tcp_subr.c revision 1.200 1 /* $NetBSD: tcp_subr.c,v 1.200 2006/10/05 17:35:19 tls Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*-
33 * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
34 * All rights reserved.
35 *
36 * This code is derived from software contributed to The NetBSD Foundation
37 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
38 * Facility, NASA Ames Research Center.
39 *
40 * Redistribution and use in source and binary forms, with or without
41 * modification, are permitted provided that the following conditions
42 * are met:
43 * 1. Redistributions of source code must retain the above copyright
44 * notice, this list of conditions and the following disclaimer.
45 * 2. Redistributions in binary form must reproduce the above copyright
46 * notice, this list of conditions and the following disclaimer in the
47 * documentation and/or other materials provided with the distribution.
48 * 3. All advertising materials mentioning features or use of this software
49 * must display the following acknowledgement:
50 * This product includes software developed by the NetBSD
51 * Foundation, Inc. and its contributors.
52 * 4. Neither the name of The NetBSD Foundation nor the names of its
53 * contributors may be used to endorse or promote products derived
54 * from this software without specific prior written permission.
55 *
56 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
57 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
58 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
59 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
60 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
61 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
62 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
63 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
64 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
65 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
66 * POSSIBILITY OF SUCH DAMAGE.
67 */
68
69 /*
70 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
71 * The Regents of the University of California. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 * 1. Redistributions of source code must retain the above copyright
77 * notice, this list of conditions and the following disclaimer.
78 * 2. Redistributions in binary form must reproduce the above copyright
79 * notice, this list of conditions and the following disclaimer in the
80 * documentation and/or other materials provided with the distribution.
81 * 3. Neither the name of the University nor the names of its contributors
82 * may be used to endorse or promote products derived from this software
83 * without specific prior written permission.
84 *
85 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
86 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
87 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
88 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
89 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
90 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
91 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
92 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
93 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
94 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
95 * SUCH DAMAGE.
96 *
97 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
98 */
99
100 #include <sys/cdefs.h>
101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.200 2006/10/05 17:35:19 tls Exp $");
102
103 #include "opt_inet.h"
104 #include "opt_ipsec.h"
105 #include "opt_tcp_compat_42.h"
106 #include "opt_inet_csum.h"
107 #include "opt_mbuftrace.h"
108 #include "rnd.h"
109
110 #include <sys/param.h>
111 #include <sys/proc.h>
112 #include <sys/systm.h>
113 #include <sys/malloc.h>
114 #include <sys/mbuf.h>
115 #include <sys/socket.h>
116 #include <sys/socketvar.h>
117 #include <sys/protosw.h>
118 #include <sys/errno.h>
119 #include <sys/kernel.h>
120 #include <sys/pool.h>
121 #if NRND > 0
122 #include <sys/md5.h>
123 #include <sys/rnd.h>
124 #endif
125
126 #include <net/route.h>
127 #include <net/if.h>
128
129 #include <netinet/in.h>
130 #include <netinet/in_systm.h>
131 #include <netinet/ip.h>
132 #include <netinet/in_pcb.h>
133 #include <netinet/ip_var.h>
134 #include <netinet/ip_icmp.h>
135
136 #ifdef INET6
137 #ifndef INET
138 #include <netinet/in.h>
139 #endif
140 #include <netinet/ip6.h>
141 #include <netinet6/in6_pcb.h>
142 #include <netinet6/ip6_var.h>
143 #include <netinet6/in6_var.h>
144 #include <netinet6/ip6protosw.h>
145 #include <netinet/icmp6.h>
146 #include <netinet6/nd6.h>
147 #endif
148
149 #include <netinet/tcp.h>
150 #include <netinet/tcp_fsm.h>
151 #include <netinet/tcp_seq.h>
152 #include <netinet/tcp_timer.h>
153 #include <netinet/tcp_var.h>
154 #include <netinet/tcpip.h>
155
156 #ifdef IPSEC
157 #include <netinet6/ipsec.h>
158 #include <netkey/key.h>
159 #endif /*IPSEC*/
160
161 #ifdef FAST_IPSEC
162 #include <netipsec/ipsec.h>
163 #include <netipsec/xform.h>
164 #ifdef INET6
165 #include <netipsec/ipsec6.h>
166 #endif
167 #include <netipsec/key.h>
168 #endif /* FAST_IPSEC*/
169
170
171 struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
172 struct tcpstat tcpstat; /* tcp statistics */
173 u_int32_t tcp_now; /* for RFC 1323 timestamps */
174
175 /* patchable/settable parameters for tcp */
176 int tcp_mssdflt = TCP_MSS;
177 int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
178 int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
179 #if NRND > 0
180 int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
181 #endif
182 int tcp_do_sack = 1; /* selective acknowledgement */
183 int tcp_do_win_scale = 1; /* RFC1323 window scaling */
184 int tcp_do_timestamps = 1; /* RFC1323 timestamps */
185 int tcp_do_newreno = 1; /* Use the New Reno algorithms */
186 int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
187 int tcp_do_ecn = 0; /* Explicit Congestion Notification */
188 #ifndef TCP_INIT_WIN
189 #define TCP_INIT_WIN 0 /* initial slow start window */
190 #endif
191 #ifndef TCP_INIT_WIN_LOCAL
192 #define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
193 #endif
194 int tcp_init_win = TCP_INIT_WIN;
195 int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
196 int tcp_mss_ifmtu = 0;
197 #ifdef TCP_COMPAT_42
198 int tcp_compat_42 = 1;
199 #else
200 int tcp_compat_42 = 0;
201 #endif
202 int tcp_rst_ppslim = 100; /* 100pps */
203 int tcp_ackdrop_ppslim = 100; /* 100pps */
204 int tcp_do_loopback_cksum = 0;
205 int tcp_sack_tp_maxholes = 32;
206 int tcp_sack_globalmaxholes = 1024;
207 int tcp_sack_globalholes = 0;
208 int tcp_ecn_maxretries = 1;
209
210
211 /* tcb hash */
212 #ifndef TCBHASHSIZE
213 #define TCBHASHSIZE 128
214 #endif
215 int tcbhashsize = TCBHASHSIZE;
216
217 /* syn hash parameters */
218 #define TCP_SYN_HASH_SIZE 293
219 #define TCP_SYN_BUCKET_SIZE 35
220 int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
221 int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
222 int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
223 struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
224
225 int tcp_freeq(struct tcpcb *);
226
227 #ifdef INET
228 void tcp_mtudisc_callback(struct in_addr);
229 #endif
230 #ifdef INET6
231 void tcp6_mtudisc_callback(struct in6_addr *);
232 #endif
233
234 #ifdef INET6
235 void tcp6_mtudisc(struct in6pcb *, int);
236 #endif
237
238 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
239
240 #ifdef TCP_CSUM_COUNTERS
241 #include <sys/device.h>
242
243 #if defined(INET)
244 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
245 NULL, "tcp", "hwcsum bad");
246 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
247 NULL, "tcp", "hwcsum ok");
248 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
249 NULL, "tcp", "hwcsum data");
250 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
251 NULL, "tcp", "swcsum");
252
253 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
254 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
255 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
256 EVCNT_ATTACH_STATIC(tcp_swcsum);
257 #endif /* defined(INET) */
258
259 #if defined(INET6)
260 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
261 NULL, "tcp6", "hwcsum bad");
262 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
263 NULL, "tcp6", "hwcsum ok");
264 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
265 NULL, "tcp6", "hwcsum data");
266 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
267 NULL, "tcp6", "swcsum");
268
269 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
270 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
271 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
272 EVCNT_ATTACH_STATIC(tcp6_swcsum);
273 #endif /* defined(INET6) */
274 #endif /* TCP_CSUM_COUNTERS */
275
276
277 #ifdef TCP_OUTPUT_COUNTERS
278 #include <sys/device.h>
279
280 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
281 NULL, "tcp", "output big header");
282 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
283 NULL, "tcp", "output predict hit");
284 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
285 NULL, "tcp", "output predict miss");
286 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
287 NULL, "tcp", "output copy small");
288 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
289 NULL, "tcp", "output copy big");
290 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
291 NULL, "tcp", "output reference big");
292
293 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
294 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
295 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
296 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
297 EVCNT_ATTACH_STATIC(tcp_output_copybig);
298 EVCNT_ATTACH_STATIC(tcp_output_refbig);
299
300 #endif /* TCP_OUTPUT_COUNTERS */
301
302 #ifdef TCP_REASS_COUNTERS
303 #include <sys/device.h>
304
305 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
306 NULL, "tcp_reass", "calls");
307 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
308 &tcp_reass_, "tcp_reass", "insert into empty queue");
309 struct evcnt tcp_reass_iteration[8] = {
310 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
311 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
312 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
313 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
314 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
315 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
316 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
317 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
318 };
319 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
320 &tcp_reass_, "tcp_reass", "prepend to first");
321 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
322 &tcp_reass_, "tcp_reass", "prepend");
323 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
324 &tcp_reass_, "tcp_reass", "insert");
325 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
326 &tcp_reass_, "tcp_reass", "insert at tail");
327 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
328 &tcp_reass_, "tcp_reass", "append");
329 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
330 &tcp_reass_, "tcp_reass", "append to tail fragment");
331 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
332 &tcp_reass_, "tcp_reass", "overlap at end");
333 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
334 &tcp_reass_, "tcp_reass", "overlap at start");
335 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
336 &tcp_reass_, "tcp_reass", "duplicate segment");
337 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
338 &tcp_reass_, "tcp_reass", "duplicate fragment");
339
340 EVCNT_ATTACH_STATIC(tcp_reass_);
341 EVCNT_ATTACH_STATIC(tcp_reass_empty);
342 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
343 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
344 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
349 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
350 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
351 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
352 EVCNT_ATTACH_STATIC(tcp_reass_insert);
353 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
354 EVCNT_ATTACH_STATIC(tcp_reass_append);
355 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
356 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
357 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
358 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
359 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
360
361 #endif /* TCP_REASS_COUNTERS */
362
363 #ifdef MBUFTRACE
364 struct mowner tcp_mowner = { "tcp" };
365 struct mowner tcp_rx_mowner = { "tcp", "rx" };
366 struct mowner tcp_tx_mowner = { "tcp", "tx" };
367 #endif
368
369 /*
370 * Tcp initialization
371 */
372 void
373 tcp_init(void)
374 {
375 int hlen;
376
377 /* Initialize the TCPCB template. */
378 tcp_tcpcb_template();
379
380 in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
381
382 hlen = sizeof(struct ip) + sizeof(struct tcphdr);
383 #ifdef INET6
384 if (sizeof(struct ip) < sizeof(struct ip6_hdr))
385 hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
386 #endif
387 if (max_protohdr < hlen)
388 max_protohdr = hlen;
389 if (max_linkhdr + hlen > MHLEN)
390 panic("tcp_init");
391
392 #ifdef INET
393 icmp_mtudisc_callback_register(tcp_mtudisc_callback);
394 #endif
395 #ifdef INET6
396 icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
397 #endif
398
399 /* Initialize timer state. */
400 tcp_timer_init();
401
402 /* Initialize the compressed state engine. */
403 syn_cache_init();
404
405 MOWNER_ATTACH(&tcp_tx_mowner);
406 MOWNER_ATTACH(&tcp_rx_mowner);
407 MOWNER_ATTACH(&tcp_mowner);
408 }
409
410 /*
411 * Create template to be used to send tcp packets on a connection.
