Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.203
      1 /*	$NetBSD: tcp_subr.c,v 1.203 2006/10/10 21:49:15 dogcow Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.203 2006/10/10 21:49:15 dogcow Exp $");
    102 
    103 #include "opt_inet.h"
    104 #include "opt_ipsec.h"
    105 #include "opt_tcp_compat_42.h"
    106 #include "opt_inet_csum.h"
    107 #include "opt_mbuftrace.h"
    108 #include "rnd.h"
    109 
    110 #include <sys/param.h>
    111 #include <sys/proc.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/socket.h>
    116 #include <sys/socketvar.h>
    117 #include <sys/protosw.h>
    118 #include <sys/errno.h>
    119 #include <sys/kernel.h>
    120 #include <sys/pool.h>
    121 #if NRND > 0
    122 #include <sys/md5.h>
    123 #include <sys/rnd.h>
    124 #endif
    125 
    126 #include <net/route.h>
    127 #include <net/if.h>
    128 
    129 #include <netinet/in.h>
    130 #include <netinet/in_systm.h>
    131 #include <netinet/ip.h>
    132 #include <netinet/in_pcb.h>
    133 #include <netinet/ip_var.h>
    134 #include <netinet/ip_icmp.h>
    135 
    136 #ifdef INET6
    137 #ifndef INET
    138 #include <netinet/in.h>
    139 #endif
    140 #include <netinet/ip6.h>
    141 #include <netinet6/in6_pcb.h>
    142 #include <netinet6/ip6_var.h>
    143 #include <netinet6/in6_var.h>
    144 #include <netinet6/ip6protosw.h>
    145 #include <netinet/icmp6.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include <netinet/tcp.h>
    150 #include <netinet/tcp_fsm.h>
    151 #include <netinet/tcp_seq.h>
    152 #include <netinet/tcp_timer.h>
    153 #include <netinet/tcp_var.h>
    154 #include <netinet/tcp_congctl.h>
    155 #include <netinet/tcpip.h>
    156 
    157 #ifdef IPSEC
    158 #include <netinet6/ipsec.h>
    159 #include <netkey/key.h>
    160 #endif /*IPSEC*/
    161 
    162 #ifdef FAST_IPSEC
    163 #include <netipsec/ipsec.h>
    164 #include <netipsec/xform.h>
    165 #ifdef INET6
    166 #include <netipsec/ipsec6.h>
    167 #endif
    168  #include <netipsec/key.h>
    169 #endif	/* FAST_IPSEC*/
    170 
    171 
    172 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    173 struct	tcpstat tcpstat;	/* tcp statistics */
    174 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
    175 
    176 /* patchable/settable parameters for tcp */
    177 int 	tcp_mssdflt = TCP_MSS;
    178 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    179 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    180 #if NRND > 0
    181 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    182 #endif
    183 int	tcp_do_sack = 1;	/* selective acknowledgement */
    184 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    185 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    186 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    187 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
    188 #ifndef TCP_INIT_WIN
    189 #define	TCP_INIT_WIN	0	/* initial slow start window */
    190 #endif
    191 #ifndef TCP_INIT_WIN_LOCAL
    192 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    193 #endif
    194 int	tcp_init_win = TCP_INIT_WIN;
    195 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    196 int	tcp_mss_ifmtu = 0;
    197 #ifdef TCP_COMPAT_42
    198 int	tcp_compat_42 = 1;
    199 #else
    200 int	tcp_compat_42 = 0;
    201 #endif
    202 int	tcp_rst_ppslim = 100;	/* 100pps */
    203 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
    204 int	tcp_do_loopback_cksum = 0;
    205 int	tcp_sack_tp_maxholes = 32;
    206 int	tcp_sack_globalmaxholes = 1024;
    207 int	tcp_sack_globalholes = 0;
    208 int	tcp_ecn_maxretries = 1;
    209 
    210 /* tcb hash */
    211 #ifndef TCBHASHSIZE
    212 #define	TCBHASHSIZE	128
    213 #endif
    214 int	tcbhashsize = TCBHASHSIZE;
    215 
    216 /* syn hash parameters */
    217 #define	TCP_SYN_HASH_SIZE	293
    218 #define	TCP_SYN_BUCKET_SIZE	35
    219 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    220 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    221 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    222 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    223 
    224 int	tcp_freeq(struct tcpcb *);
    225 
    226 #ifdef INET
    227 void	tcp_mtudisc_callback(struct in_addr);
    228 #endif
    229 #ifdef INET6
    230 void	tcp6_mtudisc_callback(struct in6_addr *);
    231 #endif
    232 
    233 #ifdef INET6
    234 void	tcp6_mtudisc(struct in6pcb *, int);
    235 #endif
    236 
    237 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
    238 
    239 #ifdef TCP_CSUM_COUNTERS
    240 #include <sys/device.h>
    241 
    242 #if defined(INET)
    243 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    244     NULL, "tcp", "hwcsum bad");
    245 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    246     NULL, "tcp", "hwcsum ok");
    247 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    248     NULL, "tcp", "hwcsum data");
    249 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    250     NULL, "tcp", "swcsum");
    251 
    252 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
    253 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
    254 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
    255 EVCNT_ATTACH_STATIC(tcp_swcsum);
    256 #endif /* defined(INET) */
    257 
    258 #if defined(INET6)
    259 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    260     NULL, "tcp6", "hwcsum bad");
    261 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    262     NULL, "tcp6", "hwcsum ok");
    263 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    264     NULL, "tcp6", "hwcsum data");
    265 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    266     NULL, "tcp6", "swcsum");
    267 
    268 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
    269 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
    270 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
    271 EVCNT_ATTACH_STATIC(tcp6_swcsum);
    272 #endif /* defined(INET6) */
    273 #endif /* TCP_CSUM_COUNTERS */
    274 
    275 
    276 #ifdef TCP_OUTPUT_COUNTERS
    277 #include <sys/device.h>
    278 
    279 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    280     NULL, "tcp", "output big header");
    281 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    282     NULL, "tcp", "output predict hit");
    283 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    284     NULL, "tcp", "output predict miss");
    285 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    286     NULL, "tcp", "output copy small");
    287 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    288     NULL, "tcp", "output copy big");
    289 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    290     NULL, "tcp", "output reference big");
    291 
    292 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
    293 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
    294 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
    295 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
    296 EVCNT_ATTACH_STATIC(tcp_output_copybig);
    297 EVCNT_ATTACH_STATIC(tcp_output_refbig);
    298 
    299 #endif /* TCP_OUTPUT_COUNTERS */
    300 
    301 #ifdef TCP_REASS_COUNTERS
    302 #include <sys/device.h>
    303 
    304 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    305     NULL, "tcp_reass", "calls");
    306 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    307     &tcp_reass_, "tcp_reass", "insert into empty queue");
    308 struct evcnt tcp_reass_iteration[8] = {
    309     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    310     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    311     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    312     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    316     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    317 };
    318 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    319     &tcp_reass_, "tcp_reass", "prepend to first");
    320 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    321     &tcp_reass_, "tcp_reass", "prepend");
    322 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    323     &tcp_reass_, "tcp_reass", "insert");
    324 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    325     &tcp_reass_, "tcp_reass", "insert at tail");
    326 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    327     &tcp_reass_, "tcp_reass", "append");
    328 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    329     &tcp_reass_, "tcp_reass", "append to tail fragment");
    330 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    331     &tcp_reass_, "tcp_reass", "overlap at end");
    332 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    333     &tcp_reass_, "tcp_reass", "overlap at start");
    334 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    335     &tcp_reass_, "tcp_reass", "duplicate segment");
    336 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    337     &tcp_reass_, "tcp_reass", "duplicate fragment");
    338 
    339 EVCNT_ATTACH_STATIC(tcp_reass_);
    340 EVCNT_ATTACH_STATIC(tcp_reass_empty);
    341 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
    342 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
    343 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
    344 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
    345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
    346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
    347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
    348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
    349 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
    350 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
    351 EVCNT_ATTACH_STATIC(tcp_reass_insert);
    352 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
    353 EVCNT_ATTACH_STATIC(tcp_reass_append);
    354 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
    355 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
    356 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
    357 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
    358 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
    359 
    360 #endif /* TCP_REASS_COUNTERS */
    361 
    362 #ifdef MBUFTRACE
    363 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
    364 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
    365 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
    366 #endif
    367 
    368 /*
    369  * Tcp initialization
    370  */
    371 void
    372 tcp_init(void)
    373 {
    374 	int hlen;
    375 
    376 	/* Initialize the TCPCB template. */
    377 	tcp_tcpcb_template();
    378 
    379 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    380 
    381 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    382 #ifdef INET6
    383 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    384 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    385 #endif
    386 	if (max_protohdr < hlen)
    387 		max_protohdr = hlen;
    388 	if (max_linkhdr + hlen > MHLEN)
    389 		panic("tcp_init");
    390 
    391 #ifdef INET
    392 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    393 #endif
    394 #ifdef INET6
    395 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    396 #endif
    397 
    398 	/* Initialize timer state. */
    399 	tcp_timer_init();
    400 
    401 	/* Initialize the compressed state engine. */
    402 	syn_cache_init();
    403 
    404 	/* Initialize the congestion control algorithms. */
    405 	tcp_congctl_init();
    406 
    407 	MOWNER_ATTACH(&tcp_tx_mowner);
    408 	MOWNER_ATTACH(&tcp_rx_mowner);
    409 	MOWNER_ATTACH(&tcp_mowner);
    410 }
    411 
    412 /*
    413  * Create template to be used to send tcp packets on a connection.
