningful characteristics,
   1140 	 * save them in the routing entry.  'Enough' is arbitrarily
   1141 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1142 	 * give us 16 rtt samples assuming we only get one sample per
   1143 	 * window (the usual case on a long haul net).  16 samples is
   1144 	 * enough for the srtt filter to converge to within 5% of the correct
   1145 	 * value; fewer samples and we could save a very bogus rtt.
   1146 	 *
   1147 	 * Don't update the default route's characteristics and don't
   1148 	 * update anything that the user "locked".
   1149 	 */
   1150 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1151 	    ro && (rt = ro->ro_rt) &&
   1152 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
   1153 		u_long i = 0;
   1154 
   1155 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1156 			i = tp->t_srtt *
   1157 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1158 			if (rt->rt_rmx.rmx_rtt && i)
   1159 				/*
   1160 				 * filter this update to half the old & half
   1161 				 * the new values, converting scale.
   1162 				 * See route.h and tcp_var.h for a
   1163 				 * description of the scaling constants.
   1164 				 */
   1165 				rt->rt_rmx.rmx_rtt =
   1166 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1167 			else
   1168 				rt->rt_rmx.rmx_rtt = i;
   1169 		}
   1170 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1171 			i = tp->t_rttvar *
   1172 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1173 			if (rt->rt_rmx.rmx_rttvar && i)
   1174 				rt->rt_rmx.rmx_rttvar =
   1175 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1176 			else
   1177 				rt->rt_rmx.rmx_rttvar = i;
   1178 		}
   1179 		/*
   1180 		 * update the pipelimit (ssthresh) if it has been updated
   1181 		 * already or if a pipesize was specified & the threshhold
   1182 		 * got below half the pipesize.  I.e., wait for bad news
   1183 		 * before we start updating, then update on both good
   1184 		 * and bad news.
   1185 		 */
   1186 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1187 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1188 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1189 			/*
   1190 			 * convert the limit from user data bytes to
   1191 			 * packets then to packet data bytes.
   1192 			 */
   1193 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1194 			if (i < 2)
   1195 				i = 2;
   1196 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1197 			if (rt->rt_rmx.rmx_ssthresh)
   1198 				rt->rt_rmx.rmx_ssthresh =
   1199 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1200 			else
   1201 				rt->rt_rmx.rmx_ssthresh = i;
   1202 		}
   1203 	}
   1204 #endif /* RTV_RTT */
   1205 	/* free the reassembly queue, if any */
   1206 	TCP_REASS_LOCK(tp);
   1207 	(void) tcp_freeq(tp);
   1208 	TCP_REASS_UNLOCK(tp);
   1209 
   1210 	/* free the SACK holes list. */
   1211 	tcp_free_sackholes(tp);
   1212 
   1213 	tcp_canceltimers(tp);
   1214 	TCP_CLEAR_DELACK(tp);
   1215 	syn_cache_cleanup(tp);
   1216 
   1217 	if (tp->t_template) {
   1218 		m_free(tp->t_template);
   1219 		tp->t_template = NULL;
   1220 	}
   1221 	if (tcp_timers_invoking(tp))
   1222 		tp->t_flags |= TF_DEAD;
   1223 	else
   1224 		pool_put(&tcpcb_pool, tp);
   1225 
   1226 	if (inp) {
   1227 		inp->inp_ppcb = 0;
   1228 		soisdisconnected(so);
   1229 		in_pcbdetach(inp);
   1230 	}
   1231 #ifdef INET6
   1232 	else if (in6p) {
   1233 		in6p->in6p_ppcb = 0;
   1234 		soisdisconnected(so);
   1235 		in6_pcbdetach(in6p);
   1236 	}
   1237 #endif
   1238 	tcpstat.tcps_closed++;
   1239 	return ((struct tcpcb *)0);
   1240 }
   1241 
   1242 int
   1243 tcp_freeq(tp)
   1244 	struct tcpcb *tp;
   1245 {
   1246 	struct ipqent *qe;
   1247 	int rv = 0;
   1248 #ifdef TCPREASS_DEBUG
   1249 	int i = 0;
   1250 #endif
   1251 
   1252 	TCP_REASS_LOCK_CHECK(tp);
   1253 
   1254 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1255 #ifdef TCPREASS_DEBUG
   1256 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1257 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1258 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1259 #endif
   1260 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1261 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1262 		m_freem(qe->ipqe_m);
   1263 		tcpipqent_free(qe);
   1264 		rv = 1;
   1265 	}
   1266 	tp->t_segqlen = 0;
   1267 	KASSERT(TAILQ_EMPTY(&tp->timeq));
   1268 	return (rv);
   1269 }
   1270 
   1271 /*
   1272  * Protocol drain routine.  Called when memory is in short supply.
   1273  */
   1274 void
   1275 tcp_drain(void)
   1276 {
   1277 	struct inpcb_hdr *inph;
   1278 	struct tcpcb *tp;
   1279 
   1280 	/*
   1281 	 * Free the sequence queue of all TCP connections.
