tcp_subr.c revision 1.198 1 /* $NetBSD: tcp_subr.c,v 1.198 2006/04/15 02:30:39 christos Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.198 2006/04/15 02:30:39 christos Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcpip.h>
155
156 #ifdef IPSEC
157 #include <netinet6/ipsec.h>
158 #include <netkey/key.h>
159 #endif /*IPSEC*/
160
161 #ifdef FAST_IPSEC
162 #include <netipsec/ipsec.h>
163 #include <netipsec/xform.h>
164 #ifdef INET6
165 #include <netipsec/ipsec6.h>
166 #endif
167 #include <netipsec/key.h>
168 #endif /* FAST_IPSEC*/
169
170
171 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
172 struct tcpstat tcpstat; /* tcp statistics */
173 u_int32_t tcp_now; /* for RFC 1323 timestamps */
174
175 /* patchable/settable parameters for tcp */
176 int tcp_mssdflt = TCP_MSS;
177 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
178 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
179 #if NRND > 0
180 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
181 #endif
182 int tcp_do_sack = 1; /* selective acknowledgement */
183 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
184 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
185 int tcp_do_newreno = 1; /* Use the New Reno algorithms */
186 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
187 #ifndef TCP_INIT_WIN
188 #define TCP_INIT_WIN 0 /* initial slow start window */
189 #endif
190 #ifndef TCP_INIT_WIN_LOCAL
191 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
192 #endif
193 int tcp_init_win = TCP_INIT_WIN;
194 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
195 int tcp_mss_ifmtu = 0;
196 #ifdef TCP_COMPAT_42
197 int tcp_compat_42 = 1;
198 #else
199 int tcp_compat_42 = 0;
200 #endif
201 int tcp_rst_ppslim = 100; /* 100pps */
202 int tcp_ackdrop_ppslim = 100; /* 100pps */
203 int tcp_do_loopback_cksum = 0;
204 int tcp_sack_tp_maxholes = 32;
205 int tcp_sack_globalmaxholes = 1024;
206 int tcp_sack_globalholes = 0;
207
208
209 /* tcb hash */
210 #ifndef TCBHASHSIZE
211 #define TCBHASHSIZE 128
212 #endif
213 int tcbhashsize = TCBHASHSIZE;
214
215 /* syn hash parameters */
216 #define TCP_SYN_HASH_SIZE 293
217 #define TCP_SYN_BUCKET_SIZE 35
218 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
219 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
220 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
221 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
222
223 int tcp_freeq(struct tcpcb *);
224
225 #ifdef INET
226 void tcp_mtudisc_callback(struct in_addr);
227 #endif
228 #ifdef INET6
229 void tcp6_mtudisc_callback(struct in6_addr *);
230 #endif
231
232 #ifdef INET6
233 void tcp6_mtudisc(struct in6pcb *, int);
234 #endif
235
236 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
237
238 #ifdef TCP_CSUM_COUNTERS
239 #include <sys/device.h>
240
241 #if defined(INET)
242 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
243 NULL, "tcp", "hwcsum bad");
244 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
245 NULL, "tcp", "hwcsum ok");
246 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
247 NULL, "tcp", "hwcsum data");
248 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
249 NULL, "tcp", "swcsum");
250
251 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
252 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
253 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
254 EVCNT_ATTACH_STATIC(tcp_swcsum);
255 #endif /* defined(INET) */
256
257 #if defined(INET6)
258 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
259 NULL, "tcp6", "hwcsum bad");
260 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
261 NULL, "tcp6", "hwcsum ok");
262 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
263 NULL, "tcp6", "hwcsum data");
264 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
265 NULL, "tcp6", "swcsum");
266
267 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
268 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
269 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
270 EVCNT_ATTACH_STATIC(tcp6_swcsum);
271 #endif /* defined(INET6) */
272 #endif /* TCP_CSUM_COUNTERS */
273
274
275 #ifdef TCP_OUTPUT_COUNTERS
276 #include <sys/device.h>
277
278 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
279 NULL, "tcp", "output big header");
280 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
281 NULL, "tcp", "output predict hit");
282 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
283 NULL, "tcp", "output predict miss");
284 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
285 NULL, "tcp", "output copy small");
286 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
287 NULL, "tcp", "output copy big");
288 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
289 NULL, "tcp", "output reference big");
290
291 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
292 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
293 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
294 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
295 EVCNT_ATTACH_STATIC(tcp_output_copybig);
296 EVCNT_ATTACH_STATIC(tcp_output_refbig);
297
298 #endif /* TCP_OUTPUT_COUNTERS */
299
300 #ifdef TCP_REASS_COUNTERS
301 #include <sys/device.h>
302
303 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
304 NULL, "tcp_reass", "calls");
305 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
306 &tcp_reass_, "tcp_reass", "insert into empty queue");
307 struct evcnt tcp_reass_iteration[8] = {
308 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
309 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
310 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
311 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
312 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
313 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
315 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
316 };
317 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
318 &tcp_reass_, "tcp_reass", "prepend to first");
319 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
320 &tcp_reass_, "tcp_reass", "prepend");
321 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
322 &tcp_reass_, "tcp_reass", "insert");
323 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
324 &tcp_reass_, "tcp_reass", "insert at tail");
325 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
326 &tcp_reass_, "tcp_reass", "append");
327 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
328 &tcp_reass_, "tcp_reass", "append to tail fragment");
329 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
330 &tcp_reass_, "tcp_reass", "overlap at end");
331 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
332 &tcp_reass_, "tcp_reass", "overlap at start");
333 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
334 &tcp_reass_, "tcp_reass", "duplicate segment");
335 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
336 &tcp_reass_, "tcp_reass", "duplicate fragment");
337
338 EVCNT_ATTACH_STATIC(tcp_reass_);
339 EVCNT_ATTACH_STATIC(tcp_reass_empty);
340 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
341 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
342 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
343 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
344 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
348 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
349 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
350 EVCNT_ATTACH_STATIC(tcp_reass_insert);
351 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
352 EVCNT_ATTACH_STATIC(tcp_reass_append);
353 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
354 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
355 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
356 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
357 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
358
359 #endif /* TCP_REASS_COUNTERS */
360
361 #ifdef MBUFTRACE
362 struct mowner tcp_mowner = { "tcp" };
363 struct mowner tcp_rx_mowner = { "tcp", "rx" };
364 struct mowner tcp_tx_mowner = { "tcp", "tx" };
365 #endif
366
367 /*
368 * Tcp initialization
369 */
370 void
371 tcp_init(void)
372 {
373 int hlen;
374
375 /* Initialize the TCPCB template. */
376 tcp_tcpcb_template();
377
378 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
379
380 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
381 #ifdef INET6
382 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
383 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
384 #endif
385 if (max_protohdr < hlen)
386 max_protohdr = hlen;
387 if (max_linkhdr + hlen > MHLEN)
388 panic("tcp_init");
389
390 #ifdef INET
391 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
392 #endif
393 #ifdef INET6
394 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
395 #endif
396
397 /* Initialize timer state. */
398 tcp_timer_init();
399
400 /* Initialize the compressed state engine. */
401 syn_cache_init();
402
403 MOWNER_ATTACH(&tcp_tx_mowner);
404 MOWNER_ATTACH(&tcp_rx_mowner);
405 MOWNER_ATTACH(&tcp_mowner);
406 }
407
408 /*
409 * Create template to be used to send tcp packets on a connection.
410 * Call after host entry created, allocates an mbuf and fills
411 * in a skeletal tcp/ip header, minimizing the amount of work
412 * necessary when the connection is used.
