tcp_subr.c revision 1.199 1 /* $NetBSD: tcp_subr.c,v 1.199 2006/09/05 00:29:36 rpaulo Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.199 2006/09/05 00:29:36 rpaulo Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcpip.h>
155
156 #ifdef IPSEC
157 #include <netinet6/ipsec.h>
158 #include <netkey/key.h>
159 #endif /*IPSEC*/
160
161 #ifdef FAST_IPSEC
162 #include <netipsec/ipsec.h>
163 #include <netipsec/xform.h>
164 #ifdef INET6
165 #include <netipsec/ipsec6.h>
166 #endif
167 #include <netipsec/key.h>
168 #endif /* FAST_IPSEC*/
169
170
171 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
172 struct tcpstat tcpstat; /* tcp statistics */
173 u_int32_t tcp_now; /* for RFC 1323 timestamps */
174
175 /* patchable/settable parameters for tcp */
176 int tcp_mssdflt = TCP_MSS;
177 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
178 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
179 #if NRND > 0
180 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
181 #endif
182 int tcp_do_sack = 1; /* selective acknowledgement */
183 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
184 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
185 int tcp_do_newreno = 1; /* Use the New Reno algorithms */
186 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
187 int tcp_do_ecn = 0; /* Explicit Congestion Notification */
188 #ifndef TCP_INIT_WIN
189 #define TCP_INIT_WIN 0 /* initial slow start window */
190 #endif
191 #ifndef TCP_INIT_WIN_LOCAL
192 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
193 #endif
194 int tcp_init_win = TCP_INIT_WIN;
195 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
196 int tcp_mss_ifmtu = 0;
197 #ifdef TCP_COMPAT_42
198 int tcp_compat_42 = 1;
199 #else
200 int tcp_compat_42 = 0;
201 #endif
202 int tcp_rst_ppslim = 100; /* 100pps */
203 int tcp_ackdrop_ppslim = 100; /* 100pps */
204 int tcp_do_loopback_cksum = 0;
205 int tcp_sack_tp_maxholes = 32;
206 int tcp_sack_globalmaxholes = 1024;
207 int tcp_sack_globalholes = 0;
208 int tcp_ecn_maxretries = 1;
209
210
211 /* tcb hash */
212 #ifndef TCBHASHSIZE
213 #define TCBHASHSIZE 128
214 #endif
215 int tcbhashsize = TCBHASHSIZE;
216
217 /* syn hash parameters */
218 #define TCP_SYN_HASH_SIZE 293
219 #define TCP_SYN_BUCKET_SIZE 35
220 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
221 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
222 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
223 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
224
225 int tcp_freeq(struct tcpcb *);
226
227 #ifdef INET
228 void tcp_mtudisc_callback(struct in_addr);
229 #endif
230 #ifdef INET6
231 void tcp6_mtudisc_callback(struct in6_addr *);
232 #endif
233
234 #ifdef INET6
235 void tcp6_mtudisc(struct in6pcb *, int);
236 #endif
237
238 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
239
240 #ifdef TCP_CSUM_COUNTERS
241 #include <sys/device.h>
242
243 #if defined(INET)
244 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
245 NULL, "tcp", "hwcsum bad");
246 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
247 NULL, "tcp", "hwcsum ok");
248 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
249 NULL, "tcp", "hwcsum data");
250 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
251 NULL, "tcp", "swcsum");
252
253 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
254 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
255 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
256 EVCNT_ATTACH_STATIC(tcp_swcsum);
257 #endif /* defined(INET) */
258
259 #if defined(INET6)
260 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
261 NULL, "tcp6", "hwcsum bad");
262 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
263 NULL, "tcp6", "hwcsum ok");
264 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
265 NULL, "tcp6", "hwcsum data");
266 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
267 NULL, "tcp6", "swcsum");
268
269 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
270 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
271 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
272 EVCNT_ATTACH_STATIC(tcp6_swcsum);
273 #endif /* defined(INET6) */
274 #endif /* TCP_CSUM_COUNTERS */
275
276
277 #ifdef TCP_OUTPUT_COUNTERS
278 #include <sys/device.h>
279
280 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
281 NULL, "tcp", "output big header");
282 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
283 NULL, "tcp", "output predict hit");
284 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
285 NULL, "tcp", "output predict miss");
286 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
287 NULL, "tcp", "output copy small");
288 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
289 NULL, "tcp", "output copy big");
290 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
291 NULL, "tcp", "output reference big");
292
293 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
294 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
295 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
296 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
297 EVCNT_ATTACH_STATIC(tcp_output_copybig);
298 EVCNT_ATTACH_STATIC(tcp_output_refbig);
299
300 #endif /* TCP_OUTPUT_COUNTERS */
301
302 #ifdef TCP_REASS_COUNTERS
303 #include <sys/device.h>
304
305 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
306 NULL, "tcp_reass", "calls");
307 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
308 &tcp_reass_, "tcp_reass", "insert into empty queue");
309 struct evcnt tcp_reass_iteration[8] = {
310 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
311 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
312 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
313 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
315 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
316 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
317 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
318 };
319 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
320 &tcp_reass_, "tcp_reass", "prepend to first");
321 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
322 &tcp_reass_, "tcp_reass", "prepend");
323 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
324 &tcp_reass_, "tcp_reass", "insert");
325 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
326 &tcp_reass_, "tcp_reass", "insert at tail");
327 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
328 &tcp_reass_, "tcp_reass", "append");
329 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
330 &tcp_reass_, "tcp_reass", "append to tail fragment");
331 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
332 &tcp_reass_, "tcp_reass", "overlap at end");
333 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
334 &tcp_reass_, "tcp_reass", "overlap at start");
335 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
336 &tcp_reass_, "tcp_reass", "duplicate segment");
337 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
338 &tcp_reass_, "tcp_reass", "duplicate fragment");
339
340 EVCNT_ATTACH_STATIC(tcp_reass_);
341 EVCNT_ATTACH_STATIC(tcp_reass_empty);
342 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
343 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
344 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
349 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
350 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
351 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
352 EVCNT_ATTACH_STATIC(tcp_reass_insert);
353 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
354 EVCNT_ATTACH_STATIC(tcp_reass_append);
355 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
356 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
357 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
358 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
359 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
360
361 #endif /* TCP_REASS_COUNTERS */
362
363 #ifdef MBUFTRACE
364 struct mowner tcp_mowner = { "tcp" };
365 struct mowner tcp_rx_mowner = { "tcp", "rx" };
366 struct mowner tcp_tx_mowner = { "tcp", "tx" };
367 #endif
368
369 /*
370 * Tcp initialization
371 */
372 void
373 tcp_init(void)
374 {
375 int hlen;
376
377 /* Initialize the TCPCB template. */
378 tcp_tcpcb_template();
379
380 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
381
382 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
383 #ifdef INET6
384 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
385 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
386 #endif
387 if (max_protohdr < hlen)
388 max_protohdr = hlen;
389 if (max_linkhdr + hlen > MHLEN)
390 panic("tcp_init");
391
392 #ifdef INET
393 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
394 #endif
395 #ifdef INET6
396 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
397 #endif
398
399 /* Initialize timer state. */
400 tcp_timer_init();
401
402 /* Initialize the compressed state engine. */
403 syn_cache_init();
404
405 MOWNER_ATTACH(&tcp_tx_mowner);
406 MOWNER_ATTACH(&tcp_rx_mowner);
407 MOWNER_ATTACH(&tcp_mowner);
408 }
409
410 /*
411 * Create template to be used to send tcp packets on a connection.
412 * Call after host entry created, allocates an mbuf and fills
413 * in a skeletal tcp/ip header, minimizing the amount of work
414 * necessary when the connection is used.