    414  * Call after host entry created, allocates an mbuf and fills
    415  * in a skeletal tcp/ip header, minimizing the amount of work
    416  * necessary when the connection is used.
    417  */
    418 struct mbuf *
    419 tcp_template(struct tcpcb *tp)
    420 {
    421 	struct inpcb *inp = tp->t_inpcb;
    422 #ifdef INET6
    423 	struct in6pcb *in6p = tp->t_in6pcb;
    424 #endif
    425 	struct tcphdr *n;
    426 	struct mbuf *m;
    427 	int hlen;
    428 
    429 	switch (tp->t_family) {
    430 	case AF_INET:
    431 		hlen = sizeof(struct ip);
    432 		if (inp)
    433 			break;
    434 #ifdef INET6
    435 		if (in6p) {
    436 			/* mapped addr case */
    437 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    438 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    439 				break;
    440 		}
    441 #endif
    442 		return NULL;	/*EINVAL*/
    443 #ifdef INET6
    444 	case AF_INET6:
    445 		hlen = sizeof(struct ip6_hdr);
    446 		if (in6p) {
    447 			/* more sainty check? */
    448 			break;
    449 		}
    450 		return NULL;	/*EINVAL*/
    451 #endif
    452 	default:
    453 		hlen = 0;	/*pacify gcc*/
    454 		return NULL;	/*EAFNOSUPPORT*/
    455 	}
    456 #ifdef DIAGNOSTIC
    457 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    458 		panic("mclbytes too small for t_template");
    459 #endif
    460 	m = tp->t_template;
    461 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    462 		;
    463 	else {
    464 		if (m)
    465 			m_freem(m);
    466 		m = tp->t_template = NULL;
    467 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    468 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    469 			MCLGET(m, M_DONTWAIT);
    470 			if ((m->m_flags & M_EXT) == 0) {
    471 				m_free(m);
    472 				m = NULL;
    473 			}
    474 		}
    475 		if (m == NULL)
    476 			return NULL;
    477 		MCLAIM(m, &tcp_mowner);
    478 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    479 	}
    480 
    481 	bzero(mtod(m, caddr_t), m->m_len);
    482 
    483 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
    484 
    485 	switch (tp->t_family) {
    486 	case AF_INET:
    487 	    {
    488 		struct ipovly *ipov;
    489 		mtod(m, struct ip *)->ip_v = 4;
    490 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
    491 		ipov = mtod(m, struct ipovly *);
    492 		ipov->ih_pr = IPPROTO_TCP;
    493 		ipov->ih_len = htons(sizeof(struct tcphdr));
    494 		if (inp) {
    495 			ipov->ih_src = inp->inp_laddr;
    496 			ipov->ih_dst = inp->inp_faddr;
    497 		}
    498 #ifdef INET6
    499 		else if (in6p) {
    500 			/* mapped addr case */
    501 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    502 				sizeof(ipov->ih_src));
    503 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    504 				sizeof(ipov->ih_dst));
    505 		}
    506 #endif
    507 		/*
    508 		 * Compute the pseudo-header portion of the checksum
    509 		 * now.  We incrementally add in the TCP option and
    510 		 * payload lengths later, and then compute the TCP
    511 		 * checksum right before the packet is sent off onto
    512 		 * the wire.
    513 		 */
    514 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    515 		    ipov->ih_dst.s_addr,
    516 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    517 		break;
    518 	    }
    519 #ifdef INET6
    520 	case AF_INET6:
    521 	    {
    522 		struct ip6_hdr *ip6;
    523 		mtod(m, struct ip *)->ip_v = 6;
    524 		ip6 = mtod(m, struct ip6_hdr *);
    525 		ip6->ip6_nxt = IPPROTO_TCP;
    526 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    527 		ip6->ip6_src = in6p->in6p_laddr;
    528 		ip6->ip6_dst = in6p->in6p_faddr;
    529 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    530 		if (ip6_auto_flowlabel) {
    531 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    532 			ip6->ip6_flow |=
    533 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    534 		}
    535 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    536 		ip6->ip6_vfc |= IPV6_VERSION;
    537 
    538 		/*
    539 		 * Compute the pseudo-header portion of the checksum
    540 		 * now.  We incrementally add in the TCP option and
    541 		 * payload lengths later, and then compute the TCP
    542 		 * checksum right before the packet is sent off onto
    543 		 * the wire.
    544 		 */
    545 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    546 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    547 		    htonl(IPPROTO_TCP));
    548 		break;
    549 	    }
    550 #endif
    551 	}
    552 	if (inp) {
    553 		n->th_sport = inp->inp_lport;
    554 		n->th_dport = inp->inp_fport;
    555 	}
    556 #ifdef INET6
    557 	else if (in6p) {
    558 		n->th_sport = in6p->in6p_lport;
    559 		n->th_dport = in6p->in6p_fport;
    560 	}
    561 #endif
    562 	n->th_seq = 0;
    563 	n->th_ack = 0;
    564 	n->th_x2 = 0;
    565 	n->th_off = 5;
    566 	n->th_flags = 0;
    567 	n->th_win = 0;
    568 	n->th_urp = 0;
    569 	return (m);
    570 }
    571 
    572 /*
    573  * Send a single message to the TCP at address specified by
    574  * the given TCP/IP header.  If m == 0, then we make a copy
    575  * of the tcpiphdr at ti and send directly to the addressed host.
    576  * This is used to force keep alive messages out using the TCP
    577  * template for a connection tp->t_template.  If flags are given
    578  * then we send a message back to the TCP which originated the
    579  * segment ti, and discard the mbuf containing it and any other
    580  * attached mbufs.
    581  *
    582  * In any case the ack and sequence number of the transmitted
    583  * segment are as specified by the parameters.
    584  */
    585 int
    586 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
    587     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
    588 {
    589 	struct route *ro;
    590 	int error, tlen, win = 0;
    591 	int hlen;
    592 	struct ip *ip;
    593 #ifdef INET6
    594 	struct ip6_hdr *ip6;
    595 #endif
    596 	int family;	/* family on packet, not inpcb/in6pcb! */
    597 	struct tcphdr *th;
    598 	struct socket *so;
    599 
    600 	if (tp != NULL && (flags & TH_RST) == 0) {
    601 #ifdef DIAGNOSTIC
    602 		if (tp->t_inpcb && tp->t_in6pcb)
    603 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    604 #endif
    605 #ifdef INET
    606 		if (tp->t_inpcb)
    607 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    608 #endif
    609 #ifdef INET6
    610 		if (tp->t_in6pcb)
    611 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    612 #endif
    613 	}
    614 
    615 	th = NULL;	/* Quell uninitialized warning */
    616 	ip = NULL;
    617 #ifdef INET6
    618 	ip6 = NULL;
    619 #endif
    620 	if (m == 0) {
    621 		if (!template)
    622 			return EINVAL;
    623 
    624 		/* get family information from template */
    625 		switch (mtod(template, struct ip *)->ip_v) {
    626 		case 4:
    627 			family = AF_INET;
    628 			hlen = sizeof(struct ip);
    629 			break;
    630 #ifdef INET6
    631 		case 6:
    632 			family = AF_INET6;
    633 			hlen = sizeof(struct ip6_hdr);
    634 			break;
    635 #endif
    636 		default:
    637 			return EAFNOSUPPORT;
    638 		}
    639 
    640 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    641 		if (m) {
    642 			MCLAIM(m, &tcp_tx_mowner);
    643 			MCLGET(m, M_DONTWAIT);
    644 			if ((m->m_flags & M_EXT) == 0) {
    645 				m_free(m);
    646 				m = NULL;
    647 			}
    648 		}
    649 		if (m == NULL)
    650 			return (ENOBUFS);
    651 
    652 		if (tcp_compat_42)
    653 			tlen = 1;
    654 		else
    655 			tlen = 0;
    656 
    657 		m->m_data += max_linkhdr;
    658 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
    659 			template->m_len);
    660 		switch (family) {
    661 		case AF_INET:
    662 			ip = mtod(m, struct ip *);
    663 			th = (struct tcphdr *)(ip + 1);
    664 			break;
    665 #ifdef INET6
    666 		case AF_INET6:
    667 			ip6 = mtod(m, struct ip6_hdr *);
    668 			th = (struct tcphdr *)(ip6 + 1);
    669 			break;
    670 #endif
    671 #if 0
    672 		default:
    673 			/* noone will visit here */
    674 			m_freem(m);
    675 			return EAFNOSUPPORT;
    676 #endif
    677 		}
    678 		flags = TH_ACK;
    679 	} else {
    680 
    681 		if ((m->m_flags & M_PKTHDR) == 0) {
    682 #if 0
    683 			printf("non PKTHDR to tcp_respond\n");
    684 #endif
    685 			m_freem(m);
    686 			return EINVAL;
    687 		}
    688 #ifdef DIAGNOSTIC
    689 		if (!th0)
    690 			panic("th0 == NULL in tcp_respond");
    691 #endif
    692 
    693 		/* get family information from m */
    694 		switch (mtod(m, struct ip *)->ip_v) {
    695 		case 4:
    696 			family = AF_INET;
