Home | History | Annotate | Line # | Download | only in netinet
tcp_subr.c revision 1.208
      1 /*	$NetBSD: tcp_subr.c,v 1.208 2006/11/16 01:33:45 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*-
     33  * Copyright (c) 1997, 1998, 2000, 2001 The NetBSD Foundation, Inc.
     34  * All rights reserved.
     35  *
     36  * This code is derived from software contributed to The NetBSD Foundation
     37  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     38  * Facility, NASA Ames Research Center.
     39  *
     40  * Redistribution and use in source and binary forms, with or without
     41  * modification, are permitted provided that the following conditions
     42  * are met:
     43  * 1. Redistributions of source code must retain the above copyright
     44  *    notice, this list of conditions and the following disclaimer.
     45  * 2. Redistributions in binary form must reproduce the above copyright
     46  *    notice, this list of conditions and the following disclaimer in the
     47  *    documentation and/or other materials provided with the distribution.
     48  * 3. All advertising materials mentioning features or use of this software
     49  *    must display the following acknowledgement:
     50  *	This product includes software developed by the NetBSD
     51  *	Foundation, Inc. and its contributors.
     52  * 4. Neither the name of The NetBSD Foundation nor the names of its
     53  *    contributors may be used to endorse or promote products derived
     54  *    from this software without specific prior written permission.
     55  *
     56  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     57  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     58  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     59  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     60  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     61  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     62  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     63  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     64  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     65  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     66  * POSSIBILITY OF SUCH DAMAGE.
     67  */
     68 
     69 /*
     70  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
     71  *	The Regents of the University of California.  All rights reserved.
     72  *
     73  * Redistribution and use in source and binary forms, with or without
     74  * modification, are permitted provided that the following conditions
     75  * are met:
     76  * 1. Redistributions of source code must retain the above copyright
     77  *    notice, this list of conditions and the following disclaimer.
     78  * 2. Redistributions in binary form must reproduce the above copyright
     79  *    notice, this list of conditions and the following disclaimer in the
     80  *    documentation and/or other materials provided with the distribution.
     81  * 3. Neither the name of the University nor the names of its contributors
     82  *    may be used to endorse or promote products derived from this software
     83  *    without specific prior written permission.
     84  *
     85  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     86  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     87  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     88  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     89  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     90  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     91  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     92  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     93  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     94  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     95  * SUCH DAMAGE.
     96  *
     97  *	@(#)tcp_subr.c	8.2 (Berkeley) 5/24/95
     98  */
     99 
    100 #include <sys/cdefs.h>
    101 __KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.208 2006/11/16 01:33:45 christos Exp $");
    102 
    103 #include "opt_inet.h"
    104 #include "opt_ipsec.h"
    105 #include "opt_tcp_compat_42.h"
    106 #include "opt_inet_csum.h"
    107 #include "opt_mbuftrace.h"
    108 #include "rnd.h"
    109 
    110 #include <sys/param.h>
    111 #include <sys/proc.h>
    112 #include <sys/systm.h>
    113 #include <sys/malloc.h>
    114 #include <sys/mbuf.h>
    115 #include <sys/socket.h>
    116 #include <sys/socketvar.h>
    117 #include <sys/protosw.h>
    118 #include <sys/errno.h>
    119 #include <sys/kernel.h>
    120 #include <sys/pool.h>
    121 #if NRND > 0
    122 #include <sys/md5.h>
    123 #include <sys/rnd.h>
    124 #endif
    125 
    126 #include <net/route.h>
    127 #include <net/if.h>
    128 
    129 #include <netinet/in.h>
    130 #include <netinet/in_systm.h>
    131 #include <netinet/ip.h>
    132 #include <netinet/in_pcb.h>
    133 #include <netinet/ip_var.h>
    134 #include <netinet/ip_icmp.h>
    135 
    136 #ifdef INET6
    137 #ifndef INET
    138 #include <netinet/in.h>
    139 #endif
    140 #include <netinet/ip6.h>
    141 #include <netinet6/in6_pcb.h>
    142 #include <netinet6/ip6_var.h>
    143 #include <netinet6/in6_var.h>
    144 #include <netinet6/ip6protosw.h>
    145 #include <netinet/icmp6.h>
    146 #include <netinet6/nd6.h>
    147 #endif
    148 
    149 #include <netinet/tcp.h>
    150 #include <netinet/tcp_fsm.h>
    151 #include <netinet/tcp_seq.h>
    152 #include <netinet/tcp_timer.h>
    153 #include <netinet/tcp_var.h>
    154 #include <netinet/tcp_congctl.h>
    155 #include <netinet/tcpip.h>
    156 
    157 #ifdef IPSEC
    158 #include <netinet6/ipsec.h>
    159 #include <netkey/key.h>
    160 #endif /*IPSEC*/
    161 
    162 #ifdef FAST_IPSEC
    163 #include <netipsec/ipsec.h>
    164 #include <netipsec/xform.h>
    165 #ifdef INET6
    166 #include <netipsec/ipsec6.h>
    167 #endif
    168  #include <netipsec/key.h>
    169 #endif	/* FAST_IPSEC*/
    170 
    171 
    172 struct	inpcbtable tcbtable;	/* head of queue of active tcpcb's */
    173 struct	tcpstat tcpstat;	/* tcp statistics */
    174 u_int32_t tcp_now;		/* for RFC 1323 timestamps */
    175 
    176 /* patchable/settable parameters for tcp */
    177 int 	tcp_mssdflt = TCP_MSS;
    178 int 	tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
    179 int	tcp_do_rfc1323 = 1;	/* window scaling / timestamps (obsolete) */
    180 #if NRND > 0
    181 int	tcp_do_rfc1948 = 0;	/* ISS by cryptographic hash */
    182 #endif
    183 int	tcp_do_sack = 1;	/* selective acknowledgement */
    184 int	tcp_do_win_scale = 1;	/* RFC1323 window scaling */
    185 int	tcp_do_timestamps = 1;	/* RFC1323 timestamps */
    186 int	tcp_ack_on_push = 0;	/* set to enable immediate ACK-on-PUSH */
    187 int	tcp_do_ecn = 0;		/* Explicit Congestion Notification */
    188 #ifndef TCP_INIT_WIN
    189 #define	TCP_INIT_WIN	0	/* initial slow start window */
    190 #endif
    191 #ifndef TCP_INIT_WIN_LOCAL
    192 #define	TCP_INIT_WIN_LOCAL 4	/* initial slow start window for local nets */
    193 #endif
    194 int	tcp_init_win = TCP_INIT_WIN;
    195 int	tcp_init_win_local = TCP_INIT_WIN_LOCAL;
    196 int	tcp_mss_ifmtu = 0;
    197 #ifdef TCP_COMPAT_42
    198 int	tcp_compat_42 = 1;
    199 #else
    200 int	tcp_compat_42 = 0;
    201 #endif
    202 int	tcp_rst_ppslim = 100;	/* 100pps */
    203 int	tcp_ackdrop_ppslim = 100;	/* 100pps */
    204 int	tcp_do_loopback_cksum = 0;
    205 int	tcp_do_abc = 1;		/* RFC3465 Appropriate byte counting. */
    206 int	tcp_abc_aggressive = 1;	/* 1: L=2*SMSS  0: L=1*SMSS */
    207 int	tcp_sack_tp_maxholes = 32;
    208 int	tcp_sack_globalmaxholes = 1024;
    209 int	tcp_sack_globalholes = 0;
    210 int	tcp_ecn_maxretries = 1;
    211 
    212 /* tcb hash */
    213 #ifndef TCBHASHSIZE
    214 #define	TCBHASHSIZE	128
    215 #endif
    216 int	tcbhashsize = TCBHASHSIZE;
    217 
    218 /* syn hash parameters */
    219 #define	TCP_SYN_HASH_SIZE	293
    220 #define	TCP_SYN_BUCKET_SIZE	35
    221 int	tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
    222 int	tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
    223 int	tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
    224 struct	syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
    225 
    226 int	tcp_freeq(struct tcpcb *);
    227 
    228 #ifdef INET
    229 void	tcp_mtudisc_callback(struct in_addr);
    230 #endif
    231 #ifdef INET6
    232 void	tcp6_mtudisc_callback(struct in6_addr *);
    233 #endif
    234 
    235 #ifdef INET6
    236 void	tcp6_mtudisc(struct in6pcb *, int);
    237 #endif
    238 
    239 POOL_INIT(tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl", NULL);
    240 
    241 #ifdef TCP_CSUM_COUNTERS
    242 #include <sys/device.h>
    243 
    244 #if defined(INET)
    245 struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    246     NULL, "tcp", "hwcsum bad");
    247 struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    248     NULL, "tcp", "hwcsum ok");
    249 struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    250     NULL, "tcp", "hwcsum data");
    251 struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    252     NULL, "tcp", "swcsum");
    253 
    254 EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
    255 EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
    256 EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
    257 EVCNT_ATTACH_STATIC(tcp_swcsum);
    258 #endif /* defined(INET) */
    259 
    260 #if defined(INET6)
    261 struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    262     NULL, "tcp6", "hwcsum bad");
    263 struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    264     NULL, "tcp6", "hwcsum ok");
    265 struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    266     NULL, "tcp6", "hwcsum data");
    267 struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    268     NULL, "tcp6", "swcsum");
    269 
    270 EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
    271 EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
    272 EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
    273 EVCNT_ATTACH_STATIC(tcp6_swcsum);
    274 #endif /* defined(INET6) */
    275 #endif /* TCP_CSUM_COUNTERS */
    276 
    277 
    278 #ifdef TCP_OUTPUT_COUNTERS
    279 #include <sys/device.h>
    280 
    281 struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    282     NULL, "tcp", "output big header");
    283 struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    284     NULL, "tcp", "output predict hit");
    285 struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    286     NULL, "tcp", "output predict miss");
    287 struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    288     NULL, "tcp", "output copy small");
    289 struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    290     NULL, "tcp", "output copy big");
    291 struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    292     NULL, "tcp", "output reference big");