412 * Call after host entry created, allocates an mbuf and fills
413 * in a skeletal tcp/ip header, minimizing the amount of work
414 * necessary when the connection is used.
415 */
416 struct mbuf *
417 tcp_template(struct tcpcb *tp)
418 {
419 struct inpcb *inp = tp->t_inpcb;
420 #ifdef INET6
421 struct in6pcb *in6p = tp->t_in6pcb;
422 #endif
423 struct tcphdr *n;
424 struct mbuf *m;
425 int hlen;
426
427 switch (tp->t_family) {
428 case AF_INET:
429 hlen = sizeof(struct ip);
430 if (inp)
431 break;
432 #ifdef INET6
433 if (in6p) {
434 /* mapped addr case */
435 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
436 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
437 break;
438 }
439 #endif
440 return NULL; /*EINVAL*/
441 #ifdef INET6
442 case AF_INET6:
443 hlen = sizeof(struct ip6_hdr);
444 if (in6p) {
445 /* more sainty check? */
446 break;
447 }
448 return NULL; /*EINVAL*/
449 #endif
450 default:
451 hlen = 0; /*pacify gcc*/
452 return NULL; /*EAFNOSUPPORT*/
453 }
454 #ifdef DIAGNOSTIC
455 if (hlen + sizeof(struct tcphdr) > MCLBYTES)
456 panic("mclbytes too small for t_template");
457 #endif
458 m = tp->t_template;
459 if (m && m->m_len == hlen + sizeof(struct tcphdr))
460 ;
461 else {
462 if (m)
463 m_freem(m);
464 m = tp->t_template = NULL;
465 MGETHDR(m, M_DONTWAIT, MT_HEADER);
466 if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
467 MCLGET(m, M_DONTWAIT);
468 if ((m->m_flags & M_EXT) == 0) {
469 m_free(m);
470 m = NULL;
471 }
472 }
473 if (m == NULL)
474 return NULL;
475 MCLAIM(m, &tcp_mowner);
476 m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
477 }
478
479 bzero(mtod(m, caddr_t), m->m_len);
480
481 n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
482
483 switch (tp->t_family) {
484 case AF_INET:
485 {
486 struct ipovly *ipov;
487 mtod(m, struct ip *)->ip_v = 4;
488 mtod(m, struct ip *)->ip_hl = hlen >> 2;
489 ipov = mtod(m, struct ipovly *);
490 ipov->ih_pr = IPPROTO_TCP;
491 ipov->ih_len = htons(sizeof(struct tcphdr));
492 if (inp) {
493 ipov->ih_src = inp->inp_laddr;
494 ipov->ih_dst = inp->inp_faddr;
495 }
496 #ifdef INET6
497 else if (in6p) {
498 /* mapped addr case */
499 bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
500 sizeof(ipov->ih_src));
501 bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
502 sizeof(ipov->ih_dst));
503 }
504 #endif
505 /*
506 * Compute the pseudo-header portion of the checksum
507 * now. We incrementally add in the TCP option and
508 * payload lengths later, and then compute the TCP
509 * checksum right before the packet is sent off onto
510 * the wire.
511 */
512 n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
513 ipov->ih_dst.s_addr,
514 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
515 break;
516 }
517 #ifdef INET6
518 case AF_INET6:
519 {
520 struct ip6_hdr *ip6;
521 mtod(m, struct ip *)->ip_v = 6;
522 ip6 = mtod(m, struct ip6_hdr *);
523 ip6->ip6_nxt = IPPROTO_TCP;
524 ip6->ip6_plen = htons(sizeof(struct tcphdr));
525 ip6->ip6_src = in6p->in6p_laddr;
526 ip6->ip6_dst = in6p->in6p_faddr;
527 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
528 if (ip6_auto_flowlabel) {
529 ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
530 ip6->ip6_flow |=
531 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
532 }
533 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
534 ip6->ip6_vfc |= IPV6_VERSION;
535
536 /*
537 * Compute the pseudo-header portion of the checksum
538 * now. We incrementally add in the TCP option and
539 * payload lengths later, and then compute the TCP
540 * checksum right before the packet is sent off onto
541 * the wire.
542 */
543 n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
544 &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
545 htonl(IPPROTO_TCP));
546 break;
547 }
548 #endif
549 }
550 if (inp) {
551 n->th_sport = inp->inp_lport;
552 n->th_dport = inp->inp_fport;
553 }
554 #ifdef INET6
555 else if (in6p) {
556 n->th_sport = in6p->in6p_lport;
557 n->th_dport = in6p->in6p_fport;
558 }
559 #endif
560 n->th_seq = 0;
561 n->th_ack = 0;
562 n->th_x2 = 0;
563 n->th_off = 5;
564 n->th_flags = 0;
565 n->th_win = 0;
566 n->th_urp = 0;
567 return (m);
568 }
569
570 /*
571 * Send a single message to the TCP at address specified by
572 * the given TCP/IP header. If m == 0, then we make a copy
573 * of the tcpiphdr at ti and send directly to the addressed host.
574 * This is used to force keep alive messages out using the TCP
575 * template for a connection tp->t_template. If flags are given
576 * then we send a message back to the TCP which originated the
577 * segment ti, and discard the mbuf containing it and any other
578 * attached mbufs.
579 *
580 * In any case the ack and sequence number of the transmitted
581 * segment are as specified by the parameters.