    697 			hlen = sizeof(struct ip);
    698 			ip = mtod(m, struct ip *);
    699 			break;
    700 #ifdef INET6
    701 		case 6:
    702 			family = AF_INET6;
    703 			hlen = sizeof(struct ip6_hdr);
    704 			ip6 = mtod(m, struct ip6_hdr *);
    705 			break;
    706 #endif
    707 		default:
    708 			m_freem(m);
    709 			return EAFNOSUPPORT;
    710 		}
    711 		/* clear h/w csum flags inherited from rx packet */
    712 		m->m_pkthdr.csum_flags = 0;
    713 
    714 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    715 			tlen = sizeof(*th0);
    716 		else
    717 			tlen = th0->th_off << 2;
    718 
    719 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    720 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
    721 			m->m_len = hlen + tlen;
    722 			m_freem(m->m_next);
    723 			m->m_next = NULL;
    724 		} else {
    725 			struct mbuf *n;
    726 
    727 #ifdef DIAGNOSTIC
    728 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    729 				m_freem(m);
    730 				return EMSGSIZE;
    731 			}
    732 #endif
    733 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    734 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    735 				MCLGET(n, M_DONTWAIT);
    736 				if ((n->m_flags & M_EXT) == 0) {
    737 					m_freem(n);
    738 					n = NULL;
    739 				}
    740 			}
    741 			if (!n) {
    742 				m_freem(m);
    743 				return ENOBUFS;
    744 			}
    745 
    746 			MCLAIM(n, &tcp_tx_mowner);
    747 			n->m_data += max_linkhdr;
    748 			n->m_len = hlen + tlen;
    749 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
    750 			m_copyback(n, hlen, tlen, (caddr_t)th0);
    751 
    752 			m_freem(m);
    753 			m = n;
    754 			n = NULL;
    755 		}
    756 
    757 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    758 		switch (family) {
    759 		case AF_INET:
    760 			ip = mtod(m, struct ip *);
    761 			th = (struct tcphdr *)(ip + 1);
    762 			ip->ip_p = IPPROTO_TCP;
    763 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    764 			ip->ip_p = IPPROTO_TCP;
    765 			break;
    766 #ifdef INET6
    767 		case AF_INET6:
    768 			ip6 = mtod(m, struct ip6_hdr *);
    769 			th = (struct tcphdr *)(ip6 + 1);
    770 			ip6->ip6_nxt = IPPROTO_TCP;
    771 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    772 			ip6->ip6_nxt = IPPROTO_TCP;
    773 			break;
    774 #endif
    775 #if 0
    776 		default:
    777 			/* noone will visit here */
    778 			m_freem(m);
    779 			return EAFNOSUPPORT;
    780 #endif
    781 		}
    782 		xchg(th->th_dport, th->th_sport, u_int16_t);
    783 #undef xchg
    784 		tlen = 0;	/*be friendly with the following code*/
    785 	}
    786 	th->th_seq = htonl(seq);
    787 	th->th_ack = htonl(ack);
    788 	th->th_x2 = 0;
    789 	if ((flags & TH_SYN) == 0) {
    790 		if (tp)
    791 			win >>= tp->rcv_scale;
    792 		if (win > TCP_MAXWIN)
    793 			win = TCP_MAXWIN;
    794 		th->th_win = htons((u_int16_t)win);
    795 		th->th_off = sizeof (struct tcphdr) >> 2;
    796 		tlen += sizeof(*th);
    797 	} else
    798 		tlen += th->th_off << 2;
    799 	m->m_len = hlen + tlen;
    800 	m->m_pkthdr.len = hlen + tlen;
    801 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    802 	th->th_flags = flags;
    803 	th->th_urp = 0;
    804 
    805 	switch (family) {
    806 #ifdef INET
    807 	case AF_INET:
    808 	    {
    809 		struct ipovly *ipov = (struct ipovly *)ip;
    810 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    811 		ipov->ih_len = htons((u_int16_t)tlen);
    812 
    813 		th->th_sum = 0;
    814 		th->th_sum = in_cksum(m, hlen + tlen);
    815 		ip->ip_len = htons(hlen + tlen);
    816 		ip->ip_ttl = ip_defttl;
    817 		break;
    818 	    }
    819 #endif
    820 #ifdef INET6
    821 	case AF_INET6:
    822 	    {
    823 		th->th_sum = 0;
    824 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    825 				tlen);
    826 		ip6->ip6_plen = htons(tlen);
    827 		if (tp && tp->t_in6pcb) {
    828 			struct ifnet *oifp;
    829 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    830 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    831 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    832 		} else
    833 			ip6->ip6_hlim = ip6_defhlim;
    834 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    835 		if (ip6_auto_flowlabel) {
    836 			ip6->ip6_flow |=
    837 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    838 		}
    839 		break;
    840 	    }
    841 #endif
    842 	}
    843 
    844 	if (tp && tp->t_inpcb)
    845 		so = tp->t_inpcb->inp_socket;
    846 #ifdef INET6
    847 	else if (tp && tp->t_in6pcb)
    848 		so = tp->t_in6pcb->in6p_socket;
    849 #endif
    850 	else
    851 		so = NULL;
    852 
    853 	if (tp != NULL && tp->t_inpcb != NULL) {
    854 		ro = &tp->t_inpcb->inp_route;
    855 #ifdef DIAGNOSTIC
    856 		if (family != AF_INET)
    857 			panic("tcp_respond: address family mismatch");
    858 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    859 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    860 			    ntohl(ip->ip_dst.s_addr),
    861 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    862 		}
    863 #endif
    864 	}
    865 #ifdef INET6
    866 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    867 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    868 #ifdef DIAGNOSTIC
    869 		if (family == AF_INET) {
    870 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    871 				panic("tcp_respond: not mapped addr");
    872 			if (bcmp(&ip->ip_dst,
    873 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    874 			    sizeof(ip->ip_dst)) != 0) {
    875 				panic("tcp_respond: ip_dst != in6p_faddr");
    876 			}
    877 		} else if (family == AF_INET6) {
    878 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    879 			    &tp->t_in6pcb->in6p_faddr))
    880 				panic("tcp_respond: ip6_dst != in6p_faddr");
    881 		} else
    882 			panic("tcp_respond: address family mismatch");
    883 #endif
    884 	}
    885 #endif
    886 	else
    887 		ro = NULL;
    888 
    889 	switch (family) {
    890 #ifdef INET
    891 	case AF_INET:
    892 		error = ip_output(m, NULL, ro,
    893 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    894 		    (struct ip_moptions *)0, so);
    895 		break;
    896 #endif
    897 #ifdef INET6
    898 	case AF_INET6:
    899 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
    900 		    (struct ip6_moptions *)0, so, NULL);
    901 		break;
    902 #endif
    903 	default:
    904 		error = EAFNOSUPPORT;
    905 		break;
    906 	}
    907 
    908 	return (error);
    909 }
    910 
    911 /*
    912  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
    913  * a bunch of members individually, we maintain this template for the
    914  * static and mostly-static components of the TCPCB, and copy it into
    915  * the new TCPCB instead.
    916  */
    917 static struct tcpcb tcpcb_template = {
    918 	/*
    919 	 * If TCP_NTIMERS ever changes, we'll need to update this
    920 	 * initializer.
    921 	 */
    922 	.t_timer = {
    923 		CALLOUT_INITIALIZER,
    924 		CALLOUT_INITIALIZER,
    925 		CALLOUT_INITIALIZER,
    926 		CALLOUT_INITIALIZER,
    927 	},
    928 	.t_delack_ch = CALLOUT_INITIALIZER,
    929 
    930 	.t_srtt = TCPTV_SRTTBASE,
    931 	.t_rttmin = TCPTV_MIN,
    932 
    933 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    934 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    935 	.snd_numholes = 0,
    936 
    937 	.t_partialacks = -1,
    938 };
    939 
    940 /*
    941  * Updates the TCPCB template whenever a parameter that would affect
    942  * the template is changed.
    943  */
    944 void
    945 tcp_tcpcb_template(void)
    946 {
    947 	struct tcpcb *tp = &tcpcb_template;
    948 	int flags;
    949 
    950 	tp->t_peermss = tcp_mssdflt;
    951 	tp->t_ourmss = tcp_mssdflt;
    952 	tp->t_segsz = tcp_mssdflt;
    953 
    954 	flags = 0;
    955 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    956 		flags |= TF_REQ_SCALE;
    957 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    958 		flags |= TF_REQ_TSTMP;
    959 	tp->t_flags = flags;
    960 
    961 	/*
    962 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    963 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    964 	 * reasonable initial retransmit time.
    965 	 */
    966 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    967 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    968 	    TCPTV_MIN, TCPTV_REXMTMAX);
    969 }
    970 
    971 /*
    972  * Create a new TCP control block, making an
    973  * empty reassembly queue and hooking it to the argument
    974  * protocol control block.