413 */
414 struct mbuf *
415 tcp_template(struct tcpcb *tp)
416 {
417 struct inpcb *inp = tp->t_inpcb;
418 #ifdef INET6
419 struct in6pcb *in6p = tp->t_in6pcb;
420 #endif
421 struct tcphdr *n;
422 struct mbuf *m;
423 int hlen;
424
425 switch (tp->t_family) {
426 case AF_INET:
427 hlen = sizeof(struct ip);
428 if (inp)
429 break;
430 #ifdef INET6
431 if (in6p) {
432 /* mapped addr case */
433 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
434 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
435 break;
436 }
437 #endif
438 return NULL; /*EINVAL*/
439 #ifdef INET6
440 case AF_INET6:
441 hlen = sizeof(struct ip6_hdr);
442 if (in6p) {
443 /* more sainty check? */
444 break;
445 }
446 return NULL; /*EINVAL*/
447 #endif
448 default:
449 hlen = 0; /*pacify gcc*/
450 return NULL; /*EAFNOSUPPORT*/
451 }
452 #ifdef DIAGNOSTIC
453 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
454 panic("mclbytes too small for t_template");
455 #endif
456 m = tp->t_template;
457 if (m && m->m_len == hlen + sizeof(struct tcphdr))
458 ;
459 else {
460 if (m)
461 m_freem(m);
462 m = tp->t_template = NULL;
463 MGETHDR(m, M_DONTWAIT, MT_HEADER);
464 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
465 MCLGET(m, M_DONTWAIT);
466 if ((m->m_flags & M_EXT) == 0) {
467 m_free(m);
468 m = NULL;
469 }
470 }
471 if (m == NULL)
472 return NULL;
473 MCLAIM(m, &tcp_mowner);
474 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
475 }
476
477 bzero(mtod(m, caddr_t), m->m_len);
478
479 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
480
481 switch (tp->t_family) {
482 case AF_INET:
483 {
484 struct ipovly *ipov;
485 mtod(m, struct ip *)->ip_v = 4;
486 mtod(m, struct ip *)->ip_hl = hlen >> 2;
487 ipov = mtod(m, struct ipovly *);
488 ipov->ih_pr = IPPROTO_TCP;
489 ipov->ih_len = htons(sizeof(struct tcphdr));
490 if (inp) {
491 ipov->ih_src = inp->inp_laddr;
492 ipov->ih_dst = inp->inp_faddr;
493 }
494 #ifdef INET6
495 else if (in6p) {
496 /* mapped addr case */
497 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
498 sizeof(ipov->ih_src));
499 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
500 sizeof(ipov->ih_dst));
501 }
502 #endif
503 /*
504 * Compute the pseudo-header portion of the checksum
505 * now. We incrementally add in the TCP option and
506 * payload lengths later, and then compute the TCP
507 * checksum right before the packet is sent off onto
508 * the wire.
509 */
510 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
511 ipov->ih_dst.s_addr,
512 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
513 break;
514 }
515 #ifdef INET6
516 case AF_INET6:
517 {
518 struct ip6_hdr *ip6;
519 mtod(m, struct ip *)->ip_v = 6;
520 ip6 = mtod(m, struct ip6_hdr *);
521 ip6->ip6_nxt = IPPROTO_TCP;
522 ip6->ip6_plen = htons(sizeof(struct tcphdr));
523 ip6->ip6_src = in6p->in6p_laddr;
524 ip6->ip6_dst = in6p->in6p_faddr;
525 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
526 if (ip6_auto_flowlabel) {
527 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
528 ip6->ip6_flow |=
529 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
530 }
531 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
532 ip6->ip6_vfc |= IPV6_VERSION;
533
534 /*
535 * Compute the pseudo-header portion of the checksum
536 * now. We incrementally add in the TCP option and
537 * payload lengths later, and then compute the TCP
538 * checksum right before the packet is sent off onto
539 * the wire.
540 */
541 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
542 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
543 htonl(IPPROTO_TCP));
544 break;
545 }
546 #endif
547 }
548 if (inp) {
549 n->th_sport = inp->inp_lport;
550 n->th_dport = inp->inp_fport;
551 }
552 #ifdef INET6
553 else if (in6p) {
554 n->th_sport = in6p->in6p_lport;
555 n->th_dport = in6p->in6p_fport;
556 }
557 #endif
558 n->th_seq = 0;
559 n->th_ack = 0;
560 n->th_x2 = 0;
561 n->th_off = 5;
562 n->th_flags = 0;
563 n->th_win = 0;
564 n->th_urp = 0;
565 return (m);
566 }
567
568 /*
569 * Send a single message to the TCP at address specified by
570 * the given TCP/IP header. If m == 0, then we make a copy
571 * of the tcpiphdr at ti and send directly to the addressed host.
572 * This is used to force keep alive messages out using the TCP
573 * template for a connection tp->t_template. If flags are given
574 * then we send a message back to the TCP which originated the
575 * segment ti, and discard the mbuf containing it and any other
576 * attached mbufs.
577 *
578 * In any case the ack and sequence number of the transmitted
579 * segment are as specified by the parameters.
580 */
581 int
582 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
583 struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
584 {
585 struct route *ro;
586 int error, tlen, win = 0;
587 int hlen;
588 struct ip *ip;
589 #ifdef INET6
590 struct ip6_hdr *ip6;
591 #endif
592 int family; /* family on packet, not inpcb/in6pcb! */
593 struct tcphdr *th;
594 struct socket *so;
595
596 if (tp != NULL && (flags & TH_RST) == 0) {
597 #ifdef DIAGNOSTIC
598 if (tp->t_inpcb && tp->t_in6pcb)
599 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
600 #endif
601 #ifdef INET
602 if (tp->t_inpcb)
603 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
604 #endif
605 #ifdef INET6
606 if (tp->t_in6pcb)
607 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
608 #endif
609 }
610
611 th = NULL; /* Quell uninitialized warning */
612 ip = NULL;
613 #ifdef INET6
614 ip6 = NULL;
615 #endif
616 if (m == 0) {
617 if (!template)
618 return EINVAL;
619
620 /* get family information from template */
621 switch (mtod(template, struct ip *)->ip_v) {
622 case 4:
623 family = AF_INET;
624 hlen = sizeof(struct ip);
625 break;
626 #ifdef INET6
627 case 6:
628 family = AF_INET6;
629 hlen = sizeof(struct ip6_hdr);
630 break;
631 #endif
632 default:
633 return EAFNOSUPPORT;
634 }
635
636 MGETHDR(m, M_DONTWAIT, MT_HEADER);
637 if (m) {
638 MCLAIM(m, &tcp_tx_mowner);
639 MCLGET(m, M_DONTWAIT);
640 if ((m->m_flags & M_EXT) == 0) {
641 m_free(m);
642 m = NULL;
643 }
644 }
645 if (m == NULL)
646 return (ENOBUFS);
647
648 if (tcp_compat_42)
649 tlen = 1;
650 else
651 tlen = 0;
652
653 m->m_data += max_linkhdr;
654 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
655 template->m_len);
656 switch (family) {
657 case AF_INET:
658 ip = mtod(m, struct ip *);
659 th = (struct tcphdr *)(ip + 1);
660 break;
661 #ifdef INET6
662 case AF_INET6:
663 ip6 = mtod(m, struct ip6_hdr *);
664 th = (struct tcphdr *)(ip6 + 1);
665 break;
666 #endif
667 #if 0
668 default:
669 /* noone will visit here */
670 m_freem(m);
671 return EAFNOSUPPORT;
672 #endif
673 }
674 flags = TH_ACK;
675 } else {
676
677 if ((m->m_flags & M_PKTHDR) == 0) {
678 #if 0
679 printf("non PKTHDR to tcp_respond\n");
680 #endif
681 m_freem(m);
682 return EINVAL;
683 }
684 #ifdef DIAGNOSTIC
685 if (!th0)
686 panic("th0 == NULL in tcp_respond");
687 #endif
688
689 /* get family information from m */
690 switch (mtod(m, struct ip *)->ip_v) {
691 case 4:
692 family = AF_INET;
693 hlen = sizeof(struct ip);
694 ip = mtod(m, struct ip *);