415 */
416 struct mbuf *
417 tcp_template(struct tcpcb *tp)
418 {
419 struct inpcb *inp = tp->t_inpcb;
420 #ifdef INET6
421 struct in6pcb *in6p = tp->t_in6pcb;
422 #endif
423 struct tcphdr *n;
424 struct mbuf *m;
425 int hlen;
426
427 switch (tp->t_family) {
428 case AF_INET:
429 hlen = sizeof(struct ip);
430 if (inp)
431 break;
432 #ifdef INET6
433 if (in6p) {
434 /* mapped addr case */
435 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
436 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
437 break;
438 }
439 #endif
440 return NULL; /*EINVAL*/
441 #ifdef INET6
442 case AF_INET6:
443 hlen = sizeof(struct ip6_hdr);
444 if (in6p) {
445 /* more sainty check? */
446 break;
447 }
448 return NULL; /*EINVAL*/
449 #endif
450 default:
451 hlen = 0; /*pacify gcc*/
452 return NULL; /*EAFNOSUPPORT*/
453 }
454 #ifdef DIAGNOSTIC
455 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
456 panic("mclbytes too small for t_template");
457 #endif
458 m = tp->t_template;
459 if (m && m->m_len == hlen + sizeof(struct tcphdr))
460 ;
461 else {
462 if (m)
463 m_freem(m);
464 m = tp->t_template = NULL;
465 MGETHDR(m, M_DONTWAIT, MT_HEADER);
466 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
467 MCLGET(m, M_DONTWAIT);
468 if ((m->m_flags & M_EXT) == 0) {
469 m_free(m);
470 m = NULL;
471 }
472 }
473 if (m == NULL)
474 return NULL;
475 MCLAIM(m, &tcp_mowner);
476 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
477 }
478
479 bzero(mtod(m, caddr_t), m->m_len);
480
481 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
482
483 switch (tp->t_family) {
484 case AF_INET:
485 {
486 struct ipovly *ipov;
487 mtod(m, struct ip *)->ip_v = 4;
488 mtod(m, struct ip *)->ip_hl = hlen >> 2;
489 ipov = mtod(m, struct ipovly *);
490 ipov->ih_pr = IPPROTO_TCP;
491 ipov->ih_len = htons(sizeof(struct tcphdr));
492 if (inp) {
493 ipov->ih_src = inp->inp_laddr;
494 ipov->ih_dst = inp->inp_faddr;
495 }
496 #ifdef INET6
497 else if (in6p) {
498 /* mapped addr case */
499 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
500 sizeof(ipov->ih_src));
501 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
502 sizeof(ipov->ih_dst));
503 }
504 #endif
505 /*
506 * Compute the pseudo-header portion of the checksum
507 * now. We incrementally add in the TCP option and
508 * payload lengths later, and then compute the TCP
509 * checksum right before the packet is sent off onto
510 * the wire.
511 */
512 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
513 ipov->ih_dst.s_addr,
514 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
515 break;
516 }
517 #ifdef INET6
518 case AF_INET6:
519 {
520 struct ip6_hdr *ip6;
521 mtod(m, struct ip *)->ip_v = 6;
522 ip6 = mtod(m, struct ip6_hdr *);
523 ip6->ip6_nxt = IPPROTO_TCP;
524 ip6->ip6_plen = htons(sizeof(struct tcphdr));
525 ip6->ip6_src = in6p->in6p_laddr;
526 ip6->ip6_dst = in6p->in6p_faddr;
527 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
528 if (ip6_auto_flowlabel) {
529 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
530 ip6->ip6_flow |=
531 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
532 }
533 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
534 ip6->ip6_vfc |= IPV6_VERSION;
535
536 /*
537 * Compute the pseudo-header portion of the checksum
538 * now. We incrementally add in the TCP option and
539 * payload lengths later, and then compute the TCP
540 * checksum right before the packet is sent off onto
541 * the wire.
542 */
543 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
544 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
545 htonl(IPPROTO_TCP));
546 break;
547 }
548 #endif
549 }
550 if (inp) {
551 n->th_sport = inp->inp_lport;
552 n->th_dport = inp->inp_fport;
553 }
554 #ifdef INET6
555 else if (in6p) {
556 n->th_sport = in6p->in6p_lport;
557 n->th_dport = in6p->in6p_fport;
558 }
559 #endif
560 n->th_seq = 0;
561 n->th_ack = 0;
562 n->th_x2 = 0;
563 n->th_off = 5;
564 n->th_flags = 0;
565 n->th_win = 0;
566 n->th_urp = 0;
567 return (m);
568 }
569
570 /*
571 * Send a single message to the TCP at address specified by
572 * the given TCP/IP header. If m == 0, then we make a copy
573 * of the tcpiphdr at ti and send directly to the addressed host.
574 * This is used to force keep alive messages out using the TCP
575 * template for a connection tp->t_template. If flags are given
576 * then we send a message back to the TCP which originated the
577 * segment ti, and discard the mbuf containing it and any other
578 * attached mbufs.
579 *
580 * In any case the ack and sequence number of the transmitted
581 * segment are as specified by the parameters.
582 */
583 int
584 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
585 struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
586 {
587 struct route *ro;
588 int error, tlen, win = 0;
589 int hlen;
590 struct ip *ip;
591 #ifdef INET6
592 struct ip6_hdr *ip6;
593 #endif
594 int family; /* family on packet, not inpcb/in6pcb! */
595 struct tcphdr *th;
596 struct socket *so;
597
598 if (tp != NULL && (flags & TH_RST) == 0) {
599 #ifdef DIAGNOSTIC
600 if (tp->t_inpcb && tp->t_in6pcb)
601 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
602 #endif
603 #ifdef INET
604 if (tp->t_inpcb)
605 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
606 #endif
607 #ifdef INET6
608 if (tp->t_in6pcb)
609 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
610 #endif
611 }
612
613 th = NULL; /* Quell uninitialized warning */
614 ip = NULL;
615 #ifdef INET6
616 ip6 = NULL;
617 #endif
618 if (m == 0) {
619 if (!template)
620 return EINVAL;
621
622 /* get family information from template */
623 switch (mtod(template, struct ip *)->ip_v) {
624 case 4:
625 family = AF_INET;
626 hlen = sizeof(struct ip);
627 break;
628 #ifdef INET6
629 case 6:
630 family = AF_INET6;
631 hlen = sizeof(struct ip6_hdr);
632 break;
633 #endif
634 default:
635 return EAFNOSUPPORT;
636 }
637
638 MGETHDR(m, M_DONTWAIT, MT_HEADER);
639 if (m) {
640 MCLAIM(m, &tcp_tx_mowner);
641 MCLGET(m, M_DONTWAIT);
642 if ((m->m_flags & M_EXT) == 0) {
643 m_free(m);
644 m = NULL;
645 }
646 }
647 if (m == NULL)
648 return (ENOBUFS);
649
650 if (tcp_compat_42)
651 tlen = 1;
652 else
653 tlen = 0;
654
655 m->m_data += max_linkhdr;
656 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
657 template->m_len);
658 switch (family) {
659 case AF_INET:
660 ip = mtod(m, struct ip *);
661 th = (struct tcphdr *)(ip + 1);
662 break;
663 #ifdef INET6
664 case AF_INET6:
665 ip6 = mtod(m, struct ip6_hdr *);
666 th = (struct tcphdr *)(ip6 + 1);
667 break;
668 #endif
669 #if 0
670 default:
671 /* noone will visit here */
672 m_freem(m);
673 return EAFNOSUPPORT;
674 #endif
675 }
676 flags = TH_ACK;
677 } else {
678
679 if ((m->m_flags & M_PKTHDR) == 0) {
680 #if 0
681 printf("non PKTHDR to tcp_respond\n");
682 #endif
683 m_freem(m);
684 return EINVAL;
685 }
686 #ifdef DIAGNOSTIC
687 if (!th0)
688 panic("th0 == NULL in tcp_respond");
689 #endif
690
691 /* get family information from m */
692 switch (mtod(m, struct ip *)->ip_v) {
693 case 4:
694 family = AF_INET;
695 hlen = sizeof(struct ip);
696 ip = mtod(m, struct ip *);