    293 
    294 EVCNT_ATTACH_STATIC(tcp_output_bigheader);
    295 EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
    296 EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
    297 EVCNT_ATTACH_STATIC(tcp_output_copysmall);
    298 EVCNT_ATTACH_STATIC(tcp_output_copybig);
    299 EVCNT_ATTACH_STATIC(tcp_output_refbig);
    300 
    301 #endif /* TCP_OUTPUT_COUNTERS */
    302 
    303 #ifdef TCP_REASS_COUNTERS
    304 #include <sys/device.h>
    305 
    306 struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    307     NULL, "tcp_reass", "calls");
    308 struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    309     &tcp_reass_, "tcp_reass", "insert into empty queue");
    310 struct evcnt tcp_reass_iteration[8] = {
    311     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
    312     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
    313     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
    314     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
    315     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
    316     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
    317     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
    318     EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
    319 };
    320 struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    321     &tcp_reass_, "tcp_reass", "prepend to first");
    322 struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    323     &tcp_reass_, "tcp_reass", "prepend");
    324 struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    325     &tcp_reass_, "tcp_reass", "insert");
    326 struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    327     &tcp_reass_, "tcp_reass", "insert at tail");
    328 struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    329     &tcp_reass_, "tcp_reass", "append");
    330 struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    331     &tcp_reass_, "tcp_reass", "append to tail fragment");
    332 struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    333     &tcp_reass_, "tcp_reass", "overlap at end");
    334 struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    335     &tcp_reass_, "tcp_reass", "overlap at start");
    336 struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    337     &tcp_reass_, "tcp_reass", "duplicate segment");
    338 struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
    339     &tcp_reass_, "tcp_reass", "duplicate fragment");
    340 
    341 EVCNT_ATTACH_STATIC(tcp_reass_);
    342 EVCNT_ATTACH_STATIC(tcp_reass_empty);
    343 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
    344 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
    345 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
    346 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
    347 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
    348 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
    349 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
    350 EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
    351 EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
    352 EVCNT_ATTACH_STATIC(tcp_reass_prepend);
    353 EVCNT_ATTACH_STATIC(tcp_reass_insert);
    354 EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
    355 EVCNT_ATTACH_STATIC(tcp_reass_append);
    356 EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
    357 EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
    358 EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
    359 EVCNT_ATTACH_STATIC(tcp_reass_segdup);
    360 EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
    361 
    362 #endif /* TCP_REASS_COUNTERS */
    363 
    364 #ifdef MBUFTRACE
    365 struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
    366 struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
    367 struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
    368 #endif
    369 
    370 /*
    371  * Tcp initialization
    372  */
    373 void
    374 tcp_init(void)
    375 {
    376 	int hlen;
    377 
    378 	/* Initialize the TCPCB template. */
    379 	tcp_tcpcb_template();
    380 
    381 	in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
    382 
    383 	hlen = sizeof(struct ip) + sizeof(struct tcphdr);
    384 #ifdef INET6
    385 	if (sizeof(struct ip) < sizeof(struct ip6_hdr))
    386 		hlen = sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
    387 #endif
    388 	if (max_protohdr < hlen)
    389 		max_protohdr = hlen;
    390 	if (max_linkhdr + hlen > MHLEN)
    391 		panic("tcp_init");
    392 
    393 #ifdef INET
    394 	icmp_mtudisc_callback_register(tcp_mtudisc_callback);
    395 #endif
    396 #ifdef INET6
    397 	icmp6_mtudisc_callback_register(tcp6_mtudisc_callback);
    398 #endif
    399 
    400 	/* Initialize timer state. */
    401 	tcp_timer_init();
    402 
    403 	/* Initialize the compressed state engine. */
    404 	syn_cache_init();
    405 
    406 	/* Initialize the congestion control algorithms. */
    407 	tcp_congctl_init();
    408 
    409 	MOWNER_ATTACH(&tcp_tx_mowner);
    410 	MOWNER_ATTACH(&tcp_rx_mowner);
    411 	MOWNER_ATTACH(&tcp_mowner);
    412 }
    413 
    414 /*
    415  * Create template to be used to send tcp packets on a connection.
    416  * Call after host entry created, allocates an mbuf and fills
    417  * in a skeletal tcp/ip header, minimizing the amount of work
    418  * necessary when the connection is used.
    419  */
    420 struct mbuf *
    421 tcp_template(struct tcpcb *tp)
    422 {
    423 	struct inpcb *inp = tp->t_inpcb;
    424 #ifdef INET6
    425 	struct in6pcb *in6p = tp->t_in6pcb;
    426 #endif
    427 	struct tcphdr *n;
    428 	struct mbuf *m;
    429 	int hlen;
    430 
    431 	switch (tp->t_family) {
    432 	case AF_INET:
    433 		hlen = sizeof(struct ip);
    434 		if (inp)
    435 			break;
    436 #ifdef INET6
    437 		if (in6p) {
    438 			/* mapped addr case */
    439 			if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
    440 			 && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
    441 				break;
    442 		}
    443 #endif
    444 		return NULL;	/*EINVAL*/
    445 #ifdef INET6
    446 	case AF_INET6:
    447 		hlen = sizeof(struct ip6_hdr);
    448 		if (in6p) {
    449 			/* more sainty check? */
    450 			break;
    451 		}
    452 		return NULL;	/*EINVAL*/
    453 #endif
    454 	default:
    455 		hlen = 0;	/*pacify gcc*/
    456 		return NULL;	/*EAFNOSUPPORT*/
    457 	}
    458 #ifdef DIAGNOSTIC
    459 	if (hlen + sizeof(struct tcphdr) > MCLBYTES)
    460 		panic("mclbytes too small for t_template");
    461 #endif
    462 	m = tp->t_template;
    463 	if (m && m->m_len == hlen + sizeof(struct tcphdr))
    464 		;
    465 	else {
    466 		if (m)
    467 			m_freem(m);
    468 		m = tp->t_template = NULL;
    469 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    470 		if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
    471 			MCLGET(m, M_DONTWAIT);
    472 			if ((m->m_flags & M_EXT) == 0) {
    473 				m_free(m);
    474 				m = NULL;
    475 			}
    476 		}
    477 		if (m == NULL)
    478 			return NULL;
    479 		MCLAIM(m, &tcp_mowner);
    480 		m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
    481 	}
    482 
    483 	bzero(mtod(m, caddr_t), m->m_len);
    484 
    485 	n = (struct tcphdr *)(mtod(m, caddr_t) + hlen);
    486 
    487 	switch (tp->t_family) {
    488 	case AF_INET:
    489 	    {
    490 		struct ipovly *ipov;
    491 		mtod(m, struct ip *)->ip_v = 4;
    492 		mtod(m, struct ip *)->ip_hl = hlen >> 2;
    493 		ipov = mtod(m, struct ipovly *);
    494 		ipov->ih_pr = IPPROTO_TCP;
    495 		ipov->ih_len = htons(sizeof(struct tcphdr));
    496 		if (inp) {
    497 			ipov->ih_src = inp->inp_laddr;
    498 			ipov->ih_dst = inp->inp_faddr;
    499 		}
    500 #ifdef INET6
    501 		else if (in6p) {
    502 			/* mapped addr case */
    503 			bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
    504 				sizeof(ipov->ih_src));
    505 			bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
    506 				sizeof(ipov->ih_dst));
    507 		}
    508 #endif
    509 		/*
    510 		 * Compute the pseudo-header portion of the checksum
    511 		 * now.  We incrementally add in the TCP option and
    512 		 * payload lengths later, and then compute the TCP
    513 		 * checksum right before the packet is sent off onto
    514 		 * the wire.
    515 		 */
    516 		n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
    517 		    ipov->ih_dst.s_addr,
    518 		    htons(sizeof(struct tcphdr) + IPPROTO_TCP));
    519 		break;
    520 	    }
    521 #ifdef INET6
    522 	case AF_INET6:
    523 	    {
    524 		struct ip6_hdr *ip6;
    525 		mtod(m, struct ip *)->ip_v = 6;
    526 		ip6 = mtod(m, struct ip6_hdr *);
    527 		ip6->ip6_nxt = IPPROTO_TCP;
    528 		ip6->ip6_plen = htons(sizeof(struct tcphdr));
    529 		ip6->ip6_src = in6p->in6p_laddr;
    530 		ip6->ip6_dst = in6p->in6p_faddr;
    531 		ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
    532 		if (ip6_auto_flowlabel) {
    533 			ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
    534 			ip6->ip6_flow |=
    535 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    536 		}
    537 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
    538 		ip6->ip6_vfc |= IPV6_VERSION;
    539 
    540 		/*
    541 		 * Compute the pseudo-header portion of the checksum
    542 		 * now.  We incrementally add in the TCP option and
    543 		 * payload lengths later, and then compute the TCP
    544 		 * checksum right before the packet is sent off onto
    545 		 * the wire.
    546 		 */
    547 		n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
    548 		    &in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
    549 		    htonl(IPPROTO_TCP));
    550 		break;
    551 	    }
    552 #endif
    553 	}
    554 	if (inp) {
    555 		n->th_sport = inp->inp_lport;
    556 		n->th_dport = inp->inp_fport;
    557 	}
    558 #ifdef INET6
    559 	else if (in6p) {
    560 		n->th_sport = in6p->in6p_lport;
    561 		n->th_dport = in6p->in6p_fport;
    562 	}
    563 #endif
    564 	n->th_seq = 0;
    565 	n->th_ack = 0;
    566 	n->th_x2 = 0;
    567 	n->th_off = 5;
    568 	n->th_flags = 0;
    569 	n->th_win = 0;
    570 	n->th_urp = 0;
    571 	return (m);
    572 }
    573 
    574 /*
    575  * Send a single message to the TCP at address specified by
    576  * the given TCP/IP header.  If m == 0, then we make a copy
    577  * of the tcpiphdr at ti and send directly to the addressed host.
    578  * This is used to force keep alive messages out using the TCP
    579  * template for a connection tp->t_template.  If flags are given
    580  * then we send a message back to the TCP which originated the
    581  * segment ti, and discard the mbuf containing it and any other
    582  * attached mbufs.
    583  *
    584  * In any case the ack and sequence number of the transmitted
    585  * segment are as specified by the parameters.