695 break;
696 #ifdef INET6
697 case 6:
698 family = AF_INET6;
699 hlen = sizeof(struct ip6_hdr);
700 ip6 = mtod(m, struct ip6_hdr *);
701 break;
702 #endif
703 default:
704 m_freem(m);
705 return EAFNOSUPPORT;
706 }
707 /* clear h/w csum flags inherited from rx packet */
708 m->m_pkthdr.csum_flags = 0;
709
710 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
711 tlen = sizeof(*th0);
712 else
713 tlen = th0->th_off << 2;
714
715 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
716 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
717 m->m_len = hlen + tlen;
718 m_freem(m->m_next);
719 m->m_next = NULL;
720 } else {
721 struct mbuf *n;
722
723 #ifdef DIAGNOSTIC
724 if (max_linkhdr + hlen + tlen > MCLBYTES) {
725 m_freem(m);
726 return EMSGSIZE;
727 }
728 #endif
729 MGETHDR(n, M_DONTWAIT, MT_HEADER);
730 if (n && max_linkhdr + hlen + tlen > MHLEN) {
731 MCLGET(n, M_DONTWAIT);
732 if ((n->m_flags & M_EXT) == 0) {
733 m_freem(n);
734 n = NULL;
735 }
736 }
737 if (!n) {
738 m_freem(m);
739 return ENOBUFS;
740 }
741
742 MCLAIM(n, &tcp_tx_mowner);
743 n->m_data += max_linkhdr;
744 n->m_len = hlen + tlen;
745 m_copyback(n, 0, hlen, mtod(m, caddr_t));
746 m_copyback(n, hlen, tlen, (caddr_t)th0);
747
748 m_freem(m);
749 m = n;
750 n = NULL;
751 }
752
753 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
754 switch (family) {
755 case AF_INET:
756 ip = mtod(m, struct ip *);
757 th = (struct tcphdr *)(ip + 1);
758 ip->ip_p = IPPROTO_TCP;
759 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
760 ip->ip_p = IPPROTO_TCP;
761 break;
762 #ifdef INET6
763 case AF_INET6:
764 ip6 = mtod(m, struct ip6_hdr *);
765 th = (struct tcphdr *)(ip6 + 1);
766 ip6->ip6_nxt = IPPROTO_TCP;
767 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
768 ip6->ip6_nxt = IPPROTO_TCP;
769 break;
770 #endif
771 #if 0
772 default:
773 /* noone will visit here */
774 m_freem(m);
775 return EAFNOSUPPORT;
776 #endif
777 }
778 xchg(th->th_dport, th->th_sport, u_int16_t);
779 #undef xchg
780 tlen = 0; /*be friendly with the following code*/
781 }
782 th->th_seq = htonl(seq);
783 th->th_ack = htonl(ack);
784 th->th_x2 = 0;
785 if ((flags & TH_SYN) == 0) {
786 if (tp)
787 win >>= tp->rcv_scale;
788 if (win > TCP_MAXWIN)
789 win = TCP_MAXWIN;
790 th->th_win = htons((u_int16_t)win);
791 th->th_off = sizeof (struct tcphdr) >> 2;
792 tlen += sizeof(*th);
793 } else
794 tlen += th->th_off << 2;
795 m->m_len = hlen + tlen;
796 m->m_pkthdr.len = hlen + tlen;
797 m->m_pkthdr.rcvif = (struct ifnet *) 0;
798 th->th_flags = flags;
799 th->th_urp = 0;
800
801 switch (family) {
802 #ifdef INET
803 case AF_INET:
804 {
805 struct ipovly *ipov = (struct ipovly *)ip;
806 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
807 ipov->ih_len = htons((u_int16_t)tlen);
808
809 th->th_sum = 0;
810 th->th_sum = in_cksum(m, hlen + tlen);
811 ip->ip_len = htons(hlen + tlen);
812 ip->ip_ttl = ip_defttl;
813 break;
814 }
815 #endif
816 #ifdef INET6
817 case AF_INET6:
818 {
819 th->th_sum = 0;
820 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
821 tlen);
822 ip6->ip6_plen = htons(tlen);
823 if (tp && tp->t_in6pcb) {
824 struct ifnet *oifp;
825 ro = (struct route *)&tp->t_in6pcb->in6p_route;
826 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
827 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
828 } else
829 ip6->ip6_hlim = ip6_defhlim;
830 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
831 if (ip6_auto_flowlabel) {
832 ip6->ip6_flow |=
833 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
834 }
835 break;
836 }
837 #endif
838 }
839
840 if (tp && tp->t_inpcb)
841 so = tp->t_inpcb->inp_socket;
842 #ifdef INET6
843 else if (tp && tp->t_in6pcb)
844 so = tp->t_in6pcb->in6p_socket;
845 #endif
846 else
847 so = NULL;
848
849 if (tp != NULL && tp->t_inpcb != NULL) {
850 ro = &tp->t_inpcb->inp_route;
851 #ifdef DIAGNOSTIC
852 if (family != AF_INET)
853 panic("tcp_respond: address family mismatch");
854 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
855 panic("tcp_respond: ip_dst %x != inp_faddr %x",
856 ntohl(ip->ip_dst.s_addr),
857 ntohl(tp->t_inpcb->inp_faddr.s_addr));
858 }
859 #endif
860 }
861 #ifdef INET6
862 else if (tp != NULL && tp->t_in6pcb != NULL) {
863 ro = (struct route *)&tp->t_in6pcb->in6p_route;
864 #ifdef DIAGNOSTIC
865 if (family == AF_INET) {
866 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
867 panic("tcp_respond: not mapped addr");
868 if (bcmp(&ip->ip_dst,
869 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
870 sizeof(ip->ip_dst)) != 0) {
871 panic("tcp_respond: ip_dst != in6p_faddr");
872 }
873 } else if (family == AF_INET6) {
874 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
875 &tp->t_in6pcb->in6p_faddr))
876 panic("tcp_respond: ip6_dst != in6p_faddr");
877 } else
878 panic("tcp_respond: address family mismatch");
879 #endif
880 }
881 #endif
882 else
883 ro = NULL;
884
885 switch (family) {
886 #ifdef INET
887 case AF_INET:
888 error = ip_output(m, NULL, ro,
889 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
890 (struct ip_moptions *)0, so);
891 break;
892 #endif
893 #ifdef INET6
894 case AF_INET6:
895 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
896 (struct ip6_moptions *)0, so, NULL);
897 break;
898 #endif
899 default:
900 error = EAFNOSUPPORT;
901 break;
902 }
903
904 return (error);
905 }
906
907 /*
908 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
909 * a bunch of members individually, we maintain this template for the
910 * static and mostly-static components of the TCPCB, and copy it into
911 * the new TCPCB instead.
912 */
913 static struct tcpcb tcpcb_template = {
914 /*
915 * If TCP_NTIMERS ever changes, we'll need to update this
916 * initializer.
917 */
918 .t_timer = {
919 CALLOUT_INITIALIZER,
920 CALLOUT_INITIALIZER,
921 CALLOUT_INITIALIZER,
922 CALLOUT_INITIALIZER,
923 },
924 .t_delack_ch = CALLOUT_INITIALIZER,
925
926 .t_srtt = TCPTV_SRTTBASE,
927 .t_rttmin = TCPTV_MIN,
928
929 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
930 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
931 .snd_numholes = 0,
932
933 .t_partialacks = -1,
934 };
935
936 /*
937 * Updates the TCPCB template whenever a parameter that would affect
938 * the template is changed.
939 */
940 void
941 tcp_tcpcb_template(void)
942 {
943 struct tcpcb *tp = &tcpcb_template;
944 int flags;
945
946 tp->t_peermss = tcp_mssdflt;
947 tp->t_ourmss = tcp_mssdflt;
948 tp->t_segsz = tcp_mssdflt;
949
950 flags = 0;
951 if (tcp_do_rfc1323 && tcp_do_win_scale)
952 flags |= TF_REQ_SCALE;
953 if (tcp_do_rfc1323 && tcp_do_timestamps)
954 flags |= TF_REQ_TSTMP;
955 tp->t_flags = flags;
956
957 /*
958 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
959 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
960 * reasonable initial retransmit time.
961 */
962 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
963 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
964 TCPTV_MIN, TCPTV_REXMTMAX);
965 }
966
967 /*
968 * Create a new TCP control block, making an
969 * empty reassembly queue and hooking it to the argument
970 * protocol control block.