    975  */
    976 /* family selects inpcb, or in6pcb */
    977 struct tcpcb *
    978 tcp_newtcpcb(int family, void *aux)
    979 {
    980 	struct tcpcb *tp;
    981 	int i;
    982 
    983 	/* XXX Consider using a pool_cache for speed. */
    984 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
    985 	if (tp == NULL)
    986 		return (NULL);
    987 	memcpy(tp, &tcpcb_template, sizeof(*tp));
    988 	TAILQ_INIT(&tp->segq);
    989 	TAILQ_INIT(&tp->timeq);
    990 	tp->t_family = family;		/* may be overridden later on */
    991 	TAILQ_INIT(&tp->snd_holes);
    992 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
    993 
    994 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
    995 	for (i = 0; i < TCPT_NTIMERS; i++)
    996 		TCP_TIMER_INIT(tp, i);
    997 
    998 	switch (family) {
    999 	case AF_INET:
   1000 	    {
   1001 		struct inpcb *inp = (struct inpcb *)aux;
   1002 
   1003 		inp->inp_ip.ip_ttl = ip_defttl;
   1004 		inp->inp_ppcb = (caddr_t)tp;
   1005 
   1006 		tp->t_inpcb = inp;
   1007 		tp->t_mtudisc = ip_mtudisc;
   1008 		break;
   1009 	    }
   1010 #ifdef INET6
   1011 	case AF_INET6:
   1012 	    {
   1013 		struct in6pcb *in6p = (struct in6pcb *)aux;
   1014 
   1015 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
   1016 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
   1017 					       : NULL);
   1018 		in6p->in6p_ppcb = (caddr_t)tp;
   1019 
   1020 		tp->t_in6pcb = in6p;
   1021 		/* for IPv6, always try to run path MTU discovery */
   1022 		tp->t_mtudisc = 1;
   1023 		break;
   1024 	    }
   1025 #endif /* INET6 */
   1026 	default:
   1027 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
   1028 		return (NULL);
   1029 	}
   1030 
   1031 	/*
   1032 	 * Initialize our timebase.  When we send timestamps, we take
   1033 	 * the delta from tcp_now -- this means each connection always
   1034 	 * gets a timebase of 0, which makes it, among other things,
   1035 	 * more difficult to determine how long a system has been up,
   1036 	 * and thus how many TCP sequence increments have occurred.
   1037 	 */
   1038 	tp->ts_timebase = tcp_now;
   1039 
   1040 	tp->t_congctl = tcp_congctl_global;
   1041 	tp->t_congctl->refcnt++;
   1042 
   1043 	return (tp);
   1044 }
   1045 
   1046 /*
   1047  * Drop a TCP connection, reporting
   1048  * the specified error.  If connection is synchronized,
   1049  * then send a RST to peer.
   1050  */
   1051 struct tcpcb *
   1052 tcp_drop(struct tcpcb *tp, int errno)
   1053 {
   1054 	struct socket *so = NULL;
   1055 
   1056 #ifdef DIAGNOSTIC
   1057 	if (tp->t_inpcb && tp->t_in6pcb)
   1058 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1059 #endif
   1060 #ifdef INET
   1061 	if (tp->t_inpcb)
   1062 		so = tp->t_inpcb->inp_socket;
   1063 #endif
   1064 #ifdef INET6
   1065 	if (tp->t_in6pcb)
   1066 		so = tp->t_in6pcb->in6p_socket;
   1067 #endif
   1068 	if (!so)
   1069 		return NULL;
   1070 
   1071 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1072 		tp->t_state = TCPS_CLOSED;
   1073 		(void) tcp_output(tp);
   1074 		tcpstat.tcps_drops++;
   1075 	} else
   1076 		tcpstat.tcps_conndrops++;
   1077 	if (errno == ETIMEDOUT && tp->t_softerror)
   1078 		errno = tp->t_softerror;
   1079 	so->so_error = errno;
   1080 	return (tcp_close(tp));
   1081 }
   1082 
   1083 /*
   1084  * Return whether this tcpcb is marked as dead, indicating
   1085  * to the calling timer function that no further action should
   1086  * be taken, as we are about to release this tcpcb.  The release
   1087  * of the storage will be done if this is the last timer running.
   1088  *
   1089  * This should be called from the callout handler function after
   1090  * callout_ack() is done, so that the number of invoking timer
   1091  * functions is 0.
   1092  */
   1093 int
   1094 tcp_isdead(struct tcpcb *tp)
   1095 {
   1096 	int dead = (tp->t_flags & TF_DEAD);
   1097 
   1098 	if (__predict_false(dead)) {
   1099 		if (tcp_timers_invoking(tp) > 0)
   1100 				/* not quite there yet -- count separately? */
   1101 			return dead;
   1102 		tcpstat.tcps_delayed_free++;
   1103 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_timer.c */
   1104 	}
   1105 	return dead;
   1106 }
   1107 
   1108 /*
   1109  * Close a TCP control block:
   1110  *	discard all space held by the tcp
   1111  *	discard internet protocol block
   1112  *	wake up any sleepers
   1113  */
   1114 struct tcpcb *
   1115 tcp_close(struct tcpcb *tp)
   1116 {
   1117 	struct inpcb *inp;
   1118 #ifdef INET6
   1119 	struct in6pcb *in6p;
   1120 #endif
   1121 	struct socket *so;
   1122 #ifdef RTV_RTT
   1123 	struct rtentry *rt;
   1124 #endif
   1125 	struct route *ro;
   1126 
   1127 	inp = tp->t_inpcb;
   1128 #ifdef INET6
   1129 	in6p = tp->t_in6pcb;
   1130 #endif
   1131 	so = NULL;
   1132 	ro = NULL;
   1133 	if (inp) {
   1134 		so = inp->inp_socket;
   1135 		ro = &inp->inp_route;
   1136 	}
   1137 #ifdef INET6
   1138 	else if (in6p) {
   1139 		so = in6p->in6p_socket;
   1140 		ro = (struct route *)&in6p->in6p_route;
   1141 	}
   1142 #endif
   1143 
   1144 #ifdef RTV_RTT
   1145 	/*
   1146 	 * If we sent enough data to get some meaningful characteristics,
   1147 	 * save them in the routing entry.  'Enough' is arbitrarily
   1148 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1149 	 * give us 16 rtt samples assuming we only get one sample per
   1150 	 * window (the usual case on a long haul net).  16 samples is
   1151 	 * enough for the srtt filter to converge to within 5% of the correct
   1152 	 * value; fewer samples and we could save a very bogus rtt.
   1153 	 *
   1154 	 * Don't update the default route's characteristics and don't
   1155 	 * update anything that the user "locked".
   1156 	 */
   1157 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1158 	    ro && (rt = ro->ro_rt) &&
   1159 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
   1160 		u_long i = 0;
   1161 
   1162 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1163 			i = tp->t_srtt *
   1164 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1165 			if (rt->rt_rmx.rmx_rtt && i)
   1166 				/*
   1167 				 * filter this update to half the old & half
   1168 				 * the new values, converting scale.
   1169 				 * See route.h and tcp_var.h for a
   1170 				 * description of the scaling constants.
   1171 				 */
   1172 				rt->rt_rmx.rmx_rtt =
   1173 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1174 			else
   1175 				rt->rt_rmx.rmx_rtt = i;
   1176 		}
   1177 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1178 			i = tp->t_rttvar *
   1179 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1180 			if (rt->rt_rmx.rmx_rttvar && i)
   1181 				rt->rt_rmx.rmx_rttvar =
   1182 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1183 			else
   1184 				rt->rt_rmx.rmx_rttvar = i;
   1185 		}
   1186 		/*
   1187 		 * update the pipelimit (ssthresh) if it has been updated
   1188 		 * already or if a pipesize was specified & the threshhold
   1189 		 * got below half the pipesize.  I.e., wait for bad news
   1190 		 * before we start updating, then update on both good
   1191 		 * and bad news.
   1192 		 */
   1193 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1194 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1195 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1196 			/*
   1197 			 * convert the limit from user data bytes to
   1198 			 * packets then to packet data bytes.