582 */
583 int
584 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
585 struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
586 {
587 struct route *ro;
588 int error, tlen, win = 0;
589 int hlen;
590 struct ip *ip;
591 #ifdef INET6
592 struct ip6_hdr *ip6;
593 #endif
594 int family; /* family on packet, not inpcb/in6pcb! */
595 struct tcphdr *th;
596 struct socket *so;
597
598 if (tp != NULL && (flags & TH_RST) == 0) {
599 #ifdef DIAGNOSTIC
600 if (tp->t_inpcb && tp->t_in6pcb)
601 panic("tcp_respond: both t_inpcb and t_in6pcb are set");
602 #endif
603 #ifdef INET
604 if (tp->t_inpcb)
605 win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
606 #endif
607 #ifdef INET6
608 if (tp->t_in6pcb)
609 win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
610 #endif
611 }
612
613 th = NULL; /* Quell uninitialized warning */
614 ip = NULL;
615 #ifdef INET6
616 ip6 = NULL;
617 #endif
618 if (m == 0) {
619 if (!template)
620 return EINVAL;
621
622 /* get family information from template */
623 switch (mtod(template, struct ip *)->ip_v) {
624 case 4:
625 family = AF_INET;
626 hlen = sizeof(struct ip);
627 break;
628 #ifdef INET6
629 case 6:
630 family = AF_INET6;
631 hlen = sizeof(struct ip6_hdr);
632 break;
633 #endif
634 default:
635 return EAFNOSUPPORT;
636 }
637
638 MGETHDR(m, M_DONTWAIT, MT_HEADER);
639 if (m) {
640 MCLAIM(m, &tcp_tx_mowner);
641 MCLGET(m, M_DONTWAIT);
642 if ((m->m_flags & M_EXT) == 0) {
643 m_free(m);
644 m = NULL;
645 }
646 }
647 if (m == NULL)
648 return (ENOBUFS);
649
650 if (tcp_compat_42)
651 tlen = 1;
652 else
653 tlen = 0;
654
655 m->m_data += max_linkhdr;
656 bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
657 template->m_len);
658 switch (family) {
659 case AF_INET:
660 ip = mtod(m, struct ip *);
661 th = (struct tcphdr *)(ip + 1);
662 break;
663 #ifdef INET6
664 case AF_INET6:
665 ip6 = mtod(m, struct ip6_hdr *);
666 th = (struct tcphdr *)(ip6 + 1);
667 break;
668 #endif
669 #if 0
670 default:
671 /* noone will visit here */
672 m_freem(m);
673 return EAFNOSUPPORT;
674 #endif
675 }
676 flags = TH_ACK;
677 } else {
678
679 if ((m->m_flags & M_PKTHDR) == 0) {
680 #if 0
681 printf("non PKTHDR to tcp_respond\n");
682 #endif
683 m_freem(m);
684 return EINVAL;
685 }
686 #ifdef DIAGNOSTIC
687 if (!th0)
688 panic("th0 == NULL in tcp_respond");
689 #endif
690
691 /* get family information from m */
692 switch (mtod(m, struct ip *)->ip_v) {
693 case 4:
694 family = AF_INET;
695 hlen = sizeof(struct ip);
696 ip = mtod(m, struct ip *);
697 break;
698 #ifdef INET6
699 case 6:
700 family = AF_INET6;
701 hlen = sizeof(struct ip6_hdr);
702 ip6 = mtod(m, struct ip6_hdr *);
703 break;
704 #endif
705 default:
706 m_freem(m);
707 return EAFNOSUPPORT;
708 }
709 /* clear h/w csum flags inherited from rx packet */
710 m->m_pkthdr.csum_flags = 0;
711
712 if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
713 tlen = sizeof(*th0);
714 else
715 tlen = th0->th_off << 2;
716
717 if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
718 mtod(m, caddr_t) + hlen == (caddr_t)th0) {
719 m->m_len = hlen + tlen;
720 m_freem(m->m_next);
721 m->m_next = NULL;
722 } else {
723 struct mbuf *n;
724
725 #ifdef DIAGNOSTIC
726 if (max_linkhdr + hlen + tlen > MCLBYTES) {
727 m_freem(m);
728 return EMSGSIZE;
729 }
730 #endif
731 MGETHDR(n, M_DONTWAIT, MT_HEADER);
732 if (n && max_linkhdr + hlen + tlen > MHLEN) {
733 MCLGET(n, M_DONTWAIT);
734 if ((n->m_flags & M_EXT) == 0) {
735 m_freem(n);
736 n = NULL;
737 }
738 }
739 if (!n) {
740 m_freem(m);
741 return ENOBUFS;
742 }
743
744 MCLAIM(n, &tcp_tx_mowner);
745 n->m_data += max_linkhdr;
746 n->m_len = hlen + tlen;
747 m_copyback(n, 0, hlen, mtod(m, caddr_t));
748 m_copyback(n, hlen, tlen, (caddr_t)th0);
749
750 m_freem(m);
751 m = n;
752 n = NULL;
753 }
754
755 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
756 switch (family) {
757 case AF_INET:
758 ip = mtod(m, struct ip *);
759 th = (struct tcphdr *)(ip + 1);
760 ip->ip_p = IPPROTO_TCP;
761 xchg(ip->ip_dst, ip->ip_src, struct in_addr);
762 ip->ip_p = IPPROTO_TCP;
763 break;
764 #ifdef INET6
765 case AF_INET6:
766 ip6 = mtod(m, struct ip6_hdr *);
767 th = (struct tcphdr *)(ip6 + 1);
768 ip6->ip6_nxt = IPPROTO_TCP;
769 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
770 ip6->ip6_nxt = IPPROTO_TCP;
771 break;
772 #endif
773 #if 0
774 default:
775 /* noone will visit here */
776 m_freem(m);
777 return EAFNOSUPPORT;
778 #endif
779 }
780 xchg(th->th_dport, th->th_sport, u_int16_t);
781 #undef xchg
782 tlen = 0; /*be friendly with the following code*/
783 }
784 th->th_seq = htonl(seq);
785 th->th_ack = htonl(ack);
786 th->th_x2 = 0;
787 if ((flags & TH_SYN) == 0) {
788 if (tp)
789 win >>= tp->rcv_scale;
790 if (win > TCP_MAXWIN)
791 win = TCP_MAXWIN;
792 th->th_win = htons((u_int16_t)win);
793 th->th_off = sizeof (struct tcphdr) >> 2;
794 tlen += sizeof(*th);
795 } else
796 tlen += th->th_off << 2;
797 m->m_len = hlen + tlen;
798 m->m_pkthdr.len = hlen + tlen;
799 m->m_pkthdr.rcvif = (struct ifnet *) 0;
800 th->th_flags = flags;
801 th->th_urp = 0;
802
803 switch (family) {
804 #ifdef INET
805 case AF_INET:
806 {
807 struct ipovly *ipov = (struct ipovly *)ip;
808 bzero(ipov->ih_x1, sizeof ipov->ih_x1);
809 ipov->ih_len = htons((u_int16_t)tlen);
810
811 th->th_sum = 0;
812 th->th_sum = in_cksum(m, hlen + tlen);
813 ip->ip_len = htons(hlen + tlen);
814 ip->ip_ttl = ip_defttl;
815 break;
816 }
817 #endif
818 #ifdef INET6
819 case AF_INET6:
820 {
821 th->th_sum = 0;
822 th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
823 tlen);
824 ip6->ip6_plen = htons(tlen);
825 if (tp && tp->t_in6pcb) {
826 struct ifnet *oifp;
827 ro = (struct route *)&tp->t_in6pcb->in6p_route;
828 oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
829 ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
830 } else
831 ip6->ip6_hlim = ip6_defhlim;
832 ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
833 if (ip6_auto_flowlabel) {
834 ip6->ip6_flow |=
835 (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
836 }
837 break;
838 }
839 #endif
840 }
841
842 if (tp && tp->t_inpcb)
843 so = tp->t_inpcb->inp_socket;
844 #ifdef INET6
845 else if (tp && tp->t_in6pcb)
846 so = tp->t_in6pcb->in6p_socket;
847 #endif
848 else
849 so = NULL;
850
851 if (tp != NULL && tp->t_inpcb != NULL) {
852 ro = &tp->t_inpcb->inp_route;
853 #ifdef DIAGNOSTIC
854 if (family != AF_INET)
855 panic("tcp_respond: address family mismatch");
856 if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
857 panic("tcp_respond: ip_dst %x != inp_faddr %x",
858 ntohl(ip->ip_dst.s_addr),
859 ntohl(tp->t_inpcb->inp_faddr.s_addr));
860 }
861 #endif
862 }
863 #ifdef INET6
864 else if (tp != NULL && tp->t_in6pcb != NULL) {
865 ro = (struct route *)&tp->t_in6pcb->in6p_route;
866 #ifdef DIAGNOSTIC
867 if (family == AF_INET) {
868 if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
869 panic("tcp_respond: not mapped addr");
870 if (bcmp(&ip->ip_dst,
871 &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
872 sizeof(ip->ip_dst)) != 0) {
873 panic("tcp_respond: ip_dst != in6p_faddr");
874 }
875 } else if (family == AF_INET6) {
876 if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
877 &tp->t_in6pcb->in6p_faddr))
878 panic("tcp_respond: ip6_dst != in6p_faddr");
879 } else
880 panic("tcp_respond: address family mismatch");
881 #endif
882 }
883 #endif
884 else
885 ro = NULL;
886
887 switch (family) {
888 #ifdef INET
889 case AF_INET:
890 error = ip_output(m, NULL, ro,
891 (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
892 (struct ip_moptions *)0, so);
893 break;
894 #endif
895 #ifdef INET6
896 case AF_INET6:
897 error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
898 (struct ip6_moptions *)0, so, NULL);
899 break;
900 #endif
901 default:
902 error = EAFNOSUPPORT;
903 break;
904 }
905
906 return (error);
907 }
908
909 /*
910 * Template TCPCB. Rather than zeroing a new TCPCB and initializing
911 * a bunch of members individually, we maintain this template for the
912 * static and mostly-static components of the TCPCB, and copy it into
913 * the new TCPCB instead.
914 */
915 static struct tcpcb tcpcb_template = {
916 /*
917 * If TCP_NTIMERS ever changes, we'll need to update this
918 * initializer.