697 break;
698 #ifdef INET6
699 case 6:
700 family = AF_INET6;
701 hlen = sizeof(struct ip6_hdr);
702 ip6 = mtod(m, struct ip6_hdr *);
703 break;
704 #endif
705 default:
706 m_freem(m);
707 return EAFNOSUPPORT;
708 }
709 /* clear h/w csum flags inherited from rx packet */
710 m->m_pkthdr.csum_flags = 0;
711
712 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
713 tlen = sizeof(*th0);
714 else
715 tlen = th0->th_off << 2;
716
717 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
718 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
719 m->m_len = hlen + tlen;
720 m_freem(m->m_next);
721 m->m_next = NULL;
722 } else {
723 struct mbuf *n;
724
725 #ifdef DIAGNOSTIC
726 if (max_linkhdr + hlen + tlen > MCLBYTES) {
727 m_freem(m);
728 return EMSGSIZE;
729 }
730 #endif
731 MGETHDR(n, M_DONTWAIT, MT_HEADER);
732 if (n && max_linkhdr + hlen + tlen > MHLEN) {
733 MCLGET(n, M_DONTWAIT);
734 if ((n->m_flags & M_EXT) == 0) {
735 m_freem(n);
736 n = NULL;
737 }
738 }
739 if (!n) {
740 m_freem(m);
741 return ENOBUFS;
742 }
743
744 MCLAIM(n, &tcp_tx_mowner);
745 n->m_data += max_linkhdr;
746 n->m_len = hlen + tlen;
747 m_copyback(n, 0, hlen, mtod(m, caddr_t));
748 m_copyback(n, hlen, tlen, (caddr_t)th0);
749
750 m_freem(m);
751 m = n;
752 n = NULL;
753 }
754
755 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
756 switch (family) {
757 case AF_INET:
758 ip = mtod(m, struct ip *);
759 th = (struct tcphdr *)(ip + 1);
760 ip->ip_p = IPPROTO_TCP;
761 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
762 ip->ip_p = IPPROTO_TCP;
763 break;
764 #ifdef INET6
765 case AF_INET6:
766 ip6 = mtod(m, struct ip6_hdr *);
767 th = (struct tcphdr *)(ip6 + 1);
768 ip6->ip6_nxt = IPPROTO_TCP;
769 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
770 ip6->ip6_nxt = IPPROTO_TCP;
771 break;
772 #endif
773 #if 0
774 default:
775 /* noone will visit here */
776 m_freem(m);
777 return EAFNOSUPPORT;
778 #endif
779 }
780 xchg(th->th_dport, th->th_sport, u_int16_t);
781 #undef xchg
782 tlen = 0; /*be friendly with the following code*/
783 }
784 th->th_seq = htonl(seq);
785 th->th_ack = htonl(ack);
786 th->th_x2 = 0;
787 if ((flags & TH_SYN) == 0) {
788 if (tp)
789 win >>= tp->rcv_scale;
790 if (win > TCP_MAXWIN)
791 win = TCP_MAXWIN;
792 th->th_win = htons((u_int16_t)win);
793 th->th_off = sizeof (struct tcphdr) >> 2;
794 tlen += sizeof(*th);
795 } else
796 tlen += th->th_off << 2;
797 m->m_len = hlen + tlen;
798 m->m_pkthdr.len = hlen + tlen;
799 m->m_pkthdr.rcvif = (struct ifnet *) 0;
800 th->th_flags = flags;
801 th->th_urp = 0;
802
803 switch (family) {
804 #ifdef INET
805 case AF_INET:
806 {
807 struct ipovly *ipov = (struct ipovly *)ip;
808 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
809 ipov->ih_len = htons((u_int16_t)tlen);
810
811 th->th_sum = 0;
812 th->th_sum = in_cksum(m, hlen + tlen);
813 ip->ip_len = htons(hlen + tlen);
814 ip->ip_ttl = ip_defttl;
815 break;
816 }
817 #endif
818 #ifdef INET6
819 case AF_INET6:
820 {
821 th->th_sum = 0;
822 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
823 tlen);
824 ip6->ip6_plen = htons(tlen);
825 if (tp && tp->t_in6pcb) {
826 struct ifnet *oifp;
827 ro = (struct route *)&tp->t_in6pcb->in6p_route;
828 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
829 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
830 } else
831 ip6->ip6_hlim = ip6_defhlim;
832 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
833 if (ip6_auto_flowlabel) {
834 ip6->ip6_flow |=
835 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
836 }
837 break;
838 }
839 #endif
840 }
841
842 if (tp && tp->t_inpcb)
843 so = tp->t_inpcb->inp_socket;
844 #ifdef INET6
845 else if (tp && tp->t_in6pcb)
846 so = tp->t_in6pcb->in6p_socket;
847 #endif
848 else
849 so = NULL;
850
851 if (tp != NULL && tp->t_inpcb != NULL) {
852 ro = &tp->t_inpcb->inp_route;
853 #ifdef DIAGNOSTIC
854 if (family != AF_INET)
855 panic("tcp_respond: address family mismatch");
856 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
857 panic("tcp_respond: ip_dst %x != inp_faddr %x",
858 ntohl(ip->ip_dst.s_addr),
859 ntohl(tp->t_inpcb->inp_faddr.s_addr));
860 }
861 #endif
862 }
863 #ifdef INET6
864 else if (tp != NULL && tp->t_in6pcb != NULL) {
865 ro = (struct route *)&tp->t_in6pcb->in6p_route;
866 #ifdef DIAGNOSTIC
867 if (family == AF_INET) {
868 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
869 panic("tcp_respond: not mapped addr");
870 if (bcmp(&ip->ip_dst,
871 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
872 sizeof(ip->ip_dst)) != 0) {
873 panic("tcp_respond: ip_dst != in6p_faddr");
874 }
875 } else if (family == AF_INET6) {
876 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
877 &tp->t_in6pcb->in6p_faddr))
878 panic("tcp_respond: ip6_dst != in6p_faddr");
879 } else
880 panic("tcp_respond: address family mismatch");
881 #endif
882 }
883 #endif
884 else
885 ro = NULL;
886
887 switch (family) {
888 #ifdef INET
889 case AF_INET:
890 error = ip_output(m, NULL, ro,
891 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
892 (struct ip_moptions *)0, so);
893 break;
894 #endif
895 #ifdef INET6
896 case AF_INET6:
897 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
898 (struct ip6_moptions *)0, so, NULL);
899 break;
900 #endif
901 default:
902 error = EAFNOSUPPORT;
903 break;
904 }
905
906 return (error);
907 }
908
909 /*
910 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
911 * a bunch of members individually, we maintain this template for the
912 * static and mostly-static components of the TCPCB, and copy it into
913 * the new TCPCB instead.
914 */
915 static struct tcpcb tcpcb_template = {
916 /*
917 * If TCP_NTIMERS ever changes, we'll need to update this
918 * initializer.
919 */
920 .t_timer = {
921 CALLOUT_INITIALIZER,
922 CALLOUT_INITIALIZER,
923 CALLOUT_INITIALIZER,
924 CALLOUT_INITIALIZER,
925 },
926 .t_delack_ch = CALLOUT_INITIALIZER,
927
928 .t_srtt = TCPTV_SRTTBASE,
929 .t_rttmin = TCPTV_MIN,
930
931 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
932 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
933 .snd_numholes = 0,
934
935 .t_partialacks = -1,
936 };
937
938 /*
939 * Updates the TCPCB template whenever a parameter that would affect
940 * the template is changed.
941 */
942 void
943 tcp_tcpcb_template(void)
944 {
945 struct tcpcb *tp = &tcpcb_template;
946 int flags;
947
948 tp->t_peermss = tcp_mssdflt;
949 tp->t_ourmss = tcp_mssdflt;
950 tp->t_segsz = tcp_mssdflt;
951
952 flags = 0;
953 if (tcp_do_rfc1323 && tcp_do_win_scale)
954 flags |= TF_REQ_SCALE;
955 if (tcp_do_rfc1323 && tcp_do_timestamps)
956 flags |= TF_REQ_TSTMP;
957 tp->t_flags = flags;
958
959 /*
960 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
961 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
962 * reasonable initial retransmit time.
963 */
964 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
965 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
966 TCPTV_MIN, TCPTV_REXMTMAX);
967 }
968
969 /*
970 * Create a new TCP control block, making an
971 * empty reassembly queue and hooking it to the argument
972 * protocol control block.