    586  */
    587 int
    588 tcp_respond(struct tcpcb *tp, struct mbuf *template, struct mbuf *m,
    589     struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
    590 {
    591 	struct route *ro;
    592 	int error, tlen, win = 0;
    593 	int hlen;
    594 	struct ip *ip;
    595 #ifdef INET6
    596 	struct ip6_hdr *ip6;
    597 #endif
    598 	int family;	/* family on packet, not inpcb/in6pcb! */
    599 	struct tcphdr *th;
    600 	struct socket *so;
    601 
    602 	if (tp != NULL && (flags & TH_RST) == 0) {
    603 #ifdef DIAGNOSTIC
    604 		if (tp->t_inpcb && tp->t_in6pcb)
    605 			panic("tcp_respond: both t_inpcb and t_in6pcb are set");
    606 #endif
    607 #ifdef INET
    608 		if (tp->t_inpcb)
    609 			win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
    610 #endif
    611 #ifdef INET6
    612 		if (tp->t_in6pcb)
    613 			win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
    614 #endif
    615 	}
    616 
    617 	th = NULL;	/* Quell uninitialized warning */
    618 	ip = NULL;
    619 #ifdef INET6
    620 	ip6 = NULL;
    621 #endif
    622 	if (m == 0) {
    623 		if (!template)
    624 			return EINVAL;
    625 
    626 		/* get family information from template */
    627 		switch (mtod(template, struct ip *)->ip_v) {
    628 		case 4:
    629 			family = AF_INET;
    630 			hlen = sizeof(struct ip);
    631 			break;
    632 #ifdef INET6
    633 		case 6:
    634 			family = AF_INET6;
    635 			hlen = sizeof(struct ip6_hdr);
    636 			break;
    637 #endif
    638 		default:
    639 			return EAFNOSUPPORT;
    640 		}
    641 
    642 		MGETHDR(m, M_DONTWAIT, MT_HEADER);
    643 		if (m) {
    644 			MCLAIM(m, &tcp_tx_mowner);
    645 			MCLGET(m, M_DONTWAIT);
    646 			if ((m->m_flags & M_EXT) == 0) {
    647 				m_free(m);
    648 				m = NULL;
    649 			}
    650 		}
    651 		if (m == NULL)
    652 			return (ENOBUFS);
    653 
    654 		if (tcp_compat_42)
    655 			tlen = 1;
    656 		else
    657 			tlen = 0;
    658 
    659 		m->m_data += max_linkhdr;
    660 		bcopy(mtod(template, caddr_t), mtod(m, caddr_t),
    661 			template->m_len);
    662 		switch (family) {
    663 		case AF_INET:
    664 			ip = mtod(m, struct ip *);
    665 			th = (struct tcphdr *)(ip + 1);
    666 			break;
    667 #ifdef INET6
    668 		case AF_INET6:
    669 			ip6 = mtod(m, struct ip6_hdr *);
    670 			th = (struct tcphdr *)(ip6 + 1);
    671 			break;
    672 #endif
    673 #if 0
    674 		default:
    675 			/* noone will visit here */
    676 			m_freem(m);
    677 			return EAFNOSUPPORT;
    678 #endif
    679 		}
    680 		flags = TH_ACK;
    681 	} else {
    682 
    683 		if ((m->m_flags & M_PKTHDR) == 0) {
    684 #if 0
    685 			printf("non PKTHDR to tcp_respond\n");
    686 #endif
    687 			m_freem(m);
    688 			return EINVAL;
    689 		}
    690 #ifdef DIAGNOSTIC
    691 		if (!th0)
    692 			panic("th0 == NULL in tcp_respond");
    693 #endif
    694 
    695 		/* get family information from m */
    696 		switch (mtod(m, struct ip *)->ip_v) {
    697 		case 4:
    698 			family = AF_INET;
    699 			hlen = sizeof(struct ip);
    700 			ip = mtod(m, struct ip *);
    701 			break;
    702 #ifdef INET6
    703 		case 6:
    704 			family = AF_INET6;
    705 			hlen = sizeof(struct ip6_hdr);
    706 			ip6 = mtod(m, struct ip6_hdr *);
    707 			break;
    708 #endif
    709 		default:
    710 			m_freem(m);
    711 			return EAFNOSUPPORT;
    712 		}
    713 		/* clear h/w csum flags inherited from rx packet */
    714 		m->m_pkthdr.csum_flags = 0;
    715 
    716 		if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
    717 			tlen = sizeof(*th0);
    718 		else
    719 			tlen = th0->th_off << 2;
    720 
    721 		if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
    722 		    mtod(m, caddr_t) + hlen == (caddr_t)th0) {
    723 			m->m_len = hlen + tlen;
    724 			m_freem(m->m_next);
    725 			m->m_next = NULL;
    726 		} else {
    727 			struct mbuf *n;
    728 
    729 #ifdef DIAGNOSTIC
    730 			if (max_linkhdr + hlen + tlen > MCLBYTES) {
    731 				m_freem(m);
    732 				return EMSGSIZE;
    733 			}
    734 #endif
    735 			MGETHDR(n, M_DONTWAIT, MT_HEADER);
    736 			if (n && max_linkhdr + hlen + tlen > MHLEN) {
    737 				MCLGET(n, M_DONTWAIT);
    738 				if ((n->m_flags & M_EXT) == 0) {
    739 					m_freem(n);
    740 					n = NULL;
    741 				}
    742 			}
    743 			if (!n) {
    744 				m_freem(m);
    745 				return ENOBUFS;
    746 			}
    747 
    748 			MCLAIM(n, &tcp_tx_mowner);
    749 			n->m_data += max_linkhdr;
    750 			n->m_len = hlen + tlen;
    751 			m_copyback(n, 0, hlen, mtod(m, caddr_t));
    752 			m_copyback(n, hlen, tlen, (caddr_t)th0);
    753 
    754 			m_freem(m);
    755 			m = n;
    756 			n = NULL;
    757 		}
    758 
    759 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
    760 		switch (family) {
    761 		case AF_INET:
    762 			ip = mtod(m, struct ip *);
    763 			th = (struct tcphdr *)(ip + 1);
    764 			ip->ip_p = IPPROTO_TCP;
    765 			xchg(ip->ip_dst, ip->ip_src, struct in_addr);
    766 			ip->ip_p = IPPROTO_TCP;
    767 			break;
    768 #ifdef INET6
    769 		case AF_INET6:
    770 			ip6 = mtod(m, struct ip6_hdr *);
    771 			th = (struct tcphdr *)(ip6 + 1);
    772 			ip6->ip6_nxt = IPPROTO_TCP;
    773 			xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
    774 			ip6->ip6_nxt = IPPROTO_TCP;
    775 			break;
    776 #endif
    777 #if 0
    778 		default:
    779 			/* noone will visit here */
    780 			m_freem(m);
    781 			return EAFNOSUPPORT;
    782 #endif
    783 		}
    784 		xchg(th->th_dport, th->th_sport, u_int16_t);
    785 #undef xchg
    786 		tlen = 0;	/*be friendly with the following code*/
    787 	}
    788 	th->th_seq = htonl(seq);
    789 	th->th_ack = htonl(ack);
    790 	th->th_x2 = 0;
    791 	if ((flags & TH_SYN) == 0) {
    792 		if (tp)
    793 			win >>= tp->rcv_scale;
    794 		if (win > TCP_MAXWIN)
    795 			win = TCP_MAXWIN;
    796 		th->th_win = htons((u_int16_t)win);
    797 		th->th_off = sizeof (struct tcphdr) >> 2;
    798 		tlen += sizeof(*th);
    799 	} else
    800 		tlen += th->th_off << 2;
    801 	m->m_len = hlen + tlen;
    802 	m->m_pkthdr.len = hlen + tlen;
    803 	m->m_pkthdr.rcvif = (struct ifnet *) 0;
    804 	th->th_flags = flags;
    805 	th->th_urp = 0;
    806 
    807 	switch (family) {
    808 #ifdef INET
    809 	case AF_INET:
    810 	    {
    811 		struct ipovly *ipov = (struct ipovly *)ip;
    812 		bzero(ipov->ih_x1, sizeof ipov->ih_x1);
    813 		ipov->ih_len = htons((u_int16_t)tlen);
    814 
    815 		th->th_sum = 0;
    816 		th->th_sum = in_cksum(m, hlen + tlen);
    817 		ip->ip_len = htons(hlen + tlen);
    818 		ip->ip_ttl = ip_defttl;
    819 		break;
    820 	    }
    821 #endif
    822 #ifdef INET6
    823 	case AF_INET6:
    824 	    {
    825 		th->th_sum = 0;
    826 		th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
    827 				tlen);
    828 		ip6->ip6_plen = htons(tlen);
    829 		if (tp && tp->t_in6pcb) {
    830 			struct ifnet *oifp;
    831 			ro = (struct route *)&tp->t_in6pcb->in6p_route;
    832 			oifp = ro->ro_rt ? ro->ro_rt->rt_ifp : NULL;
    833 			ip6->ip6_hlim = in6_selecthlim(tp->t_in6pcb, oifp);
    834 		} else
    835 			ip6->ip6_hlim = ip6_defhlim;
    836 		ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
    837 		if (ip6_auto_flowlabel) {
    838 			ip6->ip6_flow |=
    839 			    (htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
    840 		}
    841 		break;
    842 	    }
    843 #endif
    844 	}
    845 
    846 	if (tp && tp->t_inpcb)
    847 		so = tp->t_inpcb->inp_socket;
    848 #ifdef INET6
    849 	else if (tp && tp->t_in6pcb)
    850 		so = tp->t_in6pcb->in6p_socket;
    851 #endif
    852 	else
    853 		so = NULL;
    854 
    855 	if (tp != NULL && tp->t_inpcb != NULL) {
    856 		ro = &tp->t_inpcb->inp_route;
    857 #ifdef DIAGNOSTIC
    858 		if (family != AF_INET)
    859 			panic("tcp_respond: address family mismatch");
    860 		if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
    861 			panic("tcp_respond: ip_dst %x != inp_faddr %x",
    862 			    ntohl(ip->ip_dst.s_addr),
    863 			    ntohl(tp->t_inpcb->inp_faddr.s_addr));
    864 		}
    865 #endif
    866 	}
    867 #ifdef INET6
    868 	else if (tp != NULL && tp->t_in6pcb != NULL) {
    869 		ro = (struct route *)&tp->t_in6pcb->in6p_route;
    870 #ifdef DIAGNOSTIC
    871 		if (family == AF_INET) {
    872 			if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
    873 				panic("tcp_respond: not mapped addr");
    874 			if (bcmp(&ip->ip_dst,
    875 			    &tp->t_in6pcb->in6p_faddr.s6_addr32[3],
    876 			    sizeof(ip->ip_dst)) != 0) {
    877 				panic("tcp_respond: ip_dst != in6p_faddr");
    878 			}
    879 		} else if (family == AF_INET6) {
    880 			if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
    881 			    &tp->t_in6pcb->in6p_faddr))
    882 				panic("tcp_respond: ip6_dst != in6p_faddr");
    883 		} else
    884 			panic("tcp_respond: address family mismatch");
    885 #endif
    886 	}
    887 #endif
    888 	else
    889 		ro = NULL;
    890 
    891 	switch (family) {
    892 #ifdef INET
    893 	case AF_INET:
    894 		error = ip_output(m, NULL, ro,
    895 		    (tp && tp->t_mtudisc ? IP_MTUDISC : 0),
    896 		    (struct ip_moptions *)0, so);
    897 		break;
    898 #endif
    899 #ifdef INET6
    900 	case AF_INET6:
    901 		error = ip6_output(m, NULL, (struct route_in6 *)ro, 0,
    902 		    (struct ip6_moptions *)0, so, NULL);
    903 		break;
    904 #endif
    905 	default:
    906 		error = EAFNOSUPPORT;
    907 		break;
    908 	}
    909 
    910 	return (error);
    911 }
    912 
    913 /*
    914  * Template TCPCB.  Rather than zeroing a new TCPCB and initializing
    915  * a bunch of members individually, we maintain this template for the
    916  * static and mostly-static components of the TCPCB, and copy it into
    917  * the new TCPCB instead.