971 */
972 /* family selects inpcb, or in6pcb */
973 struct tcpcb *
974 tcp_newtcpcb(int family, void *aux)
975 {
976 struct tcpcb *tp;
977 int i;
978
979 /* XXX Consider using a pool_cache for speed. */
980 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
981 if (tp == NULL)
982 return (NULL);
983 memcpy(tp, &tcpcb_template, sizeof(*tp));
984 TAILQ_INIT(&tp->segq);
985 TAILQ_INIT(&tp->timeq);
986 tp->t_family = family; /* may be overridden later on */
987 TAILQ_INIT(&tp->snd_holes);
988 LIST_INIT(&tp->t_sc); /* XXX can template this */
989
990 /* Don't sweat this loop; hopefully the compiler will unroll it. */
991 for (i = 0; i < TCPT_NTIMERS; i++)
992 TCP_TIMER_INIT(tp, i);
993
994 switch (family) {
995 case AF_INET:
996 {
997 struct inpcb *inp = (struct inpcb *)aux;
998
999 inp->inp_ip.ip_ttl = ip_defttl;
1000 inp->inp_ppcb = (caddr_t)tp;
1001
1002 tp->t_inpcb = inp;
1003 tp->t_mtudisc = ip_mtudisc;
1004 break;
1005 }
1006 #ifdef INET6
1007 case AF_INET6:
1008 {
1009 struct in6pcb *in6p = (struct in6pcb *)aux;
1010
1011 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1012 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
1013 : NULL);
1014 in6p->in6p_ppcb = (caddr_t)tp;
1015
1016 tp->t_in6pcb = in6p;
1017 /* for IPv6, always try to run path MTU discovery */
1018 tp->t_mtudisc = 1;
1019 break;
1020 }
1021 #endif /* INET6 */
1022 default:
1023 pool_put(&tcpcb_pool, tp);
1024 return (NULL);
1025 }
1026
1027 /*
1028 * Initialize our timebase. When we send timestamps, we take
1029 * the delta from tcp_now -- this means each connection always
1030 * gets a timebase of 0, which makes it, among other things,
1031 * more difficult to determine how long a system has been up,
1032 * and thus how many TCP sequence increments have occurred.
1033 */
1034 tp->ts_timebase = tcp_now;
1035
1036 return (tp);
1037 }
1038
1039 /*
1040 * Drop a TCP connection, reporting
1041 * the specified error. If connection is synchronized,
1042 * then send a RST to peer.
1043 */
1044 struct tcpcb *
1045 tcp_drop(struct tcpcb *tp, int errno)
1046 {
1047 struct socket *so = NULL;
1048
1049 #ifdef DIAGNOSTIC
1050 if (tp->t_inpcb && tp->t_in6pcb)
1051 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1052 #endif
1053 #ifdef INET
1054 if (tp->t_inpcb)
1055 so = tp->t_inpcb->inp_socket;
1056 #endif
1057 #ifdef INET6
1058 if (tp->t_in6pcb)
1059 so = tp->t_in6pcb->in6p_socket;
1060 #endif
1061 if (!so)
1062 return NULL;
1063
1064 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1065 tp->t_state = TCPS_CLOSED;
1066 (void) tcp_output(tp);
1067 tcpstat.tcps_drops++;
1068 } else
1069 tcpstat.tcps_conndrops++;
1070 if (errno == ETIMEDOUT && tp->t_softerror)
1071 errno = tp->t_softerror;
1072 so->so_error = errno;
1073 return (tcp_close(tp));
1074 }
1075
1076 /*
1077 * Return whether this tcpcb is marked as dead, indicating
1078 * to the calling timer function that no further action should
1079 * be taken, as we are about to release this tcpcb. The release
1080 * of the storage will be done if this is the last timer running.
1081 *
1082 * This should be called from the callout handler function after
1083 * callout_ack() is done, so that the number of invoking timer
1084 * functions is 0.
1085 */
1086 int
1087 tcp_isdead(struct tcpcb *tp)
1088 {
1089 int dead = (tp->t_flags & TF_DEAD);
1090
1091 if (__predict_false(dead)) {
1092 if (tcp_timers_invoking(tp) > 0)
1093 /* not quite there yet -- count separately? */
1094 return dead;
1095 tcpstat.tcps_delayed_free++;
1096 pool_put(&tcpcb_pool, tp);
1097 }
1098 return dead;
1099 }
1100
1101 /*
1102 * Close a TCP control block:
1103 * discard all space held by the tcp
1104 * discard internet protocol block
1105 * wake up any sleepers
1106 */
1107 struct tcpcb *
1108 tcp_close(struct tcpcb *tp)
1109 {
1110 struct inpcb *inp;
1111 #ifdef INET6
1112 struct in6pcb *in6p;
1113 #endif
1114 struct socket *so;
1115 #ifdef RTV_RTT
1116 struct rtentry *rt;
1117 #endif
1118 struct route *ro;
1119
1120 inp = tp->t_inpcb;
1121 #ifdef INET6
1122 in6p = tp->t_in6pcb;
1123 #endif
1124 so = NULL;
1125 ro = NULL;
1126 if (inp) {
1127 so = inp->inp_socket;
1128 ro = &inp->inp_route;
1129 }
1130 #ifdef INET6
1131 else if (in6p) {
1132 so = in6p->in6p_socket;
1133 ro = (struct route *)&in6p->in6p_route;
1134 }
1135 #endif
1136
1137 #ifdef RTV_RTT
1138 /*
1139 * If we sent enough data to get some meaningful characteristics,
1140 * save them in the routing entry. 'Enough' is arbitrarily
1141 * defined as the sendpipesize (default 4K) * 16. This would
1142 * give us 16 rtt samples assuming we only get one sample per
1143 * window (the usual case on a long haul net). 16 samples is
1144 * enough for the srtt filter to converge to within 5% of the correct
1145 * value; fewer samples and we could save a very bogus rtt.
1146 *
1147 * Don't update the default route's characteristics and don't
1148 * update anything that the user "locked".
1149 */
1150 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1151 ro && (rt = ro->ro_rt) &&
1152 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1153 u_long i = 0;
1154
1155 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1156 i = tp->t_srtt *
1157 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1158 if (rt->rt_rmx.rmx_rtt && i)
1159 /*
1160 * filter this update to half the old & half
1161 * the new values, converting scale.
1162 * See route.h and tcp_var.h for a
1163 * description of the scaling constants.
1164 */
1165 rt->rt_rmx.rmx_rtt =
1166 (rt->rt_rmx.rmx_rtt + i) / 2;
1167 else
1168 rt->rt_rmx.rmx_rtt = i;
1169 }
1170 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1171 i = tp->t_rttvar *
1172 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1173 if (rt->rt_rmx.rmx_rttvar && i)
1174 rt->rt_rmx.rmx_rttvar =
1175 (rt->rt_rmx.rmx_rttvar + i) / 2;
1176 else
1177 rt->rt_rmx.rmx_rttvar = i;
1178 }
1179 /*
1180 * update the pipelimit (ssthresh) if it has been updated
1181 * already or if a pipesize was specified & the threshhold
1182 * got below half the pipesize. I.e., wait for bad news
1183 * before we start updating, then update on both good
1184 * and bad news.
1185 */
1186 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1187 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1188 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1189 /*
1190 * convert the limit from user data bytes to
1191 * packets then to packet data bytes.
1192 */
1193 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1194 if (i < 2)
1195 i = 2;
1196 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1197 if (rt->rt_rmx.rmx_ssthresh)
1198 rt->rt_rmx.rmx_ssthresh =
1199 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1200 else
1201 rt->rt_rmx.rmx_ssthresh = i;
1202 }
1203 }
1204 #endif /* RTV_RTT */
1205 /* free the reassembly queue, if any */
1206 TCP_REASS_LOCK(tp);
1207 (void) tcp_freeq(tp);
1208 TCP_REASS_UNLOCK(tp);
1209
1210 /* free the SACK holes list. */
1211 tcp_free_sackholes(tp);
1212
1213 tcp_canceltimers(tp);
1214 TCP_CLEAR_DELACK(tp);
1215 syn_cache_cleanup(tp);
1216
1217 if (tp->t_template) {
1218 m_free(tp->t_template);
1219 tp->t_template = NULL;
1220 }
1221 if (tcp_timers_invoking(tp))
1222 tp->t_flags |= TF_DEAD;
1223 else
1224 pool_put(&tcpcb_pool, tp);
1225
1226 if (inp) {
1227 inp->inp_ppcb = 0;
1228 soisdisconnected(so);
1229 in_pcbdetach(inp);
1230 }
1231 #ifdef INET6
1232 else if (in6p) {
1233 in6p->in6p_ppcb = 0;
1234 soisdisconnected(so);
1235 in6_pcbdetach(in6p);
1236 }
1237 #endif
1238 tcpstat.tcps_closed++;
1239 return ((struct tcpcb *)0);
1240 }
1241
1242 int
1243 tcp_freeq(tp)
1244 struct tcpcb *tp;
1245 {
1246 struct ipqent *qe;
1247 int rv = 0;
1248 #ifdef TCPREASS_DEBUG
1249 int i = 0;
1250 #endif
1251
1252 TCP_REASS_LOCK_CHECK(tp);
1253
1254 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1255 #ifdef TCPREASS_DEBUG
1256 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1257 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1258 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1259 #endif
1260 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1261 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1262 m_freem(qe->ipqe_m);
1263 tcpipqent_free(qe);
1264 rv = 1;
1265 }
1266 tp->t_segqlen = 0;
1267 KASSERT(TAILQ_EMPTY(&tp->timeq));
1268 return (rv);
1269 }
1270
1271 /*
1272 * Protocol drain routine. Called when memory is in short supply.