973 */
974 /* family selects inpcb, or in6pcb */
975 struct tcpcb *
976 tcp_newtcpcb(int family, void *aux)
977 {
978 struct tcpcb *tp;
979 int i;
980
981 /* XXX Consider using a pool_cache for speed. */
982 tp = pool_get(&tcpcb_pool, PR_NOWAIT);
983 if (tp == NULL)
984 return (NULL);
985 memcpy(tp, &tcpcb_template, sizeof(*tp));
986 TAILQ_INIT(&tp->segq);
987 TAILQ_INIT(&tp->timeq);
988 tp->t_family = family; /* may be overridden later on */
989 TAILQ_INIT(&tp->snd_holes);
990 LIST_INIT(&tp->t_sc); /* XXX can template this */
991
992 /* Don't sweat this loop; hopefully the compiler will unroll it. */
993 for (i = 0; i < TCPT_NTIMERS; i++)
994 TCP_TIMER_INIT(tp, i);
995
996 switch (family) {
997 case AF_INET:
998 {
999 struct inpcb *inp = (struct inpcb *)aux;
1000
1001 inp->inp_ip.ip_ttl = ip_defttl;
1002 inp->inp_ppcb = (caddr_t)tp;
1003
1004 tp->t_inpcb = inp;
1005 tp->t_mtudisc = ip_mtudisc;
1006 break;
1007 }
1008 #ifdef INET6
1009 case AF_INET6:
1010 {
1011 struct in6pcb *in6p = (struct in6pcb *)aux;
1012
1013 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1014 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
1015 : NULL);
1016 in6p->in6p_ppcb = (caddr_t)tp;
1017
1018 tp->t_in6pcb = in6p;
1019 /* for IPv6, always try to run path MTU discovery */
1020 tp->t_mtudisc = 1;
1021 break;
1022 }
1023 #endif /* INET6 */
1024 default:
1025 pool_put(&tcpcb_pool, tp);
1026 return (NULL);
1027 }
1028
1029 /*
1030 * Initialize our timebase. When we send timestamps, we take
1031 * the delta from tcp_now -- this means each connection always
1032 * gets a timebase of 0, which makes it, among other things,
1033 * more difficult to determine how long a system has been up,
1034 * and thus how many TCP sequence increments have occurred.
1035 */
1036 tp->ts_timebase = tcp_now;
1037
1038 return (tp);
1039 }
1040
1041 /*
1042 * Drop a TCP connection, reporting
1043 * the specified error. If connection is synchronized,
1044 * then send a RST to peer.
1045 */
1046 struct tcpcb *
1047 tcp_drop(struct tcpcb *tp, int errno)
1048 {
1049 struct socket *so = NULL;
1050
1051 #ifdef DIAGNOSTIC
1052 if (tp->t_inpcb && tp->t_in6pcb)
1053 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1054 #endif
1055 #ifdef INET
1056 if (tp->t_inpcb)
1057 so = tp->t_inpcb->inp_socket;
1058 #endif
1059 #ifdef INET6
1060 if (tp->t_in6pcb)
1061 so = tp->t_in6pcb->in6p_socket;
1062 #endif
1063 if (!so)
1064 return NULL;
1065
1066 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1067 tp->t_state = TCPS_CLOSED;
1068 (void) tcp_output(tp);
1069 tcpstat.tcps_drops++;
1070 } else
1071 tcpstat.tcps_conndrops++;
1072 if (errno == ETIMEDOUT && tp->t_softerror)
1073 errno = tp->t_softerror;
1074 so->so_error = errno;
1075 return (tcp_close(tp));
1076 }
1077
1078 /*
1079 * Return whether this tcpcb is marked as dead, indicating
1080 * to the calling timer function that no further action should
1081 * be taken, as we are about to release this tcpcb. The release
1082 * of the storage will be done if this is the last timer running.
1083 *
1084 * This should be called from the callout handler function after
1085 * callout_ack() is done, so that the number of invoking timer
1086 * functions is 0.
1087 */
1088 int
1089 tcp_isdead(struct tcpcb *tp)
1090 {
1091 int dead = (tp->t_flags & TF_DEAD);
1092
1093 if (__predict_false(dead)) {
1094 if (tcp_timers_invoking(tp) > 0)
1095 /* not quite there yet -- count separately? */
1096 return dead;
1097 tcpstat.tcps_delayed_free++;
1098 pool_put(&tcpcb_pool, tp);
1099 }
1100 return dead;
1101 }
1102
1103 /*
1104 * Close a TCP control block:
1105 * discard all space held by the tcp
1106 * discard internet protocol block
1107 * wake up any sleepers
1108 */
1109 struct tcpcb *
1110 tcp_close(struct tcpcb *tp)
1111 {
1112 struct inpcb *inp;
1113 #ifdef INET6
1114 struct in6pcb *in6p;
1115 #endif
1116 struct socket *so;
1117 #ifdef RTV_RTT
1118 struct rtentry *rt;
1119 #endif
1120 struct route *ro;
1121
1122 inp = tp->t_inpcb;
1123 #ifdef INET6
1124 in6p = tp->t_in6pcb;
1125 #endif
1126 so = NULL;
1127 ro = NULL;
1128 if (inp) {
1129 so = inp->inp_socket;
1130 ro = &inp->inp_route;
1131 }
1132 #ifdef INET6
1133 else if (in6p) {
1134 so = in6p->in6p_socket;
1135 ro = (struct route *)&in6p->in6p_route;
1136 }
1137 #endif
1138
1139 #ifdef RTV_RTT
1140 /*
1141 * If we sent enough data to get some meaningful characteristics,
1142 * save them in the routing entry. 'Enough' is arbitrarily
1143 * defined as the sendpipesize (default 4K) * 16. This would
1144 * give us 16 rtt samples assuming we only get one sample per
1145 * window (the usual case on a long haul net). 16 samples is
1146 * enough for the srtt filter to converge to within 5% of the correct
1147 * value; fewer samples and we could save a very bogus rtt.
1148 *
1149 * Don't update the default route's characteristics and don't
1150 * update anything that the user "locked".
1151 */
1152 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1153 ro && (rt = ro->ro_rt) &&
1154 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1155 u_long i = 0;
1156
1157 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1158 i = tp->t_srtt *
1159 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1160 if (rt->rt_rmx.rmx_rtt && i)
1161 /*
1162 * filter this update to half the old & half
1163 * the new values, converting scale.
1164 * See route.h and tcp_var.h for a
1165 * description of the scaling constants.
1166 */
1167 rt->rt_rmx.rmx_rtt =
1168 (rt->rt_rmx.rmx_rtt + i) / 2;
1169 else
1170 rt->rt_rmx.rmx_rtt = i;
1171 }
1172 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1173 i = tp->t_rttvar *
1174 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1175 if (rt->rt_rmx.rmx_rttvar && i)
1176 rt->rt_rmx.rmx_rttvar =
1177 (rt->rt_rmx.rmx_rttvar + i) / 2;
1178 else
1179 rt->rt_rmx.rmx_rttvar = i;
1180 }
1181 /*
1182 * update the pipelimit (ssthresh) if it has been updated
1183 * already or if a pipesize was specified & the threshhold
1184 * got below half the pipesize. I.e., wait for bad news
1185 * before we start updating, then update on both good
1186 * and bad news.
1187 */
1188 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1189 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1190 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1191 /*
1192 * convert the limit from user data bytes to
1193 * packets then to packet data bytes.
1194 */
1195 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1196 if (i < 2)
1197 i = 2;
1198 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1199 if (rt->rt_rmx.rmx_ssthresh)
1200 rt->rt_rmx.rmx_ssthresh =
1201 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1202 else
1203 rt->rt_rmx.rmx_ssthresh = i;
1204 }
1205 }
1206 #endif /* RTV_RTT */
1207 /* free the reassembly queue, if any */
1208 TCP_REASS_LOCK(tp);
1209 (void) tcp_freeq(tp);
1210 TCP_REASS_UNLOCK(tp);
1211
1212 /* free the SACK holes list. */
1213 tcp_free_sackholes(tp);
1214
1215 tcp_canceltimers(tp);
1216 TCP_CLEAR_DELACK(tp);
1217 syn_cache_cleanup(tp);
1218
1219 if (tp->t_template) {
1220 m_free(tp->t_template);
1221 tp->t_template = NULL;
1222 }
1223 if (tcp_timers_invoking(tp))
1224 tp->t_flags |= TF_DEAD;
1225 else
1226 pool_put(&tcpcb_pool, tp);
1227
1228 if (inp) {
1229 inp->inp_ppcb = 0;
1230 soisdisconnected(so);
1231 in_pcbdetach(inp);
1232 }
1233 #ifdef INET6
1234 else if (in6p) {
1235 in6p->in6p_ppcb = 0;
1236 soisdisconnected(so);
1237 in6_pcbdetach(in6p);
1238 }
1239 #endif
1240 tcpstat.tcps_closed++;
1241 return ((struct tcpcb *)0);
1242 }
1243
1244 int
1245 tcp_freeq(tp)
1246 struct tcpcb *tp;
1247 {
1248 struct ipqent *qe;
1249 int rv = 0;
1250 #ifdef TCPREASS_DEBUG
1251 int i = 0;
1252 #endif
1253
1254 TCP_REASS_LOCK_CHECK(tp);
1255
1256 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1257 #ifdef TCPREASS_DEBUG
1258 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1259 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1260 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1261 #endif
1262 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1263 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1264 m_freem(qe->ipqe_m);
1265 tcpipqent_free(qe);
1266 rv = 1;
1267 }
1268 tp->t_segqlen = 0;
1269 KASSERT(TAILQ_EMPTY(&tp->timeq));
1270 return (rv);
1271 }
1272
1273 /*
1274 * Protocol drain routine. Called when memory is in short supply.