   1282 	 */
   1283 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
   1284 		switch (inph->inph_af) {
   1285 		case AF_INET:
   1286 			tp = intotcpcb((struct inpcb *)inph);
   1287 			break;
   1288 #ifdef INET6
   1289 		case AF_INET6:
   1290 			tp = in6totcpcb((struct in6pcb *)inph);
   1291 			break;
   1292 #endif
   1293 		default:
   1294 			tp = NULL;
   1295 			break;
   1296 		}
   1297 		if (tp != NULL) {
   1298 			/*
   1299 			 * We may be called from a device's interrupt
   1300 			 * context.  If the tcpcb is already busy,
   1301 			 * just bail out now.
   1302 			 */
   1303 			if (tcp_reass_lock_try(tp) == 0)
   1304 				continue;
   1305 			if (tcp_freeq(tp))
   1306 				tcpstat.tcps_connsdrained++;
   1307 			TCP_REASS_UNLOCK(tp);
   1308 		}
   1309 	}
   1310 }
   1311 
   1312 /*
   1313  * Notify a tcp user of an asynchronous error;
   1314  * store error as soft error, but wake up user
   1315  * (for now, won't do anything until can select for soft error).
   1316  */
   1317 void
   1318 tcp_notify(struct inpcb *inp, int error)
   1319 {
   1320 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1321 	struct socket *so = inp->inp_socket;
   1322 
   1323 	/*
   1324 	 * Ignore some errors if we are hooked up.
   1325 	 * If connection hasn't completed, has retransmitted several times,
   1326 	 * and receives a second error, give up now.  This is better
   1327 	 * than waiting a long time to establish a connection that
   1328 	 * can never complete.
   1329 	 */
   1330 	if (tp->t_state == TCPS_ESTABLISHED &&
   1331 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1332 	      error == EHOSTDOWN)) {
   1333 		return;
   1334 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1335 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1336 		so->so_error = error;
   1337 	else
   1338 		tp->t_softerror = error;
   1339 	wakeup((caddr_t) &so->so_timeo);
   1340 	sorwakeup(so);
   1341 	sowwakeup(so);
   1342 }
   1343 
   1344 #ifdef INET6
   1345 void
   1346 tcp6_notify(struct in6pcb *in6p, int error)
   1347 {
   1348 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1349 	struct socket *so = in6p->in6p_socket;
   1350 
   1351 	/*
   1352 	 * Ignore some errors if we are hooked up.
   1353 	 * If connection hasn't completed, has retransmitted several times,
   1354 	 * and receives a second error, give up now.  This is better
   1355 	 * than waiting a long time to establish a connection that
   1356 	 * can never complete.
   1357 	 */
   1358 	if (tp->t_state == TCPS_ESTABLISHED &&
   1359 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1360 	      error == EHOSTDOWN)) {
   1361 		return;
   1362 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1363 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1364 		so->so_error = error;
   1365 	else
   1366 		tp->t_softerror = error;
   1367 	wakeup((caddr_t) &so->so_timeo);
   1368 	sorwakeup(so);
   1369 	sowwakeup(so);
   1370 }
   1371 #endif
   1372 
   1373 #ifdef INET6
   1374 void
   1375 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
   1376 {
   1377 	struct tcphdr th;
   1378 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
   1379 	int nmatch;
   1380 	struct ip6_hdr *ip6;
   1381 	const struct sockaddr_in6 *sa6_src = NULL;
   1382 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
   1383 	struct mbuf *m;
   1384 	int off;
   1385 
   1386 	if (sa->sa_family != AF_INET6 ||
   1387 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1388 		return;
   1389 	if ((unsigned)cmd >= PRC_NCMDS)
   1390 		return;
   1391 	else if (cmd == PRC_QUENCH) {
   1392 		/*
   1393 		 * Don't honor ICMP Source Quench messages meant for
   1394 		 * TCP connections.
   1395 		 */
   1396 		return;
   1397 	} else if (PRC_IS_REDIRECT(cmd))
   1398 		notify = in6_rtchange, d = NULL;
   1399 	else if (cmd == PRC_MSGSIZE)
   1400 		; /* special code is present, see below */
   1401 	else if (cmd == PRC_HOSTDEAD)
   1402 		d = NULL;
   1403 	else if (inet6ctlerrmap[cmd] == 0)
   1404 		return;
   1405 
   1406 	/* if the parameter is from icmp6, decode it. */
   1407 	if (d != NULL) {
   1408 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1409 		m = ip6cp->ip6c_m;
   1410 		ip6 = ip6cp->ip6c_ip6;
   1411 		off = ip6cp->ip6c_off;
   1412 		sa6_src = ip6cp->ip6c_src;
   1413 	} else {
   1414 		m = NULL;
   1415 		ip6 = NULL;
   1416 		sa6_src = &sa6_any;
   1417 		off = 0;
   1418 	}
   1419 
   1420 	if (ip6) {
   1421 		/*
   1422 		 * XXX: We assume that when ip6 is non NULL,
   1423 		 * M and OFF are valid.