    918  */
    919 static struct tcpcb tcpcb_template = {
    920 	/*
    921 	 * If TCP_NTIMERS ever changes, we'll need to update this
    922 	 * initializer.
    923 	 */
    924 	.t_timer = {
    925 		CALLOUT_INITIALIZER,
    926 		CALLOUT_INITIALIZER,
    927 		CALLOUT_INITIALIZER,
    928 		CALLOUT_INITIALIZER,
    929 	},
    930 	.t_delack_ch = CALLOUT_INITIALIZER,
    931 
    932 	.t_srtt = TCPTV_SRTTBASE,
    933 	.t_rttmin = TCPTV_MIN,
    934 
    935 	.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    936 	.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
    937 	.snd_numholes = 0,
    938 
    939 	.t_partialacks = -1,
    940 	.t_bytes_acked = 0,
    941 };
    942 
    943 /*
    944  * Updates the TCPCB template whenever a parameter that would affect
    945  * the template is changed.
    946  */
    947 void
    948 tcp_tcpcb_template(void)
    949 {
    950 	struct tcpcb *tp = &tcpcb_template;
    951 	int flags;
    952 
    953 	tp->t_peermss = tcp_mssdflt;
    954 	tp->t_ourmss = tcp_mssdflt;
    955 	tp->t_segsz = tcp_mssdflt;
    956 
    957 	flags = 0;
    958 	if (tcp_do_rfc1323 && tcp_do_win_scale)
    959 		flags |= TF_REQ_SCALE;
    960 	if (tcp_do_rfc1323 && tcp_do_timestamps)
    961 		flags |= TF_REQ_TSTMP;
    962 	tp->t_flags = flags;
    963 
    964 	/*
    965 	 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
    966 	 * rtt estimate.  Set rttvar so that srtt + 2 * rttvar gives
    967 	 * reasonable initial retransmit time.
    968 	 */
    969 	tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
    970 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
    971 	    TCPTV_MIN, TCPTV_REXMTMAX);
    972 }
    973 
    974 /*
    975  * Create a new TCP control block, making an
    976  * empty reassembly queue and hooking it to the argument
    977  * protocol control block.
    978  */
    979 /* family selects inpcb, or in6pcb */
    980 struct tcpcb *
    981 tcp_newtcpcb(int family, void *aux)
    982 {
    983 	struct tcpcb *tp;
    984 	int i;
    985 
    986 	/* XXX Consider using a pool_cache for speed. */
    987 	tp = pool_get(&tcpcb_pool, PR_NOWAIT);	/* splsoftnet via tcp_usrreq */
    988 	if (tp == NULL)
    989 		return (NULL);
    990 	memcpy(tp, &tcpcb_template, sizeof(*tp));
    991 	TAILQ_INIT(&tp->segq);
    992 	TAILQ_INIT(&tp->timeq);
    993 	tp->t_family = family;		/* may be overridden later on */
    994 	TAILQ_INIT(&tp->snd_holes);
    995 	LIST_INIT(&tp->t_sc);		/* XXX can template this */
    996 
    997 	/* Don't sweat this loop; hopefully the compiler will unroll it. */
    998 	for (i = 0; i < TCPT_NTIMERS; i++)
    999 		TCP_TIMER_INIT(tp, i);
   1000 
   1001 	switch (family) {
   1002 	case AF_INET:
   1003 	    {
   1004 		struct inpcb *inp = (struct inpcb *)aux;
   1005 
   1006 		inp->inp_ip.ip_ttl = ip_defttl;
   1007 		inp->inp_ppcb = (caddr_t)tp;
   1008 
   1009 		tp->t_inpcb = inp;
   1010 		tp->t_mtudisc = ip_mtudisc;
   1011 		break;
   1012 	    }
   1013 #ifdef INET6
   1014 	case AF_INET6:
   1015 	    {
   1016 		struct in6pcb *in6p = (struct in6pcb *)aux;
   1017 
   1018 		in6p->in6p_ip6.ip6_hlim = in6_selecthlim(in6p,
   1019 			in6p->in6p_route.ro_rt ? in6p->in6p_route.ro_rt->rt_ifp
   1020 					       : NULL);
   1021 		in6p->in6p_ppcb = (caddr_t)tp;
   1022 
   1023 		tp->t_in6pcb = in6p;
   1024 		/* for IPv6, always try to run path MTU discovery */
   1025 		tp->t_mtudisc = 1;
   1026 		break;
   1027 	    }
   1028 #endif /* INET6 */
   1029 	default:
   1030 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_usrreq */
   1031 		return (NULL);
   1032 	}
   1033 
   1034 	/*
   1035 	 * Initialize our timebase.  When we send timestamps, we take
   1036 	 * the delta from tcp_now -- this means each connection always
   1037 	 * gets a timebase of 0, which makes it, among other things,
   1038 	 * more difficult to determine how long a system has been up,
   1039 	 * and thus how many TCP sequence increments have occurred.
   1040 	 */
   1041 	tp->ts_timebase = tcp_now;
   1042 
   1043 	tp->t_congctl = tcp_congctl_global;
   1044 	tp->t_congctl->refcnt++;
   1045 
   1046 	return (tp);
   1047 }
   1048 
   1049 /*
   1050  * Drop a TCP connection, reporting
   1051  * the specified error.  If connection is synchronized,
   1052  * then send a RST to peer.
   1053  */
   1054 struct tcpcb *
   1055 tcp_drop(struct tcpcb *tp, int errno)
   1056 {
   1057 	struct socket *so = NULL;
   1058 
   1059 #ifdef DIAGNOSTIC
   1060 	if (tp->t_inpcb && tp->t_in6pcb)
   1061 		panic("tcp_drop: both t_inpcb and t_in6pcb are set");
   1062 #endif
   1063 #ifdef INET
   1064 	if (tp->t_inpcb)
   1065 		so = tp->t_inpcb->inp_socket;
   1066 #endif
   1067 #ifdef INET6
   1068 	if (tp->t_in6pcb)
   1069 		so = tp->t_in6pcb->in6p_socket;
   1070 #endif
   1071 	if (!so)
   1072 		return NULL;
   1073 
   1074 	if (TCPS_HAVERCVDSYN(tp->t_state)) {
   1075 		tp->t_state = TCPS_CLOSED;
   1076 		(void) tcp_output(tp);
   1077 		tcpstat.tcps_drops++;
   1078 	} else
   1079 		tcpstat.tcps_conndrops++;
   1080 	if (errno == ETIMEDOUT && tp->t_softerror)
   1081 		errno = tp->t_softerror;
   1082 	so->so_error = errno;
   1083 	return (tcp_close(tp));
   1084 }
   1085 
   1086 /*
   1087  * Return whether this tcpcb is marked as dead, indicating
   1088  * to the calling timer function that no further action should
   1089  * be taken, as we are about to release this tcpcb.  The release
   1090  * of the storage will be done if this is the last timer running.
   1091  *
   1092  * This should be called from the callout handler function after
   1093  * callout_ack() is done, so that the number of invoking timer
   1094  * functions is 0.
   1095  */
   1096 int
   1097 tcp_isdead(struct tcpcb *tp)
   1098 {
   1099 	int dead = (tp->t_flags & TF_DEAD);
   1100 
   1101 	if (__predict_false(dead)) {
   1102 		if (tcp_timers_invoking(tp) > 0)
   1103 				/* not quite there yet -- count separately? */
   1104 			return dead;
   1105 		tcpstat.tcps_delayed_free++;
   1106 		pool_put(&tcpcb_pool, tp);	/* splsoftnet via tcp_timer.c */
   1107 	}
   1108 	return dead;
   1109 }
   1110 
   1111 /*
   1112  * Close a TCP control block:
   1113  *	discard all space held by the tcp
   1114  *	discard internet protocol block
   1115  *	wake up any sleepers
   1116  */
   1117 struct tcpcb *
   1118 tcp_close(struct tcpcb *tp)
   1119 {
   1120 	struct inpcb *inp;
   1121 #ifdef INET6
   1122 	struct in6pcb *in6p;
   1123 #endif
   1124 	struct socket *so;
   1125 #ifdef RTV_RTT
   1126 	struct rtentry *rt;
   1127 #endif
   1128 	struct route *ro;
   1129 
   1130 	inp = tp->t_inpcb;
   1131 #ifdef INET6
   1132 	in6p = tp->t_in6pcb;
   1133 #endif
   1134 	so = NULL;
   1135 	ro = NULL;
   1136 	if (inp) {
   1137 		so = inp->inp_socket;
   1138 		ro = &inp->inp_route;
   1139 	}
   1140 #ifdef INET6
   1141 	else if (in6p) {
   1142 		so = in6p->in6p_socket;
   1143 		ro = (struct route *)&in6p->in6p_route;
   1144 	}
   1145 #endif
   1146 
   1147 #ifdef RTV_RTT
   1148 	/*
   1149 	 * If we sent enough data to get some meaningful characteristics,
   1150 	 * save them in the routing entry.  'Enough' is arbitrarily
   1151 	 * defined as the sendpipesize (default 4K) * 16.  This would
   1152 	 * give us 16 rtt samples assuming we only get one sample per
   1153 	 * window (the usual case on a long haul net).  16 samples is
   1154 	 * enough for the srtt filter to converge to within 5% of the correct
   1155 	 * value; fewer samples and we could save a very bogus rtt.
   1156 	 *
   1157 	 * Don't update the default route's characteristics and don't
   1158 	 * update anything that the user "locked".
   1159 	 */
   1160 	if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
   1161 	    ro && (rt = ro->ro_rt) &&
   1162 	    !in_nullhost(satosin(rt_key(rt))->sin_addr)) {
   1163 		u_long i = 0;
   1164 
   1165 		if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
   1166 			i = tp->t_srtt *
   1167 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   1168 			if (rt->rt_rmx.rmx_rtt && i)
   1169 				/*
   1170 				 * filter this update to half the old & half
   1171 				 * the new values, converting scale.
   1172 				 * See route.h and tcp_var.h for a
   1173 				 * description of the scaling constants.
   1174 				 */
   1175 				rt->rt_rmx.rmx_rtt =
   1176 				    (rt->rt_rmx.rmx_rtt + i) / 2;
   1177 			else
   1178 				rt->rt_rmx.rmx_rtt = i;
   1179 		}
   1180 		if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
   1181 			i = tp->t_rttvar *
   1182 			    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
   1183 			if (rt->rt_rmx.rmx_rttvar && i)
   1184 				rt->rt_rmx.rmx_rttvar =
   1185 				    (rt->rt_rmx.rmx_rttvar + i) / 2;
   1186 			else
   1187 				rt->rt_rmx.rmx_rttvar = i;
   1188 		}
   1189 		/*
   1190 		 * update the pipelimit (ssthresh) if it has been updated
   1191 		 * already or if a pipesize was specified & the threshhold
   1192 		 * got below half the pipesize.  I.e., wait for bad news
   1193 		 * before we start updating, then update on both good
   1194 		 * and bad news.