919 */
920 .t_timer = {
921 CALLOUT_INITIALIZER,
922 CALLOUT_INITIALIZER,
923 CALLOUT_INITIALIZER,
924 CALLOUT_INITIALIZER,
925 },
926 .t_delack_ch = CALLOUT_INITIALIZER,
927
928 .t_srtt = TCPTV_SRTTBASE,
929 .t_rttmin = TCPTV_MIN,
930
931 .snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
932 .snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
933 .snd_numholes = 0,
934
935 .t_partialacks = -1,
936 };
937
938 /*
939 * Updates the TCPCB template whenever a parameter that would affect
940 * the template is changed.
941 */
942 void
943 tcp_tcpcb_template(void)
944 {
945 struct tcpcb *tp = &tcpcb_template;
946 int flags;
947
948 tp->t_peermss = tcp_mssdflt;
949 tp->t_ourmss = tcp_mssdflt;
950 tp->t_segsz = tcp_mssdflt;
951
952 flags = 0;
953 if (tcp_do_rfc1323 && tcp_do_win_scale)
954 flags |= TF_REQ_SCALE;
955 if (tcp_do_rfc1323 && tcp_do_timestamps)
956 flags |= TF_REQ_TSTMP;
957 tp->t_flags = flags;
958
959 /*
960 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
961 * rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
962 * reasonable initial retransmit time.
963 */
964 tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
965 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
966 TCPTV_MIN, TCPTV_REXMTMAX);
967 }
968
969 /*
970 * Create a new TCP control block, making an
971 * empty reassembly queue and hooking it to the argument
972 * protocol control block.
973 */
974 /* family selects inpcb, or in6pcb */
975 struct tcpcb *
976 tcp_newtcpcb(int family, void *aux)
977 {
978 struct tcpcb *tp;
979 int i;
980
981 /* XXX Consider using a pool_cache for speed. */
982 tp = pool_get(&tcpcb_pool, PR_NOWAIT); /* splsoftnet via tcp_usrreq */
983 if (tp == NULL)
984 return (NULL);
985 memcpy(tp, &tcpcb_template, sizeof(*tp));
986 TAILQ_INIT(&tp->segq);
987 TAILQ_INIT(&tp->timeq);
988 tp->t_family = family; /* may be overridden later on */
989 TAILQ_INIT(&tp->snd_holes);
990 LIST_INIT(&tp->t_sc); /* XXX can template this */
991
992 /* Don't sweat this loop; hopefully the compiler will unroll it. */
993 for (i = 0; i < TCPT_NTIMERS; i++)
994 TCP_TIMER_INIT(tp, i);
995
996 switch (family) {
997 case AF_INET:
998 {
999 struct inpcb *inp = (struct inpcb *)aux;
1000
1001 inp->inp_ip.ip_ttl = ip_defttl;
1002 inp->inp_ppcb = (caddr_t)tp;
1003
1004 tp->t_inpcb = inp;
1005 tp->t_mtudisc = ip_mtudisc;
1006 break;
1007 }
1008 #ifdef INET6
1009 case AF_INET6:
1010 {
1011 struct in6pcb *in6p = (struct in6pcb *)aux;
1012
1013 in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
1014 in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
1015 : NULL);
1016 in6p->in6p_ppcb = (caddr_t)tp;
1017
1018 tp->t_in6pcb = in6p;
1019 /* for IPv6, always try to run path MTU discovery */
1020 tp->t_mtudisc = 1;
1021 break;
1022 }
1023 #endif /* INET6 */
1024 default:
1025 pool_put(&tcpcb_pool, tp); /* splsoftnet via tcp_usrreq */
1026 return (NULL);
1027 }
1028
1029 /*
1030 * Initialize our timebase. When we send timestamps, we take
1031 * the delta from tcp_now -- this means each connection always
1032 * gets a timebase of 0, which makes it, among other things,
1033 * more difficult to determine how long a system has been up,
1034 * and thus how many TCP sequence increments have occurred.
1035 */
1036 tp->ts_timebase = tcp_now;
1037
1038 return (tp);
1039 }
1040
1041 /*
1042 * Drop a TCP connection, reporting
1043 * the specified error. If connection is synchronized,
1044 * then send a RST to peer.
1045 */
1046 struct tcpcb *
1047 tcp_drop(struct tcpcb *tp, int errno)
1048 {
1049 struct socket *so = NULL;
1050
1051 #ifdef DIAGNOSTIC
1052 if (tp->t_inpcb && tp->t_in6pcb)
1053 panic("tcp_drop: both t_inpcb and t_in6pcb are set");
1054 #endif
1055 #ifdef INET
1056 if (tp->t_inpcb)
1057 so = tp->t_inpcb->inp_socket;
1058 #endif
1059 #ifdef INET6
1060 if (tp->t_in6pcb)
1061 so = tp->t_in6pcb->in6p_socket;
1062 #endif
1063 if (!so)
1064 return NULL;
1065
1066 if (TCPS_HAVERCVDSYN(tp->t_state)) {
1067 tp->t_state = TCPS_CLOSED;
1068 (void) tcp_output(tp);
1069 tcpstat.tcps_drops++;
1070 } else
1071 tcpstat.tcps_conndrops++;
1072 if (errno == ETIMEDOUT && tp->t_softerror)
1073 errno = tp->t_softerror;
1074 so->so_error = errno;
1075 return (tcp_close(tp));
1076 }
1077
1078 /*
1079 * Return whether this tcpcb is marked as dead, indicating
1080 * to the calling timer function that no further action should
1081 * be taken, as we are about to release this tcpcb. The release
1082 * of the storage will be done if this is the last timer running.
1083 *
1084 * This should be called from the callout handler function after
1085 * callout_ack() is done, so that the number of invoking timer
1086 * functions is 0.
1087 */
1088 int
1089 tcp_isdead(struct tcpcb *tp)
1090 {
1091 int dead = (tp->t_flags & TF_DEAD);
1092
1093 if (__predict_false(dead)) {
1094 if (tcp_timers_invoking(tp) > 0)
1095 /* not quite there yet -- count separately? */
1096 return dead;
1097 tcpstat.tcps_delayed_free++;
1098 pool_put(&tcpcb_pool, tp); /* splsoftnet via tcp_timer.c */
1099 }
1100 return dead;
1101 }
1102
1103 /*
1104 * Close a TCP control block:
1105 * discard all space held by the tcp
1106 * discard internet protocol block
1107 * wake up any sleepers
1108 */
1109 struct tcpcb *
1110 tcp_close(struct tcpcb *tp)
1111 {
1112 struct inpcb *inp;
1113 #ifdef INET6
1114 struct in6pcb *in6p;
1115 #endif
1116 struct socket *so;
1117 #ifdef RTV_RTT
1118 struct rtentry *rt;
1119 #endif
1120 struct route *ro;
1121 int s;
1122
1123 inp = tp->t_inpcb;
1124 #ifdef INET6
1125 in6p = tp->t_in6pcb;
1126 #endif
1127 so = NULL;
1128 ro = NULL;
1129 if (inp) {
1130 so = inp->inp_socket;
1131 ro = &inp->inp_route;
1132 }
1133 #ifdef INET6
1134 else if (in6p) {
1135 so = in6p->in6p_socket;
1136 ro = (struct route *)&in6p->in6p_route;
1137 }
1138 #endif
1139
1140 #ifdef RTV_RTT
1141 /*
1142 * If we sent enough data to get some meaningful characteristics,
1143 * save them in the routing entry. 'Enough' is arbitrarily
1144 * defined as the sendpipesize (default 4K) * 16. This would
1145 * give us 16 rtt samples assuming we only get one sample per
1146 * window (the usual case on a long haul net). 16 samples is
1147 * enough for the srtt filter to converge to within 5% of the correct
1148 * value; fewer samples and we could save a very bogus rtt.
1149 *
1150 * Don't update the default route's characteristics and don't
1151 * update anything that the user "locked".
1152 */
1153 if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
1154 ro && (rt = ro->ro_rt) &&
1155 !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
1156 u_long i = 0;
1157
1158 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1159 i = tp->t_srtt *
1160 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1161 if (rt->rt_rmx.rmx_rtt && i)
1162 /*
1163 * filter this update to half the old & half
1164 * the new values, converting scale.
1165 * See route.h and tcp_var.h for a
1166 * description of the scaling constants.
1167 */
1168 rt->rt_rmx.rmx_rtt =
1169 (rt->rt_rmx.rmx_rtt + i) / 2;
1170 else
1171 rt->rt_rmx.rmx_rtt = i;
1172 }
1173 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1174 i = tp->t_rttvar *
1175 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1176 if (rt->rt_rmx.rmx_rttvar && i)
1177 rt->rt_rmx.rmx_rttvar =
1178 (rt->rt_rmx.rmx_rttvar + i) / 2;
1179 else
1180 rt->rt_rmx.rmx_rttvar = i;
1181 }
1182 /*
1183 * update the pipelimit (ssthresh) if it has been updated
1184 * already or if a pipesize was specified & the threshhold
1185 * got below half the pipesize. I.e., wait for bad news
1186 * before we start updating, then update on both good
1187 * and bad news.