   1199 			 */
   1200 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1201 			if (i < 2)
   1202 				i = 2;
   1203 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1204 			if (rt->rt_rmx.rmx_ssthresh)
   1205 				rt->rt_rmx.rmx_ssthresh =
   1206 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1207 			else
   1208 				rt->rt_rmx.rmx_ssthresh = i;
   1209 		}
   1210 	}
   1211 #endif /* RTV_RTT */
   1212 	/* free the reassembly queue, if any */
   1213 	TCP_REASS_LOCK(tp);
   1214 	(void) tcp_freeq(tp);
   1215 	TCP_REASS_UNLOCK(tp);
   1216 
   1217 	/* free the SACK holes list. */
   1218 	tcp_free_sackholes(tp);
   1219 
   1220 	tp->t_congctl->refcnt--;
   1221 
   1222 	tcp_canceltimers(tp);
   1223 	TCP_CLEAR_DELACK(tp);
   1224 	syn_cache_cleanup(tp);
   1225 
   1226 	if (tp->t_template) {
   1227 		m_free(tp->t_template);
   1228 		tp->t_template = NULL;
   1229 	}
   1230 	if (tcp_timers_invoking(tp))
   1231 		tp->t_flags |= TF_DEAD;
   1232 	else
   1233 		pool_put(&tcpcb_pool, tp);
   1234 
   1235 	if (inp) {
   1236 		inp->inp_ppcb = 0;
   1237 		soisdisconnected(so);
   1238 		in_pcbdetach(inp);
   1239 	}
   1240 #ifdef INET6
   1241 	else if (in6p) {
   1242 		in6p->in6p_ppcb = 0;
   1243 		soisdisconnected(so);
   1244 		in6_pcbdetach(in6p);
   1245 	}
   1246 #endif
   1247 	tcpstat.tcps_closed++;
   1248 	return ((struct tcpcb *)0);
   1249 }
   1250 
   1251 int
   1252 tcp_freeq(tp)
   1253 	struct tcpcb *tp;
   1254 {
   1255 	struct ipqent *qe;
   1256 	int rv = 0;
   1257 #ifdef TCPREASS_DEBUG
   1258 	int i = 0;
   1259 #endif
   1260 
   1261 	TCP_REASS_LOCK_CHECK(tp);
   1262 
   1263 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1264 #ifdef TCPREASS_DEBUG
   1265 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1266 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1267 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1268 #endif
   1269 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1270 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1271 		m_freem(qe->ipqe_m);
   1272 		tcpipqent_free(qe);
   1273 		rv = 1;
   1274 	}
   1275 	tp->t_segqlen = 0;
   1276 	KASSERT(TAILQ_EMPTY(&tp->timeq));
   1277 	return (rv);
   1278 }
   1279 
   1280 /*
   1281  * Protocol drain routine.  Called when memory is in short supply.
   1282  */
   1283 void
   1284 tcp_drain(void)
   1285 {
   1286 	struct inpcb_hdr *inph;
   1287 	struct tcpcb *tp;
   1288 
   1289 	/*
   1290 	 * Free the sequence queue of all TCP connections.
   1291 	 */
   1292 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
   1293 		switch (inph->inph_af) {
   1294 		case AF_INET:
   1295 			tp = intotcpcb((struct inpcb *)inph);
   1296 			break;
   1297 #ifdef INET6
   1298 		case AF_INET6:
   1299 			tp = in6totcpcb((struct in6pcb *)inph);
   1300 			break;
   1301 #endif
   1302 		default:
   1303 			tp = NULL;
   1304 			break;
   1305 		}
   1306 		if (tp != NULL) {
   1307 			/*
   1308 			 * We may be called from a device's interrupt
   1309 			 * context.  If the tcpcb is already busy,
   1310 			 * just bail out now.
   1311 			 */
   1312 			if (tcp_reass_lock_try(tp) == 0)
   1313 				continue;
   1314 			if (tcp_freeq(tp))
   1315 				tcpstat.tcps_connsdrained++;
   1316 			TCP_REASS_UNLOCK(tp);
   1317 		}
   1318 	}
   1319 }
   1320 
   1321 /*
   1322  * Notify a tcp user of an asynchronous error;
   1323  * store error as soft error, but wake up user
   1324  * (for now, won't do anything until can select for soft error).
   1325  */
   1326 void
   1327 tcp_notify(struct inpcb *inp, int error)
   1328 {
   1329 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1330 	struct socket *so = inp->inp_socket;
   1331 
   1332 	/*
   1333 	 * Ignore some errors if we are hooked up.
   1334 	 * If connection hasn't completed, has retransmitted several times,
   1335 	 * and receives a second error, give up now.  This is better
   1336 	 * than waiting a long time to establish a connection that
   1337 	 * can never complete.
   1338 	 */
   1339 	if (tp->t_state == TCPS_ESTABLISHED &&
   1340 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1341 	      error == EHOSTDOWN)) {
   1342 		return;
   1343 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1344 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1345 		so->so_error = error;
   1346 	else
   1347 		tp->t_softerror = error;
   1348 	wakeup((caddr_t) &so->so_timeo);
   1349 	sorwakeup(so);
   1350 	sowwakeup(so);
   1351 }
   1352 
   1353 #ifdef INET6
   1354 void
   1355 tcp6_notify(struct in6pcb *in6p, int error)
   1356 {
   1357 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1358 	struct socket *so = in6p->in6p_socket;
   1359 
   1360 	/*
   1361 	 * Ignore some errors if we are hooked up.
   1362 	 * If connection hasn't completed, has retransmitted several times,
   1363 	 * and receives a second error, give up now.  This is better
   1364 	 * than waiting a long time to establish a connection that
   1365 	 * can never complete.
   1366 	 */
   1367 	if (tp->t_state == TCPS_ESTABLISHED &&
   1368 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1369 	      error == EHOSTDOWN)) {
   1370 		return;
   1371 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1372 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1373 		so->so_error = error;
   1374 	else
   1375 		tp->t_softerror = error;
   1376 	wakeup((caddr_t) &so->so_timeo);
   1377 	sorwakeup(so);
   1378 	sowwakeup(so);
   1379 }
   1380 #endif
   1381 
   1382 #ifdef INET6
   1383 void
   1384 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
   1385 {
   1386 	struct tcphdr th;
   1387 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
   1388 	int nmatch;
   1389 	struct ip6_hdr *ip6;
   1390 	const struct sockaddr_in6 *sa6_src = NULL;
   1391 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
   1392 	struct mbuf *m;
   1393 	int off;
   1394 
   1395 	if (sa->sa_family != AF_INET6 ||
   1396 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1397 		return;
   1398 	if ((unsigned)cmd >= PRC_NCMDS)
   1399 		return;
   1400 	else if (cmd == PRC_QUENCH) {
   1401 		/*
   1402 		 * Don't honor ICMP Source Quench messages meant for
   1403 		 * TCP connections.
   1404 		 */
   1405 		return;
   1406 	} else if (PRC_IS_REDIRECT(cmd))
   1407 		notify = in6_rtchange, d = NULL;
   1408 	else if (cmd == PRC_MSGSIZE)
   1409 		; /* special code is present, see below */
   1410 	else if (cmd == PRC_HOSTDEAD)
   1411 		d = NULL;
   1412 	else if (inet6ctlerrmap[cmd] == 0)
   1413 		return;
   1414 
   1415 	/* if the parameter is from icmp6, decode it. */
   1416 	if (d != NULL) {
   1417 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1418 		m = ip6cp->ip6c_m;
   1419 		ip6 = ip6cp->ip6c_ip6;
   1420 		off = ip6cp->ip6c_off;
   1421 		sa6_src = ip6cp->ip6c_src;
   1422 	} else {
   1423 		m = NULL;
   1424 		ip6 = NULL;
   1425 		sa6_src = &sa6_any;
   1426 		off = 0;
   1427 	}
   1428 
   1429 	if (ip6) {
   1430 		/*
   1431 		 * XXX: We assume that when ip6 is non NULL,
   1432 		 * M and OFF are valid.
   1433 		 */
   1434 
   1435 		/* check if we can safely examine src and dst ports */
   1436 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1437 			if (cmd == PRC_MSGSIZE)
   1438 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1439 			return;
   1440 		}
   1441 
   1442 		bzero(&th, sizeof(th));
   1443 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
   1444 
   1445 		if (cmd == PRC_MSGSIZE) {
   1446 			int valid = 0;
   1447 
   1448 			/*
   1449 			 * Check to see if we have a valid TCP connection
   1450 			 * corresponding to the address in the ICMPv6 message
   1451 			 * payload.
   1452 			 */
   1453 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
   1454 			    th.th_dport, (const struct in6_addr *)&sa6_src->sin6_addr,
   1455 			    th.th_sport, 0))
   1456 				valid++;
   1457 
   1458 			/*
   1459 			 * Depending on the value of "valid" and routing table
   1460 			 * size (mtudisc_{hi,lo}wat), we will:
   1461 			 * - recalcurate the new MTU and create the
   1462 			 *   corresponding routing entry, or
   1463 			 * - ignore the MTU change notification.
   1464 			 */
   1465 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1466 
   1467 			/*
   1468 			 * no need to call in6_pcbnotify, it should have been
   1469 			 * called via callback if necessary
   1470 			 */
   1471 			return;
   1472 		}
   1473 
   1474 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
   1475 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1476 		if (nmatch == 0 && syn_cache_count &&
   1477 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1478 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1479 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1480 			syn_cache_unreach((const struct sockaddr *)sa6_src,
   1481 					  sa, &th);
   1482 	} else {
   1483 		(void) in6_pcbnotify(&tcbtable, sa, 0,
   1484 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
   1485 	}
   1486 }
   1487 #endif
   1488 
   1489 #ifdef INET
   1490 /* assumes that ip header and tcp header are contiguous on mbuf */
   1491 void *
   1492 tcp_ctlinput(int cmd, struct sockaddr *sa, void *v)
   1493 {
   1494 	struct ip *ip = v;
   1495 	struct tcphdr *th;
   1496 	struct icmp *icp;
   1497 	extern const int inetctlerrmap[];
   1498 	void (*notify)(struct inpcb *, int) = tcp_notify;
   1499 	int errno;
   1500 	int nmatch;
   1501 	struct tcpcb *tp;
   1502 	u_int mtu;
   1503 	tcp_seq seq;
   1504 	struct inpcb *inp;
   1505 #ifdef INET6
   1506 	struct in6pcb *in6p;
   1507 	struct in6_addr src6, dst6;
   1508 #endif
   1509 
   1510 	if (sa->sa_family != AF_INET ||
   1511 	    sa->sa_len != sizeof(struct sockaddr_in))
   1512 		return NULL;
   1513 	if ((unsigned)cmd >= PRC_NCMDS)
   1514 		return NULL;
   1515 	errno = inetctlerrmap[cmd];
   1516 	if (cmd == PRC_QUENCH)
   1517 		/*
   1518 		 * Don't honor ICMP Source Quench messages meant for
   1519 		 * TCP connections.