   1195 		 */
   1196 		if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
   1197 		    (i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
   1198 		    i < (rt->rt_rmx.rmx_sendpipe / 2)) {
   1199 			/*
   1200 			 * convert the limit from user data bytes to
   1201 			 * packets then to packet data bytes.
   1202 			 */
   1203 			i = (i + tp->t_segsz / 2) / tp->t_segsz;
   1204 			if (i < 2)
   1205 				i = 2;
   1206 			i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
   1207 			if (rt->rt_rmx.rmx_ssthresh)
   1208 				rt->rt_rmx.rmx_ssthresh =
   1209 				    (rt->rt_rmx.rmx_ssthresh + i) / 2;
   1210 			else
   1211 				rt->rt_rmx.rmx_ssthresh = i;
   1212 		}
   1213 	}
   1214 #endif /* RTV_RTT */
   1215 	/* free the reassembly queue, if any */
   1216 	TCP_REASS_LOCK(tp);
   1217 	(void) tcp_freeq(tp);
   1218 	TCP_REASS_UNLOCK(tp);
   1219 
   1220 	/* free the SACK holes list. */
   1221 	tcp_free_sackholes(tp);
   1222 
   1223 	tp->t_congctl->refcnt--;
   1224 
   1225 	tcp_canceltimers(tp);
   1226 	TCP_CLEAR_DELACK(tp);
   1227 	syn_cache_cleanup(tp);
   1228 
   1229 	if (tp->t_template) {
   1230 		m_free(tp->t_template);
   1231 		tp->t_template = NULL;
   1232 	}
   1233 	if (tcp_timers_invoking(tp))
   1234 		tp->t_flags |= TF_DEAD;
   1235 	else
   1236 		pool_put(&tcpcb_pool, tp);
   1237 
   1238 	if (inp) {
   1239 		inp->inp_ppcb = 0;
   1240 		soisdisconnected(so);
   1241 		in_pcbdetach(inp);
   1242 	}
   1243 #ifdef INET6
   1244 	else if (in6p) {
   1245 		in6p->in6p_ppcb = 0;
   1246 		soisdisconnected(so);
   1247 		in6_pcbdetach(in6p);
   1248 	}
   1249 #endif
   1250 	tcpstat.tcps_closed++;
   1251 	return ((struct tcpcb *)0);
   1252 }
   1253 
   1254 int
   1255 tcp_freeq(tp)
   1256 	struct tcpcb *tp;
   1257 {
   1258 	struct ipqent *qe;
   1259 	int rv = 0;
   1260 #ifdef TCPREASS_DEBUG
   1261 	int i = 0;
   1262 #endif
   1263 
   1264 	TCP_REASS_LOCK_CHECK(tp);
   1265 
   1266 	while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
   1267 #ifdef TCPREASS_DEBUG
   1268 		printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
   1269 			tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
   1270 			qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
   1271 #endif
   1272 		TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
   1273 		TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
   1274 		m_freem(qe->ipqe_m);
   1275 		tcpipqent_free(qe);
   1276 		rv = 1;
   1277 	}
   1278 	tp->t_segqlen = 0;
   1279 	KASSERT(TAILQ_EMPTY(&tp->timeq));
   1280 	return (rv);
   1281 }
   1282 
   1283 /*
   1284  * Protocol drain routine.  Called when memory is in short supply.
   1285  */
   1286 void
   1287 tcp_drain(void)
   1288 {
   1289 	struct inpcb_hdr *inph;
   1290 	struct tcpcb *tp;
   1291 
   1292 	/*
   1293 	 * Free the sequence queue of all TCP connections.
   1294 	 */
   1295 	CIRCLEQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
   1296 		switch (inph->inph_af) {
   1297 		case AF_INET:
   1298 			tp = intotcpcb((struct inpcb *)inph);
   1299 			break;
   1300 #ifdef INET6
   1301 		case AF_INET6:
   1302 			tp = in6totcpcb((struct in6pcb *)inph);
   1303 			break;
   1304 #endif
   1305 		default:
   1306 			tp = NULL;
   1307 			break;
   1308 		}
   1309 		if (tp != NULL) {
   1310 			/*
   1311 			 * We may be called from a device's interrupt
   1312 			 * context.  If the tcpcb is already busy,
   1313 			 * just bail out now.
   1314 			 */
   1315 			if (tcp_reass_lock_try(tp) == 0)
   1316 				continue;
   1317 			if (tcp_freeq(tp))
   1318 				tcpstat.tcps_connsdrained++;
   1319 			TCP_REASS_UNLOCK(tp);
   1320 		}
   1321 	}
   1322 }
   1323 
   1324 /*
   1325  * Notify a tcp user of an asynchronous error;
   1326  * store error as soft error, but wake up user
   1327  * (for now, won't do anything until can select for soft error).
   1328  */
   1329 void
   1330 tcp_notify(struct inpcb *inp, int error)
   1331 {
   1332 	struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
   1333 	struct socket *so = inp->inp_socket;
   1334 
   1335 	/*
   1336 	 * Ignore some errors if we are hooked up.
   1337 	 * If connection hasn't completed, has retransmitted several times,
   1338 	 * and receives a second error, give up now.  This is better
   1339 	 * than waiting a long time to establish a connection that
   1340 	 * can never complete.
   1341 	 */
   1342 	if (tp->t_state == TCPS_ESTABLISHED &&
   1343 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1344 	      error == EHOSTDOWN)) {
   1345 		return;
   1346 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1347 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1348 		so->so_error = error;
   1349 	else
   1350 		tp->t_softerror = error;
   1351 	wakeup((caddr_t) &so->so_timeo);
   1352 	sorwakeup(so);
   1353 	sowwakeup(so);
   1354 }
   1355 
   1356 #ifdef INET6
   1357 void
   1358 tcp6_notify(struct in6pcb *in6p, int error)
   1359 {
   1360 	struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
   1361 	struct socket *so = in6p->in6p_socket;
   1362 
   1363 	/*
   1364 	 * Ignore some errors if we are hooked up.
   1365 	 * If connection hasn't completed, has retransmitted several times,
   1366 	 * and receives a second error, give up now.  This is better
   1367 	 * than waiting a long time to establish a connection that
   1368 	 * can never complete.
   1369 	 */
   1370 	if (tp->t_state == TCPS_ESTABLISHED &&
   1371 	     (error == EHOSTUNREACH || error == ENETUNREACH ||
   1372 	      error == EHOSTDOWN)) {
   1373 		return;
   1374 	} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
   1375 	    tp->t_rxtshift > 3 && tp->t_softerror)
   1376 		so->so_error = error;
   1377 	else
   1378 		tp->t_softerror = error;
   1379 	wakeup((caddr_t) &so->so_timeo);
   1380 	sorwakeup(so);
   1381 	sowwakeup(so);
   1382 }
   1383 #endif
   1384 
   1385 #ifdef INET6
   1386 void
   1387 tcp6_ctlinput(int cmd, struct sockaddr *sa, void *d)
   1388 {
   1389 	struct tcphdr th;
   1390 	void (*notify)(struct in6pcb *, int) = tcp6_notify;
   1391 	int nmatch;
   1392 	struct ip6_hdr *ip6;
   1393 	const struct sockaddr_in6 *sa6_src = NULL;
   1394 	struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)sa;
   1395 	struct mbuf *m;
   1396 	int off;
   1397 
   1398 	if (sa->sa_family != AF_INET6 ||
   1399 	    sa->sa_len != sizeof(struct sockaddr_in6))
   1400 		return;
   1401 	if ((unsigned)cmd >= PRC_NCMDS)
   1402 		return;
   1403 	else if (cmd == PRC_QUENCH) {
   1404 		/*
   1405 		 * Don't honor ICMP Source Quench messages meant for
   1406 		 * TCP connections.
   1407 		 */
   1408 		return;
   1409 	} else if (PRC_IS_REDIRECT(cmd))
   1410 		notify = in6_rtchange, d = NULL;
   1411 	else if (cmd == PRC_MSGSIZE)
   1412 		; /* special code is present, see below */
   1413 	else if (cmd == PRC_HOSTDEAD)
   1414 		d = NULL;
   1415 	else if (inet6ctlerrmap[cmd] == 0)
   1416 		return;
   1417 
   1418 	/* if the parameter is from icmp6, decode it. */
   1419 	if (d != NULL) {
   1420 		struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
   1421 		m = ip6cp->ip6c_m;
   1422 		ip6 = ip6cp->ip6c_ip6;
   1423 		off = ip6cp->ip6c_off;
   1424 		sa6_src = ip6cp->ip6c_src;
   1425 	} else {
   1426 		m = NULL;
   1427 		ip6 = NULL;
   1428 		sa6_src = &sa6_any;
   1429 		off = 0;
   1430 	}
   1431 
   1432 	if (ip6) {
   1433 		/*
   1434 		 * XXX: We assume that when ip6 is non NULL,
   1435 		 * M and OFF are valid.
   1436 		 */
   1437 
   1438 		/* check if we can safely examine src and dst ports */
   1439 		if (m->m_pkthdr.len < off + sizeof(th)) {
   1440 			if (cmd == PRC_MSGSIZE)
   1441 				icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
   1442 			return;
   1443 		}
   1444 
   1445 		bzero(&th, sizeof(th));
   1446 		m_copydata(m, off, sizeof(th), (caddr_t)&th);
   1447 
   1448 		if (cmd == PRC_MSGSIZE) {
   1449 			int valid = 0;
   1450 
   1451 			/*
   1452 			 * Check to see if we have a valid TCP connection
   1453 			 * corresponding to the address in the ICMPv6 message
   1454 			 * payload.
   1455 			 */
   1456 			if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
   1457 			    th.th_dport, (const struct in6_addr *)&sa6_src->sin6_addr,
   1458 			    th.th_sport, 0))
   1459 				valid++;
   1460 
   1461 			/*
   1462 			 * Depending on the value of "valid" and routing table
   1463 			 * size (mtudisc_{hi,lo}wat), we will:
   1464 			 * - recalcurate the new MTU and create the
   1465 			 *   corresponding routing entry, or
   1466 			 * - ignore the MTU change notification.