   1424 		 */
   1425 
   1426 		/* check if we can safely examine src and dst ports */
   1427 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1428 			if (cmd == PRC_MSGSIZE)
   1429 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1430 			return;
   1431 		}
   1432 
   1433 		bzero(&th, sizeof(th));
   1434 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
   1435 
   1436 		if (cmd == PRC_MSGSIZE) {
   1437 			int valid = 0;
   1438 
   1439 			/*
   1440 			 * Check to see if we have a valid TCP connection
   1441 			 * corresponding to the address in the ICMPv6 message
   1442 			 * payload.
   1443 			 */
   1444 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
   1445 			    th.th_dport, (const struct in6_addr *)&sa6_src->sin6_addr,
   1446 			    th.th_sport, 0))
   1447 				valid++;
   1448 
   1449 			/*
   1450 			 * Depending on the value of "valid" and routing table
   1451 			 * size (mtudisc_{hi,lo}wat), we will:
   1452 			 * - recalcurate the new MTU and create the
   1453 			 *   corresponding routing entry, or
   1454 			 * - ignore the MTU change notification.
   1455 			 */
   1456 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1457 
   1458 			/*
   1459 			 * no need to call in6_pcbnotify, it should have been
   1460 			 * called via callback if necessary
   1461 			 */
   1462 			return;
   1463 		}
   1464 
   1465 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
   1466 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1467 		if (nmatch == 0 && syn_cache_count &&
   1468 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1469 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1470 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1471 			syn_cache_unreach((const struct sockaddr *)sa6_src,
   1472 					  sa, &th);
   1473 	} else {
   1474 		(void) in6_pcbnotify(&tcbtable, sa, 0,
   1475 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
   1476 	}
   1477 }
   1478 #endif
   1479 
   1480 #ifdef INET
   1481 /* assumes that ip header and tcp header are contiguous on mbuf */
   1482 void *
   1483 tcp_ctlinput(int cmd, struct sockaddr *sa, void *v)
   1484 {
   1485 	struct ip *ip = v;
   1486 	struct tcphdr *th;
   1487 	struct icmp *icp;
   1488 	extern const int inetctlerrmap[];
   1489 	void (*notify)(struct inpcb *, int) = tcp_notify;
   1490 	int errno;
   1491 	int nmatch;
   1492 	struct tcpcb *tp;
   1493 	u_int mtu;
   1494 	tcp_seq seq;
   1495 	struct inpcb *inp;
   1496 #ifdef INET6
   1497 	struct in6pcb *in6p;
   1498 	struct in6_addr src6, dst6;
   1499 #endif
   1500 
   1501 	if (sa->sa_family != AF_INET ||
   1502 	    sa->sa_len != sizeof(struct sockaddr_in))
   1503 		return NULL;
   1504 	if ((unsigned)cmd >= PRC_NCMDS)
   1505 		return NULL;
   1506 	errno = inetctlerrmap[cmd];
   1507 	if (cmd == PRC_QUENCH)
   1508 		/*
   1509 		 * Don't honor ICMP Source Quench messages meant for
   1510 		 * TCP connections.
   1511 		 */
   1512 		return NULL;
   1513 	else if (PRC_IS_REDIRECT(cmd))
   1514 		notify = in_rtchange, ip = 0;
   1515 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1516 		/*
   1517 		 * Check to see if we have a valid TCP connection
   1518 		 * corresponding to the address in the ICMP message
   1519 		 * payload.
   1520 		 *
   1521 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1522 		 */
   1523 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1524 #ifdef INET6
   1525 		memset(&src6, 0, sizeof(src6));
   1526 		memset(&dst6, 0, sizeof(dst6));
   1527 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1528 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1529 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1530 #endif
   1531 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
   1532 		    th->th_dport, ip->ip_src, th->th_sport)) != NULL)
   1533 #ifdef INET6
   1534 			in6p = NULL;
   1535 #else
   1536 			;
   1537 #endif
   1538 #ifdef INET6
   1539 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
   1540 		    th->th_dport, &src6, th->th_sport, 0)) != NULL)
   1541 			;
   1542 #endif
   1543 		else
   1544 			return NULL;
   1545 
   1546 		/*
   1547 		 * Now that we've validated that we are actually communicating
   1548 		 * with the host indicated in the ICMP message, locate the
   1549 		 * ICMP header, recalculate the new MTU, and create the
   1550 		 * corresponding routing entry.
   1551 		 */
   1552 		icp = (struct icmp *)((caddr_t)ip -
   1553 		    offsetof(struct icmp, icmp_ip));
   1554 		if (inp) {
   1555 			if ((tp = intotcpcb(inp)) == NULL)
   1556 				return NULL;
   1557 		}
   1558 #ifdef INET6
   1559 		else if (in6p) {
   1560 			if ((tp = in6totcpcb(in6p)) == NULL)
   1561 				return NULL;
   1562 		}
   1563 #endif
   1564 		else
   1565 			return NULL;
   1566 		seq = ntohl(th->th_seq);
   1567 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
   1568 			return NULL;
   1569 		/*
   1570 		 * If the ICMP message advertises a Next-Hop MTU
   1571 		 * equal or larger than the maximum packet size we have
   1572 		 * ever sent, drop the message.