1188 */
1189 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1190 (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
1191 i < (rt->rt_rmx.rmx_sendpipe / 2)) {
1192 /*
1193 * convert the limit from user data bytes to
1194 * packets then to packet data bytes.
1195 */
1196 i = (i + tp->t_segsz / 2) / tp->t_segsz;
1197 if (i < 2)
1198 i = 2;
1199 i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
1200 if (rt->rt_rmx.rmx_ssthresh)
1201 rt->rt_rmx.rmx_ssthresh =
1202 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1203 else
1204 rt->rt_rmx.rmx_ssthresh = i;
1205 }
1206 }
1207 #endif /* RTV_RTT */
1208 /* free the reassembly queue, if any */
1209 TCP_REASS_LOCK(tp);
1210 (void) tcp_freeq(tp);
1211 TCP_REASS_UNLOCK(tp);
1212
1213 /* free the SACK holes list. */
1214 tcp_free_sackholes(tp);
1215
1216 tcp_canceltimers(tp);
1217 TCP_CLEAR_DELACK(tp);
1218 syn_cache_cleanup(tp);
1219
1220 if (tp->t_template) {
1221 m_free(tp->t_template);
1222 tp->t_template = NULL;
1223 }
1224 if (tcp_timers_invoking(tp))
1225 tp->t_flags |= TF_DEAD;
1226 else
1227 {
1228 s = splsoftnet(); /* do we trust all callers of tcp_close()? */
1229 pool_put(&tcpcb_pool, tp);
1230 splx(s);
1231 }
1232
1233 if (inp) {
1234 inp->inp_ppcb = 0;
1235 soisdisconnected(so);
1236 in_pcbdetach(inp);
1237 }
1238 #ifdef INET6
1239 else if (in6p) {
1240 in6p->in6p_ppcb = 0;
1241 soisdisconnected(so);
1242 in6_pcbdetach(in6p);
1243 }
1244 #endif
1245 tcpstat.tcps_closed++;
1246 return ((struct tcpcb *)0);
1247 }
1248
1249 int
1250 tcp_freeq(tp)
1251 struct tcpcb *tp;
1252 {
1253 struct ipqent *qe;
1254 int rv = 0;
1255 #ifdef TCPREASS_DEBUG
1256 int i = 0;
1257 #endif
1258
1259 TCP_REASS_LOCK_CHECK(tp);
1260
1261 while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
1262 #ifdef TCPREASS_DEBUG
1263 printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
1264 tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
1265 qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
1266 #endif
1267 TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
1268 TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
1269 m_freem(qe->ipqe_m);
1270 tcpipqent_free(qe);
1271 rv = 1;
1272 }
1273 tp->t_segqlen = 0;
1274 KASSERT(TAILQ_EMPTY(&tp->timeq));
1275 return (rv);
1276 }
1277
1278 /*
1279 * Protocol drain routine. Called when memory is in short supply.
1280 */
1281 void
1282 tcp_drain(void)
1283 {
1284 struct inpcb_hdr *inph;
1285 struct tcpcb *tp;
1286
1287 /*
1288 * Free the sequence queue of all TCP connections.
1289 */
1290 CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
1291 switch (inph->inph_af) {
1292 case AF_INET:
1293 tp = intotcpcb((struct inpcb *)inph);
1294 break;
1295 #ifdef INET6
1296 case AF_INET6:
1297 tp = in6totcpcb((struct in6pcb *)inph);
1298 break;
1299 #endif
1300 default:
1301 tp = NULL;
1302 break;
1303 }
1304 if (tp != NULL) {
1305 /*
1306 * We may be called from a device's interrupt
1307 * context. If the tcpcb is already busy,
1308 * just bail out now.
1309 */
1310 if (tcp_reass_lock_try(tp) == 0)
1311 continue;
1312 if (tcp_freeq(tp))
1313 tcpstat.tcps_connsdrained++;
1314 TCP_REASS_UNLOCK(tp);
1315 }
1316 }
1317 }
1318
1319 /*
1320 * Notify a tcp user of an asynchronous error;
1321 * store error as soft error, but wake up user
1322 * (for now, won't do anything until can select for soft error).
1323 */
1324 void
1325 tcp_notify(struct inpcb *inp, int error)
1326 {
1327 struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
1328 struct socket *so = inp->inp_socket;
1329
1330 /*
1331 * Ignore some errors if we are hooked up.
1332 * If connection hasn't completed, has retransmitted several times,
1333 * and receives a second error, give up now. This is better
1334 * than waiting a long time to establish a connection that
1335 * can never complete.
1336 */
1337 if (tp->t_state == TCPS_ESTABLISHED &&
1338 (error == EHOSTUNREACH || error == ENETUNREACH ||
1339 error == EHOSTDOWN)) {
1340 return;
1341 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1342 tp->t_rxtshift > 3 && tp->t_softerror)
1343 so->so_error = error;
1344 else
1345 tp->t_softerror = error;
1346 wakeup((caddr_t) &so->so_timeo);
1347 sorwakeup(so);
1348 sowwakeup(so);
1349 }
1350
1351 #ifdef INET6
1352 void
1353 tcp6_notify(struct in6pcb *in6p, int error)
1354 {
1355 struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
1356 struct socket *so = in6p->in6p_socket;
1357
1358 /*
1359 * Ignore some errors if we are hooked up.
1360 * If connection hasn't completed, has retransmitted several times,
1361 * and receives a second error, give up now. This is better
1362 * than waiting a long time to establish a connection that
1363 * can never complete.
1364 */
1365 if (tp->t_state == TCPS_ESTABLISHED &&
1366 (error == EHOSTUNREACH || error == ENETUNREACH ||
1367 error == EHOSTDOWN)) {
1368 return;
1369 } else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
1370 tp->t_rxtshift > 3 && tp->t_softerror)
1371 so->so_error = error;
1372 else
1373 tp->t_softerror = error;
1374 wakeup((caddr_t) &so->so_timeo);
1375 sorwakeup(so);
1376 sowwakeup(so);
1377 }
1378 #endif
1379
1380 #ifdef INET6
1381 void
1382 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
1383 {
1384 struct tcphdr th;
1385 void (*notify)(struct in6pcb *, int) = tcp6_notify;
1386 int nmatch;
1387 struct ip6_hdr *ip6;
1388 const struct sockaddr_in6 *sa6_src = NULL;
1389 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
1390 struct mbuf *m;
1391 int off;
1392
1393 if (sa->sa_family != AF_INET6 ||
1394 sa->sa_len != sizeof(struct sockaddr_in6))
1395 return;
1396 if ((unsigned)cmd >= PRC_NCMDS)
1397 return;
1398 else if (cmd == PRC_QUENCH) {
1399 /*
1400 * Don't honor ICMP Source Quench messages meant for
1401 * TCP connections.
1402 */
1403 return;
1404 } else if (PRC_IS_REDIRECT(cmd))
1405 notify = in6_rtchange, d = NULL;
1406 else if (cmd == PRC_MSGSIZE)
1407 ; /* special code is present, see below */
1408 else if (cmd == PRC_HOSTDEAD)
1409 d = NULL;
1410 else if (inet6ctlerrmap[cmd] == 0)
1411 return;
1412
1413 /* if the parameter is from icmp6, decode it. */
1414 if (d != NULL) {
1415 struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
1416 m = ip6cp->ip6c_m;
1417 ip6 = ip6cp->ip6c_ip6;
1418 off = ip6cp->ip6c_off;
1419 sa6_src = ip6cp->ip6c_src;
1420 } else {
1421 m = NULL;
1422 ip6 = NULL;
1423 sa6_src = &sa6_any;
1424 off = 0;
1425 }
1426
1427 if (ip6) {
1428 /*
1429 * XXX: We assume that when ip6 is non NULL,
1430 * M and OFF are valid.
1431 */
1432
1433 /* check if we can safely examine src and dst ports */
1434 if (m->m_pkthdr.len < off + sizeof(th)) {
1435 if (cmd == PRC_MSGSIZE)
1436 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
1437 return;
1438 }
1439
1440 bzero(&th, sizeof(th));
1441 m_copydata(m, off, sizeof(th), (caddr_t)&th);
1442
1443 if (cmd == PRC_MSGSIZE) {
1444 int valid = 0;
1445
1446 /*
1447 * Check to see if we have a valid TCP connection
1448 * corresponding to the address in the ICMPv6 message
1449 * payload.
1450 */
1451 if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
1452 th.th_dport, (const struct in6_addr *)&sa6_src->sin6_addr,
1453 th.th_sport, 0))
1454 valid++;
1455
1456 /*
1457 * Depending on the value of "valid" and routing table
1458 * size (mtudisc_{hi,lo}wat), we will:
1459 * - recalcurate the new MTU and create the
1460 * corresponding routing entry, or
1461 * - ignore the MTU change notification.