   1467 			 */
   1468 			icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
   1469 
   1470 			/*
   1471 			 * no need to call in6_pcbnotify, it should have been
   1472 			 * called via callback if necessary
   1473 			 */
   1474 			return;
   1475 		}
   1476 
   1477 		nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
   1478 		    (const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
   1479 		if (nmatch == 0 && syn_cache_count &&
   1480 		    (inet6ctlerrmap[cmd] == EHOSTUNREACH ||
   1481 		     inet6ctlerrmap[cmd] == ENETUNREACH ||
   1482 		     inet6ctlerrmap[cmd] == EHOSTDOWN))
   1483 			syn_cache_unreach((const struct sockaddr *)sa6_src,
   1484 					  sa, &th);
   1485 	} else {
   1486 		(void) in6_pcbnotify(&tcbtable, sa, 0,
   1487 		    (const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
   1488 	}
   1489 }
   1490 #endif
   1491 
   1492 #ifdef INET
   1493 /* assumes that ip header and tcp header are contiguous on mbuf */
   1494 void *
   1495 tcp_ctlinput(int cmd, struct sockaddr *sa, void *v)
   1496 {
   1497 	struct ip *ip = v;
   1498 	struct tcphdr *th;
   1499 	struct icmp *icp;
   1500 	extern const int inetctlerrmap[];
   1501 	void (*notify)(struct inpcb *, int) = tcp_notify;
   1502 	int errno;
   1503 	int nmatch;
   1504 	struct tcpcb *tp;
   1505 	u_int mtu;
   1506 	tcp_seq seq;
   1507 	struct inpcb *inp;
   1508 #ifdef INET6
   1509 	struct in6pcb *in6p;
   1510 	struct in6_addr src6, dst6;
   1511 #endif
   1512 
   1513 	if (sa->sa_family != AF_INET ||
   1514 	    sa->sa_len != sizeof(struct sockaddr_in))
   1515 		return NULL;
   1516 	if ((unsigned)cmd >= PRC_NCMDS)
   1517 		return NULL;
   1518 	errno = inetctlerrmap[cmd];
   1519 	if (cmd == PRC_QUENCH)
   1520 		/*
   1521 		 * Don't honor ICMP Source Quench messages meant for
   1522 		 * TCP connections.
   1523 		 */
   1524 		return NULL;
   1525 	else if (PRC_IS_REDIRECT(cmd))
   1526 		notify = in_rtchange, ip = 0;
   1527 	else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
   1528 		/*
   1529 		 * Check to see if we have a valid TCP connection
   1530 		 * corresponding to the address in the ICMP message
   1531 		 * payload.
   1532 		 *
   1533 		 * Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
   1534 		 */
   1535 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1536 #ifdef INET6
   1537 		memset(&src6, 0, sizeof(src6));
   1538 		memset(&dst6, 0, sizeof(dst6));
   1539 		src6.s6_addr16[5] = dst6.s6_addr16[5] = 0xffff;
   1540 		memcpy(&src6.s6_addr32[3], &ip->ip_src, sizeof(struct in_addr));
   1541 		memcpy(&dst6.s6_addr32[3], &ip->ip_dst, sizeof(struct in_addr));
   1542 #endif
   1543 		if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
   1544 		    th->th_dport, ip->ip_src, th->th_sport)) != NULL)
   1545 #ifdef INET6
   1546 			in6p = NULL;
   1547 #else
   1548 			;
   1549 #endif
   1550 #ifdef INET6
   1551 		else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
   1552 		    th->th_dport, &src6, th->th_sport, 0)) != NULL)
   1553 			;
   1554 #endif
   1555 		else
   1556 			return NULL;
   1557 
   1558 		/*
   1559 		 * Now that we've validated that we are actually communicating
   1560 		 * with the host indicated in the ICMP message, locate the
   1561 		 * ICMP header, recalculate the new MTU, and create the
   1562 		 * corresponding routing entry.
   1563 		 */
   1564 		icp = (struct icmp *)((caddr_t)ip -
   1565 		    offsetof(struct icmp, icmp_ip));
   1566 		if (inp) {
   1567 			if ((tp = intotcpcb(inp)) == NULL)
   1568 				return NULL;
   1569 		}
   1570 #ifdef INET6
   1571 		else if (in6p) {
   1572 			if ((tp = in6totcpcb(in6p)) == NULL)
   1573 				return NULL;
   1574 		}
   1575 #endif
   1576 		else
   1577 			return NULL;
   1578 		seq = ntohl(th->th_seq);
   1579 		if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
   1580 			return NULL;
   1581 		/*
   1582 		 * If the ICMP message advertises a Next-Hop MTU
   1583 		 * equal or larger than the maximum packet size we have
   1584 		 * ever sent, drop the message.
   1585 		 */
   1586 		mtu = (u_int)ntohs(icp->icmp_nextmtu);
   1587 		if (mtu >= tp->t_pmtud_mtu_sent)
   1588 			return NULL;
   1589 		if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
   1590 			/*
   1591 			 * Calculate new MTU, and create corresponding
   1592 			 * route (traditional PMTUD).
   1593 			 */
   1594 			tp->t_flags &= ~TF_PMTUD_PEND;
   1595 			icmp_mtudisc(icp, ip->ip_dst);
   1596 		} else {
   1597 			/*
   1598 			 * Record the information got in the ICMP
   1599 			 * message; act on it later.
   1600 			 * If we had already recorded an ICMP message,
   1601 			 * replace the old one only if the new message
   1602 			 * refers to an older TCP segment
   1603 			 */
   1604 			if (tp->t_flags & TF_PMTUD_PEND) {
   1605 				if (SEQ_LT(tp->t_pmtud_th_seq, seq))
   1606 					return NULL;
   1607 			} else
   1608 				tp->t_flags |= TF_PMTUD_PEND;
   1609 			tp->t_pmtud_th_seq = seq;
   1610 			tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
   1611 			tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
   1612 			tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
   1613 		}
   1614 		return NULL;
   1615 	} else if (cmd == PRC_HOSTDEAD)
   1616 		ip = 0;
   1617 	else if (errno == 0)
   1618 		return NULL;
   1619 	if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
   1620 		th = (struct tcphdr *)((caddr_t)ip + (ip->ip_hl << 2));
   1621 		nmatch = in_pcbnotify(&tcbtable, satosin(sa)->sin_addr,
   1622 		    th->th_dport, ip->ip_src, th->th_sport, errno, notify);
   1623 		if (nmatch == 0 && syn_cache_count &&
   1624 		    (inetctlerrmap[cmd] == EHOSTUNREACH ||
   1625 		    inetctlerrmap[cmd] == ENETUNREACH ||
   1626 		    inetctlerrmap[cmd] == EHOSTDOWN)) {
   1627 			struct sockaddr_in sin;
   1628 			bzero(&sin, sizeof(sin));
   1629 			sin.sin_len = sizeof(sin);
   1630 			sin.sin_family = AF_INET;
   1631 			sin.sin_port = th->th_sport;
   1632 			sin.sin_addr = ip->ip_src;
   1633 			syn_cache_unreach((struct sockaddr *)&sin, sa, th);
   1634 		}
   1635 
   1636 		/* XXX mapped address case */
   1637 	} else
   1638 		in_pcbnotifyall(&tcbtable, satosin(sa)->sin_addr, errno,
   1639 		    notify);
   1640 	return NULL;
   1641 }
   1642 
   1643 /*
   1644  * When a source quench is received, we are being notified of congestion.
   1645  * Close the congestion window down to the Loss Window (one segment).
   1646  * We will gradually open it again as we proceed.
   1647  */
   1648 void
   1649 tcp_quench(struct inpcb *inp, int errno)
   1650 {
   1651 	struct tcpcb *tp = intotcpcb(inp);
   1652 
   1653 	if (tp) {
   1654 		tp->snd_cwnd = tp->t_segsz;
   1655 		tp->t_bytes_acked = 0;
   1656 	}
   1657 }
   1658 #endif
   1659 
   1660 #ifdef INET6
   1661 void
   1662 tcp6_quench(struct in6pcb *in6p, int errno)
   1663 {
   1664 	struct tcpcb *tp = in6totcpcb(in6p);
   1665 
   1666 	if (tp) {
   1667 		tp->snd_cwnd = tp->t_segsz;
   1668 		tp->t_bytes_acked = 0;
   1669 	}
   1670 }
   1671 #endif
   1672 
   1673 #ifdef INET
   1674 /*
   1675  * Path MTU Discovery handlers.
   1676  */
   1677 void
   1678 tcp_mtudisc_callback(struct in_addr faddr)
   1679 {
   1680 #ifdef INET6
   1681 	struct in6_addr in6;
   1682 #endif
   1683 
   1684 	in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
   1685 #ifdef INET6
   1686 	memset(&in6, 0, sizeof(in6));
   1687 	in6.s6_addr16[5] = 0xffff;
   1688 	memcpy(&in6.s6_addr32[3], &faddr, sizeof(struct in_addr));
   1689 	tcp6_mtudisc_callback(&in6);
   1690 #endif
   1691 }
   1692 
   1693 /*
   1694  * On receipt of path MTU corrections, flush old route and replace it
   1695  * with the new one.  Retransmit all unacknowledged packets, to ensure
   1696  * that all packets will be received.
   1697  */
   1698 void
   1699 tcp_mtudisc(struct inpcb *inp, int errno)
   1700 {
   1701 	struct tcpcb *tp = intotcpcb(inp);
   1702 	struct rtentry *rt = in_pcbrtentry(inp);
   1703 
   1704 	if (tp != 0) {
   1705 		if (rt != 0) {
   1706 			/*
   1707 			 * If this was not a host route, remove and realloc.
   1708 			 */
   1709 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1710 				in_rtchange(inp, errno);
   1711 				if ((rt = in_pcbrtentry(inp)) == 0)
   1712 					return;
   1713 			}
   1714 
   1715 			/*
   1716 			 * Slow start out of the error condition.  We
   1717 			 * use the MTU because we know it's smaller
   1718 			 * than the previously transmitted segment.
   1719 			 *
   1720 			 * Note: This is more conservative than the
   1721 			 * suggestion in draft-floyd-incr-init-win-03.
   1722 			 */
   1723 			if (rt->rt_rmx.rmx_mtu != 0)
   1724 				tp->snd_cwnd =
   1725 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1726 				    rt->rt_rmx.rmx_mtu);
   1727 		}
   1728 
   1729 		/*
   1730 		 * Resend unacknowledged packets.
   1731 		 */
   1732 		tp->snd_nxt = tp->snd_una;
   1733 		tcp_output(tp);
   1734 	}
   1735 }
   1736 #endif
   1737 
   1738 #ifdef INET6
   1739 /*
   1740  * Path MTU Discovery handlers.