   1573 		 */
   1574 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
   1575 		if (mtu >= tp->t_pmtud_mtu_sent)
   1576 			return NULL;
   1577 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
   1578 			/*
   1579 			 * Calculate new MTU, and create corresponding
   1580 			 * route (traditional PMTUD).
   1581 			 */
   1582 			tp->t_flags &= ~TF_PMTUD_PEND;
   1583 			icmp_mtudisc(icp, ip->ip_dst);
   1584 		} else {
   1585 			/*
   1586 			 * Record the information got in the ICMP
   1587 			 * message; act on it later.
   1588 			 * If we had already recorded an ICMP message,
   1589 			 * replace the old one only if the new message
   1590 			 * refers to an older TCP segment
   1591 			 */
   1592 			if (tp->t_flags & TF_PMTUD_PEND) {
   1593 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
   1594 					return NULL;
   1595 			} else
   1596 				tp->t_flags |= TF_PMTUD_PEND;
   1597 			tp->t_pmtud_th_seq = seq;
   1598 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
   1599 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
   1600 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
   1601 		}
   1602 		return NULL;
   1603 	} else if (cmd == PRC_HOSTDEAD)
   1604 		ip = 0;
   1605 	else if (errno == 0)
   1606 		return NULL;
   1607 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1608 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1609 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
   1610 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1611 		if (nmatch == 0 && syn_cache_count &&
   1612 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1613 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1614 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1615 			struct sockaddr_in sin;
   1616 			bzero(&sin, sizeof(sin));
   1617 			sin.sin_len = sizeof(sin);
   1618 			sin.sin_family = AF_INET;
   1619 			sin.sin_port = th->th_sport;
   1620 			sin.sin_addr = ip->ip_src;
   1621 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1622 		}
   1623 
   1624 		/* XXX mapped address case */
   1625 	} else
   1626 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
   1627 		    notify);
   1628 	return NULL;
   1629 }
   1630 
   1631 /*
   1632  * When a source quench is received, we are being notified of congestion.
   1633  * Close the congestion window down to the Loss Window (one segment).
   1634  * We will gradually open it again as we proceed.
   1635  */
   1636 void
   1637 tcp_quench(struct inpcb *inp, int errno)
   1638 {
   1639 	struct tcpcb *tp = intotcpcb(inp);
   1640 
   1641 	if (tp)
   1642 		tp->snd_cwnd = tp->t_segsz;
   1643 }
   1644 #endif
   1645 
   1646 #ifdef INET6
   1647 void
   1648 tcp6_quench(struct in6pcb *in6p, int errno)
   1649 {
   1650 	struct tcpcb *tp = in6totcpcb(in6p);
   1651 
   1652 	if (tp)
   1653 		tp->snd_cwnd = tp->t_segsz;
   1654 }
   1655 #endif
   1656 
   1657 #ifdef INET
   1658 /*
   1659  * Path MTU Discovery handlers.
   1660  */
   1661 void
   1662 tcp_mtudisc_callback(struct in_addr faddr)
   1663 {
   1664 #ifdef INET6
   1665 	struct in6_addr in6;
   1666 #endif
   1667 
   1668 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1669 #ifdef INET6
   1670 	memset(&in6, 0, sizeof(in6));
   1671 	in6.s6_addr16[5] = 0xffff;
   1672 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1673 	tcp6_mtudisc_callback(&in6);
   1674 #endif
   1675 }
   1676 
   1677 /*
   1678  * On receipt of path MTU corrections, flush old route and replace it
   1679  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1680  * that all packets will be received.
   1681  */
   1682 void
   1683 tcp_mtudisc(struct inpcb *inp, int errno)
   1684 {
   1685 	struct tcpcb *tp = intotcpcb(inp);
   1686 	struct rtentry *rt = in_pcbrtentry(inp);
   1687 
   1688 	if (tp != 0) {
   1689 		if (rt != 0) {
   1690 			/*
   1691 			 * If this was not a host route, remove and realloc.
   1692 			 */
   1693 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1694 				in_rtchange(inp, errno);
   1695 				if ((rt = in_pcbrtentry(inp)) == 0)
   1696 					return;
   1697 			}
   1698 
   1699 			/*
   1700 			 * Slow start out of the error condition.  We
   1701 			 * use the MTU because we know it's smaller
   1702 			 * than the previously transmitted segment.
   1703 			 *
   1704 			 * Note: This is more conservative than the
   1705 			 * suggestion in draft-floyd-incr-init-win-03.
   1706 			 */
   1707 			if (rt->rt_rmx.rmx_mtu != 0)
   1708 				tp->snd_cwnd =
   1709 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1710 				    rt->rt_rmx.rmx_mtu);
   1711 		}
   1712 
   1713 		/*
   1714 		 * Resend unacknowledged packets.