1273 */
1274 void
1275 tcp_drain(void)
1276 {
1277 struct inpcb_hdr *inph;
1278 struct tcpcb *tp;
1279
1280 /*
1281 * Free the sequence queue of all TCP connections.
1282 */
1283 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1284 switch (inph->inph_af) {
1285 case AF_INET:
1286 tp = intotcpcb((struct inpcb *)inph);
1287 break;
1288 #ifdef INET6
1289 case AF_INET6:
1290 tp = in6totcpcb((struct in6pcb *)inph);
1291 break;
1292 #endif
1293 default:
1294 tp = NULL;
1295 break;
1296 }
1297 if (tp != NULL) {
1298 /*
1299 * We may be called from a device's interrupt
1300 * context. If the tcpcb is already busy,
1301 * just bail out now.
1302 */
1303 if (tcp_reass_lock_try(tp) == 0)
1304 continue;
1305 if (tcp_freeq(tp))
1306 tcpstat.tcps_connsdrained++;
1307 TCP_REASS_UNLOCK(tp);
1308 }
1309 }
1310 }
1311
1312 /*
1313 * Notify a tcp user of an asynchronous error;
1314 * store error as soft error, but wake up user
1315 * (for now, won't do anything until can select for soft error).
1316 */
1317 void
1318 tcp_notify(struct inpcb *inp, int error)
1319 {
1320 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1321 struct socket *so = inp->inp_socket;
1322
1323 /*
1324 * Ignore some errors if we are hooked up.
1325 * If connection hasn't completed, has retransmitted several times,
1326 * and receives a second error, give up now. This is better
1327 * than waiting a long time to establish a connection that
1328 * can never complete.
1329 */
1330 if (tp->t_state == TCPS_ESTABLISHED &&
1331 (error == EHOSTUNREACH || error == ENETUNREACH ||
1332 error == EHOSTDOWN)) {
1333 return;
1334 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1335 tp->t_rxtshift > 3 && tp->t_softerror)
1336 so->so_error = error;
1337 else
1338 tp->t_softerror = error;
1339 wakeup((caddr_t) &so->so_timeo);
1340 sorwakeup(so);
1341 sowwakeup(so);
1342 }
1343
1344 #ifdef INET6
1345 void
1346 tcp6_notify(struct in6pcb *in6p, int error)
1347 {
1348 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1349 struct socket *so = in6p->in6p_socket;
1350
1351 /*
1352 * Ignore some errors if we are hooked up.
1353 * If connection hasn't completed, has retransmitted several times,
1354 * and receives a second error, give up now. This is better
1355 * than waiting a long time to establish a connection that
1356 * can never complete.
1357 */
1358 if (tp->t_state == TCPS_ESTABLISHED &&
1359 (error == EHOSTUNREACH || error == ENETUNREACH ||
1360 error == EHOSTDOWN)) {
1361 return;
1362 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1363 tp->t_rxtshift > 3 && tp->t_softerror)
1364 so->so_error = error;
1365 else
1366 tp->t_softerror = error;
1367 wakeup((caddr_t) &so->so_timeo);
1368 sorwakeup(so);
1369 sowwakeup(so);
1370 }
1371 #endif
1372
1373 #ifdef INET6
1374 void
1375 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1376 {
1377 struct tcphdr th;
1378 void (*notify)(struct in6pcb *, int) = tcp6_notify;
1379 int nmatch;
1380 struct ip6_hdr *ip6;
1381 const struct sockaddr_in6 *sa6_src = NULL;
1382 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1383 struct mbuf *m;
1384 int off;
1385
1386 if (sa->sa_family != AF_INET6 ||
1387 sa->sa_len != sizeof(struct sockaddr_in6))
1388 return;
1389 if ((unsigned)cmd >= PRC_NCMDS)
1390 return;
1391 else if (cmd == PRC_QUENCH) {
1392 /*
1393 * Don't honor ICMP Source Quench messages meant for
1394 * TCP connections.
1395 */
1396 return;
1397 } else if (PRC_IS_REDIRECT(cmd))
1398 notify = in6_rtchange, d = NULL;
1399 else if (cmd == PRC_MSGSIZE)
1400 ; /* special code is present, see below */
1401 else if (cmd == PRC_HOSTDEAD)
1402 d = NULL;
1403 else if (inet6ctlerrmap[cmd] == 0)
1404 return;
1405
1406 /* if the parameter is from icmp6, decode it. */
1407 if (d != NULL) {
1408 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1409 m = ip6cp->ip6c_m;
1410 ip6 = ip6cp->ip6c_ip6;
1411 off = ip6cp->ip6c_off;
1412 sa6_src = ip6cp->ip6c_src;
1413 } else {
1414 m = NULL;
1415 ip6 = NULL;
1416 sa6_src = &sa6_any;
1417 off = 0;
1418 }
1419
1420 if (ip6) {
1421 /*
1422 * XXX: We assume that when ip6 is non NULL,
1423 * M and OFF are valid.
1424 */
1425
1426 /* check if we can safely examine src and dst ports */
1427 if (m->m_pkthdr.len < off + sizeof(th)) {
1428 if (cmd == PRC_MSGSIZE)
1429 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1430 return;
1431 }
1432
1433 bzero(&th, sizeof(th));
1434 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1435
1436 if (cmd == PRC_MSGSIZE) {
1437 int valid = 0;
1438
1439 /*
1440 * Check to see if we have a valid TCP connection
1441 * corresponding to the address in the ICMPv6 message
1442 * payload.
1443 */
1444 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1445 th.th_dport, (const struct in6_addr *)&sa6_src->sin6_addr,
1446 th.th_sport, 0))
1447 valid++;
1448
1449 /*
1450 * Depending on the value of "valid" and routing table
1451 * size (mtudisc_{hi,lo}wat), we will:
1452 * - recalcurate the new MTU and create the
1453 * corresponding routing entry, or
1454 * - ignore the MTU change notification.
1455 */
1456 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1457
1458 /*
1459 * no need to call in6_pcbnotify, it should have been
1460 * called via callback if necessary
1461 */
1462 return;
1463 }
1464
1465 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1466 (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1467 if (nmatch == 0 && syn_cache_count &&
1468 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1469 inet6ctlerrmap[cmd] == ENETUNREACH ||
1470 inet6ctlerrmap[cmd] == EHOSTDOWN))
1471 syn_cache_unreach((const struct sockaddr *)sa6_src,
1472 sa, &th);
1473 } else {
1474 (void) in6_pcbnotify(&tcbtable, sa, 0,
1475 (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1476 }
1477 }
1478 #endif
1479
1480 #ifdef INET
1481 /* assumes that ip header and tcp header are contiguous on mbuf */
1482 void *
1483 tcp_ctlinput(int cmd, struct sockaddr *sa, void *v)
1484 {
1485 struct ip *ip = v;
1486 struct tcphdr *th;
1487 struct icmp *icp;
1488 extern const int inetctlerrmap[];
1489 void (*notify)(struct inpcb *, int) = tcp_notify;
1490 int errno;
1491 int nmatch;
1492 struct tcpcb *tp;
1493 u_int mtu;
1494 tcp_seq seq;
1495 struct inpcb *inp;
1496 #ifdef INET6
1497 struct in6pcb *in6p;
1498 struct in6_addr src6, dst6;
1499 #endif
1500
1501 if (sa->sa_family != AF_INET ||
1502 sa->sa_len != sizeof(struct sockaddr_in))
1503 return NULL;
1504 if ((unsigned)cmd >= PRC_NCMDS)
1505 return NULL;
1506 errno = inetctlerrmap[cmd];
1507 if (cmd == PRC_QUENCH)
1508 /*
1509 * Don't honor ICMP Source Quench messages meant for
1510 * TCP connections.