   1741  */
   1742 void
   1743 tcp6_mtudisc_callback(struct in6_addr *faddr)
   1744 {
   1745 	struct sockaddr_in6 sin6;
   1746 
   1747 	bzero(&sin6, sizeof(sin6));
   1748 	sin6.sin6_family = AF_INET6;
   1749 	sin6.sin6_len = sizeof(struct sockaddr_in6);
   1750 	sin6.sin6_addr = *faddr;
   1751 	(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
   1752 	    (const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
   1753 }
   1754 
   1755 void
   1756 tcp6_mtudisc(struct in6pcb *in6p, int errno)
   1757 {
   1758 	struct tcpcb *tp = in6totcpcb(in6p);
   1759 	struct rtentry *rt = in6_pcbrtentry(in6p);
   1760 
   1761 	if (tp != 0) {
   1762 		if (rt != 0) {
   1763 			/*
   1764 			 * If this was not a host route, remove and realloc.
   1765 			 */
   1766 			if ((rt->rt_flags & RTF_HOST) == 0) {
   1767 				in6_rtchange(in6p, errno);
   1768 				if ((rt = in6_pcbrtentry(in6p)) == 0)
   1769 					return;
   1770 			}
   1771 
   1772 			/*
   1773 			 * Slow start out of the error condition.  We
   1774 			 * use the MTU because we know it's smaller
   1775 			 * than the previously transmitted segment.
   1776 			 *
   1777 			 * Note: This is more conservative than the
   1778 			 * suggestion in draft-floyd-incr-init-win-03.
   1779 			 */
   1780 			if (rt->rt_rmx.rmx_mtu != 0)
   1781 				tp->snd_cwnd =
   1782 				    TCP_INITIAL_WINDOW(tcp_init_win,
   1783 				    rt->rt_rmx.rmx_mtu);
   1784 		}
   1785 
   1786 		/*
   1787 		 * Resend unacknowledged packets.
   1788 		 */
   1789 		tp->snd_nxt = tp->snd_una;
   1790 		tcp_output(tp);
   1791 	}
   1792 }
   1793 #endif /* INET6 */
   1794 
   1795 /*
   1796  * Compute the MSS to advertise to the peer.  Called only during
   1797  * the 3-way handshake.  If we are the server (peer initiated
   1798  * connection), we are called with a pointer to the interface
   1799  * on which the SYN packet arrived.  If we are the client (we
   1800  * initiated connection), we are called with a pointer to the
   1801  * interface out which this connection should go.
   1802  *
   1803  * NOTE: Do not subtract IP option/extension header size nor IPsec
   1804  * header size from MSS advertisement.  MSS option must hold the maximum
   1805  * segment size we can accept, so it must always be:
   1806  *	 max(if mtu) - ip header - tcp header
   1807  */
   1808 u_long
   1809 tcp_mss_to_advertise(const struct ifnet *ifp, int af)
   1810 {
   1811 	extern u_long in_maxmtu;
   1812 	u_long mss = 0;
   1813 	u_long hdrsiz;
   1814 
   1815 	/*
   1816 	 * In order to avoid defeating path MTU discovery on the peer,
   1817 	 * we advertise the max MTU of all attached networks as our MSS,
   1818 	 * per RFC 1191, section 3.1.
   1819 	 *
   1820 	 * We provide the option to advertise just the MTU of
   1821 	 * the interface on which we hope this connection will
   1822 	 * be receiving.  If we are responding to a SYN, we
   1823 	 * will have a pretty good idea about this, but when
   1824 	 * initiating a connection there is a bit more doubt.
   1825 	 *
   1826 	 * We also need to ensure that loopback has a large enough
   1827 	 * MSS, as the loopback MTU is never included in in_maxmtu.
   1828 	 */
   1829 
   1830 	if (ifp != NULL)
   1831 		switch (af) {
   1832 		case AF_INET:
   1833 			mss = ifp->if_mtu;
   1834 			break;
   1835 #ifdef INET6
   1836 		case AF_INET6:
   1837 			mss = IN6_LINKMTU(ifp);
   1838 			break;
   1839 #endif
   1840 		}
   1841 
   1842 	if (tcp_mss_ifmtu == 0)
   1843 		switch (af) {
   1844 		case AF_INET:
   1845 			mss = max(in_maxmtu, mss);
   1846 			break;
   1847 #ifdef INET6
   1848 		case AF_INET6:
   1849 			mss = max(in6_maxmtu, mss);
   1850 			break;
   1851 #endif
   1852 		}
   1853 
   1854 	switch (af) {
   1855 	case AF_INET:
   1856 		hdrsiz = sizeof(struct ip);
   1857 		break;
   1858 #ifdef INET6
   1859 	case AF_INET6:
   1860 		hdrsiz = sizeof(struct ip6_hdr);
   1861 		break;
   1862 #endif
   1863 	default:
   1864 		hdrsiz = 0;
   1865 		break;
   1866 	}
   1867 	hdrsiz += sizeof(struct tcphdr);
   1868 	if (mss > hdrsiz)
   1869 		mss -= hdrsiz;
   1870 
   1871 	mss = max(tcp_mssdflt, mss);
   1872 	return (mss);
   1873 }
   1874 
   1875 /*
   1876  * Set connection variables based on the peer's advertised MSS.
   1877  * We are passed the TCPCB for the actual connection.  If we
   1878  * are the server, we are called by the compressed state engine
   1879  * when the 3-way handshake is complete.  If we are the client,
   1880  * we are called when we receive the SYN,ACK from the server.
   1881  *
   1882  * NOTE: Our advertised MSS value must be initialized in the TCPCB
   1883  * before this routine is called!
   1884  */
   1885 void
   1886 tcp_mss_from_peer(struct tcpcb *tp, int offer)
   1887 {
   1888 	struct socket *so;
   1889 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1890 	struct rtentry *rt;
   1891 #endif
   1892 	u_long bufsize;
   1893 	int mss;
   1894 
   1895 #ifdef DIAGNOSTIC
   1896 	if (tp->t_inpcb && tp->t_in6pcb)
   1897 		panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
   1898 #endif
   1899 	so = NULL;
   1900 	rt = NULL;
   1901 #ifdef INET
   1902 	if (tp->t_inpcb) {
   1903 		so = tp->t_inpcb->inp_socket;
   1904 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1905 		rt = in_pcbrtentry(tp->t_inpcb);
   1906 #endif
   1907 	}
   1908 #endif
   1909 #ifdef INET6
   1910 	if (tp->t_in6pcb) {
   1911 		so = tp->t_in6pcb->in6p_socket;
   1912 #if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
   1913 		rt = in6_pcbrtentry(tp->t_in6pcb);
   1914 #endif
   1915 	}
   1916 #endif
   1917 
   1918 	/*
   1919 	 * As per RFC1122, use the default MSS value, unless they
   1920 	 * sent us an offer.  Do not accept offers less than 256 bytes.
   1921 	 */
   1922 	mss = tcp_mssdflt;
   1923 	if (offer)
   1924 		mss = offer;
   1925 	mss = max(mss, 256);		/* sanity */
   1926 	tp->t_peermss = mss;
   1927 	mss -= tcp_optlen(tp);
   1928 #ifdef INET
   1929 	if (tp->t_inpcb)
   1930 		mss -= ip_optlen(tp->t_inpcb);
   1931 #endif
   1932 #ifdef INET6
   1933 	if (tp->t_in6pcb)
   1934 		mss -= ip6_optlen(tp->t_in6pcb);
   1935 #endif
   1936 
   1937 	/*
   1938 	 * If there's a pipesize, change the socket buffer to that size.
   1939 	 * Make the socket buffer an integral number of MSS units.  If
   1940 	 * the MSS is larger than the socket buffer, artificially decrease
   1941 	 * the MSS.
   1942 	 */
   1943 #ifdef RTV_SPIPE
   1944 	if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
   1945 		bufsize = rt->rt_rmx.rmx_sendpipe;
   1946 	else
   1947 #endif
   1948 	{
   1949 		KASSERT(so != NULL);
   1950 		bufsize = so->so_snd.sb_hiwat;
   1951 	}
   1952 	if (bufsize < mss)
   1953 		mss = bufsize;
   1954 	else {
   1955 		bufsize = roundup(bufsize, mss);
   1956 		if (bufsize > sb_max)
   1957 			bufsize = sb_max;
   1958 		(void) sbreserve(&so->so_snd, bufsize, so);
   1959 	}
   1960 	tp->t_segsz = mss;
   1961 
   1962 #ifdef RTV_SSTHRESH
   1963 	if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
   1964 		/*
   1965 		 * There's some sort of gateway or interface buffer
   1966 		 * limit on the path.  Use this to set the slow
   1967 		 * start threshold, but set the threshold to no less
   1968 		 * than 2 * MSS.
   1969 		 */
   1970 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1971 	}
   1972 #endif
   1973 }
   1974 
   1975 /*
   1976  * Processing necessary when a TCP connection is established.
   1977  */
   1978 void
   1979 tcp_established(struct tcpcb *tp)
   1980 {
   1981 	struct socket *so;
   1982 #ifdef RTV_RPIPE
   1983 	struct rtentry *rt;
   1984 #endif
   1985 	u_long bufsize;
   1986 
   1987 #ifdef DIAGNOSTIC
   1988 	if (tp->t_inpcb && tp->t_in6pcb)
   1989 		panic("tcp_established: both t_inpcb and t_in6pcb are set");
   1990 #endif
   1991 	so = NULL;
   1992 	rt = NULL;
   1993 #ifdef INET
   1994 	if (tp->t_inpcb) {
   1995 		so = tp->t_inpcb->inp_socket;
   1996 #if defined(RTV_RPIPE)
   1997 		rt = in_pcbrtentry(tp->t_inpcb);
   1998 #endif
   1999 	}
   2000 #endif
   2001 #ifdef INET6
   2002 	if (tp->t_in6pcb) {
   2003 		so = tp->t_in6pcb->in6p_socket;
   2004 #if defined(RTV_RPIPE)
   2005 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2006 #endif
   2007 	}
   2008 #endif
   2009 
   2010 	tp->t_state = TCPS_ESTABLISHED;
   2011 	TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   2012 
   2013 #ifdef RTV_RPIPE
   2014 	if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
   2015 		bufsize = rt->rt_rmx.rmx_recvpipe;
   2016 	else
   2017 #endif
   2018 	{
   2019 		KASSERT(so != NULL);
   2020 		bufsize = so->so_rcv.sb_hiwat;
   2021 	}
   2022 	if (bufsize > tp->t_ourmss) {
   2023 		bufsize = roundup(bufsize, tp->t_ourmss);
   2024 		if (bufsize > sb_max)
   2025 			bufsize = sb_max;
   2026 		(void) sbreserve(&so->so_rcv, bufsize, so);
   2027 	}
   2028 }
   2029 
   2030 /*
   2031  * Check if there's an initial rtt or rttvar.  Convert from the
   2032  * route-table units to scaled multiples of the slow timeout timer.
   2033  * Called only during the 3-way handshake.