   1715 		 */
   1716 		tp->snd_nxt = tp->snd_una;
   1717 		tcp_output(tp);
   1718 	}
   1719 }
   1720 #endif
   1721 
   1722 #ifdef INET6
   1723 /*
   1724  * Path MTU Discovery handlers.
   1725  */
   1726 void
   1727 tcp6_mtudisc_callback(struct in6_addr *faddr)
   1728 {
   1729 	struct sockaddr_in6 sin6;
   1730 
   1731 	bzero(&sin6, sizeof(sin6));
   1732 	sin6.sin6_family = AF_INET6;
   1733 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1734 	sin6.sin6_addr = *faddr;
   1735 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
   1736 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1737 }
   1738 
   1739 void
   1740 tcp6_mtudisc(struct in6pcb *in6p, int errno)
   1741 {
   1742 	struct tcpcb *tp = in6totcpcb(in6p);
   1743 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1744 
   1745 	if (tp != 0) {
   1746 		if (rt != 0) {
   1747 			/*
   1748 			 * If this was not a host route, remove and realloc.
   1749 			 */
   1750 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1751 				in6_rtchange(in6p, errno);
   1752 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1753 					return;
   1754 			}
   1755 
   1756 			/*
   1757 			 * Slow start out of the error condition.  We
   1758 			 * use the MTU because we know it's smaller
   1759 			 * than the previously transmitted segment.
   1760 			 *
   1761 			 * Note: This is more conservative than the
   1762 			 * suggestion in draft-floyd-incr-init-win-03.
   1763 			 */
   1764 			if (rt->rt_rmx.rmx_mtu != 0)
   1765 				tp->snd_cwnd =
   1766 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1767 				    rt->rt_rmx.rmx_mtu);
   1768 		}
   1769 
   1770 		/*
   1771 		 * Resend unacknowledged packets.
   1772 		 */
   1773 		tp->snd_nxt = tp->snd_una;
   1774 		tcp_output(tp);
   1775 	}
   1776 }
   1777 #endif /* INET6 */
   1778 
   1779 /*
   1780  * Compute the MSS to advertise to the peer.  Called only during
   1781  * the 3-way handshake.  If we are the server (peer initiated
   1782  * connection), we are called with a pointer to the interface
   1783  * on which the SYN packet arrived.  If we are the client (we
   1784  * initiated connection), we are called with a pointer to the
   1785  * interface out which this connection should go.
   1786  *
   1787  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1788  * header size from MSS advertisement.  MSS option must hold the maximum
   1789  * segment size we can accept, so it must always be:
   1790  *	 max(if mtu) - ip header - tcp header
   1791  */
   1792 u_long
   1793 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
   1794 {
   1795 	extern u_long in_maxmtu;
   1796 	u_long mss = 0;
   1797 	u_long hdrsiz;
   1798 
   1799 	/*
   1800 	 * In order to avoid defeating path MTU discovery on the peer,
   1801 	 * we advertise the max MTU of all attached networks as our MSS,
   1802 	 * per RFC 1191, section 3.1.
   1803 	 *
   1804 	 * We provide the option to advertise just the MTU of
   1805 	 * the interface on which we hope this connection will
   1806 	 * be receiving.  If we are responding to a SYN, we
   1807 	 * will have a pretty good idea about this, but when
   1808 	 * initiating a connection there is a bit more doubt.
   1809 	 *
   1810 	 * We also need to ensure that loopback has a large enough
   1811 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1812 	 */
   1813 
   1814 	if (ifp != NULL)
   1815 		switch (af) {
   1816 		case AF_INET:
   1817 			mss = ifp->if_mtu;
   1818 			break;
   1819 #ifdef INET6
   1820 		case AF_INET6:
   1821 			mss = IN6_LINKMTU(ifp);
   1822 			break;
   1823 #endif
   1824 		}
   1825 
   1826 	if (tcp_mss_ifmtu == 0)
   1827 		switch (af) {
   1828 		case AF_INET:
   1829 			mss = max(in_maxmtu, mss);
   1830 			break;
   1831 #ifdef INET6
   1832 		case AF_INET6:
   1833 			mss = max(in6_maxmtu, mss);
   1834 			break;
   1835 #endif
   1836 		}
   1837 
   1838 	switch (af) {
   1839 	case AF_INET:
   1840 		hdrsiz = sizeof(struct ip);
   1841 		break;
   1842 #ifdef INET6
   1843 	case AF_INET6:
   1844 		hdrsiz = sizeof(struct ip6_hdr);
   1845 		break;
   1846 #endif
   1847 	default:
   1848 		hdrsiz = 0;
   1849 		break;
   1850 	}
   1851 	hdrsiz += sizeof(struct tcphdr);
   1852 	if (mss > hdrsiz)
   1853 		mss -= hdrsiz;
   1854 
   1855 	mss = max(tcp_mssdflt, mss);
   1856 	return (mss);
   1857 }
   1858 
   1859 /*
   1860  * Set connection variables based on the peer's advertised MSS.