1275 */
1276 void
1277 tcp_drain(void)
1278 {
1279 struct inpcb_hdr *inph;
1280 struct tcpcb *tp;
1281
1282 /*
1283 * Free the sequence queue of all TCP connections.
1284 */
1285 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1286 switch (inph->inph_af) {
1287 case AF_INET:
1288 tp = intotcpcb((struct inpcb *)inph);
1289 break;
1290 #ifdef INET6
1291 case AF_INET6:
1292 tp = in6totcpcb((struct in6pcb *)inph);
1293 break;
1294 #endif
1295 default:
1296 tp = NULL;
1297 break;
1298 }
1299 if (tp != NULL) {
1300 /*
1301 * We may be called from a device's interrupt
1302 * context. If the tcpcb is already busy,
1303 * just bail out now.
1304 */
1305 if (tcp_reass_lock_try(tp) == 0)
1306 continue;
1307 if (tcp_freeq(tp))
1308 tcpstat.tcps_connsdrained++;
1309 TCP_REASS_UNLOCK(tp);
1310 }
1311 }
1312 }
1313
1314 /*
1315 * Notify a tcp user of an asynchronous error;
1316 * store error as soft error, but wake up user
1317 * (for now, won't do anything until can select for soft error).
1318 */
1319 void
1320 tcp_notify(struct inpcb *inp, int error)
1321 {
1322 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1323 struct socket *so = inp->inp_socket;
1324
1325 /*
1326 * Ignore some errors if we are hooked up.
1327 * If connection hasn't completed, has retransmitted several times,
1328 * and receives a second error, give up now. This is better
1329 * than waiting a long time to establish a connection that
1330 * can never complete.
1331 */
1332 if (tp->t_state == TCPS_ESTABLISHED &&
1333 (error == EHOSTUNREACH || error == ENETUNREACH ||
1334 error == EHOSTDOWN)) {
1335 return;
1336 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1337 tp->t_rxtshift > 3 && tp->t_softerror)
1338 so->so_error = error;
1339 else
1340 tp->t_softerror = error;
1341 wakeup((caddr_t) &so->so_timeo);
1342 sorwakeup(so);
1343 sowwakeup(so);
1344 }
1345
1346 #ifdef INET6
1347 void
1348 tcp6_notify(struct in6pcb *in6p, int error)
1349 {
1350 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1351 struct socket *so = in6p->in6p_socket;
1352
1353 /*
1354 * Ignore some errors if we are hooked up.
1355 * If connection hasn't completed, has retransmitted several times,
1356 * and receives a second error, give up now. This is better
1357 * than waiting a long time to establish a connection that
1358 * can never complete.
1359 */
1360 if (tp->t_state == TCPS_ESTABLISHED &&
1361 (error == EHOSTUNREACH || error == ENETUNREACH ||
1362 error == EHOSTDOWN)) {
1363 return;
1364 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1365 tp->t_rxtshift > 3 && tp->t_softerror)
1366 so->so_error = error;
1367 else
1368 tp->t_softerror = error;
1369 wakeup((caddr_t) &so->so_timeo);
1370 sorwakeup(so);
1371 sowwakeup(so);
1372 }
1373 #endif
1374
1375 #ifdef INET6
1376 void
1377 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1378 {
1379 struct tcphdr th;
1380 void (*notify)(struct in6pcb *, int) = tcp6_notify;
1381 int nmatch;
1382 struct ip6_hdr *ip6;
1383 const struct sockaddr_in6 *sa6_src = NULL;
1384 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1385 struct mbuf *m;
1386 int off;
1387
1388 if (sa->sa_family != AF_INET6 ||
1389 sa->sa_len != sizeof(struct sockaddr_in6))
1390 return;
1391 if ((unsigned)cmd >= PRC_NCMDS)
1392 return;
1393 else if (cmd == PRC_QUENCH) {
1394 /*
1395 * Don't honor ICMP Source Quench messages meant for
1396 * TCP connections.
1397 */
1398 return;
1399 } else if (PRC_IS_REDIRECT(cmd))
1400 notify = in6_rtchange, d = NULL;
1401 else if (cmd == PRC_MSGSIZE)
1402 ; /* special code is present, see below */
1403 else if (cmd == PRC_HOSTDEAD)
1404 d = NULL;
1405 else if (inet6ctlerrmap[cmd] == 0)
1406 return;
1407
1408 /* if the parameter is from icmp6, decode it. */
1409 if (d != NULL) {
1410 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1411 m = ip6cp->ip6c_m;
1412 ip6 = ip6cp->ip6c_ip6;
1413 off = ip6cp->ip6c_off;
1414 sa6_src = ip6cp->ip6c_src;
1415 } else {
1416 m = NULL;
1417 ip6 = NULL;
1418 sa6_src = &sa6_any;
1419 off = 0;
1420 }
1421
1422 if (ip6) {
1423 /*
1424 * XXX: We assume that when ip6 is non NULL,
1425 * M and OFF are valid.
1426 */
1427
1428 /* check if we can safely examine src and dst ports */
1429 if (m->m_pkthdr.len < off + sizeof(th)) {
1430 if (cmd == PRC_MSGSIZE)
1431 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1432 return;
1433 }
1434
1435 bzero(&th, sizeof(th));
1436 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1437
1438 if (cmd == PRC_MSGSIZE) {
1439 int valid = 0;
1440
1441 /*
1442 * Check to see if we have a valid TCP connection
1443 * corresponding to the address in the ICMPv6 message
1444 * payload.
1445 */
1446 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1447 th.th_dport, (const struct in6_addr *)&sa6_src->sin6_addr,
1448 th.th_sport, 0))
1449 valid++;
1450
1451 /*
1452 * Depending on the value of "valid" and routing table
1453 * size (mtudisc_{hi,lo}wat), we will:
1454 * - recalcurate the new MTU and create the
1455 * corresponding routing entry, or
1456 * - ignore the MTU change notification.
1457 */
1458 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1459
1460 /*
1461 * no need to call in6_pcbnotify, it should have been
1462 * called via callback if necessary
1463 */
1464 return;
1465 }
1466
1467 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1468 (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1469 if (nmatch == 0 && syn_cache_count &&
1470 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1471 inet6ctlerrmap[cmd] == ENETUNREACH ||
1472 inet6ctlerrmap[cmd] == EHOSTDOWN))
1473 syn_cache_unreach((const struct sockaddr *)sa6_src,
1474 sa, &th);
1475 } else {
1476 (void) in6_pcbnotify(&tcbtable, sa, 0,
1477 (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1478 }
1479 }
1480 #endif
1481
1482 #ifdef INET
1483 /* assumes that ip header and tcp header are contiguous on mbuf */
1484 void *
1485 tcp_ctlinput(int cmd, struct sockaddr *sa, void *v)
1486 {
1487 struct ip *ip = v;
1488 struct tcphdr *th;
1489 struct icmp *icp;
1490 extern const int inetctlerrmap[];
1491 void (*notify)(struct inpcb *, int) = tcp_notify;
1492 int errno;
1493 int nmatch;
1494 struct tcpcb *tp;
1495 u_int mtu;
1496 tcp_seq seq;
1497 struct inpcb *inp;
1498 #ifdef INET6
1499 struct in6pcb *in6p;
1500 struct in6_addr src6, dst6;
1501 #endif
1502
1503 if (sa->sa_family != AF_INET ||
1504 sa->sa_len != sizeof(struct sockaddr_in))
1505 return NULL;
1506 if ((unsigned)cmd >= PRC_NCMDS)
1507 return NULL;
1508 errno = inetctlerrmap[cmd];
1509 if (cmd == PRC_QUENCH)
1510 /*
1511 * Don't honor ICMP Source Quench messages meant for
1512 * TCP connections.