   2034  */
   2035 void
   2036 tcp_rmx_rtt(struct tcpcb *tp)
   2037 {
   2038 #ifdef RTV_RTT
   2039 	struct rtentry *rt = NULL;
   2040 	int rtt;
   2041 
   2042 #ifdef DIAGNOSTIC
   2043 	if (tp->t_inpcb && tp->t_in6pcb)
   2044 		panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
   2045 #endif
   2046 #ifdef INET
   2047 	if (tp->t_inpcb)
   2048 		rt = in_pcbrtentry(tp->t_inpcb);
   2049 #endif
   2050 #ifdef INET6
   2051 	if (tp->t_in6pcb)
   2052 		rt = in6_pcbrtentry(tp->t_in6pcb);
   2053 #endif
   2054 	if (rt == NULL)
   2055 		return;
   2056 
   2057 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   2058 		/*
   2059 		 * XXX The lock bit for MTU indicates that the value
   2060 		 * is also a minimum value; this is subject to time.
   2061 		 */
   2062 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   2063 			TCPT_RANGESET(tp->t_rttmin,
   2064 			    rtt / (RTM_RTTUNIT / PR_SLOWHZ),
   2065 			    TCPTV_MIN, TCPTV_REXMTMAX);
   2066 		tp->t_srtt = rtt /
   2067 		    ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
   2068 		if (rt->rt_rmx.rmx_rttvar) {
   2069 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   2070 			    ((RTM_RTTUNIT / PR_SLOWHZ) >>
   2071 				(TCP_RTTVAR_SHIFT + 2));
   2072 		} else {
   2073 			/* Default variation is +- 1 rtt */
   2074 			tp->t_rttvar =
   2075 			    tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
   2076 		}
   2077 		TCPT_RANGESET(tp->t_rxtcur,
   2078 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
   2079 		    tp->t_rttmin, TCPTV_REXMTMAX);
   2080 	}
   2081 #endif
   2082 }
   2083 
   2084 tcp_seq	 tcp_iss_seq = 0;	/* tcp initial seq # */
   2085 #if NRND > 0
   2086 u_int8_t tcp_iss_secret[16];	/* 128 bits; should be plenty */
   2087 #endif
   2088 
   2089 /*
   2090  * Get a new sequence value given a tcp control block
   2091  */
   2092 tcp_seq
   2093 tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
   2094 {
   2095 
   2096 #ifdef INET
   2097 	if (tp->t_inpcb != NULL) {
   2098 		return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
   2099 		    &tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
   2100 		    tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
   2101 		    addin));
   2102 	}
   2103 #endif
   2104 #ifdef INET6
   2105 	if (tp->t_in6pcb != NULL) {
   2106 		return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
   2107 		    &tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
   2108 		    tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
   2109 		    addin));
   2110 	}
   2111 #endif
   2112 	/* Not possible. */
   2113 	panic("tcp_new_iss");
   2114 }
   2115 
   2116 /*
   2117  * This routine actually generates a new TCP initial sequence number.
   2118  */
   2119 tcp_seq
   2120 tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
   2121     size_t addrsz, tcp_seq addin)
   2122 {
   2123 	tcp_seq tcp_iss;
   2124 
   2125 #if NRND > 0
   2126 	static int beenhere;
   2127 
   2128 	/*
   2129 	 * If we haven't been here before, initialize our cryptographic
   2130 	 * hash secret.
   2131 	 */
   2132 	if (beenhere == 0) {
   2133 		rnd_extract_data(tcp_iss_secret, sizeof(tcp_iss_secret),
   2134 		    RND_EXTRACT_ANY);
   2135 		beenhere = 1;
   2136 	}
   2137 
   2138 	if (tcp_do_rfc1948) {
   2139 		MD5_CTX ctx;
   2140 		u_int8_t hash[16];	/* XXX MD5 knowledge */
   2141 
   2142 		/*
   2143 		 * Compute the base value of the ISS.  It is a hash
   2144 		 * of (saddr, sport, daddr, dport, secret).
   2145 		 */
   2146 		MD5Init(&ctx);
   2147 
   2148 		MD5Update(&ctx, (u_char *) laddr, addrsz);
   2149 		MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
   2150 
   2151 		MD5Update(&ctx, (u_char *) faddr, addrsz);
   2152 		MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
   2153 
   2154 		MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
   2155 
   2156 		MD5Final(hash, &ctx);
   2157 
   2158 		memcpy(&tcp_iss, hash, sizeof(tcp_iss));
   2159 
   2160 		/*
   2161 		 * Now increment our "timer", and add it in to
   2162 		 * the computed value.
   2163 		 *
   2164 		 * XXX Use `addin'?
   2165 		 * XXX TCP_ISSINCR too large to use?
   2166 		 */
   2167 		tcp_iss_seq += TCP_ISSINCR;
   2168 #ifdef TCPISS_DEBUG
   2169 		printf("ISS hash 0x%08x, ", tcp_iss);
   2170 #endif
   2171 		tcp_iss += tcp_iss_seq + addin;
   2172 #ifdef TCPISS_DEBUG
   2173 		printf("new ISS 0x%08x\n", tcp_iss);
   2174 #endif
   2175 	} else
   2176 #endif /* NRND > 0 */
   2177 	{
   2178 		/*
   2179 		 * Randomize.
   2180 		 */
   2181 #if NRND > 0
   2182 		rnd_extract_data(&tcp_iss, sizeof(tcp_iss), RND_EXTRACT_ANY);
   2183 #else
   2184 		tcp_iss = arc4random();
   2185 #endif
   2186 
   2187 		/*
   2188 		 * If we were asked to add some amount to a known value,
   2189 		 * we will take a random value obtained above, mask off
   2190 		 * the upper bits, and add in the known value.  We also
   2191 		 * add in a constant to ensure that we are at least a
   2192 		 * certain distance from the original value.
   2193 		 *
   2194 		 * This is used when an old connection is in timed wait
   2195 		 * and we have a new one coming in, for instance.
   2196 		 */
   2197 		if (addin != 0) {
   2198 #ifdef TCPISS_DEBUG
   2199 			printf("Random %08x, ", tcp_iss);
   2200 #endif
   2201 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2202 			tcp_iss += addin + TCP_ISSINCR;
   2203 #ifdef TCPISS_DEBUG
   2204 			printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
   2205 #endif
   2206 		} else {
   2207 			tcp_iss &= TCP_ISS_RANDOM_MASK;
   2208 			tcp_iss += tcp_iss_seq;
   2209 			tcp_iss_seq += TCP_ISSINCR;
   2210 #ifdef TCPISS_DEBUG
   2211 			printf("ISS %08x\n", tcp_iss);
   2212 #endif
   2213 		}
   2214 	}
   2215 
   2216 	if (tcp_compat_42) {
   2217 		/*
   2218 		 * Limit it to the positive range for really old TCP
   2219 		 * implementations.
   2220 		 * Just AND off the top bit instead of checking if
   2221 		 * is set first - saves a branch 50% of the time.
   2222 		 */
   2223 		tcp_iss &= 0x7fffffff;		/* XXX */
   2224 	}
   2225 
   2226 	return (tcp_iss);
   2227 }
   2228 
   2229 #if defined(IPSEC) || defined(FAST_IPSEC)
   2230 /* compute ESP/AH header size for TCP, including outer IP header. */
   2231 size_t
   2232 ipsec4_hdrsiz_tcp(struct tcpcb *tp)
   2233 {
   2234 	struct inpcb *inp;
   2235 	size_t hdrsiz;
   2236 
   2237 	/* XXX mapped addr case (tp->t_in6pcb) */
   2238 	if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
   2239 		return 0;
   2240 	switch (tp->t_family) {
   2241 	case AF_INET:
   2242 		/* XXX: should use currect direction. */
   2243 		hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
   2244 		break;
   2245 	default:
   2246 		hdrsiz = 0;
   2247 		break;
   2248 	}
   2249 
   2250 	return hdrsiz;
   2251 }
   2252 
   2253 #ifdef INET6
   2254 size_t
   2255 ipsec6_hdrsiz_tcp(struct tcpcb *tp)
   2256 {
   2257 	struct in6pcb *in6p;
   2258 	size_t hdrsiz;
   2259 
   2260 	if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
   2261 		return 0;
   2262 	switch (tp->t_family) {
   2263 	case AF_INET6:
   2264 		/* XXX: should use currect direction. */
   2265 		hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
   2266 		break;
   2267 	case AF_INET:
   2268 		/* mapped address case - tricky */
   2269 	default:
   2270 		hdrsiz = 0;
   2271 		break;
   2272 	}
   2273 
   2274 	return hdrsiz;
   2275 }
   2276 #endif
   2277 #endif /*IPSEC*/
   2278 
   2279 /*
   2280  * Determine the length of the TCP options for this connection.
   2281  *
   2282  * XXX:  What do we do for SACK, when we add that?  Just reserve
   2283  *       all of the space?  Otherwise we can't exactly be incrementing
   2284  *       cwnd by an amount that varies depending on the amount we last
   2285  *       had to SACK!
   2286  */
   2287 
   2288 u_int
   2289 tcp_optlen(struct tcpcb *tp)
   2290 {
   2291 	u_int optlen;
   2292 
   2293 	optlen = 0;
   2294 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
   2295 	    (TF_REQ_TSTMP | TF_RCVD_TSTMP))
   2296 		optlen += TCPOLEN_TSTAMP_APPA;
   2297 
   2298 #ifdef TCP_SIGNATURE
   2299 #if defined(INET6) && defined(FAST_IPSEC)
   2300 	if (tp->t_family == AF_INET)
   2301 #endif
   2302 	if (tp->t_flags & TF_SIGNATURE)
   2303 		optlen += TCPOLEN_SIGNATURE + 2;
   2304 #endif /* TCP_SIGNATURE */
   2305 
   2306 	return optlen;
   2307 }
   2308 
   2309 u_int
   2310 tcp_hdrsz(struct tcpcb *tp)
   2311 {
   2312 	u_int hlen;
   2313 
   2314 	switch (tp->t_family) {
   2315 #ifdef INET6
   2316 	case AF_INET6:
   2317 		hlen = sizeof(struct ip6_hdr);
   2318 		break;
   2319 #endif
   2320 	case AF_INET:
   2321 		hlen = sizeof(struct ip);
   2322 		break;
   2323 	default:
   2324 		hlen = 0;
   2325 		break;
   2326 	}
   2327 	hlen += sizeof(struct tcphdr);
   2328 
   2329 	if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
   2330 	    (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
   2331 		hlen += TCPOLEN_TSTAMP_APPA;
   2332 #ifdef TCP_SIGNATURE
   2333 	if (tp->t_flags & TF_SIGNATURE)
   2334 		hlen += TCPOLEN_SIGLEN;
   2335 #endif
   2336 	return hlen;
   2337 }
   2338