   1861  * We are passed the TCPCB for the actual connection.  If we
   1862  * are the server, we are called by the compressed state engine
   1863  * when the 3-way handshake is complete.  If we are the client,
   1864  * we are called when we receive the SYN,ACK from the server.
   1865  *
   1866  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1867  * before this routine is called!
   1868  */
   1869 void
   1870 tcp_mss_from_peer(struct tcpcb *tp, int offer)
   1871 {
   1872 	struct socket *so;
   1873 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1874 	struct rtentry *rt;
   1875 #endif
   1876 	u_long bufsize;
   1877 	int mss;
   1878 
   1879 #ifdef DIAGNOSTIC
   1880 	if (tp->t_inpcb && tp->t_in6pcb)
   1881 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1882 #endif
   1883 	so = NULL;
   1884 	rt = NULL;
   1885 #ifdef INET
   1886 	if (tp->t_inpcb) {
   1887 		so = tp->t_inpcb->inp_socket;
   1888 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1889 		rt = in_pcbrtentry(tp->t_inpcb);
   1890 #endif
   1891 	}
   1892 #endif
   1893 #ifdef INET6
   1894 	if (tp->t_in6pcb) {
   1895 		so = tp->t_in6pcb->in6p_socket;
   1896 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1897 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1898 #endif
   1899 	}
   1900 #endif
   1901 
   1902 	/*
   1903 	 * As per RFC1122, use the default MSS value, unless they
   1904 	 * sent us an offer.  Do not accept offers less than 256 bytes.
   1905 	 */
   1906 	mss = tcp_mssdflt;
   1907 	if (offer)
   1908 		mss = offer;
   1909 	mss = max(mss, 256);		/* sanity */
   1910 	tp->t_peermss = mss;
   1911 	mss -= tcp_optlen(tp);
   1912 #ifdef INET
   1913 	if (tp->t_inpcb)
   1914 		mss -= ip_optlen(tp->t_inpcb);
   1915 #endif
   1916 #ifdef INET6
   1917 	if (tp->t_in6pcb)
   1918 		mss -= ip6_optlen(tp->t_in6pcb);
   1919 #endif
   1920 
   1921 	/*
   1922 	 * If there's a pipesize, change the socket buffer to that size.
   1923 	 * Make the socket buffer an integral number of MSS units.  If
   1924 	 * the MSS is larger than the socket buffer, artificially decrease
   1925 	 * the MSS.
   1926 	 */
   1927 #ifdef RTV_SPIPE
   1928 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1929 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1930 	else
   1931 #endif
   1932 	{
   1933 		KASSERT(so != NULL);
   1934 		bufsize = so->so_snd.sb_hiwat;
   1935 	}
   1936 	if (bufsize < mss)
   1937 		mss = bufsize;
   1938 	else {
   1939 		bufsize = roundup(bufsize, mss);
   1940 		if (bufsize > sb_max)
   1941 			bufsize = sb_max;
   1942 		(void) sbreserve(&so->so_snd, bufsize, so);
   1943 	}
   1944 	tp->t_segsz = mss;
   1945 
   1946 #ifdef RTV_SSTHRESH
   1947 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1948 		/*
   1949 		 * There's some sort of gateway or interface buffer
   1950 		 * limit on the path.  Use this to set the slow
   1951 		 * start threshold, but set the threshold to no less
   1952 		 * than 2 * MSS.
   1953 		 */
   1954 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1955 	}
   1956 #endif
   1957 }
   1958 
   1959 /*
   1960  * Processing necessary when a TCP connection is established.
   1961  */
   1962 void
   1963 tcp_established(struct tcpcb *tp)
   1964 {
   1965 	struct socket *so;
   1966 #ifdef RTV_RPIPE
   1967 	struct rtentry *rt;
   1968 #endif
   1969 	u_long bufsize;
   1970 
   1971 #ifdef DIAGNOSTIC
   1972 	if (tp->t_inpcb && tp->t_in6pcb)
   1973 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   1974 #endif
   1975 	so = NULL;
   1976 	rt = NULL;
   1977 #ifdef INET
   1978 	if (tp->t_inpcb) {
   1979 		so = tp->t_inpcb->inp_socket;
   1980 #if defined(RTV_RPIPE)
   1981 		rt = in_pcbrtentry(tp->t_inpcb);
   1982 #endif
   1983 	}
   1984 #endif
   1985 #ifdef INET6
   1986 	if (tp->t_in6pcb) {
   1987 		so = tp->t_in6pcb->in6p_socket;
   1988 #if defined(RTV_RPIPE)
   1989 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1990 #endif
   1991 	}
   1992 #endif
   1993 
   1994 	tp->t_state = TCPS_ESTABLISHED;
   1995 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1996 
   1997 #ifdef RTV_RPIPE
   1998 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   1999 		bufsize = rt->rt_rmx.rmx_recvpipe;
   2000 	else
   2001 #endif
   2002 	{
   2003 		KASSERT(so != NULL);
   2004 		bufsize = so->so_rcv.sb_hiwat;
   2005 	}
   2006 	if (bufsize > tp->t_ourmss) {
   2007 		bufsize = roundup(bufsize, tp->t_ourmss);
   2008 		if (bufsize > sb_max)
   2009 			bufsize = sb_max;
   2010 		(void) sbreserve(&so->so_rcv, bufsize, so);
   2011 	}
   2012 }
   2013 
   2014 /*
   2015  * Check if there's an initial rtt or rttvar.  Convert from the
   2016  * route-table units to scaled multiples of the slow timeout timer.