   1520 		 */
   1521 		return NULL;
   1522 	else if (PRC_IS_REDIRECT(cmd))
   1523 		notify = in_rtchange, ip = 0;
   1524 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1525 		/*
   1526 		 * Check to see if we have a valid TCP connection
   1527 		 * corresponding to the address in the ICMP message
   1528 		 * payload.
   1529 		 *
   1530 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1531 		 */
   1532 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1533 #ifdef INET6
   1534 		memset(&src6, 0, sizeof(src6));
   1535 		memset(&dst6, 0, sizeof(dst6));
   1536 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1537 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1538 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1539 #endif
   1540 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
   1541 		    th->th_dport, ip->ip_src, th->th_sport)) != NULL)
   1542 #ifdef INET6
   1543 			in6p = NULL;
   1544 #else
   1545 			;
   1546 #endif
   1547 #ifdef INET6
   1548 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
   1549 		    th->th_dport, &src6, th->th_sport, 0)) != NULL)
   1550 			;
   1551 #endif
   1552 		else
   1553 			return NULL;
   1554 
   1555 		/*
   1556 		 * Now that we've validated that we are actually communicating
   1557 		 * with the host indicated in the ICMP message, locate the
   1558 		 * ICMP header, recalculate the new MTU, and create the
   1559 		 * corresponding routing entry.
   1560 		 */
   1561 		icp = (struct icmp *)((caddr_t)ip -
   1562 		    offsetof(struct icmp, icmp_ip));
   1563 		if (inp) {
   1564 			if ((tp = intotcpcb(inp)) == NULL)
   1565 				return NULL;
   1566 		}
   1567 #ifdef INET6
   1568 		else if (in6p) {
   1569 			if ((tp = in6totcpcb(in6p)) == NULL)
   1570 				return NULL;
   1571 		}
   1572 #endif
   1573 		else
   1574 			return NULL;
   1575 		seq = ntohl(th->th_seq);
   1576 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
   1577 			return NULL;
   1578 		/*
   1579 		 * If the ICMP message advertises a Next-Hop MTU
   1580 		 * equal or larger than the maximum packet size we have
   1581 		 * ever sent, drop the message.
   1582 		 */
   1583 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
   1584 		if (mtu >= tp->t_pmtud_mtu_sent)
   1585 			return NULL;
   1586 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
   1587 			/*
   1588 			 * Calculate new MTU, and create corresponding
   1589 			 * route (traditional PMTUD).
   1590 			 */
   1591 			tp->t_flags &= ~TF_PMTUD_PEND;
   1592 			icmp_mtudisc(icp, ip->ip_dst);
   1593 		} else {
   1594 			/*
   1595 			 * Record the information got in the ICMP
   1596 			 * message; act on it later.
   1597 			 * If we had already recorded an ICMP message,
   1598 			 * replace the old one only if the new message
   1599 			 * refers to an older TCP segment
   1600 			 */
   1601 			if (tp->t_flags & TF_PMTUD_PEND) {
   1602 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
   1603 					return NULL;
   1604 			} else
   1605 				tp->t_flags |= TF_PMTUD_PEND;
   1606 			tp->t_pmtud_th_seq = seq;
   1607 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
   1608 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
   1609 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
   1610 		}
   1611 		return NULL;
   1612 	} else if (cmd == PRC_HOSTDEAD)
   1613 		ip = 0;
   1614 	else if (errno == 0)
   1615 		return NULL;
   1616 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1617 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1618 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
   1619 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1620 		if (nmatch == 0 && syn_cache_count &&
   1621 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1622 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1623 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1624 			struct sockaddr_in sin;
   1625 			bzero(&sin, sizeof(sin));
   1626 			sin.sin_len = sizeof(sin);
   1627 			sin.sin_family = AF_INET;
   1628 			sin.sin_port = th->th_sport;
   1629 			sin.sin_addr = ip->ip_src;
   1630 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1631 		}
   1632 
   1633 		/* XXX mapped address case */
   1634 	} else
   1635 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
   1636 		    notify);
   1637 	return NULL;
   1638 }
   1639 
   1640 /*
   1641  * When a source quench is received, we are being notified of congestion.
   1642  * Close the congestion window down to the Loss Window (one segment).
   1643  * We will gradually open it again as we proceed.
   1644  */
   1645 void
   1646 tcp_quench(struct inpcb *inp, int errno)
   1647 {
   1648 	struct tcpcb *tp = intotcpcb(inp);
   1649 
   1650 	if (tp)
   1651 		tp->snd_cwnd = tp->t_segsz;
   1652 }
   1653 #endif
   1654 
   1655 #ifdef INET6
   1656 void
   1657 tcp6_quench(struct in6pcb *in6p, int errno)
   1658 {
   1659 	struct tcpcb *tp = in6totcpcb(in6p);
   1660 
   1661 	if (tp)
   1662 		tp->snd_cwnd = tp->t_segsz;
   1663 }
   1664 #endif
   1665 
   1666 #ifdef INET
   1667 /*
   1668  * Path MTU Discovery handlers.
   1669  */
   1670 void
   1671 tcp_mtudisc_callback(struct in_addr faddr)
   1672 {
   1673 #ifdef INET6
   1674 	struct in6_addr in6;
   1675 #endif
   1676 
   1677 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1678 #ifdef INET6
   1679 	memset(&in6, 0, sizeof(in6));
   1680 	in6.s6_addr16[5] = 0xffff;
   1681 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1682 	tcp6_mtudisc_callback(&in6);
   1683 #endif
   1684 }
   1685 
   1686 /*
   1687  * On receipt of path MTU corrections, flush old route and replace it
   1688  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1689  * that all packets will be received.
   1690  */
   1691 void
   1692 tcp_mtudisc(struct inpcb *inp, int errno)
   1693 {
   1694 	struct tcpcb *tp = intotcpcb(inp);
   1695 	struct rtentry *rt = in_pcbrtentry(inp);
   1696 
   1697 	if (tp != 0) {
   1698 		if (rt != 0) {
   1699 			/*
   1700 			 * If this was not a host route, remove and realloc.
   1701 			 */
   1702 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1703 				in_rtchange(inp, errno);
   1704 				if ((rt = in_pcbrtentry(inp)) == 0)
   1705 					return;
   1706 			}
   1707 
   1708 			/*
   1709 			 * Slow start out of the error condition.  We
   1710 			 * use the MTU because we know it's smaller
   1711 			 * than the previously transmitted segment.
   1712 			 *
   1713 			 * Note: This is more conservative than the
   1714 			 * suggestion in draft-floyd-incr-init-win-03.
   1715 			 */
   1716 			if (rt->rt_rmx.rmx_mtu != 0)
   1717 				tp->snd_cwnd =
   1718 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1719 				    rt->rt_rmx.rmx_mtu);
   1720 		}
   1721 
   1722 		/*
   1723 		 * Resend unacknowledged packets.
   1724 		 */
   1725 		tp->snd_nxt = tp->snd_una;
   1726 		tcp_output(tp);
   1727 	}
   1728 }
   1729 #endif
   1730 
   1731 #ifdef INET6
   1732 /*
   1733  * Path MTU Discovery handlers.
   1734  */
   1735 void
   1736 tcp6_mtudisc_callback(struct in6_addr *faddr)
   1737 {
   1738 	struct sockaddr_in6 sin6;
   1739 
   1740 	bzero(&sin6, sizeof(sin6));
   1741 	sin6.sin6_family = AF_INET6;
   1742 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1743 	sin6.sin6_addr = *faddr;
   1744 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
   1745 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1746 }
   1747 
   1748 void
   1749 tcp6_mtudisc(struct in6pcb *in6p, int errno)
   1750 {
   1751 	struct tcpcb *tp = in6totcpcb(in6p);
   1752 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1753 
   1754 	if (tp != 0) {
   1755 		if (rt != 0) {
   1756 			/*
   1757 			 * If this was not a host route, remove and realloc.
   1758 			 */
   1759 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1760 				in6_rtchange(in6p, errno);
   1761 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1762 					return;
   1763 			}
   1764 
   1765 			/*
   1766 			 * Slow start out of the error condition.  We
   1767 			 * use the MTU because we know it's smaller
   1768 			 * than the previously transmitted segment.
   1769 			 *
   1770 			 * Note: This is more conservative than the
   1771 			 * suggestion in draft-floyd-incr-init-win-03.