1462 */
1463 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
1464
1465 /*
1466 * no need to call in6_pcbnotify, it should have been
1467 * called via callback if necessary
1468 */
1469 return;
1470 }
1471
1472 nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
1473 (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
1474 if (nmatch == 0 && syn_cache_count &&
1475 (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
1476 inet6ctlerrmap[cmd] == ENETUNREACH ||
1477 inet6ctlerrmap[cmd] == EHOSTDOWN))
1478 syn_cache_unreach((const struct sockaddr *)sa6_src,
1479 sa, &th);
1480 } else {
1481 (void) in6_pcbnotify(&tcbtable, sa, 0,
1482 (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
1483 }
1484 }
1485 #endif
1486
1487 #ifdef INET
1488 /* assumes that ip header and tcp header are contiguous on mbuf */
1489 void *
1490 tcp_ctlinput(int cmd, struct sockaddr *sa, void *v)
1491 {
1492 struct ip *ip = v;
1493 struct tcphdr *th;
1494 struct icmp *icp;
1495 extern const int inetctlerrmap[];
1496 void (*notify)(struct inpcb *, int) = tcp_notify;
1497 int errno;
1498 int nmatch;
1499 struct tcpcb *tp;
1500 u_int mtu;
1501 tcp_seq seq;
1502 struct inpcb *inp;
1503 #ifdef INET6
1504 struct in6pcb *in6p;
1505 struct in6_addr src6, dst6;
1506 #endif
1507
1508 if (sa->sa_family != AF_INET ||
1509 sa->sa_len != sizeof(struct sockaddr_in))
1510 return NULL;
1511 if ((unsigned)cmd >= PRC_NCMDS)
1512 return NULL;
1513 errno = inetctlerrmap[cmd];
1514 if (cmd == PRC_QUENCH)
1515 /*
1516 * Don't honor ICMP Source Quench messages meant for
1517 * TCP connections.
1518 */
1519 return NULL;
1520 else if (PRC_IS_REDIRECT(cmd))
1521 notify = in_rtchange, ip = 0;
1522 else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
1523 /*
1524 * Check to see if we have a valid TCP connection
1525 * corresponding to the address in the ICMP message
1526 * payload.
1527 *
1528 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
1529 */
1530 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1531 #ifdef INET6
1532 memset(&src6, 0, sizeof(src6));
1533 memset(&dst6, 0, sizeof(dst6));
1534 src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
1535 memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
1536 memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
1537 #endif
1538 if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
1539 th->th_dport, ip->ip_src, th->th_sport)) != NULL)
1540 #ifdef INET6
1541 in6p = NULL;
1542 #else
1543 ;
1544 #endif
1545 #ifdef INET6
1546 else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
1547 th->th_dport, &src6, th->th_sport, 0)) != NULL)
1548 ;
1549 #endif
1550 else
1551 return NULL;
1552
1553 /*
1554 * Now that we've validated that we are actually communicating
1555 * with the host indicated in the ICMP message, locate the
1556 * ICMP header, recalculate the new MTU, and create the
1557 * corresponding routing entry.
1558 */
1559 icp = (struct icmp *)((caddr_t)ip -
1560 offsetof(struct icmp, icmp_ip));
1561 if (inp) {
1562 if ((tp = intotcpcb(inp)) == NULL)
1563 return NULL;
1564 }
1565 #ifdef INET6
1566 else if (in6p) {
1567 if ((tp = in6totcpcb(in6p)) == NULL)
1568 return NULL;
1569 }
1570 #endif
1571 else
1572 return NULL;
1573 seq = ntohl(th->th_seq);
1574 if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
1575 return NULL;
1576 /*
1577 * If the ICMP message advertises a Next-Hop MTU
1578 * equal or larger than the maximum packet size we have
1579 * ever sent, drop the message.
1580 */
1581 mtu = (u_int)ntohs(icp->icmp_nextmtu);
1582 if (mtu >= tp->t_pmtud_mtu_sent)
1583 return NULL;
1584 if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
1585 /*
1586 * Calculate new MTU, and create corresponding
1587 * route (traditional PMTUD).
1588 */
1589 tp->t_flags &= ~TF_PMTUD_PEND;
1590 icmp_mtudisc(icp, ip->ip_dst);
1591 } else {
1592 /*
1593 * Record the information got in the ICMP
1594 * message; act on it later.
1595 * If we had already recorded an ICMP message,
1596 * replace the old one only if the new message
1597 * refers to an older TCP segment
1598 */
1599 if (tp->t_flags & TF_PMTUD_PEND) {
1600 if (SEQ_LT(tp->t_pmtud_th_seq, seq))
1601 return NULL;
1602 } else
1603 tp->t_flags |= TF_PMTUD_PEND;
1604 tp->t_pmtud_th_seq = seq;
1605 tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
1606 tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
1607 tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
1608 }
1609 return NULL;
1610 } else if (cmd == PRC_HOSTDEAD)
1611 ip = 0;
1612 else if (errno == 0)
1613 return NULL;
1614 if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
1615 th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
1616 nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
1617 th->th_dport, ip->ip_src, th->th_sport, errno, notify);
1618 if (nmatch == 0 && syn_cache_count &&
1619 (inetctlerrmap[cmd] == EHOSTUNREACH ||
1620 inetctlerrmap[cmd] == ENETUNREACH ||
1621 inetctlerrmap[cmd] == EHOSTDOWN)) {
1622 struct sockaddr_in sin;
1623 bzero(&sin, sizeof(sin));
1624 sin.sin_len = sizeof(sin);
1625 sin.sin_family = AF_INET;
1626 sin.sin_port = th->th_sport;
1627 sin.sin_addr = ip->ip_src;
1628 syn_cache_unreach((struct sockaddr *)&sin, sa, th);
1629 }
1630
1631 /* XXX mapped address case */
1632 } else
1633 in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
1634 notify);
1635 return NULL;
1636 }
1637
1638 /*
1639 * When a source quench is received, we are being notified of congestion.
1640 * Close the congestion window down to the Loss Window (one segment).
1641 * We will gradually open it again as we proceed.
1642 */
1643 void
1644 tcp_quench(struct inpcb *inp, int errno)
1645 {
1646 struct tcpcb *tp = intotcpcb(inp);
1647
1648 if (tp)
1649 tp->snd_cwnd = tp->t_segsz;
1650 }
1651 #endif
1652
1653 #ifdef INET6
1654 void
1655 tcp6_quench(struct in6pcb *in6p, int errno)
1656 {
1657 struct tcpcb *tp = in6totcpcb(in6p);
1658
1659 if (tp)
1660 tp->snd_cwnd = tp->t_segsz;
1661 }
1662 #endif
1663
1664 #ifdef INET
1665 /*
1666 * Path MTU Discovery handlers.
1667 */
1668 void
1669 tcp_mtudisc_callback(struct in_addr faddr)
1670 {
1671 #ifdef INET6
1672 struct in6_addr in6;
1673 #endif
1674
1675 in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
1676 #ifdef INET6
1677 memset(&in6, 0, sizeof(in6));
1678 in6.s6_addr16[5] = 0xffff;
1679 memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
1680 tcp6_mtudisc_callback(&in6);
1681 #endif
1682 }
1683
1684 /*
1685 * On receipt of path MTU corrections, flush old route and replace it
1686 * with the new one. Retransmit all unacknowledged packets, to ensure
1687 * that all packets will be received.
1688 */
1689 void
1690 tcp_mtudisc(struct inpcb *inp, int errno)
1691 {
1692 struct tcpcb *tp = intotcpcb(inp);
1693 struct rtentry *rt = in_pcbrtentry(inp);
1694
1695 if (tp != 0) {
1696 if (rt != 0) {
1697 /*
1698 * If this was not a host route, remove and realloc.
1699 */
1700 if ((rt->rt_flags & RTF_HOST) == 0) {
1701 in_rtchange(inp, errno);
1702 if ((rt = in_pcbrtentry(inp)) == 0)
1703 return;
1704 }
1705
1706 /*
1707 * Slow start out of the error condition. We
1708 * use the MTU because we know it's smaller
1709 * than the previously transmitted segment.
1710 *
1711 * Note: This is more conservative than the
1712 * suggestion in draft-floyd-incr-init-win-03.
1713 */
1714 if (rt->rt_rmx.rmx_mtu != 0)
1715 tp->snd_cwnd =
1716 TCP_INITIAL_WINDOW(tcp_init_win,
1717 rt->rt_rmx.rmx_mtu);
1718 }
1719
1720 /*
1721 * Resend unacknowledged packets.
1722 */
1723 tp->snd_nxt = tp->snd_una;
1724 tcp_output(tp);
1725 }
1726 }
1727 #endif
1728
1729 #ifdef INET6
1730 /*
1731 * Path MTU Discovery handlers.
1732 */
1733 void
1734 tcp6_mtudisc_callback(struct in6_addr *faddr)
1735 {
1736 struct sockaddr_in6 sin6;
1737
1738 bzero(&sin6, sizeof(sin6));
1739 sin6.sin6_family = AF_INET6;
1740 sin6.sin6_len = sizeof(struct sockaddr_in6);
1741 sin6.sin6_addr = *faddr;
1742 (void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
1743 (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
1744 }
1745
1746 void
1747 tcp6_mtudisc(struct in6pcb *in6p, int errno)
1748 {
1749 struct tcpcb *tp = in6totcpcb(in6p);
1750 struct rtentry *rt = in6_pcbrtentry(in6p);
1751
1752 if (tp != 0) {
1753 if (rt != 0) {
1754 /*
1755 * If this was not a host route, remove and realloc.