   2017  * Called only during the 3-way handshake.
   2018  */
   2019 void
   2020 tcp_rmx_rtt(struct tcpcb *tp)
   2021 {
   2022 #ifdef RTV_RTT
   2023 	struct rtentry *rt = NULL;
   2024 	int rtt;
   2025 
   2026 #ifdef DIAGNOSTIC
   2027 	if (tp->t_inpcb && tp->t_in6pcb)
   2028 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   2029 #endif
   2030 #ifdef INET
   2031 	if (tp->t_inpcb)
   2032 		rt = in_pcbrtentry(tp->t_inpcb);
   2033 #endif
   2034 #ifdef INET6
   2035 	if (tp->t_in6pcb)
   2036 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2037 #endif
   2038 	if (rt == NULL)
   2039 		return;
   2040 
   2041 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   2042 		/*
   2043 		 * XXX The lock bit for MTU indicates that the value
   2044 		 * is also a minimum value; this is subject to time.
   2045 		 */
   2046 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   2047 			TCPT_RANGESET(tp->t_rttmin,
   2048 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   2049 			    TCPTV_MIN, TCPTV_REXMTMAX);
   2050 		tp->t_srtt = rtt /
   2051 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   2052 		if (rt->rt_rmx.rmx_rttvar) {
   2053 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   2054 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   2055 				(TCP_RTTVAR_SHIFT + 2));
   2056 		} else {
   2057 			/* Default variation is +- 1 rtt */
   2058 			tp->t_rttvar =
   2059 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   2060 		}
   2061 		TCPT_RANGESET(tp->t_rxtcur,
   2062 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   2063 		    tp->t_rttmin, TCPTV_REXMTMAX);
   2064 	}
   2065 #endif
   2066 }
   2067 
   2068 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   2069 #if NRND > 0
   2070 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   2071 #endif
   2072 
   2073 /*
   2074  * Get a new sequence value given a tcp control block
   2075  */
   2076 tcp_seq
   2077 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   2078 {
   2079 
   2080 #ifdef INET
   2081 	if (tp->t_inpcb != NULL) {
   2082 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   2083 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   2084 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   2085 		    addin));
   2086 	}
   2087 #endif
   2088 #ifdef INET6
   2089 	if (tp->t_in6pcb != NULL) {
   2090 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   2091 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   2092 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   2093 		    addin));
   2094 	}
   2095 #endif
   2096 	/* Not possible. */
   2097 	panic("tcp_new_iss");
   2098 }
   2099 
   2100 /*
   2101  * This routine actually generates a new TCP initial sequence number.
   2102  */
   2103 tcp_seq
   2104 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2105     size_t addrsz, tcp_seq addin)
   2106 {
   2107 	tcp_seq tcp_iss;
   2108 
   2109 #if NRND > 0
   2110 	static int beenhere;
   2111 
   2112 	/*
   2113 	 * If we haven't been here before, initialize our cryptographic
   2114 	 * hash secret.
   2115 	 */
   2116 	if (beenhere == 0) {
   2117 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   2118 		    RND_EXTRACT_ANY);
   2119 		beenhere = 1;
   2120 	}
   2121 
   2122 	if (tcp_do_rfc1948) {
   2123 		MD5_CTX ctx;
   2124 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2125 
   2126 		/*
   2127 		 * Compute the base value of the ISS.  It is a hash
   2128 		 * of (saddr, sport, daddr, dport, secret).
   2129 		 */
   2130 		MD5Init(&ctx);
   2131 
   2132 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2133 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2134 
   2135 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2136 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2137 
   2138 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2139 
   2140 		MD5Final(hash, &ctx);
   2141 
   2142 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2143 
   2144 		/*
   2145 		 * Now increment our "timer", and add it in to
   2146 		 * the computed value.
   2147 		 *
   2148 		 * XXX Use `addin'?
   2149 		 * XXX TCP_ISSINCR too large to use?
   2150 		 */
   2151 		tcp_iss_seq += TCP_ISSINCR;
   2152 #ifdef TCPISS_DEBUG
   2153 		printf("ISS hash 0x%08x, ", tcp_iss);
   2154 #endif
   2155 		tcp_iss += tcp_iss_seq + addin;
   2156 #ifdef TCPISS_DEBUG
   2157 		printf("new ISS 0x%08x\n", tcp_iss);
   2158 #endif
   2159 	} else
   2160 #endif /* NRND > 0 */
   2161 	{
   2162 		/*
   2163 		 * Randomize.