   1772 			 */
   1773 			if (rt->rt_rmx.rmx_mtu != 0)
   1774 				tp->snd_cwnd =
   1775 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1776 				    rt->rt_rmx.rmx_mtu);
   1777 		}
   1778 
   1779 		/*
   1780 		 * Resend unacknowledged packets.
   1781 		 */
   1782 		tp->snd_nxt = tp->snd_una;
   1783 		tcp_output(tp);
   1784 	}
   1785 }
   1786 #endif /* INET6 */
   1787 
   1788 /*
   1789  * Compute the MSS to advertise to the peer.  Called only during
   1790  * the 3-way handshake.  If we are the server (peer initiated
   1791  * connection), we are called with a pointer to the interface
   1792  * on which the SYN packet arrived.  If we are the client (we
   1793  * initiated connection), we are called with a pointer to the
   1794  * interface out which this connection should go.
   1795  *
   1796  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1797  * header size from MSS advertisement.  MSS option must hold the maximum
   1798  * segment size we can accept, so it must always be:
   1799  *	 max(if mtu) - ip header - tcp header
   1800  */
   1801 u_long
   1802 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
   1803 {
   1804 	extern u_long in_maxmtu;
   1805 	u_long mss = 0;
   1806 	u_long hdrsiz;
   1807 
   1808 	/*
   1809 	 * In order to avoid defeating path MTU discovery on the peer,
   1810 	 * we advertise the max MTU of all attached networks as our MSS,
   1811 	 * per RFC 1191, section 3.1.
   1812 	 *
   1813 	 * We provide the option to advertise just the MTU of
   1814 	 * the interface on which we hope this connection will
   1815 	 * be receiving.  If we are responding to a SYN, we
   1816 	 * will have a pretty good idea about this, but when
   1817 	 * initiating a connection there is a bit more doubt.
   1818 	 *
   1819 	 * We also need to ensure that loopback has a large enough
   1820 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1821 	 */
   1822 
   1823 	if (ifp != NULL)
   1824 		switch (af) {
   1825 		case AF_INET:
   1826 			mss = ifp->if_mtu;
   1827 			break;
   1828 #ifdef INET6
   1829 		case AF_INET6:
   1830 			mss = IN6_LINKMTU(ifp);
   1831 			break;
   1832 #endif
   1833 		}
   1834 
   1835 	if (tcp_mss_ifmtu == 0)
   1836 		switch (af) {
   1837 		case AF_INET:
   1838 			mss = max(in_maxmtu, mss);
   1839 			break;
   1840 #ifdef INET6
   1841 		case AF_INET6:
   1842 			mss = max(in6_maxmtu, mss);
   1843 			break;
   1844 #endif
   1845 		}
   1846 
   1847 	switch (af) {
   1848 	case AF_INET:
   1849 		hdrsiz = sizeof(struct ip);
   1850 		break;
   1851 #ifdef INET6
   1852 	case AF_INET6:
   1853 		hdrsiz = sizeof(struct ip6_hdr);
   1854 		break;
   1855 #endif
   1856 	default:
   1857 		hdrsiz = 0;
   1858 		break;
   1859 	}
   1860 	hdrsiz += sizeof(struct tcphdr);
   1861 	if (mss > hdrsiz)
   1862 		mss -= hdrsiz;
   1863 
   1864 	mss = max(tcp_mssdflt, mss);
   1865 	return (mss);
   1866 }
   1867 
   1868 /*
   1869  * Set connection variables based on the peer's advertised MSS.
   1870  * We are passed the TCPCB for the actual connection.  If we
   1871  * are the server, we are called by the compressed state engine
   1872  * when the 3-way handshake is complete.  If we are the client,
   1873  * we are called when we receive the SYN,ACK from the server.
   1874  *
   1875  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1876  * before this routine is called!
   1877  */
   1878 void
   1879 tcp_mss_from_peer(struct tcpcb *tp, int offer)
   1880 {
   1881 	struct socket *so;
   1882 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1883 	struct rtentry *rt;
   1884 #endif
   1885 	u_long bufsize;
   1886 	int mss;
   1887 
   1888 #ifdef DIAGNOSTIC
   1889 	if (tp->t_inpcb && tp->t_in6pcb)
   1890 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1891 #endif
   1892 	so = NULL;
   1893 	rt = NULL;
   1894 #ifdef INET
   1895 	if (tp->t_inpcb) {
   1896 		so = tp->t_inpcb->inp_socket;
   1897 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1898 		rt = in_pcbrtentry(tp->t_inpcb);
   1899 #endif
   1900 	}
   1901 #endif
   1902 #ifdef INET6
   1903 	if (tp->t_in6pcb) {
   1904 		so = tp->t_in6pcb->in6p_socket;
   1905 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1906 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1907 #endif
   1908 	}
   1909 #endif
   1910 
   1911 	/*
   1912 	 * As per RFC1122, use the default MSS value, unless they
   1913 	 * sent us an offer.  Do not accept offers less than 256 bytes.
   1914 	 */
   1915 	mss = tcp_mssdflt;
   1916 	if (offer)
   1917 		mss = offer;
   1918 	mss = max(mss, 256);		/* sanity */
   1919 	tp->t_peermss = mss;
   1920 	mss -= tcp_optlen(tp);
   1921 #ifdef INET
   1922 	if (tp->t_inpcb)
   1923 		mss -= ip_optlen(tp->t_inpcb);
   1924 #endif
   1925 #ifdef INET6
   1926 	if (tp->t_in6pcb)
   1927 		mss -= ip6_optlen(tp->t_in6pcb);
   1928 #endif
   1929 
   1930 	/*
   1931 	 * If there's a pipesize, change the socket buffer to that size.
   1932 	 * Make the socket buffer an integral number of MSS units.  If
   1933 	 * the MSS is larger than the socket buffer, artificially decrease
   1934 	 * the MSS.
   1935 	 */
   1936 #ifdef RTV_SPIPE
   1937 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1938 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1939 	else
   1940 #endif
   1941 	{
   1942 		KASSERT(so != NULL);
   1943 		bufsize = so->so_snd.sb_hiwat;
   1944 	}
   1945 	if (bufsize < mss)
   1946 		mss = bufsize;
   1947 	else {
   1948 		bufsize = roundup(bufsize, mss);
   1949 		if (bufsize > sb_max)
   1950 			bufsize = sb_max;
   1951 		(void) sbreserve(&so->so_snd, bufsize, so);
   1952 	}
   1953 	tp->t_segsz = mss;
   1954 
   1955 #ifdef RTV_SSTHRESH
   1956 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1957 		/*
   1958 		 * There's some sort of gateway or interface buffer
   1959 		 * limit on the path.  Use this to set the slow
   1960 		 * start threshold, but set the threshold to no less
   1961 		 * than 2 * MSS.
   1962 		 */
   1963 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1964 	}
   1965 #endif
   1966 }
   1967 
   1968 /*
   1969  * Processing necessary when a TCP connection is established.
   1970  */
   1971 void
   1972 tcp_established(struct tcpcb *tp)
   1973 {
   1974 	struct socket *so;
   1975 #ifdef RTV_RPIPE
   1976 	struct rtentry *rt;
   1977 #endif
   1978 	u_long bufsize;
   1979 
   1980 #ifdef DIAGNOSTIC
   1981 	if (tp->t_inpcb && tp->t_in6pcb)
   1982 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   1983 #endif
   1984 	so = NULL;
   1985 	rt = NULL;
   1986 #ifdef INET
   1987 	if (tp->t_inpcb) {
   1988 		so = tp->t_inpcb->inp_socket;
   1989 #if defined(RTV_RPIPE)
   1990 		rt = in_pcbrtentry(tp->t_inpcb);
   1991 #endif
   1992 	}
   1993 #endif
   1994 #ifdef INET6
   1995 	if (tp->t_in6pcb) {
   1996 		so = tp->t_in6pcb->in6p_socket;
   1997 #if defined(RTV_RPIPE)
   1998 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1999 #endif
   2000 	}
   2001 #endif
   2002 
   2003 	tp->t_state = TCPS_ESTABLISHED;
   2004 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   2005 
   2006 #ifdef RTV_RPIPE
   2007 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   2008 		bufsize = rt->rt_rmx.rmx_recvpipe;
   2009 	else
   2010 #endif
   2011 	{
   2012 		KASSERT(so != NULL);
   2013 		bufsize = so->so_rcv.sb_hiwat;
   2014 	}
   2015 	if (bufsize > tp->t_ourmss) {
   2016 		bufsize = roundup(bufsize, tp->t_ourmss);
   2017 		if (bufsize > sb_max)
   2018 			bufsize = sb_max;
   2019 		(void) sbreserve(&so->so_rcv, bufsize, so);
   2020 	}
   2021 }
   2022 
   2023 /*
   2024  * Check if there's an initial rtt or rttvar.  Convert from the
   2025  * route-table units to scaled multiples of the slow timeout timer.
   2026  * Called only during the 3-way handshake.