1513 */
1514 return NULL;
1515 else if (PRC_IS_REDIRECT(cmd))
1516 notify = in_rtchange, ip = 0;
1517 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1518 /*
1519 * Check to see if we have a valid TCP connection
1520 * corresponding to the address in the ICMP message
1521 * payload.
1522 *
1523 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1524 */
1525 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1526 #ifdef INET6
1527 memset(&src6, 0, sizeof(src6));
1528 memset(&dst6, 0, sizeof(dst6));
1529 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1530 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1531 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1532 #endif
1533 if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1534 th->th_dport, ip->ip_src, th->th_sport)) != NULL)
1535 #ifdef INET6
1536 in6p = NULL;
1537 #else
1538 ;
1539 #endif
1540 #ifdef INET6
1541 else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1542 th->th_dport, &src6, th->th_sport, 0)) != NULL)
1543 ;
1544 #endif
1545 else
1546 return NULL;
1547
1548 /*
1549 * Now that we've validated that we are actually communicating
1550 * with the host indicated in the ICMP message, locate the
1551 * ICMP header, recalculate the new MTU, and create the
1552 * corresponding routing entry.
1553 */
1554 icp = (struct icmp *)((caddr_t)ip -
1555 offsetof(struct icmp, icmp_ip));
1556 if (inp) {
1557 if ((tp = intotcpcb(inp)) == NULL)
1558 return NULL;
1559 }
1560 #ifdef INET6
1561 else if (in6p) {
1562 if ((tp = in6totcpcb(in6p)) == NULL)
1563 return NULL;
1564 }
1565 #endif
1566 else
1567 return NULL;
1568 seq = ntohl(th->th_seq);
1569 if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1570 return NULL;
1571 /*
1572 * If the ICMP message advertises a Next-Hop MTU
1573 * equal or larger than the maximum packet size we have
1574 * ever sent, drop the message.
1575 */
1576 mtu = (u_int)ntohs(icp->icmp_nextmtu);
1577 if (mtu >= tp->t_pmtud_mtu_sent)
1578 return NULL;
1579 if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1580 /*
1581 * Calculate new MTU, and create corresponding
1582 * route (traditional PMTUD).
1583 */
1584 tp->t_flags &= ~TF_PMTUD_PEND;
1585 icmp_mtudisc(icp, ip->ip_dst);
1586 } else {
1587 /*
1588 * Record the information got in the ICMP
1589 * message; act on it later.
1590 * If we had already recorded an ICMP message,
1591 * replace the old one only if the new message
1592 * refers to an older TCP segment
1593 */
1594 if (tp->t_flags & TF_PMTUD_PEND) {
1595 if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1596 return NULL;
1597 } else
1598 tp->t_flags |= TF_PMTUD_PEND;
1599 tp->t_pmtud_th_seq = seq;
1600 tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1601 tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1602 tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1603 }
1604 return NULL;
1605 } else if (cmd == PRC_HOSTDEAD)
1606 ip = 0;
1607 else if (errno == 0)
1608 return NULL;
1609 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1610 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1611 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1612 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1613 if (nmatch == 0 && syn_cache_count &&
1614 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1615 inetctlerrmap[cmd] == ENETUNREACH ||
1616 inetctlerrmap[cmd] == EHOSTDOWN)) {
1617 struct sockaddr_in sin;
1618 bzero(&sin, sizeof(sin));
1619 sin.sin_len = sizeof(sin);
1620 sin.sin_family = AF_INET;
1621 sin.sin_port = th->th_sport;
1622 sin.sin_addr = ip->ip_src;
1623 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1624 }
1625
1626 /* XXX mapped address case */
1627 } else
1628 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1629 notify);
1630 return NULL;
1631 }
1632
1633 /*
1634 * When a source quench is received, we are being notified of congestion.
1635 * Close the congestion window down to the Loss Window (one segment).
1636 * We will gradually open it again as we proceed.
1637 */
1638 void
1639 tcp_quench(struct inpcb *inp, int errno)
1640 {
1641 struct tcpcb *tp = intotcpcb(inp);
1642
1643 if (tp)
1644 tp->snd_cwnd = tp->t_segsz;
1645 }
1646 #endif
1647
1648 #ifdef INET6
1649 void
1650 tcp6_quench(struct in6pcb *in6p, int errno)
1651 {
1652 struct tcpcb *tp = in6totcpcb(in6p);
1653
1654 if (tp)
1655 tp->snd_cwnd = tp->t_segsz;
1656 }
1657 #endif
1658
1659 #ifdef INET
1660 /*
1661 * Path MTU Discovery handlers.
1662 */
1663 void
1664 tcp_mtudisc_callback(struct in_addr faddr)
1665 {
1666 #ifdef INET6
1667 struct in6_addr in6;
1668 #endif
1669
1670 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1671 #ifdef INET6
1672 memset(&in6, 0, sizeof(in6));
1673 in6.s6_addr16[5] = 0xffff;
1674 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1675 tcp6_mtudisc_callback(&in6);
1676 #endif
1677 }
1678
1679 /*
1680 * On receipt of path MTU corrections, flush old route and replace it
1681 * with the new one. Retransmit all unacknowledged packets, to ensure
1682 * that all packets will be received.
1683 */
1684 void
1685 tcp_mtudisc(struct inpcb *inp, int errno)
1686 {
1687 struct tcpcb *tp = intotcpcb(inp);
1688 struct rtentry *rt = in_pcbrtentry(inp);
1689
1690 if (tp != 0) {
1691 if (rt != 0) {
1692 /*
1693 * If this was not a host route, remove and realloc.
1694 */
1695 if ((rt->rt_flags & RTF_HOST) == 0) {
1696 in_rtchange(inp, errno);
1697 if ((rt = in_pcbrtentry(inp)) == 0)
1698 return;
1699 }
1700
1701 /*
1702 * Slow start out of the error condition. We
1703 * use the MTU because we know it's smaller
1704 * than the previously transmitted segment.
1705 *
1706 * Note: This is more conservative than the
1707 * suggestion in draft-floyd-incr-init-win-03.
1708 */
1709 if (rt->rt_rmx.rmx_mtu != 0)
1710 tp->snd_cwnd =
1711 TCP_INITIAL_WINDOW(tcp_init_win,
1712 rt->rt_rmx.rmx_mtu);
1713 }
1714
1715 /*
1716 * Resend unacknowledged packets.
1717 */
1718 tp->snd_nxt = tp->snd_una;
1719 tcp_output(tp);
1720 }
1721 }
1722 #endif
1723
1724 #ifdef INET6
1725 /*
1726 * Path MTU Discovery handlers.
1727 */
1728 void
1729 tcp6_mtudisc_callback(struct in6_addr *faddr)
1730 {
1731 struct sockaddr_in6 sin6;
1732
1733 bzero(&sin6, sizeof(sin6));
1734 sin6.sin6_family = AF_INET6;
1735 sin6.sin6_len = sizeof(struct sockaddr_in6);
1736 sin6.sin6_addr = *faddr;
1737 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1738 (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1739 }
1740
1741 void
1742 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1743 {
1744 struct tcpcb *tp = in6totcpcb(in6p);
1745 struct rtentry *rt = in6_pcbrtentry(in6p);
1746
1747 if (tp != 0) {
1748 if (rt != 0) {
1749 /*
1750 * If this was not a host route, remove and realloc.
1751 */
1752 if ((rt->rt_flags & RTF_HOST) == 0) {
1753 in6_rtchange(in6p, errno);
1754 if ((rt = in6_pcbrtentry(in6p)) == 0)
1755 return;
1756 }
1757
1758 /*
1759 * Slow start out of the error condition. We
1760 * use the MTU because we know it's smaller
1761 * than the previously transmitted segment.
1762 *
1763 * Note: This is more conservative than the
1764 * suggestion in draft-floyd-incr-init-win-03.
1765 */
1766 if (rt->rt_rmx.rmx_mtu != 0)
1767 tp->snd_cwnd =
1768 TCP_INITIAL_WINDOW(tcp_init_win,
1769 rt->rt_rmx.rmx_mtu);
1770 }
1771
1772 /*
1773 * Resend unacknowledged packets.