1756 */
1757 if ((rt->rt_flags & RTF_HOST) == 0) {
1758 in6_rtchange(in6p, errno);
1759 if ((rt = in6_pcbrtentry(in6p)) == 0)
1760 return;
1761 }
1762
1763 /*
1764 * Slow start out of the error condition. We
1765 * use the MTU because we know it's smaller
1766 * than the previously transmitted segment.
1767 *
1768 * Note: This is more conservative than the
1769 * suggestion in draft-floyd-incr-init-win-03.
1770 */
1771 if (rt->rt_rmx.rmx_mtu != 0)
1772 tp->snd_cwnd =
1773 TCP_INITIAL_WINDOW(tcp_init_win,
1774 rt->rt_rmx.rmx_mtu);
1775 }
1776
1777 /*
1778 * Resend unacknowledged packets.
1779 */
1780 tp->snd_nxt = tp->snd_una;
1781 tcp_output(tp);
1782 }
1783 }
1784 #endif /* INET6 */
1785
1786 /*
1787 * Compute the MSS to advertise to the peer. Called only during
1788 * the 3-way handshake. If we are the server (peer initiated
1789 * connection), we are called with a pointer to the interface
1790 * on which the SYN packet arrived. If we are the client (we
1791 * initiated connection), we are called with a pointer to the
1792 * interface out which this connection should go.
1793 *
1794 * NOTE: Do not subtract IP option/extension header size nor IPsec
1795 * header size from MSS advertisement. MSS option must hold the maximum
1796 * segment size we can accept, so it must always be:
1797 * max(if mtu) - ip header - tcp header
1798 */
1799 u_long
1800 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
1801 {
1802 extern u_long in_maxmtu;
1803 u_long mss = 0;
1804 u_long hdrsiz;
1805
1806 /*
1807 * In order to avoid defeating path MTU discovery on the peer,
1808 * we advertise the max MTU of all attached networks as our MSS,
1809 * per RFC 1191, section 3.1.
1810 *
1811 * We provide the option to advertise just the MTU of
1812 * the interface on which we hope this connection will
1813 * be receiving. If we are responding to a SYN, we
1814 * will have a pretty good idea about this, but when
1815 * initiating a connection there is a bit more doubt.
1816 *
1817 * We also need to ensure that loopback has a large enough
1818 * MSS, as the loopback MTU is never included in in_maxmtu.
1819 */
1820
1821 if (ifp != NULL)
1822 switch (af) {
1823 case AF_INET:
1824 mss = ifp->if_mtu;
1825 break;
1826 #ifdef INET6
1827 case AF_INET6:
1828 mss = IN6_LINKMTU(ifp);
1829 break;
1830 #endif
1831 }
1832
1833 if (tcp_mss_ifmtu == 0)
1834 switch (af) {
1835 case AF_INET:
1836 mss = max(in_maxmtu, mss);
1837 break;
1838 #ifdef INET6
1839 case AF_INET6:
1840 mss = max(in6_maxmtu, mss);
1841 break;
1842 #endif
1843 }
1844
1845 switch (af) {
1846 case AF_INET:
1847 hdrsiz = sizeof(struct ip);
1848 break;
1849 #ifdef INET6
1850 case AF_INET6:
1851 hdrsiz = sizeof(struct ip6_hdr);
1852 break;
1853 #endif
1854 default:
1855 hdrsiz = 0;
1856 break;
1857 }
1858 hdrsiz += sizeof(struct tcphdr);
1859 if (mss > hdrsiz)
1860 mss -= hdrsiz;
1861
1862 mss = max(tcp_mssdflt, mss);
1863 return (mss);
1864 }
1865
1866 /*
1867 * Set connection variables based on the peer's advertised MSS.
1868 * We are passed the TCPCB for the actual connection. If we
1869 * are the server, we are called by the compressed state engine
1870 * when the 3-way handshake is complete. If we are the client,
1871 * we are called when we receive the SYN,ACK from the server.
1872 *
1873 * NOTE: Our advertised MSS value must be initialized in the TCPCB
1874 * before this routine is called!
1875 */
1876 void
1877 tcp_mss_from_peer(struct tcpcb *tp, int offer)
1878 {
1879 struct socket *so;
1880 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1881 struct rtentry *rt;
1882 #endif
1883 u_long bufsize;
1884 int mss;
1885
1886 #ifdef DIAGNOSTIC
1887 if (tp->t_inpcb && tp->t_in6pcb)
1888 panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
1889 #endif
1890 so = NULL;
1891 rt = NULL;
1892 #ifdef INET
1893 if (tp->t_inpcb) {
1894 so = tp->t_inpcb->inp_socket;
1895 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1896 rt = in_pcbrtentry(tp->t_inpcb);
1897 #endif
1898 }
1899 #endif
1900 #ifdef INET6
1901 if (tp->t_in6pcb) {
1902 so = tp->t_in6pcb->in6p_socket;
1903 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
1904 rt = in6_pcbrtentry(tp->t_in6pcb);
1905 #endif
1906 }
1907 #endif
1908
1909 /*
1910 * As per RFC1122, use the default MSS value, unless they
1911 * sent us an offer. Do not accept offers less than 256 bytes.
1912 */
1913 mss = tcp_mssdflt;
1914 if (offer)
1915 mss = offer;
1916 mss = max(mss, 256); /* sanity */
1917 tp->t_peermss = mss;
1918 mss -= tcp_optlen(tp);
1919 #ifdef INET
1920 if (tp->t_inpcb)
1921 mss -= ip_optlen(tp->t_inpcb);
1922 #endif
1923 #ifdef INET6
1924 if (tp->t_in6pcb)
1925 mss -= ip6_optlen(tp->t_in6pcb);
1926 #endif
1927
1928 /*
1929 * If there's a pipesize, change the socket buffer to that size.
1930 * Make the socket buffer an integral number of MSS units. If
1931 * the MSS is larger than the socket buffer, artificially decrease
1932 * the MSS.
1933 */
1934 #ifdef RTV_SPIPE
1935 if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
1936 bufsize = rt->rt_rmx.rmx_sendpipe;
1937 else
1938 #endif
1939 {
1940 KASSERT(so != NULL);
1941 bufsize = so->so_snd.sb_hiwat;
1942 }
1943 if (bufsize < mss)
1944 mss = bufsize;
1945 else {
1946 bufsize = roundup(bufsize, mss);
1947 if (bufsize > sb_max)
1948 bufsize = sb_max;
1949 (void) sbreserve(&so->so_snd, bufsize, so);
1950 }
1951 tp->t_segsz = mss;
1952
1953 #ifdef RTV_SSTHRESH
1954 if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
1955 /*
1956 * There's some sort of gateway or interface buffer
1957 * limit on the path. Use this to set the slow
1958 * start threshold, but set the threshold to no less
1959 * than 2 * MSS.
1960 */
1961 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1962 }
1963 #endif
1964 }
1965
1966 /*
1967 * Processing necessary when a TCP connection is established.
1968 */
1969 void
1970 tcp_established(struct tcpcb *tp)
1971 {
1972 struct socket *so;
1973 #ifdef RTV_RPIPE
1974 struct rtentry *rt;
1975 #endif
1976 u_long bufsize;
1977
1978 #ifdef DIAGNOSTIC
1979 if (tp->t_inpcb && tp->t_in6pcb)
1980 panic("tcp_established: both t_inpcb and t_in6pcb are set");
1981 #endif
1982 so = NULL;
1983 rt = NULL;
1984 #ifdef INET
1985 if (tp->t_inpcb) {
1986 so = tp->t_inpcb->inp_socket;
1987 #if defined(RTV_RPIPE)
1988 rt = in_pcbrtentry(tp->t_inpcb);
1989 #endif
1990 }
1991 #endif
1992 #ifdef INET6
1993 if (tp->t_in6pcb) {
1994 so = tp->t_in6pcb->in6p_socket;
1995 #if defined(RTV_RPIPE)
1996 rt = in6_pcbrtentry(tp->t_in6pcb);
1997 #endif
1998 }
1999 #endif
2000
2001 tp->t_state = TCPS_ESTABLISHED;
2002 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
2003
2004 #ifdef RTV_RPIPE
2005 if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
2006 bufsize = rt->rt_rmx.rmx_recvpipe;
2007 else
2008 #endif
2009 {
2010 KASSERT(so != NULL);
2011 bufsize = so->so_rcv.sb_hiwat;
2012 }
2013 if (bufsize > tp->t_ourmss) {
2014 bufsize = roundup(bufsize, tp->t_ourmss);
2015 if (bufsize > sb_max)
2016 bufsize = sb_max;
2017 (void) sbreserve(&so->so_rcv, bufsize, so);
2018 }
2019 }
2020
2021 /*
2022 * Check if there's an initial rtt or rttvar. Convert from the
2023 * route-table units to scaled multiples of the slow timeout timer.
2024 * Called only during the 3-way handshake.