1511 */
1512 return NULL;
1513 else if (PRC_IS_REDIRECT(cmd))
1514 notify = in_rtchange, ip = 0;
1515 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1516 /*
1517 * Check to see if we have a valid TCP connection
1518 * corresponding to the address in the ICMP message
1519 * payload.
1520 *
1521 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1522 */
1523 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1524 #ifdef INET6
1525 memset(&src6, 0, sizeof(src6));
1526 memset(&dst6, 0, sizeof(dst6));
1527 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1528 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1529 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1530 #endif
1531 if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1532 th->th_dport, ip->ip_src, th->th_sport)) != NULL)
1533 #ifdef INET6
1534 in6p = NULL;
1535 #else
1536 ;
1537 #endif
1538 #ifdef INET6
1539 else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1540 th->th_dport, &src6, th->th_sport, 0)) != NULL)
1541 ;
1542 #endif
1543 else
1544 return NULL;
1545
1546 /*
1547 * Now that we've validated that we are actually communicating
1548 * with the host indicated in the ICMP message, locate the
1549 * ICMP header, recalculate the new MTU, and create the
1550 * corresponding routing entry.
1551 */
1552 icp = (struct icmp *)((caddr_t)ip -
1553 offsetof(struct icmp, icmp_ip));
1554 if (inp) {
1555 if ((tp = intotcpcb(inp)) == NULL)
1556 return NULL;
1557 }
1558 #ifdef INET6
1559 else if (in6p) {
1560 if ((tp = in6totcpcb(in6p)) == NULL)
1561 return NULL;
1562 }
1563 #endif
1564 else
1565 return NULL;
1566 seq = ntohl(th->th_seq);
1567 if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1568 return NULL;
1569 /*
1570 * If the ICMP message advertises a Next-Hop MTU
1571 * equal or larger than the maximum packet size we have
1572 * ever sent, drop the message.
1573 */
1574 mtu = (u_int)ntohs(icp->icmp_nextmtu);
1575 if (mtu >= tp->t_pmtud_mtu_sent)
1576 return NULL;
1577 if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1578 /*
1579 * Calculate new MTU, and create corresponding
1580 * route (traditional PMTUD).
1581 */
1582 tp->t_flags &= ~TF_PMTUD_PEND;
1583 icmp_mtudisc(icp, ip->ip_dst);
1584 } else {
1585 /*
1586 * Record the information got in the ICMP
1587 * message; act on it later.
1588 * If we had already recorded an ICMP message,
1589 * replace the old one only if the new message
1590 * refers to an older TCP segment
1591 */
1592 if (tp->t_flags & TF_PMTUD_PEND) {
1593 if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1594 return NULL;
1595 } else
1596 tp->t_flags |= TF_PMTUD_PEND;
1597 tp->t_pmtud_th_seq = seq;
1598 tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1599 tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1600 tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1601 }
1602 return NULL;
1603 } else if (cmd == PRC_HOSTDEAD)
1604 ip = 0;
1605 else if (errno == 0)
1606 return NULL;
1607 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1608 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1609 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1610 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1611 if (nmatch == 0 && syn_cache_count &&
1612 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1613 inetctlerrmap[cmd] == ENETUNREACH ||
1614 inetctlerrmap[cmd] == EHOSTDOWN)) {
1615 struct sockaddr_in sin;
1616 bzero(&sin, sizeof(sin));
1617 sin.sin_len = sizeof(sin);
1618 sin.sin_family = AF_INET;
1619 sin.sin_port = th->th_sport;
1620 sin.sin_addr = ip->ip_src;
1621 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1622 }
1623
1624 /* XXX mapped address case */
1625 } else
1626 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1627 notify);
1628 return NULL;
1629 }
1630
1631 /*
1632 * When a source quench is received, we are being notified of congestion.
1633 * Close the congestion window down to the Loss Window (one segment).
1634 * We will gradually open it again as we proceed.
1635 */
1636 void
1637 tcp_quench(struct inpcb *inp, int errno)
1638 {
1639 struct tcpcb *tp = intotcpcb(inp);
1640
1641 if (tp)
1642 tp->snd_cwnd = tp->t_segsz;
1643 }
1644 #endif
1645
1646 #ifdef INET6
1647 void
1648 tcp6_quench(struct in6pcb *in6p, int errno)
1649 {
1650 struct tcpcb *tp = in6totcpcb(in6p);
1651
1652 if (tp)
1653 tp->snd_cwnd = tp->t_segsz;
1654 }
1655 #endif
1656
1657 #ifdef INET
1658 /*
1659 * Path MTU Discovery handlers.
1660 */
1661 void
1662 tcp_mtudisc_callback(struct in_addr faddr)
1663 {
1664 #ifdef INET6
1665 struct in6_addr in6;
1666 #endif
1667
1668 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1669 #ifdef INET6
1670 memset(&in6, 0, sizeof(in6));
1671 in6.s6_addr16[5] = 0xffff;
1672 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1673 tcp6_mtudisc_callback(&in6);
1674 #endif
1675 }
1676
1677 /*
1678 * On receipt of path MTU corrections, flush old route and replace it
1679 * with the new one. Retransmit all unacknowledged packets, to ensure
1680 * that all packets will be received.
1681 */
1682 void
1683 tcp_mtudisc(struct inpcb *inp, int errno)
1684 {
1685 struct tcpcb *tp = intotcpcb(inp);
1686 struct rtentry *rt = in_pcbrtentry(inp);
1687
1688 if (tp != 0) {
1689 if (rt != 0) {
1690 /*
1691 * If this was not a host route, remove and realloc.
1692 */
1693 if ((rt->rt_flags & RTF_HOST) == 0) {
1694 in_rtchange(inp, errno);
1695 if ((rt = in_pcbrtentry(inp)) == 0)
1696 return;
1697 }
1698
1699 /*
1700 * Slow start out of the error condition. We
1701 * use the MTU because we know it's smaller
1702 * than the previously transmitted segment.
1703 *
1704 * Note: This is more conservative than the
1705 * suggestion in draft-floyd-incr-init-win-03.
1706 */
1707 if (rt->rt_rmx.rmx_mtu != 0)
1708 tp->snd_cwnd =
1709 TCP_INITIAL_WINDOW(tcp_init_win,
1710 rt->rt_rmx.rmx_mtu);
1711 }
1712
1713 /*
1714 * Resend unacknowledged packets.
1715 */
1716 tp->snd_nxt = tp->snd_una;
1717 tcp_output(tp);
1718 }
1719 }
1720 #endif
1721
1722 #ifdef INET6
1723 /*
1724 * Path MTU Discovery handlers.
1725 */
1726 void
1727 tcp6_mtudisc_callback(struct in6_addr *faddr)
1728 {
1729 struct sockaddr_in6 sin6;
1730
1731 bzero(&sin6, sizeof(sin6));
1732 sin6.sin6_family = AF_INET6;
1733 sin6.sin6_len = sizeof(struct sockaddr_in6);
1734 sin6.sin6_addr = *faddr;
1735 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1736 (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1737 }
1738
1739 void
1740 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1741 {
1742 struct tcpcb *tp = in6totcpcb(in6p);
1743 struct rtentry *rt = in6_pcbrtentry(in6p);
1744
1745 if (tp != 0) {
1746 if (rt != 0) {
1747 /*
1748 * If this was not a host route, remove and realloc.
1749 */
1750 if ((rt->rt_flags & RTF_HOST) == 0) {
1751 in6_rtchange(in6p, errno);
1752 if ((rt = in6_pcbrtentry(in6p)) == 0)
1753 return;
1754 }
1755
1756 /*
1757 * Slow start out of the error condition. We
1758 * use the MTU because we know it's smaller
1759 * than the previously transmitted segment.
1760 *
1761 * Note: This is more conservative than the
1762 * suggestion in draft-floyd-incr-init-win-03.
1763 */
1764 if (rt->rt_rmx.rmx_mtu != 0)
1765 tp->snd_cwnd =
1766 TCP_INITIAL_WINDOW(tcp_init_win,
1767 rt->rt_rmx.rmx_mtu);
1768 }
1769
1770 /*
1771 * Resend unacknowledged packets.