   2164 		 */
   2165 #if NRND > 0
   2166 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2167 #else
   2168 		tcp_iss = arc4random();
   2169 #endif
   2170 
   2171 		/*
   2172 		 * If we were asked to add some amount to a known value,
   2173 		 * we will take a random value obtained above, mask off
   2174 		 * the upper bits, and add in the known value.  We also
   2175 		 * add in a constant to ensure that we are at least a
   2176 		 * certain distance from the original value.
   2177 		 *
   2178 		 * This is used when an old connection is in timed wait
   2179 		 * and we have a new one coming in, for instance.
   2180 		 */
   2181 		if (addin != 0) {
   2182 #ifdef TCPISS_DEBUG
   2183 			printf("Random %08x, ", tcp_iss);
   2184 #endif
   2185 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2186 			tcp_iss += addin + TCP_ISSINCR;
   2187 #ifdef TCPISS_DEBUG
   2188 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2189 #endif
   2190 		} else {
   2191 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2192 			tcp_iss += tcp_iss_seq;
   2193 			tcp_iss_seq += TCP_ISSINCR;
   2194 #ifdef TCPISS_DEBUG
   2195 			printf("ISS %08x\n", tcp_iss);
   2196 #endif
   2197 		}
   2198 	}
   2199 
   2200 	if (tcp_compat_42) {
   2201 		/*
   2202 		 * Limit it to the positive range for really old TCP
   2203 		 * implementations.
   2204 		 * Just AND off the top bit instead of checking if
   2205 		 * is set first - saves a branch 50% of the time.
   2206 		 */
   2207 		tcp_iss &= 0x7fffffff;		/* XXX */
   2208 	}
   2209 
   2210 	return (tcp_iss);
   2211 }
   2212 
   2213 #if defined(IPSEC) || defined(FAST_IPSEC)
   2214 /* compute ESP/AH header size for TCP, including outer IP header. */
   2215 size_t
   2216 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
   2217 {
   2218 	struct inpcb *inp;
   2219 	size_t hdrsiz;
   2220 
   2221 	/* XXX mapped addr case (tp->t_in6pcb) */
   2222 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2223 		return 0;
   2224 	switch (tp->t_family) {
   2225 	case AF_INET:
   2226 		/* XXX: should use currect direction. */
   2227 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2228 		break;
   2229 	default:
   2230 		hdrsiz = 0;
   2231 		break;
   2232 	}
   2233 
   2234 	return hdrsiz;
   2235 }
   2236 
   2237 #ifdef INET6
   2238 size_t
   2239 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
   2240 {
   2241 	struct in6pcb *in6p;
   2242 	size_t hdrsiz;
   2243 
   2244 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2245 		return 0;
   2246 	switch (tp->t_family) {
   2247 	case AF_INET6:
   2248 		/* XXX: should use currect direction. */
   2249 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2250 		break;
   2251 	case AF_INET:
   2252 		/* mapped address case - tricky */
   2253 	default:
   2254 		hdrsiz = 0;
   2255 		break;
   2256 	}
   2257 
   2258 	return hdrsiz;
   2259 }
   2260 #endif
   2261 #endif /*IPSEC*/
   2262 
   2263 /*
   2264  * Determine the length of the TCP options for this connection.
   2265  *
   2266  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2267  *       all of the space?  Otherwise we can't exactly be incrementing
   2268  *       cwnd by an amount that varies depending on the amount we last
   2269  *       had to SACK!
   2270  */
   2271 
   2272 u_int
   2273 tcp_optlen(struct tcpcb *tp)
   2274 {
   2275 	u_int optlen;
   2276 
   2277 	optlen = 0;
   2278 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2279 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2280 		optlen += TCPOLEN_TSTAMP_APPA;
   2281 
   2282 #ifdef TCP_SIGNATURE
   2283 #if defined(INET6) && defined(FAST_IPSEC)
   2284 	if (tp->t_family == AF_INET)
   2285 #endif
   2286 	if (tp->t_flags & TF_SIGNATURE)
   2287 		optlen += TCPOLEN_SIGNATURE + 2;
   2288 #endif /* TCP_SIGNATURE */
   2289 
   2290 	return optlen;
   2291 }
   2292 
   2293 u_int
   2294 tcp_hdrsz(struct tcpcb *tp)
   2295 {
   2296 	u_int hlen;
   2297 
   2298 	switch (tp->t_family) {
   2299 #ifdef INET6
   2300 	case AF_INET6:
   2301 		hlen = sizeof(struct ip6_hdr);
   2302 		break;
   2303 #endif
   2304 	case AF_INET:
   2305 		hlen = sizeof(struct ip);
   2306 		break;
   2307 	default:
   2308 		hlen = 0;
   2309 		break;
   2310 	}
   2311 	hlen += sizeof(struct tcphdr);
   2312 
   2313 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
   2314 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
   2315 		hlen += TCPOLEN_TSTAMP_APPA;
   2316 #ifdef TCP_SIGNATURE
   2317 	if (tp->t_flags & TF_SIGNATURE)
   2318 		hlen += TCPOLEN_SIGLEN;
   2319 #endif
   2320 	return hlen;
   2321 }
   2322