2025 */
2026 void
2027 tcp_rmx_rtt(struct tcpcb *tp)
2028 {
2029 #ifdef RTV_RTT
2030 struct rtentry *rt = NULL;
2031 int rtt;
2032
2033 #ifdef DIAGNOSTIC
2034 if (tp->t_inpcb && tp->t_in6pcb)
2035 panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
2036 #endif
2037 #ifdef INET
2038 if (tp->t_inpcb)
2039 rt = in_pcbrtentry(tp->t_inpcb);
2040 #endif
2041 #ifdef INET6
2042 if (tp->t_in6pcb)
2043 rt = in6_pcbrtentry(tp->t_in6pcb);
2044 #endif
2045 if (rt == NULL)
2046 return;
2047
2048 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
2049 /*
2050 * XXX The lock bit for MTU indicates that the value
2051 * is also a minimum value; this is subject to time.
2052 */
2053 if (rt->rt_rmx.rmx_locks & RTV_RTT)
2054 TCPT_RANGESET(tp->t_rttmin,
2055 rtt / (RTM_RTTUNIT / PR_SLOWHZ),
2056 TCPTV_MIN, TCPTV_REXMTMAX);
2057 tp->t_srtt = rtt /
2058 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
2059 if (rt->rt_rmx.rmx_rttvar) {
2060 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
2061 ((RTM_RTTUNIT / PR_SLOWHZ) >>
2062 (TCP_RTTVAR_SHIFT + 2));
2063 } else {
2064 /* Default variation is +- 1 rtt */
2065 tp->t_rttvar =
2066 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
2067 }
2068 TCPT_RANGESET(tp->t_rxtcur,
2069 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
2070 tp->t_rttmin, TCPTV_REXMTMAX);
2071 }
2072 #endif
2073 }
2074
2075 tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
2076 #if NRND > 0
2077 u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
2078 #endif
2079
2080 /*
2081 * Get a new sequence value given a tcp control block
2082 */
2083 tcp_seq
2084 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
2085 {
2086
2087 #ifdef INET
2088 if (tp->t_inpcb != NULL) {
2089 return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
2090 &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
2091 tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
2092 addin));
2093 }
2094 #endif
2095 #ifdef INET6
2096 if (tp->t_in6pcb != NULL) {
2097 return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
2098 &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
2099 tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
2100 addin));
2101 }
2102 #endif
2103 /* Not possible. */
2104 panic("tcp_new_iss");
2105 }
2106
2107 /*
2108 * This routine actually generates a new TCP initial sequence number.
2109 */
2110 tcp_seq
2111 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
2112 size_t addrsz, tcp_seq addin)
2113 {
2114 tcp_seq tcp_iss;
2115
2116 #if NRND > 0
2117 static int beenhere;
2118
2119 /*
2120 * If we haven't been here before, initialize our cryptographic
2121 * hash secret.
2122 */
2123 if (beenhere == 0) {
2124 rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
2125 RND_EXTRACT_ANY);
2126 beenhere = 1;
2127 }
2128
2129 if (tcp_do_rfc1948) {
2130 MD5_CTX ctx;
2131 u_int8_t hash[16]; /* XXX MD5 knowledge */
2132
2133 /*
2134 * Compute the base value of the ISS. It is a hash
2135 * of (saddr, sport, daddr, dport, secret).
2136 */
2137 MD5Init(&ctx);
2138
2139 MD5Update(&ctx, (u_char *) laddr, addrsz);
2140 MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
2141
2142 MD5Update(&ctx, (u_char *) faddr, addrsz);
2143 MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
2144
2145 MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
2146
2147 MD5Final(hash, &ctx);
2148
2149 memcpy(&tcp_iss, hash, sizeof(tcp_iss));
2150
2151 /*
2152 * Now increment our "timer", and add it in to
2153 * the computed value.
2154 *
2155 * XXX Use `addin'?
2156 * XXX TCP_ISSINCR too large to use?
2157 */
2158 tcp_iss_seq += TCP_ISSINCR;
2159 #ifdef TCPISS_DEBUG
2160 printf("ISS hash 0x%08x, ", tcp_iss);
2161 #endif
2162 tcp_iss += tcp_iss_seq + addin;
2163 #ifdef TCPISS_DEBUG
2164 printf("new ISS 0x%08x\n", tcp_iss);
2165 #endif
2166 } else
2167 #endif /* NRND > 0 */
2168 {
2169 /*
2170 * Randomize.
2171 */
2172 #if NRND > 0
2173 rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
2174 #else
2175 tcp_iss = arc4random();
2176 #endif
2177
2178 /*
2179 * If we were asked to add some amount to a known value,
2180 * we will take a random value obtained above, mask off
2181 * the upper bits, and add in the known value. We also
2182 * add in a constant to ensure that we are at least a
2183 * certain distance from the original value.
2184 *
2185 * This is used when an old connection is in timed wait
2186 * and we have a new one coming in, for instance.
2187 */
2188 if (addin != 0) {
2189 #ifdef TCPISS_DEBUG
2190 printf("Random %08x, ", tcp_iss);
2191 #endif
2192 tcp_iss &= TCP_ISS_RANDOM_MASK;
2193 tcp_iss += addin + TCP_ISSINCR;
2194 #ifdef TCPISS_DEBUG
2195 printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
2196 #endif
2197 } else {
2198 tcp_iss &= TCP_ISS_RANDOM_MASK;
2199 tcp_iss += tcp_iss_seq;
2200 tcp_iss_seq += TCP_ISSINCR;
2201 #ifdef TCPISS_DEBUG
2202 printf("ISS %08x\n", tcp_iss);
2203 #endif
2204 }
2205 }
2206
2207 if (tcp_compat_42) {
2208 /*
2209 * Limit it to the positive range for really old TCP
2210 * implementations.
2211 * Just AND off the top bit instead of checking if
2212 * is set first - saves a branch 50% of the time.
2213 */
2214 tcp_iss &= 0x7fffffff; /* XXX */
2215 }
2216
2217 return (tcp_iss);
2218 }
2219
2220 #if defined(IPSEC) || defined(FAST_IPSEC)
2221 /* compute ESP/AH header size for TCP, including outer IP header. */
2222 size_t
2223 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
2224 {
2225 struct inpcb *inp;
2226 size_t hdrsiz;
2227
2228 /* XXX mapped addr case (tp->t_in6pcb) */
2229 if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
2230 return 0;
2231 switch (tp->t_family) {
2232 case AF_INET:
2233 /* XXX: should use currect direction. */
2234 hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
2235 break;
2236 default:
2237 hdrsiz = 0;
2238 break;
2239 }
2240
2241 return hdrsiz;
2242 }
2243
2244 #ifdef INET6
2245 size_t
2246 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
2247 {
2248 struct in6pcb *in6p;
2249 size_t hdrsiz;
2250
2251 if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
2252 return 0;
2253 switch (tp->t_family) {
2254 case AF_INET6:
2255 /* XXX: should use currect direction. */
2256 hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
2257 break;
2258 case AF_INET:
2259 /* mapped address case - tricky */
2260 default:
2261 hdrsiz = 0;
2262 break;
2263 }
2264
2265 return hdrsiz;
2266 }
2267 #endif
2268 #endif /*IPSEC*/
2269
2270 /*
2271 * Determine the length of the TCP options for this connection.
2272 *
2273 * XXX: What do we do for SACK, when we add that? Just reserve
2274 * all of the space? Otherwise we can't exactly be incrementing
2275 * cwnd by an amount that varies depending on the amount we last
2276 * had to SACK!
2277 */
2278
2279 u_int
2280 tcp_optlen(struct tcpcb *tp)
2281 {
2282 u_int optlen;
2283
2284 optlen = 0;
2285 if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
2286 (TF_REQ_TSTMP | TF_RCVD_TSTMP))
2287 optlen += TCPOLEN_TSTAMP_APPA;
2288
2289 #ifdef TCP_SIGNATURE
2290 #if defined(INET6) && defined(FAST_IPSEC)
2291 if (tp->t_family == AF_INET)
2292 #endif
2293 if (tp->t_flags & TF_SIGNATURE)
2294 optlen += TCPOLEN_SIGNATURE + 2;
2295 #endif /* TCP_SIGNATURE */
2296
2297 return optlen;
2298 }
2299
2300 u_int
2301 tcp_hdrsz(struct tcpcb *tp)
2302 {
2303 u_int hlen;
2304
2305 switch (tp->t_family) {
2306 #ifdef INET6
2307 case AF_INET6:
2308 hlen = sizeof(struct ip6_hdr);
2309 break;
2310 #endif
2311 case AF_INET:
2312 hlen = sizeof(struct ip);
2313 break;
2314 default:
2315 hlen = 0;
2316 break;
2317 }
2318 hlen += sizeof(struct tcphdr);
2319
2320 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2321 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2322 hlen += TCPOLEN_TSTAMP_APPA;
2323 #ifdef TCP_SIGNATURE
2324 if (tp->t_flags & TF_SIGNATURE)
2325 hlen += TCPOLEN_SIGLEN;
2326 #endif
2327 return hlen;
2328 }
2329