1772 */
1773 tp->snd_nxt = tp->snd_una;
1774 tcp_output(tp);
1775 }
1776 }
1777 #endif /* INET6 */
1778
1779 /*
1780 * Compute the MSS to advertise to the peer. Called only during
1781 * the 3-way handshake. If we are the server (peer initiated
1782 * connection), we are called with a pointer to the interface
1783 * on which the SYN packet arrived. If we are the client (we
1784 * initiated connection), we are called with a pointer to the
1785 * interface out which this connection should go.
1786 *
1787 * NOTE: Do not subtract IP option/extension header size nor IPsec
1788 * header size from MSS advertisement. MSS option must hold the maximum
1789 * segment size we can accept, so it must always be:
1790 * max(if mtu) - ip header - tcp header
1791 */
1792 u_long
1793 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1794 {
1795 extern u_long in_maxmtu;
1796 u_long mss = 0;
1797 u_long hdrsiz;
1798
1799 /*
1800 * In order to avoid defeating path MTU discovery on the peer,
1801 * we advertise the max MTU of all attached networks as our MSS,
1802 * per RFC 1191, section 3.1.
1803 *
1804 * We provide the option to advertise just the MTU of
1805 * the interface on which we hope this connection will
1806 * be receiving. If we are responding to a SYN, we
1807 * will have a pretty good idea about this, but when
1808 * initiating a connection there is a bit more doubt.
1809 *
1810 * We also need to ensure that loopback has a large enough
1811 * MSS, as the loopback MTU is never included in in_maxmtu.
1812 */
1813
1814 if (ifp != NULL)
1815 switch (af) {
1816 case AF_INET:
1817 mss = ifp->if_mtu;
1818 break;
1819 #ifdef INET6
1820 case AF_INET6:
1821 mss = IN6_LINKMTU(ifp);
1822 break;
1823 #endif
1824 }
1825
1826 if (tcp_mss_ifmtu == 0)
1827 switch (af) {
1828 case AF_INET:
1829 mss = max(in_maxmtu, mss);
1830 break;
1831 #ifdef INET6
1832 case AF_INET6:
1833 mss = max(in6_maxmtu, mss);
1834 break;
1835 #endif
1836 }
1837
1838 switch (af) {
1839 case AF_INET:
1840 hdrsiz = sizeof(struct ip);
1841 break;
1842 #ifdef INET6
1843 case AF_INET6:
1844 hdrsiz = sizeof(struct ip6_hdr);
1845 break;
1846 #endif
1847 default:
1848 hdrsiz = 0;
1849 break;
1850 }
1851 hdrsiz += sizeof(struct tcphdr);
1852 if (mss > hdrsiz)
1853 mss -= hdrsiz;
1854
1855 mss = max(tcp_mssdflt, mss);
1856 return (mss);
1857 }
1858
1859 /*
1860 * Set connection variables based on the peer's advertised MSS.
1861 * We are passed the TCPCB for the actual connection. If we
1862 * are the server, we are called by the compressed state engine
1863 * when the 3-way handshake is complete. If we are the client,
1864 * we are called when we receive the SYN,ACK from the server.
1865 *
1866 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1867 * before this routine is called!
1868 */
1869 void
1870 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1871 {
1872 struct socket *so;
1873 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1874 struct rtentry *rt;
1875 #endif
1876 u_long bufsize;
1877 int mss;
1878
1879 #ifdef DIAGNOSTIC
1880 if (tp->t_inpcb && tp->t_in6pcb)
1881 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1882 #endif
1883 so = NULL;
1884 rt = NULL;
1885 #ifdef INET
1886 if (tp->t_inpcb) {
1887 so = tp->t_inpcb->inp_socket;
1888 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1889 rt = in_pcbrtentry(tp->t_inpcb);
1890 #endif
1891 }
1892 #endif
1893 #ifdef INET6
1894 if (tp->t_in6pcb) {
1895 so = tp->t_in6pcb->in6p_socket;
1896 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1897 rt = in6_pcbrtentry(tp->t_in6pcb);
1898 #endif
1899 }
1900 #endif
1901
1902 /*
1903 * As per RFC1122, use the default MSS value, unless they
1904 * sent us an offer. Do not accept offers less than 256 bytes.
1905 */
1906 mss = tcp_mssdflt;
1907 if (offer)
1908 mss = offer;
1909 mss = max(mss, 256); /* sanity */
1910 tp->t_peermss = mss;
1911 mss -= tcp_optlen(tp);
1912 #ifdef INET
1913 if (tp->t_inpcb)
1914 mss -= ip_optlen(tp->t_inpcb);
1915 #endif
1916 #ifdef INET6
1917 if (tp->t_in6pcb)
1918 mss -= ip6_optlen(tp->t_in6pcb);
1919 #endif
1920
1921 /*
1922 * If there's a pipesize, change the socket buffer to that size.
1923 * Make the socket buffer an integral number of MSS units. If
1924 * the MSS is larger than the socket buffer, artificially decrease
1925 * the MSS.
1926 */
1927 #ifdef RTV_SPIPE
1928 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1929 bufsize = rt->rt_rmx.rmx_sendpipe;
1930 else
1931 #endif
1932 {
1933 KASSERT(so != NULL);
1934 bufsize = so->so_snd.sb_hiwat;
1935 }
1936 if (bufsize < mss)
1937 mss = bufsize;
1938 else {
1939 bufsize = roundup(bufsize, mss);
1940 if (bufsize > sb_max)
1941 bufsize = sb_max;
1942 (void) sbreserve(&so->so_snd, bufsize, so);
1943 }
1944 tp->t_segsz = mss;
1945
1946 #ifdef RTV_SSTHRESH
1947 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1948 /*
1949 * There's some sort of gateway or interface buffer
1950 * limit on the path. Use this to set the slow
1951 * start threshold, but set the threshold to no less
1952 * than 2 * MSS.
1953 */
1954 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1955 }
1956 #endif
1957 }
1958
1959 /*
1960 * Processing necessary when a TCP connection is established.
1961 */
1962 void
1963 tcp_established(struct tcpcb *tp)
1964 {
1965 struct socket *so;
1966 #ifdef RTV_RPIPE
1967 struct rtentry *rt;
1968 #endif
1969 u_long bufsize;
1970
1971 #ifdef DIAGNOSTIC
1972 if (tp->t_inpcb && tp->t_in6pcb)
1973 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1974 #endif
1975 so = NULL;
1976 rt = NULL;
1977 #ifdef INET
1978 if (tp->t_inpcb) {
1979 so = tp->t_inpcb->inp_socket;
1980 #if defined(RTV_RPIPE)
1981 rt = in_pcbrtentry(tp->t_inpcb);
1982 #endif
1983 }
1984 #endif
1985 #ifdef INET6
1986 if (tp->t_in6pcb) {
1987 so = tp->t_in6pcb->in6p_socket;
1988 #if defined(RTV_RPIPE)
1989 rt = in6_pcbrtentry(tp->t_in6pcb);
1990 #endif
1991 }
1992 #endif
1993
1994 tp->t_state = TCPS_ESTABLISHED;
1995 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1996
1997 #ifdef RTV_RPIPE
1998 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
1999 bufsize = rt->rt_rmx.rmx_recvpipe;
2000 else
2001 #endif
2002 {
2003 KASSERT(so != NULL);
2004 bufsize = so->so_rcv.sb_hiwat;
2005 }
2006 if (bufsize > tp->t_ourmss) {
2007 bufsize = roundup(bufsize, tp->t_ourmss);
2008 if (bufsize > sb_max)
2009 bufsize = sb_max;
2010 (void) sbreserve(&so->so_rcv, bufsize, so);
2011 }
2012 }
2013
2014 /*
2015 * Check if there's an initial rtt or rttvar. Convert from the
2016 * route-table units to scaled multiples of the slow timeout timer.
2017 * Called only during the 3-way handshake.
2018 */
2019 void
2020 tcp_rmx_rtt(struct tcpcb *tp)
2021 {
2022 #ifdef RTV_RTT
2023 struct rtentry *rt = NULL;
2024 int rtt;
2025
2026 #ifdef DIAGNOSTIC
2027 if (tp->t_inpcb && tp->t_in6pcb)
2028 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2029 #endif
2030 #ifdef INET
2031 if (tp->t_inpcb)
2032 rt = in_pcbrtentry(tp->t_inpcb);
2033 #endif
2034 #ifdef INET6
2035 if (tp->t_in6pcb)
2036 rt = in6_pcbrtentry(tp->t_in6pcb);
2037 #endif
2038 if (rt == NULL)
2039 return;
2040
2041 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2042 /*
2043 * XXX The lock bit for MTU indicates that the value
2044 * is also a minimum value; this is subject to time.