1774 */
1775 tp->snd_nxt = tp->snd_una;
1776 tcp_output(tp);
1777 }
1778 }
1779 #endif /* INET6 */
1780
1781 /*
1782 * Compute the MSS to advertise to the peer. Called only during
1783 * the 3-way handshake. If we are the server (peer initiated
1784 * connection), we are called with a pointer to the interface
1785 * on which the SYN packet arrived. If we are the client (we
1786 * initiated connection), we are called with a pointer to the
1787 * interface out which this connection should go.
1788 *
1789 * NOTE: Do not subtract IP option/extension header size nor IPsec
1790 * header size from MSS advertisement. MSS option must hold the maximum
1791 * segment size we can accept, so it must always be:
1792 * max(if mtu) - ip header - tcp header
1793 */
1794 u_long
1795 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1796 {
1797 extern u_long in_maxmtu;
1798 u_long mss = 0;
1799 u_long hdrsiz;
1800
1801 /*
1802 * In order to avoid defeating path MTU discovery on the peer,
1803 * we advertise the max MTU of all attached networks as our MSS,
1804 * per RFC 1191, section 3.1.
1805 *
1806 * We provide the option to advertise just the MTU of
1807 * the interface on which we hope this connection will
1808 * be receiving. If we are responding to a SYN, we
1809 * will have a pretty good idea about this, but when
1810 * initiating a connection there is a bit more doubt.
1811 *
1812 * We also need to ensure that loopback has a large enough
1813 * MSS, as the loopback MTU is never included in in_maxmtu.
1814 */
1815
1816 if (ifp != NULL)
1817 switch (af) {
1818 case AF_INET:
1819 mss = ifp->if_mtu;
1820 break;
1821 #ifdef INET6
1822 case AF_INET6:
1823 mss = IN6_LINKMTU(ifp);
1824 break;
1825 #endif
1826 }
1827
1828 if (tcp_mss_ifmtu == 0)
1829 switch (af) {
1830 case AF_INET:
1831 mss = max(in_maxmtu, mss);
1832 break;
1833 #ifdef INET6
1834 case AF_INET6:
1835 mss = max(in6_maxmtu, mss);
1836 break;
1837 #endif
1838 }
1839
1840 switch (af) {
1841 case AF_INET:
1842 hdrsiz = sizeof(struct ip);
1843 break;
1844 #ifdef INET6
1845 case AF_INET6:
1846 hdrsiz = sizeof(struct ip6_hdr);
1847 break;
1848 #endif
1849 default:
1850 hdrsiz = 0;
1851 break;
1852 }
1853 hdrsiz += sizeof(struct tcphdr);
1854 if (mss > hdrsiz)
1855 mss -= hdrsiz;
1856
1857 mss = max(tcp_mssdflt, mss);
1858 return (mss);
1859 }
1860
1861 /*
1862 * Set connection variables based on the peer's advertised MSS.
1863 * We are passed the TCPCB for the actual connection. If we
1864 * are the server, we are called by the compressed state engine
1865 * when the 3-way handshake is complete. If we are the client,
1866 * we are called when we receive the SYN,ACK from the server.
1867 *
1868 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1869 * before this routine is called!
1870 */
1871 void
1872 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1873 {
1874 struct socket *so;
1875 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1876 struct rtentry *rt;
1877 #endif
1878 u_long bufsize;
1879 int mss;
1880
1881 #ifdef DIAGNOSTIC
1882 if (tp->t_inpcb && tp->t_in6pcb)
1883 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1884 #endif
1885 so = NULL;
1886 rt = NULL;
1887 #ifdef INET
1888 if (tp->t_inpcb) {
1889 so = tp->t_inpcb->inp_socket;
1890 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1891 rt = in_pcbrtentry(tp->t_inpcb);
1892 #endif
1893 }
1894 #endif
1895 #ifdef INET6
1896 if (tp->t_in6pcb) {
1897 so = tp->t_in6pcb->in6p_socket;
1898 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1899 rt = in6_pcbrtentry(tp->t_in6pcb);
1900 #endif
1901 }
1902 #endif
1903
1904 /*
1905 * As per RFC1122, use the default MSS value, unless they
1906 * sent us an offer. Do not accept offers less than 256 bytes.
1907 */
1908 mss = tcp_mssdflt;
1909 if (offer)
1910 mss = offer;
1911 mss = max(mss, 256); /* sanity */
1912 tp->t_peermss = mss;
1913 mss -= tcp_optlen(tp);
1914 #ifdef INET
1915 if (tp->t_inpcb)
1916 mss -= ip_optlen(tp->t_inpcb);
1917 #endif
1918 #ifdef INET6
1919 if (tp->t_in6pcb)
1920 mss -= ip6_optlen(tp->t_in6pcb);
1921 #endif
1922
1923 /*
1924 * If there's a pipesize, change the socket buffer to that size.
1925 * Make the socket buffer an integral number of MSS units. If
1926 * the MSS is larger than the socket buffer, artificially decrease
1927 * the MSS.
1928 */
1929 #ifdef RTV_SPIPE
1930 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1931 bufsize = rt->rt_rmx.rmx_sendpipe;
1932 else
1933 #endif
1934 {
1935 KASSERT(so != NULL);
1936 bufsize = so->so_snd.sb_hiwat;
1937 }
1938 if (bufsize < mss)
1939 mss = bufsize;
1940 else {
1941 bufsize = roundup(bufsize, mss);
1942 if (bufsize > sb_max)
1943 bufsize = sb_max;
1944 (void) sbreserve(&so->so_snd, bufsize, so);
1945 }
1946 tp->t_segsz = mss;
1947
1948 #ifdef RTV_SSTHRESH
1949 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1950 /*
1951 * There's some sort of gateway or interface buffer
1952 * limit on the path. Use this to set the slow
1953 * start threshold, but set the threshold to no less
1954 * than 2 * MSS.
1955 */
1956 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1957 }
1958 #endif
1959 }
1960
1961 /*
1962 * Processing necessary when a TCP connection is established.
1963 */
1964 void
1965 tcp_established(struct tcpcb *tp)
1966 {
1967 struct socket *so;
1968 #ifdef RTV_RPIPE
1969 struct rtentry *rt;
1970 #endif
1971 u_long bufsize;
1972
1973 #ifdef DIAGNOSTIC
1974 if (tp->t_inpcb && tp->t_in6pcb)
1975 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1976 #endif
1977 so = NULL;
1978 rt = NULL;
1979 #ifdef INET
1980 if (tp->t_inpcb) {
1981 so = tp->t_inpcb->inp_socket;
1982 #if defined(RTV_RPIPE)
1983 rt = in_pcbrtentry(tp->t_inpcb);
1984 #endif
1985 }
1986 #endif
1987 #ifdef INET6
1988 if (tp->t_in6pcb) {
1989 so = tp->t_in6pcb->in6p_socket;
1990 #if defined(RTV_RPIPE)
1991 rt = in6_pcbrtentry(tp->t_in6pcb);
1992 #endif
1993 }
1994 #endif
1995
1996 tp->t_state = TCPS_ESTABLISHED;
1997 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1998
1999 #ifdef RTV_RPIPE
2000 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2001 bufsize = rt->rt_rmx.rmx_recvpipe;
2002 else
2003 #endif
2004 {
2005 KASSERT(so != NULL);
2006 bufsize = so->so_rcv.sb_hiwat;
2007 }
2008 if (bufsize > tp->t_ourmss) {
2009 bufsize = roundup(bufsize, tp->t_ourmss);
2010 if (bufsize > sb_max)
2011 bufsize = sb_max;
2012 (void) sbreserve(&so->so_rcv, bufsize, so);
2013 }
2014 }
2015
2016 /*
2017 * Check if there's an initial rtt or rttvar. Convert from the
2018 * route-table units to scaled multiples of the slow timeout timer.
2019 * Called only during the 3-way handshake.
2020 */
2021 void
2022 tcp_rmx_rtt(struct tcpcb *tp)
2023 {
2024 #ifdef RTV_RTT
2025 struct rtentry *rt = NULL;
2026 int rtt;
2027
2028 #ifdef DIAGNOSTIC
2029 if (tp->t_inpcb && tp->t_in6pcb)
2030 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2031 #endif
2032 #ifdef INET
2033 if (tp->t_inpcb)
2034 rt = in_pcbrtentry(tp->t_inpcb);
2035 #endif
2036 #ifdef INET6
2037 if (tp->t_in6pcb)
2038 rt = in6_pcbrtentry(tp->t_in6pcb);
2039 #endif
2040 if (rt == NULL)
2041 return;
2042
2043 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2044 /*
2045 * XXX The lock bit for MTU indicates that the value
2046 * is also a minimum value; this is subject to time.