   2027  */
   2028 void
   2029 tcp_rmx_rtt(struct tcpcb *tp)
   2030 {
   2031 #ifdef RTV_RTT
   2032 	struct rtentry *rt = NULL;
   2033 	int rtt;
   2034 
   2035 #ifdef DIAGNOSTIC
   2036 	if (tp->t_inpcb && tp->t_in6pcb)
   2037 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   2038 #endif
   2039 #ifdef INET
   2040 	if (tp->t_inpcb)
   2041 		rt = in_pcbrtentry(tp->t_inpcb);
   2042 #endif
   2043 #ifdef INET6
   2044 	if (tp->t_in6pcb)
   2045 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2046 #endif
   2047 	if (rt == NULL)
   2048 		return;
   2049 
   2050 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   2051 		/*
   2052 		 * XXX The lock bit for MTU indicates that the value
   2053 		 * is also a minimum value; this is subject to time.
   2054 		 */
   2055 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   2056 			TCPT_RANGESET(tp->t_rttmin,
   2057 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   2058 			    TCPTV_MIN, TCPTV_REXMTMAX);
   2059 		tp->t_srtt = rtt /
   2060 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   2061 		if (rt->rt_rmx.rmx_rttvar) {
   2062 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   2063 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   2064 				(TCP_RTTVAR_SHIFT + 2));
   2065 		} else {
   2066 			/* Default variation is +- 1 rtt */
   2067 			tp->t_rttvar =
   2068 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   2069 		}
   2070 		TCPT_RANGESET(tp->t_rxtcur,
   2071 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   2072 		    tp->t_rttmin, TCPTV_REXMTMAX);
   2073 	}
   2074 #endif
   2075 }
   2076 
   2077 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   2078 #if NRND > 0
   2079 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   2080 #endif
   2081 
   2082 /*
   2083  * Get a new sequence value given a tcp control block
   2084  */
   2085 tcp_seq
   2086 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   2087 {
   2088 
   2089 #ifdef INET
   2090 	if (tp->t_inpcb != NULL) {
   2091 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   2092 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   2093 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   2094 		    addin));
   2095 	}
   2096 #endif
   2097 #ifdef INET6
   2098 	if (tp->t_in6pcb != NULL) {
   2099 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   2100 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   2101 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   2102 		    addin));
   2103 	}
   2104 #endif
   2105 	/* Not possible. */
   2106 	panic("tcp_new_iss");
   2107 }
   2108 
   2109 /*
   2110  * This routine actually generates a new TCP initial sequence number.
   2111  */
   2112 tcp_seq
   2113 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2114     size_t addrsz, tcp_seq addin)
   2115 {
   2116 	tcp_seq tcp_iss;
   2117 
   2118 #if NRND > 0
   2119 	static int beenhere;
   2120 
   2121 	/*
   2122 	 * If we haven't been here before, initialize our cryptographic
   2123 	 * hash secret.
   2124 	 */
   2125 	if (beenhere == 0) {
   2126 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   2127 		    RND_EXTRACT_ANY);
   2128 		beenhere = 1;
   2129 	}
   2130 
   2131 	if (tcp_do_rfc1948) {
   2132 		MD5_CTX ctx;
   2133 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2134 
   2135 		/*
   2136 		 * Compute the base value of the ISS.  It is a hash
   2137 		 * of (saddr, sport, daddr, dport, secret).
   2138 		 */
   2139 		MD5Init(&ctx);
   2140 
   2141 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2142 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2143 
   2144 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2145 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2146 
   2147 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2148 
   2149 		MD5Final(hash, &ctx);
   2150 
   2151 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2152 
   2153 		/*
   2154 		 * Now increment our "timer", and add it in to
   2155 		 * the computed value.
   2156 		 *
   2157 		 * XXX Use `addin'?
   2158 		 * XXX TCP_ISSINCR too large to use?
   2159 		 */
   2160 		tcp_iss_seq += TCP_ISSINCR;
   2161 #ifdef TCPISS_DEBUG
   2162 		printf("ISS hash 0x%08x, ", tcp_iss);
   2163 #endif
   2164 		tcp_iss += tcp_iss_seq + addin;
   2165 #ifdef TCPISS_DEBUG
   2166 		printf("new ISS 0x%08x\n", tcp_iss);
   2167 #endif
   2168 	} else
   2169 #endif /* NRND > 0 */
   2170 	{
   2171 		/*
   2172 		 * Randomize.
   2173 		 */
   2174 #if NRND > 0
   2175 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2176 #else
   2177 		tcp_iss = arc4random();
   2178 #endif
   2179 
   2180 		/*
   2181 		 * If we were asked to add some amount to a known value,
   2182 		 * we will take a random value obtained above, mask off
   2183 		 * the upper bits, and add in the known value.  We also
   2184 		 * add in a constant to ensure that we are at least a
   2185 		 * certain distance from the original value.
   2186 		 *
   2187 		 * This is used when an old connection is in timed wait
   2188 		 * and we have a new one coming in, for instance.
   2189 		 */
   2190 		if (addin != 0) {
   2191 #ifdef TCPISS_DEBUG
   2192 			printf("Random %08x, ", tcp_iss);
   2193 #endif
   2194 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2195 			tcp_iss += addin + TCP_ISSINCR;
   2196 #ifdef TCPISS_DEBUG
   2197 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2198 #endif
   2199 		} else {
   2200 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2201 			tcp_iss += tcp_iss_seq;
   2202 			tcp_iss_seq += TCP_ISSINCR;
   2203 #ifdef TCPISS_DEBUG
   2204 			printf("ISS %08x\n", tcp_iss);
   2205 #endif
   2206 		}
   2207 	}
   2208 
   2209 	if (tcp_compat_42) {
   2210 		/*
   2211 		 * Limit it to the positive range for really old TCP
   2212 		 * implementations.
   2213 		 * Just AND off the top bit instead of checking if
   2214 		 * is set first - saves a branch 50% of the time.
   2215 		 */
   2216 		tcp_iss &= 0x7fffffff;		/* XXX */
   2217 	}
   2218 
   2219 	return (tcp_iss);
   2220 }
   2221 
   2222 #if defined(IPSEC) || defined(FAST_IPSEC)
   2223 /* compute ESP/AH header size for TCP, including outer IP header. */
   2224 size_t
   2225 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
   2226 {
   2227 	struct inpcb *inp;
   2228 	size_t hdrsiz;
   2229 
   2230 	/* XXX mapped addr case (tp->t_in6pcb) */
   2231 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2232 		return 0;
   2233 	switch (tp->t_family) {
   2234 	case AF_INET:
   2235 		/* XXX: should use currect direction. */
   2236 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2237 		break;
   2238 	default:
   2239 		hdrsiz = 0;
   2240 		break;
   2241 	}
   2242 
   2243 	return hdrsiz;
   2244 }
   2245 
   2246 #ifdef INET6
   2247 size_t
   2248 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
   2249 {
   2250 	struct in6pcb *in6p;
   2251 	size_t hdrsiz;
   2252 
   2253 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2254 		return 0;
   2255 	switch (tp->t_family) {
   2256 	case AF_INET6:
   2257 		/* XXX: should use currect direction. */
   2258 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2259 		break;
   2260 	case AF_INET:
   2261 		/* mapped address case - tricky */
   2262 	default:
   2263 		hdrsiz = 0;
   2264 		break;
   2265 	}
   2266 
   2267 	return hdrsiz;
   2268 }
   2269 #endif
   2270 #endif /*IPSEC*/
   2271 
   2272 /*
   2273  * Determine the length of the TCP options for this connection.
   2274  *
   2275  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2276  *       all of the space?  Otherwise we can't exactly be incrementing
   2277  *       cwnd by an amount that varies depending on the amount we last
   2278  *       had to SACK!
   2279  */
   2280 
   2281 u_int
   2282 tcp_optlen(struct tcpcb *tp)
   2283 {
   2284 	u_int optlen;
   2285 
   2286 	optlen = 0;
   2287 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2288 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2289 		optlen += TCPOLEN_TSTAMP_APPA;
   2290 
   2291 #ifdef TCP_SIGNATURE
   2292 #if defined(INET6) && defined(FAST_IPSEC)
   2293 	if (tp->t_family == AF_INET)
   2294 #endif
   2295 	if (tp->t_flags & TF_SIGNATURE)
   2296 		optlen += TCPOLEN_SIGNATURE + 2;
   2297 #endif /* TCP_SIGNATURE */
   2298 
   2299 	return optlen;
   2300 }
   2301 
   2302 u_int
   2303 tcp_hdrsz(struct tcpcb *tp)
   2304 {
   2305 	u_int hlen;
   2306 
   2307 	switch (tp->t_family) {
   2308 #ifdef INET6
   2309 	case AF_INET6:
   2310 		hlen = sizeof(struct ip6_hdr);
   2311 		break;
   2312 #endif
   2313 	case AF_INET:
   2314 		hlen = sizeof(struct ip);
   2315 		break;
   2316 	default:
   2317 		hlen = 0;
   2318 		break;
   2319 	}
   2320 	hlen += sizeof(struct tcphdr);
   2321 
   2322 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
   2323 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
   2324 		hlen += TCPOLEN_TSTAMP_APPA;
   2325 #ifdef TCP_SIGNATURE
   2326 	if (tp->t_flags & TF_SIGNATURE)
   2327 		hlen += TCPOLEN_SIGLEN;
   2328 #endif
   2329 	return hlen;
   2330 }
   2331