2045 */
2046 if (rt->rt_rmx.rmx_locks & RTV_RTT)
2047 TCPT_RANGESET(tp->t_rttmin,
2048 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2049 TCPTV_MIN, TCPTV_REXMTMAX);
2050 tp->t_srtt = rtt /
2051 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2052 if (rt->rt_rmx.rmx_rttvar) {
2053 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2054 ((RTM_RTTUNIT / PR_SLOWHZ) >>
2055 (TCP_RTTVAR_SHIFT + 2));
2056 } else {
2057 /* Default variation is +- 1 rtt */
2058 tp->t_rttvar =
2059 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2060 }
2061 TCPT_RANGESET(tp->t_rxtcur,
2062 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2063 tp->t_rttmin, TCPTV_REXMTMAX);
2064 }
2065 #endif
2066 }
2067
2068 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2069 #if NRND > 0
2070 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2071 #endif
2072
2073 /*
2074 * Get a new sequence value given a tcp control block
2075 */
2076 tcp_seq
2077 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2078 {
2079
2080 #ifdef INET
2081 if (tp->t_inpcb != NULL) {
2082 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2083 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2084 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2085 addin));
2086 }
2087 #endif
2088 #ifdef INET6
2089 if (tp->t_in6pcb != NULL) {
2090 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2091 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2092 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2093 addin));
2094 }
2095 #endif
2096 /* Not possible. */
2097 panic("tcp_new_iss");
2098 }
2099
2100 /*
2101 * This routine actually generates a new TCP initial sequence number.
2102 */
2103 tcp_seq
2104 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2105 size_t addrsz, tcp_seq addin)
2106 {
2107 tcp_seq tcp_iss;
2108
2109 #if NRND > 0
2110 static int beenhere;
2111
2112 /*
2113 * If we haven't been here before, initialize our cryptographic
2114 * hash secret.
2115 */
2116 if (beenhere == 0) {
2117 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2118 RND_EXTRACT_ANY);
2119 beenhere = 1;
2120 }
2121
2122 if (tcp_do_rfc1948) {
2123 MD5_CTX ctx;
2124 u_int8_t hash[16]; /* XXX MD5 knowledge */
2125
2126 /*
2127 * Compute the base value of the ISS. It is a hash
2128 * of (saddr, sport, daddr, dport, secret).
2129 */
2130 MD5Init(&ctx);
2131
2132 MD5Update(&ctx, (u_char *) laddr, addrsz);
2133 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2134
2135 MD5Update(&ctx, (u_char *) faddr, addrsz);
2136 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2137
2138 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2139
2140 MD5Final(hash, &ctx);
2141
2142 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2143
2144 /*
2145 * Now increment our "timer", and add it in to
2146 * the computed value.
2147 *
2148 * XXX Use `addin'?
2149 * XXX TCP_ISSINCR too large to use?
2150 */
2151 tcp_iss_seq += TCP_ISSINCR;
2152 #ifdef TCPISS_DEBUG
2153 printf("ISS hash 0x%08x, ", tcp_iss);
2154 #endif
2155 tcp_iss += tcp_iss_seq + addin;
2156 #ifdef TCPISS_DEBUG
2157 printf("new ISS 0x%08x\n", tcp_iss);
2158 #endif
2159 } else
2160 #endif /* NRND > 0 */
2161 {
2162 /*
2163 * Randomize.
2164 */
2165 #if NRND > 0
2166 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2167 #else
2168 tcp_iss = arc4random();
2169 #endif
2170
2171 /*
2172 * If we were asked to add some amount to a known value,
2173 * we will take a random value obtained above, mask off
2174 * the upper bits, and add in the known value. We also
2175 * add in a constant to ensure that we are at least a
2176 * certain distance from the original value.
2177 *
2178 * This is used when an old connection is in timed wait
2179 * and we have a new one coming in, for instance.
2180 */
2181 if (addin != 0) {
2182 #ifdef TCPISS_DEBUG
2183 printf("Random %08x, ", tcp_iss);
2184 #endif
2185 tcp_iss &= TCP_ISS_RANDOM_MASK;
2186 tcp_iss += addin + TCP_ISSINCR;
2187 #ifdef TCPISS_DEBUG
2188 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2189 #endif
2190 } else {
2191 tcp_iss &= TCP_ISS_RANDOM_MASK;
2192 tcp_iss += tcp_iss_seq;
2193 tcp_iss_seq += TCP_ISSINCR;
2194 #ifdef TCPISS_DEBUG
2195 printf("ISS %08x\n", tcp_iss);
2196 #endif
2197 }
2198 }
2199
2200 if (tcp_compat_42) {
2201 /*
2202 * Limit it to the positive range for really old TCP
2203 * implementations.
2204 * Just AND off the top bit instead of checking if
2205 * is set first - saves a branch 50% of the time.
2206 */
2207 tcp_iss &= 0x7fffffff; /* XXX */
2208 }
2209
2210 return (tcp_iss);
2211 }
2212
2213 #if defined(IPSEC) || defined(FAST_IPSEC)
2214 /* compute ESP/AH header size for TCP, including outer IP header. */
2215 size_t
2216 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2217 {
2218 struct inpcb *inp;
2219 size_t hdrsiz;
2220
2221 /* XXX mapped addr case (tp->t_in6pcb) */
2222 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2223 return 0;
2224 switch (tp->t_family) {
2225 case AF_INET:
2226 /* XXX: should use currect direction. */
2227 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2228 break;
2229 default:
2230 hdrsiz = 0;
2231 break;
2232 }
2233
2234 return hdrsiz;
2235 }
2236
2237 #ifdef INET6
2238 size_t
2239 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2240 {
2241 struct in6pcb *in6p;
2242 size_t hdrsiz;
2243
2244 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2245 return 0;
2246 switch (tp->t_family) {
2247 case AF_INET6:
2248 /* XXX: should use currect direction. */
2249 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2250 break;
2251 case AF_INET:
2252 /* mapped address case - tricky */
2253 default:
2254 hdrsiz = 0;
2255 break;
2256 }
2257
2258 return hdrsiz;
2259 }
2260 #endif
2261 #endif /*IPSEC*/
2262
2263 /*
2264 * Determine the length of the TCP options for this connection.
2265 *
2266 * XXX: What do we do for SACK, when we add that? Just reserve
2267 * all of the space? Otherwise we can't exactly be incrementing
2268 * cwnd by an amount that varies depending on the amount we last
2269 * had to SACK!
2270 */
2271
2272 u_int
2273 tcp_optlen(struct tcpcb *tp)
2274 {
2275 u_int optlen;
2276
2277 optlen = 0;
2278 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2279 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2280 optlen += TCPOLEN_TSTAMP_APPA;
2281
2282 #ifdef TCP_SIGNATURE
2283 #if defined(INET6) && defined(FAST_IPSEC)
2284 if (tp->t_family == AF_INET)
2285 #endif
2286 if (tp->t_flags & TF_SIGNATURE)
2287 optlen += TCPOLEN_SIGNATURE + 2;
2288 #endif /* TCP_SIGNATURE */
2289
2290 return optlen;
2291 }
2292
2293 u_int
2294 tcp_hdrsz(struct tcpcb *tp)
2295 {
2296 u_int hlen;
2297
2298 switch (tp->t_family) {
2299 #ifdef INET6
2300 case AF_INET6:
2301 hlen = sizeof(struct ip6_hdr);
2302 break;
2303 #endif
2304 case AF_INET:
2305 hlen = sizeof(struct ip);
2306 break;
2307 default:
2308 hlen = 0;
2309 break;
2310 }
2311 hlen += sizeof(struct tcphdr);
2312
2313 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2314 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2315 hlen += TCPOLEN_TSTAMP_APPA;
2316 #ifdef TCP_SIGNATURE
2317 if (tp->t_flags & TF_SIGNATURE)
2318 hlen += TCPOLEN_SIGLEN;
2319 #endif
2320 return hlen;
2321 }
2322