2047 */
2048 if (rt->rt_rmx.rmx_locks & RTV_RTT)
2049 TCPT_RANGESET(tp->t_rttmin,
2050 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2051 TCPTV_MIN, TCPTV_REXMTMAX);
2052 tp->t_srtt = rtt /
2053 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2054 if (rt->rt_rmx.rmx_rttvar) {
2055 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2056 ((RTM_RTTUNIT / PR_SLOWHZ) >>
2057 (TCP_RTTVAR_SHIFT + 2));
2058 } else {
2059 /* Default variation is +- 1 rtt */
2060 tp->t_rttvar =
2061 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2062 }
2063 TCPT_RANGESET(tp->t_rxtcur,
2064 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2065 tp->t_rttmin, TCPTV_REXMTMAX);
2066 }
2067 #endif
2068 }
2069
2070 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2071 #if NRND > 0
2072 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2073 #endif
2074
2075 /*
2076 * Get a new sequence value given a tcp control block
2077 */
2078 tcp_seq
2079 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2080 {
2081
2082 #ifdef INET
2083 if (tp->t_inpcb != NULL) {
2084 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2085 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2086 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2087 addin));
2088 }
2089 #endif
2090 #ifdef INET6
2091 if (tp->t_in6pcb != NULL) {
2092 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2093 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2094 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2095 addin));
2096 }
2097 #endif
2098 /* Not possible. */
2099 panic("tcp_new_iss");
2100 }
2101
2102 /*
2103 * This routine actually generates a new TCP initial sequence number.
2104 */
2105 tcp_seq
2106 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2107 size_t addrsz, tcp_seq addin)
2108 {
2109 tcp_seq tcp_iss;
2110
2111 #if NRND > 0
2112 static int beenhere;
2113
2114 /*
2115 * If we haven't been here before, initialize our cryptographic
2116 * hash secret.
2117 */
2118 if (beenhere == 0) {
2119 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2120 RND_EXTRACT_ANY);
2121 beenhere = 1;
2122 }
2123
2124 if (tcp_do_rfc1948) {
2125 MD5_CTX ctx;
2126 u_int8_t hash[16]; /* XXX MD5 knowledge */
2127
2128 /*
2129 * Compute the base value of the ISS. It is a hash
2130 * of (saddr, sport, daddr, dport, secret).
2131 */
2132 MD5Init(&ctx);
2133
2134 MD5Update(&ctx, (u_char *) laddr, addrsz);
2135 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2136
2137 MD5Update(&ctx, (u_char *) faddr, addrsz);
2138 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2139
2140 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2141
2142 MD5Final(hash, &ctx);
2143
2144 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2145
2146 /*
2147 * Now increment our "timer", and add it in to
2148 * the computed value.
2149 *
2150 * XXX Use `addin'?
2151 * XXX TCP_ISSINCR too large to use?
2152 */
2153 tcp_iss_seq += TCP_ISSINCR;
2154 #ifdef TCPISS_DEBUG
2155 printf("ISS hash 0x%08x, ", tcp_iss);
2156 #endif
2157 tcp_iss += tcp_iss_seq + addin;
2158 #ifdef TCPISS_DEBUG
2159 printf("new ISS 0x%08x\n", tcp_iss);
2160 #endif
2161 } else
2162 #endif /* NRND > 0 */
2163 {
2164 /*
2165 * Randomize.
2166 */
2167 #if NRND > 0
2168 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2169 #else
2170 tcp_iss = arc4random();
2171 #endif
2172
2173 /*
2174 * If we were asked to add some amount to a known value,
2175 * we will take a random value obtained above, mask off
2176 * the upper bits, and add in the known value. We also
2177 * add in a constant to ensure that we are at least a
2178 * certain distance from the original value.
2179 *
2180 * This is used when an old connection is in timed wait
2181 * and we have a new one coming in, for instance.
2182 */
2183 if (addin != 0) {
2184 #ifdef TCPISS_DEBUG
2185 printf("Random %08x, ", tcp_iss);
2186 #endif
2187 tcp_iss &= TCP_ISS_RANDOM_MASK;
2188 tcp_iss += addin + TCP_ISSINCR;
2189 #ifdef TCPISS_DEBUG
2190 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2191 #endif
2192 } else {
2193 tcp_iss &= TCP_ISS_RANDOM_MASK;
2194 tcp_iss += tcp_iss_seq;
2195 tcp_iss_seq += TCP_ISSINCR;
2196 #ifdef TCPISS_DEBUG
2197 printf("ISS %08x\n", tcp_iss);
2198 #endif
2199 }
2200 }
2201
2202 if (tcp_compat_42) {
2203 /*
2204 * Limit it to the positive range for really old TCP
2205 * implementations.
2206 * Just AND off the top bit instead of checking if
2207 * is set first - saves a branch 50% of the time.
2208 */
2209 tcp_iss &= 0x7fffffff; /* XXX */
2210 }
2211
2212 return (tcp_iss);
2213 }
2214
2215 #if defined(IPSEC) || defined(FAST_IPSEC)
2216 /* compute ESP/AH header size for TCP, including outer IP header. */
2217 size_t
2218 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2219 {
2220 struct inpcb *inp;
2221 size_t hdrsiz;
2222
2223 /* XXX mapped addr case (tp->t_in6pcb) */
2224 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2225 return 0;
2226 switch (tp->t_family) {
2227 case AF_INET:
2228 /* XXX: should use currect direction. */
2229 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2230 break;
2231 default:
2232 hdrsiz = 0;
2233 break;
2234 }
2235
2236 return hdrsiz;
2237 }
2238
2239 #ifdef INET6
2240 size_t
2241 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2242 {
2243 struct in6pcb *in6p;
2244 size_t hdrsiz;
2245
2246 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2247 return 0;
2248 switch (tp->t_family) {
2249 case AF_INET6:
2250 /* XXX: should use currect direction. */
2251 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2252 break;
2253 case AF_INET:
2254 /* mapped address case - tricky */
2255 default:
2256 hdrsiz = 0;
2257 break;
2258 }
2259
2260 return hdrsiz;
2261 }
2262 #endif
2263 #endif /*IPSEC*/
2264
2265 /*
2266 * Determine the length of the TCP options for this connection.
2267 *
2268 * XXX: What do we do for SACK, when we add that? Just reserve
2269 * all of the space? Otherwise we can't exactly be incrementing
2270 * cwnd by an amount that varies depending on the amount we last
2271 * had to SACK!
2272 */
2273
2274 u_int
2275 tcp_optlen(struct tcpcb *tp)
2276 {
2277 u_int optlen;
2278
2279 optlen = 0;
2280 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2281 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2282 optlen += TCPOLEN_TSTAMP_APPA;
2283
2284 #ifdef TCP_SIGNATURE
2285 #if defined(INET6) && defined(FAST_IPSEC)
2286 if (tp->t_family == AF_INET)
2287 #endif
2288 if (tp->t_flags & TF_SIGNATURE)
2289 optlen += TCPOLEN_SIGNATURE + 2;
2290 #endif /* TCP_SIGNATURE */
2291
2292 return optlen;
2293 }
2294
2295 u_int
2296 tcp_hdrsz(struct tcpcb *tp)
2297 {
2298 u_int hlen;
2299
2300 switch (tp->t_family) {
2301 #ifdef INET6
2302 case AF_INET6:
2303 hlen = sizeof(struct ip6_hdr);
2304 break;
2305 #endif
2306 case AF_INET:
2307 hlen = sizeof(struct ip);
2308 break;
2309 default:
2310 hlen = 0;
2311 break;
2312 }
2313 hlen += sizeof(struct tcphdr);
2314
2315 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2316 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2317 hlen += TCPOLEN_TSTAMP_APPA;
2318 #ifdef TCP_SIGNATURE
2319 if (tp->t_flags & TF_SIGNATURE)
2320 hlen += TCPOLEN_SIGLEN;
2321 #endif
2322 return hlen;
2323 }
2324